Back to Multiple platform build/check report for BioC 3.19: simplified long |
|
This page was generated on 2024-10-18 20:38 -0400 (Fri, 18 Oct 2024).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 22.04.3 LTS) | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4763 |
palomino7 | Windows Server 2022 Datacenter | x64 | 4.4.1 (2024-06-14 ucrt) -- "Race for Your Life" | 4500 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4530 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4480 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 987/2300 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.10.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 22.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.10.0 |
Command: /home/biocbuild/bbs-3.19-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.19-bioc/R/site-library --timings HPiP_1.10.0.tar.gz |
StartedAt: 2024-10-17 01:27:31 -0400 (Thu, 17 Oct 2024) |
EndedAt: 2024-10-17 01:41:07 -0400 (Thu, 17 Oct 2024) |
EllapsedTime: 816.7 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.19-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.19-bioc/R/site-library --timings HPiP_1.10.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.19-bioc/meat/HPiP.Rcheck’ * using R version 4.4.1 (2024-06-14) * using platform: x86_64-pc-linux-gnu * R was compiled by gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 GNU Fortran (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 * running under: Ubuntu 22.04.5 LTS * using session charset: UTF-8 * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.10.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 35.459 1.036 36.496 FSmethod 34.335 0.808 35.145 corr_plot 33.998 0.456 34.455 pred_ensembel 14.102 0.719 11.117 enrichfindP 0.488 0.029 10.238 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking re-building of vignette outputs ... OK * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/home/biocbuild/bbs-3.19-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.19-bioc/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.19-bioc/R/site-library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.1 (2024-06-14) -- "Race for Your Life" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 101.296530 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 94.871564 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 97.062683 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.584673 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.577449 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 106.625796 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 94.587275 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 98.015790 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 108.133883 final value 94.466823 converged Fitting Repeat 5 # weights: 305 initial value 110.718961 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 96.507267 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 120.694655 iter 10 value 93.395503 final value 93.281385 converged Fitting Repeat 3 # weights: 507 initial value 106.423250 iter 10 value 94.399715 final value 94.395066 converged Fitting Repeat 4 # weights: 507 initial value 102.091192 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 99.592167 final value 94.466823 converged Fitting Repeat 1 # weights: 103 initial value 111.523541 iter 10 value 94.416416 iter 20 value 87.625828 iter 30 value 81.142516 iter 40 value 80.401798 iter 50 value 79.863978 iter 60 value 79.674105 iter 70 value 79.455328 iter 80 value 79.401652 final value 79.401649 converged Fitting Repeat 2 # weights: 103 initial value 108.081188 iter 10 value 95.326050 iter 20 value 94.493758 iter 30 value 94.355645 iter 40 value 88.847815 iter 50 value 86.028940 iter 60 value 83.260925 iter 70 value 81.232117 iter 80 value 80.220478 iter 90 value 79.635379 iter 100 value 79.403342 final value 79.403342 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.779278 iter 10 value 94.458841 iter 20 value 84.749220 iter 30 value 82.305370 iter 40 value 81.792578 iter 50 value 81.425459 iter 60 value 81.288116 iter 70 value 81.214797 final value 81.206619 converged Fitting Repeat 4 # weights: 103 initial value 112.599421 iter 10 value 94.267588 iter 20 value 84.191168 iter 30 value 82.783154 iter 40 value 81.284726 iter 50 value 80.580162 iter 60 value 79.438718 iter 70 value 79.380498 final value 79.380495 converged Fitting Repeat 5 # weights: 103 initial value 97.757007 iter 10 value 94.486474 iter 20 value 94.339180 iter 30 value 83.020414 iter 40 value 81.366918 iter 50 value 80.333197 iter 60 value 79.976095 iter 70 value 79.415057 iter 80 value 77.887504 iter 90 value 77.654056 iter 100 value 77.512190 final value 77.512190 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 110.456633 iter 10 value 94.557287 iter 20 value 88.154522 iter 30 value 87.820188 iter 40 value 85.517416 iter 50 value 80.508283 iter 60 value 78.349251 iter 70 value 77.242546 iter 80 value 77.122662 iter 90 value 77.062334 iter 100 value 76.969160 final value 76.969160 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.711123 iter 10 value 95.259639 iter 20 value 94.431045 iter 30 value 88.059398 iter 40 value 87.383208 iter 50 value 84.652553 iter 60 value 81.624558 iter 70 value 80.708795 iter 80 value 79.937537 iter 90 value 78.187995 iter 100 value 77.206747 final value 77.206747 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 110.423626 iter 10 value 94.511784 iter 20 value 94.387502 iter 30 value 88.050580 iter 40 value 80.570496 iter 50 value 79.868140 iter 60 value 79.384310 iter 70 value 79.191195 iter 80 value 79.125437 iter 90 value 78.464800 iter 100 value 77.643191 final value 77.643191 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.842306 iter 10 value 94.479462 iter 20 value 86.610731 iter 30 value 83.396370 iter 40 value 81.625272 iter 50 value 79.907089 iter 60 value 78.000627 iter 70 value 77.519826 iter 80 value 76.967724 iter 90 value 76.562141 iter 100 value 76.350611 final value 76.350611 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.673372 iter 10 value 90.647955 iter 20 value 83.935573 iter 30 value 81.101200 iter 40 value 78.976610 iter 50 value 78.364561 iter 60 value 77.902507 iter 70 value 77.611306 iter 80 value 77.255919 iter 90 value 76.893908 iter 100 value 76.816981 final value 76.816981 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.156542 