Back to Multiple platform build/check report for BioC 3.21:   simplified   long
ABCD[E]FGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-03-17 11:41 -0400 (Mon, 17 Mar 2025).

HostnameOSArch (*)R versionInstalled pkgs
palomino7Windows Server 2022 Datacenterx64R Under development (unstable) (2025-03-01 r87860 ucrt) -- "Unsuffered Consequences" 4545
lconwaymacOS 12.7.1 Montereyx86_64R Under development (unstable) (2025-03-02 r87868) -- "Unsuffered Consequences" 4576
kjohnson3macOS 13.7.1 Venturaarm64R Under development (unstable) (2025-03-02 r87868) -- "Unsuffered Consequences" 4528
kunpeng2Linux (openEuler 24.03 LTS)aarch64R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" 4459
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 645/2313HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
ELViS 0.99.13  (landing page)
Jin-Young Lee
Snapshot Date: 2025-03-16 13:40 -0400 (Sun, 16 Mar 2025)
git_url: https://git.bioconductor.org/packages/ELViS
git_branch: devel
git_last_commit: ed429d6
git_last_commit_date: 2025-03-04 16:08:37 -0400 (Tue, 04 Mar 2025)
palomino7Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.1 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published
kunpeng2Linux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for ELViS on kunpeng2

To the developers/maintainers of the ELViS package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/ELViS.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.
- See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host.

raw results


Summary

Package: ELViS
Version: 0.99.13
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:ELViS.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings ELViS_0.99.13.tar.gz
StartedAt: 2025-03-17 06:01:18 -0000 (Mon, 17 Mar 2025)
EndedAt: 2025-03-17 06:11:40 -0000 (Mon, 17 Mar 2025)
EllapsedTime: 621.5 seconds
RetCode: 0
Status:   OK  
CheckDir: ELViS.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD check --install=check:ELViS.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings ELViS_0.99.13.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.21-bioc/meat/ELViS.Rcheck’
* using R Under development (unstable) (2025-02-19 r87757)
* using platform: aarch64-unknown-linux-gnu
* R was compiled by
    aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0
    GNU Fortran (GCC) 14.2.0
* running under: openEuler 24.03 (LTS-SP1)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘ELViS/DESCRIPTION’ ... OK
* this is package ‘ELViS’ version ‘0.99.13’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Imports includes 21 non-default packages.
Importing from so many packages makes the package vulnerable to any of
them becoming unavailable.  Move as many as possible to Suggests and
use conditionally.
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘ELViS’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                      user system elapsed
run_ELViS           93.976  1.337 102.097
integrative_heatmap 42.008  0.886  42.826
gene_cn_heatmaps    17.821  0.407  18.271
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: OK


Installation output

ELViS.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD INSTALL ELViS
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/R/R-devel_2025-02-19/site-library’
* installing *source* package ‘ELViS’ ...
** this is package ‘ELViS’ version ‘0.99.13’
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (ELViS)

Tests output

ELViS.Rcheck/tests/testthat.Rout

R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview
> # * https://testthat.r-lib.org/articles/special-files.html
> 
> library(testthat)
> library(ELViS)
> 
> test_check("ELViS")
ELViS run starts.
1

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 2 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
1| done
2

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 2 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
2| done
3

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 2 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
3| done
4

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 1 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
4| done
5

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 1 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
5| done
6

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 1 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
6| done

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using ncluster = 2L
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
! Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running Segmentation/Clustering algorithm ───────────────────────────────────
ℹ Running Segmentation/Clustering with lmin = 5, Kmax = 3 and ncluster = 2L
→ Calculating initial segmentation without clustering
✔ Initial segmentation with no cluster calculated.
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
── Segmentation/Clustering with ncluster = 2 
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
→ Segmentation-Clustering for ncluster = 2 and nseg = 2/3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
✔ Segmentation-Clustering successful for ncluster = 2 and nseg = 2:3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
✔ Smoothing successful for ncluster = 2
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
→ Calculating initial segmentation without clustering
✔ Segmentation/Clustering with ncluster = 2 successfully calculated.
BIC selected : nseg = 2
→ Calculating initial segmentation without clustering
── Segmentation/Clustering results ─────────────────────────────────────────────
✔ Best segmentation/clustering estimated with 2 clusters and 2 segments according to BIC
→ Number of cluster should preferentially be selected according to biological
knowledge. Exploring the BIC plot with plot_BIC() can also provide advice to
select the number of clusters.
→ Once number of clusters is selected, the number of segment cab be selected
according to BIC.
→ Results of the segmentation/clustering may further be explored with plot()
and segmap()
! Argument ncluster was not provided. Selecting values with BIC
ℹ BIC-selected number of class : ncluster = 2
BIC-selected number of segment : nseg = 2
1| done

