Back to Multiple platform build/check report for BioC 3.21:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2024-11-28 12:16 -0500 (Thu, 28 Nov 2024).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.1 LTS)x86_64R Under development (unstable) (2024-10-21 r87258) -- "Unsuffered Consequences" 4748
palomino7Windows Server 2022 Datacenterx64R Under development (unstable) (2024-10-26 r87273 ucrt) -- "Unsuffered Consequences" 4459
lconwaymacOS 12.7.1 Montereyx86_64R Under development (unstable) (2024-11-20 r87352) -- "Unsuffered Consequences" 4398
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 1959/2272HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.17.0  (landing page)
Joshua David Campbell
Snapshot Date: 2024-11-27 13:40 -0500 (Wed, 27 Nov 2024)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: devel
git_last_commit: 65dee790
git_last_commit_date: 2024-10-29 11:30:33 -0500 (Tue, 29 Oct 2024)
nebbiolo1Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  NO, package depends on 'enrichR' which is not available
palomino7Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  NO, package depends on 'DESeq2' which is only available as a source package that needs compilation
lconwaymacOS 12.7.1 Monterey / x86_64  ERROR    ERROR  skippedskipped


CHECK results for singleCellTK on palomino7

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: singleCellTK
Version: 2.17.0
Command: set _R_CHECK_FORCE_SUGGESTS_=0&& E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:singleCellTK.install-out.txt --library=E:\biocbuild\bbs-3.21-bioc\R\library --no-vignettes --timings singleCellTK_2.17.0.tar.gz
StartedAt: 2024-11-28 04:51:41 -0500 (Thu, 28 Nov 2024)
EndedAt: 2024-11-28 05:09:34 -0500 (Thu, 28 Nov 2024)
EllapsedTime: 1072.9 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   set _R_CHECK_FORCE_SUGGESTS_=0&& E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:singleCellTK.install-out.txt --library=E:\biocbuild\bbs-3.21-bioc\R\library --no-vignettes --timings singleCellTK_2.17.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'E:/biocbuild/bbs-3.21-bioc/meat/singleCellTK.Rcheck'
* using R Under development (unstable) (2024-10-26 r87273 ucrt)
* using platform: x86_64-w64-mingw32
* R was compiled by
    gcc.exe (GCC) 13.2.0
    GNU Fortran (GCC) 13.2.0
* running under: Windows Server 2022 x64 (build 20348)
* using session charset: UTF-8
* using option '--no-vignettes'
* checking for file 'singleCellTK/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'singleCellTK' version '2.17.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'singleCellTK' can be installed ... OK
* checking installed package size ... INFO
  installed size is  6.8Mb
  sub-directories of 1Mb or more:
    extdata   1.5Mb
    shiny     2.9Mb
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  dedupRowNames.Rd: SingleCellExperiment-class
  detectCellOutlier.Rd: colData
  diffAbundanceFET.Rd: colData
  downSampleCells.Rd: SingleCellExperiment-class
  downSampleDepth.Rd: SingleCellExperiment-class
  featureIndex.Rd: SummarizedExperiment-class,
    SingleCellExperiment-class
  getBiomarker.Rd: SingleCellExperiment-class
  getDEGTopTable.Rd: SingleCellExperiment-class
  getEnrichRResult.Rd: SingleCellExperiment-class
  getFindMarkerTopTable.Rd: SingleCellExperiment-class
  getGenesetNamesFromCollection.Rd: SingleCellExperiment-class
  getPathwayResultNames.Rd: SingleCellExperiment-class
  getSampleSummaryStatsTable.Rd: SingleCellExperiment-class, assay,
    colData
  getSoupX.Rd: SingleCellExperiment-class
  getTSCANResults.Rd: SingleCellExperiment-class
  getTopHVG.Rd: SingleCellExperiment-class
  importAlevin.Rd: DelayedArray, readMM
  importAnnData.Rd: DelayedArray, readMM
  importBUStools.Rd: readMM
  importCellRanger.Rd: readMM, DelayedArray
  importCellRangerV2Sample.Rd: readMM, DelayedArray
  importCellRangerV3Sample.Rd: readMM, DelayedArray
  importDropEst.Rd: DelayedArray, readMM