iter 10 value 94.622107 iter 20 value 86.600275 iter 30 value 84.953255 iter 40 value 84.689171 iter 50 value 80.948021 iter 60 value 80.626686 iter 70 value 79.831792 iter 80 value 78.118162 iter 90 value 77.292441 iter 100 value 76.410759 final value 76.410759 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.300500 iter 10 value 95.260090 iter 20 value 90.251441 iter 30 value 83.106080 iter 40 value 80.784937 iter 50 value 80.491303 iter 60 value 80.090177 iter 70 value 79.613242 iter 80 value 77.195777 iter 90 value 76.499942 iter 100 value 76.205819 final value 76.205819 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.530623 iter 10 value 94.855655 iter 20 value 84.053899 iter 30 value 82.253672 iter 40 value 80.350734 iter 50 value 77.426696 iter 60 value 76.596123 iter 70 value 76.312298 iter 80 value 76.252508 iter 90 value 76.194542 iter 100 value 76.038975 final value 76.038975 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 129.406483 iter 10 value 94.011991 iter 20 value 83.928760 iter 30 value 83.034844 iter 40 value 80.492435 iter 50 value 79.112078 iter 60 value 77.687844 iter 70 value 76.867128 iter 80 value 76.457957 iter 90 value 76.408218 iter 100 value 76.345699 final value 76.345699 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.527043 iter 10 value 94.490016 iter 20 value 94.327389 iter 30 value 93.972278 iter 40 value 86.242012 iter 50 value 83.390613 iter 60 value 82.524874 iter 70 value 78.567361 iter 80 value 77.205421 iter 90 value 76.301506 iter 100 value 76.105588 final value 76.105588 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.151342 iter 10 value 94.486056 iter 20 value 94.465666 iter 30 value 90.317454 iter 40 value 89.685931 iter 50 value 89.685516 final value 89.685507 converged Fitting Repeat 2 # weights: 103 initial value 95.489395 final value 94.485754 converged Fitting Repeat 3 # weights: 103 initial value 95.937461 final value 94.486054 converged Fitting Repeat 4 # weights: 103 initial value 97.770016 iter 10 value 94.485943 final value 94.484237 converged Fitting Repeat 5 # weights: 103 initial value 97.728686 final value 94.485908 converged Fitting Repeat 1 # weights: 305 initial value 103.941561 iter 10 value 94.488925 iter 20 value 94.471647 iter 30 value 83.544844 iter 40 value 78.782075 iter 50 value 78.513664 iter 60 value 78.379114 iter 70 value 78.166245 iter 80 value 77.819234 iter 90 value 77.657444 iter 100 value 77.629281 final value 77.629281 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 96.199401 iter 10 value 94.486368 iter 20 value 91.373680 iter 30 value 90.979930 iter 40 value 90.979413 final value 90.979278 converged Fitting Repeat 3 # weights: 305 initial value 101.537127 iter 10 value 94.515695 iter 20 value 94.509291 iter 30 value 93.291972 iter 40 value 91.831938 iter 50 value 91.470609 iter 60 value 91.206002 iter 70 value 90.939640 iter 80 value 90.933447 iter 90 value 89.974692 iter 100 value 83.061963 final value 83.061963 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 95.999038 iter 10 value 94.471734 iter 20 value 94.467512 iter 30 value 93.403011 iter 40 value 80.852578 iter 50 value 80.791016 iter 60 value 79.342616 iter 70 value 77.058487 iter 80 value 75.923673 iter 90 value 75.696770 iter 100 value 75.692988 final value 75.692988 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.161575 iter 10 value 94.488916 iter 20 value 94.323031 iter 30 value 87.697505 iter 40 value 87.666394 final value 87.663717 converged Fitting Repeat 1 # weights: 507 initial value 108.510568 iter 10 value 94.492425 iter 20 value 94.485379 iter 30 value 89.088345 iter 40 value 81.426423 iter 50 value 80.840777 final value 80.840702 converged Fitting Repeat 2 # weights: 507 initial value 103.345788 iter 10 value 85.171351 iter 20 value 85.167399 iter 30 value 85.001200 iter 40 value 85.000646 iter 50 value 83.238472 iter 60 value 83.187419 iter 70 value 83.186430 iter 80 value 83.184446 iter 90 value 83.106604 iter 100 value 83.096999 final value 83.096999 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 97.648433 iter 10 value 84.274878 iter 20 value 83.004490 final value 83.003932 converged Fitting Repeat 4 # weights: 507 initial value 104.210726 iter 10 value 94.491845 iter 20 value 86.673908 iter 30 value 81.057599 iter 40 value 80.594667 iter 50 value 80.562616 iter 60 value 80.360217 iter 70 value 80.132632 iter 80 value 76.224006 iter 90 value 75.402453 iter 100 value 75.388463 final value 75.388463 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.165910 iter 10 value 94.475141 iter 20 value 94.452144 iter 30 value 86.365113 iter 40 value 85.897573 final value 85.897526 converged Fitting Repeat 1 # weights: 103 initial value 95.932506 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 108.865385 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 98.779789 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 100.363328 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.103541 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 97.437553 final value 94.057229 converged Fitting Repeat 2 # weights: 305 initial value 96.788317 final value 94.443243 converged Fitting Repeat 3 # weights: 305 initial value 102.953574 iter 10 value 93.625648 iter 20 value 87.305370 iter 30 value 86.830562 iter 40 value 86.827228 iter 50 value 86.826178 final value 86.826175 converged Fitting Repeat 4 # weights: 305 initial value 97.712069 iter 10 value 92.997053 iter 20 value 89.474451 iter 30 value 89.411810 final value 89.411765 converged Fitting Repeat 5 # weights: 305 initial value 96.987840 final value 94.443243 converged Fitting Repeat 1 # weights: 507 initial value 106.510161 final value 94.443243 converged Fitting Repeat 2 # weights: 507 initial value 97.674796 iter 10 value 94.057230 final value 94.057229 converged Fitting Repeat 3 # weights: 507 initial value 96.779601 iter 10 value 94.478292 iter 10 value 94.478291 iter 10 value 94.478291 final value 94.478291 converged Fitting Repeat 4 # weights: 507 initial value 95.122768 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 112.200485 iter 10 value 93.984085 final value 93.984053 converged Fitting Repeat 1 # weights: 103 initial value 104.506056 iter 10 value 94.081166 iter 20 value 85.885221 iter 30 value 85.743104 iter 40 value 85.617895 iter 50 value 85.608217 final value 85.608096 converged Fitting Repeat 2 # weights: 103 