Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-01-04 11:40 -0500 (Sat, 04 Jan 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | R Under development (unstable) (2024-10-21 r87258) -- "Unsuffered Consequences" | 4756 |
palomino7 | Windows Server 2022 Datacenter | x64 | R Under development (unstable) (2024-10-26 r87273 ucrt) -- "Unsuffered Consequences" | 4475 |
lconway | macOS 12.7.1 Monterey | x86_64 | R Under development (unstable) (2024-11-20 r87352) -- "Unsuffered Consequences" | 4435 |
kjohnson3 | macOS 13.7.1 Ventura | arm64 | R Under development (unstable) (2024-11-20 r87352) -- "Unsuffered Consequences" | 4390 |
kunpeng2 | Linux (openEuler 22.03 LTS-SP1) | aarch64 | R Under development (unstable) (2024-11-24 r87369) -- "Unsuffered Consequences" | 4383 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 974/2275 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.13.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson3 | macOS 13.7.1 Ventura / arm64 | OK | OK | OK | OK | |||||||||
kunpeng2 | Linux (openEuler 22.03 LTS-SP1) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.13.0 |
Command: /home/biocbuild/bbs-3.21-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.21-bioc/R/site-library --timings HPiP_1.13.0.tar.gz |
StartedAt: 2025-01-03 22:57:30 -0500 (Fri, 03 Jan 2025) |
EndedAt: 2025-01-03 23:11:26 -0500 (Fri, 03 Jan 2025) |
EllapsedTime: 836.2 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.21-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.21-bioc/R/site-library --timings HPiP_1.13.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck’ * using R Under development (unstable) (2024-10-21 r87258) * using platform: x86_64-pc-linux-gnu * R was compiled by gcc (Ubuntu 13.2.0-23ubuntu4) 13.2.0 GNU Fortran (Ubuntu 13.2.0-23ubuntu4) 13.2.0 * running under: Ubuntu 24.04.1 LTS * using session charset: UTF-8 * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.13.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 35.020 0.471 35.551 FSmethod 34.364 0.452 34.822 corr_plot 33.798 0.539 34.351 pred_ensembel 12.853 0.148 11.711 enrichfindP 0.496 0.033 8.874 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking re-building of vignette outputs ... OK * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/home/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.21-bioc/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.21-bioc/R/site-library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2024-10-21 r87258) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 98.593593 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 106.859065 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 94.334492 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 116.963725 iter 10 value 94.008696 iter 10 value 94.008696 iter 10 value 94.008696 final value 94.008696 converged Fitting Repeat 5 # weights: 103 initial value 102.072863 iter 10 value 92.844341 final value 88.209791 converged Fitting Repeat 1 # weights: 305 initial value 102.042511 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 98.716915 final value 94.008696 converged Fitting Repeat 3 # weights: 305 initial value 94.328913 iter 10 value 87.066579 iter 20 value 86.580922 final value 86.580908 converged Fitting Repeat 4 # weights: 305 initial value 98.924818 final value 94.004835 converged Fitting Repeat 5 # weights: 305 initial value 112.894124 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 111.028567 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 95.113001 iter 10 value 89.582812 iter 20 value 86.454961 iter 30 value 86.444283 iter 30 value 86.444283 final value 86.444283 converged Fitting Repeat 3 # weights: 507 initial value 100.220042 final value 94.008696 converged Fitting Repeat 4 # weights: 507 initial value 102.221223 iter 10 value 94.009499 iter 20 value 88.170734 iter 30 value 86.537410 iter 40 value 86.164847 iter 50 value 86.163855 iter 50 value 86.163855 iter 50 value 86.163855 final value 86.163855 converged Fitting Repeat 5 # weights: 507 initial value 111.653628 iter 10 value 94.008696 iter 10 value 94.008696 iter 10 value 94.008696 final value 94.008696 converged Fitting Repeat 1 # weights: 103 initial value 111.130313 iter 10 value 93.999956 iter 20 value 91.904064 iter 30 value 85.343663 iter 40 value 84.908539 iter 50 value 84.767531 iter 60 value 84.482417 iter 70 value 84.189279 iter 80 value 83.761435 iter 90 value 83.558502 final value 83.558497 converged Fitting Repeat 2 # weights: 103 initial value 102.671528 iter 10 value 93.108946 iter 20 value 89.885016 iter 30 value 88.128152 iter 40 value 86.730149 iter 50 value 86.141263 iter 60 value 85.983151 iter 70 value 85.961447 final value 85.960463 converged Fitting Repeat 3 # weights: 103 initial value 98.276588 iter 10 value 94.038173 iter 20 value 91.884264 iter 30 value 91.192049 iter 40 value 87.474835 iter 50 value 86.830205 iter 60 value 86.644548 iter 70 value 86.577164 final value 86.577056 converged Fitting Repeat 4 # weights: 103 initial value 96.575295 iter 10 value 94.062161 iter 20 value 93.978188 iter 30 value 93.891336 iter 40 value 93.885162 iter 50 value 93.459690 iter 60 value 92.393479 iter 70 value 92.080251 iter 80 value 91.954434 iter 90 value 91.848064 iter 100 value 88.211729 final value 88.211729 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 107.298020 iter 10 value 94.053381 iter 20 value 89.258531 iter 30 value 88.633528 iter 40 value 87.777194 iter 50 value 86.310466 iter 60 value 86.061384 iter 70 value 85.989691 iter 80 value 85.972115 iter 80 value 85.972114 iter 80 value 85.972114 final value 85.972114 converged Fitting Repeat 1 # weights: 305 initial value 106.263123 iter 10 value 94.070919 iter 20 value 93.913539 iter 30 value 88.755447 iter 40 value 86.948406 iter 50 value 86.195516 iter 60 value 84.658047 iter 70 value 84.514705 iter 80 value 83.544299 iter 90 value 82.854862 iter 100 value 82.622062 final value 82.622062 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 114.258669 iter 10 value 94.086859 iter 20 value 89.044328 iter 30 value 84.602877 iter 40 value 83.249294 iter 50 value 82.827026 iter 60 value 82.576114 iter 70 value 82.230931 iter 80 value 82.202493 iter 90 value 82.161441 iter 100 value 82.112248 final value 82.112248 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 116.158996 iter 10 value 94.057455 iter 20 value 93.328073 iter 30 value 