Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-02-03 12:12 -0500 (Mon, 03 Feb 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4746 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" | 4494 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4517 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4469 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4400 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 2068/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
STATegRa 1.42.0 (landing page) David Gomez-Cabrero
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the STATegRa package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/STATegRa.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. - See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host. |
Package: STATegRa |
Version: 1.42.0 |
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:STATegRa.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings STATegRa_1.42.0.tar.gz |
StartedAt: 2025-01-31 10:49:16 -0000 (Fri, 31 Jan 2025) |
EndedAt: 2025-01-31 10:53:24 -0000 (Fri, 31 Jan 2025) |
EllapsedTime: 248.3 seconds |
RetCode: 0 |
Status: OK |
CheckDir: STATegRa.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R/bin/R CMD check --install=check:STATegRa.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings STATegRa_1.42.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.20-bioc/meat/STATegRa.Rcheck’ * using R version 4.4.2 (2024-10-31) * using platform: aarch64-unknown-linux-gnu * R was compiled by aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0 GNU Fortran (GCC) 12.3.1 (openEuler 12.3.1-36.oe2403) * running under: openEuler 24.03 (LTS) * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘STATegRa/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘STATegRa’ version ‘1.42.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘STATegRa’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... NOTE modelSelection,list-numeric-character: no visible binding for global variable ‘components’ modelSelection,list-numeric-character: no visible binding for global variable ‘mylabel’ plotVAF,caClass: no visible binding for global variable ‘comp’ plotVAF,caClass: no visible binding for global variable ‘VAF’ plotVAF,caClass: no visible binding for global variable ‘block’ selectCommonComps,list-numeric: no visible binding for global variable ‘comps’ selectCommonComps,list-numeric: no visible binding for global variable ‘block’ selectCommonComps,list-numeric: no visible binding for global variable ‘comp’ selectCommonComps,list-numeric: no visible binding for global variable ‘ratio’ Undefined global functions or variables: VAF block comp components comps mylabel ratio * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘STATEgRa_Example.omicsCLUST.R’ Running ‘STATEgRa_Example.omicsPCA.R’ Running ‘STATegRa_Example.omicsNPC.R’ Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 1 NOTE See ‘/home/biocbuild/bbs-3.20-bioc/meat/STATegRa.Rcheck/00check.log’ for details.
STATegRa.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R/bin/R CMD INSTALL STATegRa ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/R/R-4.4.2/site-library’ * installing *source* package ‘STATegRa’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (STATegRa)
STATegRa.Rcheck/tests/runTests.Rout
R version 4.4.2 (2024-10-31) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage("STATegRa") Common components [1] 2 Distinctive components [[1]] [1] 0 [[2]] [1] 0 Common components [1] 2 Distinctive components [[1]] [1] 1 [[2]] [1] 1 Common components [1] 2 Distinctive components [[1]] [1] 2 [[2]] [1] 2 RUNIT TEST PROTOCOL -- Fri Jan 31 10:53:20 2025 *********************************************** Number of test functions: 4 Number of errors: 0 Number of failures: 0 1 Test Suite : STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures Number of test functions: 4 Number of errors: 0 Number of failures: 0 Warning messages: 1: In rownames(pData) == colnames(exprs) : longer object length is not a multiple of shorter object length 2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum", : Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2 3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num", : Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3 > > proc.time() user system elapsed 3.063 0.151 3.209
STATegRa.Rcheck/tests/STATEgRa_Example.omicsCLUST.Rout
R version 4.4.2 (2024-10-31) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ########################################### > ########### EXAMPLE OF THE OMICSCLUSTERING > ########################################### > require(STATegRa) Loading required package: STATegRa > > ############################################# > ## PART 1: CREATING a bioMap CLASS > ############################################# > ####### This part creates or reads the map between features. > ####### In the present example the map is downloaded from a resource. > ####### then the class is created. > > #load("../data/STATegRa_S2.rda") > data(STATegRa_S2) > > MAP.SYMBOL<-bioMap(name = "Symbol-miRNA", + metadata = list(type_v1="Gene",type_v2="miRNA", + source_database="targetscan.Hs.eg.db", + data_extraction="July2014"), + map=mapdata) > > > ############################################# > ## PART 2: CREATING a bioDist CLASS > ############################################# > ##### In the second part given a set of main features and surrogate feautres, > ##### the profile of the main features is computed through the surrogate features. > > # Load Data > data(STATegRa_S1) > #load("../data/STATegRa.S1.Rdata") > > ## Create ExpressionSets > # source("../R/STATegRa_omicsPCA_classes_and_methods.R") > # Block1 - Expression data > mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname")) > # Block2 - miRNA expression data > miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname")) > > # Create Gene-gene distance computed through miRNA data > bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1), + reference = "Var1", + mapping = MAP.SYMBOL, + surrogateData = miRNA.ds, ### miRNA data + referenceData = mRNA.ds, ### mRNA data + maxitems=2, + selectionRule="sd", + expfac=NULL, + aggregation = "sum", + distance = "spearman", + noMappingDist = 0, + filtering = NULL, + name = "mRNAbymiRNA") > > require(Biobase) Loading required package: Biobase Loading required package: BiocGenerics Attaching package: 'BiocGenerics' The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, saveRDS, setdiff, table, tapply, union, unique, unsplit, which.max, which.min Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'. > > # Create Gene-gene distance through mRNA data > bioDistmRNA<-bioDistclass(name = "mRNAbymRNA", + distance = cor(t(exprs(mRNA.ds)),method="spearman"), + map.name = "id", + map.metadata = list(), + params = list()) > > ############################################# > ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList > ############################################# > > bioDistList<-list(bioDistmRNA,bioDistmiRNA) > weights<-matrix(0,4,2) > weights[,1]<-c(0,0.33,0.67,1) > weights[,2]<-c(1,0.67,0.33,0)# > > bioDistWList<-bioDistW(referenceFeatures = rownames(Block1), + bioDistList = bioDistList, + weights=weights) > length(bioDistWList) [1] 4 > > ############################################# > ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL > ############################################# > > bioDistWPlot(referenceFeatures = rownames(Block1) , + listDistW = bioDistWList, + method.cor="spearman") Warning messages: 1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties > > ############################################# > ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE > ############################################# > > ## IDH1 > > IDH1.F<-bioDistFeature(Feature = "IDH1" , + listDistW = bioDistWList, + threshold.cor=0.7) > bioDistFeaturePlot(data=IDH1.F) > > ## PDGFRA > > #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" , > # listDistW = bioDistWList, > # threshold.cor=0.7) > #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png") > > ## EGFR > #EGFR.F<-bioDistFeature(Feature = "EGFR" , > # listDistW = bioDistWList, > # threshold.cor=0.7) > #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png") > > ## MGMT > #MGMT.F<-bioDistFeature(Feature = "MGMT" , > # listDistW = bioDistWList, > # threshold.cor=0.5) > #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png") > > > > > > proc.time() user system elapsed 58.294 0.270 58.638
STATegRa.Rcheck/tests/STATegRa_Example.omicsNPC.Rout
R version 4.4.2 (2024-10-31) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > rm(list = ls()) > require("STATegRa") Loading required package: STATegRa > # Load the data > data("TCGA_BRCA_Batch_93") > # Setting dataTypes > dataTypes <- c("count", "count", "continuous") > # Setting methods to combine pvalues > combMethods = c("Fisher", "Liptak", "Tippett") > # Setting number of permutations > numPerms = 1000 > # Setting number of cores > numCores = 1 > # Setting holistOmics to print out the steps that it performs. > verbose = TRUE > # Run holistOmics analysis. > output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose) Compute initial statistics on data Building NULL distributions by permuting data Compute pseudo p-values based on NULL distributions... NPC p-values calculation... > > proc.time() user system elapsed 88.487 0.715 89.416
STATegRa.Rcheck/tests/STATEgRa_Example.omicsPCA.Rout
R version 4.4.2 (2024-10-31) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ########################################### > ########### EXAMPLE OF THE OMICSPCA > ########################################### > require(STATegRa) Loading required package: STATegRa > > # g_legend (not exported by STATegRa any more) > ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs > g_legend<-function(a.gplot){ + tmp <- ggplot_gtable(ggplot_build(a.gplot)) + leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box") + legend <- tmp$grobs[[leg]] + return(legend)} > > ######################### > ## PART 1. Load data > > ## Load data > data(STATegRa_S3) > > ls() [1] "Block1.PCA" "Block2.PCA" "ed.PCA" "g_legend" > > ## Create ExpressionSets > # Block1 - Expression data > B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname")) > # Block2 - miRNA expression data > B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname")) > > ######################### > ## PART 2. Model Selection > > require(grid) Loading required package: grid > require(gridExtra) Loading required package: gridExtra > require(ggplot2) Loading required package: ggplot2 > > ## Select the optimal components > ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE) Common components [1] 2 Distinctive components [[1]] [1] 2 [[2]] [1] 2 > > > ######################### > ## PART 3. Component Analysis > > ## 3.1 Component analysis of the three methods > discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > > ## 3.2 Exploring scores structures > > # Exploring DISCO-SCA scores structure > discoRes@scores$common ## Common scores 1 2 sample1 -0.0781575667 0.0431549647 sample2 0.1192221418 -0.0294020179 sample3 0.0531408615 0.0746837597 sample4 -0.0292971725 0.0006035734 sample5 -0.0202090714 -0.0110455115 sample6 -0.1226088434 -0.1053493762 sample7 -0.1078931396 0.0322417744 sample8 -0.1782891073 -0.1449329569 sample9 -0.0468697261 0.0455171526 sample10 0.0036032736 -0.0420077022 sample11 0.0035566370 0.0566284835 sample12 -0.1006129711 -0.0641394410 sample13 0.1174412887 -0.0907475043 sample14 -0.0981203564 -0.0617764147 sample15 -0.0085337312 0.0086954642 sample16 -0.0783146778 -0.1581334513 sample17 0.1483610673 -0.0638580043 sample18 0.0963084359 -0.0556689061 sample19 0.0217243052 0.0720129690 sample20 0.0635633889 0.0779609092 sample21 0.0201844075 -0.1566381769 sample22 -0.0218273943 0.0764054622 sample23 -0.0852038996 0.0032766902 sample24 0.1287181688 -0.1924423265 sample25 0.0430575663 0.0456640531 sample26 0.1453899816 -0.0541457462 sample27 0.0197483524 0.1185591208 sample28 0.1025339473 -0.0650654581 sample29 -0.0706022540 0.0682931402 sample30 0.1295622907 0.0066675359 sample31 -0.1147449314 -0.1232728271 sample32 0.0374308177 -0.0380251447 sample33 -0.0599520859 -0.0136937834 sample34 0.0984199282 -0.0375365767 sample35 0.0543096391 0.0378033352 sample36 -0.1403628071 0.0343635934 sample37 -0.0228947762 0.0732685608 sample38 0.0222072933 0.0962566487 sample39 0.0941739229 -0.0215180073 sample40 -0.0643807167 0.0687715995 sample41 0.0327634917 0.1232187178 sample42 0.0500431621 0.0292514909 sample43 0.0184497163 -0.0233045277 sample44 -0.1487889188 -0.1171206324 sample45 0.1050778877 -0.1123138762 sample46 0.1151191515 0.1093994928 sample47 0.0962591485 0.0288416809 sample48 -0.0004832531 0.0310382004 sample49 -0.1135203800 -0.1213935535 sample50 0.0123549852 0.1740763341 sample51 -0.0550527370 -0.1258932048 sample52 -0.0499118408 -0.0728582038 sample53 -0.1119772642 -0.1588065652 sample54 0.0360055728 -0.0228585889 sample55 -0.0210418809 -0.0006751313 sample56 0.0434171553 -0.0633131453 sample57 -0.0197820589 -0.1150755164 sample58 -0.0030440716 -0.0326128325 sample59 -0.0500256798 -0.0129524352 sample60 -0.0184280095 -0.0136221766 sample61 -0.0150298888 -0.0635098957 sample62 0.0304758649 0.0201233949 sample63 -0.1102250086 -0.1285968207 sample64 -0.1552586810 -0.0971185758 sample65 0.0058503837 -0.0207102463 sample66 0.0025607522 -0.0424283610 sample67 -0.1546638724 0.0661574507 sample68 -0.0536374342 0.0923601987 sample69 -0.0640333059 -0.0082004392 sample70 -0.0163521833 0.0663227165 sample71 0.0102536079 0.1345966125 sample72 0.0654191682 0.0196034005 sample73 0.1048553192 -0.0221001740 sample74 -0.0123800509 -0.0586158053 sample75 -0.0392079765 0.0209725347 sample76 -0.0648954599 0.0524759474 sample77 -0.1172922663 0.0201200882 sample78 0.1463072694 -0.0708397510 sample79 -0.0265208801 0.1603428596 sample80 -0.0279739247 0.0214151815 sample81 -0.0079212172 0.0738496740 sample82 0.1544234550 0.0361450224 sample83 0.0494205306 0.0049935996 sample84 0.0259039765 0.0346592670 sample85 -0.1116487493 0.0031401734 sample86 0.1306478971 0.0377154462 sample87 0.0554777867 0.0459739421 sample88 0.0301626598 -0.0382206931 sample89 0.1016866188 -0.0694079430 sample90 -0.0086821683 0.0201324006 sample91 -0.1578629883 0.2097791017 