Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-03-20 11:47 -0400 (Thu, 20 Mar 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | R Under development (unstable) (2025-03-13 r87965) -- "Unsuffered Consequences" | 4777 |
palomino7 | Windows Server 2022 Datacenter | x64 | R Under development (unstable) (2025-03-01 r87860 ucrt) -- "Unsuffered Consequences" | 4545 |
lconway | macOS 12.7.1 Monterey | x86_64 | R Under development (unstable) (2025-03-02 r87868) -- "Unsuffered Consequences" | 4576 |
kjohnson3 | macOS 13.7.1 Ventura | arm64 | R Under development (unstable) (2025-03-02 r87868) -- "Unsuffered Consequences" | 4528 |
kunpeng2 | Linux (openEuler 24.03 LTS) | aarch64 | R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" | 4458 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 989/2313 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.13.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson3 | macOS 13.7.1 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
kunpeng2 | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. - See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host. |
Package: HPiP |
Version: 1.13.0 |
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings HPiP_1.13.0.tar.gz |
StartedAt: 2025-03-20 08:07:24 -0000 (Thu, 20 Mar 2025) |
EndedAt: 2025-03-20 08:14:51 -0000 (Thu, 20 Mar 2025) |
EllapsedTime: 446.4 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings HPiP_1.13.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck’ * using R Under development (unstable) (2025-02-19 r87757) * using platform: aarch64-unknown-linux-gnu * R was compiled by aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0 GNU Fortran (GCC) 14.2.0 * running under: openEuler 24.03 (LTS-SP1) * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.13.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 39.202 0.308 39.564 corr_plot 37.465 0.383 37.910 FSmethod 37.456 0.196 37.720 pred_ensembel 18.259 0.417 17.479 enrichfindP 0.541 0.028 24.246 getFASTA 0.125 0.016 7.199 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/home/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/R/R-devel_2025-02-19/site-library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.13.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 108.281166 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.810068 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 103.174963 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 106.985527 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 95.721349 final value 94.466823 converged Fitting Repeat 1 # weights: 305 initial value 116.227921 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 95.914841 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 98.882117 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 108.706557 iter 10 value 94.316879 iter 20 value 94.315790 iter 20 value 94.315790 iter 20 value 94.315790 final value 94.315790 converged Fitting Repeat 5 # weights: 305 initial value 97.980646 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 103.851085 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 103.185432 final value 94.253430 converged Fitting Repeat 3 # weights: 507 initial value 113.623887 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 99.326640 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 111.032672 final value 94.114232 converged Fitting Repeat 1 # weights: 103 initial value 99.402536 iter 10 value 92.756637 iter 20 value 85.076851 iter 30 value 84.383456 iter 40 value 83.974203 iter 50 value 83.247425 iter 60 value 82.835037 iter 70 value 82.667252 final value 82.667243 converged Fitting Repeat 2 # weights: 103 initial value 101.629537 iter 10 value 94.860277 iter 20 value 93.857637 iter 30 value 89.048816 iter 40 value 86.803266 iter 50 value 86.634336 iter 60 value 86.045093 iter 70 value 84.736986 iter 80 value 84.716943 final value 84.716861 converged Fitting Repeat 3 # weights: 103 initial value 100.491123 iter 10 value 94.573295 iter 20 value 94.481579 iter 30 value 93.518086 iter 40 value 85.268338 iter 50 value 83.676950 iter 60 value 83.028482 iter 70 value 82.741196 iter 80 value 82.667260 final value 82.667242 converged Fitting Repeat 4 # weights: 103 initial value 99.860542 iter 10 value 94.489251 iter 20 value 91.769627 iter 30 value 88.810477 iter 40 value 88.637157 iter 50 value 88.217981 iter 60 value 87.872144 iter 70 value 86.366969 iter 80 value 85.816322 iter 90 value 85.173632 iter 100 value 84.782866 final value 84.782866 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 100.565527 iter 10 value 94.517629 iter 20 value 94.204466 iter 30 value 88.225651 iter 40 value 87.306021 iter 50 value 86.369312 iter 60 value 85.102116 iter 70 value 84.761909 iter 80 value 84.717163 final value 84.716860 converged Fitting Repeat 1 # weights: 305 initial value 99.784378 iter 10 value 94.213847 iter 20 value 87.369990 iter 30 value 86.020622 iter 40 value 85.950076 iter 50 value 85.552681 iter 60 value 83.786053 iter 70 value 81.920073 iter 80 value 81.569029 iter 90 value 81.472472 iter 100 value 81.403311 final value 81.403311 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.819521 iter 10 value 92.316921 iter 20 value 86.238692 iter 30 value 85.966837 iter 40 value 84.960733 iter 50 value 83.269649 iter 60 value 81.939041 iter 70 value 81.260850 iter 80 value 80.925977 iter 90 value 80.689023 iter 100 value 80.522751 final value 80.522751 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.426719 iter 10 value 94.638373 iter 20 value 94.114105 iter 30 value 92.672115 iter 40 value 92.419722 iter 50 value 90.667548 iter 60 value 83.483411 iter 70 value 82.719416 iter 80 value 81.991302 iter 90 value 81.657752 iter 100 value 81.216739 final value 81.216739 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.298139 iter 10 value 94.376775 iter 20 value 86.768230 iter 30 value 85.695316 iter 40 value 85.373216 iter 50 value 84.585158 iter 60 value 84.507387 iter 70 value 84.447953 iter 80 value 84.405785 iter 90 value 83.632766 iter 100 value 82.548622 final value 82.548622 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.888408 iter 10 value 94.390483 iter 20 value 89.460470 iter 30 value 86.373444 iter 40 value 85.579927 iter 50 value 85.088153 iter 60 value 84.881653 iter 70 value 83.092940 iter 