92.218276 iter 40 value 91.234282 iter 50 value 89.037235 iter 60 value 84.123981 iter 70 value 83.041802 iter 80 value 82.699077 iter 90 value 82.116226 iter 100 value 82.072777 final value 82.072777 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.116019 iter 10 value 93.770125 iter 20 value 90.552383 iter 30 value 88.471998 iter 40 value 86.766262 iter 50 value 86.381908 iter 60 value 86.359837 iter 70 value 86.280683 iter 80 value 85.585273 iter 90 value 85.462172 iter 100 value 85.184519 final value 85.184519 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 106.472758 iter 10 value 94.055504 iter 20 value 93.441659 iter 30 value 91.082139 iter 40 value 87.087412 iter 50 value 86.728724 iter 60 value 86.563488 iter 70 value 85.886627 iter 80 value 84.155851 iter 90 value 83.403761 iter 100 value 82.792425 final value 82.792425 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 102.141645 iter 10 value 94.305954 iter 20 value 91.883139 iter 30 value 88.396026 iter 40 value 85.427960 iter 50 value 83.959211 iter 60 value 82.861783 iter 70 value 82.305404 iter 80 value 82.212883 iter 90 value 82.118752 iter 100 value 82.072979 final value 82.072979 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 121.378489 iter 10 value 95.291167 iter 20 value 93.364515 iter 30 value 91.427607 iter 40 value 86.025086 iter 50 value 85.590871 iter 60 value 85.182654 iter 70 value 84.920134 iter 80 value 84.451112 iter 90 value 84.202183 iter 100 value 84.121524 final value 84.121524 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 119.962579 iter 10 value 94.003620 iter 20 value 88.576548 iter 30 value 87.126780 iter 40 value 84.629711 iter 50 value 83.628646 iter 60 value 83.426741 iter 70 value 83.037967 iter 80 value 82.521526 iter 90 value 82.302446 iter 100 value 82.229600 final value 82.229600 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.115713 iter 10 value 94.152558 iter 20 value 93.700327 iter 30 value 89.395601 iter 40 value 89.139921 iter 50 value 88.051732 iter 60 value 87.051096 iter 70 value 85.374132 iter 80 value 84.783076 iter 90 value 84.127913 iter 100 value 83.267171 final value 83.267171 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 113.607224 iter 10 value 94.072339 iter 20 value 90.548262 iter 30 value 85.043789 iter 40 value 83.897878 iter 50 value 83.115499 iter 60 value 82.885052 iter 70 value 82.689666 iter 80 value 82.614698 iter 90 value 82.577194 iter 100 value 82.533197 final value 82.533197 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 108.666803 final value 94.054485 converged Fitting Repeat 2 # weights: 103 initial value 98.812565 final value 94.054468 converged Fitting Repeat 3 # weights: 103 initial value 100.232904 iter 10 value 94.054636 iter 20 value 94.052915 iter 30 value 93.944613 final value 93.810184 converged Fitting Repeat 4 # weights: 103 initial value 95.493481 iter 10 value 89.693080 iter 20 value 88.928080 iter 30 value 88.580941 iter 40 value 88.439516 iter 50 value 87.731210 iter 60 value 87.549942 iter 70 value 87.536011 final value 87.535841 converged Fitting Repeat 5 # weights: 103 initial value 96.176803 final value 94.054669 converged Fitting Repeat 1 # weights: 305 initial value 106.564461 iter 10 value 92.838922 iter 20 value 92.825441 iter 30 value 92.796310 final value 92.792321 converged Fitting Repeat 2 # weights: 305 initial value 108.559250 iter 10 value 94.057792 iter 20 value 94.011142 iter 30 value 93.871015 iter 40 value 93.598324 iter 50 value 93.594682 iter 60 value 91.453241 iter 70 value 85.606093 iter 80 value 84.342396 iter 90 value 84.120567 iter 100 value 83.472754 final value 83.472754 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 109.157927 iter 10 value 94.054885 iter 20 value 94.050562 final value 94.050282 converged Fitting Repeat 4 # weights: 305 initial value 96.156131 iter 10 value 93.899716 iter 20 value 93.897833 iter 30 value 88.468012 iter 40 value 88.467701 iter 50 value 88.465857 iter 60 value 87.654253 iter 70 value 84.753047 iter 80 value 84.279454 iter 90 value 84.260165 iter 100 value 84.257554 final value 84.257554 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.759524 iter 10 value 94.057628 iter 20 value 90.325639 iter 30 value 86.602358 iter 40 value 86.143253 final value 86.142572 converged Fitting Repeat 1 # weights: 507 initial value 101.248643 iter 10 value 94.017187 iter 20 value 93.822731 iter 30 value 93.572186 iter 40 value 88.089459 iter 50 value 87.892389 iter 60 value 85.793152 iter 70 value 84.983069 iter 80 value 84.980584 final value 84.980188 converged Fitting Repeat 2 # weights: 507 initial value 106.669152 iter 10 value 94.060874 iter 20 value 94.035075 iter 30 value 93.810116 final value 93.810114 converged Fitting Repeat 3 # weights: 507 initial value 129.130905 iter 10 value 94.058378 iter 20 value 94.046026 iter 30 value 94.044829 iter 40 value 94.039770 iter 50 value 93.751820 iter 60 value 88.787770 iter 70 value 87.315848 iter 80 value 86.535877 iter 90 value 86.162470 iter 100 value 86.148469 final value 86.148469 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 99.420883 iter 10 value 94.056531 iter 20 value 88.274524 iter 30 value 87.797325 iter 40 value 87.783224 iter 50 value 86.000476 iter 60 value 85.156923 final value 85.154826 converged Fitting Repeat 5 # weights: 507 initial value 106.208210 iter 10 value 94.064384 iter 20 value 94.059923 iter 30 value 94.055167 iter 40 value 87.819577 iter 50 value 87.787725 iter 60 value 87.786189 iter 70 value 86.506499 iter 80 value 86.362350 iter 90 value 86.170368 iter 100 value 86.152192 final value 86.152192 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 102.676972 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.113216 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 101.788835 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 98.554243 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 101.299965 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 104.692478 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 104.151097 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 102.194513 final value 94.480519 converged Fitting Repeat 4 # weights: 305 initial value 121.336970 final value 93.300000 converged Fitting Repeat 5 # weights: 305 initial value 105.336181 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 120.527988 