sample92 -0.0170933458 0.1655939881 sample93 0.0979805057 0.0121500143 sample94 -0.0131486273 0.0114929388 sample95 -0.0315682470 0.0758918698 sample96 -0.0024125853 0.0470186526 sample97 -0.0634545824 -0.0270302940 sample98 0.0359372511 0.0135465888 sample99 0.1009167687 -0.1124710817 sample100 -0.0551754124 -0.0246502411 sample101 0.0080115912 0.1627408219 sample102 0.0046451312 -0.0095468783 sample103 0.0472520820 0.0940383246 sample104 -0.0198157415 0.0591148619 sample105 0.0400239024 0.0160950119 sample106 0.0923810173 -0.0369003481 sample107 0.1019372332 -0.0224967640 sample108 0.0877091505 0.0128850136 sample109 -0.0864820219 0.0901084535 sample110 0.1223116494 0.0096109124 sample111 -0.0257352402 0.0936283993 sample112 0.0765285913 -0.0270380169 sample113 -0.0258799779 -0.0377436952 sample114 -0.0021141145 0.0882040821 sample115 -0.0303455216 0.0723739013 sample116 -0.0780504400 0.0685164827 sample117 -0.0536893990 0.0912028412 sample118 -0.0666649879 0.0236261868 sample119 -0.1021872622 0.2325005348 sample120 -0.0750216341 -0.0243344759 sample121 0.0756937911 -0.0942971019 sample122 0.0259632145 -0.0731919535 sample123 0.1037844658 0.0369178321 sample124 -0.0611205132 -0.0421645116 sample125 0.0738472627 -0.0066944064 sample126 -0.0972919195 -0.0762700386 sample127 -0.0824699490 0.0096644889 sample128 0.1249411588 -0.0929252364 sample129 0.0734063621 0.0434312431 sample130 0.0003500213 0.0309857387 sample131 -0.0930184075 -0.0155970922 sample132 -0.0736220573 -0.0732970678 sample133 0.0498398375 0.0462456395 sample134 -0.1644872607 -0.0720048019 sample135 0.0752295004 -0.0003870928 sample136 -0.0227150062 0.0495468526 sample137 -0.0564721797 0.0288859286 sample138 -0.0255986461 0.0610932422 sample139 -0.0621218788 -0.0235858927 sample140 0.0604148876 0.0435530765 sample141 -0.0246743020 -0.0532629849 sample142 0.0409563947 -0.0316233143 sample143 0.0077356425 0.0476909141 sample144 -0.0173241004 0.0156786030 sample145 -0.0485467556 -0.1202737191 sample146 -0.0419650075 0.0811239940 sample147 0.0977304583 0.0274769676 sample148 -0.0368253210 -0.0803969268 sample149 0.0072864854 0.1533017819 sample150 -0.1020825512 -0.0624823732 sample151 -0.0305397125 0.0289338484 sample152 0.0533595205 0.0638335607 sample153 0.0891639656 -0.1799450182 sample154 0.0727554335 0.0834128657 sample155 0.0880665775 0.0220769132 sample156 0.0276558807 0.0326601144 sample157 0.1155031546 -0.0183636004 sample158 0.0281506695 0.0104911228 sample159 -0.0663233738 -0.0443808977 sample160 0.0302644031 -0.0404302286 sample161 -0.0114712901 0.0591084559 sample162 0.1337091074 -0.1398131370 sample163 -0.1330120683 -0.1688769051 sample164 0.0150338196 -0.0028374399 sample165 -0.0076518794 0.0164146210 sample166 -0.0367791444 -0.0630613002 sample167 -0.1111989842 -0.0030066658 sample168 0.0672983008 -0.0446266358 sample169 0.0413003618 -0.0224448388 > discoRes@scores$dist[[1]] ## Distinctive scores for Block 1 1 2 sample1 -0.0420462430 0.0867866141 sample2 -0.0820849738 -0.0410968812 sample3 0.0155966443 -0.0195186312 sample4 -0.1001342768 -0.0410776364 sample5 -0.0153479758 -0.0253257741 sample6 0.0340238864 -0.0408223415 sample7 0.0722602480 0.0002323921 sample8 -0.0457619827 -0.0370006985 sample9 -0.0086216660 0.0820184494 sample10 -0.0423631305 -0.0083917657 sample11 0.0022593533 0.0787764124 sample12 0.0322075993 0.1479823372 sample13 -0.0293970472 -0.0306742924 sample14 0.0337430767 -0.0367508387 sample15 0.0815560191 0.1275613839 sample16 0.0508331588 0.0540604276 sample17 0.0062555099 0.0041024858 sample18 0.0705600777 -0.0351053373 sample19 -0.0476783477 -0.0509595399 sample20 0.0523027299 0.0715514086 sample21 -0.0119251400 -0.0376087147 sample22 0.0724458232 -0.0095634884 sample23 -0.0992529541 0.0134298976 sample24 -0.1595266063 0.0728684165 sample25 -0.0920660927 -0.0749749224 sample26 -0.0595567148 0.0848973667 sample27 0.0826577344 -0.0086747529 sample28 -0.0384833807 0.0440972717 sample29 0.0777741020 0.1735298511 sample30 0.1229474401 -0.0819018495 sample31 0.0579750266 -0.0238646912 sample32 0.0970365667 -0.0111435172 sample33 0.1017580159 -0.0630452608 sample34 0.0637902574 0.0377936189 sample35 0.0790003443 -0.0229732503 sample36 0.1224933110 -0.1274968398 sample37 0.1798847631 -0.1673448081 sample38 0.0466394114 0.0888153201 sample39 -0.0168694762 0.0421536048 sample40 0.1756418118 -0.1526662407 sample41 0.0042469641 0.0004924607 sample42 -0.0447825388 -0.0651501352 sample43 0.0482291977 -0.0253533557 sample44 -0.1986819713 -0.0545753752 sample45 -0.0741918334 0.0054714207 sample46 0.0478862376 -0.0007080357 sample47 0.0608216654 0.0481615432 sample48 -0.1381464723 0.0578301064 sample49 -0.0530631142 -0.1405523615 sample50 -0.0173646201 0.1602386181 sample51 0.0462456286 0.0303472965 sample52 0.0279995771 0.0280387812 sample53 0.0667498340 0.0237700069 sample54 0.0121811658 -0.0521354916 sample55 0.0182392169 0.0221326616 sample56 -0.0001309072 0.0030909268 sample57 0.0316574411 0.0530190580 sample58 0.0393890961 -0.0297801813 sample59 0.1278271370 -0.0546540653 sample60 0.1486964453 0.1069141769 sample61 0.0793067310 0.0569790344 sample62 0.1172821964 -0.0149211204 sample63 -0.0028812953 0.1300524098 sample64 0.0237296019 0.1073288349 sample65 -0.0126543703 0.0589810357 sample66 -0.0468233933 -0.0771066604 sample67 0.1494286040 -0.0769877458 sample68 0.0978023684 -0.0577363844 sample69 0.0403090509 0.0156038242 sample70 0.0221598162 0.0315436645 sample71 -0.0546329770 -0.0272394903 sample72 0.1107501093 -0.0537331418 sample73 0.0906756633 0.0579957846 sample74 0.0586513295 0.0121417417 sample75 0.0390512672 0.0349278198 sample76 -0.0022939404 -0.1676560084 sample77 -0.0232101336 -0.2067300928 sample78 -0.0929809907 -0.0434927921 sample79 -0.1619380545 -0.0378102388 sample80 0.0680392739 0.1424655890 sample81 -0.0530725381 -0.0358347631 sample82 0.0266850554 -0.0577449089 sample83 0.1517242099 -0.0448570158 sample84 -0.0570943155 -0.0273808433 sample85 0.1086271553 -0.1228130481 sample86 0.0833891755 -0.0442924828 sample87 0.0022040862 -0.0943908501 sample88 -0.0078276905 -0.1140504559 sample89 0.0611005771 -0.0094589432 sample90 0.0022941728 -0.0936254857 sample91 0.0433773433 0.3205972160 sample92 -0.1815217451 -0.0334666584 sample93 0.0267654092 0.0614425802 sample94 0.0181901522 0.0605088170 sample95 -0.0720314156 -0.0013040522 sample96 -0.0559672558 -0.0118787101 sample97 -0.0217420644 0.0195417215 sample98 0.0379199303 0.0588352750 sample99 -0.0792508410 -0.0151262362 sample100 0.0222100318 -0.0023322943 sample101 -0.0387083907 0.1224225259 sample102 -0.2094626023 -0.0516420790 sample103 0.0138558156 0.0301047650 sample104 -0.0807947921 -0.0162712357 sample105 -0.0520491799 -0.1229660333 sample106 -0.0192643050 -0.0185235166 sample107 0.0319014350 0.0405120569 sample108 -0.0140674135 0.0163422352 sample109 -0.1831856760 0.0613023763 sample110 -0.0292782595 -0.0199846466 sample111 -0.1423173564 0.0327352156 sample112 0.0426313204 -0.0029087076 sample113 -0.0771932250 0.0268742754 sample114 -0.0241567666 -0.0184080616 sample115 -0.1958955914 0.0460148675 sample116 -0.1394437215 -0.0530793440 sample117 -0.1672311481 -0.1386521886 sample118 -0.0448331527 -0.0117617968 sample119 -0.0910192094 0.2217435838 sample120 -0.0331404981 -0.0057270317 sample121 0.0307516050 0.1392506168 sample122 -0.0839838206 -0.0291983599 sample123 0.0239675558 -0.0642167399 sample124 -0.0909176582 0.0130430157 sample125 -0.0065362428 -0.1092631014 sample126 0.0935272872 0.1368276782 sample127 0.0035405883 0.0292755018 sample128 -0.0660350839 0.1018575803 sample129 0.0693671518 -0.0695430268 sample130 0.0008517424 -0.0669705375 sample131 0.0431011818 0.0174060983 sample132 -0.0637089550 0.0029383525 sample133 -0.0289464266 -0.0390817283 sample134 0.0446141303 0.0456332256 sample135 0.0712343824 0.0521627571 sample136 0.0596319054 0.0197291682 sample137 0.0793175847 -0.0380637315 sample138 -0.0973505040 -0.0454210071 sample139 0.0539865707 -0.1534332141 sample140 0.0850872617 0.0955804407 sample141 -0.0192724366 -0.0554446471 sample142 -0.0672294811 -0.0461313060 sample143 -0.0303706826 -0.0519258530 sample144 -0.0089350402 0.0145815374 sample145 -0.0638878327 0.0122268713 sample146 0.0585923479 0.0063074890 sample147 0.0894147051 -0.1124625825 sample148 -0.0216440568 -0.0615962422 sample149 -0.0515315048 -0.0839902809 sample150 0.0568228066 -0.0124472783 sample151 -0.0789513407 -0.0261823906 sample152 -0.0330692620 0.1306445025 sample153 -0.1752067201 0.1497755537 sample154 0.0421490641 -0.0037017116 sample155 0.0680199084 0.0095703483 sample156 0.0388950679 0.1057557939 sample157 0.0314765003 0.0561364633 sample158 0.0329630349 0.0353943600 sample159 -0.0398462165 -0.1007368277 sample160 0.0424905300 0.0108493015 sample161 -0.0888339804 -0.0679692779 sample162 -0.0027572223 0.1237848264 sample163 -0.0126231152 0.0725440857 sample164 -0.0566787292 -0.0458318270 sample165 -0.0315331504 -0.0236359572 sample166 -0.0612109936 -0.0425224809 sample167 0.0142729554 0.0179306985 sample168 -0.0169543511 -0.0769614867 sample169 0.0675063141 0.0131499032 > discoRes@scores$dist[[2]] ## Distinctive scores for Block 2 1 2 sample1 -0.0012331710 -1.635716e-01 sample2 -0.0724353318 -6.022147e-03 sample3 -0.0188459926 -1.080029e-01 sample4 0.0390143069 3.106368e-04 sample5 0.1774810597 -2.996430e-02 sample6 -0.0451446532 -3.455899e-02 sample7 -0.0226463393 -7.019190e-03 sample8 -0.1033684693 -9.857971e-03 sample9 0.1350014310 8.979114e-02 sample10 0.1259884328 -5.097939e-02 sample11 0.0979791014 7.086567e-02 sample12 -0.0863021039 -8.620322e-02 sample13 -0.1381401870 1.827998e-01 sample14 -0.0615074769 -2.642808e-02 sample15 0.0381600640 -3.101600e-02 sample16 -0.0048779489 1.271006e-03 sample17 -0.0788483315 -1.547607e-02 sample18 -0.0884189540 -3.795477e-02 sample19 0.0703043497 -1.084003e-01 sample20 -0.0025581218 7.975972e-02 sample21 0.0941596459 -4.126897e-02 sample22 -0.0550270778 -7.806614e-02 sample23 0.0679492755 -4.102078e-02 sample24 -0.1310969664 1.649282e-01 sample25 0.0113583516 -4.426901e-02 sample26 -0.1402949011 2.016458e-02 sample27 0.0261566206 1.589991e-03 sample28 -0.0724200859 5.850509e-02 sample29 -0.0330054634 2.062106e-03 sample30 -0.0228750284 -2.015343e-02 sample31 -0.0635070498 -6.670369e-02 sample32 0.0685100000 -4.955246e-02 sample33 -0.0777764927 -1.272070e-01 sample34 0.0157842061 -3.024311e-02 sample35 -0.0529627785 1.500981e-01 sample36 0.0070908207 2.025321e-01 sample37 -0.0442411537 1.802109e-01 sample38 -0.0781508274 -3.676296e-02 sample39 0.0120330006 -3.388884e-02 sample40 -0.0473283586 1.471582e-01 sample41 0.0228192290 -2.673456e-02 sample42 -0.0245361911 -7.960878e-02 sample43 0.1036361979 -8.229578e-02 sample44 -0.1012234959 7.049237e-02 sample45 0.0013726511 -2.451072e-02 sample46 -0.0558506338 2.948607e-03 sample47 -0.0380478643 4.554238e-02 sample48 0.0784340430 4.888890e-02 sample49 -0.0605168211 -1.162473e-02 sample50 0.0530083060 -2.737811e-02 sample51 0.1514645303 5.678258e-02 sample52 0.1860936031 1.246711e-01 sample53 -0.0064179803 -2.701061e-02 sample54 0.0697037529 -2.308413e-02 sample55 0.1633577728 1.366432e-02 sample56 0.1011483953 4.682132e-02 sample57 0.1730374401 1.609594e-01 sample58 -0.0071384903 -1.666951e-02 sample59 -0.0030458384 3.005377e-02 sample60 0.0215842409 2.665887e-01 sample61 0.1510585379 1.002384e-01 sample62 -0.0925531520 -4.845726e-02 sample63 -0.0596315554 -4.137110e-02 sample64 -0.0449227326 -2.600965e-03 sample65 0.0939382202 -4.406951e-02 sample66 0.1063397636 -5.710080e-02 sample67 -0.0201580520 2.361746e-01 sample68 0.0037208556 2.418545e-02 sample69 -0.0645162021 -1.155618e-01 sample70 -0.1013439731 -1.351780e-01 sample71 -0.0016466031 -2.976772e-02 sample72 0.0328895468 -2.835770e-02 sample73 0.0275080386 -5.148152e-02 sample74 0.1341718316 -7.895304e-02 sample75 0.0951576679 -3.943147e-02 sample76 -0.0864719881 3.035055e-02 sample77 -0.1035749501 -2.545324e-02 sample78 -0.1575648000 4.939473e-02 sample79 0.0189138448 4.874690e-02 sample80 0.1384142846 4.315948e-05 sample81 -0.0118846660 -6.357908e-02 sample82 -0.1675306601 3.533970e-02 sample83 -0.0065671101 -7.812495e-02 sample84 0.1486890635 -3.109097e-02 sample85 -0.0532720223 7.417990e-02 sample86 -0.1138474853 -1.818498e-05 sample87 0.0432866008 6.080500e-02 sample88 0.0433451211 1.402486e-01 sample89 0.0331204751 -1.395429e-02 sample90 -0.0607413500 -8.610385e-02 sample91 -0.0566263425 1.303770e-01 sample92 -0.0359580607 1.061605e-01 sample93 -0.0433646463 -4.443609e-02 sample94 -0.0477292151 -1.059571e-01 sample95 -0.0249595912 -3.980509e-02 sample96 0.0035217545 -9.293931e-02 sample97 -0.0066052100 -1.527234e-01 sample98 0.0020367071 -5.579515e-02 sample99 -0.0886621918 -3.728377e-02 sample100 -0.1091259618 -3.560401e-02 sample101 -0.0739723724 -4.317883e-02 sample102 0.0574455555 -2.784089e-02 sample103 0.0142733842 9.706366e-03 sample104 0.0710395608 4.068330e-02 sample105 0.0980829896 -3.452998e-02 sample106 -0.0254260540 3.628932e-02 sample107 -0.0160655099 -9.173398e-02 sample108 -0.0200988334 -2.379699e-02 sample109 -0.0389781946 1.692311e-02 sample110 -0.0326305268 2.988086e-02 sample111 0.0676935913 -6.038250e-02 sample112 0.0167883502 5.336923e-03 sample113 0.0969213866 -2.757705e-02 sample114 -0.0026397953 -9.209101e-02 sample115 -0.0308049605 1.603743e-02 sample116 -0.1240306348 1.272998e-01 sample117 0.0334728659 5.392661e-02 sample118 -0.1037152124 6.252440e-02 sample119 -0.1064170348 1.196218e-01 sample120 -0.0771357784 -1.004935e-01 sample121 -0.0129352374 3.181913e-02 sample122 0.0847487410 -5.568466e-02 sample123 -0.0041335487 7.693557e-03 sample124 -0.0583462324 -8.396477e-02 sample125 0.0634843201 -5.232568e-02 sample126 -0.0662582136 -1.091730e-01 sample127 -0.0865025639 -1.094172e-01 sample128 -0.0627822177 -1.471095e-02 sample129 -0.0336274542 -4.007773e-02 sample130 -0.0293518125 -8.046086e-02 sample131 -0.0469196765 -2.209377e-03 sample132 -0.0241745782 -1.248608e-01 sample133 0.0907303820 1.466698e-02 sample134 -0.0350841204 7.539660e-02 sample135 0.0001334918 9.185825e-03 sample136 -0.0335874765 -9.860180e-02 sample137 -0.0640147223 -7.554370e-02 sample138 0.0060964039 -1.742783e-02 sample139 -0.0592082721 5.615007e-02 sample140 0.0427988684 -1.099464e-02 sample141 0.0618793173 -9.301103e-02 sample142 0.0898552447 3.573322e-02 sample143 