80 value 82.039510 iter 90 value 81.814282 iter 100 value 81.578998 final value 81.578998 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 111.409223 iter 10 value 95.137884 iter 20 value 87.245479 iter 30 value 85.290774 iter 40 value 84.152997 iter 50 value 83.035194 iter 60 value 81.739877 iter 70 value 81.238092 iter 80 value 81.167227 iter 90 value 81.109685 iter 100 value 81.010048 final value 81.010048 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.430229 iter 10 value 94.158324 iter 20 value 85.178816 iter 30 value 84.337519 iter 40 value 83.987202 iter 50 value 83.730808 iter 60 value 83.230313 iter 70 value 82.285214 iter 80 value 81.286403 iter 90 value 81.177135 iter 100 value 81.144216 final value 81.144216 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 129.119358 iter 10 value 94.935157 iter 20 value 94.249138 iter 30 value 91.981243 iter 40 value 87.372555 iter 50 value 82.863909 iter 60 value 82.318591 iter 70 value 81.739325 iter 80 value 81.234873 iter 90 value 80.900996 iter 100 value 80.846004 final value 80.846004 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.310764 iter 10 value 94.835934 iter 20 value 93.770043 iter 30 value 86.468161 iter 40 value 86.168573 iter 50 value 84.760567 iter 60 value 83.716020 iter 70 value 81.456909 iter 80 value 81.076251 iter 90 value 80.944470 iter 100 value 80.852011 final value 80.852011 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 126.907118 iter 10 value 95.001102 iter 20 value 91.285734 iter 30 value 87.245764 iter 40 value 84.368433 iter 50 value 82.698980 iter 60 value 82.146821 iter 70 value 81.708051 iter 80 value 81.314470 iter 90 value 80.995446 iter 100 value 80.447709 final value 80.447709 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.511583 final value 94.486011 converged Fitting Repeat 2 # weights: 103 initial value 105.324932 final value 94.486033 converged Fitting Repeat 3 # weights: 103 initial value 112.692945 final value 94.485929 converged Fitting Repeat 4 # weights: 103 initial value 98.757125 final value 94.485806 converged Fitting Repeat 5 # weights: 103 initial value 94.519932 iter 10 value 94.143967 iter 20 value 93.785229 iter 30 value 86.922966 iter 40 value 86.874701 iter 50 value 86.112793 iter 60 value 86.110916 iter 70 value 86.037811 iter 80 value 85.606337 iter 90 value 85.455801 iter 100 value 85.439741 final value 85.439741 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 108.131064 iter 10 value 94.471678 iter 20 value 94.467717 iter 30 value 92.033542 iter 40 value 91.933299 final value 91.881304 converged Fitting Repeat 2 # weights: 305 initial value 95.480302 iter 10 value 94.132333 iter 20 value 93.749061 iter 30 value 85.947593 iter 40 value 84.147590 iter 50 value 84.118178 iter 60 value 84.086330 final value 84.085854 converged Fitting Repeat 3 # weights: 305 initial value 97.921759 iter 10 value 92.950512 iter 20 value 92.932798 iter 30 value 92.421069 iter 40 value 92.293660 iter 50 value 92.292476 iter 60 value 91.832376 iter 70 value 91.831906 iter 80 value 91.806874 iter 90 value 91.715244 iter 100 value 91.689845 final value 91.689845 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 95.816405 iter 10 value 94.488888 iter 20 value 94.144343 iter 30 value 91.745671 iter 40 value 91.171364 iter 50 value 91.154496 iter 60 value 91.152915 iter 70 value 91.001941 iter 80 value 90.514345 iter 90 value 90.416995 iter 100 value 90.412902 final value 90.412902 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 95.025445 iter 10 value 94.488898 iter 20 value 94.323839 iter 30 value 86.349412 iter 40 value 85.812774 iter 50 value 85.479822 iter 60 value 84.673745 iter 70 value 84.261903 iter 80 value 84.199192 final value 84.199012 converged Fitting Repeat 1 # weights: 507 initial value 125.263951 iter 10 value 89.071818 iter 20 value 85.065951 iter 30 value 83.856853 iter 40 value 83.739898 iter 50 value 83.720936 iter 60 value 83.565721 iter 70 value 82.532750 iter 80 value 81.307368 iter 90 value 81.111570 iter 100 value 81.109233 final value 81.109233 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 120.488580 iter 10 value 94.495218 iter 20 value 94.127235 iter 30 value 94.115745 iter 40 value 85.895908 iter 50 value 85.457657 iter 60 value 85.457504 iter 70 value 85.443300 final value 85.437616 converged Fitting Repeat 3 # weights: 507 initial value 103.319743 iter 10 value 94.491903 iter 20 value 92.130339 iter 30 value 85.206001 iter 40 value 83.648188 iter 50 value 83.610748 final value 83.610699 converged Fitting Repeat 4 # weights: 507 initial value 118.137852 iter 10 value 94.492390 iter 20 value 94.481729 iter 30 value 90.924000 iter 40 value 84.270702 iter 50 value 84.193097 iter 60 value 84.024162 iter 70 value 83.928704 iter 80 value 83.927833 iter 90 value 83.794544 iter 100 value 83.792192 final value 83.792192 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.428819 iter 10 value 94.474523 iter 20 value 94.397664 iter 30 value 92.269053 iter 40 value 91.808856 iter 50 value 91.652051 final value 91.651902 converged Fitting Repeat 1 # weights: 103 initial value 96.711810 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 98.718634 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 109.237738 iter 10 value 93.583328 final value 93.582441 converged Fitting Repeat 4 # weights: 103 initial value 102.965609 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 96.967146 iter 10 value 93.582418 iter 10 value 93.582418 iter 10 value 93.582418 final value 93.582418 converged Fitting Repeat 1 # weights: 305 initial value 107.370389 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 102.745428 final value 93.582418 converged Fitting Repeat 3 # weights: 305 initial value 98.980091 iter 10 value 93.026720 iter 20 value 84.703128 iter 30 value 84.317517 iter 40 value 84.310321 iter 50 value 84.310279 final value 84.310277 converged Fitting Repeat 4 # weights: 305 initial value 97.083528 final value 93.604520 converged Fitting Repeat 5 # weights: 305 initial value 94.386510 iter 10 value 87.989035 iter 20 value 86.572860 iter 30 value 85.959917 iter 40 value 85.657710 iter 50 value 85.631912 iter 60 value 85.630686 final value 85.630675 converged Fitting Repeat 1 # weights: 507 initial value 101.313510 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 