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using ncluster = 2L
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
! Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running Segmentation/Clustering algorithm ───────────────────────────────────
ℹ Running Segmentation/Clustering with lmin = 5, Kmax = 3 and ncluster = 2L
→ Calculating initial segmentation without clustering
✔ Initial segmentation with no cluster calculated.
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
── Segmentation/Clustering with ncluster = 2 
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
→ Segmentation-Clustering for ncluster = 2 and nseg = 2/3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
✔ Segmentation-Clustering successful for ncluster = 2 and nseg = 2:3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
✔ Smoothing successful for ncluster = 2
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
→ Calculating initial segmentation without clustering
✔ Segmentation/Clustering with ncluster = 2 successfully calculated.
BIC selected : nseg = 2
→ Calculating initial segmentation without clustering
── Segmentation/Clustering results ─────────────────────────────────────────────
✔ Best segmentation/clustering estimated with 2 clusters and 2 segments according to BIC
→ Number of cluster should preferentially be selected according to biological
knowledge. Exploring the BIC plot with plot_BIC() can also provide advice to
select the number of clusters.
→ Once number of clusters is selected, the number of segment cab be selected
according to BIC.
→ Results of the segmentation/clustering may further be explored with plot()
and segmap()
! Argument ncluster was not provided. Selecting values with BIC
ℹ BIC-selected number of class : ncluster = 2
BIC-selected number of segment : nseg = 2
2| done

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using ncluster = 2L
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
! Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running Segmentation/Clustering algorithm ───────────────────────────────────
ℹ Running Segmentation/Clustering with lmin = 5, Kmax = 3 and ncluster = 2L
→ Calculating initial segmentation without clustering
✔ Initial segmentation with no cluster calculated.
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
── Segmentation/Clustering with ncluster = 2 
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
→ Segmentation-Clustering for ncluster = 2 and nseg = 2/3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
✔ Segmentation-Clustering successful for ncluster = 2 and nseg = 2:3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
✔ Smoothing successful for ncluster = 2
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
→ Calculating initial segmentation without clustering
✔ Segmentation/Clustering with ncluster = 2 successfully calculated.
BIC selected : nseg = 2
→ Calculating initial segmentation without clustering
── Segmentation/Clustering results ─────────────────────────────────────────────
✔ Best segmentation/clustering estimated with 2 clusters and 2 segments according to BIC
→ Number of cluster should preferentially be selected according to biological
knowledge. Exploring the BIC plot with plot_BIC() can also provide advice to
select the number of clusters.
→ Once number of clusters is selected, the number of segment cab be selected
according to BIC.
→ Results of the segmentation/clustering may further be explored with plot()
and segmap()
! Argument ncluster was not provided. Selecting values with BIC
ℹ BIC-selected number of class : ncluster = 2
BIC-selected number of segment : nseg = 2
3| done
4| done
5| done
6| done
1

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 2 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
1| done
2

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 2 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
2| done
3

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 2 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
3| done
4

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 1 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
4| done
5

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 1 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
5| done
6

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 2 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
6| done

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using ncluster = 2L
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
! Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running Segmentation/Clustering algorithm ───────────────────────────────────
ℹ Running Segmentation/Clustering with lmin = 5, Kmax = 3 and ncluster = 2L
→ Calculating initial segmentation without clustering
✔ Initial segmentation with no cluster calculated.
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
── Segmentation/Clustering with ncluster = 2 
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
→ Segmentation-Clustering for ncluster = 2 and nseg = 2/3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
✔ Segmentation-Clustering successful for ncluster = 2 and nseg = 2:3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
✔ Smoothing successful for ncluster = 2
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
→ Calculating initial segmentation without clustering
✔ Segmentation/Clustering with ncluster = 2 successfully calculated.
BIC selected : nseg = 2
→ Calculating initial segmentation without clustering
── Segmentation/Clustering results ─────────────────────────────────────────────
✔ Best segmentation/clustering estimated with 2 clusters and 2 segments according to BIC
→ Number of cluster should preferentially be selected according to biological
knowledge. Exploring the BIC plot with plot_BIC() can also provide advice to
select the number of clusters.
→ Once number of clusters is selected, the number of segment cab be selected
according to BIC.
→ Results of the segmentation/clustering may further be explored with plot()
and segmap()
! Argument ncluster was not provided. Selecting values with BIC
ℹ BIC-selected number of class : ncluster = 2
BIC-selected number of segment : nseg = 2
1| done

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using ncluster = 2L
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
! Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running Segmentation/Clustering algorithm ───────────────────────────────────
ℹ Running Segmentation/Clustering with lmin = 5, Kmax = 3 and ncluster = 2L
→ Calculating initial segmentation without clustering
✔ Initial segmentation with no cluster calculated.
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
── Segmentation/Clustering with ncluster = 2 
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
→ Segmentation-Clustering for ncluster = 2 and nseg = 2/3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
✔ Segmentation-Clustering successful for ncluster = 2 and nseg = 2:3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
✔ Smoothing successful for ncluster = 2
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
→ Calculating initial segmentation without clustering
✔ Segmentation/Clustering with ncluster = 2 successfully calculated.
BIC selected : nseg = 2
→ Calculating initial segmentation without clustering
── Segmentation/Clustering results ─────────────────────────────────────────────
✔ Best segmentation/clustering estimated with 2 clusters and 2 segments according to BIC
→ Number of cluster should preferentially be selected according to biological
knowledge. Exploring the BIC plot with plot_BIC() can also provide advice to
select the number of clusters.
→ Once number of clusters is selected, the number of segment cab be selected
according to BIC.
→ Results of the segmentation/clustering may further be explored with plot()
and segmap()
! Argument ncluster was not provided. Selecting values with BIC
ℹ BIC-selected number of class : ncluster = 2
BIC-selected number of segment : nseg = 2
2| done

