Back to Multiple platform build/check report for BioC 3.20:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-03-24 12:04 -0400 (Mon, 24 Mar 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.1 LTS)x86_644.4.3 (2025-02-28) -- "Trophy Case" 4763
palomino8Windows Server 2022 Datacenterx644.4.3 (2025-02-28 ucrt) -- "Trophy Case" 4494
merida1macOS 12.7.5 Montereyx86_644.4.3 (2025-02-28) -- "Trophy Case" 4521
kjohnson1macOS 13.6.6 Venturaarm644.4.3 (2025-02-28) -- "Trophy Case" 4448
taishanLinux (openEuler 24.03 LTS)aarch644.4.3 (2025-02-28) -- "Trophy Case" 4414
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 251/2289HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.70.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-03-20 13:00 -0400 (Thu, 20 Mar 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: RELEASE_3_20
git_last_commit: 32b6f6a
git_last_commit_date: 2024-10-29 09:27:20 -0400 (Tue, 29 Oct 2024)
nebbiolo2Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino8Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on nebbiolo2

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.70.0
Command: /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings BufferedMatrix_1.70.0.tar.gz
StartedAt: 2025-03-20 20:22:38 -0400 (Thu, 20 Mar 2025)
EndedAt: 2025-03-20 20:23:01 -0400 (Thu, 20 Mar 2025)
EllapsedTime: 23.0 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings BufferedMatrix_1.70.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.4.3 (2025-02-28)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.2 LTS
* using session charset: UTF-8
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.70.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... OK
* used C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.20-bioc/R/site-library’
* installing *source* package ‘BufferedMatrix’ ...
** using staged installation
** libs
using C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
gcc -I"/home/biocbuild/bbs-3.20-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -c RBufferedMatrix.c -o RBufferedMatrix.o
gcc -I"/home/biocbuild/bbs-3.20-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function ‘dbm_ReadOnlyMode’:
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of ‘!’ or change ‘&’ to ‘&&’ or ‘!’ to ‘~’ [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: ‘sort_double’ defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
gcc -I"/home/biocbuild/bbs-3.20-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
gcc -I"/home/biocbuild/bbs-3.20-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -c init_package.c -o init_package.o
gcc -shared -L/home/biocbuild/bbs-3.20-bioc/R/lib -L/usr/local/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -L/home/biocbuild/bbs-3.20-bioc/R/lib -lR
installing to /home/biocbuild/bbs-3.20-bioc/R/site-library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.252   0.051   0.288 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 471272 25.2    1024775 54.8   643431 34.4
Vcells 871539  6.7    8388608 64.0  2046620 15.7
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Thu Mar 20 20:22:53 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Thu Mar 20 20:22:53 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x58dafecdc130>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Thu Mar 20 20:22:53 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Thu Mar 20 20:22:53 2025"
> 
> ColMode(tmp2)
<pointer: 0x58dafecdc130>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
            [,1]       [,2]       [,3]       [,4]
[1,] 101.4024249  0.6184046 -0.2456499  1.8721076
[2,]  -0.1743345  1.4967166 -0.4767653 -1.1408904
[3,]  -0.2661480 -0.9671639 -0.7193364  0.1523474
[4,]   0.1432292 -0.3212688  0.1176398 -1.3590444
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
            [,1]      [,2]      [,3]      [,4]
[1,] 101.4024249 0.6184046 0.2456499 1.8721076
[2,]   0.1743345 1.4967166 0.4767653 1.1408904
[3,]   0.2661480 0.9671639 0.7193364 0.1523474
[4,]   0.1432292 0.3212688 0.1176398 1.3590444
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 10.0698771 0.7863871 0.4956309 1.3682498
[2,]  0.4175338 1.2234037 0.6904819 1.0681247
[3,]  0.5158954 0.9834449 0.8481370 0.3903171
[4,]  0.3784563 0.5668057 0.3429865 1.1657806
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 227.10120 33.48228 30.20196 40.55461
[2,]  29.34967 38.73075 32.38158 36.82214
[3,]  30.42510 35.80161 34.20071 29.05552
[4,]  28.92779 30.98933 28.54751 38.01685
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x58dafc76a4a0>
> exp(tmp5)
<pointer: 0x58dafc76a4a0>
> log(tmp5,2)
<pointer: 0x58dafc76a4a0>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 472.6814
> Min(tmp5)
[1] 54.40001
> mean(tmp5)
[1] 73.97977
> Sum(tmp5)
[1] 14795.95
> Var(tmp5)
[1] 870.2294
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 91.26535 74.34071 72.07804 71.88159 71.63469 70.54475 72.14410 70.49956
 [9] 71.75789 73.65100
> rowSums(tmp5)
 [1] 1825.307 1486.814 1441.561 1437.632 1432.694 1410.895 1442.882 1409.991
 [9] 1435.158 1473.020
> rowVars(tmp5)
 [1] 8104.42399   70.91302   72.91426   99.31104   59.43555   71.85625
 [7]   62.51338   61.19941   55.23459   93.79505
> rowSd(tmp5)
 [1] 90.024574  8.420987  8.538984  9.965493  7.709445  8.476807  7.906540
 [8]  7.823005  7.431998  9.684784
> rowMax(tmp5)
 [1] 472.68138  86.24783  89.62853  90.52979  88.31350  81.84515  83.70063
 [8]  82.62696  84.79093  89.02147
> rowMin(tmp5)
 [1] 62.55640 59.75091 57.41354 59.41789 57.76558 54.40001 55.69479 54.80519
 [9] 59.07916 59.17824
> 
> colMeans(tmp5)
 [1] 109.11082  73.05870  67.56155  75.13823  72.41385  73.90150  72.75482
 [8]  71.51720  66.21638  72.02633  74.17982  74.80108  70.40075  72.80605
[15]  72.70116  73.84434  74.12493  70.79899  75.08400  67.15488
> colSums(tmp5)
 [1] 1091.1082  730.5870  675.6155  751.3823  724.1385  739.0150  727.5482