108.396941 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 96.777724 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 112.124946 final value 92.868704 converged Fitting Repeat 5 # weights: 507 initial value 93.965507 iter 10 value 81.583093 final value 81.559126 converged Fitting Repeat 1 # weights: 103 initial value 98.496809 iter 10 value 94.080034 iter 20 value 92.599468 iter 30 value 83.303070 iter 40 value 82.584867 iter 50 value 82.381942 iter 60 value 82.119921 iter 70 value 81.924452 final value 81.918965 converged Fitting Repeat 2 # weights: 103 initial value 98.852592 iter 10 value 94.074550 iter 20 value 93.910043 iter 30 value 93.166961 iter 40 value 93.128818 iter 50 value 92.748396 iter 60 value 82.360998 iter 70 value 81.036408 iter 80 value 80.894105 iter 90 value 80.675501 iter 100 value 80.575002 final value 80.575002 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 103.080115 iter 10 value 94.056772 iter 20 value 93.202924 iter 30 value 92.953749 iter 40 value 87.772338 iter 50 value 84.302938 iter 60 value 81.464588 iter 70 value 79.854475 iter 80 value 79.117911 iter 90 value 79.109487 final value 79.100514 converged Fitting Repeat 4 # weights: 103 initial value 101.424529 iter 10 value 94.421680 iter 20 value 94.059816 iter 30 value 93.978486 iter 40 value 93.691297 iter 50 value 93.388994 iter 60 value 93.128684 iter 70 value 82.868024 iter 80 value 80.245385 iter 90 value 79.888435 iter 100 value 79.586627 final value 79.586627 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 100.532860 iter 10 value 94.349355 iter 20 value 94.035370 iter 30 value 87.329611 iter 40 value 82.576839 iter 50 value 82.331624 iter 60 value 82.048005 iter 70 value 81.919913 final value 81.918965 converged Fitting Repeat 1 # weights: 305 initial value 113.063070 iter 10 value 93.887809 iter 20 value 84.345323 iter 30 value 82.241868 iter 40 value 80.443460 iter 50 value 80.234859 iter 60 value 79.344315 iter 70 value 78.119033 iter 80 value 77.761809 iter 90 value 77.634509 iter 100 value 77.590524 final value 77.590524 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 113.440447 iter 10 value 94.609541 iter 20 value 88.302173 iter 30 value 83.332030 iter 40 value 83.002879 iter 50 value 82.284252 iter 60 value 81.012464 iter 70 value 79.601291 iter 80 value 78.940165 iter 90 value 78.735533 iter 100 value 78.357672 final value 78.357672 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 136.295320 iter 10 value 94.841367 iter 20 value 86.437701 iter 30 value 83.214534 iter 40 value 82.408281 iter 50 value 82.129071 iter 60 value 81.295096 iter 70 value 80.520357 iter 80 value 80.254573 iter 90 value 79.937816 iter 100 value 79.420320 final value 79.420320 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.543272 iter 10 value 94.193684 iter 20 value 93.069532 iter 30 value 87.914631 iter 40 value 80.102906 iter 50 value 79.892262 iter 60 value 79.338680 iter 70 value 79.239098 iter 80 value 78.945562 iter 90 value 78.789699 iter 100 value 78.457669 final value 78.457669 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.493478 iter 10 value 93.927878 iter 20 value 86.045828 iter 30 value 83.279616 iter 40 value 82.090173 iter 50 value 81.633477 iter 60 value 81.458862 iter 70 value 81.444563 iter 80 value 81.180673 iter 90 value 80.368325 iter 100 value 79.292124 final value 79.292124 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 103.052884 iter 10 value 94.791455 iter 20 value 89.914834 iter 30 value 83.484191 iter 40 value 80.404450 iter 50 value 79.834171 iter 60 value 79.644618 iter 70 value 79.129932 iter 80 value 78.942256 iter 90 value 78.721931 iter 100 value 78.162037 final value 78.162037 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.980954 iter 10 value 92.816217 iter 20 value 86.097420 iter 30 value 80.566781 iter 40 value 79.874030 iter 50 value 79.340418 iter 60 value 78.495845 iter 70 value 77.919502 iter 80 value 77.429707 iter 90 value 77.373492 iter 100 value 77.123648 final value 77.123648 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.492448 iter 10 value 95.493517 iter 20 value 93.316088 iter 30 value 86.568760 iter 40 value 81.826453 iter 50 value 80.903868 iter 60 value 80.711985 iter 70 value 80.262536 iter 80 value 79.997200 iter 90 value 79.456393 iter 100 value 79.357862 final value 79.357862 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 122.119599 iter 10 value 93.953381 iter 20 value 91.928773 iter 30 value 90.344614 iter 40 value 83.895886 iter 50 value 82.306115 iter 60 value 79.520589 iter 70 value 79.102793 iter 80 value 78.534052 iter 90 value 78.070260 iter 100 value 77.953620 final value 77.953620 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.955853 iter 10 value 95.318796 iter 20 value 88.766621 iter 30 value 82.990133 iter 40 value 81.031585 iter 50 value 80.374319 iter 60 value 79.777852 iter 70 value 79.679304 iter 80 value 79.320609 iter 90 value 78.569886 iter 100 value 77.830257 final value 77.830257 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.156731 final value 94.054322 converged Fitting Repeat 2 # weights: 103 initial value 98.764692 iter 10 value 94.010238 iter 20 value 94.008898 iter 30 value 85.520560 iter 40 value 81.563013 iter 50 value 81.557854 iter 60 value 81.066164 iter 70 value 80.951758 final value 80.951616 converged Fitting Repeat 3 # weights: 103 initial value 96.383821 final value 94.054308 converged Fitting Repeat 4 # weights: 103 initial value 107.437184 final value 94.054290 converged Fitting Repeat 5 # weights: 103 initial value 97.527279 final value 94.054585 converged Fitting Repeat 1 # weights: 305 initial value 106.009781 iter 10 value 93.533660 iter 20 value 93.529661 final value 93.528930 converged Fitting Repeat 2 # weights: 305 initial value 96.007306 iter 10 value 92.982126 iter 20 value 92.976210 iter 30 value 92.974554 iter 40 value 92.944747 iter 50 value 92.942079 iter 60 value 92.154179 iter 70 value 84.160940 final value 81.414753 converged Fitting Repeat 3 # weights: 305 initial value 101.239504 iter 10 value 92.880405 iter 20 value 92.873197 iter 30 value 92.831709 iter 40 value 92.829599 iter 50 value 92.829459 iter 60 value 90.889160 iter 70 value 79.895260 iter 80 value 78.564399 iter 90 value 78.219926 iter 100 value 78.147858 final value 78.147858 