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 104.577199 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 112.410237 final value 94.466823 converged Fitting Repeat 4 # weights: 507 initial value 116.233936 final value 94.466823 converged Fitting Repeat 5 # weights: 507 initial value 105.182371 final value 94.466823 converged Fitting Repeat 1 # weights: 103 initial value 102.379386 iter 10 value 94.432518 iter 20 value 86.229330 iter 30 value 83.969035 iter 40 value 83.526187 iter 50 value 83.213478 iter 60 value 82.626881 iter 70 value 82.309663 iter 80 value 82.274676 final value 82.248535 converged Fitting Repeat 2 # weights: 103 initial value 98.295558 iter 10 value 94.481331 iter 20 value 94.277087 iter 30 value 89.189015 iter 40 value 88.396368 iter 50 value 84.312887 iter 60 value 82.851240 iter 70 value 82.337467 iter 80 value 82.128958 iter 90 value 82.019612 iter 100 value 81.817704 final value 81.817704 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.691770 iter 10 value 94.444781 iter 20 value 90.521555 iter 30 value 86.193775 iter 40 value 85.529415 iter 50 value 82.639328 iter 60 value 81.876836 final value 81.833355 converged Fitting Repeat 4 # weights: 103 initial value 99.917464 iter 10 value 94.479579 iter 20 value 94.421484 iter 30 value 92.008869 iter 40 value 86.246449 iter 50 value 85.944039 iter 60 value 85.867482 iter 70 value 85.137049 iter 80 value 84.915402 iter 90 value 83.673744 iter 100 value 82.433838 final value 82.433838 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 99.650293 iter 10 value 94.466375 iter 20 value 93.305673 iter 30 value 92.446660 iter 40 value 91.887345 iter 50 value 91.739755 final value 91.738960 converged Fitting Repeat 1 # weights: 305 initial value 102.057062 iter 10 value 94.452248 iter 20 value 92.546015 iter 30 value 91.841931 iter 40 value 89.263753 iter 50 value 86.732613 iter 60 value 83.912933 iter 70 value 83.626459 iter 80 value 83.416863 iter 90 value 82.994726 iter 100 value 82.735836 final value 82.735836 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.167219 iter 10 value 94.113963 iter 20 value 86.374057 iter 30 value 85.408771 iter 40 value 84.098349 iter 50 value 83.715082 iter 60 value 83.023356 iter 70 value 82.328797 iter 80 value 80.068437 iter 90 value 79.631728 iter 100 value 78.950100 final value 78.950100 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.190409 iter 10 value 93.717819 iter 20 value 87.639251 iter 30 value 83.824893 iter 40 value 83.594844 iter 50 value 82.050900 iter 60 value 80.531120 iter 70 value 80.061914 iter 80 value 79.724275 iter 90 value 79.168164 iter 100 value 79.074006 final value 79.074006 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 129.584560 iter 10 value 95.134083 iter 20 value 93.975182 iter 30 value 85.091888 iter 40 value 84.923199 iter 50 value 83.357152 iter 60 value 82.417822 iter 70 value 81.836154 iter 80 value 81.685262 iter 90 value 81.029474 iter 100 value 80.842805 final value 80.842805 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.868301 iter 10 value 94.493668 iter 20 value 87.506199 iter 30 value 84.622173 iter 40 value 84.251823 iter 50 value 84.076579 iter 60 value 83.720929 iter 70 value 82.786234 iter 80 value 81.933467 iter 90 value 80.311663 iter 100 value 79.541435 final value 79.541435 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.268927 iter 10 value 96.746618 iter 20 value 88.976665 iter 30 value 86.926238 iter 40 value 83.381903 iter 50 value 81.837135 iter 60 value 80.820869 iter 70 value 79.482617 iter 80 value 79.050235 iter 90 value 78.747693 iter 100 value 78.534542 final value 78.534542 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.107073 iter 10 value 94.656950 iter 20 value 94.215527 iter 30 value 86.484494 iter 40 value 85.412989 iter 50 value 84.659971 iter 60 value 82.638700 iter 70 value 82.384387 iter 80 value 81.071676 iter 90 value 80.722847 iter 100 value 80.045813 final value 80.045813 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.696333 iter 10 value 94.491764 iter 20 value 92.477311 iter 30 value 85.189648 iter 40 value 83.816909 iter 50 value 80.451655 iter 60 value 79.415344 iter 70 value 78.684084 iter 80 value 78.471979 iter 90 value 78.440879 iter 100 value 78.430720 final value 78.430720 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 134.749032 iter 10 value 89.642139 iter 20 value 85.919295 iter 30 value 82.491900 iter 40 value 82.010558 iter 50 value 81.060182 iter 60 value 79.533387 iter 70 value 79.198457 iter 80 value 78.989339 iter 90 value 78.900008 iter 100 value 78.875348 final value 78.875348 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 112.210341 iter 10 value 94.542234 iter 20 value 92.178746 iter 30 value 88.295547 iter 40 value 86.118840 iter 50 value 83.262778 iter 60 value 80.381695 iter 70 value 79.878889 iter 80 value 79.208854 iter 90 value 79.066522 iter 100 value 78.860795 final value 78.860795 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.287623 final value 94.486132 converged Fitting Repeat 2 # weights: 103 initial value 96.091342 final value 94.485506 converged Fitting Repeat 3 # weights: 103 initial value 104.166112 iter 10 value 94.485685 iter 20 value 94.478940 iter 30 value 87.105812 iter 40 value 86.963178 iter 50 value 86.961016 iter 60 value 83.788775 iter 70 value 83.787173 iter 80 value 83.786754 iter 80 value 83.786753 iter 80 value 83.786753 final value 83.786753 converged Fitting Repeat 4 # weights: 103 initial value 99.513415 iter 10 value 94.485683 final value 94.484222 converged Fitting Repeat 5 # weights: 103 initial value 101.973598 final value 94.485973 converged Fitting Repeat 1 # weights: 305 initial value 109.210619 iter 10 value 94.489194 iter 20 value 94.386020 iter 30 value 93.296799 iter 40 value 93.294360 final value 93.294118 converged Fitting Repeat 2 # weights: 305 initial value 95.553350 final value 94.485119 converged Fitting Repeat 3 # weights: 305 initial value 110.778201 iter 10 value 94.489108 iter 20 value 94.484352 final value 94.484213 converged Fitting Repeat 4 # weights: 305 initial value 100.003130 iter 10 value 94.490477 iter 20 value 94.402926 iter 30 value 89.601918 iter 40 value 89.598057 iter 50 value 88.252013 iter 60 value 88.248989 iter 70 value 88.247288 iter 80 value 88.246934 iter 90 value 88.241889 iter 100 value 84.006672 final value 84.006672 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.477214 