 [8]  715.1720  662.1638  720.2633  741.7982  748.0108  704.0075  728.0605
[15]  727.0116  738.4434  741.2493  707.9899  750.8400  671.5488
> colVars(tmp5)
 [1] 16416.03155    36.24472    43.31029    94.99223    43.89278   126.10525
 [7]    94.67395    37.84777    24.55746    47.79259    69.18152   138.93383
[13]    35.70195    60.57976    39.94935    82.62468    35.12840    79.01181
[19]   102.98408    47.55461
> colSd(tmp5)
 [1] 128.125062   6.020359   6.581056   9.746396   6.625163  11.229659
 [7]   9.730054   6.152054   4.955548   6.913218   8.317543  11.787020
[13]   5.975111   7.783300   6.320550   9.089812   5.926921   8.888859
[19]  10.148107   6.895985
> colMax(tmp5)
 [1] 472.68138  82.19463  80.83525  88.31350  80.81872  89.99449  84.56988
 [8]  80.58338  72.82696  89.02147  83.70063  88.87557  79.60110  83.50493
[15]  81.68959  88.70924  82.85661  81.70303  90.52979  80.67522
> colMin(tmp5)
 [1] 55.76359 64.50022 59.01236 59.63716 59.17824 58.13299 58.39881 61.23397
 [9] 58.11158 63.68995 62.14330 54.40001 59.07916 62.35594 64.18650 55.69479
[17] 63.94954 57.41354 57.76558 54.80519
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 91.26535       NA 72.07804 71.88159 71.63469 70.54475 72.14410 70.49956
 [9] 71.75789 73.65100
> rowSums(tmp5)
 [1] 1825.307       NA 1441.561 1437.632 1432.694 1410.895 1442.882 1409.991
 [9] 1435.158 1473.020
> rowVars(tmp5)
 [1] 8104.42399   69.94135   72.91426   99.31104   59.43555   71.85625
 [7]   62.51338   61.19941   55.23459   93.79505
> rowSd(tmp5)
 [1] 90.024574  8.363094  8.538984  9.965493  7.709445  8.476807  7.906540
 [8]  7.823005  7.431998  9.684784
> rowMax(tmp5)
 [1] 472.68138        NA  89.62853  90.52979  88.31350  81.84515  83.70063
 [8]  82.62696  84.79093  89.02147
> rowMin(tmp5)
 [1] 62.55640       NA 57.41354 59.41789 57.76558 54.40001 55.69479 54.80519
 [9] 59.07916 59.17824
> 
> colMeans(tmp5)
 [1] 109.11082  73.05870  67.56155  75.13823  72.41385  73.90150  72.75482
 [8]  71.51720  66.21638  72.02633  74.17982  74.80108  70.40075        NA
[15]  72.70116  73.84434  74.12493  70.79899  75.08400  67.15488
> colSums(tmp5)
 [1] 1091.1082  730.5870  675.6155  751.3823  724.1385  739.0150  727.5482
 [8]  715.1720  662.1638  720.2633  741.7982  748.0108  704.0075        NA
[15]  727.0116  738.4434  741.2493  707.9899  750.8400  671.5488
> colVars(tmp5)
 [1] 16416.03155    36.24472    43.31029    94.99223    43.89278   126.10525
 [7]    94.67395    37.84777    24.55746    47.79259    69.18152   138.93383
[13]    35.70195          NA    39.94935    82.62468    35.12840    79.01181
[19]   102.98408    47.55461
> colSd(tmp5)
 [1] 128.125062   6.020359   6.581056   9.746396   6.625163  11.229659
 [7]   9.730054   6.152054   4.955548   6.913218   8.317543  11.787020
[13]   5.975111         NA   6.320550   9.089812   5.926921   8.888859
[19]  10.148107   6.895985
> colMax(tmp5)
 [1] 472.68138  82.19463  80.83525  88.31350  80.81872  89.99449  84.56988
 [8]  80.58338  72.82696  89.02147  83.70063  88.87557  79.60110        NA
[15]  81.68959  88.70924  82.85661  81.70303  90.52979  80.67522
> colMin(tmp5)
 [1] 55.76359 64.50022 59.01236 59.63716 59.17824 58.13299 58.39881 61.23397
 [9] 58.11158 63.68995 62.14330 54.40001 59.07916       NA 64.18650 55.69479
[17] 63.94954 57.41354 57.76558 54.80519
> 
> Max(tmp5,na.rm=TRUE)
[1] 472.6814
> Min(tmp5,na.rm=TRUE)
[1] 54.40001
> mean(tmp5,na.rm=TRUE)
[1] 73.9319
> Sum(tmp5,na.rm=TRUE)
[1] 14712.45
> Var(tmp5,na.rm=TRUE)
[1] 874.1639
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 91.26535 73.85838 72.07804 71.88159 71.63469 70.54475 72.14410 70.49956
 [9] 71.75789 73.65100
> rowSums(tmp5,na.rm=TRUE)
 [1] 1825.307 1403.309 1441.561 1437.632 1432.694 1410.895 1442.882 1409.991
 [9] 1435.158 1473.020
> rowVars(tmp5,na.rm=TRUE)
 [1] 8104.42399   69.94135   72.91426   99.31104   59.43555   71.85625
 [7]   62.51338   61.19941   55.23459   93.79505
> rowSd(tmp5,na.rm=TRUE)
 [1] 90.024574  8.363094  8.538984  9.965493  7.709445  8.476807  7.906540
 [8]  7.823005  7.431998  9.684784
> rowMax(tmp5,na.rm=TRUE)
 [1] 472.68138  86.24783  89.62853  90.52979  88.31350  81.84515  83.70063
 [8]  82.62696  84.79093  89.02147
> rowMin(tmp5,na.rm=TRUE)
 [1] 62.55640 59.75091 57.41354 59.41789 57.76558 54.40001 55.69479 54.80519
 [9] 59.07916 59.17824
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 109.11082  73.05870  67.56155  75.13823  72.41385  73.90150  72.75482
 [8]  71.51720  66.21638  72.02633  74.17982  74.80108  70.40075  71.61728
[15]  72.70116  73.84434  74.12493  70.79899  75.08400  67.15488
> colSums(tmp5,na.rm=TRUE)
 [1] 1091.1082  730.5870  675.6155  751.3823  724.1385  739.0150  727.5482
 [8]  715.1720  662.1638  720.2633  741.7982  748.0108  704.0075  644.5555
[15]  727.0116  738.4434  741.2493  707.9899  750.8400  671.5488
> colVars(tmp5,na.rm=TRUE)
 [1] 16416.03155    36.24472    43.31029    94.99223    43.89278   126.10525
 [7]    94.67395    37.84777    24.55746    47.79259    69.18152   138.93383
[13]    35.70195    52.25415    39.94935    82.62468    35.12840    79.01181
[19]   102.98408    47.55461
> colSd(tmp5,na.rm=TRUE)
 [1] 128.125062   6.020359   6.581056   9.746396   6.625163  11.229659
 [7]   9.730054   6.152054   4.955548   6.913218   8.317543  11.787020
[13]   5.975111   7.228703   6.320550   9.089812   5.926921   8.888859
[19]  10.148107   6.895985
> colMax(tmp5,na.rm=TRUE)
 [1] 472.68138  82.19463  80.83525  88.31350  80.81872  89.99449  84.56988
 [8]  80.58338  72.82696  89.02147  83.70063  88.87557  79.60110  82.62696
[15]  81.68959  88.70924  82.85661  81.70303  90.52979  80.67522
> colMin(tmp5,na.rm=TRUE)
 [1] 55.76359 64.50022 59.01236 59.63716 59.17824 58.13299 58.39881 61.23397
 [9] 58.11158 63.68995 62.14330 54.40001 59.07916 62.35594 64.18650 55.69479
[17] 63.94954 57.41354 57.76558 54.80519