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.600810 iter 10 value 91.453271 iter 20 value 83.873083 iter 30 value 82.940362 iter 40 value 82.937645 iter 50 value 82.934971 iter 60 value 79.368851 iter 70 value 78.983632 iter 80 value 78.932582 final value 78.930134 converged Fitting Repeat 5 # weights: 305 initial value 107.944465 iter 10 value 94.055940 iter 20 value 94.052938 iter 30 value 92.964401 iter 40 value 90.842706 iter 50 value 90.819167 iter 60 value 90.816750 iter 70 value 90.814744 iter 80 value 90.813730 iter 90 value 90.813374 final value 90.813367 converged Fitting Repeat 1 # weights: 507 initial value 145.623049 iter 10 value 94.061244 iter 20 value 93.592110 iter 30 value 90.571652 iter 40 value 82.051750 iter 50 value 80.928487 iter 60 value 77.518557 iter 70 value 76.804598 iter 80 value 76.071107 iter 90 value 76.015040 iter 100 value 75.983878 final value 75.983878 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 121.265177 iter 10 value 93.591262 iter 20 value 93.584184 iter 30 value 84.654951 iter 40 value 84.180442 iter 50 value 82.283943 iter 60 value 80.689481 iter 70 value 80.684471 iter 80 value 78.841139 iter 90 value 78.129082 iter 100 value 77.710866 final value 77.710866 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 98.435236 iter 10 value 94.060876 iter 20 value 93.596777 iter 30 value 93.583790 iter 40 value 92.867574 iter 50 value 88.623493 iter 60 value 88.583800 iter 70 value 88.582876 final value 88.582852 converged Fitting Repeat 4 # weights: 507 initial value 98.215162 iter 10 value 94.061964 final value 94.054277 converged Fitting Repeat 5 # weights: 507 initial value 103.607330 iter 10 value 93.970897 iter 20 value 93.155217 iter 30 value 82.714189 iter 40 value 82.003504 iter 50 value 81.371268 iter 60 value 80.630085 iter 70 value 80.253302 iter 80 value 80.125754 iter 90 value 80.077619 iter 90 value 80.077618 iter 90 value 80.077618 final value 80.077618 converged Fitting Repeat 1 # weights: 103 initial value 107.826237 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 99.193060 iter 10 value 94.231731 iter 10 value 94.231730 iter 10 value 94.231730 final value 94.231730 converged Fitting Repeat 3 # weights: 103 initial value 109.776270 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 95.277241 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 97.001574 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 112.566840 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 94.894466 iter 10 value 94.231730 iter 10 value 94.231729 iter 10 value 94.231729 final value 94.231729 converged Fitting Repeat 3 # weights: 305 initial value 104.172647 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 103.337963 iter 10 value 94.437562 iter 20 value 94.405732 final value 94.405644 converged Fitting Repeat 5 # weights: 305 initial value 95.605784 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 95.997876 iter 10 value 94.231734 final value 94.231729 converged Fitting Repeat 2 # weights: 507 initial value 113.136837 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 101.621758 iter 10 value 94.231991 final value 94.231729 converged Fitting Repeat 4 # weights: 507 initial value 112.895720 iter 10 value 94.453370 iter 20 value 93.186481 final value 93.109890 converged Fitting Repeat 5 # weights: 507 initial value 107.680449 iter 10 value 93.141751 iter 20 value 87.043995 iter 30 value 86.844274 iter 40 value 86.792460 iter 50 value 86.514961 iter 60 value 85.216337 iter 70 value 83.448989 iter 80 value 83.352529 iter 80 value 83.352529 final value 83.352529 converged Fitting Repeat 1 # weights: 103 initial value 101.135847 iter 10 value 94.408188 iter 20 value 89.739734 iter 30 value 85.371850 iter 40 value 84.543221 iter 50 value 84.384503 iter 60 value 83.283700 iter 70 value 83.125795 iter 80 value 82.984951 final value 82.981469 converged Fitting Repeat 2 # weights: 103 initial value 108.343490 iter 10 value 94.392148 iter 20 value 92.773782 iter 30 value 88.448471 iter 40 value 86.894108 iter 50 value 85.665459 iter 60 value 84.623295 iter 70 value 84.408485 iter 80 value 83.828803 iter 90 value 83.806337 iter 100 value 83.686999 final value 83.686999 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 109.627431 iter 10 value 94.471827 iter 20 value 93.522460 iter 30 value 89.007954 iter 40 value 88.160936 iter 50 value 87.364503 iter 60 value 86.672692 iter 70 value 86.374504 iter 80 value 86.236983 final value 86.201868 converged Fitting Repeat 4 # weights: 103 initial value 104.192579 iter 10 value 94.292119 iter 20 value 89.406783 iter 30 value 87.477545 iter 40 value 87.202948 iter 50 value 86.136402 iter 60 value 84.816287 iter 70 value 84.751784 iter 80 value 84.748361 final value 84.748340 converged Fitting Repeat 5 # weights: 103 initial value 110.522323 iter 10 value 94.087834 iter 20 value 87.479834 iter 30 value 86.829217 iter 40 value 86.583056 iter 50 value 85.814917 iter 60 value 84.584690 iter 70 value 84.321987 iter 80 value 84.305795 final value 84.304997 converged Fitting Repeat 1 # weights: 305 initial value 102.005742 iter 10 value 94.455007 iter 20 value 91.310027 iter 30 value 86.971809 iter 40 value 84.910987 iter 50 value 84.228598 iter 60 value 84.143888 iter 70 value 84.137741 iter 80 value 84.124339 iter 90 value 84.101550 iter 100 value 83.284328 final value 83.284328 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 105.267602 iter 10 value 94.791755 iter 20 value 94.492402 iter 30 value 90.455957 iter 40 value 86.206787 iter 50 value 86.028201 iter 60 value 85.258019 iter 70 value 84.892004 iter 80 value 84.689866 iter 90 value 83.759091 iter 100 value 83.019073 final value 83.019073 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 116.432587 iter 10 value 94.305457 iter 20 value 91.196526 iter 30 value 87.078374 iter 40 value 86.103160 iter 50 value 85.547918 iter 60 value 85.437598 iter 70 value 85.362012 iter 80 value 85.156707 iter 90 value 83.682964 iter 100 value 82.762595 final value 82.762595 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.971902 iter 10 value 94.511880 iter 20 value 86.957194 iter 30 value 85.789134 iter 40 value 85.685404 iter 50 value 84.739168 iter 60 value 83.346639 iter 70 value 82.598720 iter 80 value 82.097659 iter 90 value 81.885190 iter 100 value 81.825800 final value 81.825800 