Back to Multiple platform build/check report for BioC 3.17: simplified long |
|
This page was generated on 2023-10-16 11:35:44 -0400 (Mon, 16 Oct 2023).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 22.04.2 LTS) | x86_64 | 4.3.1 (2023-06-16) -- "Beagle Scouts" | 4626 |
palomino3 | Windows Server 2022 Datacenter | x64 | 4.3.1 (2023-06-16 ucrt) -- "Beagle Scouts" | 4379 |
merida1 | macOS 12.6.4 Monterey | x86_64 | 4.3.1 (2023-06-16) -- "Beagle Scouts" | 4395 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 1820/2230 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
SCArray.sat 1.0.3 (landing page) Xiuwen Zheng
| nebbiolo1 | Linux (Ubuntu 22.04.2 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino3 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
merida1 | macOS 12.6.4 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson2 | macOS 12.6.1 Monterey / arm64 | see weekly results here | ||||||||||||
To the developers/maintainers of the SCArray.sat package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/SCArray.sat.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: SCArray.sat |
Version: 1.0.3 |
Command: /home/biocbuild/bbs-3.17-bioc/R/bin/R CMD check --install=check:SCArray.sat.install-out.txt --library=/home/biocbuild/bbs-3.17-bioc/R/site-library --timings SCArray.sat_1.0.3.tar.gz |
StartedAt: 2023-10-16 00:45:29 -0400 (Mon, 16 Oct 2023) |
EndedAt: 2023-10-16 00:51:02 -0400 (Mon, 16 Oct 2023) |
EllapsedTime: 333.2 seconds |
RetCode: 0 |
Status: OK |
CheckDir: SCArray.sat.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.17-bioc/R/bin/R CMD check --install=check:SCArray.sat.install-out.txt --library=/home/biocbuild/bbs-3.17-bioc/R/site-library --timings SCArray.sat_1.0.3.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.17-bioc/meat/SCArray.sat.Rcheck’ * using R version 4.3.1 (2023-06-16) * using platform: x86_64-pc-linux-gnu (64-bit) * R was compiled by gcc (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0 GNU Fortran (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0 * running under: Ubuntu 22.04.3 LTS * using session charset: UTF-8 * checking for file ‘SCArray.sat/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘SCArray.sat’ version ‘1.0.3’ * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘SCArray.sat’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... NOTE Unexported objects imported by ':::' calls: ‘Seurat:::DEmethods_counts’ ‘Seurat:::DEmethods_nocorrect’ ‘Seurat:::FastExpMean’ ‘Seurat:::FastLogVMR’ ‘Seurat:::NBResiduals’ ‘Seurat:::UpdateKey’ ‘Seurat:::ValidateDataForMerge’ See the note in ?`:::` about the use of this operator. * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in ‘inst/doc’ ... OK * checking running R code from vignettes ... ‘SCArray.sat.Rmd’ using ‘UTF-8’... OK NONE * checking re-building of vignette outputs ... OK * checking PDF version of manual ... OK * DONE Status: 1 NOTE See ‘/home/biocbuild/bbs-3.17-bioc/meat/SCArray.sat.Rcheck/00check.log’ for details.
SCArray.sat.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.17-bioc/R/bin/R CMD INSTALL SCArray.sat ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.17-bioc/R/site-library’ * installing *source* package ‘SCArray.sat’ ... ** using staged installation ** R ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (SCArray.sat)
SCArray.sat.Rcheck/tests/runTests.Rout
R version 4.3.1 (2023-06-16) -- "Beagle Scouts" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage("SCArray.sat") Attaching package: 'BiocGenerics' The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Attaching package: 'MatrixGenerics' The following objects are masked from 'package:matrixStats': colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars Attaching package: 'S4Vectors' The following objects are masked from 'package:Matrix': expand, unname The following object is masked from 'package:utils': findMatches The following objects are masked from 'package:base': I, expand.grid, unname Attaching package: 'S4Arrays' The following object is masked from 'package:abind': abind The following object is masked from 'package:base': rowsum Attaching package: 'DelayedArray' The following objects are masked from 'package:base': apply, scale, sweep The legacy packages maptools, rgdal, and rgeos, underpinning the sp package, which was just loaded, were retired in October 2023. Please refer to R-spatial evolution reports for details, especially https://r-spatial.org/r/2023/05/15/evolution4.html. It may be desirable to make the sf package available; package maintainers should consider adding sf to Suggests:. Attaching package: 'sp' The following object is masked from 'package:IRanges': %over% Calling scNewAssayGDS() ... Input: /home/biocbuild/bbs-3.17-bioc/R/site-library/SCArray/extdata/example.gds counts: 1000 x 850 Calling SCArray:::x_colSums() with SC_GDSMatrix [1000x850] ... | | | 0% | |================================================================| 100% Calling SCArray:::x_colSums() with SC_GDSMatrix [1000x850] ... | | | 0% | |================================================================| 100% Calling NormalizeData.SC_GDSMatrix() ... Normalizing across features (CLR) Calling SCArray:::x_rowSums() with