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using ncluster = 2L
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
! Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running Segmentation/Clustering algorithm ───────────────────────────────────
ℹ Running Segmentation/Clustering with lmin = 5, Kmax = 3 and ncluster = 2L
→ Calculating initial segmentation without clustering
✔ Initial segmentation with no cluster calculated.
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
── Segmentation/Clustering with ncluster = 2 
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
→ Segmentation-Clustering for ncluster = 2 and nseg = 2/3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
✔ Segmentation-Clustering successful for ncluster = 2 and nseg = 2:3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
✔ Smoothing successful for ncluster = 2
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
→ Calculating initial segmentation without clustering
✔ Segmentation/Clustering with ncluster = 2 successfully calculated.
BIC selected : nseg = 2
→ Calculating initial segmentation without clustering
── Segmentation/Clustering results ─────────────────────────────────────────────
✔ Best segmentation/clustering estimated with 2 clusters and 2 segments according to BIC
→ Number of cluster should preferentially be selected according to biological
knowledge. Exploring the BIC plot with plot_BIC() can also provide advice to
select the number of clusters.
→ Once number of clusters is selected, the number of segment cab be selected
according to BIC.
→ Results of the segmentation/clustering may further be explored with plot()
and segmap()
! Argument ncluster was not provided. Selecting values with BIC
ℹ BIC-selected number of class : ncluster = 2
BIC-selected number of segment : nseg = 2
3| done
4| done
5| done

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using ncluster = 2L
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
! Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running Segmentation/Clustering algorithm ───────────────────────────────────
ℹ Running Segmentation/Clustering with lmin = 5, Kmax = 3 and ncluster = 2L
→ Calculating initial segmentation without clustering
✔ Initial segmentation with no cluster calculated.
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
── Segmentation/Clustering with ncluster = 2 
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
→ Segmentation-Clustering for ncluster = 2 and nseg = 2/3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
✔ Segmentation-Clustering successful for ncluster = 2 and nseg = 2:3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
✔ Smoothing successful for ncluster = 2
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
→ Calculating initial segmentation without clustering
✔ Segmentation/Clustering with ncluster = 2 successfully calculated.
BIC selected : nseg = 2
→ Calculating initial segmentation without clustering
── Segmentation/Clustering results ─────────────────────────────────────────────
✔ Best segmentation/clustering estimated with 2 clusters and 2 segments according to BIC
→ Number of cluster should preferentially be selected according to biological
knowledge. Exploring the BIC plot with plot_BIC() can also provide advice to
select the number of clusters.
→ Once number of clusters is selected, the number of segment cab be selected
according to BIC.
→ Results of the segmentation/clustering may further be explored with plot()
and segmap()
! Argument ncluster was not provided. Selecting values with BIC
ℹ BIC-selected number of class : ncluster = 2
BIC-selected number of segment : nseg = 2
6| done
Normalization done.

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 2 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using ncluster = 2L
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
! Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running Segmentation/Clustering algorithm ───────────────────────────────────
ℹ Running Segmentation/Clustering with lmin = 5, Kmax = 3 and ncluster = 2L
→ Calculating initial segmentation without clustering
✔ Initial segmentation with no cluster calculated.
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
── Segmentation/Clustering with ncluster = 2 
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
→ Segmentation-Clustering for ncluster = 2 and nseg = 2/3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
✔ Segmentation-Clustering successful for ncluster = 2 and nseg = 2:3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
✔ Smoothing successful for ncluster = 2
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
→ Calculating initial segmentation without clustering
✔ Segmentation/Clustering with ncluster = 2 successfully calculated.
BIC selected : nseg = 2
→ Calculating initial segmentation without clustering
── Segmentation/Clustering results ─────────────────────────────────────────────
✔ Best segmentation/clustering estimated with 2 clusters and 2 segments according to BIC
→ Number of cluster should preferentially be selected according to biological
knowledge. Exploring the BIC plot with plot_BIC() can also provide advice to
select the number of clusters.
→ Once number of clusters is selected, the number of segment cab be selected
according to BIC.
→ Results of the segmentation/clustering may further be explored with plot()
and segmap()
1| done

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 2 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using ncluster = 2L
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
! Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running Segmentation/Clustering algorithm ───────────────────────────────────
ℹ Running Segmentation/Clustering with lmin = 5, Kmax = 3 and ncluster = 2L
→ Calculating initial segmentation without clustering
✔ Initial segmentation with no cluster calculated.
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
── Segmentation/Clustering with ncluster = 2 
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
→ Segmentation-Clustering for ncluster = 2 and nseg = 2/3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
✔ Segmentation-Clustering successful for ncluster = 2 and nseg = 2:3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
✔ Smoothing successful for ncluster = 2
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
→ Calculating initial segmentation without clustering
✔ Segmentation/Clustering with ncluster = 2 successfully calculated.
BIC selected : nseg = 2
→ Calculating initial segmentation without clustering
── Segmentation/Clustering results ─────────────────────────────────────────────
✔ Best segmentation/clustering estimated with 2 clusters and 2 segments according to BIC
→ Number of cluster should preferentially be selected according to biological
knowledge. Exploring the BIC plot with plot_BIC() can also provide advice to
select the number of clusters.
→ Once number of clusters is selected, the number of segment cab be selected
according to BIC.
→ Results of the segmentation/clustering may further be explored with plot()
and segmap()
2| done

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 1 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
3| done
4| done
5| done

