Back to Multiple platform build/check report for BioC 3.21:   simplified   long
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2025-01-04 11:40 -0500 (Sat, 04 Jan 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.1 LTS)x86_64R Under development (unstable) (2024-10-21 r87258) -- "Unsuffered Consequences" 4756
palomino7Windows Server 2022 Datacenterx64R Under development (unstable) (2024-10-26 r87273 ucrt) -- "Unsuffered Consequences" 4475
lconwaymacOS 12.7.1 Montereyx86_64R Under development (unstable) (2024-11-20 r87352) -- "Unsuffered Consequences" 4435
kjohnson3macOS 13.7.1 Venturaarm64R Under development (unstable) (2024-11-20 r87352) -- "Unsuffered Consequences" 4390
kunpeng2Linux (openEuler 22.03 LTS-SP1)aarch64R Under development (unstable) (2024-11-24 r87369) -- "Unsuffered Consequences" 4383
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 974/2275HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.13.0  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2025-01-03 13:40 -0500 (Fri, 03 Jan 2025)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: devel
git_last_commit: 65e718f
git_last_commit_date: 2024-10-29 11:04:11 -0500 (Tue, 29 Oct 2024)
nebbiolo1Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino7Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.1 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published
kunpeng2Linux (openEuler 22.03 LTS-SP1) / aarch64  OK    OK    OK  


CHECK results for HPiP on nebbiolo1

To the developers/maintainers of the HPiP package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: HPiP
Version: 1.13.0
Command: /home/biocbuild/bbs-3.21-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.21-bioc/R/site-library --timings HPiP_1.13.0.tar.gz
StartedAt: 2025-01-03 22:57:30 -0500 (Fri, 03 Jan 2025)
EndedAt: 2025-01-03 23:11:26 -0500 (Fri, 03 Jan 2025)
EllapsedTime: 836.2 seconds
RetCode: 0
Status:   OK  
CheckDir: HPiP.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.21-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.21-bioc/R/site-library --timings HPiP_1.13.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck’
* using R Under development (unstable) (2024-10-21 r87258)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.2.0-23ubuntu4) 13.2.0
    GNU Fortran (Ubuntu 13.2.0-23ubuntu4) 13.2.0
* running under: Ubuntu 24.04.1 LTS
* using session charset: UTF-8
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.13.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
    29 | then the Kronecker product is the code{(pm × qn)} block matrix
       |                                       ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                user system elapsed
var_imp       35.020  0.471  35.551
FSmethod      34.364  0.452  34.822
corr_plot     33.798  0.539  34.351
pred_ensembel 12.853  0.148  11.711
enrichfindP    0.496  0.033   8.874
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘runTests.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log’
for details.


Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.21-bioc/R/bin/R CMD INSTALL HPiP
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.21-bioc/R/site-library’
* installing *source* package ‘HPiP’ ...
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)

Tests output

HPiP.Rcheck/tests/runTests.Rout


R Under development (unstable) (2024-10-21 r87258) -- "Unsuffered Consequences"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 98.593593 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 106.859065 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.334492 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 116.963725 
iter  10 value 94.008696
iter  10 value 94.008696
iter  10 value 94.008696
final  value 94.008696 
converged
Fitting Repeat 5 

# weights:  103
initial  value 102.072863 
iter  10 value 92.844341
final  value 88.209791 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.042511 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 98.716915 
final  value 94.008696 
converged
Fitting Repeat 3 

# weights:  305
initial  value 94.328913 
iter  10 value 87.066579
iter  20 value 86.580922
final  value 86.580908 
converged
Fitting Repeat 4 

# weights:  305
initial  value 98.924818 
final  value 94.004835 
converged
Fitting Repeat 5 

# weights:  305
initial  value 112.894124 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 111.028567 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  507
initial  value 95.113001 
iter  10 value 89.582812
iter  20 value 86.454961
iter  30 value 86.444283
iter  30 value 86.444283
final  value 86.444283 
converged
Fitting Repeat 3 

# weights:  507
initial  value 100.220042 
final  value 94.008696 
converged
Fitting Repeat 4 

# weights:  507
initial  value 102.221223 
iter  10 value 94.009499
iter  20 value 88.170734
iter  30 value 86.537410
iter  40 value 86.164847
iter  50 value 86.163855
iter  50 value 86.163855
iter  50 value 86.163855
final  value 86.163855 
converged
Fitting Repeat 5 

# weights:  507
initial  value 111.653628 
iter  10 value 94.008696
iter  10 value 94.008696
iter  10 value 94.008696
final  value 94.008696 
converged
Fitting Repeat 1 

# weights:  103
initial  value 111.130313 
iter  10 value 93.999956
iter  20 value 91.904064
iter  30 value 85.343663
iter  40 value 84.908539
iter  50 value 84.767531
iter  60 value 84.482417
iter  70 value 84.189279
iter  80 value 83.761435
iter  90 value 83.558502
final  value 83.558497 
converged
Fitting Repeat 2 

# weights:  103
initial  value 102.671528 
iter  10 value 93.108946
iter  20 value 89.885016
iter  30 value 88.128152
iter  40 value 86.730149
iter  50 value 86.141263
iter  60 value 85.983151
iter  70 value 85.961447
final  value 85.960463 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.276588 
iter  10 value 94.038173
iter  20 value 91.884264
iter  30 value 91.192049
iter  40 value 87.474835
iter  50 value 86.830205
iter  60 value 86.644548
iter  70 value 86.577164
final  value 86.577056 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.575295 
iter  10 value 94.062161
iter  20 value 93.978188
iter  30 value 93.891336
iter  40 value 93.885162
iter  50 value 93.459690
iter  60 value 92.393479
iter  70 value 92.080251
iter  80 value 91.954434
iter  90 value 91.848064
iter 100 value 88.211729
final  value 88.211729 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 107.298020 
iter  10 value 94.053381
iter  20 value 89.258531
iter  30 value 88.633528
iter  40 value 87.777194
iter  50 value 86.310466
iter  60 value 86.061384
iter  70 value 85.989691
iter  80 value 85.972115
iter  80 value 85.972114
iter  80 value 85.972114
final  value 85.972114 
converged
Fitting Repeat 1 