  importExampleData.Rd: scRNAseq, Matrix, DelayedArray,
    ReprocessedFluidigmData, ReprocessedAllenData, NestorowaHSCData
  importFromFiles.Rd: readMM, DelayedArray, SingleCellExperiment-class
  importGeneSetsFromCollection.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GeneSetCollection, GSEABase, metadata
  importGeneSetsFromGMT.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, getGmt, GSEABase, metadata
  importGeneSetsFromList.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GSEABase, metadata
  importGeneSetsFromMSigDB.Rd: SingleCellExperiment-class, msigdbr,
    GeneSetCollection-class, GSEABase, metadata
  importMitoGeneSet.Rd: SingleCellExperiment-class,
    GeneSetCollection-class, GSEABase, metadata
  importMultipleSources.Rd: DelayedArray
  importOptimus.Rd: readMM, DelayedArray
  importSEQC.Rd: readMM, DelayedArray
  importSTARsolo.Rd: readMM, DelayedArray
  iterateSimulations.Rd: SingleCellExperiment-class
  listSampleSummaryStatsTables.Rd: SingleCellExperiment-class, metadata
  plotBarcodeRankDropsResults.Rd: SingleCellExperiment-class
  plotBarcodeRankScatter.Rd: SingleCellExperiment-class
  plotBatchCorrCompare.Rd: SingleCellExperiment-class
  plotBatchVariance.Rd: SingleCellExperiment-class
  plotBcdsResults.Rd: SingleCellExperiment-class
  plotClusterAbundance.Rd: colData
  plotCxdsResults.Rd: SingleCellExperiment-class
  plotDEGHeatmap.Rd: SingleCellExperiment-class
  plotDEGRegression.Rd: SingleCellExperiment-class
  plotDEGViolin.Rd: SingleCellExperiment-class
  plotDEGVolcano.Rd: SingleCellExperiment-class
  plotDecontXResults.Rd: SingleCellExperiment-class
  plotDoubletFinderResults.Rd: SingleCellExperiment-class
  plotEmptyDropsResults.Rd: SingleCellExperiment-class
  plotEmptyDropsScatter.Rd: SingleCellExperiment-class
  plotFindMarkerHeatmap.Rd: SingleCellExperiment-class
  plotPCA.Rd: SingleCellExperiment-class
  plotPathway.Rd: SingleCellExperiment-class
  plotRunPerCellQCResults.Rd: SingleCellExperiment-class
  plotSCEBarAssayData.Rd: SingleCellExperiment-class
  plotSCEBarColData.Rd: SingleCellExperiment-class
  plotSCEBatchFeatureMean.Rd: SingleCellExperiment-class
  plotSCEDensity.Rd: SingleCellExperiment-class
  plotSCEDensityAssayData.Rd: SingleCellExperiment-class
  plotSCEDensityColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceFeatures.Rd: SingleCellExperiment-class
  plotSCEHeatmap.Rd: SingleCellExperiment-class
  plotSCEScatter.Rd: SingleCellExperiment-class
  plotSCEViolin.Rd: SingleCellExperiment-class
  plotSCEViolinAssayData.Rd: SingleCellExperiment-class
  plotSCEViolinColData.Rd: SingleCellExperiment-class
  plotScDblFinderResults.Rd: SingleCellExperiment-class
  plotScdsHybridResults.Rd: SingleCellExperiment-class
  plotScrubletResults.Rd: SingleCellExperiment-class
  plotSoupXResults.Rd: SingleCellExperiment-class
  plotTSCANClusterDEG.Rd: SingleCellExperiment-class
  plotTSCANClusterPseudo.Rd: SingleCellExperiment-class
  plotTSCANDimReduceFeatures.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeGenes.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeHeatmap.Rd: SingleCellExperiment-class
  plotTSCANResults.Rd: SingleCellExperiment-class
  plotTSNE.Rd: SingleCellExperiment-class
  plotUMAP.Rd: SingleCellExperiment-class
  readSingleCellMatrix.Rd: DelayedArray
  reportCellQC.Rd: SingleCellExperiment-class
  reportClusterAbundance.Rd: colData
  reportDiffAbundanceFET.Rd: colData
  retrieveSCEIndex.Rd: SingleCellExperiment-class
  runBBKNN.Rd: SingleCellExperiment-class
  runBarcodeRankDrops.Rd: SingleCellExperiment-class, colData
  runBcds.Rd: SingleCellExperiment-class, colData
  runCellQC.Rd: colData
  runComBatSeq.Rd: SingleCellExperiment-class
  runCxds.Rd: SingleCellExperiment-class, colData
  runCxdsBcdsHybrid.Rd: colData
  runDEAnalysis.Rd: SingleCellExperiment-class
  runDecontX.Rd: colData
  runDimReduce.Rd: SingleCellExperiment-class
  runDoubletFinder.Rd: SingleCellExperiment-class
  runDropletQC.Rd: colData