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 1 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
6| done
1
1
2
2
3
3
4
4
5
5
6
6
Segmentation done.
ELViS run starts.
1

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 2 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
1| done
2

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 2 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
2| done
3

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 2 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
3| done
4

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 1 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
4| done
5

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 1 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
5| done
6

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 1 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
6| done

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using ncluster = 2L
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
! Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running Segmentation/Clustering algorithm ───────────────────────────────────
ℹ Running Segmentation/Clustering with lmin = 5, Kmax = 3 and ncluster = 2L
→ Calculating initial segmentation without clustering
✔ Initial segmentation with no cluster calculated.
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
── Segmentation/Clustering with ncluster = 2 
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
→ Segmentation-Clustering for ncluster = 2 and nseg = 2/3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
✔ Segmentation-Clustering successful for ncluster = 2 and nseg = 2:3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
✔ Smoothing successful for ncluster = 2
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
→ Calculating initial segmentation without clustering
✔ Segmentation/Clustering with ncluster = 2 successfully calculated.
BIC selected : nseg = 2
→ Calculating initial segmentation without clustering
── Segmentation/Clustering results ─────────────────────────────────────────────
✔ Best segmentation/clustering estimated with 2 clusters and 2 segments according to BIC
→ Number of cluster should preferentially be selected according to biological
knowledge. Exploring the BIC plot with plot_BIC() can also provide advice to
select the number of clusters.
→ Once number of clusters is selected, the number of segment cab be selected
according to BIC.
→ Results of the segmentation/clustering may further be explored with plot()
and segmap()
! Argument ncluster was not provided. Selecting values with BIC
ℹ BIC-selected number of class : ncluster = 2
BIC-selected number of segment : nseg = 2
1| done

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using ncluster = 2L
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
! Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running Segmentation/Clustering algorithm ───────────────────────────────────
ℹ Running Segmentation/Clustering with lmin = 5, Kmax = 3 and ncluster = 2L
→ Calculating initial segmentation without clustering
✔ Initial segmentation with no cluster calculated.
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
── Segmentation/Clustering with ncluster = 2 
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
→ Segmentation-Clustering for ncluster = 2 and nseg = 2/3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
✔ Segmentation-Clustering successful for ncluster = 2 and nseg = 2:3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
✔ Smoothing successful for ncluster = 2
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
→ Calculating initial segmentation without clustering
✔ Segmentation/Clustering with ncluster = 2 successfully calculated.
BIC selected : nseg = 2
→ Calculating initial segmentation without clustering
── Segmentation/Clustering results ─────────────────────────────────────────────
✔ Best segmentation/clustering estimated with 2 clusters and 2 segments according to BIC
→ Number of cluster should preferentially be selected according to biological
knowledge. Exploring the BIC plot with plot_BIC() can also provide advice to
select the number of clusters.
→ Once number of clusters is selected, the number of segment cab be selected
according to BIC.
→ Results of the segmentation/clustering may further be explored with plot()
and segmap()
! Argument ncluster was not provided. Selecting values with BIC
ℹ BIC-selected number of class : ncluster = 2
BIC-selected number of segment : nseg = 2
2| done

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using ncluster = 2L
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
! Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running Segmentation/Clustering algorithm ───────────────────────────────────
ℹ Running Segmentation/Clustering with lmin = 5, Kmax = 3 and ncluster = 2L
→ Calculating initial segmentation without clustering
✔ Initial segmentation with no cluster calculated.
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
── Segmentation/Clustering with ncluster = 2 
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
→ Segmentation-Clustering for ncluster = 2 and nseg = 2/3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
✔ Segmentation-Clustering successful for ncluster = 2 and nseg = 2:3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
✔ Smoothing successful for ncluster = 2
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
→ Calculating initial segmentation without clustering
✔ Segmentation/Clustering with ncluster = 2 successfully calculated.
BIC selected : nseg = 2
→ Calculating initial segmentation without clustering
── Segmentation/Clustering results ─────────────────────────────────────────────
✔ Best segmentation/clustering estimated with 2 clusters and 2 segments according to BIC
→ Number of cluster should preferentially be selected according to biological
knowledge. Exploring the BIC plot with plot_BIC() can also provide advice to
select the number of clusters.
→ Once number of clusters is selected, the number of segment cab be selected
according to BIC.
→ Results of the segmentation/clustering may further be explored with plot()
and segmap()
! Argument ncluster was not provided. Selecting values with BIC
ℹ BIC-selected number of class : ncluster = 2
BIC-selected number of segment : nseg = 2
3| done
4| done
5| done
6| done
1

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 2 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
1| done
2

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 2 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
2| done
3

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 2 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
3| done
4

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 1 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
4| done
5

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 1 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
5| done
6

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 2 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
6| done