# weights:  305
initial  value 106.263123 
iter  10 value 94.070919
iter  20 value 93.913539
iter  30 value 88.755447
iter  40 value 86.948406
iter  50 value 86.195516
iter  60 value 84.658047
iter  70 value 84.514705
iter  80 value 83.544299
iter  90 value 82.854862
iter 100 value 82.622062
final  value 82.622062 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 114.258669 
iter  10 value 94.086859
iter  20 value 89.044328
iter  30 value 84.602877
iter  40 value 83.249294
iter  50 value 82.827026
iter  60 value 82.576114
iter  70 value 82.230931
iter  80 value 82.202493
iter  90 value 82.161441
iter 100 value 82.112248
final  value 82.112248 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 116.158996 
iter  10 value 94.057455
iter  20 value 93.328073
iter  30 value 92.218276
iter  40 value 91.234282
iter  50 value 89.037235
iter  60 value 84.123981
iter  70 value 83.041802
iter  80 value 82.699077
iter  90 value 82.116226
iter 100 value 82.072777
final  value 82.072777 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 105.116019 
iter  10 value 93.770125
iter  20 value 90.552383
iter  30 value 88.471998
iter  40 value 86.766262
iter  50 value 86.381908
iter  60 value 86.359837
iter  70 value 86.280683
iter  80 value 85.585273
iter  90 value 85.462172
iter 100 value 85.184519
final  value 85.184519 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 106.472758 
iter  10 value 94.055504
iter  20 value 93.441659
iter  30 value 91.082139
iter  40 value 87.087412
iter  50 value 86.728724
iter  60 value 86.563488
iter  70 value 85.886627
iter  80 value 84.155851
iter  90 value 83.403761
iter 100 value 82.792425
final  value 82.792425 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 102.141645 
iter  10 value 94.305954
iter  20 value 91.883139
iter  30 value 88.396026
iter  40 value 85.427960
iter  50 value 83.959211
iter  60 value 82.861783
iter  70 value 82.305404
iter  80 value 82.212883
iter  90 value 82.118752
iter 100 value 82.072979
final  value 82.072979 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 121.378489 
iter  10 value 95.291167
iter  20 value 93.364515
iter  30 value 91.427607
iter  40 value 86.025086
iter  50 value 85.590871
iter  60 value 85.182654
iter  70 value 84.920134
iter  80 value 84.451112
iter  90 value 84.202183
iter 100 value 84.121524
final  value 84.121524 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 119.962579 
iter  10 value 94.003620
iter  20 value 88.576548
iter  30 value 87.126780
iter  40 value 84.629711
iter  50 value 83.628646
iter  60 value 83.426741
iter  70 value 83.037967
iter  80 value 82.521526
iter  90 value 82.302446
iter 100 value 82.229600
final  value 82.229600 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 111.115713 
iter  10 value 94.152558
iter  20 value 93.700327
iter  30 value 89.395601
iter  40 value 89.139921
iter  50 value 88.051732
iter  60 value 87.051096
iter  70 value 85.374132
iter  80 value 84.783076
iter  90 value 84.127913
iter 100 value 83.267171
final  value 83.267171 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 113.607224 
iter  10 value 94.072339
iter  20 value 90.548262
iter  30 value 85.043789
iter  40 value 83.897878
iter  50 value 83.115499
iter  60 value 82.885052
iter  70 value 82.689666
iter  80 value 82.614698
iter  90 value 82.577194
iter 100 value 82.533197
final  value 82.533197 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 108.666803 
final  value 94.054485 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.812565 
final  value 94.054468 
converged
Fitting Repeat 3 

# weights:  103
initial  value 100.232904 
iter  10 value 94.054636
iter  20 value 94.052915
iter  30 value 93.944613
final  value 93.810184 
converged
Fitting Repeat 4 

# weights:  103
initial  value 95.493481 
iter  10 value 89.693080
iter  20 value 88.928080
iter  30 value 88.580941
iter  40 value 88.439516
iter  50 value 87.731210
iter  60 value 87.549942
iter  70 value 87.536011
final  value 87.535841 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.176803 
final  value 94.054669 
converged
Fitting Repeat 1 

# weights:  305
initial  value 106.564461 
iter  10 value 92.838922
iter  20 value 92.825441
iter  30 value 92.796310
final  value 92.792321 
converged
Fitting Repeat 2 

# weights:  305
initial  value 108.559250 
iter  10 value 94.057792
iter  20 value 94.011142
iter  30 value 93.871015
iter  40 value 93.598324
iter  50 value 93.594682
iter  60 value 91.453241
iter  70 value 85.606093
iter  80 value 84.342396
iter  90 value 84.120567
iter 100 value 83.472754
final  value 83.472754 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 109.157927 
iter  10 value 94.054885
iter  20 value 94.050562
final  value 94.050282 
converged
Fitting Repeat 4 

# weights:  305
initial  value 96.156131 
iter  10 value 93.899716
iter  20 value 93.897833
iter  30 value 88.468012
iter  40 value 88.467701
iter  50 value 88.465857
iter  60 value 87.654253
iter  70 value 84.753047
iter  80 value 84.279454
iter  90 value 84.260165
iter 100 value 84.257554
final  value 84.257554 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 105.759524 
iter  10 value 94.057628
iter  20 value 90.325639
iter  30 value 86.602358
iter  40 value 86.143253
final  value 86.142572 
converged
Fitting Repeat 1 

# weights:  507
initial  value 101.248643 
iter  10 value 94.017187
iter  20 value 93.822731
iter  30 value 93.572186
iter  40 value 88.089459
iter  50 value 87.892389
iter  60 value 85.793152
iter  70 value 84.983069
iter  80 value 84.980584
final  value 84.980188 
converged
Fitting Repeat 2 

# weights:  507
initial  value 106.669152 
iter  10 value 94.060874
iter  20 value 94.035075
iter  30 value 93.810116
final  value 93.810114 
converged
Fitting Repeat 3 

# weights:  507
initial  value 129.130905 
iter  10 value 94.058378
iter  20 value 94.046026
iter  30 value 94.044829
iter  40 value 94.039770
iter  50 value 93.751820
iter  60 value 88.787770
iter  70 value 87.315848
iter  80 value 86.535877
iter  90 value 86.162470
iter 100 value 86.148469
final  value 86.148469 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 99.420883 
iter  10 value 94.056531
iter  20 value 88.274524
iter  30 value 87.797325
iter  40 value 87.783224
iter  50 value 86.000476
iter  60 value 85.156923
final  value 85.154826 
converged
Fitting Repeat 5 

# weights:  507
initial  value 106.208210 
iter  10 value 94.064384
iter  20 value 94.059923
iter  30 value 94.055167
iter  40 value 87.819577
iter  50 value 87.787725
iter  60 value 87.786189
iter  70 value 86.506499
iter  80 value 86.362350
iter  90 value 86.170368
iter 100 value 86.152192
final  value 86.152192 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 102.676972 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.113216 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 101.788835 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.554243 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 101.299965 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 104.692478 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 104.151097 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 102.194513 
final  value 94.480519 
converged
Fitting Repeat 4 

# weights:  305
initial  value 121.336970 
final  value 93.300000 
converged
Fitting Repeat 5 

# weights:  305
initial  value 105.336181 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 120.527988 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 104.577199 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  507
initial  value 112.410237 
final  value 94.466823 
converged
Fitting Repeat 4 