final value 94.488883 converged Fitting Repeat 1 # weights: 507 initial value 107.321484 iter 10 value 94.492699 final value 94.474794 converged Fitting Repeat 2 # weights: 507 initial value 102.378880 iter 10 value 94.475036 iter 20 value 94.469820 iter 30 value 94.469216 iter 40 value 94.464898 iter 50 value 94.424351 iter 60 value 94.414016 iter 70 value 92.729998 iter 80 value 89.390245 iter 90 value 82.901995 iter 100 value 82.824525 final value 82.824525 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 96.379239 iter 10 value 93.308700 iter 20 value 91.672028 iter 30 value 84.597941 iter 40 value 84.594299 iter 50 value 84.593831 iter 60 value 84.593308 iter 70 value 84.592964 iter 80 value 84.057359 iter 90 value 83.821230 iter 100 value 83.820984 final value 83.820984 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 95.273730 iter 10 value 94.475125 iter 20 value 94.371647 iter 30 value 92.314723 iter 40 value 91.600013 iter 50 value 91.582947 final value 91.582944 converged Fitting Repeat 5 # weights: 507 initial value 106.902447 iter 10 value 93.774162 iter 20 value 93.709952 iter 30 value 93.499731 iter 40 value 93.475281 iter 50 value 93.470094 iter 60 value 93.468910 iter 70 value 83.207788 iter 80 value 80.684840 iter 90 value 79.031524 iter 100 value 78.684830 final value 78.684830 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.086675 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 106.237760 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 103.239933 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 98.015424 final value 94.305883 converged Fitting Repeat 5 # weights: 103 initial value 104.715170 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 110.522602 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 96.848057 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 106.438329 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 98.775333 iter 10 value 92.649453 final value 92.635860 converged Fitting Repeat 5 # weights: 305 initial value 96.022051 iter 10 value 85.342286 iter 20 value 81.810405 final value 81.410356 converged Fitting Repeat 1 # weights: 507 initial value 101.307306 iter 10 value 93.847159 final value 93.755471 converged Fitting Repeat 2 # weights: 507 initial value 114.320365 final value 94.026542 converged Fitting Repeat 3 # weights: 507 initial value 110.125123 final value 94.305882 converged Fitting Repeat 4 # weights: 507 initial value 97.485912 iter 10 value 92.704557 iter 20 value 92.636202 final value 92.635857 converged Fitting Repeat 5 # weights: 507 initial value 96.150218 iter 10 value 93.378333 final value 93.378284 converged Fitting Repeat 1 # weights: 103 initial value 98.762293 iter 10 value 94.485856 iter 20 value 93.910323 iter 30 value 91.718605 iter 40 value 84.769763 iter 50 value 82.664366 iter 60 value 82.285527 iter 70 value 82.076646 iter 80 value 81.189132 iter 90 value 80.582132 iter 100 value 80.007366 final value 80.007366 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 101.444542 iter 10 value 94.415685 iter 20 value 88.607321 iter 30 value 86.084627 iter 40 value 82.331647 iter 50 value 80.448838 iter 60 value 80.195339 iter 70 value 79.943615 iter 80 value 79.792922 final value 79.732972 converged Fitting Repeat 3 # weights: 103 initial value 104.481166 iter 10 value 94.486465 iter 20 value 93.497847 iter 30 value 92.993033 iter 40 value 91.783789 iter 50 value 83.217064 iter 60 value 82.172532 iter 70 value 81.000449 iter 80 value 80.598498 iter 90 value 79.873285 iter 100 value 79.816746 final value 79.816746 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 102.304066 iter 10 value 94.049260 iter 20 value 87.876202 iter 30 value 86.530694 iter 40 value 86.279665 iter 50 value 83.248191 iter 60 value 82.700919 iter 70 value 82.499700 iter 80 value 82.496428 iter 90 value 80.461585 iter 100 value 80.004173 final value 80.004173 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 106.194894 iter 10 value 94.489857 iter 20 value 94.065218 iter 30 value 92.997837 iter 40 value 92.917961 iter 50 value 92.544401 iter 60 value 88.313145 iter 70 value 83.907308 iter 80 value 83.221995 iter 90 value 82.647608 iter 100 value 82.246277 final value 82.246277 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 103.543512 iter 10 value 94.566598 iter 20 value 94.400231 iter 30 value 94.094153 iter 40 value 92.610799 iter 50 value 92.561392 iter 60 value 90.027154 iter 70 value 83.542957 iter 80 value 81.488922 iter 90 value 79.757556 iter 100 value 78.688698 final value 78.688698 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 137.250948 iter 10 value 94.263728 iter 20 value 85.873756 iter 30 value 82.788623 iter 40 value 82.587007 iter 50 value 81.855070 iter 60 value 79.277919 iter 70 value 78.921139 iter 80 value 78.712059 iter 90 value 78.580985 iter 100 value 78.570460 final value 78.570460 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 107.972319 iter 10 value 91.785093 iter 20 value 89.334447 iter 30 value 83.380130 iter 40 value 81.965205 iter 50 value 81.622080 iter 60 value 81.135053 iter 70 value 79.877770 iter 80 value 79.704173 iter 90 value 79.627110 iter 100 value 79.416517 final value 79.416517 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 122.935759 iter 10 value 94.250985 iter 20 value 90.024132 iter 30 value 89.257921 iter 40 value 84.846622 iter 50 value 82.134959 iter 60 value 81.956971 iter 70 value 81.432537 iter 80 value 80.057090 iter 90 value 79.595571 iter 100 value 79.208537 final value 79.208537 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 115.767966 iter 10 value 95.553154 iter 20 value 93.927659 iter 30 value 90.060748 iter 40 value 82.188946 iter 50 value 80.710400 iter 60 value 79.362877 iter 70 value 79.188322 iter 80 value 78.851194 iter 90 value 78.787349 iter 100 value 78.714038 final value 78.714038 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 108.703188 iter 10 value 94.401127 iter 20 value 92.260410 iter 30 value 89.190886 iter 40 value 86.366225 iter 50 value 83.575655 iter 60 value 82.117233 iter 70 value 80.443079 iter 80 value 79.550325 iter 90 value 78.566628 iter 100 value 78.436832 final value 78.436832 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.313171 iter 10 value 94.469304 iter 20 value 88.853424 iter 30 value 85.699133 iter 40 value 83.142336 iter 50 value 80.092485 iter 