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.004384 iter 10 value 92.237456 iter 20 value 87.482542 iter 30 value 85.998668 iter 40 value 84.794098 iter 50 value 84.721962 iter 60 value 84.308287 iter 70 value 84.035771 iter 80 value 83.853209 iter 90 value 83.078475 iter 100 value 82.731151 final value 82.731151 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.779586 iter 10 value 97.813386 iter 20 value 94.648366 iter 30 value 94.533877 iter 40 value 91.871251 iter 50 value 90.956774 iter 60 value 87.539341 iter 70 value 86.407975 iter 80 value 85.915460 iter 90 value 83.749784 iter 100 value 82.130730 final value 82.130730 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 122.944032 iter 10 value 94.628194 iter 20 value 92.503491 iter 30 value 87.901030 iter 40 value 86.878228 iter 50 value 86.033235 iter 60 value 83.301103 iter 70 value 83.012349 iter 80 value 82.868631 iter 90 value 82.621888 iter 100 value 82.191875 final value 82.191875 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 115.939848 iter 10 value 96.375933 iter 20 value 88.011472 iter 30 value 86.291589 iter 40 value 85.265180 iter 50 value 83.126214 iter 60 value 82.922880 iter 70 value 82.012533 iter 80 value 81.599375 iter 90 value 81.556992 iter 100 value 81.457540 final value 81.457540 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.666567 iter 10 value 97.628843 iter 20 value 86.915089 iter 30 value 84.969020 iter 40 value 84.252033 iter 50 value 82.980160 iter 60 value 82.137671 iter 70 value 81.835582 iter 80 value 81.765623 iter 90 value 81.722795 iter 100 value 81.700784 final value 81.700784 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 115.224649 iter 10 value 94.536888 iter 20 value 90.456401 iter 30 value 89.121193 iter 40 value 86.074843 iter 50 value 84.902999 iter 60 value 84.648519 iter 70 value 83.496577 iter 80 value 82.671287 iter 90 value 82.372088 iter 100 value 82.148200 final value 82.148200 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.691386 final value 94.485947 converged Fitting Repeat 2 # weights: 103 initial value 105.733790 final value 94.485651 converged Fitting Repeat 3 # weights: 103 initial value 101.132611 final value 94.463167 converged Fitting Repeat 4 # weights: 103 initial value 100.043597 iter 10 value 94.486042 iter 20 value 94.484271 final value 94.484215 converged Fitting Repeat 5 # weights: 103 initial value 95.412388 final value 94.485921 converged Fitting Repeat 1 # weights: 305 initial value 114.729777 iter 10 value 94.489303 iter 20 value 94.398617 iter 30 value 87.050074 final value 87.035386 converged Fitting Repeat 2 # weights: 305 initial value 100.945121 iter 10 value 94.236650 iter 20 value 94.232763 iter 30 value 93.137274 iter 40 value 92.352341 iter 50 value 92.313741 final value 92.313713 converged Fitting Repeat 3 # weights: 305 initial value 102.517759 iter 10 value 94.487933 iter 20 value 94.405654 iter 30 value 88.530663 iter 40 value 88.528423 iter 50 value 88.254534 iter 60 value 86.381290 iter 70 value 83.247929 iter 80 value 83.088690 iter 90 value 83.082885 iter 100 value 83.080781 final value 83.080781 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 97.958091 iter 10 value 94.488695 iter 20 value 94.469861 iter 30 value 86.422628 iter 40 value 86.163409 final value 86.162809 converged Fitting Repeat 5 # weights: 305 initial value 101.099853 iter 10 value 94.488963 iter 20 value 94.483455 iter 30 value 90.875279 iter 40 value 85.334176 iter 50 value 85.206594 iter 60 value 84.962567 iter 70 value 84.855169 iter 70 value 84.855168 iter 70 value 84.855168 final value 84.855168 converged Fitting Repeat 1 # weights: 507 initial value 99.678974 iter 10 value 94.222258 iter 20 value 94.067681 iter 30 value 94.064459 iter 40 value 93.974846 iter 50 value 93.907292 iter 60 value 93.881698 iter 70 value 93.881135 iter 80 value 93.881092 iter 90 value 93.880644 final value 93.880615 converged Fitting Repeat 2 # weights: 507 initial value 129.137181 iter 10 value 94.203318 iter 20 value 94.201922 iter 30 value 89.003012 iter 40 value 86.812080 iter 50 value 84.031822 iter 60 value 82.908797 iter 70 value 82.617782 iter 80 value 81.800310 iter 90 value 81.589198 iter 100 value 81.517885 final value 81.517885 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 111.088456 iter 10 value 94.492205 iter 20 value 94.442181 final value 94.232139 converged Fitting Repeat 4 # weights: 507 initial value 100.785047 iter 10 value 94.562052 iter 20 value 93.086073 iter 30 value 90.665491 iter 40 value 90.597842 iter 50 value 90.595347 iter 60 value 90.477949 iter 70 value 90.463415 iter 80 value 88.445370 iter 90 value 85.625482 iter 100 value 85.574030 final value 85.574030 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.561750 iter 10 value 94.492561 iter 20 value 94.488942 iter 30 value 94.357065 iter 40 value 93.737925 iter 50 value 92.693414 iter 60 value 85.048161 iter 70 value 84.081739 iter 80 value 84.076304 final value 84.076275 converged Fitting Repeat 1 # weights: 103 initial value 98.691679 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 101.934438 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 94.734917 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 102.758963 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 107.033811 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 95.629630 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 117.934553 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 98.319451 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 105.732395 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 95.597717 iter 10 value 93.502768 final value 93.502241 converged Fitting Repeat 1 # weights: 507 initial value 97.028875 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 97.548627 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 100.264857 final value 93.582418 converged Fitting Repeat 4 # weights: 507 initial value 102.557082 iter 10 value 93.407205 iter 20 value 90.176200 iter 30 value 89.155956 iter 40 value 87.239169 iter 50 value 87.223360 iter 60 value 87.205840 final value 87.205831 converged Fitting Repeat 5 # weights: 507 initial value 134.291112 final value 94.052911 converged Fitting Repeat 1 # weights: 103 initial value 96.294213 iter 10 value 93.752815 iter 20 value 93.319712 iter 30 