# weights:  507
initial  value 116.233936 
final  value 94.466823 
converged
Fitting Repeat 5 

# weights:  507
initial  value 105.182371 
final  value 94.466823 
converged
Fitting Repeat 1 

# weights:  103
initial  value 102.379386 
iter  10 value 94.432518
iter  20 value 86.229330
iter  30 value 83.969035
iter  40 value 83.526187
iter  50 value 83.213478
iter  60 value 82.626881
iter  70 value 82.309663
iter  80 value 82.274676
final  value 82.248535 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.295558 
iter  10 value 94.481331
iter  20 value 94.277087
iter  30 value 89.189015
iter  40 value 88.396368
iter  50 value 84.312887
iter  60 value 82.851240
iter  70 value 82.337467
iter  80 value 82.128958
iter  90 value 82.019612
iter 100 value 81.817704
final  value 81.817704 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 96.691770 
iter  10 value 94.444781
iter  20 value 90.521555
iter  30 value 86.193775
iter  40 value 85.529415
iter  50 value 82.639328
iter  60 value 81.876836
final  value 81.833355 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.917464 
iter  10 value 94.479579
iter  20 value 94.421484
iter  30 value 92.008869
iter  40 value 86.246449
iter  50 value 85.944039
iter  60 value 85.867482
iter  70 value 85.137049
iter  80 value 84.915402
iter  90 value 83.673744
iter 100 value 82.433838
final  value 82.433838 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 99.650293 
iter  10 value 94.466375
iter  20 value 93.305673
iter  30 value 92.446660
iter  40 value 91.887345
iter  50 value 91.739755
final  value 91.738960 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.057062 
iter  10 value 94.452248
iter  20 value 92.546015
iter  30 value 91.841931
iter  40 value 89.263753
iter  50 value 86.732613
iter  60 value 83.912933
iter  70 value 83.626459
iter  80 value 83.416863
iter  90 value 82.994726
iter 100 value 82.735836
final  value 82.735836 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 106.167219 
iter  10 value 94.113963
iter  20 value 86.374057
iter  30 value 85.408771
iter  40 value 84.098349
iter  50 value 83.715082
iter  60 value 83.023356
iter  70 value 82.328797
iter  80 value 80.068437
iter  90 value 79.631728
iter 100 value 78.950100
final  value 78.950100 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 100.190409 
iter  10 value 93.717819
iter  20 value 87.639251
iter  30 value 83.824893
iter  40 value 83.594844
iter  50 value 82.050900
iter  60 value 80.531120
iter  70 value 80.061914
iter  80 value 79.724275
iter  90 value 79.168164
iter 100 value 79.074006
final  value 79.074006 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 129.584560 
iter  10 value 95.134083
iter  20 value 93.975182
iter  30 value 85.091888
iter  40 value 84.923199
iter  50 value 83.357152
iter  60 value 82.417822
iter  70 value 81.836154
iter  80 value 81.685262
iter  90 value 81.029474
iter 100 value 80.842805
final  value 80.842805 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 99.868301 
iter  10 value 94.493668
iter  20 value 87.506199
iter  30 value 84.622173
iter  40 value 84.251823
iter  50 value 84.076579
iter  60 value 83.720929
iter  70 value 82.786234
iter  80 value 81.933467
iter  90 value 80.311663
iter 100 value 79.541435
final  value 79.541435 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 104.268927 
iter  10 value 96.746618
iter  20 value 88.976665
iter  30 value 86.926238
iter  40 value 83.381903
iter  50 value 81.837135
iter  60 value 80.820869
iter  70 value 79.482617
iter  80 value 79.050235
iter  90 value 78.747693
iter 100 value 78.534542
final  value 78.534542 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 111.107073 
iter  10 value 94.656950
iter  20 value 94.215527
iter  30 value 86.484494
iter  40 value 85.412989
iter  50 value 84.659971
iter  60 value 82.638700
iter  70 value 82.384387
iter  80 value 81.071676
iter  90 value 80.722847
iter 100 value 80.045813
final  value 80.045813 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 107.696333 
iter  10 value 94.491764
iter  20 value 92.477311
iter  30 value 85.189648
iter  40 value 83.816909
iter  50 value 80.451655
iter  60 value 79.415344
iter  70 value 78.684084
iter  80 value 78.471979
iter  90 value 78.440879
iter 100 value 78.430720
final  value 78.430720 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 134.749032 
iter  10 value 89.642139
iter  20 value 85.919295
iter  30 value 82.491900
iter  40 value 82.010558
iter  50 value 81.060182
iter  60 value 79.533387
iter  70 value 79.198457
iter  80 value 78.989339
iter  90 value 78.900008
iter 100 value 78.875348
final  value 78.875348 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 112.210341 
iter  10 value 94.542234
iter  20 value 92.178746
iter  30 value 88.295547
iter  40 value 86.118840
iter  50 value 83.262778
iter  60 value 80.381695
iter  70 value 79.878889
iter  80 value 79.208854
iter  90 value 79.066522
iter 100 value 78.860795
final  value 78.860795 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 97.287623 
final  value 94.486132 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.091342 
final  value 94.485506 
converged
Fitting Repeat 3 

# weights:  103
initial  value 104.166112 
iter  10 value 94.485685
iter  20 value 94.478940
iter  30 value 87.105812
iter  40 value 86.963178
iter  50 value 86.961016
iter  60 value 83.788775
iter  70 value 83.787173
iter  80 value 83.786754
iter  80 value 83.786753
iter  80 value 83.786753
final  value 83.786753 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.513415 
iter  10 value 94.485683
final  value 94.484222 
converged
Fitting Repeat 5 

# weights:  103
initial  value 101.973598 
final  value 94.485973 
converged
Fitting Repeat 1 

# weights:  305
initial  value 109.210619 
iter  10 value 94.489194
iter  20 value 94.386020
iter  30 value 93.296799
iter  40 value 93.294360
final  value 93.294118 
converged
Fitting Repeat 2 

# weights:  305
initial  value 95.553350 
final  value 94.485119 
converged
Fitting Repeat 3 

# weights:  305
initial  value 110.778201 
iter  10 value 94.489108
iter  20 value 94.484352
final  value 94.484213 
converged
Fitting Repeat 4 

# weights:  305
initial  value 100.003130 
iter  10 value 94.490477
iter  20 value 94.402926
iter  30 value 89.601918
iter  40 value 89.598057
iter  50 value 88.252013
iter  60 value 88.248989
iter  70 value 88.247288
iter  80 value 88.246934
iter  90 value 88.241889
iter 100 value 84.006672
final  value 84.006672 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 103.477214 
final  value 94.488883 
converged
Fitting Repeat 1 