initial value 103.227178 iter 10 value 94.505568 iter 20 value 94.483020 iter 30 value 90.288430 iter 40 value 88.997385 iter 50 value 87.272198 iter 60 value 86.679051 iter 70 value 86.655316 final value 86.655216 converged Fitting Repeat 3 # weights: 103 initial value 97.807040 iter 10 value 94.486613 iter 20 value 94.187741 iter 30 value 89.816779 iter 40 value 88.548896 iter 50 value 84.799930 iter 60 value 83.828781 iter 70 value 83.666250 iter 80 value 83.405005 iter 90 value 83.249052 iter 100 value 83.186260 final value 83.186260 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 101.675507 iter 10 value 94.422722 iter 20 value 88.287171 iter 30 value 86.135246 iter 40 value 85.929871 iter 50 value 85.714687 iter 60 value 85.638595 iter 70 value 85.608104 final value 85.608088 converged Fitting Repeat 5 # weights: 103 initial value 107.471815 iter 10 value 94.482729 iter 20 value 94.102427 iter 30 value 93.928760 iter 40 value 93.202617 iter 50 value 88.062965 iter 60 value 86.359515 iter 70 value 85.740620 iter 80 value 85.638027 iter 90 value 85.608404 final value 85.608088 converged Fitting Repeat 1 # weights: 305 initial value 118.213231 iter 10 value 94.510825 iter 20 value 90.861818 iter 30 value 87.516952 iter 40 value 86.079442 iter 50 value 85.522107 iter 60 value 83.859420 iter 70 value 83.283684 iter 80 value 83.100847 iter 90 value 82.954125 iter 100 value 82.637168 final value 82.637168 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.474756 iter 10 value 94.586156 iter 20 value 88.165146 iter 30 value 88.017716 iter 40 value 87.691008 iter 50 value 86.320015 iter 60 value 84.380791 iter 70 value 83.291043 iter 80 value 83.119915 iter 90 value 82.890424 iter 100 value 82.675990 final value 82.675990 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.633985 iter 10 value 94.500320 iter 20 value 93.003056 iter 30 value 84.620815 iter 40 value 83.363473 iter 50 value 82.964143 iter 60 value 82.736214 iter 70 value 82.580905 iter 80 value 82.534504 iter 90 value 82.409472 iter 100 value 82.270573 final value 82.270573 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.609348 iter 10 value 94.605549 iter 20 value 94.498167 iter 30 value 89.386326 iter 40 value 86.533835 iter 50 value 86.140900 iter 60 value 84.222585 iter 70 value 83.818392 iter 80 value 83.604072 iter 90 value 83.469944 iter 100 value 83.244543 final value 83.244543 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.023220 iter 10 value 91.084189 iter 20 value 86.603770 iter 30 value 85.871023 iter 40 value 85.665780 iter 50 value 84.602410 iter 60 value 84.153485 iter 70 value 84.038509 iter 80 value 83.744546 iter 90 value 82.755251 iter 100 value 82.310638 final value 82.310638 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.642099 iter 10 value 96.148653 iter 20 value 88.415509 iter 30 value 87.803136 iter 40 value 86.568190 iter 50 value 84.911830 iter 60 value 84.541285 iter 70 value 84.021059 iter 80 value 83.094027 iter 90 value 82.582987 iter 100 value 82.253121 final value 82.253121 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 124.509373 iter 10 value 94.771909 iter 20 value 89.076084 iter 30 value 86.472744 iter 40 value 84.573824 iter 50 value 83.983691 iter 60 value 83.703198 iter 70 value 83.452247 iter 80 value 83.402820 iter 90 value 83.348119 iter 100 value 83.064583 final value 83.064583 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.607091 iter 10 value 94.620074 iter 20 value 94.397094 iter 30 value 92.544547 iter 40 value 90.646747 iter 50 value 88.083011 iter 60 value 87.811135 iter 70 value 85.557755 iter 80 value 84.353144 iter 90 value 83.681122 iter 100 value 82.862661 final value 82.862661 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 117.514378 iter 10 value 94.999154 iter 20 value 92.341001 iter 30 value 88.802410 iter 40 value 87.602006 iter 50 value 87.196468 iter 60 value 85.628432 iter 70 value 85.247331 iter 80 value 83.427042 iter 90 value 82.645086 iter 100 value 82.113105 final value 82.113105 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 128.350384 iter 10 value 94.357602 iter 20 value 88.666240 iter 30 value 88.030728 iter 40 value 87.549039 iter 50 value 85.580728 iter 60 value 84.039682 iter 70 value 82.031816 iter 80 value 81.646369 iter 90 value 81.499920 iter 100 value 81.409344 final value 81.409344 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.295250 final value 94.444954 converged Fitting Repeat 2 # weights: 103 initial value 99.919434 final value 94.485946 converged Fitting Repeat 3 # weights: 103 initial value 94.044150 iter 10 value 90.400241 iter 20 value 90.119583 iter 30 value 90.058463 final value 90.058460 converged Fitting Repeat 4 # weights: 103 initial value 100.233751 final value 94.485727 converged Fitting Repeat 5 # weights: 103 initial value 100.767631 final value 94.485665 converged Fitting Repeat 1 # weights: 305 initial value 96.787720 iter 10 value 94.488300 iter 20 value 94.481071 iter 30 value 87.389673 iter 40 value 87.372379 iter 50 value 87.319577 iter 60 value 86.506799 iter 70 value 86.401193 iter 80 value 86.388609 iter 90 value 84.812808 iter 100 value 83.768974 final value 83.768974 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 97.811104 iter 10 value 94.488070 final value 94.484279 converged Fitting Repeat 3 # weights: 305 initial value 103.569325 iter 10 value 94.488913 iter 20 value 94.480506 iter 30 value 93.716174 iter 40 value 93.568201 iter 50 value 93.191249 iter 60 value 93.107643 iter 70 value 91.582415 iter 80 value 91.386811 iter 90 value 91.283733 iter 100 value 91.283197 final value 91.283197 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 96.760404 iter 10 value 94.448254 iter 20 value 87.178471 iter 30 value 86.636352 final value 86.505371 converged Fitting Repeat 5 # weights: 305 initial value 97.736708 iter 10 value 94.119211 iter 20 value 93.568297 iter 30 value 84.715198 iter 40 value 84.170226 final value 84.114422 converged Fitting Repeat 1 # weights: 507 initial value 99.833010 iter 10 value 94.494435 iter 20 value 94.486827 iter 30 value 86.189139 iter 40 value 83.373444 iter 50 value 83.369354 iter 60 value 83.302595 iter 70 value 82.474706 iter 80 value 82.409339 iter 90 value 82.408644 final value 82.407615 converged Fitting Repeat 2 # weights: 507 initial value 108.724629 iter 10 value 94.271422 iter 20 value 94.185542 iter 30 value 94.079834 