  runEmptyDrops.Rd: SingleCellExperiment-class, colData
  runEnrichR.Rd: SingleCellExperiment-class
  runFastMNN.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runFeatureSelection.Rd: SingleCellExperiment-class
  runFindMarker.Rd: SingleCellExperiment-class
  runGSVA.Rd: SingleCellExperiment-class
  runHarmony.Rd: SingleCellExperiment-class
  runKMeans.Rd: SingleCellExperiment-class, colData
  runLimmaBC.Rd: SingleCellExperiment-class, assay
  runMNNCorrect.Rd: SingleCellExperiment-class, assay,
    BiocParallelParam-class
  runModelGeneVar.Rd: SingleCellExperiment-class
  runPerCellQC.Rd: SingleCellExperiment-class, BiocParallelParam,
    colData
  runSCANORAMA.Rd: SingleCellExperiment-class, assay
  runSCMerge.Rd: SingleCellExperiment-class, colData, assay,
    BiocParallelParam-class
  runScDblFinder.Rd: SingleCellExperiment-class, colData
  runScranSNN.Rd: SingleCellExperiment-class, reducedDim, assay,
    altExp, colData, igraph
  runScrublet.Rd: SingleCellExperiment-class, colData
  runSingleR.Rd: SingleCellExperiment-class
  runSoupX.Rd: SingleCellExperiment-class
  runTSCAN.Rd: SingleCellExperiment-class
  runTSCANClusterDEAnalysis.Rd: SingleCellExperiment-class
  runTSCANDEG.Rd: SingleCellExperiment-class
  runTSNE.Rd: SingleCellExperiment-class
  runUMAP.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runVAM.Rd: SingleCellExperiment-class
  runZINBWaVE.Rd: SingleCellExperiment-class, colData,
    BiocParallelParam-class
  sampleSummaryStats.Rd: SingleCellExperiment-class, assay, colData
  scaterPCA.Rd: SingleCellExperiment-class, BiocParallelParam-class
  scaterlogNormCounts.Rd: logNormCounts
  sctkListGeneSetCollections.Rd: GeneSetCollection-class
  sctkPythonInstallConda.Rd: conda_install, reticulate, conda_create
  sctkPythonInstallVirtualEnv.Rd: virtualenv_install, reticulate,
    virtualenv_create
  selectSCTKConda.Rd: reticulate
  selectSCTKVirtualEnvironment.Rd: reticulate
  setRowNames.Rd: SingleCellExperiment-class
  setSCTKDisplayRow.Rd: SingleCellExperiment-class
  singleCellTK.Rd: SingleCellExperiment-class
  subsetSCECols.Rd: SingleCellExperiment-class
  subsetSCERows.Rd: SingleCellExperiment-class, altExp
  summarizeSCE.Rd: SingleCellExperiment-class
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in 'vignettes' ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                          user system elapsed
plotDoubletFinderResults 38.52   0.11   39.02
plotScDblFinderResults   37.60   0.80   38.57
runDoubletFinder         35.75   0.18   36.00
runScDblFinder           24.16   0.54   24.67
importExampleData        16.38   2.81   19.61
plotBatchCorrCompare     13.33   0.17   13.50
runEmptyDrops            10.82   0.02   10.83
plotEmptyDropsResults    10.64   0.01   10.68
plotEmptyDropsScatter    10.50   0.02   10.52
plotScdsHybridResults     9.81   0.11    9.57
plotBcdsResults           8.90   0.25    8.66
plotDecontXResults        8.72   0.06    8.81
runUMAP                   7.63   0.03    7.69
plotUMAP                  7.44   0.05    7.50
runDecontX                7.30   0.05    7.35
plotCxdsResults           7.03   0.05    7.13
runSeuratSCTransform      6.06   0.17    6.33
detectCellOutlier         5.92   0.17    6.22
convertSCEToSeurat        5.18   0.40    5.56
getEnrichRResult          0.26   0.13    6.40
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
  Running 'spelling.R'
  Running 'testthat.R'
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  'E:/biocbuild/bbs-3.21-bioc/meat/singleCellTK.Rcheck/00check.log'
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library 'E:/biocbuild/bbs-3.21-bioc/R/library'
* installing *source* package 'singleCellTK' ...
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R Under development (unstable) (2024-10-26 r87273 ucrt) -- "Unsuffered Consequences"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
NULL
> 
> proc.time()
   user  system elapsed 
   0.12    0.07    0.25 