# weights:  507
initial  value 107.321484 
iter  10 value 94.492699
final  value 94.474794 
converged
Fitting Repeat 2 

# weights:  507
initial  value 102.378880 
iter  10 value 94.475036
iter  20 value 94.469820
iter  30 value 94.469216
iter  40 value 94.464898
iter  50 value 94.424351
iter  60 value 94.414016
iter  70 value 92.729998
iter  80 value 89.390245
iter  90 value 82.901995
iter 100 value 82.824525
final  value 82.824525 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 96.379239 
iter  10 value 93.308700
iter  20 value 91.672028
iter  30 value 84.597941
iter  40 value 84.594299
iter  50 value 84.593831
iter  60 value 84.593308
iter  70 value 84.592964
iter  80 value 84.057359
iter  90 value 83.821230
iter 100 value 83.820984
final  value 83.820984 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 95.273730 
iter  10 value 94.475125
iter  20 value 94.371647
iter  30 value 92.314723
iter  40 value 91.600013
iter  50 value 91.582947
final  value 91.582944 
converged
Fitting Repeat 5 

# weights:  507
initial  value 106.902447 
iter  10 value 93.774162
iter  20 value 93.709952
iter  30 value 93.499731
iter  40 value 93.475281
iter  50 value 93.470094
iter  60 value 93.468910
iter  70 value 83.207788
iter  80 value 80.684840
iter  90 value 79.031524
iter 100 value 78.684830
final  value 78.684830 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.086675 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 106.237760 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 103.239933 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.015424 
final  value 94.305883 
converged
Fitting Repeat 5 

# weights:  103
initial  value 104.715170 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 110.522602 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.848057 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 106.438329 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 98.775333 
iter  10 value 92.649453
final  value 92.635860 
converged
Fitting Repeat 5 

# weights:  305
initial  value 96.022051 
iter  10 value 85.342286
iter  20 value 81.810405
final  value 81.410356 
converged
Fitting Repeat 1 

# weights:  507
initial  value 101.307306 
iter  10 value 93.847159
final  value 93.755471 
converged
Fitting Repeat 2 

# weights:  507
initial  value 114.320365 
final  value 94.026542 
converged
Fitting Repeat 3 

# weights:  507
initial  value 110.125123 
final  value 94.305882 
converged
Fitting Repeat 4 

# weights:  507
initial  value 97.485912 
iter  10 value 92.704557
iter  20 value 92.636202
final  value 92.635857 
converged
Fitting Repeat 5 

# weights:  507
initial  value 96.150218 
iter  10 value 93.378333
final  value 93.378284 
converged
Fitting Repeat 1 

# weights:  103
initial  value 98.762293 
iter  10 value 94.485856
iter  20 value 93.910323
iter  30 value 91.718605
iter  40 value 84.769763
iter  50 value 82.664366
iter  60 value 82.285527
iter  70 value 82.076646
iter  80 value 81.189132
iter  90 value 80.582132
iter 100 value 80.007366
final  value 80.007366 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 101.444542 
iter  10 value 94.415685
iter  20 value 88.607321
iter  30 value 86.084627
iter  40 value 82.331647
iter  50 value 80.448838
iter  60 value 80.195339
iter  70 value 79.943615
iter  80 value 79.792922
final  value 79.732972 
converged
Fitting Repeat 3 

# weights:  103
initial  value 104.481166 
iter  10 value 94.486465
iter  20 value 93.497847
iter  30 value 92.993033
iter  40 value 91.783789
iter  50 value 83.217064
iter  60 value 82.172532
iter  70 value 81.000449
iter  80 value 80.598498
iter  90 value 79.873285
iter 100 value 79.816746
final  value 79.816746 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 102.304066 
iter  10 value 94.049260
iter  20 value 87.876202
iter  30 value 86.530694
iter  40 value 86.279665
iter  50 value 83.248191
iter  60 value 82.700919
iter  70 value 82.499700
iter  80 value 82.496428
iter  90 value 80.461585
iter 100 value 80.004173
final  value 80.004173 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 106.194894 
iter  10 value 94.489857
iter  20 value 94.065218
iter  30 value 92.997837
iter  40 value 92.917961
iter  50 value 92.544401
iter  60 value 88.313145
iter  70 value 83.907308
iter  80 value 83.221995
iter  90 value 82.647608
iter 100 value 82.246277
final  value 82.246277 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 103.543512 
iter  10 value 94.566598
iter  20 value 94.400231
iter  30 value 94.094153
iter  40 value 92.610799
iter  50 value 92.561392
iter  60 value 90.027154
iter  70 value 83.542957
iter  80 value 81.488922
iter  90 value 79.757556
iter 100 value 78.688698
final  value 78.688698 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 137.250948 
iter  10 value 94.263728
iter  20 value 85.873756
iter  30 value 82.788623
iter  40 value 82.587007
iter  50 value 81.855070
iter  60 value 79.277919
iter  70 value 78.921139
iter  80 value 78.712059
iter  90 value 78.580985
iter 100 value 78.570460
final  value 78.570460 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 107.972319 
iter  10 value 91.785093
iter  20 value 89.334447
iter  30 value 83.380130
iter  40 value 81.965205
iter  50 value 81.622080
iter  60 value 81.135053
iter  70 value 79.877770
iter  80 value 79.704173
iter  90 value 79.627110
iter 100 value 79.416517
final  value 79.416517 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 122.935759 
iter  10 value 94.250985
iter  20 value 90.024132
iter  30 value 89.257921
iter  40 value 84.846622
iter  50 value 82.134959
iter  60 value 81.956971
iter  70 value 81.432537
iter  80 value 80.057090
iter  90 value 79.595571
iter 100 value 79.208537
final  value 79.208537 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 115.767966 
iter  10 value 95.553154
iter  20 value 93.927659
iter  30 value 90.060748
iter  40 value 82.188946
iter  50 value 80.710400
iter  60 value 79.362877
iter  70 value 79.188322
iter  80 value 78.851194
iter  90 value 78.787349
iter 100 value 78.714038
final  value 78.714038 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 108.703188 
iter  10 value 94.401127
iter  20 value 92.260410
iter  30 value 89.190886
iter  40 value 86.366225
iter  50 value 83.575655
iter  60 value 82.117233
iter  70 value 80.443079
iter  80 value 79.550325
iter  90 value 78.566628
iter 100 value 78.436832
final  value 78.436832 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 111.313171 
iter  10 value 94.469304
iter  20 value 88.853424
iter  30 value 85.699133
iter  40 value 83.142336
iter  50 value 80.092485
iter  60 value 79.160354
iter  70 value 78.941926
iter  80 value 78.372929
iter  90 value 78.235420
iter 100 value 78.196653
final  value 78.196653 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 106.095732 
iter  10 value 88.235438
iter  20 value 84.859876
iter  30 value 82.075930
iter  40 value 80.381546
iter  50 value 78.960257
iter  60 value 78.634145
iter  70 value 78.563905
iter  80 value 78.442763
iter  90 value 78.394952
iter 100 value 78.249723
final  value 78.249723 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 115.031605 
iter  10 value 93.985914
iter  20 value 93.213293
iter  30 value 92.811227
iter  40 value 85.422147
iter  50 value 79.403811
iter  60 value 78.914519
iter  70 value 78.770874
iter  80 value 78.461861
iter  90 value 78.387119
iter 100 value 78.346590
final  value 78.346590 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 134.537019 
iter  10 value 94.440237
iter  20 value 93.908915
iter  30 value 88.765120
iter  40 value 87.808970
iter  50 value 87.111789
iter  60 value 80.645176
iter  70 value 78.826217
iter  80 value 78.528553
iter  90 value 78.391565
iter 100 value 78.164062
final  value 78.164062 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 105.660988 
final  value 94.485848 
converged
Fitting Repeat 2 