60 value 79.160354 iter 70 value 78.941926 iter 80 value 78.372929 iter 90 value 78.235420 iter 100 value 78.196653 final value 78.196653 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.095732 iter 10 value 88.235438 iter 20 value 84.859876 iter 30 value 82.075930 iter 40 value 80.381546 iter 50 value 78.960257 iter 60 value 78.634145 iter 70 value 78.563905 iter 80 value 78.442763 iter 90 value 78.394952 iter 100 value 78.249723 final value 78.249723 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 115.031605 iter 10 value 93.985914 iter 20 value 93.213293 iter 30 value 92.811227 iter 40 value 85.422147 iter 50 value 79.403811 iter 60 value 78.914519 iter 70 value 78.770874 iter 80 value 78.461861 iter 90 value 78.387119 iter 100 value 78.346590 final value 78.346590 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 134.537019 iter 10 value 94.440237 iter 20 value 93.908915 iter 30 value 88.765120 iter 40 value 87.808970 iter 50 value 87.111789 iter 60 value 80.645176 iter 70 value 78.826217 iter 80 value 78.528553 iter 90 value 78.391565 iter 100 value 78.164062 final value 78.164062 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 105.660988 final value 94.485848 converged Fitting Repeat 2 # weights: 103 initial value 105.789267 final value 94.485799 converged Fitting Repeat 3 # weights: 103 initial value 106.535080 final value 94.485896 converged Fitting Repeat 4 # weights: 103 initial value 94.744574 final value 94.485866 converged Fitting Repeat 5 # weights: 103 initial value 104.564946 final value 94.486034 converged Fitting Repeat 1 # weights: 305 initial value 95.755969 iter 10 value 92.571196 iter 20 value 92.216532 iter 30 value 92.190336 iter 40 value 92.187088 iter 50 value 91.754538 iter 60 value 91.723861 iter 70 value 89.355414 iter 80 value 85.780294 iter 90 value 80.691037 iter 100 value 78.325728 final value 78.325728 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 96.267414 iter 10 value 94.031577 iter 20 value 94.026509 iter 30 value 85.147750 iter 40 value 84.557024 iter 50 value 82.706300 iter 60 value 82.559909 iter 70 value 82.555148 iter 80 value 82.549437 iter 90 value 82.549271 final value 82.549251 converged Fitting Repeat 3 # weights: 305 initial value 103.273500 iter 10 value 91.511841 iter 20 value 91.510197 iter 30 value 91.509911 iter 40 value 91.508797 iter 40 value 91.508797 iter 40 value 91.508797 final value 91.508797 converged Fitting Repeat 4 # weights: 305 initial value 99.375197 iter 10 value 94.489246 iter 20 value 93.502036 iter 30 value 90.336890 iter 40 value 90.335051 iter 50 value 90.334715 iter 60 value 90.334544 iter 70 value 89.240677 iter 80 value 84.860136 iter 90 value 84.838833 final value 84.838820 converged Fitting Repeat 5 # weights: 305 initial value 112.762968 iter 10 value 94.489935 iter 20 value 92.298764 iter 30 value 83.922088 iter 40 value 81.271872 iter 50 value 80.493356 iter 60 value 79.091214 iter 70 value 78.528524 iter 80 value 77.609379 iter 90 value 77.591707 iter 100 value 77.590069 final value 77.590069 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 99.309110 iter 10 value 94.034881 iter 20 value 94.028483 final value 94.026837 converged Fitting Repeat 2 # weights: 507 initial value 109.565388 iter 10 value 94.492109 iter 20 value 94.484232 iter 20 value 94.484232 iter 20 value 94.484232 final value 94.484232 converged Fitting Repeat 3 # weights: 507 initial value 100.874841 iter 10 value 94.492454 iter 20 value 89.705849 iter 30 value 86.750484 iter 40 value 81.787684 final value 81.787313 converged Fitting Repeat 4 # weights: 507 initial value 110.641954 iter 10 value 94.034594 iter 20 value 94.027756 iter 30 value 87.771904 iter 40 value 82.887418 iter 50 value 82.493714 iter 60 value 82.083557 final value 82.083480 converged Fitting Repeat 5 # weights: 507 initial value 96.130745 iter 10 value 91.712966 iter 20 value 85.060688 iter 30 value 83.445272 iter 40 value 83.401741 iter 50 value 81.590982 iter 60 value 81.583513 iter 70 value 81.581630 final value 81.581310 converged Fitting Repeat 1 # weights: 103 initial value 98.442595 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 98.153440 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 97.137342 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 99.139050 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 95.820130 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 95.018999 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 97.942681 final value 94.032967 converged Fitting Repeat 3 # weights: 305 initial value 96.347540 final value 94.032967 converged Fitting Repeat 4 # weights: 305 initial value 99.746097 iter 10 value 94.032995 final value 94.032967 converged Fitting Repeat 5 # weights: 305 initial value 104.225913 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 99.162009 final value 94.032967 converged Fitting Repeat 2 # weights: 507 initial value 105.119052 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 95.756598 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 130.573632 iter 10 value 94.051912 iter 10 value 94.051912 iter 10 value 94.051912 final value 94.051912 converged Fitting Repeat 5 # weights: 507 initial value 115.576406 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 101.509597 iter 10 value 94.056212 iter 20 value 94.020324 iter 30 value 87.010934 iter 40 value 85.083638 iter 50 value 84.586038 iter 60 value 84.509838 iter 70 value 84.416391 final value 84.415938 converged Fitting Repeat 2 # weights: 103 initial value 100.125896 iter 10 value 94.057054 iter 20 value 94.044316 iter 30 value 92.368587 iter 40 value 87.724320 iter 50 value 84.575453 iter 60 value 83.268571 iter 70 value 83.002584 iter 80 value 82.950098 iter 90 value 82.829440 iter 100 value 82.652480 final value 82.652480 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 104.679938 iter 10 value 94.061643 iter 20 value 92.659052 iter 30 value 89.505656 iter 40 value 88.207210 iter 50 value 87.449990 iter 60 value 87.171541 iter 70 value 86.836577 iter 80 value 86.756769 iter 90 value 86.064836 iter 100 value 85.856718 final value 85.856718 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 102.519436 iter 10 value 94.058312 iter 20 value 93.629569 iter 30 value 90.770532 iter 40 value 89.099364 iter 50 value 87.773090 iter 60 value 85.487939 iter 70 value 83.917207 iter 80 value 83.300868 iter 90 value 