0.0817391125 8.880528e-02 sample144 0.0787754470 -3.821395e-02 sample145 0.1085819444 1.569460e-01 sample146 -0.0589554907 -4.373235e-02 sample147 -0.0495327852 7.278071e-03 sample148 0.1161590410 9.078119e-03 sample149 -0.0121575368 7.788463e-02 sample150 -0.0314511966 3.520220e-02 sample151 0.0575380920 -1.945393e-02 sample152 -0.0494540293 7.025566e-02 sample153 -0.0941338714 2.153269e-01 sample154 -0.0335928734 2.078826e-02 sample155 0.0690459078 -2.780361e-02 sample156 0.1039902327 -6.292488e-02 sample157 -0.0408645853 8.065530e-03 sample158 0.1018106371 7.817022e-03 sample159 -0.0281732590 -1.207261e-02 sample160 0.1643052850 2.977803e-03 sample161 0.0374330119 8.524588e-02 sample162 -0.0804538372 8.349633e-02 sample163 -0.0743232532 -1.406348e-02 sample164 0.1208804230 -2.139525e-02 sample165 0.1608115960 2.025158e-02 sample166 -0.0425948032 -2.660802e-02 sample167 -0.0226849501 -4.464257e-02 sample168 -0.0180737432 -7.471642e-04 sample169 0.0190780233 2.645427e-02 > # Exploring O2PLS scores structure > o2plsRes@scores$common[[1]] ## Common scores for Block 1 [,1] [,2] sample1 -0.0572060227 -1.729087e-02 sample2 0.0875245208 1.112588e-02 sample3 0.0403482602 -3.168994e-02 sample4 -0.0218345996 4.052760e-06 sample5 -0.0150905011 4.795041e-03 sample6 -0.0924362933 4.511003e-02 sample7 -0.0793066751 -1.243823e-02 sample8 -0.1342997187 6.215220e-02 sample9 -0.0338886944 -1.854401e-02 sample10 0.0020547173 1.749421e-02 sample11 0.0037275602 -2.364116e-02 sample12 -0.0753094533 2.772698e-02 sample13 0.0856160091 3.679963e-02 sample14 -0.0737457307 2.668452e-02 sample15 -0.0062111746 -3.554864e-03 sample16 -0.0602355268 6.675115e-02 sample17 0.1086768843 2.524534e-02 sample18 0.0702999472 2.231671e-02 sample19 0.0173785882 -3.024846e-02 sample20 0.0484173812 -3.310904e-02 sample21 0.0124657042 6.517144e-02 sample22 -0.0140989936 -3.159137e-02 sample23 -0.0627028403 -5.393710e-04 sample24 0.0919972100 7.909297e-02 sample25 0.0326998483 -1.945206e-02 sample26 0.1064741246 2.120849e-02 sample27 0.0166058995 -4.964993e-02 sample28 0.0743504770 2.614211e-02 sample29 -0.0511008491 -2.782647e-02 sample30 0.0962250842 -3.974893e-03 sample31 -0.0869563008 5.250819e-02 sample32 0.0271858919 1.552005e-02 sample33 -0.0448364581 6.243160e-03 sample34 0.0718415218 1.469396e-02 sample35 0.0403086451 -1.632629e-02 sample36 -0.1036402827 -1.304320e-02 sample37 -0.0159385744 -3.036525e-02 sample38 0.0182198369 -4.034805e-02 sample39 0.0690363619 8.058350e-03 sample40 -0.0467312750 -2.810325e-02 sample41 0.0263674438 -5.171216e-02 sample42 0.0374578960 -1.268634e-02 sample43 0.0132336869 9.536642e-03 sample44 -0.1119154428 5.028683e-02 sample45 0.0759639367 4.587903e-02 sample46 0.0871885519 -4.670385e-02 sample47 0.0721490571 -1.288540e-02 sample48 0.0005086144 -1.290565e-02 sample49 -0.0858177028 5.173760e-02 sample50 0.0118992665 -7.276215e-02 sample51 -0.0426446855 5.306205e-02 sample52 -0.0381605826 3.086785e-02 sample53 -0.0855757630 6.730043e-02 sample54 0.0261723092 9.184260e-03 sample55 -0.0156418304 4.682404e-04 sample56 0.0307831193 2.597550e-02 sample57 -0.0157242103 4.829381e-02 sample58 -0.0031174404 1.359898e-02 sample59 -0.0373001859 5.868397e-03 sample60 -0.0142609099 5.831654e-03 sample61 -0.0122255144 2.663579e-02 sample62 0.0228002942 -8.692265e-03 sample63 -0.0833127581 5.473229e-02 sample64 -0.1166548159 4.196500e-02 sample65 0.0038808902 8.568590e-03 sample66 0.0011561811 1.766612e-02 sample67 -0.1129311062 -2.608702e-02 sample68 -0.0382526429 -3.804045e-02 sample69 -0.0476502440 4.003241e-03 sample70 -0.0110329882 -2.752719e-02 sample71 0.0096850282 -5.627056e-02 sample72 0.0487124704 -8.800131e-03 sample73 0.0773058132 8.239864e-03 sample74 -0.0102488176 2.454957e-02 sample75 -0.0286613976 -8.387293e-03 sample76 -0.0472655595 -2.129315e-02 sample77 -0.0865043074 -7.296820e-03 sample78 0.1070293698 2.818346e-02 sample79 -0.0165060681 -6.659721e-02 sample80 -0.0206765949 -8.712112e-03 sample81 -0.0050943615 -3.079175e-02 sample82 0.1153622361 -1.647054e-02 sample83 0.0367979217 -2.538114e-03 sample84 0.0199463070 -1.468961e-02 sample85 -0.0827122185 -2.709824e-04 sample86 0.0969487314 -1.699897e-02 sample87 0.0421957457 -1.965953e-02 sample88 0.0215934743 1.566050e-02 sample89 0.0751559502 2.811652e-02 sample90 -0.0057328000 -8.283795e-03 sample91 -0.1134005268 -8.603522e-02 sample92 -0.0101689918 -6.894992e-02 sample93 0.0725967502 -6.003176e-03 sample94 -0.0096878852 -4.693081e-03 sample95 -0.0223502239 -3.139636e-02 sample96 -0.0013232863 -1.963604e-02 sample97 -0.0476541710 1.183660e-02 sample98 0.0269546160 -5.978398e-03 sample99 0.0728179461 4.597884e-02 sample100 -0.0413398038 1.079347e-02 sample101 0.0087536994 -6.796076e-02 sample102 0.0032509529 3.932612e-03 sample103 0.0360342395 -3.973263e-02 sample104 -0.0141722563 -2.453107e-02 sample105 0.0294940465 -7.140722e-03 sample106 0.0686472054 1.462895e-02 sample107 0.0748635927 8.401339e-03 sample108 0.0650175850 -6.211942e-03 sample109 -0.0628017242 -3.681224e-02 sample110 0.0905513691 -5.169053e-03 sample111 -0.0176679473 -3.884777e-02 sample112 0.0570870472 1.066018e-02 sample113 -0.0200110554 1.596044e-02 sample114 -0.0001474542 -3.679272e-02 sample115 -0.0213333038 -2.991667e-02 sample116 -0.0567675453 -2.785636e-02 sample117 -0.0379865990 -3.752078e-02 sample118 -0.0484878786 -9.173691e-03 sample119 -0.0713511831 -9.598634e-02 sample120 -0.0555093586 1.089843e-02 sample121 0.0542443861 3.861344e-02 sample122 0.0178575357 3.027138e-02 sample123 0.0775020581 -1.636852e-02 sample124 -0.0460701050 1.814758e-02 sample125 0.0543846585 2.075898e-03 sample126 -0.0729417144 3.276659e-02 sample127 -0.0609509157 -3.270814e-03 sample128 0.0908136899 3.758801e-02 sample129 0.0552445878 -1.879062e-02 sample130 0.0007128089 -1.294308e-02 sample131 -0.0693311345 7.357082e-03 sample132 -0.0556565156 3.126995e-02 sample133 0.0375870104 -1.977240e-02 sample134 -0.1229130924 3.159495e-02 sample135 0.0555550315 -5.563250e-04 sample136 -0.0159768414 -2.046339e-02 sample137 -0.0412337694 -1.151652e-02 sample138 -0.0180604476 -2.526505e-02 sample139 -0.0465649201 1.040683e-02 sample140 0.0452288969 -1.876279e-02 sample141 -0.0189142561 2.247042e-02 sample142 0.0297545566 1.280524e-02 sample143 0.0064292003 -1.997706e-02 sample144 -0.0124284903 -6.369733e-03 sample145 -0.0377141491 5.066743e-02 sample146 -0.0296240067 -3.344465e-02 sample147 0.0726083535 -1.239968e-02 sample148 -0.0284795794 3.389732e-02 sample149 0.0082261455 -6.399305e-02 sample150 -0.0765013197 2.704021e-02 sample151 -0.0220567356 -1.178159e-02 sample152 0.0403422737 -2.714879e-02 sample153 0.0629117719 7.425085e-02 sample154 0.0551622927 -3.548984e-02 sample155 0.0654439133 -1.005306e-02 sample156 0.0209310714 -1.390213e-02 sample157 0.0851522597 6.577150e-03 sample158 0.0208354599 -4.663078e-03 sample159 -0.0498794349 1.913257e-02 sample160 0.0216074437 1.656579e-02 sample161 -0.0075742328 -2.455676e-02 sample162 0.0963663017 5.705881e-02 sample163 -0.1009542191 7.174224e-02 sample164 0.0109881996 1.026806e-03 sample165 -0.0053146157 -6.772855e-03 sample166 -0.0275757357 2.673084e-02 sample167 -0.0825048036 2.278863e-03 sample168 