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 91.26535      NaN 72.07804 71.88159 71.63469 70.54475 72.14410 70.49956
 [9] 71.75789 73.65100
> rowSums(tmp5,na.rm=TRUE)
 [1] 1825.307    0.000 1441.561 1437.632 1432.694 1410.895 1442.882 1409.991
 [9] 1435.158 1473.020
> rowVars(tmp5,na.rm=TRUE)
 [1] 8104.42399         NA   72.91426   99.31104   59.43555   71.85625
 [7]   62.51338   61.19941   55.23459   93.79505
> rowSd(tmp5,na.rm=TRUE)
 [1] 90.024574        NA  8.538984  9.965493  7.709445  8.476807  7.906540
 [8]  7.823005  7.431998  9.684784
> rowMax(tmp5,na.rm=TRUE)
 [1] 472.68138        NA  89.62853  90.52979  88.31350  81.84515  83.70063
 [8]  82.62696  84.79093  89.02147
> rowMin(tmp5,na.rm=TRUE)
 [1] 62.55640       NA 57.41354 59.41789 57.76558 54.40001 55.69479 54.80519
 [9] 59.07916 59.17824
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 114.44675  72.21934  67.57972  74.97132  72.07033  75.47379  71.44204
 [8]  70.63308  65.72220  71.76175  73.16011  76.44244  71.12662       NaN
[15]  72.03784  73.70953  74.03857  69.58743  73.84358  66.90959
> colSums(tmp5,na.rm=TRUE)
 [1] 1030.0207  649.9741  608.2175  674.7419  648.6329  679.2641  642.9784
 [8]  635.6977  591.4998  645.8557  658.4410  687.9820  640.1396    0.0000
[15]  648.3406  663.3858  666.3472  626.2868  664.5922  602.1863
> colVars(tmp5,na.rm=TRUE)
 [1] 18147.72441    32.84931    48.72037   106.55283    48.05177   114.05742
 [7]    87.11992    33.78491    24.87967    52.97913    66.13143   125.99210
[13]    34.23721          NA    39.99317    92.74831    39.43554    72.37465
[19]    98.54722    52.82206
> colSd(tmp5,na.rm=TRUE)
 [1] 134.713490   5.731432   6.979998  10.322443   6.931938  10.679767
 [7]   9.333805   5.812479   4.987952   7.278676   8.132123  11.224620
[13]   5.851257         NA   6.324015   9.630592   6.279773   8.507329
[19]   9.927095   7.267879
> colMax(tmp5,na.rm=TRUE)
 [1] 472.68138  82.19463  80.83525  88.31350  80.81872  89.99449  83.20044
 [8]  80.58338  72.82696  89.02147  83.70063  88.87557  79.60110      -Inf
[15]  81.68959  88.70924  82.85661  80.23904  90.52979  80.67522
> colMin(tmp5,na.rm=TRUE)
 [1] 55.76359 64.50022 59.01236 59.63716 59.17824 58.13299 58.39881 61.23397
 [9] 58.11158 63.68995 62.14330 54.40001 59.07916      Inf 64.18650 55.69479
[17] 63.94954 57.41354 57.76558 54.80519
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 161.1046 131.1795 181.7477 173.3956 207.8080 203.0356 256.8486 140.4261
 [9] 144.4033 230.4650
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 161.1046 131.1795 181.7477 173.3956 207.8080 203.0356 256.8486 140.4261
 [9] 144.4033 230.4650
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  2.557954e-13  8.526513e-14 -5.684342e-14 -1.705303e-13  0.000000e+00
 [6]  5.684342e-14 -3.979039e-13 -5.684342e-14  5.684342e-14  1.136868e-13
[11] -1.136868e-13  5.684342e-14 -1.705303e-13 -8.526513e-14  7.105427e-14
[16]  2.842171e-14 -5.684342e-14 -5.684342e-14 -1.136868e-13  1.705303e-13
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
5   10 
10   8 
1   2 
3   2 
7   20 
4   8 
5   12 
7   1 
5   17 
6   7 
6   8 
3   15 
3   17 
10   11 
6   9 
1   1 
3   16 
1   11 
1   12 
8   8 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.97955
> Min(tmp)
[1] -3.248262
> mean(tmp)
[1] -0.03886949
> Sum(tmp)
[1] -3.886949
> Var(tmp)
[1] 1.103869
> 
> rowMeans(tmp)
[1] -0.03886949
> rowSums(tmp)
[1] -3.886949
> rowVars(tmp)
[1] 1.103869
> rowSd(tmp)
[1] 1.050652
> rowMax(tmp)
[1] 2.97955
> rowMin(tmp)
[1] -3.248262
> 
> colMeans(tmp)
  [1]  1.27646036 -1.52300705 -0.70132396 -1.75915520  0.02274242  1.95777670
  [7] -1.38683613  2.61712580 -1.01174867  0.22033817 -1.58828835 -0.39044622
 [13] -0.38369504  1.23247555 -1.17965052  0.26734862 -0.70217860 -1.47656869
 [19] -0.10730931 -3.24826224  0.19377902 -1.13604273 -0.81065445 -0.78603446
 [25]  1.13570582  0.64838421 -0.14189717  1.53765812 -0.59845455  1.14678325
 [31]  0.17369103 -2.04616596  0.30061723  1.21886645  0.14779664 -1.28163094
 [37] -1.24616955  0.17367234 -0.16968965 -0.50150351 -0.06757385 -0.21347367
 [43]  0.92522920  1.81164526 -0.90337034 -0.41610735 -0.12267796  0.84519701
 [49]  1.48734491  0.61295980 -0.90068484  0.12029110  0.37928650  0.05218981
 [55] -0.64235593  0.19303320 -1.64211589 -1.06995773  0.34982011  0.85103343
 [61]  0.93434938 -0.86991107  1.36752801 -0.95322732 -1.23613295  0.71534151
 [67]  1.47880989 -0.98954164 -0.56097343 -1.12602708  0.70249247  0.23268277
 [73]  0.40712359  0.27832425  0.19846282 -0.07467471 -0.07447632  0.76131583
 [79]  0.96741298  1.47552058 -1.28425442  0.91592071 -1.40228499 -0.64145467
 [85] -0.34309188  2.97955027  0.24756512  0.17130926  0.39602681 -0.31982701
 [91] -0.62699242 -1.41639448  0.85302996 -0.07787338  0.59610751  0.62983344
 [97] -0.43724845  0.59661328 -1.16987881  1.06777389
> colSums(tmp)
  [1]  1.27646036 -1.52300705 -0.70132396 -1.75915520  0.02274242  1.95777670
  [7] -1.38683613  2.61712580 -1.01174867  0.22033817 -1.58828835 -0.39044622
 [13] -0.38369504  1.23247555 -1.17965052  0.26734862 -0.70217860 -1.47656869
 [19] -0.10730931 -3.24826224  0.19377902 -1.13604273 -0.81065445 -0.78603446
 [25]  1.13570582  0.64838421 -0.14189717  1.53765812 -0.59845455  1.14678325
 [31]  0.17369103 -2.04616596  0.30061723  1.21886645  0.14779664 -1.28163094
 [37] -1.24616955  0.17367234 -0.16968965 -0.50150351 -0.06757385 -0.21347367
 [43]  0.92522920  1.81164526 -0.90337034 -0.41610735 -0.12267796  0.84519701
 [49]  1.48734491  0.61295980 -0.90068484  0.12029110  0.37928650  0.05218981
 [55] -0.64235593  0.19303320 -1.64211589 -1.06995773  0.34982011  0.85103343
 [61]  0.93434938 -0.86991107  1.36752801 -0.95322732 -1.23613295  0.71534151
 [67]  1.47880989 -0.98954164 -0.56097343 -1.12602708  0.70249247  0.23268277
 [73]  0.40712359  0.27832425  0.19846282 -0.07467471 -0.07447632  0.76131583