82.891498 iter 100 value 82.652752 final value 82.652752 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 110.771005 iter 10 value 94.054835 iter 20 value 89.578605 iter 30 value 86.709388 iter 40 value 86.423875 iter 50 value 85.110607 iter 60 value 84.609932 iter 70 value 84.572409 iter 80 value 84.545635 iter 90 value 84.444430 iter 100 value 84.416052 final value 84.416052 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 105.304821 iter 10 value 94.077951 iter 20 value 88.804316 iter 30 value 84.809674 iter 40 value 84.341313 iter 50 value 84.140686 iter 60 value 83.449731 iter 70 value 82.238481 iter 80 value 82.003910 iter 90 value 81.721954 iter 100 value 81.443009 final value 81.443009 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.692365 iter 10 value 91.043345 iter 20 value 87.927519 iter 30 value 86.521032 iter 40 value 83.650251 iter 50 value 82.447932 iter 60 value 82.196971 iter 70 value 81.796584 iter 80 value 81.466757 iter 90 value 81.253156 iter 100 value 81.195158 final value 81.195158 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.027377 iter 10 value 94.897479 iter 20 value 94.133326 iter 30 value 93.565602 iter 40 value 91.055095 iter 50 value 87.595950 iter 60 value 87.204038 iter 70 value 84.164180 iter 80 value 83.600098 iter 90 value 82.052046 iter 100 value 81.537522 final value 81.537522 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 117.942694 iter 10 value 94.109212 iter 20 value 93.861447 iter 30 value 88.177765 iter 40 value 87.433787 iter 50 value 87.353012 iter 60 value 87.332091 iter 70 value 86.879978 iter 80 value 84.119497 iter 90 value 84.051816 final value 84.049224 converged Fitting Repeat 5 # weights: 305 initial value 108.873025 iter 10 value 94.025817 iter 20 value 89.043023 iter 30 value 85.372327 iter 40 value 84.276697 iter 50 value 84.065039 iter 60 value 83.716694 iter 70 value 83.505397 iter 80 value 83.452356 iter 90 value 82.873793 iter 100 value 82.038518 final value 82.038518 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 107.537995 iter 10 value 94.844730 iter 20 value 93.736196 iter 30 value 86.915831 iter 40 value 84.709512 iter 50 value 84.077638 iter 60 value 82.134524 iter 70 value 81.128567 iter 80 value 80.821295 iter 90 value 80.707265 iter 100 value 80.663546 final value 80.663546 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.746572 iter 10 value 94.498337 iter 20 value 94.308951 iter 30 value 87.767488 iter 40 value 85.532154 iter 50 value 85.312140 iter 60 value 84.837930 iter 70 value 82.762175 iter 80 value 81.838670 iter 90 value 81.514981 iter 100 value 81.344245 final value 81.344245 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.960199 iter 10 value 90.382288 iter 20 value 85.067729 iter 30 value 84.265272 iter 40 value 84.098040 iter 50 value 83.985866 iter 60 value 83.478711 iter 70 value 82.889223 iter 80 value 82.716382 iter 90 value 82.666742 iter 100 value 82.641185 final value 82.641185 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.355537 iter 10 value 94.315884 iter 20 value 94.049639 iter 30 value 87.479626 iter 40 value 86.364297 iter 50 value 86.145817 iter 60 value 84.586501 iter 70 value 83.396661 iter 80 value 82.808037 iter 90 value 82.266279 iter 100 value 81.732695 final value 81.732695 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 112.843214 iter 10 value 94.090449 iter 20 value 93.684854 iter 30 value 92.166053 iter 40 value 90.312917 iter 50 value 85.810848 iter 60 value 83.633493 iter 70 value 82.089923 iter 80 value 81.403330 iter 90 value 81.298199 iter 100 value 81.165338 final value 81.165338 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.870355 final value 94.054614 converged Fitting Repeat 2 # weights: 103 initial value 103.367512 final value 94.054505 converged Fitting Repeat 3 # weights: 103 initial value 99.251600 iter 10 value 94.054771 iter 20 value 94.052838 iter 30 value 91.632070 iter 40 value 85.724793 iter 50 value 83.266058 iter 60 value 83.237046 final value 83.235407 converged Fitting Repeat 4 # weights: 103 initial value 100.390226 final value 94.055082 converged Fitting Repeat 5 # weights: 103 initial value 106.656707 final value 94.054396 converged Fitting Repeat 1 # weights: 305 initial value 97.661236 iter 10 value 94.053828 final value 94.052917 converged Fitting Repeat 2 # weights: 305 initial value 101.055728 iter 10 value 94.057671 iter 20 value 94.001916 iter 30 value 88.200095 iter 40 value 87.867110 iter 50 value 86.724652 iter 60 value 86.270332 final value 86.270330 converged Fitting Repeat 3 # weights: 305 initial value 99.777114 iter 10 value 87.239243 iter 20 value 84.656521 iter 30 value 84.575099 iter 40 value 84.411119 iter 50 value 84.390089 final value 84.388559 converged Fitting Repeat 4 # weights: 305 initial value 114.863059 iter 10 value 94.037904 iter 20 value 94.028744 iter 30 value 90.432977 iter 40 value 83.983058 iter 50 value 81.661128 iter 60 value 81.614090 iter 70 value 81.600289 iter 80 value 81.576597 iter 90 value 81.575094 iter 100 value 81.574618 final value 81.574618 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.176687 iter 10 value 94.016280 iter 20 value 91.178396 iter 30 value 85.095992 iter 40 value 82.866043 iter 50 value 82.856360 iter 60 value 82.766933 iter 70 value 81.426101 iter 80 value 80.295428 iter 90 value 80.057692 iter 100 value 80.056840 final value 80.056840 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 100.974813 iter 10 value 93.971758 iter 20 value 89.481526 iter 30 value 89.433176 final value 89.432968 converged Fitting Repeat 2 # weights: 507 initial value 122.545565 iter 10 value 93.958753 iter 20 value 93.942866 iter 30 value 89.530781 iter 40 value 89.339746 iter 50 value 89.275845 iter 60 value 82.913756 iter 70 value 82.633954 iter 80 value 82.625452 iter 90 value 82.606502 iter 100 value 82.605532 final value 82.605532 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.735331 iter 10 value 92.995723 iter 20 value 92.993455 iter 30 value 92.989083 iter 40 value 84.406973 iter 50 value 82.594649 iter 60 value 82.333345 iter 70 value 81.966504 iter 80 value 81.953821 iter 90 value 81.950743 iter 100 value 81.947282 final value 81.947282 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 119.125912 iter 10 value 93.996435 iter 20 value 93.970425 iter 30 value 86.822289 iter 40 value 86.120039 iter 50 value 86.118546 iter 50 