0.0486147429 1.793843e-02 sample169 0.0302506727 8.984253e-03 > o2plsRes@scores$common[[2]] ## Common scores for Block 2 [,1] [,2] sample1 -0.0621842115 -1.364509e-02 sample2 0.0944623785 9.720892e-03 sample3 0.0406196267 -2.236338e-02 sample4 -0.0229316496 -3.932487e-04 sample5 -0.0157330047 3.231033e-03 sample6 -0.0945794025 3.120720e-02 sample7 -0.0854427118 -1.052880e-02 sample8 -0.1376625920 4.286608e-02 sample9 -0.0377115311 -1.415134e-02 sample10 0.0035244506 1.280825e-02 sample11 0.0016639987 -1.717895e-02 sample12 -0.0781403168 1.884368e-02 sample13 0.0938400516 2.838858e-02 sample14 -0.0759839772 1.810989e-02 sample15 -0.0068340837 -2.705361e-03 sample16 -0.0590150849 4.757848e-02 sample17 0.1178805097 2.040526e-02 sample18 0.0767858320 1.756604e-02 sample19 0.0157112113 -2.172867e-02 sample20 0.0485318300 -2.327033e-02 sample21 0.0185928176 4.777095e-02 sample22 -0.0191358702 -2.329775e-02 sample23 -0.0672994194 -1.535656e-03 sample24 0.1047476642 5.935707e-02 sample25 0.0329844953 -1.358036e-02 sample26 0.1154952052 1.741529e-02 sample27 0.0133849853 -3.590922e-02 sample28 0.0821554039 2.042376e-02 sample29 -0.0567643690 -2.123848e-02 sample30 0.1016073931 -1.134728e-03 sample31 -0.0880396372 3.670548e-02 sample32 0.0300363338 1.182406e-02 sample33 -0.0467252272 3.739254e-03 sample34 0.0783666394 1.203777e-02 sample35 0.0424227097 -1.118559e-02 sample36 -0.1107646166 -1.143464e-02 sample37 -0.0191667664 -2.246060e-02 sample38 0.0155968095 -2.909621e-02 sample39 0.0746847148 7.148218e-03 sample40 -0.0517028178 -2.137267e-02 sample41 0.0234979494 -3.723018e-02 sample42 0.0388797356 -8.557228e-03 sample43 0.0149555568 7.210002e-03 sample44 -0.1150305613 3.461805e-02 sample45 0.0846146236 3.486020e-02 sample46 0.0884426404 -3.246853e-02 sample47 0.0748644971 -8.083045e-03 sample48 -0.0012033198 -9.403647e-03 sample49 -0.0872662737 3.616245e-02 sample50 0.0066941314 -5.284863e-02 sample51 -0.0411777630 3.791830e-02 sample52 -0.0379355780 2.180834e-02 sample53 -0.0851639886 4.751761e-02 sample54 0.0288006248 7.184424e-03 sample55 -0.0164920835 5.919925e-05 sample56 0.0355115616 1.951043e-02 sample57 -0.0141146068 3.492409e-02 sample58 -0.0015636132 9.862883e-03 sample59 -0.0390656483 3.590929e-03 sample60 -0.0139454780 3.963030e-03 sample61 -0.0106410274 1.919705e-02 sample62 0.0236748439 -5.922677e-03 sample63 -0.0846790877 3.839102e-02 sample64 -0.1202581015 2.846469e-02 sample65 0.0050548584 6.328644e-03 sample66 0.0028013072 1.291807e-02 sample67 -0.1231623009 -2.112565e-02 sample68 -0.0437782161 -2.845072e-02 sample69 -0.0501199692 2.053469e-03 sample70 -0.0140278645 -2.027157e-02 sample71 0.0057489505 -4.085977e-02 sample72 0.0511212704 -5.522408e-03 sample73 0.0828141409 7.431582e-03 sample74 -0.0085959456 1.772951e-02 sample75 -0.0312180394 -6.636869e-03 sample76 -0.0519051781 -1.640191e-02 sample77 -0.0925924762 -6.907800e-03 sample78 0.1163971046 2.251122e-02 sample79 -0.0240906926 -4.887766e-02 sample80 -0.0221327065 -6.730703e-03 sample81 -0.0072114968 -2.254399e-02 sample82 0.1204416674 -9.907422e-03 sample83 0.0386739485 -1.171663e-03 sample84 0.0195988488 -1.033806e-02 sample85 -0.0877680171 -1.725057e-03 sample86 0.1023541048 -1.062501e-02 sample87 0.0425213089 -1.356865e-02 sample88 0.0244788514 1.180820e-02 sample89 0.0804276691 2.188588e-02 sample90 -0.0074639871 -6.140721e-03 sample91 -0.1278832404 -6.485140e-02 sample92 -0.0162199697 -5.048358e-02 sample93 0.0769344893 -3.045135e-03 sample94 -0.0104345587 -3.593172e-03 sample95 -0.0260058453 -2.330475e-02 sample96 -0.0025018700 -1.433516e-02 sample97 -0.0492358305 7.774183e-03 sample98 0.0279220220 -3.862141e-03 sample99 0.0813921923 3.487339e-02 sample100 -0.0428797405 7.112807e-03 sample101 0.0032855240 -4.940743e-02 sample102 0.0038439317 2.938008e-03 sample103 0.0358511139 -2.831881e-02 sample104 -0.0162784000 -1.815061e-02 sample105 0.0314853405 -4.656633e-03 sample106 0.0726456731 1.192390e-02 sample107 0.0807342975 7.508627e-03 sample108 0.0688338003 -3.336161e-03 sample109 -0.0694151950 -2.800146e-02 sample110 0.0961218924 -2.111997e-03 sample111 -0.0217900036 -2.864702e-02 sample112 0.0599954082 8.820317e-03 sample113 -0.0195006577 1.128215e-02 sample114 -0.0032126533 -2.682851e-02 sample115 -0.0251101087 -2.221077e-02 sample116 -0.0625141551 -2.137258e-02 sample117 -0.0440473375 -2.806256e-02 sample118 -0.0532042630 -7.590494e-03 sample119 -0.0848603028 -7.133574e-02 sample120 -0.0588832131 6.937326e-03 sample121 0.0613899126 2.915307e-02 sample122 0.0218424338 2.241775e-02 sample123 0.0809008460 -1.051759e-02 sample124 -0.0472109313 1.239887e-02 sample125 0.0583180947 2.521167e-03 sample126 -0.0753941872 2.256455e-02 sample127 -0.0649774209 -3.496964e-03 sample128 0.1000212216 2.908091e-02 sample129 0.0568033049 -1.269016e-02 sample130 -0.0002370832 -9.419675e-03 sample131 -0.0727030877 4.091672e-03 sample132 -0.0566219024 2.179861e-02 sample133 0.0384172955 -1.372840e-02 sample134 -0.1280862736 2.077912e-02 sample135 0.0592633273 6.106685e-04 sample136 -0.0187635410 -1.521173e-02 sample137 -0.0449958970 -9.152840e-03 sample138 -0.0211348699 -1.875415e-02 sample139 -0.0482882861 6.729304e-03 sample140 0.0468926306 -1.285498e-02 sample141 -0.0186248693 1.605439e-02 sample142 0.0328031246 9.887746e-03 sample143 0.0052919839 -1.445666e-02 sample144 -0.0140067923 -4.867248e-03 sample145 -0.0361804310 3.625323e-02 sample146 -0.0345286735 -2.493652e-02 sample147 0.0765025670 -7.714769e-03 sample148 -0.0276016641 2.420589e-02 sample149 0.0027545308 -4.653007e-02 sample150 -0.0792296010 1.831289e-02 sample151 -0.0245894512 -8.991738e-03 sample152 0.0409796547 -1.907063e-02 sample153 0.0734301757 5.528780e-02 sample154 0.0557740684 -2.487723e-02 sample155 0.0689436560 -6.127635e-03 sample156 0.0212272938 -9.747423e-03 sample157 0.0911931194 6.355708e-03 sample158 0.0220840645 -3.016357e-03 sample159 -0.0513244242 1.304175e-02 sample160 0.0246213576 1.248444e-02 sample161 -0.0100369130 -1.805391e-02 sample162 0.1078802043 4.337260e-02 sample163 -0.1017965082 5.047171e-02 sample164 0.0119430799 9.593002e-04 sample165 -0.0063708014 -5.032148e-03 sample166 -0.0283181180 1.899222e-02 sample167 -0.0872832229 1.516582e-04 sample168 0.0540714512 1.397701e-02 sample169 0.0328432652 7.104347e-03 > o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1 [,1] [,2] sample1 0.0133684846 2.195848e-02 sample2 0.0254157197 -1.058416e-02 sample3 -0.0049551479 -4.840017e-03 sample4 0.0310390570 -1.063929e-02 sample5 0.0046941318 -6.488426e-03 sample6 -0.0107406753 -1.026702e-02 sample7 -0.0225157631 2.624712e-04 sample8 0.0141320952 -9.505821e-03 sample9 0.0029681280 2.078210e-02 sample10 0.0131729174 -2.275042e-03 sample11 -0.0004164298 1.994019e-02 sample12 -0.0095211620 3.759883e-02 sample13 0.0091018604 -7.953956e-03 sample14 -0.0106557524 -9.181659e-03 sample15 -0.0249924121 3.262724e-02 sample16 -0.0156216400 1.375700e-02 sample17 -0.0019382446 1.073994e-03 sample18 -0.0221072481 -8.703592e-03 sample19 0.0146917619 -1.311712e-02 sample20 -0.0160353760 1.826290e-02 sample21 0.0035947899 -9.616341e-03 sample22 -0.0225060762 -2.532589e-03 sample23 0.0310000683 3.033060e-03 