iter 40 value 94.078270 final value 94.077805 converged Fitting Repeat 3 # weights: 507 initial value 122.235471 iter 10 value 94.491641 iter 20 value 94.481852 iter 30 value 87.678627 iter 40 value 87.317019 iter 50 value 87.289819 iter 60 value 87.286099 iter 70 value 87.157359 iter 80 value 86.560798 iter 90 value 83.157661 iter 100 value 82.303911 final value 82.303911 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.885270 iter 10 value 94.491889 iter 20 value 93.653087 iter 30 value 88.397823 iter 40 value 88.007132 iter 50 value 87.765016 iter 60 value 85.595428 iter 70 value 84.027919 iter 80 value 83.886657 iter 90 value 83.259294 iter 100 value 82.526119 final value 82.526119 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.048131 iter 10 value 94.236252 iter 20 value 94.233001 iter 30 value 91.352371 iter 40 value 88.353760 iter 50 value 87.629431 iter 60 value 87.275396 iter 70 value 87.101549 iter 80 value 86.719270 final value 86.719165 converged Fitting Repeat 1 # weights: 103 initial value 100.263243 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 96.558227 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 94.679651 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 97.305809 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 98.411714 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 99.052340 iter 10 value 94.053050 final value 94.052874 converged Fitting Repeat 2 # weights: 305 initial value 94.058738 final value 93.582418 converged Fitting Repeat 3 # weights: 305 initial value 97.888862 iter 10 value 93.582418 iter 10 value 93.582417 iter 10 value 93.582417 final value 93.582417 converged Fitting Repeat 4 # weights: 305 initial value 109.516891 final value 93.582418 converged Fitting Repeat 5 # weights: 305 initial value 98.680487 iter 10 value 88.075673 iter 20 value 88.016499 final value 88.016394 converged Fitting Repeat 1 # weights: 507 initial value 99.580558 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 102.934247 final value 94.025289 converged Fitting Repeat 3 # weights: 507 initial value 100.849623 final value 93.469994 converged Fitting Repeat 4 # weights: 507 initial value 105.738766 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 112.823051 iter 10 value 94.025831 final value 94.025290 converged Fitting Repeat 1 # weights: 103 initial value 102.942740 iter 10 value 90.011203 iter 20 value 86.827826 iter 30 value 86.186280 iter 40 value 85.866521 iter 50 value 83.033182 iter 60 value 82.802209 iter 70 value 82.780318 iter 80 value 82.740726 final value 82.740502 converged Fitting Repeat 2 # weights: 103 initial value 105.138507 iter 10 value 94.057582 iter 20 value 93.984324 iter 30 value 93.771346 iter 40 value 89.145450 iter 50 value 88.219390 iter 60 value 88.144605 iter 70 value 87.970379 iter 80 value 86.023863 iter 90 value 85.512265 iter 100 value 83.904349 final value 83.904349 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 98.826896 iter 10 value 94.191300 iter 20 value 93.747508 iter 30 value 93.443790 iter 40 value 88.036590 iter 50 value 86.789887 iter 60 value 86.295174 iter 70 value 85.174194 iter 80 value 84.992436 iter 90 value 82.754965 final value 82.689849 converged Fitting Repeat 4 # weights: 103 initial value 97.377776 iter 10 value 94.041065 iter 20 value 93.691136 iter 30 value 92.994902 iter 40 value 90.745519 iter 50 value 90.142297 iter 60 value 87.686405 iter 70 value 86.892545 iter 80 value 86.630173 iter 90 value 86.052929 iter 100 value 85.853571 final value 85.853571 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 98.178317 iter 10 value 93.777698 iter 20 value 90.486846 iter 30 value 90.277238 iter 40 value 89.824650 iter 50 value 88.021864 iter 60 value 85.356420 iter 70 value 83.980542 iter 80 value 83.428361 iter 90 value 82.791968 iter 100 value 82.755005 final value 82.755005 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 100.057814 iter 10 value 94.057883 iter 20 value 93.717728 iter 30 value 93.463932 iter 40 value 88.069998 iter 50 value 87.005977 iter 60 value 85.628987 iter 70 value 83.616915 iter 80 value 83.050333 iter 90 value 82.689265 iter 100 value 82.579771 final value 82.579771 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 108.771317 iter 10 value 94.198460 iter 20 value 88.340441 iter 30 value 86.912737 iter 40 value 84.814965 iter 50 value 83.990971 iter 60 value 83.756387 iter 70 value 82.891176 iter 80 value 82.826029 iter 90 value 82.634254 iter 100 value 81.981925 final value 81.981925 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 110.208631 iter 10 value 94.122438 iter 20 value 93.861271 iter 30 value 90.343446 iter 40 value 88.112973 iter 50 value 86.346192 iter 60 value 86.183630 iter 70 value 85.191584 iter 80 value 83.765244 iter 90 value 82.641265 iter 100 value 82.366959 final value 82.366959 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 104.615324 iter 10 value 94.183741 iter 20 value 93.816134 iter 30 value 92.112804 iter 40 value 87.817355 iter 50 value 86.072494 iter 60 value 85.640704 iter 70 value 85.097455 iter 80 value 84.441833 iter 90 value 83.376944 iter 100 value 83.057122 final value 83.057122 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 115.784686 iter 10 value 92.172795 iter 20 value 88.107136 iter 30 value 86.024440 iter 40 value 85.524923 iter 50 value 83.508946 iter 60 value 82.282694 iter 70 value 82.107043 iter 80 value 81.636344 iter 90 value 81.600842 iter 100 value 81.596840 final value 81.596840 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 103.487513 iter 10 value 94.144085 iter 20 value 86.240448 iter 30 value 84.547438 iter 40 value 83.964204 iter 50 value 83.617858 iter 60 value 83.535632 iter 70 value 83.382175 iter 80 value 83.204721 iter 90 value 82.728417 iter 100 value 82.372988 final value 82.372988 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.393062 iter 10 value 94.025013 iter 20 value 90.230449 iter 30 value 86.305079 iter 40 value 85.173054 iter 50 value 84.120228 iter 60 value 83.626736 iter 70 value 83.269247 iter 80 value 82.623961 iter 90 value 82.500613 iter 100 value 82.486231 final value 82.486231 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 128.717069 iter 10 value 94.292866 iter 20 value 93.568856 iter 30 value 87.914737 iter 40 value 84.713373 iter 50 value 84.197868 iter 60 value 83.285807 iter 70 value 82.520691 iter 80 value 82.051542 