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using ncluster = 2L
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
! Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running Segmentation/Clustering algorithm ───────────────────────────────────
ℹ Running Segmentation/Clustering with lmin = 5, Kmax = 3 and ncluster = 2L
→ Calculating initial segmentation without clustering
✔ Initial segmentation with no cluster calculated.
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
── Segmentation/Clustering with ncluster = 2 
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
→ Segmentation-Clustering for ncluster = 2 and nseg = 2/3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
✔ Segmentation-Clustering successful for ncluster = 2 and nseg = 2:3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
✔ Smoothing successful for ncluster = 2
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
→ Calculating initial segmentation without clustering
✔ Segmentation/Clustering with ncluster = 2 successfully calculated.
BIC selected : nseg = 2
→ Calculating initial segmentation without clustering
── Segmentation/Clustering results ─────────────────────────────────────────────
✔ Best segmentation/clustering estimated with 2 clusters and 2 segments according to BIC
→ Number of cluster should preferentially be selected according to biological
knowledge. Exploring the BIC plot with plot_BIC() can also provide advice to
select the number of clusters.
→ Once number of clusters is selected, the number of segment cab be selected
according to BIC.
→ Results of the segmentation/clustering may further be explored with plot()
and segmap()
! Argument ncluster was not provided. Selecting values with BIC
ℹ BIC-selected number of class : ncluster = 2
BIC-selected number of segment : nseg = 2
1| done

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using ncluster = 2L
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
! Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running Segmentation/Clustering algorithm ───────────────────────────────────
ℹ Running Segmentation/Clustering with lmin = 5, Kmax = 3 and ncluster = 2L
→ Calculating initial segmentation without clustering
✔ Initial segmentation with no cluster calculated.
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
── Segmentation/Clustering with ncluster = 2 
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
→ Segmentation-Clustering for ncluster = 2 and nseg = 2/3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
✔ Segmentation-Clustering successful for ncluster = 2 and nseg = 2:3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
✔ Smoothing successful for ncluster = 2
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
→ Calculating initial segmentation without clustering
✔ Segmentation/Clustering with ncluster = 2 successfully calculated.
BIC selected : nseg = 2
→ Calculating initial segmentation without clustering
── Segmentation/Clustering results ─────────────────────────────────────────────
✔ Best segmentation/clustering estimated with 2 clusters and 2 segments according to BIC
→ Number of cluster should preferentially be selected according to biological
knowledge. Exploring the BIC plot with plot_BIC() can also provide advice to
select the number of clusters.
→ Once number of clusters is selected, the number of segment cab be selected
according to BIC.
→ Results of the segmentation/clustering may further be explored with plot()
and segmap()
! Argument ncluster was not provided. Selecting values with BIC
ℹ BIC-selected number of class : ncluster = 2
BIC-selected number of segment : nseg = 2
2| done

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using ncluster = 2L
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
! Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running Segmentation/Clustering algorithm ───────────────────────────────────
ℹ Running Segmentation/Clustering with lmin = 5, Kmax = 3 and ncluster = 2L
→ Calculating initial segmentation without clustering
✔ Initial segmentation with no cluster calculated.
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
── Segmentation/Clustering with ncluster = 2 
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
→ Segmentation-Clustering for ncluster = 2 and nseg = 2/3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
✔ Segmentation-Clustering successful for ncluster = 2 and nseg = 2:3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
✔ Smoothing successful for ncluster = 2
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
→ Calculating initial segmentation without clustering
✔ Segmentation/Clustering with ncluster = 2 successfully calculated.
BIC selected : nseg = 2
→ Calculating initial segmentation without clustering
── Segmentation/Clustering results ─────────────────────────────────────────────
✔ Best segmentation/clustering estimated with 2 clusters and 2 segments according to BIC
→ Number of cluster should preferentially be selected according to biological
knowledge. Exploring the BIC plot with plot_BIC() can also provide advice to
select the number of clusters.
→ Once number of clusters is selected, the number of segment cab be selected
according to BIC.
→ Results of the segmentation/clustering may further be explored with plot()
and segmap()
! Argument ncluster was not provided. Selecting values with BIC
ℹ BIC-selected number of class : ncluster = 2
BIC-selected number of segment : nseg = 2
3| done
4| done
5| done

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using ncluster = 2L
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
! Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running Segmentation/Clustering algorithm ───────────────────────────────────
ℹ Running Segmentation/Clustering with lmin = 5, Kmax = 3 and ncluster = 2L
→ Calculating initial segmentation without clustering
✔ Initial segmentation with no cluster calculated.
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
── Segmentation/Clustering with ncluster = 2 
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
→ Segmentation-Clustering for ncluster = 2 and nseg = 2/3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
✔ Segmentation-Clustering successful for ncluster = 2 and nseg = 2:3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
✔ Smoothing successful for ncluster = 2
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
→ Calculating initial segmentation without clustering
✔ Segmentation/Clustering with ncluster = 2 successfully calculated.
BIC selected : nseg = 2
→ Calculating initial segmentation without clustering
── Segmentation/Clustering results ─────────────────────────────────────────────
✔ Best segmentation/clustering estimated with 2 clusters and 2 segments according to BIC
→ Number of cluster should preferentially be selected according to biological
knowledge. Exploring the BIC plot with plot_BIC() can also provide advice to
select the number of clusters.
→ Once number of clusters is selected, the number of segment cab be selected
according to BIC.
→ Results of the segmentation/clustering may further be explored with plot()
and segmap()
! Argument ncluster was not provided. Selecting values with BIC
ℹ BIC-selected number of class : ncluster = 2
BIC-selected number of segment : nseg = 2
6| done
Normalization done.