 [79]  0.96741298  1.47552058 -1.28425442  0.91592071 -1.40228499 -0.64145467
 [85] -0.34309188  2.97955027  0.24756512  0.17130926  0.39602681 -0.31982701
 [91] -0.62699242 -1.41639448  0.85302996 -0.07787338  0.59610751  0.62983344
 [97] -0.43724845  0.59661328 -1.16987881  1.06777389
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1]  1.27646036 -1.52300705 -0.70132396 -1.75915520  0.02274242  1.95777670
  [7] -1.38683613  2.61712580 -1.01174867  0.22033817 -1.58828835 -0.39044622
 [13] -0.38369504  1.23247555 -1.17965052  0.26734862 -0.70217860 -1.47656869
 [19] -0.10730931 -3.24826224  0.19377902 -1.13604273 -0.81065445 -0.78603446
 [25]  1.13570582  0.64838421 -0.14189717  1.53765812 -0.59845455  1.14678325
 [31]  0.17369103 -2.04616596  0.30061723  1.21886645  0.14779664 -1.28163094
 [37] -1.24616955  0.17367234 -0.16968965 -0.50150351 -0.06757385 -0.21347367
 [43]  0.92522920  1.81164526 -0.90337034 -0.41610735 -0.12267796  0.84519701
 [49]  1.48734491  0.61295980 -0.90068484  0.12029110  0.37928650  0.05218981
 [55] -0.64235593  0.19303320 -1.64211589 -1.06995773  0.34982011  0.85103343
 [61]  0.93434938 -0.86991107  1.36752801 -0.95322732 -1.23613295  0.71534151
 [67]  1.47880989 -0.98954164 -0.56097343 -1.12602708  0.70249247  0.23268277
 [73]  0.40712359  0.27832425  0.19846282 -0.07467471 -0.07447632  0.76131583
 [79]  0.96741298  1.47552058 -1.28425442  0.91592071 -1.40228499 -0.64145467
 [85] -0.34309188  2.97955027  0.24756512  0.17130926  0.39602681 -0.31982701
 [91] -0.62699242 -1.41639448  0.85302996 -0.07787338  0.59610751  0.62983344
 [97] -0.43724845  0.59661328 -1.16987881  1.06777389
> colMin(tmp)
  [1]  1.27646036 -1.52300705 -0.70132396 -1.75915520  0.02274242  1.95777670
  [7] -1.38683613  2.61712580 -1.01174867  0.22033817 -1.58828835 -0.39044622
 [13] -0.38369504  1.23247555 -1.17965052  0.26734862 -0.70217860 -1.47656869
 [19] -0.10730931 -3.24826224  0.19377902 -1.13604273 -0.81065445 -0.78603446
 [25]  1.13570582  0.64838421 -0.14189717  1.53765812 -0.59845455  1.14678325
 [31]  0.17369103 -2.04616596  0.30061723  1.21886645  0.14779664 -1.28163094
 [37] -1.24616955  0.17367234 -0.16968965 -0.50150351 -0.06757385 -0.21347367
 [43]  0.92522920  1.81164526 -0.90337034 -0.41610735 -0.12267796  0.84519701
 [49]  1.48734491  0.61295980 -0.90068484  0.12029110  0.37928650  0.05218981
 [55] -0.64235593  0.19303320 -1.64211589 -1.06995773  0.34982011  0.85103343
 [61]  0.93434938 -0.86991107  1.36752801 -0.95322732 -1.23613295  0.71534151
 [67]  1.47880989 -0.98954164 -0.56097343 -1.12602708  0.70249247  0.23268277
 [73]  0.40712359  0.27832425  0.19846282 -0.07467471 -0.07447632  0.76131583
 [79]  0.96741298  1.47552058 -1.28425442  0.91592071 -1.40228499 -0.64145467
 [85] -0.34309188  2.97955027  0.24756512  0.17130926  0.39602681 -0.31982701
 [91] -0.62699242 -1.41639448  0.85302996 -0.07787338  0.59610751  0.62983344
 [97] -0.43724845  0.59661328 -1.16987881  1.06777389
> colMedians(tmp)
  [1]  1.27646036 -1.52300705 -0.70132396 -1.75915520  0.02274242  1.95777670
  [7] -1.38683613  2.61712580 -1.01174867  0.22033817 -1.58828835 -0.39044622
 [13] -0.38369504  1.23247555 -1.17965052  0.26734862 -0.70217860 -1.47656869
 [19] -0.10730931 -3.24826224  0.19377902 -1.13604273 -0.81065445 -0.78603446
 [25]  1.13570582  0.64838421 -0.14189717  1.53765812 -0.59845455  1.14678325
 [31]  0.17369103 -2.04616596  0.30061723  1.21886645  0.14779664 -1.28163094
 [37] -1.24616955  0.17367234 -0.16968965 -0.50150351 -0.06757385 -0.21347367
 [43]  0.92522920  1.81164526 -0.90337034 -0.41610735 -0.12267796  0.84519701
 [49]  1.48734491  0.61295980 -0.90068484  0.12029110  0.37928650  0.05218981
 [55] -0.64235593  0.19303320 -1.64211589 -1.06995773  0.34982011  0.85103343
 [61]  0.93434938 -0.86991107  1.36752801 -0.95322732 -1.23613295  0.71534151
 [67]  1.47880989 -0.98954164 -0.56097343 -1.12602708  0.70249247  0.23268277
 [73]  0.40712359  0.27832425  0.19846282 -0.07467471 -0.07447632  0.76131583
 [79]  0.96741298  1.47552058 -1.28425442  0.91592071 -1.40228499 -0.64145467
 [85] -0.34309188  2.97955027  0.24756512  0.17130926  0.39602681 -0.31982701
 [91] -0.62699242 -1.41639448  0.85302996 -0.07787338  0.59610751  0.62983344
 [97] -0.43724845  0.59661328 -1.16987881  1.06777389
> colRanges(tmp)
        [,1]      [,2]      [,3]      [,4]       [,5]     [,6]      [,7]
[1,] 1.27646 -1.523007 -0.701324 -1.759155 0.02274242 1.957777 -1.386836
[2,] 1.27646 -1.523007 -0.701324 -1.759155 0.02274242 1.957777 -1.386836
         [,8]      [,9]     [,10]     [,11]      [,12]     [,13]    [,14]
[1,] 2.617126 -1.011749 0.2203382 -1.588288 -0.3904462 -0.383695 1.232476
[2,] 2.617126 -1.011749 0.2203382 -1.588288 -0.3904462 -0.383695 1.232476
         [,15]     [,16]      [,17]     [,18]      [,19]     [,20]    [,21]
[1,] -1.179651 0.2673486 -0.7021786 -1.476569 -0.1073093 -3.248262 0.193779
[2,] -1.179651 0.2673486 -0.7021786 -1.476569 -0.1073093 -3.248262 0.193779
         [,22]      [,23]      [,24]    [,25]     [,26]      [,27]    [,28]
[1,] -1.136043 -0.8106544 -0.7860345 1.135706 0.6483842 -0.1418972 1.537658
[2,] -1.136043 -0.8106544 -0.7860345 1.135706 0.6483842 -0.1418972 1.537658
          [,29]    [,30]    [,31]     [,32]     [,33]    [,34]     [,35]
[1,] -0.5984546 1.146783 0.173691 -2.046166 0.3006172 1.218866 0.1477966
[2,] -0.5984546 1.146783 0.173691 -2.046166 0.3006172 1.218866 0.1477966
         [,36]    [,37]     [,38]      [,39]      [,40]       [,41]      [,42]
[1,] -1.281631 -1.24617 0.1736723 -0.1696896 -0.5015035 -0.06757385 -0.2134737
[2,] -1.281631 -1.24617 0.1736723 -0.1696896 -0.5015035 -0.06757385 -0.2134737
         [,43]    [,44]      [,45]      [,46]     [,47]    [,48]    [,49]
[1,] 0.9252292 1.811645 -0.9033703 -0.4161073 -0.122678 0.845197 1.487345
[2,] 0.9252292 1.811645 -0.9033703 -0.4161073 -0.122678 0.845197 1.487345