iter 90 value 81.963758 iter 100 value 81.573742 final value 81.573742 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 113.915771 iter 10 value 93.934778 iter 20 value 90.984274 iter 30 value 85.985366 iter 40 value 84.744208 iter 50 value 84.115989 iter 60 value 83.346028 iter 70 value 82.734268 iter 80 value 82.158125 iter 90 value 81.572310 iter 100 value 81.296648 final value 81.296648 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 116.536052 iter 10 value 94.210218 iter 20 value 93.821790 iter 30 value 93.369073 iter 40 value 88.538141 iter 50 value 86.062997 iter 60 value 84.239181 iter 70 value 82.374495 iter 80 value 82.247613 iter 90 value 82.141003 iter 100 value 82.102458 final value 82.102458 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 109.630480 iter 10 value 93.969293 iter 20 value 93.901874 iter 30 value 93.901251 final value 93.900064 converged Fitting Repeat 2 # weights: 103 initial value 104.741176 iter 10 value 94.054676 iter 20 value 93.884119 iter 30 value 87.037875 final value 86.235576 converged Fitting Repeat 3 # weights: 103 initial value 98.250429 final value 94.054707 converged Fitting Repeat 4 # weights: 103 initial value 101.621688 final value 94.054966 converged Fitting Repeat 5 # weights: 103 initial value 100.422779 final value 94.054457 converged Fitting Repeat 1 # weights: 305 initial value 101.157646 iter 10 value 94.058124 iter 20 value 93.760814 iter 30 value 86.370071 iter 40 value 83.873181 iter 50 value 82.286478 iter 60 value 82.133953 iter 70 value 82.120625 iter 80 value 81.643942 iter 90 value 81.610665 iter 100 value 81.599423 final value 81.599423 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.282545 iter 10 value 90.964203 iter 20 value 90.299093 iter 30 value 90.239324 iter 40 value 90.235563 iter 50 value 89.971265 iter 60 value 89.962877 iter 70 value 89.887480 iter 80 value 89.882795 iter 90 value 89.841870 iter 100 value 85.253317 final value 85.253317 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 112.479907 iter 10 value 93.893264 iter 20 value 93.585985 iter 30 value 93.583493 iter 40 value 93.324867 iter 50 value 89.325467 iter 60 value 83.569036 iter 70 value 83.189230 iter 80 value 83.178679 iter 90 value 83.087625 iter 100 value 83.006615 final value 83.006615 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 114.617406 iter 10 value 92.410939 iter 20 value 91.602197 iter 30 value 91.435432 iter 40 value 91.431608 iter 50 value 91.429376 iter 60 value 91.428838 iter 70 value 91.428410 iter 80 value 91.427846 final value 91.427596 converged Fitting Repeat 5 # weights: 305 initial value 111.859683 iter 10 value 93.587572 iter 20 value 93.582937 final value 93.582589 converged Fitting Repeat 1 # weights: 507 initial value 110.813176 iter 10 value 93.938126 iter 20 value 90.864923 iter 30 value 87.506065 iter 40 value 87.276106 iter 50 value 84.952592 iter 60 value 84.888917 iter 70 value 84.576150 iter 80 value 83.836892 iter 90 value 82.378319 iter 100 value 81.028891 final value 81.028891 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.905169 iter 10 value 94.058621 iter 20 value 92.236019 iter 30 value 85.597014 iter 40 value 84.887803 iter 50 value 84.874914 iter 60 value 84.864529 iter 70 value 83.566262 iter 80 value 81.385881 iter 90 value 81.120189 iter 100 value 80.898307 final value 80.898307 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 98.243154 iter 10 value 94.057409 iter 20 value 94.018353 iter 30 value 92.110052 iter 40 value 85.248807 iter 50 value 83.158110 iter 60 value 82.997956 iter 70 value 82.997596 iter 80 value 82.995277 iter 90 value 82.779088 iter 100 value 82.320639 final value 82.320639 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 114.380368 iter 10 value 94.060309 iter 20 value 90.726329 iter 30 value 86.490813 iter 40 value 86.350440 iter 50 value 86.066158 iter 60 value 86.041947 iter 70 value 86.041796 final value 86.041775 converged Fitting Repeat 5 # weights: 507 initial value 100.383800 iter 10 value 89.821726 iter 20 value 86.188631 iter 30 value 86.082921 iter 40 value 85.921258 iter 50 value 85.879312 iter 60 value 85.870815 iter 70 value 85.737724 iter 80 value 84.359916 iter 90 value 83.381429 iter 100 value 82.246821 final value 82.246821 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.764013 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 95.350153 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 95.988594 iter 10 value 88.887471 iter 20 value 88.058534 iter 30 value 87.296322 iter 40 value 87.110556 iter 50 value 87.100337 iter 60 value 87.100206 final value 87.100187 converged Fitting Repeat 4 # weights: 103 initial value 104.585475 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 99.510356 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 97.073314 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 108.548738 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 105.469917 iter 10 value 93.640394 final value 93.640336 converged Fitting Repeat 4 # weights: 305 initial value 101.574956 iter 10 value 93.915746 iter 10 value 93.915746 iter 10 value 93.915746 final value 93.915746 converged Fitting Repeat 5 # weights: 305 initial value 99.561429 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 98.949395 final value 93.915746 converged Fitting Repeat 2 # weights: 507 initial value 97.324575 final value 93.371808 converged Fitting Repeat 3 # weights: 507 initial value 97.133705 iter 10 value 93.901059 iter 20 value 93.900545 final value 93.900539 converged Fitting Repeat 4 # weights: 507 initial value 111.174261 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 102.880974 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 104.506947 iter 10 value 94.063256 iter 20 value 93.866102 iter 30 value 93.589151 iter 40 value 93.579432 iter 50 value 86.071891 iter 60 value 85.854742 iter 70 value 85.503166 iter 80 value 84.439238 iter 90 value 84.091461 iter 100 value 84.032452 final value 84.032452 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.572894 iter 10 value 89.225299 iter 20 value 86.675303 iter 30 value 85.947312 iter 40 value 85.362595 iter 50 value 85.232550 final value 85.232075 converged Fitting Repeat 3 # weights: 103 initial value 99.629054 iter 10 value 94.056637 iter 20 value 93.938120 iter 30 value 93.586871 iter 40 value 93.580516 iter 50 value 87.059362 iter 60 value 85.599478 iter 70 