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 2 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using ncluster = 2L
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
! Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running Segmentation/Clustering algorithm ───────────────────────────────────
ℹ Running Segmentation/Clustering with lmin = 5, Kmax = 3 and ncluster = 2L
→ Calculating initial segmentation without clustering
✔ Initial segmentation with no cluster calculated.
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
── Segmentation/Clustering with ncluster = 2 
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
→ Segmentation-Clustering for ncluster = 2 and nseg = 2/3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
✔ Segmentation-Clustering successful for ncluster = 2 and nseg = 2:3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
✔ Smoothing successful for ncluster = 2
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
→ Calculating initial segmentation without clustering
✔ Segmentation/Clustering with ncluster = 2 successfully calculated.
BIC selected : nseg = 2
→ Calculating initial segmentation without clustering
── Segmentation/Clustering results ─────────────────────────────────────────────
✔ Best segmentation/clustering estimated with 2 clusters and 2 segments according to BIC
→ Number of cluster should preferentially be selected according to biological
knowledge. Exploring the BIC plot with plot_BIC() can also provide advice to
select the number of clusters.
→ Once number of clusters is selected, the number of segment cab be selected
according to BIC.
→ Results of the segmentation/clustering may further be explored with plot()
and segmap()
1| done

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 2 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using ncluster = 2L
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
! Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running Segmentation/Clustering algorithm ───────────────────────────────────
ℹ Running Segmentation/Clustering with lmin = 5, Kmax = 3 and ncluster = 2L
→ Calculating initial segmentation without clustering
✔ Initial segmentation with no cluster calculated.
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
── Segmentation/Clustering with ncluster = 2 
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
→ Segmentation-Clustering for ncluster = 2 and nseg = 2/3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
✔ Segmentation-Clustering successful for ncluster = 2 and nseg = 2:3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
✔ Smoothing successful for ncluster = 2
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
→ Calculating initial segmentation without clustering
✔ Segmentation/Clustering with ncluster = 2 successfully calculated.
BIC selected : nseg = 2
→ Calculating initial segmentation without clustering
── Segmentation/Clustering results ─────────────────────────────────────────────
✔ Best segmentation/clustering estimated with 2 clusters and 2 segments according to BIC
→ Number of cluster should preferentially be selected according to biological
knowledge. Exploring the BIC plot with plot_BIC() can also provide advice to
select the number of clusters.
→ Once number of clusters is selected, the number of segment cab be selected
according to BIC.
→ Results of the segmentation/clustering may further be explored with plot()
and segmap()
2| done

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 1 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
3| done
4| done
5| done

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 1 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
6| done
1
1
2
2
3
3
4
4
5
5
6
6
Segmentation done.
1

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 2 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
1| done
2

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 2 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
2| done
3

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 2 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
3| done
4

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 1 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
4| done
5

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 1 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
5| done
6

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 1 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
6| done

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using ncluster = 2L
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
! Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running Segmentation/Clustering algorithm ───────────────────────────────────
ℹ Running Segmentation/Clustering with lmin = 5, Kmax = 3 and ncluster = 2L
→ Calculating initial segmentation without clustering
✔ Initial segmentation with no cluster calculated.
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
── Segmentation/Clustering with ncluster = 2 
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
→ Segmentation-Clustering for ncluster = 2 and nseg = 2/3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
✔ Segmentation-Clustering successful for ncluster = 2 and nseg = 2:3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
✔ Smoothing successful for ncluster = 2
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
→ Calculating initial segmentation without clustering
✔ Segmentation/Clustering with ncluster = 2 successfully calculated.
BIC selected : nseg = 2
→ Calculating initial segmentation without clustering
── Segmentation/Clustering results ─────────────────────────────────────────────
✔ Best segmentation/clustering estimated with 2 clusters and 2 segments according to BIC
→ Number of cluster should preferentially be selected according to biological
knowledge. Exploring the BIC plot with plot_BIC() can also provide advice to
select the number of clusters.
→ Once number of clusters is selected, the number of segment cab be selected
according to BIC.
→ Results of the segmentation/clustering may further be explored with plot()
and segmap()
! Argument ncluster was not provided. Selecting values with BIC
ℹ BIC-selected number of class : ncluster = 2
BIC-selected number of segment : nseg = 2
1| done

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using ncluster = 2L
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
! Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running Segmentation/Clustering algorithm ───────────────────────────────────
ℹ Running Segmentation/Clustering with lmin = 5, Kmax = 3 and ncluster = 2L
→ Calculating initial segmentation without clustering
✔ Initial segmentation with no cluster calculated.
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
── Segmentation/Clustering with ncluster = 2 
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
→ Segmentation-Clustering for ncluster = 2 and nseg = 2/3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
✔ Segmentation-Clustering successful for ncluster = 2 and nseg = 2:3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
✔ Smoothing successful for ncluster = 2
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
→ Calculating initial segmentation without clustering
✔ Segmentation/Clustering with ncluster = 2 successfully calculated.
BIC selected : nseg = 2
→ Calculating initial segmentation without clustering
── Segmentation/Clustering results ─────────────────────────────────────────────
✔ Best segmentation/clustering estimated with 2 clusters and 2 segments according to BIC
→ Number of cluster should preferentially be selected according to biological
knowledge. Exploring the BIC plot with plot_BIC() can also provide advice to
select the number of clusters.
→ Once number of clusters is selected, the number of segment cab be selected
according to BIC.
→ Results of the segmentation/clustering may further be explored with plot()
and segmap()
! Argument ncluster was not provided. Selecting values with BIC
ℹ BIC-selected number of class : ncluster = 2
BIC-selected number of segment : nseg = 2
2| done