# weights:  103
initial  value 105.789267 
final  value 94.485799 
converged
Fitting Repeat 3 

# weights:  103
initial  value 106.535080 
final  value 94.485896 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.744574 
final  value 94.485866 
converged
Fitting Repeat 5 

# weights:  103
initial  value 104.564946 
final  value 94.486034 
converged
Fitting Repeat 1 

# weights:  305
initial  value 95.755969 
iter  10 value 92.571196
iter  20 value 92.216532
iter  30 value 92.190336
iter  40 value 92.187088
iter  50 value 91.754538
iter  60 value 91.723861
iter  70 value 89.355414
iter  80 value 85.780294
iter  90 value 80.691037
iter 100 value 78.325728
final  value 78.325728 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 96.267414 
iter  10 value 94.031577
iter  20 value 94.026509
iter  30 value 85.147750
iter  40 value 84.557024
iter  50 value 82.706300
iter  60 value 82.559909
iter  70 value 82.555148
iter  80 value 82.549437
iter  90 value 82.549271
final  value 82.549251 
converged
Fitting Repeat 3 

# weights:  305
initial  value 103.273500 
iter  10 value 91.511841
iter  20 value 91.510197
iter  30 value 91.509911
iter  40 value 91.508797
iter  40 value 91.508797
iter  40 value 91.508797
final  value 91.508797 
converged
Fitting Repeat 4 

# weights:  305
initial  value 99.375197 
iter  10 value 94.489246
iter  20 value 93.502036
iter  30 value 90.336890
iter  40 value 90.335051
iter  50 value 90.334715
iter  60 value 90.334544
iter  70 value 89.240677
iter  80 value 84.860136
iter  90 value 84.838833
final  value 84.838820 
converged
Fitting Repeat 5 

# weights:  305
initial  value 112.762968 
iter  10 value 94.489935
iter  20 value 92.298764
iter  30 value 83.922088
iter  40 value 81.271872
iter  50 value 80.493356
iter  60 value 79.091214
iter  70 value 78.528524
iter  80 value 77.609379
iter  90 value 77.591707
iter 100 value 77.590069
final  value 77.590069 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 99.309110 
iter  10 value 94.034881
iter  20 value 94.028483
final  value 94.026837 
converged
Fitting Repeat 2 

# weights:  507
initial  value 109.565388 
iter  10 value 94.492109
iter  20 value 94.484232
iter  20 value 94.484232
iter  20 value 94.484232
final  value 94.484232 
converged
Fitting Repeat 3 

# weights:  507
initial  value 100.874841 
iter  10 value 94.492454
iter  20 value 89.705849
iter  30 value 86.750484
iter  40 value 81.787684
final  value 81.787313 
converged
Fitting Repeat 4 

# weights:  507
initial  value 110.641954 
iter  10 value 94.034594
iter  20 value 94.027756
iter  30 value 87.771904
iter  40 value 82.887418
iter  50 value 82.493714
iter  60 value 82.083557
final  value 82.083480 
converged
Fitting Repeat 5 

# weights:  507
initial  value 96.130745 
iter  10 value 91.712966
iter  20 value 85.060688
iter  30 value 83.445272
iter  40 value 83.401741
iter  50 value 81.590982
iter  60 value 81.583513
iter  70 value 81.581630
final  value 81.581310 
converged
Fitting Repeat 1 

# weights:  103
initial  value 98.442595 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.153440 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.137342 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.139050 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.820130 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 95.018999 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 97.942681 
final  value 94.032967 
converged
Fitting Repeat 3 

# weights:  305
initial  value 96.347540 
final  value 94.032967 
converged
Fitting Repeat 4 

# weights:  305
initial  value 99.746097 
iter  10 value 94.032995
final  value 94.032967 
converged
Fitting Repeat 5 

# weights:  305
initial  value 104.225913 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 99.162009 
final  value 94.032967 
converged
Fitting Repeat 2 

# weights:  507
initial  value 105.119052 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  507
initial  value 95.756598 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  507
initial  value 130.573632 
iter  10 value 94.051912
iter  10 value 94.051912
iter  10 value 94.051912
final  value 94.051912 
converged
Fitting Repeat 5 