value 84.885846 iter 80 value 83.823580 iter 90 value 83.776871 iter 100 value 83.732032 final value 83.732032 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 103.652885 iter 10 value 90.640680 iter 20 value 88.270439 iter 30 value 87.036435 iter 40 value 86.177775 iter 50 value 85.975914 iter 60 value 85.761226 iter 70 value 85.363706 iter 80 value 85.331193 final value 85.331190 converged Fitting Repeat 5 # weights: 103 initial value 105.039035 iter 10 value 94.044211 iter 20 value 93.581352 iter 30 value 93.579608 iter 40 value 93.579495 iter 50 value 88.553732 iter 60 value 88.100587 iter 70 value 87.865598 iter 80 value 85.414396 iter 90 value 85.332303 iter 100 value 85.331248 final value 85.331248 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 100.639516 iter 10 value 93.807727 iter 20 value 87.941746 iter 30 value 84.548316 iter 40 value 84.245732 iter 50 value 84.171218 iter 60 value 84.099982 iter 70 value 83.959995 iter 80 value 83.878176 iter 90 value 83.685267 iter 100 value 83.486223 final value 83.486223 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 105.166248 iter 10 value 94.034275 iter 20 value 93.854796 iter 30 value 93.605798 iter 40 value 93.580521 iter 50 value 93.080664 iter 60 value 89.097235 iter 70 value 87.480166 iter 80 value 85.506332 iter 90 value 85.008253 iter 100 value 84.616110 final value 84.616110 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 119.175815 iter 10 value 93.988025 iter 20 value 87.097278 iter 30 value 86.137903 iter 40 value 85.619834 iter 50 value 85.507530 iter 60 value 85.094547 iter 70 value 84.220294 iter 80 value 83.526996 iter 90 value 82.600392 iter 100 value 82.177454 final value 82.177454 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 118.205256 iter 10 value 94.067235 iter 20 value 93.619601 iter 30 value 87.989528 iter 40 value 86.233574 iter 50 value 85.679731 iter 60 value 85.324768 iter 70 value 84.859615 iter 80 value 84.301215 iter 90 value 83.169701 iter 100 value 82.699617 final value 82.699617 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.208901 iter 10 value 94.086498 iter 20 value 94.048825 iter 30 value 86.650846 iter 40 value 85.751462 iter 50 value 85.568158 iter 60 value 84.680195 iter 70 value 83.040698 iter 80 value 82.460352 iter 90 value 82.264845 iter 100 value 82.184271 final value 82.184271 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 121.322475 iter 10 value 93.679706 iter 20 value 87.211301 iter 30 value 86.272849 iter 40 value 85.527207 iter 50 value 85.404749 iter 60 value 85.304519 iter 70 value 85.026066 iter 80 value 84.446335 iter 90 value 84.267218 iter 100 value 83.643013 final value 83.643013 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.412782 iter 10 value 94.409562 iter 20 value 93.550323 iter 30 value 90.689235 iter 40 value 85.658608 iter 50 value 84.976752 iter 60 value 83.648139 iter 70 value 83.248366 iter 80 value 82.588614 iter 90 value 82.368074 iter 100 value 82.315159 final value 82.315159 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.043163 iter 10 value 96.583352 iter 20 value 87.757845 iter 30 value 85.113942 iter 40 value 83.572210 iter 50 value 83.372627 iter 60 value 82.991175 iter 70 value 82.444351 iter 80 value 82.122728 iter 90 value 81.941772 iter 100 value 81.747157 final value 81.747157 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 117.911064 iter 10 value 93.343008 iter 20 value 92.223507 iter 30 value 86.657249 iter 40 value 85.203632 iter 50 value 85.149117 iter 60 value 84.687282 iter 70 value 84.389965 iter 80 value 84.366519 iter 90 value 84.340827 iter 100 value 84.305472 final value 84.305472 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 132.030515 iter 10 value 94.067607 iter 20 value 87.623802 iter 30 value 85.852670 iter 40 value 85.148428 iter 50 value 83.926341 iter 60 value 82.726243 iter 70 value 82.250960 iter 80 value 81.924551 iter 90 value 81.865201 iter 100 value 81.854728 final value 81.854728 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.186906 final value 94.054431 converged Fitting Repeat 2 # weights: 103 initial value 94.956657 final value 94.054371 converged Fitting Repeat 3 # weights: 103 initial value 98.630508 iter 10 value 91.178095 iter 20 value 86.036717 iter 30 value 86.036351 iter 40 value 85.932742 iter 40 value 85.932741 iter 40 value 85.932741 final value 85.932741 converged Fitting Repeat 4 # weights: 103 initial value 95.136581 final value 94.054478 converged Fitting Repeat 5 # weights: 103 initial value 98.037888 final value 93.917777 converged Fitting Repeat 1 # weights: 305 initial value 107.188817 iter 10 value 94.058106 iter 20 value 93.530945 iter 30 value 87.618526 iter 40 value 87.618229 iter 50 value 87.443614 iter 60 value 85.445143 iter 70 value 83.733479 iter 80 value 83.370513 iter 90 value 83.342572 iter 100 value 83.330626 final value 83.330626 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 127.672079 iter 10 value 94.058162 iter 20 value 94.053218 iter 30 value 93.479339 iter 40 value 92.967200 final value 92.954565 converged Fitting Repeat 3 # weights: 305 initial value 98.179751 iter 10 value 90.729335 iter 20 value 87.656653 iter 30 value 87.614306 iter 40 value 87.551485 final value 87.551414 converged Fitting Repeat 4 # weights: 305 initial value 94.808377 iter 10 value 93.920477 iter 20 value 93.313307 iter 30 value 93.189073 iter 40 value 91.076255 iter 50 value 86.491966 iter 60 value 85.905992 iter 70 value 85.278310 iter 80 value 84.797852 iter 90 value 83.046441 iter 100 value 82.446249 final value 82.446249 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 122.255850 iter 10 value 93.928324 iter 20 value 93.923376 iter 30 value 93.922838 iter 40 value 93.921278 iter 50 value 93.539668 iter 60 value 93.537586 iter 70 value 93.534809 iter 80 value 93.532389 iter 90 value 93.531972 final value 93.531927 converged Fitting Repeat 1 # weights: 507 initial value 101.522110 iter 10 value 94.061514 iter 20 value 94.052363 iter 30 value 86.993832 iter 40 value 84.158481 iter 50 value 83.886918 iter 60 value 83.860008 iter 70 value 83.834139 iter 80 value 83.818129 iter 90 value 82.048179 iter 100 value 81.415072 final value 81.415072 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 100.124147 iter 10 value 94.060405 iter 20 value 93.373497 iter 30 value 93.088917 iter 40 value 93.081137 iter 50 value 92.538486 iter 60 value 