SeSAMe implements inference of sex, age, ethnicity. These are valuable information for checking the integrity of the experiment and detecting sample swaps.
## [1] TRUE
Sex is inferred based on our curated X-linked probes and Y chromosome probes excluding pseudo-autosomal regions.
## [1] "MALE"
## [1] "XaY"
Ethnicity is inferred using a random forest model trained based on both the built-in SNPs (rs
probes) and channel-switching Type-I probes.
## [1] "WHITE"
SeSAMe provides age regression a la the Horvath 353 model.
## [1] 84.13913
The mean intensity of all the probes characterize the quantity of input DNA and efficiency of probe hybridization.
## [1] 3155.071
SeSAMe performs copy number variation in three steps: 1) normalizes the signal intensity using a copy-number-normal data set; 2) groups adjacent probes into bins; 3) runs DNAcopy internally to group bins into segments.
To visualize segmentation in SeSAMe,
SeSAMe estimates leukocyte fraction using a two-component model.This function works for samples whose targeted cell-of-origin is not related to white blood cells.
## [1] 0.2007592
## R version 4.1.2 (2021-11-01)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.14-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.14-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] scales_1.1.1 DNAcopy_1.68.0 GenomicRanges_1.46.1
## [4] GenomeInfoDb_1.30.1 IRanges_2.28.0 S4Vectors_0.32.3
## [7] wheatmap_0.1.0 ggplot2_3.3.5 sesame_1.12.9
## [10] sesameData_1.12.0 rmarkdown_2.11 ExperimentHub_2.2.1
## [13] AnnotationHub_3.2.1 BiocFileCache_2.2.1 dbplyr_2.1.1
## [16] BiocGenerics_0.40.0
##
## loaded via a namespace (and not attached):
## [1] matrixStats_0.61.0 bitops_1.0-7
## [3] bit64_4.0.5 RColorBrewer_1.1-2
## [5] filelock_1.0.2 httr_1.4.2
## [7] tools_4.1.2 bslib_0.3.1
## [9] utf8_1.2.2 R6_2.5.1
## [11] KernSmooth_2.23-20 DBI_1.1.2
## [13] colorspace_2.0-2 withr_2.4.3
## [15] tidyselect_1.1.1 gridExtra_2.3
## [17] preprocessCore_1.56.0 bit_4.0.4
## [19] curl_4.3.2 compiler_4.1.2
## [21] cli_3.1.1 Biobase_2.54.0
## [23] DelayedArray_0.20.0 labeling_0.4.2
## [25] sass_0.4.0 randomForest_4.7-1
## [27] proxy_0.4-26 rappdirs_0.3.3
## [29] stringr_1.4.0 digest_0.6.29
## [31] XVector_0.34.0 pkgconfig_2.0.3
## [33] htmltools_0.5.2 MatrixGenerics_1.6.0
## [35] highr_0.9 fastmap_1.1.0
## [37] rlang_1.0.1 RSQLite_2.2.9
## [39] shiny_1.7.1 farver_2.1.0
## [41] jquerylib_0.1.4 generics_0.1.2
## [43] jsonlite_1.7.3 BiocParallel_1.28.3
## [45] dplyr_1.0.7 RCurl_1.98-1.5
## [47] magrittr_2.0.2 GenomeInfoDbData_1.2.7
## [49] Matrix_1.4-0 Rcpp_1.0.8
## [51] munsell_0.5.0 fansi_1.0.2
## [53] lifecycle_1.0.1 stringi_1.7.6
## [55] yaml_2.2.2 MASS_7.3-55
## [57] SummarizedExperiment_1.24.0 zlibbioc_1.40.0
## [59] plyr_1.8.6 grid_4.1.2
## [61] blob_1.2.2 parallel_4.1.2
## [63] promises_1.2.0.1 ggrepel_0.9.1
## [65] crayon_1.4.2 lattice_0.20-45
## [67] Biostrings_2.62.0 KEGGREST_1.34.0
## [69] knitr_1.37 pillar_1.7.0
## [71] fgsea_1.20.0 reshape2_1.4.4
## [73] fastmatch_1.1-3 glue_1.6.1
## [75] BiocVersion_3.14.0 evaluate_0.14
## [77] data.table_1.14.2 BiocManager_1.30.16
## [79] png_0.1-7 vctrs_0.3.8
## [81] httpuv_1.6.5 gtable_0.3.0
## [83] purrr_0.3.4 assertthat_0.2.1
## [85] cachem_1.0.6 xfun_0.29
## [87] mime_0.12 xtable_1.8-4
## [89] e1071_1.7-9 later_1.3.0
## [91] class_7.3-20 tibble_3.1.6
## [93] AnnotationDbi_1.56.2 memoise_2.0.1
## [95] ellipsis_0.3.2 interactiveDisplayBase_1.32.0
## [97] BiocStyle_2.22.0