# weights:  507
initial  value 115.576406 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  103
initial  value 101.509597 
iter  10 value 94.056212
iter  20 value 94.020324
iter  30 value 87.010934
iter  40 value 85.083638
iter  50 value 84.586038
iter  60 value 84.509838
iter  70 value 84.416391
final  value 84.415938 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.125896 
iter  10 value 94.057054
iter  20 value 94.044316
iter  30 value 92.368587
iter  40 value 87.724320
iter  50 value 84.575453
iter  60 value 83.268571
iter  70 value 83.002584
iter  80 value 82.950098
iter  90 value 82.829440
iter 100 value 82.652480
final  value 82.652480 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 104.679938 
iter  10 value 94.061643
iter  20 value 92.659052
iter  30 value 89.505656
iter  40 value 88.207210
iter  50 value 87.449990
iter  60 value 87.171541
iter  70 value 86.836577
iter  80 value 86.756769
iter  90 value 86.064836
iter 100 value 85.856718
final  value 85.856718 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 102.519436 
iter  10 value 94.058312
iter  20 value 93.629569
iter  30 value 90.770532
iter  40 value 89.099364
iter  50 value 87.773090
iter  60 value 85.487939
iter  70 value 83.917207
iter  80 value 83.300868
iter  90 value 82.891498
iter 100 value 82.652752
final  value 82.652752 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 110.771005 
iter  10 value 94.054835
iter  20 value 89.578605
iter  30 value 86.709388
iter  40 value 86.423875
iter  50 value 85.110607
iter  60 value 84.609932
iter  70 value 84.572409
iter  80 value 84.545635
iter  90 value 84.444430
iter 100 value 84.416052
final  value 84.416052 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 105.304821 
iter  10 value 94.077951
iter  20 value 88.804316
iter  30 value 84.809674
iter  40 value 84.341313
iter  50 value 84.140686
iter  60 value 83.449731
iter  70 value 82.238481
iter  80 value 82.003910
iter  90 value 81.721954
iter 100 value 81.443009
final  value 81.443009 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 101.692365 
iter  10 value 91.043345
iter  20 value 87.927519
iter  30 value 86.521032
iter  40 value 83.650251
iter  50 value 82.447932
iter  60 value 82.196971
iter  70 value 81.796584
iter  80 value 81.466757
iter  90 value 81.253156
iter 100 value 81.195158
final  value 81.195158 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 104.027377 
iter  10 value 94.897479
iter  20 value 94.133326
iter  30 value 93.565602
iter  40 value 91.055095
iter  50 value 87.595950
iter  60 value 87.204038
iter  70 value 84.164180
iter  80 value 83.600098
iter  90 value 82.052046
iter 100 value 81.537522
final  value 81.537522 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 117.942694 
iter  10 value 94.109212
iter  20 value 93.861447
iter  30 value 88.177765
iter  40 value 87.433787
iter  50 value 87.353012
iter  60 value 87.332091
iter  70 value 86.879978
iter  80 value 84.119497
iter  90 value 84.051816
final  value 84.049224 
converged
Fitting Repeat 5 

# weights:  305
initial  value 108.873025 
iter  10 value 94.025817
iter  20 value 89.043023
iter  30 value 85.372327
iter  40 value 84.276697
iter  50 value 84.065039
iter  60 value 83.716694
iter  70 value 83.505397
iter  80 value 83.452356
iter  90 value 82.873793
iter 100 value 82.038518
final  value 82.038518 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 107.537995 
iter  10 value 94.844730
iter  20 value 93.736196
iter  30 value 86.915831
iter  40 value 84.709512
iter  50 value 84.077638
iter  60 value 82.134524
iter  70 value 81.128567
iter  80 value 80.821295
iter  90 value 80.707265
iter 100 value 80.663546
final  value 80.663546 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 107.746572 
iter  10 value 94.498337
iter  20 value 94.308951
iter  30 value 87.767488
iter  40 value 85.532154
iter  50 value 85.312140
iter  60 value 84.837930
iter  70 value 82.762175
iter  80 value 81.838670
iter  90 value 81.514981
iter 100 value 81.344245
final  value 81.344245 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 103.960199 
iter  10 value 90.382288
iter  20 value 85.067729
iter  30 value 84.265272
iter  40 value 84.098040
iter  50 value 83.985866
iter  60 value 83.478711
iter  70 value 82.889223
iter  80 value 82.716382
iter  90 value 82.666742
iter 100 value 82.641185
final  value 82.641185 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 105.355537 
iter  10 value 94.315884
iter  20 value 94.049639
iter  30 value 87.479626
iter  40 value 86.364297
iter  50 value 86.145817
iter  60 value 84.586501
iter  70 value 83.396661
iter  80 value 82.808037
iter  90 value 82.266279
iter 100 value 81.732695
final  value 81.732695 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 112.843214 
iter  10 value 94.090449
iter  20 value 93.684854
iter  30 value 92.166053
iter  40 value 90.312917
iter  50 value 85.810848
iter  60 value 83.633493
iter  70 value 82.089923
iter  80 value 81.403330
iter  90 value 81.298199
iter 100 value 81.165338
final  value 81.165338 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 99.870355 
final  value 94.054614 
converged
Fitting Repeat 2 

# weights:  103
initial  value 103.367512 
final  value 94.054505 
converged
Fitting Repeat 3 

# weights:  103
initial  value 99.251600 
iter  10 value 94.054771
iter  20 value 94.052838
iter  30 value 91.632070
iter  40 value 85.724793
iter  50 value 83.266058
iter  60 value 83.237046
final  value 83.235407 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.390226 
final  value 94.055082 
converged
Fitting Repeat 5 

# weights:  103
initial  value 106.656707 
final  value 94.054396 
converged
Fitting Repeat 1 

# weights:  305
initial  value 97.661236 
iter  10 value 94.053828
final  value 94.052917 
converged
Fitting Repeat 2 

# weights:  305
initial  value 101.055728 
iter  10 value 94.057671
iter  20 value 94.001916
iter  30 value 88.200095
iter  40 value 87.867110
iter  50 value 86.724652
iter  60 value 86.270332
final  value 86.270330 
converged
Fitting Repeat 3 

# weights:  305
initial  value 99.777114 
iter  10 value 87.239243
iter  20 value 84.656521
iter  30 value 84.575099
iter  40 value 84.411119
iter  50 value 84.390089
final  value 84.388559 
converged
Fitting Repeat 4 

# weights:  305
initial  value 114.863059 
iter  10 value 94.037904
iter  20 value 94.028744
iter  30 value 90.432977
iter  40 value 83.983058
iter  50 value 81.661128
iter  60 value 81.614090
iter  70 value 81.600289
iter  80 value 81.576597
iter  90 value 81.575094
iter 100 value 81.574618
final  value 81.574618 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 101.176687 
iter  10 value 94.016280
iter  20 value 91.178396
iter  30 value 85.095992
iter  40 value 82.866043
iter  50 value 82.856360
iter  60 value 82.766933
iter  70 value 81.426101
iter  80 value 80.295428
iter  90 value 80.057692
iter 100 value 80.056840
final  value 80.056840 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 100.974813 
iter  10 value 93.971758
iter  20 value 89.481526
iter  30 value 89.433176
final  value 89.432968 
converged
Fitting Repeat 2 

# weights:  507
initial  value 122.545565 
iter  10 value 93.958753
iter  20 value 93.942866
iter  30 value 89.530781
iter  40 value 89.339746
iter  50 value 89.275845
iter  60 value 82.913756
iter  70 value 82.633954
iter  80 value 82.625452
iter  90 value 82.606502
iter 100 value 82.605532
final  value 82.605532 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 113.735331 
iter  10 value 92.995723
iter  20 value 92.993455
iter  30 value 92.989083
iter  40 value 84.406973
iter  50 value 82.594649
iter  60 value 82.333345
iter  70 value 81.966504
iter  80 value 81.953821
iter  90 value 81.950743
iter 100 value 81.947282
final  value 81.947282 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 119.125912 
iter  10 value 93.996435
iter  20 value 93.970425
iter  30 value 86.822289
iter  40 value 86.120039
iter  50 value 86.118546
iter  50 value 86.118546
final  value 86.118546 
converged
Fitting Repeat 5 