         [,50]      [,51]     [,52]     [,53]      [,54]      [,55]     [,56]
[1,] 0.6129598 -0.9006848 0.1202911 0.3792865 0.05218981 -0.6423559 0.1930332
[2,] 0.6129598 -0.9006848 0.1202911 0.3792865 0.05218981 -0.6423559 0.1930332
         [,57]     [,58]     [,59]     [,60]     [,61]      [,62]    [,63]
[1,] -1.642116 -1.069958 0.3498201 0.8510334 0.9343494 -0.8699111 1.367528
[2,] -1.642116 -1.069958 0.3498201 0.8510334 0.9343494 -0.8699111 1.367528
          [,64]     [,65]     [,66]   [,67]      [,68]      [,69]     [,70]
[1,] -0.9532273 -1.236133 0.7153415 1.47881 -0.9895416 -0.5609734 -1.126027
[2,] -0.9532273 -1.236133 0.7153415 1.47881 -0.9895416 -0.5609734 -1.126027
         [,71]     [,72]     [,73]     [,74]     [,75]       [,76]       [,77]
[1,] 0.7024925 0.2326828 0.4071236 0.2783243 0.1984628 -0.07467471 -0.07447632
[2,] 0.7024925 0.2326828 0.4071236 0.2783243 0.1984628 -0.07467471 -0.07447632
         [,78]    [,79]    [,80]     [,81]     [,82]     [,83]      [,84]
[1,] 0.7613158 0.967413 1.475521 -1.284254 0.9159207 -1.402285 -0.6414547
[2,] 0.7613158 0.967413 1.475521 -1.284254 0.9159207 -1.402285 -0.6414547
          [,85]   [,86]     [,87]     [,88]     [,89]     [,90]      [,91]
[1,] -0.3430919 2.97955 0.2475651 0.1713093 0.3960268 -0.319827 -0.6269924
[2,] -0.3430919 2.97955 0.2475651 0.1713093 0.3960268 -0.319827 -0.6269924
         [,92]   [,93]       [,94]     [,95]     [,96]      [,97]     [,98]
[1,] -1.416394 0.85303 -0.07787338 0.5961075 0.6298334 -0.4372484 0.5966133
[2,] -1.416394 0.85303 -0.07787338 0.5961075 0.6298334 -0.4372484 0.5966133
         [,99]   [,100]
[1,] -1.169879 1.067774
[2,] -1.169879 1.067774
> 
> 
> Max(tmp2)
[1] 2.604603
> Min(tmp2)
[1] -2.320413
> mean(tmp2)
[1] -0.004080236
> Sum(tmp2)
[1] -0.4080236
> Var(tmp2)
[1] 1.070242
> 
> rowMeans(tmp2)
  [1] -0.50032900 -0.99772416 -0.47534381 -0.79094291  0.63508831 -1.37483282
  [7] -0.14077998 -0.35002678 -0.12918034  1.69507615 -0.04126204  0.23029607
 [13]  0.89945213  1.06380318  1.32974944  0.92990925  0.74032468  0.16144348
 [19] -0.76859680  1.12943405  0.87777691  0.35943777  1.65767939 -0.68750012
 [25] -0.04136546 -1.28733571  1.34636853 -2.32041268 -0.40135632 -0.27412554
 [31]  0.06617192  0.16587724  0.11256942  0.47228267  0.44817380 -0.13193028
 [37]  0.77115916 -0.54071860  1.38900100  1.72767344  0.77093286 -0.43421599
 [43] -0.85560488  0.62362963  0.28732073 -0.81263757  0.58857812 -0.95925755
 [49]  0.19248710 -0.60412320  1.31871620  2.18387899 -1.18115025 -1.03285826
 [55]  0.74603194 -0.65342131  0.72209088  0.53302386 -0.44757669 -1.75079107
 [61] -1.10880950  1.22108045  0.34045486  1.33569067  1.40481338 -1.84686423
 [67]  0.23135482 -1.57216178 -2.11668867 -0.64233214 -1.16171260  1.29878234
 [73] -0.24903040  0.24062794 -1.70549805  1.65108660 -0.16386033 -1.07494311
 [79]  0.34083324  0.73378055 -1.99082833 -1.35428231 -0.32581253 -0.57402342
 [85]  0.84436628  1.43014043 -0.70706024 -0.49267939 -0.11215225  0.80105998
 [91] -0.06764354 -0.59002042  0.41663780 -0.06261114  1.11324240 -1.84776434
 [97] -0.42159380 -0.96947453 -1.44876977  2.60460326
> rowSums(tmp2)
  [1] -0.50032900 -0.99772416 -0.47534381 -0.79094291  0.63508831 -1.37483282
  [7] -0.14077998 -0.35002678 -0.12918034  1.69507615 -0.04126204  0.23029607
 [13]  0.89945213  1.06380318  1.32974944  0.92990925  0.74032468  0.16144348
 [19] -0.76859680  1.12943405  0.87777691  0.35943777  1.65767939 -0.68750012
 [25] -0.04136546 -1.28733571  1.34636853 -2.32041268 -0.40135632 -0.27412554
 [31]  0.06617192  0.16587724  0.11256942  0.47228267  0.44817380 -0.13193028
 [37]  0.77115916 -0.54071860  1.38900100  1.72767344  0.77093286 -0.43421599
 [43] -0.85560488  0.62362963  0.28732073 -0.81263757  0.58857812 -0.95925755
 [49]  0.19248710 -0.60412320  1.31871620  2.18387899 -1.18115025 -1.03285826
 [55]  0.74603194 -0.65342131  0.72209088  0.53302386 -0.44757669 -1.75079107
 [61] -1.10880950  1.22108045  0.34045486  1.33569067  1.40481338 -1.84686423
 [67]  0.23135482 -1.57216178 -2.11668867 -0.64233214 -1.16171260  1.29878234
 [73] -0.24903040  0.24062794 -1.70549805  1.65108660 -0.16386033 -1.07494311
 [79]  0.34083324  0.73378055 -1.99082833 -1.35428231 -0.32581253 -0.57402342
 [85]  0.84436628  1.43014043 -0.70706024 -0.49267939 -0.11215225  0.80105998
 [91] -0.06764354 -0.59002042  0.41663780 -0.06261114  1.11324240 -1.84776434
 [97] -0.42159380 -0.96947453 -1.44876977  2.60460326
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1] -0.50032900 -0.99772416 -0.47534381 -0.79094291  0.63508831 -1.37483282
  [7] -0.14077998 -0.35002678 -0.12918034  1.69507615 -0.04126204  0.23029607
 [13]  0.89945213  1.06380318  1.32974944  0.92990925  0.74032468  0.16144348
 [19] -0.76859680  1.12943405  0.87777691  0.35943777  1.65767939 -0.68750012
 [25] -0.04136546 -1.28733571  1.34636853 -2.32041268 -0.40135632 -0.27412554
 [31]  0.06617192  0.16587724  0.11256942  0.47228267  0.44817380 -0.13193028
 [37]  0.77115916 -0.54071860  1.38900100  1.72767344  0.77093286 -0.43421599
 [43] -0.85560488  0.62362963  0.28732073 -0.81263757  0.58857812 -0.95925755
 [49]  0.19248710 -0.60412320  1.31871620  2.18387899 -1.18115025 -1.03285826
 [55]  0.74603194 -0.65342131  0.72209088  0.53302386 -0.44757669 -1.75079107
 [61] -1.10880950  1.22108045  0.34045486  1.33569067  1.40481338 -1.84686423
 [67]  0.23135482 -1.57216178 -2.11668867 -0.64233214 -1.16171260  1.29878234
 [73] -0.24903040  0.24062794 -1.70549805  1.65108660 -0.16386033 -1.07494311
 [79]  0.34083324  0.73378055 -1.99082833 -1.35428231 -0.32581253 -0.57402342
 [85]  0.84436628  1.43014043 -0.70706024 -0.49267939 -0.11215225  0.80105998
 [91] -0.06764354 -0.59002042  0.41663780 -0.06261114  1.11324240 -1.84776434
 [97] -0.42159380 -0.96947453 -1.44876977  2.60460326
> rowMin(tmp2)
  [1] -0.50032900 -0.99772416 -0.47534381 -0.79094291  0.63508831 -1.37483282