value 92.007889 iter 40 value 91.966552 iter 50 value 84.508375 iter 60 value 82.073583 iter 70 value 81.401036 iter 80 value 81.129980 iter 90 value 80.855694 iter 100 value 80.311749 final value 80.311749 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 99.194304 iter 10 value 94.052076 iter 20 value 93.707786 iter 30 value 93.684375 iter 30 value 93.684374 iter 40 value 93.101979 iter 50 value 89.453044 iter 60 value 88.860011 iter 70 value 86.059967 iter 80 value 82.476758 iter 90 value 82.325304 iter 100 value 81.645168 final value 81.645168 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 99.977075 iter 10 value 94.063775 iter 20 value 91.526156 iter 30 value 83.731467 iter 40 value 83.650078 iter 50 value 83.545686 iter 60 value 83.517441 final value 83.509623 converged Fitting Repeat 4 # weights: 103 initial value 100.355427 iter 10 value 94.056859 iter 20 value 84.666604 iter 30 value 83.673168 iter 40 value 83.652845 iter 50 value 83.526582 iter 60 value 83.510506 final value 83.509623 converged Fitting Repeat 5 # weights: 103 initial value 98.860667 iter 10 value 94.055321 iter 20 value 93.631533 iter 30 value 88.733371 iter 40 value 82.181957 iter 50 value 81.914465 iter 60 value 81.833765 iter 70 value 81.379250 iter 80 value 80.772436 iter 90 value 80.574820 final value 80.573222 converged Fitting Repeat 1 # weights: 305 initial value 110.241129 iter 10 value 94.077009 iter 20 value 93.978992 iter 30 value 93.199454 iter 40 value 92.347789 iter 50 value 89.848186 iter 60 value 85.543256 iter 70 value 80.521708 iter 80 value 80.389054 iter 90 value 80.188804 iter 100 value 80.024290 final value 80.024290 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 108.172787 iter 10 value 95.756229 iter 20 value 93.868666 iter 30 value 93.662583 iter 40 value 93.063302 iter 50 value 86.928612 iter 60 value 82.833109 iter 70 value 80.278980 iter 80 value 79.897801 iter 90 value 79.680885 iter 100 value 79.479877 final value 79.479877 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 132.585362 iter 10 value 93.721415 iter 20 value 86.986873 iter 30 value 84.807269 iter 40 value 84.210300 iter 50 value 81.774765 iter 60 value 81.185940 iter 70 value 80.701559 iter 80 value 80.587329 iter 90 value 80.327272 iter 100 value 79.517284 final value 79.517284 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 113.772761 iter 10 value 94.185849 iter 20 value 84.079378 iter 30 value 83.536724 iter 40 value 83.233539 iter 50 value 82.764965 iter 60 value 82.605687 iter 70 value 82.353064 iter 80 value 81.654948 iter 90 value 80.240906 iter 100 value 79.863897 final value 79.863897 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 120.661622 iter 10 value 94.822152 iter 20 value 94.069066 iter 30 value 90.989467 iter 40 value 85.517367 iter 50 value 84.041464 iter 60 value 83.218816 iter 70 value 81.665509 iter 80 value 81.175846 iter 90 value 81.062134 iter 100 value 81.006506 final value 81.006506 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 111.541406 iter 10 value 90.680803 iter 20 value 82.054887 iter 30 value 81.804885 iter 40 value 80.876760 iter 50 value 80.460100 iter 60 value 79.869404 iter 70 value 79.637079 iter 80 value 79.399384 iter 90 value 79.285959 iter 100 value 79.036852 final value 79.036852 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 102.624203 iter 10 value 92.139537 iter 20 value 92.042340 iter 30 value 85.936551 iter 40 value 84.338268 iter 50 value 82.922519 iter 60 value 81.861738 iter 70 value 80.519710 iter 80 value 80.386122 iter 90 value 79.858805 iter 100 value 79.635846 final value 79.635846 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.304280 iter 10 value 91.356490 iter 20 value 83.238193 iter 30 value 81.586785 iter 40 value 81.275784 iter 50 value 80.155418 iter 60 value 79.142604 iter 70 value 78.969674 iter 80 value 78.888112 iter 90 value 78.726819 iter 100 value 78.676436 final value 78.676436 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.785087 iter 10 value 92.457905 iter 20 value 89.319646 iter 30 value 87.158589 iter 40 value 86.078484 iter 50 value 85.295194 iter 60 value 82.986758 iter 70 value 82.015444 iter 80 value 80.969080 iter 90 value 80.169556 iter 100 value 79.721996 final value 79.721996 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.040903 iter 10 value 96.520083 iter 20 value 91.310831 iter 30 value 86.779347 iter 40 value 85.478425 iter 50 value 84.819359 iter 60 value 82.663518 iter 70 value 81.285929 iter 80 value 80.477760 iter 90 value 80.232155 iter 100 value 79.753881 final value 79.753881 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.591305 final value 94.054525 converged Fitting Repeat 2 # weights: 103 initial value 95.372361 iter 10 value 93.514394 iter 20 value 93.504031 iter 30 value 93.502670 final value 93.502611 converged Fitting Repeat 3 # weights: 103 initial value 97.190606 iter 10 value 93.475581 final value 93.475573 converged Fitting Repeat 4 # weights: 103 initial value 95.678662 final value 94.054560 converged Fitting Repeat 5 # weights: 103 initial value 99.267834 iter 10 value 94.054254 final value 94.052934 converged Fitting Repeat 1 # weights: 305 initial value 105.533931 iter 10 value 91.587676 iter 20 value 89.326675 iter 30 value 89.265893 iter 40 value 89.125056 iter 50 value 89.124561 iter 60 value 89.120845 iter 70 value 89.119920 iter 80 value 89.054026 iter 90 value 88.717315 iter 100 value 83.869875 final value 83.869875 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 96.387443 iter 10 value 93.951966 iter 20 value 93.948794 iter 30 value 93.733919 iter 40 value 93.246936 iter 50 value 93.206146 final value 93.205949 converged Fitting Repeat 3 # weights: 305 initial value 109.036761 iter 10 value 94.058013 iter 20 value 94.052939 iter 20 value 94.052938 iter 20 value 94.052938 final value 94.052938 converged Fitting Repeat 4 # weights: 305 initial value 111.786115 iter 10 value 93.587725 iter 20 value 93.403906 iter 30 value 90.631914 iter 40 value 83.552417 iter 50 value 83.538896 iter 60 value 83.538706 final value 83.538704 converged Fitting Repeat 5 # weights: 305 initial value 103.358646 iter 10 value 94.057597 iter 20 value 94.053439 iter 30 value 93.583316 final value 93.583170 converged Fitting Repeat 1 # weights: 507 initial value 106.765194 iter 10 value 94.063355 