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using ncluster = 2L
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
! Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running Segmentation/Clustering algorithm ───────────────────────────────────
ℹ Running Segmentation/Clustering with lmin = 5, Kmax = 3 and ncluster = 2L
→ Calculating initial segmentation without clustering
✔ Initial segmentation with no cluster calculated.
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
── Segmentation/Clustering with ncluster = 2 
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
→ Segmentation-Clustering for ncluster = 2 and nseg = 2/3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
✔ Segmentation-Clustering successful for ncluster = 2 and nseg = 2:3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
✔ Smoothing successful for ncluster = 2
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
→ Calculating initial segmentation without clustering
✔ Segmentation/Clustering with ncluster = 2 successfully calculated.
BIC selected : nseg = 2
→ Calculating initial segmentation without clustering
── Segmentation/Clustering results ─────────────────────────────────────────────
✔ Best segmentation/clustering estimated with 2 clusters and 2 segments according to BIC
→ Number of cluster should preferentially be selected according to biological
knowledge. Exploring the BIC plot with plot_BIC() can also provide advice to
select the number of clusters.
→ Once number of clusters is selected, the number of segment cab be selected
according to BIC.
→ Results of the segmentation/clustering may further be explored with plot()
and segmap()
! Argument ncluster was not provided. Selecting values with BIC
ℹ BIC-selected number of class : ncluster = 2
BIC-selected number of segment : nseg = 2
3| done
4| done
5| done
6| done

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 2 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using ncluster = 2L
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
! Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running Segmentation/Clustering algorithm ───────────────────────────────────
ℹ Running Segmentation/Clustering with lmin = 5, Kmax = 3 and ncluster = 2L
→ Calculating initial segmentation without clustering
✔ Initial segmentation with no cluster calculated.
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
── Segmentation/Clustering with ncluster = 2 
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
→ Segmentation-Clustering for ncluster = 2 and nseg = 2/3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
✔ Segmentation-Clustering successful for ncluster = 2 and nseg = 2:3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
✔ Smoothing successful for ncluster = 2
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
→ Calculating initial segmentation without clustering
✔ Segmentation/Clustering with ncluster = 2 successfully calculated.
BIC selected : nseg = 2
→ Calculating initial segmentation without clustering
── Segmentation/Clustering results ─────────────────────────────────────────────
✔ Best segmentation/clustering estimated with 2 clusters and 2 segments according to BIC
→ Number of cluster should preferentially be selected according to biological
knowledge. Exploring the BIC plot with plot_BIC() can also provide advice to
select the number of clusters.
→ Once number of clusters is selected, the number of segment cab be selected
according to BIC.
→ Results of the segmentation/clustering may further be explored with plot()
and segmap()
1| done

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 2 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using ncluster = 2L
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
! Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running Segmentation/Clustering algorithm ───────────────────────────────────
ℹ Running Segmentation/Clustering with lmin = 5, Kmax = 3 and ncluster = 2L
→ Calculating initial segmentation without clustering
✔ Initial segmentation with no cluster calculated.
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
── Segmentation/Clustering with ncluster = 2 
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
→ Segmentation-Clustering for ncluster = 2 and nseg = 2/3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
✔ Segmentation-Clustering successful for ncluster = 2 and nseg = 2:3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
✔ Smoothing successful for ncluster = 2
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
→ Calculating initial segmentation without clustering
✔ Segmentation/Clustering with ncluster = 2 successfully calculated.
BIC selected : nseg = 2
→ Calculating initial segmentation without clustering
── Segmentation/Clustering results ─────────────────────────────────────────────
✔ Best segmentation/clustering estimated with 2 clusters and 2 segments according to BIC
→ Number of cluster should preferentially be selected according to biological
knowledge. Exploring the BIC plot with plot_BIC() can also provide advice to
select the number of clusters.
→ Once number of clusters is selected, the number of segment cab be selected
according to BIC.
→ Results of the segmentation/clustering may further be explored with plot()
and segmap()
2| done

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
✔ Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 3
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 3
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 2 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()

── Checking arguments ──────────────────────────────────────────────────────────
✔ Segmentation with seg.var = c("z", "y")
✔ Using lmin = 300
✔ Using Kmax = 10
✔ Using ncluster = 2L
✔ Using scale.variable = FALSE
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
✔ Using subsample_by = 60
✔ subsampling by 60
✔ Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
→ After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
! Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running Segmentation/Clustering algorithm ───────────────────────────────────
ℹ Running Segmentation/Clustering with lmin = 5, Kmax = 3 and ncluster = 2L
→ Calculating initial segmentation without clustering
✔ Initial segmentation with no cluster calculated.
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
── Segmentation/Clustering with ncluster = 2 
→ Calculating initial segmentation without clustering
→ Calculating initial segmentation without clustering
→ Segmentation-Clustering for ncluster = 2 and nseg = 2/3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
✔ Segmentation-Clustering successful for ncluster = 2 and nseg = 2:3
→ Segmentation-Clustering for ncluster = 2 and nseg = 3/3
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
✔ Smoothing successful for ncluster = 2
→ Smoothing likelihood for ncluster = 2. This step can be lengthy.
→ Calculating initial segmentation without clustering
✔ Segmentation/Clustering with ncluster = 2 successfully calculated.
BIC selected : nseg = 2
→ Calculating initial segmentation without clustering
── Segmentation/Clustering results ─────────────────────────────────────────────
✔ Best segmentation/clustering estimated with 2 clusters and 2 segments according to BIC
→ Number of cluster should preferentially be selected according to biological
knowledge. Exploring the BIC plot with plot_BIC() can also provide advice to
select the number of clusters.
→ Once number of clusters is selected, the number of segment cab be selected
according to BIC.
→ Results of the segmentation/clustering may further be explored with plot()
and segmap()
3| done
4| done
5| done
6| done
1
1
2
2
3
3
4
4
5
5
6
6