value 86.118546 final value 86.118546 converged Fitting Repeat 5 # weights: 507 initial value 98.866826 iter 10 value 94.040792 iter 20 value 93.865404 iter 30 value 85.739894 iter 40 value 85.502221 iter 50 value 84.382682 iter 60 value 81.915586 iter 70 value 81.780492 iter 80 value 81.768213 iter 90 value 81.751699 iter 100 value 81.744390 final value 81.744390 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.572628 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 94.777669 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 98.855815 iter 10 value 94.062653 iter 20 value 94.030603 iter 20 value 94.030602 iter 20 value 94.030602 final value 94.030602 converged Fitting Repeat 4 # weights: 103 initial value 95.414412 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 100.005679 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 110.776031 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 99.938367 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 95.332809 iter 10 value 87.062455 iter 20 value 84.835877 iter 30 value 84.800041 final value 84.800000 converged Fitting Repeat 4 # weights: 305 initial value 105.758454 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 96.767252 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 111.190728 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 125.685594 iter 10 value 94.275688 final value 94.275363 converged Fitting Repeat 3 # weights: 507 initial value 96.076687 iter 10 value 92.626042 iter 20 value 92.609834 iter 30 value 85.982127 iter 40 value 85.854140 iter 50 value 85.831478 final value 85.831440 converged Fitting Repeat 4 # weights: 507 initial value 103.050506 iter 10 value 94.330998 iter 10 value 94.330997 iter 10 value 94.330997 final value 94.330997 converged Fitting Repeat 5 # weights: 507 initial value 108.790095 iter 10 value 94.275362 iter 10 value 94.275362 iter 10 value 94.275362 final value 94.275362 converged Fitting Repeat 1 # weights: 103 initial value 97.913604 iter 10 value 94.468654 iter 20 value 94.212514 iter 30 value 94.086155 iter 40 value 94.080839 iter 50 value 94.080159 iter 60 value 94.079485 iter 70 value 91.610296 iter 80 value 86.693037 iter 90 value 86.488640 iter 100 value 83.124400 final value 83.124400 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 112.827503 iter 10 value 94.514153 iter 20 value 94.442975 iter 30 value 94.081561 iter 40 value 94.079693 iter 50 value 91.044583 iter 60 value 88.245630 iter 70 value 86.849272 iter 80 value 84.582639 iter 90 value 83.985928 iter 100 value 83.978035 final value 83.978035 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 99.576100 iter 10 value 94.478688 iter 20 value 93.459328 iter 30 value 85.896869 iter 40 value 83.966707 iter 50 value 83.833809 iter 60 value 83.760695 iter 70 value 83.708618 iter 80 value 83.615177 iter 90 value 83.590111 final value 83.589633 converged Fitting Repeat 4 # weights: 103 initial value 97.103109 iter 10 value 94.092274 iter 20 value 92.387552 iter 30 value 90.895651 iter 40 value 90.712526 iter 50 value 90.692446 final value 90.692404 converged Fitting Repeat 5 # weights: 103 initial value 105.957503 iter 10 value 94.160614 iter 20 value 85.980220 iter 30 value 81.565306 iter 40 value 80.718527 iter 50 value 80.688722 iter 60 value 80.495183 iter 70 value 80.446571 iter 80 value 80.415517 final value 80.413956 converged Fitting Repeat 1 # weights: 305 initial value 100.305562 iter 10 value 94.079048 iter 20 value 86.030110 iter 30 value 83.765158 iter 40 value 82.712870 iter 50 value 81.959316 iter 60 value 81.341883 iter 70 value 80.979676 iter 80 value 80.784716 iter 90 value 80.605880 iter 100 value 80.413914 final value 80.413914 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 112.489188 iter 10 value 94.157818 iter 20 value 89.830751 iter 30 value 89.553724 iter 40 value 86.565875 iter 50 value 84.846991 iter 60 value 83.038914 iter 70 value 82.341011 iter 80 value 81.875004 iter 90 value 81.346275 iter 100 value 81.210849 final value 81.210849 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.160977 iter 10 value 94.540574 iter 20 value 94.362507 iter 30 value 91.784433 iter 40 value 88.091875 iter 50 value 85.013848 iter 60 value 81.649536 iter 70 value 80.357817 iter 80 value 80.140423 iter 90 value 79.696385 iter 100 value 78.891198 final value 78.891198 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 108.595202 iter 10 value 94.731585 iter 20 value 94.511238 iter 30 value 93.645094 iter 40 value 92.772705 iter 50 value 92.610258 iter 60 value 88.228206 iter 70 value 84.669732 iter 80 value 84.407059 iter 90 value 83.903558 iter 100 value 82.325629 final value 82.325629 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.944427 iter 10 value 94.523347 iter 20 value 92.562397 iter 30 value 85.082132 iter 40 value 84.610330 iter 50 value 83.567414 iter 60 value 82.558595 iter 70 value 82.316737 iter 80 value 81.490345 iter 90 value 81.157332 iter 100 value 80.636331 final value 80.636331 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 119.773760 iter 10 value 94.315551 iter 20 value 94.062935 iter 30 value 86.952494 iter 40 value 84.421376 iter 50 value 84.091592 iter 60 value 83.988218 iter 70 value 83.926191 iter 80 value 83.789875 iter 90 value 81.992199 iter 100 value 81.336725 final value 81.336725 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 113.908245 iter 10 value 93.878725 iter 20 value 88.516709 iter 30 value 83.318020 iter 40 value 82.144582 iter 50 value 81.012024 iter 60 value 80.332178 iter 70 value 79.996739 iter 80 value 79.689934 iter 90 value 79.384473 iter 100 value 79.367449 final value 79.367449 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.862252 iter 10 value 94.404440 iter 20 value 85.191028 iter 30 value 84.523591 iter 40 value 83.209842 iter 50 value 81.776206 iter 60 value 81.079802 iter 70 value 80.867738 iter 80 value 79.870544 iter 90 value 79.812427 iter 100 value 79.616931 final value 79.616931 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.316073 iter 10 value 96.283945 iter 20 value 86.863411 iter 30 value 86.068183 iter 40 value 85.864169 iter 50 value 83.594755 iter 60 value 80.474301 iter 70 value 79.385863 iter 80 value 79.166905 iter 90 value 78.940492 iter 100 value 78.765701 final value 78.765701 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.932977 iter 10 value 94.451401 iter 20 value 