# weights:  507
initial  value 98.866826 
iter  10 value 94.040792
iter  20 value 93.865404
iter  30 value 85.739894
iter  40 value 85.502221
iter  50 value 84.382682
iter  60 value 81.915586
iter  70 value 81.780492
iter  80 value 81.768213
iter  90 value 81.751699
iter 100 value 81.744390
final  value 81.744390 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 100.572628 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.777669 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.855815 
iter  10 value 94.062653
iter  20 value 94.030603
iter  20 value 94.030602
iter  20 value 94.030602
final  value 94.030602 
converged
Fitting Repeat 4 

# weights:  103
initial  value 95.414412 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.005679 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 110.776031 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 99.938367 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.332809 
iter  10 value 87.062455
iter  20 value 84.835877
iter  30 value 84.800041
final  value 84.800000 
converged
Fitting Repeat 4 

# weights:  305
initial  value 105.758454 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 96.767252 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 111.190728 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 125.685594 
iter  10 value 94.275688
final  value 94.275363 
converged
Fitting Repeat 3 

# weights:  507
initial  value 96.076687 
iter  10 value 92.626042
iter  20 value 92.609834
iter  30 value 85.982127
iter  40 value 85.854140
iter  50 value 85.831478
final  value 85.831440 
converged
Fitting Repeat 4 

# weights:  507
initial  value 103.050506 
iter  10 value 94.330998
iter  10 value 94.330997
iter  10 value 94.330997
final  value 94.330997 
converged
Fitting Repeat 5 

# weights:  507
initial  value 108.790095 
iter  10 value 94.275362
iter  10 value 94.275362
iter  10 value 94.275362
final  value 94.275362 
converged
Fitting Repeat 1 

# weights:  103
initial  value 97.913604 
iter  10 value 94.468654
iter  20 value 94.212514
iter  30 value 94.086155
iter  40 value 94.080839
iter  50 value 94.080159
iter  60 value 94.079485
iter  70 value 91.610296
iter  80 value 86.693037
iter  90 value 86.488640
iter 100 value 83.124400
final  value 83.124400 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 112.827503 
iter  10 value 94.514153
iter  20 value 94.442975
iter  30 value 94.081561
iter  40 value 94.079693
iter  50 value 91.044583
iter  60 value 88.245630
iter  70 value 86.849272
iter  80 value 84.582639
iter  90 value 83.985928
iter 100 value 83.978035
final  value 83.978035 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 99.576100 
iter  10 value 94.478688
iter  20 value 93.459328
iter  30 value 85.896869
iter  40 value 83.966707
iter  50 value 83.833809
iter  60 value 83.760695
iter  70 value 83.708618
iter  80 value 83.615177
iter  90 value 83.590111
final  value 83.589633 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.103109 
iter  10 value 94.092274
iter  20 value 92.387552
iter  30 value 90.895651
iter  40 value 90.712526
iter  50 value 90.692446
final  value 90.692404 
converged
Fitting Repeat 5 

# weights:  103
initial  value 105.957503 
iter  10 value 94.160614
iter  20 value 85.980220
iter  30 value 81.565306
iter  40 value 80.718527
iter  50 value 80.688722
iter  60 value 80.495183
iter  70 value 80.446571
iter  80 value 80.415517
final  value 80.413956 
converged
Fitting Repeat 1 

# weights:  305
initial  value 100.305562 
iter  10 value 94.079048
iter  20 value 86.030110
iter  30 value 83.765158
iter  40 value 82.712870
iter  50 value 81.959316
iter  60 value 81.341883
iter  70 value 80.979676
iter  80 value 80.784716
iter  90 value 80.605880
iter 100 value 80.413914
final  value 80.413914 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 112.489188 
iter  10 value 94.157818
iter  20 value 89.830751
iter  30 value 89.553724
iter  40 value 86.565875
iter  50 value 84.846991
iter  60 value 83.038914
iter  70 value 82.341011
iter  80 value 81.875004
iter  90 value 81.346275
iter 100 value 81.210849
final  value 81.210849 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 102.160977 
iter  10 value 94.540574
iter  20 value 94.362507
iter  30 value 91.784433
iter  40 value 88.091875
iter  50 value 85.013848
iter  60 value 81.649536
iter  70 value 80.357817
iter  80 value 80.140423
iter  90 value 79.696385
iter 100 value 78.891198
final  value 78.891198 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 108.595202 
iter  10 value 94.731585
iter  20 value 94.511238
iter  30 value 93.645094
iter  40 value 92.772705
iter  50 value 92.610258
iter  60 value 88.228206
iter  70 value 84.669732
iter  80 value 84.407059
iter  90 value 83.903558
iter 100 value 82.325629
final  value 82.325629 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 105.944427 
iter  10 value 94.523347
iter  20 value 92.562397
iter  30 value 85.082132
iter  40 value 84.610330
iter  50 value 83.567414
iter  60 value 82.558595
iter  70 value 82.316737
iter  80 value 81.490345
iter  90 value 81.157332
iter 100 value 80.636331
final  value 80.636331 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 119.773760 
iter  10 value 94.315551
iter  20 value 94.062935
iter  30 value 86.952494
iter  40 value 84.421376
iter  50 value 84.091592
iter  60 value 83.988218
iter  70 value 83.926191
iter  80 value 83.789875
iter  90 value 81.992199
iter 100 value 81.336725
final  value 81.336725 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 113.908245 
iter  10 value 93.878725
iter  20 value 88.516709
iter  30 value 83.318020
iter  40 value 82.144582
iter  50 value 81.012024
iter  60 value 80.332178
iter  70 value 79.996739
iter  80 value 79.689934
iter  90 value 79.384473
iter 100 value 79.367449
final  value 79.367449 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 103.862252 
iter  10 value 94.404440
iter  20 value 85.191028
iter  30 value 84.523591
iter  40 value 83.209842
iter  50 value 81.776206
iter  60 value 81.079802
iter  70 value 80.867738
iter  80 value 79.870544
iter  90 value 79.812427
iter 100 value 79.616931
final  value 79.616931 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 109.316073 
iter  10 value 96.283945
iter  20 value 86.863411
iter  30 value 86.068183
iter  40 value 85.864169
iter  50 value 83.594755
iter  60 value 80.474301
iter  70 value 79.385863
iter  80 value 79.166905
iter  90 value 78.940492
iter 100 value 78.765701
final  value 78.765701 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 107.932977 
iter  10 value 94.451401
iter  20 value 94.177414
iter  30 value 85.177937
iter  40 value 82.201218
iter  50 value 81.233666
iter  60 value 80.267273
iter  70 value 79.650481
iter  80 value 79.411618
iter  90 value 79.120557
iter 100 value 78.728115
final  value 78.728115 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 99.430499 
iter  10 value 94.559439
iter  20 value 94.547304
iter  30 value 94.497175
iter  40 value 93.114440
iter  50 value 87.751380
iter  60 value 87.736008
iter  70 value 87.734390
iter  80 value 87.728261
final  value 87.728087 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.272604 
iter  10 value 94.457188
iter  20 value 92.702675
iter  30 value 92.603486
iter  40 value 91.083526
final  value 91.083490 
converged
Fitting Repeat 3 