singleCellTK.Rcheck/tests/testthat.Rout


R Under development (unstable) (2024-10-26 r87273 ucrt) -- "Unsuffered Consequences"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: generics

Attaching package: 'generics'

The following objects are masked from 'package:base':

    as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
    setequal, union


Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
    unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges

Attaching package: 'IRanges'

The following object is masked from 'package:grDevices':

    windows

Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 20 | SKIP 0 | PASS 224 ]

[ FAIL 0 | WARN 20 | SKIP 0 | PASS 224 ]
> 
> proc.time()
   user  system elapsed 
 303.59   10.17  319.03 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.050.000.05
SEG0.020.000.01
calcEffectSizes0.220.030.25
combineSCE1.020.021.03
computeZScore1.150.001.19
convertSCEToSeurat5.180.405.56
convertSeuratToSCE0.430.030.47
dedupRowNames0.050.020.06
detectCellOutlier5.920.176.22
diffAbundanceFET0.060.030.09
discreteColorPalette000
distinctColors000
downSampleCells0.550.140.69
downSampleDepth0.390.100.48
expData-ANY-character-method0.120.010.15
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.160.020.17
expData-set0.170.010.18
expData0.120.020.14
expDataNames-ANY-method0.170.010.19
expDataNames0.160.020.17
expDeleteDataTag0.020.030.04
expSetDataTag0.030.020.05
expTaggedData0.030.010.04
exportSCE0.030.020.05
exportSCEtoAnnData0.080.010.09
exportSCEtoFlatFile0.10.00.1
featureIndex0.060.000.06
generateSimulatedData0.060.040.09
getBiomarker0.060.030.10
getDEGTopTable0.770.040.84
getDiffAbundanceResults0.050.030.08
getEnrichRResult0.260.136.40
getFindMarkerTopTable2.000.162.16
getMSigDBTable0.010.000.01
getPathwayResultNames0.050.000.05
getSampleSummaryStatsTable0.200.010.22
getSoupX000
getTSCANResults1.100.061.15
getTopHVG1.000.041.04
importAnnData000
importBUStools0.150.000.20
importCellRanger1.050.422.15
importCellRangerV2Sample0.200.000.21
importCellRangerV3Sample0.380.030.45
importDropEst0.170.030.22
importExampleData16.38 2.8119.61
importGeneSetsFromCollection0.810.140.96
importGeneSetsFromGMT0.080.020.11
importGeneSetsFromList0.110.030.14
importGeneSetsFromMSigDB4.080.204.31
importMitoGeneSet0.060.020.08
importOptimus000
importSEQC0.200.010.23
importSTARsolo0.160.020.22
iterateSimulations0.170.080.25
listSampleSummaryStatsTables0.310.030.34
mergeSCEColData0.470.050.56
mouseBrainSubsetSCE0.050.030.08
msigdb_table0.010.000.02
plotBarcodeRankDropsResults0.780.010.79
plotBarcodeRankScatter0.780.050.83
plotBatchCorrCompare13.33 0.1713.50
plotBatchVariance0.320.000.31
plotBcdsResults8.900.258.66
plotBubble0.830.060.89
plotClusterAbundance0.910.050.95
plotCxdsResults7.030.057.13
plotDEGHeatmap2.450.482.53
plotDEGRegression3.720.253.92
plotDEGViolin4.410.144.55
plotDEGVolcano1.010.021.06
plotDecontXResults8.720.068.81
plotDimRed0.230.050.30
plotDoubletFinderResults38.52 0.1139.02
plotEmptyDropsResults10.64 0.0110.68
plotEmptyDropsScatter10.50 0.0210.52
plotFindMarkerHeatmap4.410.034.44
plotMASTThresholdGenes1.750.122.14
plotPCA0.410.040.44
plotPathway0.640.010.72
plotRunPerCellQCResults2.370.062.45
plotSCEBarAssayData0.250.030.28
plotSCEBarColData0.220.030.25
plotSCEBatchFeatureMean0.30.00.3
plotSCEDensity0.310.030.61
plotSCEDensityAssayData0.270.020.28