-- Checking arguments ----------------------------------------------------------
v Segmentation with seg.var = c("z", "y")
v Using lmin = 300
v Using Kmax = 10
v Using scale.variable = FALSE
i Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("z", "y")
i Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "z"

-- Preparing and checking data -------------------------------------------------

-- Subsampling --

! Subsampling automatically activated. To disable it, provide subsample = FALSE
v Using subsample_by = 60
v subsampling by 60
v Adjusting lmin to subsampling. 
Dividing lmin by 60, with a minimum of 5
> After subsampling, lmin = 5. 
Corresponding to lmin = 300 on the original time scale
v Adjusting Kmax so that lmin*Kmax < nrow(x). Kmax = 3

-- Scaling and final data check --

v No variable rescaling.
To activate, use scale.variable = TRUE
v Data have no repetition of nearly-identical values larger than lmin

-- Running segmentation algorithm ----------------------------------------------
i Running segmentation with lmin = 5 and Kmax = 3
> Calculating cost matrix
v Cost matrix calculated
> Calculating cost matrix
> Dynamic Programming
v Optimal segmentation calculated for all number of segments <= 3
> Dynamic Programming
> Calculating segment statistics
v Best segmentation estimated with 2 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
n_cycle : 1
N_alt_ori
n_cycle : 1
N_alt_ori
The path to samtools not provided.
Default samtools is used : /home/biocbuild/.cache/R/basilisk/1.19.1/ELViS/0.99.13/env_samtools/bin/samtools
The path to samtools not provided.
Default samtools is used : /home/biocbuild/.cache/R/basilisk/1.19.1/ELViS/0.99.13/env_samtools/bin/samtools
The path to samtools not provided.
Default samtools is used : /home/biocbuild/.cache/R/basilisk/1.19.1/ELViS/0.99.13/env_samtools/bin/samtools
The path to samtools not provided.
Default samtools is used : /home/biocbuild/.cache/R/basilisk/1.19.1/ELViS/0.99.13/env_samtools/bin/samtools
The path to samtools not provided.
Default samtools is used : /home/biocbuild/.cache/R/basilisk/1.19.1/ELViS/0.99.13/env_samtools/bin/samtools
The path to samtools not provided.
Default samtools is used : /home/biocbuild/.cache/R/basilisk/1.19.1/ELViS/0.99.13/env_samtools/bin/samtools

── Checking arguments ──────────────────────────────────────────────────────────
! Argument seg.var missing
taking default value seg.var = c("x","y")
✔ Segmentation with seg.var = c("x", "y")
✔ Using lmin = 5
✔ Using Kmax = 2
! Argument scale.variable missing
Taking default value scale.variable = FALSE for segmentation().
ℹ Argument diag.var was not provided
Taking default seg.var as diagnostic variables diag.var.
Setting diag.var = c("x", "y")
ℹ Argument order.var was not provided
Taking default diag.var[1] as ordering variable order.var.
Setting order.var = "x"

── Preparing and checking data ─────────────────────────────────────────────────

── Subsampling ──

! Subsampling automatically activated. To disable it, provide subsample = FALSE
ℹ Argument subsample_over was not provided
Taking default value for segmentation()
Setting subsample_over = 10000
✔ nrow(x) < subsample_over, no subsample needed

── Scaling and final data check ──

✔ No variable rescaling.
To activate, use scale.variable = TRUE
✔ Data have no repetition of nearly-identical values larger than lmin

── Running segmentation algorithm ──────────────────────────────────────────────
ℹ Running segmentation with lmin = 5 and Kmax = 2
→ Calculating cost matrix
✔ Cost matrix calculated
→ Calculating cost matrix
→ Dynamic Programming
✔ Optimal segmentation calculated for all number of segments <= 2
→ Dynamic Programming
→ Calculating segment statistics
✔ Best segmentation estimated with 1 segments, according to Lavielle's criterium
Other number of segments may be selected by looking for likelihood breaks with
plot_likelihood()
Results of the segmentation may be explored with plot() and segmap()
[ FAIL 0 | WARN 0 | SKIP 0 | PASS 101 ]
> 
> proc.time()
   user  system elapsed 
 66.429   1.817  73.528 

Example timings

ELViS.Rcheck/ELViS-Ex.timings

nameusersystemelapsed
coord_to_grng0.1250.0000.125
coord_to_lst0.0020.0000.001
depth_hist1.3780.0481.427
filt_samples0.3170.0000.318
gene_cn_heatmaps17.821 0.40718.271
get_depth_matrix0.0600.0180.108
get_new_baseline0.2780.0010.278
integrative_heatmap42.008 0.88642.826
norm_fun0.0000.0010.001
plot_pileUp_multisample3.0550.1663.227
run_ELViS 93.976 1.337102.097