94.177414 iter 30 value 85.177937 iter 40 value 82.201218 iter 50 value 81.233666 iter 60 value 80.267273 iter 70 value 79.650481 iter 80 value 79.411618 iter 90 value 79.120557 iter 100 value 78.728115 final value 78.728115 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.430499 iter 10 value 94.559439 iter 20 value 94.547304 iter 30 value 94.497175 iter 40 value 93.114440 iter 50 value 87.751380 iter 60 value 87.736008 iter 70 value 87.734390 iter 80 value 87.728261 final value 87.728087 converged Fitting Repeat 2 # weights: 103 initial value 97.272604 iter 10 value 94.457188 iter 20 value 92.702675 iter 30 value 92.603486 iter 40 value 91.083526 final value 91.083490 converged Fitting Repeat 3 # weights: 103 initial value 99.385291 final value 94.486004 converged Fitting Repeat 4 # weights: 103 initial value 97.592192 final value 94.254543 converged Fitting Repeat 5 # weights: 103 initial value 98.991262 iter 10 value 94.486106 final value 94.484323 converged Fitting Repeat 1 # weights: 305 initial value 97.978482 iter 10 value 94.488534 iter 20 value 89.275067 iter 30 value 84.864330 iter 40 value 84.827636 iter 50 value 84.823893 iter 60 value 84.796790 iter 70 value 84.793549 iter 80 value 83.452434 iter 90 value 82.922273 final value 82.922262 converged Fitting Repeat 2 # weights: 305 initial value 110.210535 iter 10 value 94.280436 iter 20 value 94.024746 final value 94.023592 converged Fitting Repeat 3 # weights: 305 initial value 108.664595 iter 10 value 94.488648 iter 20 value 94.457735 iter 30 value 90.401025 iter 40 value 83.186838 iter 50 value 82.940874 iter 60 value 82.881748 iter 70 value 82.867771 iter 80 value 82.788138 iter 90 value 82.126030 iter 100 value 81.730628 final value 81.730628 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 112.966032 iter 10 value 94.492494 iter 20 value 94.463452 iter 30 value 94.031556 iter 40 value 94.026923 iter 50 value 94.026444 iter 60 value 94.026011 iter 70 value 94.024839 iter 80 value 94.024746 iter 90 value 94.023732 final value 94.023591 converged Fitting Repeat 5 # weights: 305 initial value 115.315059 iter 10 value 94.489125 iter 20 value 94.420136 iter 30 value 92.516893 iter 40 value 85.844112 iter 50 value 85.293642 iter 60 value 84.871803 iter 70 value 84.867841 iter 80 value 84.823872 iter 90 value 81.215513 iter 100 value 81.145342 final value 81.145342 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 103.853817 iter 10 value 94.028832 iter 20 value 93.770010 iter 30 value 90.743962 iter 40 value 88.764366 iter 50 value 88.751014 iter 60 value 88.749835 iter 70 value 88.398740 iter 80 value 88.397322 iter 90 value 88.394064 iter 100 value 88.391351 final value 88.391351 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.437405 iter 10 value 93.487690 iter 20 value 88.676372 iter 30 value 87.624080 iter 40 value 84.631510 iter 50 value 82.604880 iter 60 value 82.477323 iter 70 value 82.461379 iter 80 value 82.458561 iter 90 value 82.458520 final value 82.458485 converged Fitting Repeat 3 # weights: 507 initial value 113.245666 iter 10 value 94.047479 iter 20 value 93.730788 iter 30 value 92.787548 iter 40 value 92.753748 iter 50 value 92.753487 iter 60 value 92.742584 iter 70 value 89.449762 iter 80 value 86.852498 iter 90 value 80.592081 iter 100 value 79.023314 final value 79.023314 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.105475 iter 10 value 86.379178 iter 20 value 79.611236 iter 30 value 79.559828 iter 40 value 79.461899 iter 50 value 79.345587 iter 60 value 79.344551 final value 79.344488 converged Fitting Repeat 5 # weights: 507 initial value 96.730193 iter 10 value 94.491218 iter 20 value 94.043047 iter 30 value 94.031438 iter 40 value 93.894381 iter 50 value 89.173671 iter 60 value 89.162922 iter 70 value 86.173810 iter 80 value 84.303068 iter 90 value 84.205844 iter 100 value 83.862690 final value 83.862690 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 163.950118 iter 10 value 117.895122 iter 20 value 117.629408 iter 30 value 108.577565 iter 40 value 107.528576 iter 50 value 106.914815 iter 60 value 106.777725 final value 106.777709 converged Fitting Repeat 2 # weights: 305 initial value 128.376103 iter 10 value 117.764018 iter 20 value 117.399959 iter 30 value 105.361813 iter 40 value 105.188090 iter 50 value 102.039665 iter 60 value 100.772729 iter 70 value 100.440935 iter 80 value 100.367939 final value 100.367926 converged Fitting Repeat 3 # weights: 305 initial value 133.136756 iter 10 value 117.211175 iter 20 value 117.207423 final value 117.207022 converged Fitting Repeat 4 # weights: 305 initial value 138.950569 iter 10 value 117.894433 iter 20 value 117.890423 iter 30 value 115.713264 iter 40 value 109.296638 iter 50 value 109.292293 iter 60 value 106.841950 iter 70 value 106.819195 iter 80 value 106.817730 iter 90 value 106.618616 iter 100 value 104.734003 final value 104.734003 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 127.075932 iter 10 value 117.894866 iter 20 value 117.890407 iter 30 value 117.716399 iter 40 value 114.412920 iter 50 value 114.404895 final value 114.404827 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Fri Jan 3 23:01:49 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 39.463 1.044 47.359
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 34.364 | 0.452 | 34.822 | |
FreqInteractors | 0.209 | 0.012 | 0.221 | |
calculateAAC | 0.033 | 0.007 | 0.040 | |
calculateAutocor | 0.284 | 0.023 | 0.308 | |
calculateCTDC | 0.070 | 0.000 | 0.071 | |
calculateCTDD | 0.504 | 0.001 | 0.505 | |
calculateCTDT | 0.181 | 0.002 | 0.182 | |
calculateCTriad | 0.372 | 0.014 | 0.385 | |
calculateDC | 0.082 | 0.007 | 0.089 | |
calculateF | 0.300 | 0.004 | 0.305 | |
calculateKSAAP | 0.089 | 0.007 | 0.096 | |
calculateQD_Sm | 1.582 | 0.046 | 1.628 | |
calculateTC | 1.535 | 0.160 | 1.695 | |
calculateTC_Sm | 0.231 | 0.007 | 0.238 | |
corr_plot | 33.798 | 0.539 | 34.351 | |
enrichfindP | 0.496 | 0.033 | 8.874 | |
enrichfind_hp | 0.075 | 0.006 | 1.038 | |
enrichplot | 0.331 | 0.002 | 0.333 | |
filter_missing_values | 0.001 | 0.000 | 0.001 | |
getFASTA | 0.486 | 0.012 | 3.971 | |
getHPI | 0.001 | 0.001 | 0.002 | |
get_negativePPI | 0.002 | 0.002 | 0.003 | |
get_positivePPI | 0.000 | 0.001 | 0.000 | |
impute_missing_data | 0.001 | 0.003 | 0.004 | |
plotPPI | 0.081 | 0.000 | 0.081 | |
pred_ensembel | 12.853 | 0.148 | 11.711 | |
var_imp | 35.020 | 0.471 | 35.551 | |