iter 20 value 94.054471 iter 30 value 92.938787 iter 40 value 89.953424 iter 50 value 89.924383 iter 60 value 89.654469 iter 70 value 86.342973 iter 80 value 83.749519 iter 90 value 83.730976 iter 100 value 81.877634 final value 81.877634 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.568896 iter 10 value 93.578121 iter 20 value 93.510664 iter 30 value 93.449975 iter 40 value 93.239670 iter 50 value 93.235435 final value 93.235428 converged Fitting Repeat 3 # weights: 507 initial value 110.159156 iter 10 value 93.999666 iter 20 value 93.994991 iter 30 value 93.485983 iter 40 value 93.432327 iter 50 value 93.356141 iter 60 value 93.344772 iter 70 value 93.069582 iter 80 value 85.921495 iter 90 value 84.281604 iter 100 value 84.279489 final value 84.279489 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 101.733878 iter 10 value 93.590569 iter 20 value 93.583059 final value 93.582691 converged Fitting Repeat 5 # weights: 507 initial value 111.555168 iter 10 value 94.034318 iter 20 value 94.026417 iter 30 value 93.163947 iter 40 value 86.510589 iter 50 value 86.136914 iter 60 value 86.010477 final value 86.008482 converged Fitting Repeat 1 # weights: 103 initial value 117.530779 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 102.829353 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 97.756995 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 96.104785 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 97.519058 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 112.227355 iter 10 value 94.481938 iter 20 value 94.479645 final value 94.479641 converged Fitting Repeat 2 # weights: 305 initial value 97.723921 final value 94.354396 converged Fitting Repeat 3 # weights: 305 initial value 103.087775 final value 93.809648 converged Fitting Repeat 4 # weights: 305 initial value 108.570931 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 96.286264 final value 94.354396 converged Fitting Repeat 1 # weights: 507 initial value 105.295715 final value 94.354396 converged Fitting Repeat 2 # weights: 507 initial value 115.382745 final value 94.354396 converged Fitting Repeat 3 # weights: 507 initial value 95.096892 iter 10 value 93.873946 final value 93.809648 converged Fitting Repeat 4 # weights: 507 initial value 109.321602 final value 94.354396 converged Fitting Repeat 5 # weights: 507 initial value 113.496024 iter 10 value 90.711640 iter 20 value 89.894049 iter 30 value 89.890520 final value 89.890457 converged Fitting Repeat 1 # weights: 103 initial value 108.291904 iter 10 value 94.470095 iter 20 value 93.900610 iter 30 value 93.897762 iter 40 value 93.894972 iter 50 value 92.812194 iter 60 value 89.974588 iter 70 value 87.719470 iter 80 value 85.332029 iter 90 value 82.229248 iter 100 value 82.166284 final value 82.166284 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.416092 iter 10 value 94.419329 iter 20 value 85.866740 iter 30 value 85.358424 iter 40 value 83.600685 iter 50 value 83.195932 iter 60 value 83.064584 final value 83.059876 converged Fitting Repeat 3 # weights: 103 initial value 97.531945 iter 10 value 94.447458 iter 20 value 93.911777 iter 30 value 89.669845 iter 40 value 87.110215 iter 50 value 86.008482 iter 60 value 83.718094 iter 70 value 82.960740 iter 80 value 82.834505 iter 90 value 82.784210 iter 100 value 82.664298 final value 82.664298 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 96.074382 iter 10 value 94.482430 iter 20 value 93.896335 iter 30 value 88.413244 iter 40 value 84.430648 iter 50 value 83.961087 iter 60 value 83.810537 iter 70 value 83.572998 iter 80 value 83.561877 final value 83.561841 converged Fitting Repeat 5 # weights: 103 initial value 96.174929 iter 10 value 89.023201 iter 20 value 85.998534 iter 30 value 85.887030 iter 40 value 85.475236 iter 50 value 83.979351 iter 60 value 83.636119 iter 70 value 83.572357 iter 80 value 83.561972 final value 83.561841 converged Fitting Repeat 1 # weights: 305 initial value 106.214998 iter 10 value 94.460831 iter 20 value 89.475691 iter 30 value 87.374318 iter 40 value 86.244399 iter 50 value 85.290538 iter 60 value 82.420041 iter 70 value 81.984954 iter 80 value 81.335331 iter 90 value 81.108811 iter 100 value 80.981295 final value 80.981295 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 111.208184 iter 10 value 94.293335 iter 20 value 87.105094 iter 30 value 86.416206 iter 40 value 85.759310 iter 50 value 84.988937 iter 60 value 83.187648 iter 70 value 81.198679 iter 80 value 80.219969 iter 90 value 80.157599 iter 100 value 80.115337 final value 80.115337 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.091405 iter 10 value 94.464235 iter 20 value 89.612889 iter 30 value 84.877289 iter 40 value 83.175648 iter 50 value 82.720085 iter 60 value 82.630874 iter 70 value 82.605727 iter 80 value 82.541816 iter 90 value 82.397141 iter 100 value 82.338700 final value 82.338700 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 119.420082 iter 10 value 95.713712 iter 20 value 93.972147 iter 30 value 90.296019 iter 40 value 86.498549 iter 50 value 85.789012 iter 60 value 83.550653 iter 70 value 82.037280 iter 80 value 81.689621 iter 90 value 81.567011 iter 100 value 81.142865 final value 81.142865 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 114.345869 iter 10 value 94.508421 iter 20 value 92.210565 iter 30 value 89.610890 iter 40 value 88.868409 iter 50 value 88.719216 iter 60 value 85.158966 iter 70 value 83.872347 iter 80 value 83.633984 iter 90 value 83.084468 iter 100 value 82.896575 final value 82.896575 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.235004 iter 10 value 94.821074 iter 20 value 94.196048 iter 30 value 93.798836 iter 40 value 91.918941 iter 50 value 86.152974 iter 60 value 84.273995 iter 70 value 82.214012 iter 80 value 81.773833 iter 90 value 81.273026 iter 100 value 81.224598 final value 81.224598 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 113.230022 iter 10 value 95.027497 iter 20 value 91.797639 iter 30 value 85.307315 iter 40 value 83.772032 iter 50 value 82.569691 iter 60 value 82.260956 iter 70 value 81.763490 iter 80 value 81.693820 iter 90 value 81.556037 iter 100 value 81.054041 final value 81.054041 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 120.403388 iter 10 value 94.432904 iter 20 value 93.811120 iter 30 value 87.846390 iter 40 