89.568907 iter 70 value 88.216829 iter 80 value 86.155956 iter 90 value 85.623768 final value 85.623710 converged Fitting Repeat 3 # weights: 507 initial value 111.929722 iter 10 value 93.923956 iter 20 value 92.994638 iter 30 value 85.597104 iter 40 value 82.593276 iter 50 value 82.284565 iter 60 value 82.189106 iter 70 value 82.170160 iter 80 value 82.162213 iter 90 value 82.156421 iter 100 value 82.104049 final value 82.104049 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 106.477982 iter 10 value 94.060842 iter 20 value 93.792354 iter 30 value 93.654056 iter 40 value 92.082154 iter 50 value 86.513655 iter 60 value 86.473770 iter 70 value 85.342893 iter 80 value 83.917215 iter 90 value 83.906051 iter 100 value 83.904747 final value 83.904747 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.120083 iter 10 value 94.119118 iter 20 value 92.012183 iter 30 value 85.163938 iter 40 value 83.104951 iter 50 value 83.093217 iter 60 value 83.011563 iter 70 value 82.932326 iter 80 value 82.913140 iter 90 value 82.595320 iter 100 value 82.584388 final value 82.584388 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 93.766365 iter 10 value 92.316562 iter 20 value 92.237109 final value 92.237027 converged Fitting Repeat 2 # weights: 103 initial value 109.354621 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 97.024994 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 96.674099 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 113.618624 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 97.015358 iter 10 value 94.443244 iter 10 value 94.443243 iter 10 value 94.443243 final value 94.443243 converged Fitting Repeat 2 # weights: 305 initial value 103.497368 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 107.418313 final value 94.443243 converged Fitting Repeat 4 # weights: 305 initial value 108.512514 final value 94.455556 converged Fitting Repeat 5 # weights: 305 initial value 98.295390 iter 10 value 86.686022 iter 20 value 85.833890 final value 85.833868 converged Fitting Repeat 1 # weights: 507 initial value 109.273256 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 98.018137 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 103.241286 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 108.821686 iter 10 value 93.056659 iter 20 value 87.890112 iter 30 value 87.647672 final value 87.647667 converged Fitting Repeat 5 # weights: 507 initial value 102.741015 final value 94.483810 converged Fitting Repeat 1 # weights: 103 initial value 111.563272 iter 10 value 94.444992 iter 20 value 87.796422 iter 30 value 86.342525 iter 40 value 82.202950 iter 50 value 81.647698 iter 60 value 81.551485 iter 70 value 81.370036 iter 80 value 81.265848 iter 90 value 81.264713 final value 81.264601 converged Fitting Repeat 2 # weights: 103 initial value 98.341477 iter 10 value 94.298152 iter 20 value 92.068241 iter 30 value 91.857667 iter 40 value 85.467320 iter 50 value 82.951060 iter 60 value 81.562968 iter 70 value 81.341735 iter 80 value 80.422733 iter 90 value 80.148485 final value 80.148244 converged Fitting Repeat 3 # weights: 103 initial value 99.744613 iter 10 value 94.338787 iter 20 value 88.306769 iter 30 value 83.467567 iter 40 value 82.300809 iter 50 value 81.317072 iter 60 value 81.264509 iter 60 value 81.264509 iter 60 value 81.264509 final value 81.264509 converged Fitting Repeat 4 # weights: 103 initial value 99.892015 iter 10 value 94.474722 iter 20 value 94.013047 iter 30 value 91.043121 iter 40 value 85.782626 iter 50 value 84.019841 iter 60 value 82.778633 iter 70 value 82.621594 iter 80 value 82.108802 iter 90 value 81.635486 final value 81.591117 converged Fitting Repeat 5 # weights: 103 initial value 99.571568 iter 10 value 94.563194 iter 20 value 94.487222 iter 30 value 90.603208 iter 40 value 83.360981 iter 50 value 82.687974 iter 60 value 81.837028 iter 70 value 81.308557 final value 81.264509 converged Fitting Repeat 1 # weights: 305 initial value 100.705994 iter 10 value 93.829711 iter 20 value 87.745592 iter 30 value 87.195391 iter 40 value 84.959375 iter 50 value 84.718135 iter 60 value 84.246313 iter 70 value 83.978822 iter 80 value 81.463773 iter 90 value 81.237369 iter 100 value 79.787118 final value 79.787118 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.506001 iter 10 value 90.704583 iter 20 value 84.670427 iter 30 value 81.965365 iter 40 value 80.735210 iter 50 value 80.503199 iter 60 value 80.213664 iter 70 value 79.866257 iter 80 value 78.953522 iter 90 value 78.658564 iter 100 value 78.526048 final value 78.526048 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 109.049535 iter 10 value 93.441888 iter 20 value 86.843157 iter 30 value 86.090200 iter 40 value 82.942086 iter 50 value 81.906422 iter 60 value 81.048282 iter 70 value 80.730696 iter 80 value 80.019540 iter 90 value 79.784723 iter 100 value 79.319301 final value 79.319301 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 104.424817 iter 10 value 94.432466 iter 20 value 92.494262 iter 30 value 83.718524 iter 40 value 81.973195 iter 50 value 81.533923 iter 60 value 81.458098 iter 70 value 81.411327 iter 80 value 81.236887 iter 90 value 80.238910 iter 100 value 79.740892 final value 79.740892 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.564003 iter 10 value 94.758003 iter 20 value 91.706845 iter 30 value 87.228793 iter 40 value 84.038043 iter 50 value 82.756458 iter 60 value 82.528376 iter 70 value 81.925058 iter 80 value 81.175115 iter 90 value 80.887570 iter 100 value 80.731428 final value 80.731428 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 100.802266 iter 10 value 94.435568 iter 20 value 82.688440 iter 30 value 80.684326 iter 40 value 79.395818 iter 50 value 79.073881 iter 60 value 78.997797 iter 70 value 78.513628 iter 80 value 78.440381 iter 90 value 78.429994 iter 100 value 78.379541 final value 78.379541 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.881041 iter 10 value 94.505629 iter 20 value 91.399804 iter 30 value 85.177462 iter 40 value 84.447350 iter 50 value 84.228145 iter 60 value 82.628171 iter 70 value 80.685149 iter 80 value 79.499803 iter 90 value 79.192489 iter 100 value 79.176120 final value 79.176120 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.765930 iter 10 value 93.043437 iter 20 value 84.038828 iter 30 value 82.775914 iter 40 value 82.496014 iter 50 value 81.987324 iter 60 value 79.982828 iter 70 value 79.057669 