# weights:  103
initial  value 99.385291 
final  value 94.486004 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.592192 
final  value 94.254543 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.991262 
iter  10 value 94.486106
final  value 94.484323 
converged
Fitting Repeat 1 

# weights:  305
initial  value 97.978482 
iter  10 value 94.488534
iter  20 value 89.275067
iter  30 value 84.864330
iter  40 value 84.827636
iter  50 value 84.823893
iter  60 value 84.796790
iter  70 value 84.793549
iter  80 value 83.452434
iter  90 value 82.922273
final  value 82.922262 
converged
Fitting Repeat 2 

# weights:  305
initial  value 110.210535 
iter  10 value 94.280436
iter  20 value 94.024746
final  value 94.023592 
converged
Fitting Repeat 3 

# weights:  305
initial  value 108.664595 
iter  10 value 94.488648
iter  20 value 94.457735
iter  30 value 90.401025
iter  40 value 83.186838
iter  50 value 82.940874
iter  60 value 82.881748
iter  70 value 82.867771
iter  80 value 82.788138
iter  90 value 82.126030
iter 100 value 81.730628
final  value 81.730628 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 112.966032 
iter  10 value 94.492494
iter  20 value 94.463452
iter  30 value 94.031556
iter  40 value 94.026923
iter  50 value 94.026444
iter  60 value 94.026011
iter  70 value 94.024839
iter  80 value 94.024746
iter  90 value 94.023732
final  value 94.023591 
converged
Fitting Repeat 5 

# weights:  305
initial  value 115.315059 
iter  10 value 94.489125
iter  20 value 94.420136
iter  30 value 92.516893
iter  40 value 85.844112
iter  50 value 85.293642
iter  60 value 84.871803
iter  70 value 84.867841
iter  80 value 84.823872
iter  90 value 81.215513
iter 100 value 81.145342
final  value 81.145342 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 103.853817 
iter  10 value 94.028832
iter  20 value 93.770010
iter  30 value 90.743962
iter  40 value 88.764366
iter  50 value 88.751014
iter  60 value 88.749835
iter  70 value 88.398740
iter  80 value 88.397322
iter  90 value 88.394064
iter 100 value 88.391351
final  value 88.391351 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 109.437405 
iter  10 value 93.487690
iter  20 value 88.676372
iter  30 value 87.624080
iter  40 value 84.631510
iter  50 value 82.604880
iter  60 value 82.477323
iter  70 value 82.461379
iter  80 value 82.458561
iter  90 value 82.458520
final  value 82.458485 
converged
Fitting Repeat 3 

# weights:  507
initial  value 113.245666 
iter  10 value 94.047479
iter  20 value 93.730788
iter  30 value 92.787548
iter  40 value 92.753748
iter  50 value 92.753487
iter  60 value 92.742584
iter  70 value 89.449762
iter  80 value 86.852498
iter  90 value 80.592081
iter 100 value 79.023314
final  value 79.023314 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 109.105475 
iter  10 value 86.379178
iter  20 value 79.611236
iter  30 value 79.559828
iter  40 value 79.461899
iter  50 value 79.345587
iter  60 value 79.344551
final  value 79.344488 
converged
Fitting Repeat 5 

# weights:  507
initial  value 96.730193 
iter  10 value 94.491218
iter  20 value 94.043047
iter  30 value 94.031438
iter  40 value 93.894381
iter  50 value 89.173671
iter  60 value 89.162922
iter  70 value 86.173810
iter  80 value 84.303068
iter  90 value 84.205844
iter 100 value 83.862690
final  value 83.862690 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 163.950118 
iter  10 value 117.895122
iter  20 value 117.629408
iter  30 value 108.577565
iter  40 value 107.528576
iter  50 value 106.914815
iter  60 value 106.777725
final  value 106.777709 
converged
Fitting Repeat 2 

# weights:  305
initial  value 128.376103 
iter  10 value 117.764018
iter  20 value 117.399959
iter  30 value 105.361813
iter  40 value 105.188090
iter  50 value 102.039665
iter  60 value 100.772729
iter  70 value 100.440935
iter  80 value 100.367939
final  value 100.367926 
converged
Fitting Repeat 3 

# weights:  305
initial  value 133.136756 
iter  10 value 117.211175
iter  20 value 117.207423
final  value 117.207022 
converged
Fitting Repeat 4 

# weights:  305
initial  value 138.950569 
iter  10 value 117.894433
iter  20 value 117.890423
iter  30 value 115.713264
iter  40 value 109.296638
iter  50 value 109.292293
iter  60 value 106.841950
iter  70 value 106.819195
iter  80 value 106.817730
iter  90 value 106.618616
iter 100 value 104.734003
final  value 104.734003 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 127.075932 
iter  10 value 117.894866
iter  20 value 117.890407
iter  30 value 117.716399
iter  40 value 114.412920
iter  50 value 114.404895
final  value 114.404827 
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Fri Jan  3 23:01:49 2025 
*********************************************** 
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: `repeats` has no meaning for this resampling method. 
2: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
 39.463   1.044  47.359 

Example timings

HPiP.Rcheck/HPiP-Ex.timings

nameusersystemelapsed
FSmethod34.364 0.45234.822
FreqInteractors0.2090.0120.221
calculateAAC0.0330.0070.040
calculateAutocor0.2840.0230.308
calculateCTDC0.0700.0000.071
calculateCTDD0.5040.0010.505
calculateCTDT0.1810.0020.182
calculateCTriad0.3720.0140.385
calculateDC0.0820.0070.089
calculateF0.3000.0040.305
calculateKSAAP0.0890.0070.096
calculateQD_Sm1.5820.0461.628
calculateTC1.5350.1601.695
calculateTC_Sm0.2310.0070.238
corr_plot33.798 0.53934.351
enrichfindP0.4960.0338.874
enrichfind_hp0.0750.0061.038
enrichplot0.3310.0020.333
filter_missing_values0.0010.0000.001
getFASTA0.4860.0123.971
getHPI0.0010.0010.002
get_negativePPI0.0020.0020.003
get_positivePPI0.0000.0010.000
impute_missing_data0.0010.0030.004
plotPPI0.0810.0000.081
pred_ensembel12.853 0.14811.711
var_imp35.020 0.47135.551