  [7] -0.14077998 -0.35002678 -0.12918034  1.69507615 -0.04126204  0.23029607
 [13]  0.89945213  1.06380318  1.32974944  0.92990925  0.74032468  0.16144348
 [19] -0.76859680  1.12943405  0.87777691  0.35943777  1.65767939 -0.68750012
 [25] -0.04136546 -1.28733571  1.34636853 -2.32041268 -0.40135632 -0.27412554
 [31]  0.06617192  0.16587724  0.11256942  0.47228267  0.44817380 -0.13193028
 [37]  0.77115916 -0.54071860  1.38900100  1.72767344  0.77093286 -0.43421599
 [43] -0.85560488  0.62362963  0.28732073 -0.81263757  0.58857812 -0.95925755
 [49]  0.19248710 -0.60412320  1.31871620  2.18387899 -1.18115025 -1.03285826
 [55]  0.74603194 -0.65342131  0.72209088  0.53302386 -0.44757669 -1.75079107
 [61] -1.10880950  1.22108045  0.34045486  1.33569067  1.40481338 -1.84686423
 [67]  0.23135482 -1.57216178 -2.11668867 -0.64233214 -1.16171260  1.29878234
 [73] -0.24903040  0.24062794 -1.70549805  1.65108660 -0.16386033 -1.07494311
 [79]  0.34083324  0.73378055 -1.99082833 -1.35428231 -0.32581253 -0.57402342
 [85]  0.84436628  1.43014043 -0.70706024 -0.49267939 -0.11215225  0.80105998
 [91] -0.06764354 -0.59002042  0.41663780 -0.06261114  1.11324240 -1.84776434
 [97] -0.42159380 -0.96947453 -1.44876977  2.60460326
> 
> colMeans(tmp2)
[1] -0.004080236
> colSums(tmp2)
[1] -0.4080236
> colVars(tmp2)
[1] 1.070242
> colSd(tmp2)
[1] 1.034525
> colMax(tmp2)
[1] 2.604603
> colMin(tmp2)
[1] -2.320413
> colMedians(tmp2)
[1] -0.0519883
> colRanges(tmp2)
          [,1]
[1,] -2.320413
[2,]  2.604603
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1] -0.7049915 -3.6104711 -0.9023345 -4.9203907  1.3821670  0.7690596
 [7]  4.6965133  0.8312070  2.8183145 -3.2869850
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.1095388
[2,] -0.5686627
[3,] -0.2196240
[4,]  0.5548487
[5,]  0.9470987
> 
> rowApply(tmp,sum)
 [1]  1.06132710 -2.69164027  4.20225338 -0.86596367  0.48813685  1.28322304
 [7] -1.94078386 -3.62954272 -0.80941024 -0.02551109
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    8    5    2    9    4    2    2    4    9     8
 [2,]    5    2    4    1    3    8    1    6   10     2
 [3,]   10    6    5    7    6    1    3    2    4     3
 [4,]    1    7    6    3    1    3    6    1    1    10
 [5,]    6   10    1    8    8    4    8    7    8     5
 [6,]    3    8    9    6    5   10    5    5    3     7
 [7,]    4    9    8   10   10    7    4    3    7     6
 [8,]    9    3    3    4    9    9    7    9    2     4
 [9,]    7    1   10    5    7    6   10    8    6     9
[10,]    2    4    7    2    2    5    9   10    5     1
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1] -0.5518154 -0.7245882 -3.0343544  4.3603304  2.2902335 -2.2127700
 [7] -2.1513910  1.9672460 -1.1103008 -2.3036491  0.9639332  3.1519983
[13]  2.2008873 -3.8238538 -0.7261663 -1.7122850 -1.6720756  1.2055909
[19]  0.5989486 -0.3362905
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.2325685
[2,] -1.0263392
[3,] -0.3334461
[4,]  0.2117560
[5,]  1.8287823
> 
> rowApply(tmp,sum)
[1]  0.09209071  0.69245198 -7.24254135 -0.48236887  3.31999560
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]    7   11    7    5   19
[2,]    3    8   18   17    2
[3,]    1   14    8   15    6
[4,]   14   10   14   20   15
[5,]   15   18    3   18    7
> 
> 
> as.matrix(tmp)
           [,1]       [,2]       [,3]      [,4]       [,5]        [,6]
[1,] -0.3334461 -1.0243650 -3.3142064 0.6377259  0.6587383  1.00747882
[2,]  0.2117560 -0.2737819  0.3671820 0.1652275  1.3115975  0.04524659
[3,] -1.0263392  0.7556601 -0.8293461 0.1317669 -1.5961933 -0.15717267
[4,] -1.2325685  1.3772784  1.2211624 2.2698983  2.1038040 -1.82872141
[5,]  1.8287823 -1.5593798 -0.4791463 1.1557119 -0.1877129 -1.27960135
           [,7]        [,8]       [,9]       [,10]      [,11]       [,12]
[1,]  0.1119995  0.06041819 -2.1026466  2.12913981  0.3569627  0.26624904
[2,] -0.5371770  1.16253972  0.5456939 -2.09316150  1.4528104 -0.34476243
[3,] -1.4755103 -1.08594926  0.2896056 -2.20465887 -0.7497400  0.07669025
[4,] -1.5459749  0.33079325  1.3190138  0.04702008 -0.5000219  2.17112651
[5,]  1.2952716  1.49944413 -1.1619675 -0.18198863  0.4039220  0.98269494
           [,13]      [,14]      [,15]      [,16]      [,17]      [,18]
[1,]  0.58843397 -0.2173725 -0.5738437  0.8550938 -0.6353703  1.4646773
[2,]  0.31992377 -2.1299967 -0.9041760  0.3289849 -0.8386312  1.0259810
[3,]  2.62829843 -0.4007563  0.5035033 -0.3409858 -1.6994412  0.9084100
[4,] -1.38349292 -1.2509988 -1.1925792 -0.4561106 -0.7029195 -0.8331028
[5,]  0.04772405  0.1752703  1.4409293 -2.0992673  2.2042865 -1.3603746
          [,19]      [,20]
[1,] -0.5271673  0.6835912
[2,]  1.6710560 -0.7938607
[3,] -1.4584869  0.4881039
[4,]  0.1357482 -0.5317232
[5,]  0.7777987 -0.1824017
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  653  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  566  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
           col1       col2      col3       col4      col5       col6       col7
row1 -0.7604268 -0.5254149 0.1193668 -0.3335275 -0.328818 -0.3343943 -0.7720888
          col8     col9     col10     col11     col12    col13      col14
row1 0.9556274 1.587953 0.9754155 0.1440973 0.7717075 0.343512 -0.3995505
          col15     col16      col17    col18      col19     col20
row1 -0.7209909 0.2802835 0.01647382 2.565912 -0.2801393 0.7215198
> tmp[,"col10"]
          col10
row1 0.97541550
row2 0.37000858
row3 0.80511349
row4 0.06691792
row5 0.76838727
> tmp[c("row1","row5"),]
           col1       col2       col3       col4       col5       col6
row1 -0.7604268 -0.5254149  0.1193668 -0.3335275 -0.3288180 -0.3343943
row5  1.3441902  0.5483497 -1.6070640  0.5208896  0.5539493  1.2232528
           col7       col8       col9     col10     col11      col12     col13