value 85.355696 iter 50 value 82.316132 iter 60 value 81.666856 iter 70 value 81.098893 iter 80 value 80.856488 iter 90 value 80.779280 iter 100 value 80.516324 final value 80.516324 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 110.897454 iter 10 value 94.699779 iter 20 value 94.339984 iter 30 value 86.575066 iter 40 value 85.615469 iter 50 value 85.429110 iter 60 value 83.842753 iter 70 value 83.572945 iter 80 value 83.299439 iter 90 value 83.281310 iter 100 value 83.253113 final value 83.253113 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.006698 iter 10 value 94.343180 iter 20 value 92.984384 iter 30 value 87.843384 iter 40 value 87.200438 iter 50 value 86.424386 iter 60 value 85.889423 iter 70 value 84.522439 iter 80 value 82.099153 iter 90 value 81.131410 iter 100 value 81.019228 final value 81.019228 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.082386 final value 94.486001 converged Fitting Repeat 2 # weights: 103 initial value 97.113174 final value 94.485755 converged Fitting Repeat 3 # weights: 103 initial value 102.100886 final value 94.485583 converged Fitting Repeat 4 # weights: 103 initial value 96.081081 final value 94.485986 converged Fitting Repeat 5 # weights: 103 initial value 115.426973 final value 94.485889 converged Fitting Repeat 1 # weights: 305 initial value 111.902627 iter 10 value 94.488711 iter 20 value 94.356887 iter 30 value 94.044059 iter 40 value 93.810131 final value 93.810084 converged Fitting Repeat 2 # weights: 305 initial value 94.802738 iter 10 value 94.484863 iter 20 value 94.060984 final value 93.809808 converged Fitting Repeat 3 # weights: 305 initial value 109.670121 iter 10 value 94.489134 iter 20 value 94.246101 iter 30 value 85.345393 final value 85.335004 converged Fitting Repeat 4 # weights: 305 initial value 97.263786 iter 10 value 94.359497 iter 20 value 94.179524 iter 30 value 87.326491 iter 40 value 85.611712 iter 50 value 83.025993 iter 60 value 80.404556 iter 70 value 79.805951 iter 80 value 79.697256 iter 90 value 79.618654 iter 100 value 79.221619 final value 79.221619 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.623000 iter 10 value 94.359264 iter 20 value 93.865488 iter 30 value 89.072301 iter 40 value 85.120443 iter 50 value 84.984450 iter 60 value 84.973265 iter 70 value 84.849593 iter 80 value 84.648407 iter 90 value 84.632747 iter 100 value 84.631759 final value 84.631759 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.348586 iter 10 value 94.362745 iter 20 value 94.326896 iter 30 value 94.000236 iter 40 value 93.651253 iter 50 value 85.993996 iter 60 value 85.990508 iter 70 value 83.643228 iter 80 value 81.048777 iter 90 value 80.994311 iter 100 value 80.991002 final value 80.991002 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 131.693838 iter 10 value 94.492090 iter 20 value 94.477912 iter 30 value 85.617308 iter 40 value 85.548523 iter 50 value 83.602744 iter 60 value 82.821415 iter 70 value 82.793663 iter 80 value 82.585227 iter 90 value 82.493456 iter 100 value 82.482797 final value 82.482797 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 102.784099 iter 10 value 94.495645 iter 20 value 94.045841 iter 30 value 84.978354 iter 40 value 82.618473 iter 50 value 82.596313 iter 60 value 82.595329 iter 70 value 82.524719 iter 80 value 81.447535 final value 81.429152 converged Fitting Repeat 4 # weights: 507 initial value 100.294375 iter 10 value 94.492102 iter 20 value 94.484437 final value 94.484230 converged Fitting Repeat 5 # weights: 507 initial value 111.767961 iter 10 value 94.089679 iter 20 value 91.424010 iter 30 value 91.421299 iter 40 value 91.420420 iter 50 value 91.419477 iter 60 value 91.383916 iter 70 value 90.215660 iter 80 value 88.064528 iter 90 value 87.983121 iter 100 value 87.980920 final value 87.980920 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 155.076235 iter 10 value 117.767480 iter 20 value 117.623676 iter 30 value 110.635859 iter 40 value 104.907541 iter 50 value 102.843137 iter 60 value 101.750344 iter 70 value 101.536434 iter 80 value 101.532078 final value 101.531934 converged Fitting Repeat 2 # weights: 507 initial value 130.474439 iter 10 value 117.213915 iter 20 value 116.414906 iter 30 value 110.779434 iter 40 value 108.410988 iter 50 value 107.326795 iter 60 value 107.048444 iter 60 value 107.048444 iter 60 value 107.048444 final value 107.048444 converged Fitting Repeat 3 # weights: 507 initial value 126.520016 iter 10 value 117.899921 iter 20 value 117.891959 iter 30 value 117.093804 iter 40 value 108.580593 iter 50 value 108.544248 iter 60 value 108.530434 iter 70 value 107.205717 iter 80 value 107.183551 iter 90 value 107.183467 iter 100 value 107.183057 final value 107.183057 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 127.587875 iter 10 value 117.894362 iter 20 value 113.825626 iter 30 value 107.971038 final value 107.971031 converged Fitting Repeat 5 # weights: 507 initial value 129.953766 iter 10 value 117.766425 iter 20 value 117.759226 iter 30 value 107.033523 final value 107.004921 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Thu Mar 20 08:14:47 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 53.987 1.462 167.191
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 37.456 | 0.196 | 37.720 | |
FreqInteractors | 0.285 | 0.016 | 0.302 | |
calculateAAC | 0.044 | 0.004 | 0.049 | |
calculateAutocor | 0.687 | 0.012 | 0.702 | |
calculateCTDC | 0.096 | 0.000 | 0.096 | |
calculateCTDD | 0.790 | 0.000 | 0.792 | |
calculateCTDT | 0.262 | 0.004 | 0.267 | |
calculateCTriad | 0.473 | 0.008 | 0.482 | |
calculateDC | 0.131 | 0.000 | 0.131 | |
calculateF | 0.446 | 0.000 | 0.447 | |
calculateKSAAP | 0.146 | 0.000 | 0.146 | |
calculateQD_Sm | 2.412 | 0.028 | 2.445 | |
calculateTC | 2.430 | 0.016 | 2.464 | |
calculateTC_Sm | 0.377 | 0.000 | 0.378 | |
corr_plot | 37.465 | 0.383 | 37.910 | |
enrichfindP | 0.541 | 0.028 | 24.246 | |
enrichfind_hp | 0.080 | 0.004 | 1.426 | |
enrichplot | 0.481 | 0.003 | 0.486 | |
filter_missing_values | 0.001 | 0.000 | 0.001 | |
getFASTA | 0.125 | 0.016 | 7.199 | |
getHPI | 0.001 | 0.000 | 0.000 | |
get_negativePPI | 0.003 | 0.000 | 0.002 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.002 | 0.000 | 0.001 | |
plotPPI | 0.087 | 0.004 | 0.091 | |
pred_ensembel | 18.259 | 0.417 | 17.479 | |
var_imp | 39.202 | 0.308 | 39.564 | |