plotSCEDensityColData0.290.050.34
plotSCEDimReduceColData0.600.070.67
plotSCEDimReduceFeatures0.260.040.30
plotSCEHeatmap0.500.040.55
plotSCEScatter0.300.050.40
plotSCEViolin0.250.050.30
plotSCEViolinAssayData0.310.060.38
plotSCEViolinColData0.250.030.28
plotScDblFinderResults37.60 0.8038.57
plotScanpyDotPlot0.030.010.05
plotScanpyEmbedding0.010.020.03
plotScanpyHVG0.020.030.05
plotScanpyHeatmap0.020.030.05
plotScanpyMarkerGenes0.030.030.06
plotScanpyMarkerGenesDotPlot0.030.020.05
plotScanpyMarkerGenesHeatmap0.010.010.03
plotScanpyMarkerGenesMatrixPlot0.020.030.04
plotScanpyMarkerGenesViolin0.010.040.05
plotScanpyMatrixPlot0.050.010.06
plotScanpyPCA0.030.020.05
plotScanpyPCAGeneRanking0.030.010.03
plotScanpyPCAVariance0.020.020.03
plotScanpyViolin0.000.040.05
plotScdsHybridResults9.810.119.57
plotScrubletResults0.010.020.03
plotSeuratElbow0.030.020.05
plotSeuratHVG0.040.000.03
plotSeuratJackStraw0.010.010.03
plotSeuratReduction0.050.000.05
plotSoupXResults000
plotTSCANClusterDEG3.970.274.28
plotTSCANClusterPseudo1.480.111.80
plotTSCANDimReduceFeatures1.240.061.30
plotTSCANPseudotimeGenes1.540.001.54
plotTSCANPseudotimeHeatmap1.670.061.74
plotTSCANResults1.270.091.36
plotTSNE0.500.050.54
plotTopHVG0.830.080.91
plotUMAP7.440.057.50
readSingleCellMatrix0.000.000.02
reportCellQC0.090.010.10
reportDropletQC0.020.020.04
reportQCTool0.070.030.11
retrieveSCEIndex0.030.010.04
runBBKNN000
runBarcodeRankDrops0.240.000.24
runBcds2.200.131.78
runCellQC0.080.020.09
runClusterSummaryMetrics0.390.010.41
runComBatSeq0.740.050.87
runCxds0.590.010.61
runCxdsBcdsHybrid2.360.161.91
runDEAnalysis0.450.000.48
runDecontX7.300.057.35
runDimReduce0.390.070.47
runDoubletFinder35.75 0.1836.00
runDropletQC0.010.040.06
runEmptyDrops10.82 0.0210.83
runEnrichR0.390.081.17
runFastMNN2.250.043.48
runFeatureSelection0.350.040.37
runFindMarker1.760.101.88
runGSVA1.080.081.15
runHarmony0.030.000.04
runKMeans0.210.030.23
runLimmaBC0.070.020.09
runMNNCorrect0.430.000.43
runModelGeneVar0.430.030.46
runNormalization2.570.062.64
runPerCellQC0.500.030.54
runSCANORAMA000
runSCMerge0.010.000.01
runScDblFinder24.16 0.5424.67
runScanpyFindClusters0.030.000.03
runScanpyFindHVG0.050.000.05
runScanpyFindMarkers0.030.000.03
runScanpyNormalizeData0.110.030.14
runScanpyPCA0.010.010.03
runScanpyScaleData0.030.020.05
runScanpyTSNE0.020.010.03
runScanpyUMAP0.010.040.05
runScranSNN0.390.030.42
runScrublet0.020.030.04
runSeuratFindClusters0.030.010.05
runSeuratFindHVG0.720.010.73
runSeuratHeatmap0.030.020.05
runSeuratICA0.040.000.04
runSeuratJackStraw0.020.030.05
runSeuratNormalizeData0.030.020.05
runSeuratPCA0.020.010.03
runSeuratSCTransform6.060.176.33
runSeuratScaleData0.020.020.03
runSeuratUMAP0.020.020.04
runSingleR0.060.000.06
runSoupX000
runTSCAN0.940.030.97
runTSCANClusterDEAnalysis0.890.040.93
runTSCANDEG0.720.040.75
runTSNE0.850.010.88
runUMAP7.630.037.69
runVAM0.450.020.47
runZINBWaVE0.020.000.01
sampleSummaryStats0.140.030.17
scaterCPM0.110.010.13
scaterPCA0.420.020.44
scaterlogNormCounts0.200.020.21
sce0.020.030.05
sctkListGeneSetCollections0.080.030.11
sctkPythonInstallConda000
sctkPythonInstallVirtualEnv000
selectSCTKConda000
selectSCTKVirtualEnvironment000
setRowNames0.080.010.09
setSCTKDisplayRow0.320.000.33
singleCellTK000
subDiffEx0.390.130.52
subsetSCECols0.130.000.12
subsetSCERows0.370.050.43
summarizeSCE0.070.040.10
trimCounts0.250.000.25