row1 -0.7720888  0.9556274 1.58795291 0.9754155 0.1440973  0.7717075  0.343512
row5 -1.5944642 -1.7638469 0.09764004 0.7683873 0.8001513 -3.6477834 -2.200601
           col14      col15      col16      col17     col18      col19
row1 -0.39955052 -0.7209909  0.2802835 0.01647382  2.565912 -0.2801393
row5  0.09243842  1.4077689 -0.9109119 0.31154971 -2.391653 -0.5741390
          col20
row1  0.7215198
row5 -0.5699671
> tmp[,c("col6","col20")]
           col6      col20
row1 -0.3343943  0.7215198
row2 -1.7902541 -0.5912647
row3  1.1775184 -0.2808172
row4 -0.2005608  0.4341108
row5  1.2232528 -0.5699671
> tmp[c("row1","row5"),c("col6","col20")]
           col6      col20
row1 -0.3343943  0.7215198
row5  1.2232528 -0.5699671
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 51.88999 52.10267 50.40003 49.50656 50.69742 103.0325 50.16324 48.55863
         col9    col10    col11    col12   col13    col14    col15    col16
row1 51.05394 48.63081 50.07561 50.11227 49.6917 49.49714 51.54261 49.19819
      col17    col18    col19    col20
row1 48.164 50.27957 48.99027 105.2639
> tmp[,"col10"]
        col10
row1 48.63081
row2 30.34529
row3 30.83798
row4 29.63217
row5 49.97674
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 51.88999 52.10267 50.40003 49.50656 50.69742 103.0325 50.16324 48.55863
row5 49.11205 49.87108 50.41707 50.11149 51.96624 105.0737 48.70102 52.30673
         col9    col10    col11    col12    col13    col14    col15    col16
row1 51.05394 48.63081 50.07561 50.11227 49.69170 49.49714 51.54261 49.19819
row5 48.79177 49.97674 47.82522 48.61824 49.08154 49.87862 50.19711 51.44983
        col17    col18    col19    col20
row1 48.16400 50.27957 48.99027 105.2639
row5 49.16826 50.25476 49.88899 104.3531
> tmp[,c("col6","col20")]
          col6     col20
row1 103.03249 105.26395
row2  76.94146  73.12509
row3  74.15540  74.58227
row4  74.86703  74.29322
row5 105.07372 104.35305
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 103.0325 105.2639
row5 105.0737 104.3531
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 103.0325 105.2639
row5 105.0737 104.3531
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
           col13
[1,]  0.18294913
[2,] -0.30559707
[3,] -0.08144419
[4,] -1.17405967
[5,]  0.63758713
> tmp[,c("col17","col7")]
           col17       col7
[1,] -0.08006385 -0.7922900
[2,]  0.17592955  0.9310302
[3,]  0.65605319 -1.0338814
[4,] -0.83254515 -0.4055685
[5,]  0.41742948 -0.1153736
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
            col6       col20
[1,]  0.84948567  0.85024562
[2,]  0.52483952 -0.44457656
[3,] -0.02930455  0.02600977
[4,]  0.29527489 -0.55309846
[5,]  1.31564544 -2.12699512
> subBufferedMatrix(tmp,1,c("col6"))[,1]
          col1
[1,] 0.8494857
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
          col6
[1,] 0.8494857
[2,] 0.5248395
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
            [,1]       [,2]       [,3]         [,4]       [,5]        [,6]
row3 -0.14736949 -0.1803818 0.77491392 -0.008087664 -0.5433359 -1.62131258
row1  0.02901329  1.4220664 0.03871897  0.203897346 -0.5577532 -0.05107417
           [,7]      [,8]      [,9]      [,10]      [,11]     [,12]      [,13]
row3  0.1369221 -1.477670 -1.862731  0.9495379 -0.7091648 -1.417401 -0.7610865
row1 -0.5545442  1.150809 -1.268756 -0.7812482  0.7224347 -1.005015  1.3191290
           [,14]      [,15]      [,16]      [,17]      [,18]      [,19]
row3 -0.75670441 -0.9968839 -0.2630297  0.5118839 -0.8416708 -0.1964798
row1  0.01227706 -0.2419746 -1.5145609 -0.1209920 -0.9857119 -0.5803671
          [,20]
row3 -0.1914954
row1 -0.3533422
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]      [,2]      [,3]      [,4]       [,5]      [,6]      [,7]
row2 -1.715886 0.7166562 -2.149231 -1.574996 -0.3586995 0.4395004 -1.101098
         [,8]       [,9]      [,10]
row2 -2.05912 -0.4365726 -0.5392776
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
         [,1]      [,2]     [,3]     [,4]      [,5]      [,6]      [,7]
row5 1.164516 -1.508749 1.709652 1.211008 0.0402433 -1.137978 0.2397576
            [,8]      [,9]     [,10]      [,11]     [,12]      [,13]    [,14]
row5 -0.05725403 0.3743767 0.5221032 -0.9615321 0.8929269 -0.1255475 0.523284
         [,15]    [,16]     [,17]      [,18]    [,19]        [,20]
row5 0.8369243 1.398722 0.4669878 0.09533278 0.877196 -0.006241601
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x58dafe9e4630>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM12a107217b030b"
 [2] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM12a1077ee8da92"
 [3] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM12a10735b61c66"
 [4] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM12a1076b78534f"
 [5] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM12a1072f32443b"
 [6] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM12a1071270d2a1"
 [7] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM12a1077341592" 
 [8] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM12a10730474124"
 [9] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM12a10735053803"
[10] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM12a10741a404ab"
[11] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM12a1076229cacb"
[12] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM12a1071c5d70fc"
[13] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM12a1077771a249"
[14] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM12a1077783afa8"
[15] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM12a1076fcff96" 
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x58dafe597350>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x58dafe597350>
Warning message:
In dir.create(new.directory) :
  '/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x58dafe597350>
> rowMedians(tmp)
  [1] -0.076891815 -0.235729084 -0.047935820 -0.448844585 -0.202312014