sample24 0.0499544372 1.809450e-02 sample25 0.0284442301 -1.932558e-02 sample26 0.0188220043 2.146985e-02 sample27 -0.0257763219 -1.999228e-03 sample28 0.0120888648 1.125834e-02 sample29 -0.0236482520 4.426726e-02 sample30 -0.0385486305 -2.055935e-02 sample31 -0.0181539336 -5.877838e-03 sample32 -0.0302630460 -2.607192e-03 sample33 -0.0319565715 -1.562628e-02 sample34 -0.0197970124 9.906813e-03 sample35 -0.0247412713 -5.434440e-03 sample36 -0.0386259060 -3.190394e-02 sample37 -0.0566199273 -4.192574e-02 sample38 -0.0142060273 2.259644e-02 sample39 0.0053589035 1.076485e-02 sample40 -0.0552546493 -3.819896e-02 sample41 -0.0013089975 9.278818e-05 sample42 0.0137252142 -1.664652e-02 sample43 -0.0151259626 -6.290953e-03 sample44 0.0617391754 -1.442883e-02 sample45 0.0231410886 1.163143e-03 sample46 -0.0148898209 -1.384176e-04 sample47 -0.0187252536 1.221690e-02 sample48 0.0432839432 1.416671e-02 sample49 0.0160818605 -3.588745e-02 sample50 0.0059333545 4.067003e-02 sample51 -0.0142914866 7.776270e-03 sample52 -0.0086339952 7.208917e-03 sample53 -0.0207386980 6.272432e-03 sample54 -0.0039856719 -1.316934e-02 sample55 -0.0056217017 5.692315e-03 sample56 0.0000123292 8.978290e-04 sample57 -0.0095805555 1.324253e-02 sample58 -0.0124160295 -7.326376e-03 sample59 -0.0400195442 -1.349736e-02 sample60 -0.0460063358 2.770091e-02 sample61 -0.0245266456 1.470710e-02 sample62 -0.0366022783 -3.437352e-03 sample63 0.0013742171 3.288796e-02 sample64 -0.0070599859 2.739588e-02 sample65 0.0041201911 1.498268e-02 sample66 0.0143173351 -1.968812e-02 sample67 -0.0467477531 -1.929938e-02 sample68 -0.0306751978 -1.436184e-02 sample69 -0.0125317217 4.130407e-03 sample70 -0.0068071487 8.080857e-03 sample71 0.0169170264 -7.027348e-03 sample72 -0.0346909749 -1.333770e-02 sample73 -0.0280506153 1.493843e-02 sample74 -0.0182611498 3.294697e-03 sample75 -0.0120563964 8.974612e-03 sample76 0.0001437236 -4.253184e-02 sample77 0.0065330299 -5.252886e-02 sample78 0.0288278141 -1.127782e-02 sample79 0.0503961481 -1.023318e-02 sample80 -0.0207693429 3.648391e-02 sample81 0.0163562768 -9.074596e-03 sample82 -0.0084317129 -1.478976e-02 sample83 -0.0474097918 -1.103126e-02 sample84 0.0177181395 -7.191197e-03 sample85 -0.0342718548 -3.082360e-02 sample86 -0.0261671791 -1.089491e-02 sample87 -0.0009486358 -2.411514e-02 sample88 0.0020528931 -2.894615e-02 sample89 -0.0189361111 -2.638639e-03 sample90 -0.0009863658 -2.390075e-02 sample91 -0.0124352695 8.153234e-02 sample92 0.0564264106 -8.909537e-03 sample93 -0.0081461774 1.570851e-02 sample94 -0.0054896581 1.547251e-02 sample95 0.0224073150 -4.374348e-04 sample96 0.0173528924 -3.050441e-03 sample97 0.0067948115 5.008237e-03 sample98 -0.0116030825 1.498764e-02 sample99 0.0246422688 -4.054795e-03 sample100 -0.0069420745 -4.846343e-04 sample101 0.0124923691 3.091503e-02 sample102 0.0650835386 -1.367400e-02 sample103 -0.0042741828 7.855985e-03 sample104 0.0250591040 -4.171938e-03 sample105 0.0157516368 -3.121990e-02 sample106 0.0060593853 -5.101693e-03 sample107 -0.0098329626 1.044506e-02 sample108 0.0044269853 4.142036e-03 sample109 0.0572473486 1.517542e-02 sample110 0.0090474827 -5.119868e-03 sample111 0.0444263015 7.983232e-03 sample112 -0.0131765484 -9.696342e-04 sample113 0.0241047399 6.706740e-03 sample114 0.0074558775 -4.728652e-03 sample115 0.0611851433 1.117210e-02 sample116 0.0432646951 -1.380556e-02 sample117 0.0516750066 -3.575617e-02 sample118 0.0139942100 -3.279138e-03 sample119 0.0291722987 5.587946e-02 sample120 0.0103515853 -1.690016e-03 sample121 -0.0091396331 3.552116e-02 sample122 0.0260431679 -7.583975e-03 sample123 -0.0076666389 -1.628489e-02 sample124 0.0283466326 3.127845e-03 sample125 0.0016472378 -2.770692e-02 sample126 -0.0286529417 3.489336e-02 sample127 -0.0010224500 7.483214e-03 sample128 0.0209049296 2.572016e-02 sample129 -0.0218184878 -1.755347e-02 sample130 -0.0005009620 -1.697978e-02 sample131 -0.0134032968 4.637390e-03 sample132 0.0198526786 5.723983e-04 sample133 0.0088812957 -9.988115e-03 sample134 -0.0137484514 1.172591e-02 sample135 -0.0220314568 1.347465e-02 sample136 -0.0185173353 5.168079e-03 sample137 -0.0248352123 -9.472788e-03 sample138 0.0301635767 -1.175283e-02 sample139 -0.0173576929 -3.872592e-02 sample140 -0.0262157762 2.456863e-02 sample141 0.0058369763 -1.420854e-02 sample142 0.0207886071 -1.188764e-02 sample143 0.0092832598 -1.324238e-02 sample144 0.0028442140 3.627979e-03 sample145 0.0199749569 2.862202e-03 sample146 -0.0182236697 1.726556e-03 sample147 -0.0282519995 -2.825595e-02 sample148 0.0065435868 -1.572917e-02 sample149 0.0158233820 -2.159451e-02 sample150 -0.0177383738 -3.020633e-03 sample151 0.0245166984 -6.888241e-03 sample152 0.0107259913 3.314630e-02 sample153 0.0550963965 3.758760e-02 sample154 -0.0131452472 -8.153903e-04 sample155 -0.0211742574 2.642246e-03 sample156 -0.0117803505 2.698265e-02 sample157 -0.0096167165 1.433840e-02 sample158 -0.0101754772 9.137620e-03 sample159 0.0120662931 -2.565236e-02 sample160 -0.0132238202 2.916023e-03 sample161 0.0274491966 -1.748284e-02 sample162 0.0012482909 3.152261e-02 sample163 0.0042031315 1.830701e-02 sample164 0.0174896157 -1.175915e-02 sample165 0.0097517662 -6.119019e-03 sample166 0.0190134679 -1.121582e-02 sample167 -0.0044140836 4.665585e-03 sample168 0.0049689168 -1.941822e-02 sample169 -0.0209802098 3.498729e-03 > o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2 [,1] [,2] sample1 -0.0515543627 -0.0305856787 sample2 -0.0144993256 0.0236342950 sample3 -0.0371833108 -0.0140263348 sample4 0.0068945388 -0.0132539692 sample5 0.0215035333 -0.0663338101 sample6 -0.0187055152 0.0088773016 sample7 -0.0061521552 0.0064029054 sample8 -0.0210874459 0.0334652901 sample9 0.0516865043 -0.0291142799 sample10 0.0059440366 -0.0527217447 sample11 0.0393010793 -0.0200624712 sample12 -0.0420837100 0.0131331362 sample13 0.0333252565 0.0818552509 sample14 -0.0190062644 0.0160202175 sample15 -0.0030968049 -0.0189230681 sample16 -0.0004452158 0.0018880102 sample17 -0.0185848615 0.0240170131 sample18 -0.0273093598 0.0230213640 sample19 -0.0217761111 -0.0445894441 sample20 0.0245820821 0.0159812738 sample21 0.0034527644 -0.0400016054 sample22 -0.0340789054 0.0039289109 sample23 -0.0010344929 -0.0310161212 sample24 0.0289468503 0.0760962436 sample25 -0.0119098496 -0.0122798760 sample26 -0.0181001057 0.0517892852 sample27 0.0050465417 -0.0086515844 sample28 0.0057491502 0.0358830107 sample29 -0.0051104246 0.0116605117 sample30 -0.0103085904 0.0039678538 sample31 -0.0319929858 0.0090606113 sample32 -0.0036232521 -0.0328202010 sample33 -0.0534742153 0.0024751837 sample34 -0.0067495749 -0.0111000311 sample35 0.0378745721 0.0465929296 sample36 0.0647886800 0.0359987924 sample37 0.0488441236 0.0492906912 sample38 -0.0251514062 0.0197110110 sample39 -0.0085428066 -0.0105117852 sample40 0.0379324087 0.0440810741 sample41 -0.0044199152 -0.0128820644 sample42 -0.0292553573 -0.0067045265 sample43 -0.0077829155 -0.0510178219 sample44 0.0045122248 0.0479660309 sample45 -0.0074444298 -0.0051116726 sample46 -0.0088025512 0.0196186661 sample47 0.0076696301 0.0215947965 sample48 0.0290108585 -0.0175568376 sample49 -0.0141754858 0.0184717099 sample50 0.0006282201 -0.0233054373 sample51 0.0441995177 -0.0410022921 sample52 0.0715329391 -0.0399499475 sample53 -0.0095954087 -0.0029140909 sample54 0.0048933768 -0.0281884386 sample55 0.0327325487 -0.0532290012 sample56 0.0323068984 -0.0256595538 sample57 0.0806603122 -0.0286748097 sample58 -0.0064792049 -0.0006945349 sample59 0.0088958941 0.0067389649 sample60 0.0874124612 0.0431964341 sample61 0.0577604571 -0.0326112099 sample62 -0.0313318464 0.0224391756 sample63 -0.0233625220 0.0125110562 sample64 -0.0086426068 0.0148770341 sample65 0.0025256193 -0.0404466327 sample66 0.0006014071 -0.0471576264 sample67 0.0706087042 0.0516228406 sample68 0.0082301011 0.0033109509 sample69 -0.0475076743 0.0001452708 sample70 -0.0600773716 0.0089986962 sample71 -0.0096321627 -0.0050761187 sample72 -0.0031773546 -0.0166221542 sample73 -0.0113700517 -0.0191726684 sample74 -0.0014179662 -0.0608101325 sample75 0.0041911740 -0.0399981269 sample76 -0.0055326449 0.0353114263 sample77 -0.0260214459 0.0305731380 sample78 -0.0119267436 0.0632236007 sample79 0.0186017239 0.0027402910 sample80 0.0241047889 -0.0472697181 sample81 -0.0220288317 -0.0079577210 sample82 -0.0180751258 0.0639051029 sample83 -0.0256671713 -0.0125898269 sample84 0.0161392598 -0.0567222449 sample85 0.0139988188 0.0322763454 sample86 -0.0198382995 0.0389225776 sample87 0.0266270281 -0.0032979996 sample88 0.0515677078 0.0117902495 sample89 0.0014022125 -0.0140510488 sample90 -0.0375949749 0.0044004551 sample91 0.0310397965 0.0440610926 sample92 0.0270570567 0.0324380452 sample93 -0.0215009202 0.0063993941 sample94 -0.0415702912 -0.0037692077 sample95 -0.0168416047 0.0010019120 sample96 -0.0285582661 -0.0187991000 sample97 -0.0490843868 -0.0266760748 sample98 -0.0171579033 -0.0112897471 sample99 -0.0271316525 0.0232395583 sample100 -0.0301789816 0.0305498693 sample101 -0.0264371151 0.0170723968 sample102 0.0012767734 -0.0248949597 sample103 0.0055214687 -0.0030040587 sample104 0.0251346074 -0.0165212671 sample105 0.0062424215 -0.0400309901 sample106 0.0069768684 0.0154982315 sample107 -0.0315912602 -0.0118883820 sample108 -0.0109690679 0.0023637162 sample109 -0.0014762845 0.0165583675 sample110 0.0036971063 0.0168260726 sample111 -0.0071624739 -0.0345651461 sample112 0.0046098120 -0.0048009350 sample113 0.0082236008 -0.0383233357 sample114 -0.0293642209 -0.0165595240 sample115 -0.0003260453 0.0135805368 sample116 0.0183575759 0.0665377581 sample117 0.0227640036 -0.0012287760 sample118 0.0015695248 0.0472617382 sample119 0.0190084932 0.0590034062 sample120 -0.0449645755 0.0072755697 sample121 0.0077307184 0.0104738937 sample122 -0.0027132063 -0.0394983138 sample123 0.0016959300 0.0028593594 sample124 -0.0365091615 0.0040382925 sample125 -0.0053658663 -0.0316029164 sample126 -0.0458032408 0.0019165544 sample127 -0.0494064872 0.0088209044 sample128 -0.0155454766 0.0186819802 sample129 -0.0184340400 0.0038684312 sample130 -0.0303640987 -0.0052225766 sample131 -0.0088697422 0.0156339713 sample132 -0.0433916471 -0.0154075483 sample133 0.0204029276 -0.0282209049 sample134 0.0175513332 0.0262883962 sample135 0.0029009925 0.0017003151 sample136 -0.0367997573 -0.0072249751 sample137 -0.0348600323 0.0075400273 sample138 -0.0044063824 -0.0053752428 sample139 0.0073103935 0.0308956174 sample140 0.0039925654 -0.0167019605 sample141 -0.0184093462 -0.0387953445 sample142 0.0268670676 -0.0239229634 sample143 0.0421049126 -0.0110888235 sample144 0.0017253664 -0.0341766012 sample145 0.0681741320 -0.0073526377 sample146 -0.0239965222 0.0118396767 sample147 -0.0063453522 0.0183130585 sample148 0.0230825251 -0.0379753037 sample149 0.0223298673 0.0188909118 sample150 0.0055709108 0.0174179009 sample151 0.0039177786 -0.0233533275 sample152 0.0134325667 0.0302344591 sample153 0.0511990309 0.0730230140 sample154 0.0006698324 0.0154177486 sample155 0.0032926626 -0.0288651601 sample156 -0.0016463495 -0.0474657733 sample157 -0.0045857599 0.0154934573 sample158 0.0201775524 -0.0332982124 sample159 -0.0086909001 0.0073496711 sample160 0.0295437331 -0.0555734536 sample161 0.0332754288 0.0033779619 sample162 0.0121954537 0.0433540412 sample163 -0.0173490933 0.0227219128 sample164 0.0143374783 -0.0453542590 sample165 0.0343612593 -0.0511194536 sample166 -0.0157536004 0.0094621170 sample167 -0.0179654624 -0.0006982358 sample168 -0.0033829919 0.0060747155 sample169 0.0116231468 -0.0015112800 > > ## 3.3 Plotting VAF > > # DISCO-SCA plotVAF > plotVAF(discoRes) > > # JIVE plotVAF > plotVAF(jiveRes) > > > ######################### > ## PART 4. Plot Results > > # Scores for common part. DISCO-SCA > plotRes(object=discoRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > > # Scores for common part. JIVE > plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > > # Scores for common part. O2PLS. > p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for common part. O2PLS. > plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common", + combined=TRUE,block=NULL,color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > > # Scores for distinctive part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for distinctive part. DISCO-SCA > plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual", + combined=TRUE,block=NULL,color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block) > p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for common and distinctive part. DISCO (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Loadings for common part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > # Loadings for distinctive part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > # Combined plot for loadings from common and distinctive part (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > > ## Plot scores and loadings togheter: Common components DISCO-SCA > p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > ## Plot scores and loadings togheter: Common components O2PLS > p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > ## Plot scores and loadings togheter: Distintive components DISCO-SCA > p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > > > proc.time() user system elapsed 13.214 0.212 13.441
STATegRa.Rcheck/STATegRa-Ex.timings
name | user | system | elapsed | |
STATegRaUsersGuide | 0.001 | 0.000 | 0.001 | |
STATegRa_data | 0.192 | 0.004 | 0.197 | |
STATegRa_data_TCGA_BRCA | 0.002 | 0.000 | 0.002 | |
bioDist | 0.748 | 0.004 | 0.754 | |
bioDistFeature | 0.455 | 0.044 | 0.500 | |
bioDistFeaturePlot | 0.435 | 0.028 | 0.465 | |
bioDistW | 0.443 | 0.000 | 0.444 | |
bioDistWPlot | 0.450 | 0.004 | 0.455 | |
bioMap | 0.003 | 0.000 | 0.003 | |
combiningMappings | 0.006 | 0.007 | 0.013 | |
createOmicsExpressionSet | 0.129 | 0.004 | 0.133 | |
getInitialData | 1.028 | 0.000 | 1.030 | |
getLoadings | 1.046 | 0.263 | 1.311 | |
getMethodInfo | 0.971 | 0.027 | 1.001 | |
getPreprocessing | 1.152 | 0.116 | 1.270 | |
getScores | 1.065 | 0.023 | 1.090 | |
getVAF | 0.996 | 0.000 | 0.998 | |
holistOmics | 0.002 | 0.000 | 0.002 | |
modelSelection | 1.431 | 0.303 | 1.737 | |
omicsCompAnalysis | 2.983 | 0.008 | 2.997 | |
omicsNPC | 0.002 | 0.000 | 0.002 | |
plotRes | 3.975 | 0.012 | 3.994 | |
plotVAF | 3.729 | 0.016 | 3.752 | |