iter 80 value 78.425233 iter 90 value 78.225667 iter 100 value 78.147880 final value 78.147880 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 113.672314 iter 10 value 94.586165 iter 20 value 93.042280 iter 30 value 87.929048 iter 40 value 85.219045 iter 50 value 83.773769 iter 60 value 82.721045 iter 70 value 81.494018 iter 80 value 81.164342 iter 90 value 81.097264 iter 100 value 80.603941 final value 80.603941 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.201402 iter 10 value 94.882200 iter 20 value 93.056457 iter 30 value 87.393951 iter 40 value 85.632531 iter 50 value 84.177124 iter 60 value 84.010509 iter 70 value 83.974371 iter 80 value 83.705293 iter 90 value 82.361243 iter 100 value 81.093458 final value 81.093458 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.632652 final value 94.486057 converged Fitting Repeat 2 # weights: 103 initial value 96.065903 iter 10 value 94.485874 iter 20 value 92.590662 iter 30 value 83.785171 iter 40 value 83.053319 final value 83.040068 converged Fitting Repeat 3 # weights: 103 initial value 100.257707 final value 94.485880 converged Fitting Repeat 4 # weights: 103 initial value 94.751484 final value 94.485709 converged Fitting Repeat 5 # weights: 103 initial value 95.966502 final value 94.485747 converged Fitting Repeat 1 # weights: 305 initial value 107.330840 iter 10 value 94.488960 iter 20 value 94.189548 iter 30 value 83.833366 iter 40 value 80.685594 iter 50 value 79.939665 iter 60 value 79.905210 iter 70 value 79.900966 iter 80 value 79.547995 iter 90 value 77.434499 iter 100 value 77.386940 final value 77.386940 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 110.193457 iter 10 value 94.447710 iter 20 value 94.443723 final value 94.443289 converged Fitting Repeat 3 # weights: 305 initial value 130.437655 iter 10 value 94.489822 iter 20 value 94.452560 iter 30 value 82.565129 iter 40 value 82.563864 iter 50 value 82.561560 final value 82.561098 converged Fitting Repeat 4 # weights: 305 initial value 97.485599 iter 10 value 94.448187 iter 20 value 94.444175 final value 94.443594 converged Fitting Repeat 5 # weights: 305 initial value 101.892758 iter 10 value 94.447707 iter 20 value 94.443557 iter 30 value 94.228534 iter 40 value 84.096951 iter 50 value 80.428092 iter 60 value 80.361644 final value 80.361459 converged Fitting Repeat 1 # weights: 507 initial value 129.294139 iter 10 value 94.449859 iter 20 value 92.425967 iter 30 value 81.171691 iter 40 value 81.145578 iter 50 value 81.117459 iter 60 value 81.095024 iter 70 value 79.781194 iter 80 value 79.678266 iter 90 value 79.674197 final value 79.674171 converged Fitting Repeat 2 # weights: 507 initial value 125.603399 iter 10 value 94.491739 iter 20 value 94.473564 iter 30 value 90.939198 iter 40 value 82.344442 iter 50 value 82.165210 iter 60 value 82.164839 final value 82.163912 converged Fitting Repeat 3 # weights: 507 initial value 94.945803 iter 10 value 94.451730 iter 20 value 94.443468 iter 30 value 88.929220 iter 40 value 85.281832 iter 50 value 85.052403 iter 60 value 83.358643 iter 70 value 83.307852 iter 80 value 80.713652 iter 90 value 79.582701 iter 100 value 79.394309 final value 79.394309 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 95.994976 iter 10 value 94.490689 iter 20 value 94.104603 iter 30 value 92.304537 iter 40 value 92.302844 iter 50 value 92.200216 iter 60 value 92.186133 final value 92.185923 converged Fitting Repeat 5 # weights: 507 initial value 107.363015 iter 10 value 94.492542 iter 20 value 94.484410 iter 30 value 93.520458 iter 40 value 86.876809 iter 50 value 81.753504 iter 60 value 77.838431 iter 70 value 77.033503 iter 80 value 76.872028 iter 90 value 76.871030 iter 100 value 76.833421 final value 76.833421 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 124.840547 iter 10 value 117.874184 iter 20 value 117.867603 iter 30 value 114.256373 final value 114.253728 converged Fitting Repeat 2 # weights: 507 initial value 127.602748 iter 10 value 117.745177 iter 20 value 117.712187 iter 30 value 116.647777 iter 40 value 106.638097 iter 50 value 103.322288 iter 60 value 101.838506 iter 70 value 101.534253 iter 80 value 101.032239 iter 90 value 100.393599 iter 100 value 100.390492 final value 100.390492 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 131.346225 iter 10 value 117.898925 iter 20 value 117.845171 iter 30 value 108.535607 iter 40 value 108.007776 iter 50 value 106.784637 iter 60 value 106.779873 iter 70 value 106.774738 iter 80 value 105.726993 iter 90 value 102.244314 iter 100 value 100.353677 final value 100.353677 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 147.940788 iter 10 value 117.767581 iter 20 value 117.759908 iter 30 value 115.021581 iter 40 value 106.151680 iter 50 value 105.913429 iter 60 value 105.908325 iter 70 value 105.865380 iter 80 value 105.792389 iter 80 value 105.792389 final value 105.792389 converged Fitting Repeat 5 # weights: 507 initial value 123.157253 iter 10 value 117.897943 iter 20 value 117.383313 iter 30 value 115.848599 iter 40 value 113.499381 iter 50 value 113.494782 final value 113.494770 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Thu Oct 17 01:31:51 2024 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 43.971 1.915 44.359
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 34.335 | 0.808 | 35.145 | |
FreqInteractors | 0.225 | 0.016 | 0.241 | |
calculateAAC | 0.036 | 0.008 | 0.045 | |
calculateAutocor | 0.298 | 0.016 | 0.315 | |
calculateCTDC | 0.077 | 0.000 | 0.077 | |
calculateCTDD | 0.542 | 0.007 | 0.550 | |
calculateCTDT | 0.229 | 0.000 | 0.229 | |
calculateCTriad | 0.353 | 0.004 | 0.357 | |
calculateDC | 0.075 | 0.012 | 0.087 | |
calculateF | 0.298 | 0.008 | 0.306 | |
calculateKSAAP | 0.085 | 0.008 | 0.093 | |
calculateQD_Sm | 1.586 | 0.040 | 1.626 | |
calculateTC | 1.434 | 0.148 | 1.582 | |
calculateTC_Sm | 0.277 | 0.004 | 0.281 | |
corr_plot | 33.998 | 0.456 | 34.455 | |
enrichfindP | 0.488 | 0.029 | 10.238 | |
enrichfind_hp | 0.057 | 0.012 | 1.000 | |
enrichplot | 0.344 | 0.032 | 0.375 | |
filter_missing_values | 0.001 | 0.000 | 0.002 | |
getFASTA | 0.475 | 0.016 | 4.697 | |
getHPI | 0.001 | 0.000 | 0.001 | |
get_negativePPI | 0.002 | 0.000 | 0.002 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.002 | 0.000 | 0.002 | |
plotPPI | 0.069 | 0.008 | 0.077 | |
pred_ensembel | 14.102 | 0.719 | 11.117 | |
var_imp | 35.459 | 1.036 | 36.496 | |