  [6]  0.720785719 -0.387016799  0.211613717  0.298588430  0.125286062
 [11]  0.261125631 -0.040132308  0.376344502  0.133676256  0.011339344
 [16] -0.154225841 -0.052798350  0.466670927 -0.024242386  0.291217487
 [21] -0.308757440  0.070332507  0.206276273 -0.070336025 -0.099360986
 [26] -0.063422572 -0.038239893 -0.120539348  0.287373092  0.599280380
 [31]  0.032770570  0.459767246 -0.369436687  0.324471857 -0.216424587
 [36] -0.080550201  0.337275761 -0.057776090 -0.107911034 -0.287472667
 [41]  0.179420929  0.730771958  0.079368097 -0.092932421  0.173866868
 [46] -0.373717751  0.533279984  0.186086245  0.366475457  0.279017361
 [51] -0.338764409 -0.511979571 -0.159439797  0.047262371 -0.257455672
 [56]  0.111497085 -0.157492673 -0.098384348  0.334548043  0.039073775
 [61]  0.232813903 -0.327156429  0.038946752  0.801389459 -0.544738573
 [66]  0.206553248  0.117562331 -0.475193052 -0.146234538 -0.200015706
 [71]  0.386317110  0.286867777 -0.840459928 -0.340792801 -0.028595324
 [76]  0.091104721  0.134690872 -0.107269938  0.036888061 -0.155228105
 [81]  0.368246545 -0.262391165  0.144171896 -0.407632191 -0.117596987
 [86]  0.019997077  0.340624486  0.198132705  0.243843522 -0.023371740
 [91]  0.114797958  0.022324848  0.104816269  0.345943814 -0.002200741
 [96]  0.210359424  0.239153219  0.523307820  0.042680718 -0.122499000
[101]  0.154100557 -0.144206263  0.062739963  0.247133781  0.035124199
[106]  0.250336478 -0.047167514  0.103085574  0.150204810 -0.647393953
[111]  0.401767798 -0.291197231 -0.106120276  0.430456778 -0.145361198
[116]  0.087177613  0.415606168  0.327788592  0.177229445  0.147506743
[121] -0.048871286  0.149760911 -0.046969493  0.170408954 -0.635139348
[126]  0.211783764 -0.165326044 -0.348835292  0.251300843  0.190351540
[131] -0.176761775  0.046325247  0.299672880  0.256716262  0.145952645
[136] -0.356670766 -0.161773613  0.005786178 -0.558988803 -0.020725236
[141] -0.323093541 -0.155826938  0.069868177  0.405927593 -0.187128592
[146] -0.679582850 -0.595359173 -0.653337812  0.240727003  0.231486036
[151]  0.127047631 -0.452153633  0.156167339  0.230158090 -0.337537425
[156]  0.119454773 -0.800260785 -0.078937441 -0.362474648  0.277461130
[161] -0.305497965 -0.353261208  0.524165160 -0.481928404 -0.612888799
[166]  0.497001037  0.364237522  0.227713688 -0.205935867  0.275033490
[171]  0.261918468 -0.090811687  0.028512961 -0.134543815  0.195215771
[176]  0.937860522 -0.499475861  0.324836114 -0.091006220  0.138092986
[181]  0.117491380  0.341158342 -0.246002681 -0.065918150 -0.432128045
[186] -0.165204524 -0.528882228  0.158109976 -0.440584575  0.217702394
[191] -0.569035698 -0.090182022  0.353796199 -0.150208137 -0.268959029
[196]  0.657725023 -0.406748991 -0.730969844  0.181337568 -0.106677086
[201] -0.040509927  0.064326097 -0.241444190  0.472465815 -0.026989207
[206]  0.059960180  0.167412224  0.163522856  0.329867176  0.273262251
[211]  0.568033698 -0.099243867 -0.042256383 -0.419846721 -0.098979266
[216]  0.005803352  0.247755009  0.176101300 -0.222178884 -0.019456393
[221]  0.744242482 -0.695185110 -0.058391488 -0.206379998  0.201369432
[226] -0.037819335  0.301391790  0.106711911  0.245893245 -0.161848563
> 
> proc.time()
   user  system elapsed 
  1.278   0.661   1.927 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x572514569130>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x572514569130>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x572514569130>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x572514569130>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x5725145b44e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5725145b44e0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x5725145b44e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5725145b44e0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5725145b44e0>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x57251292bfd0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x57251292bfd0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x57251292bfd0>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x57251292bfd0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x57251292bfd0>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x57251292bfd0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x57251292bfd0>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x57251292bfd0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x57251292bfd0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x572513f6ac20>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x572513f6ac20>
> .Call("R_bm_AddColumn",P)
<pointer: 0x572513f6ac20>
> .Call("R_bm_AddColumn",P)
<pointer: 0x572513f6ac20>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile12a3101ae6bef0" "BufferedMatrixFile12a310b0d963a" 
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile12a3101ae6bef0" "BufferedMatrixFile12a310b0d963a" 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x572511d4cd60>
> .Call("R_bm_AddColumn",P)
<pointer: 0x572511d4cd60>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x572511d4cd60>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x572511d4cd60>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x572511d4cd60>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x572511d4cd60>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x572512e106e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x572512e106e0>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x572512e106e0>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x572512e106e0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x572512ec9160>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x572512ec9160>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.250   0.044   0.283 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.236   0.052   0.272 

Example timings