SC_GDSMatrix [1000x850] ... | | | 0% | |================================================================| 100% Normalizing across features Calling NormalizeData.SC_GDSMatrix() ... Normalizing across cells (CLR) Calling SCArray:::x_colSums() with SC_GDSMatrix [1000x850] ... | | | 0% | |================================================================| 100% Normalizing across cells Calling NormalizeData.SC_GDSMatrix() ... Performing relative-counts-normalization Calling SCArray:::x_colSums() with SC_GDSMatrix [1000x850] ... | | | 0% | |================================================================| 100% Performing relative-counts-normalization Calling NormalizeData.SC_GDSMatrix() ... Performing log-normalization Calling SCArray:::x_colSums() with SC_GDSMatrix [1000x850] ... | | | 0% | |================================================================| 100% Performing log-normalization 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calling FindVariableFeatures.SC_GDSMatrix() ... | | | 0% | |================================================================| 100% Calculating gene means 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating gene variance to mean ratios 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calling FindVariableFeatures.SC_GDSMatrix() ... | | | 0% | |================================================================| 100% Calculating gene means 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating gene variance to mean ratios 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calling FindVariableFeatures.SC_GDSMatrix() ... Calculating gene variances Calling SCArray::scRowMeanVar() with SC_GDSMatrix [1000x850] ... | | | 0% | |================================================================| 100% Calculating feature variances of standardized and clipped values | | | 0% | |================================================================| 100% Calculating gene variances 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating feature variances of standardized and clipped values 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calling ScaleData.SC_GDSMatrix() with SC_GDSMatrix [1000x850] ... Regressing out: x1, x2 Writing to '_temp_scale_data.gds' Calling SCArray::row_nnzero() with SC_GDSMatrix [500x850] ... | | | 0% | |================================================================| 100% | | | 0% | |================================================================| 100% Centering and scaling data matrix (SC_GDSMatrix [500x850]) Writing to '_scale_data.gds' Calling SCArray::scRowMeanVar() with transposed SC_GDSMatrix [500x850] ... | | | 0% | |================================================================| 100% | | | 0% | |================================================================| 100% Delete '_temp_scale_data.gds' Regressing out x1, x2 | | | 0% | | | 1% | |= | 1% | |= | 2% | |== | 2% | |== | 3% | |=== | 4% | |=== | 5% | |==== | 5% | |==== | 6% | |===== | 7% | |===== | 8% | |====== | 8% | |====== | 9% | |======= | 9% | |======= | 10% | |======= | 11% | |======== | 11% | |======== | 12% | |========= | 12% | |========= | 13% | |========== | 14% | |========== | 15% | |=========== | 15% | |=========== | 16% | |============ | 17% | |============ | 18% | |============= | 18% | |============= | 19% | |============== | 19% | |============== | 20% | |============== | 21% | |=============== | 21% | |=============== | 22% | |================ | 22% | |================ | 23% | |================= | 24% | |================= | 25% | |================== | 25% | |================== | 26% | |=================== | 27% | |=================== | 28% | |==================== | 28% | |==================== | 29% | |===================== | 29% | |===================== | 30% | |===================== | 31% | |====================== | 31% | |====================== | 32% | |======================= | 32% | |======================= | 33% | |======================== | 34% | |======================== | 35% | |========================= | 35% | |========================= | 36% | |========================== | 37% | |========================== | 38% | |=========================== | 38% | |=========================== | 39% | |============================ | 39% | |============================ | 40% | |============================ | 41% | |============================= | 41% | |============================= | 42% | |============================== | 42% | |============================== | 43% | |=============================== | 44% | |=============================== | 45% | |================================ | 45% | |================================ | 46% | |================================= | 47% | |================================= | 48% | |================================== | 48% | |================================== | 49% | |=================================== | 49% | |=================================== | 50% | |=================================== | 51% | |==================================== | 51% | |==================================== | 52% | |===================================== | 52% | |===================================== | 53% | |====================================== | 54% | |====================================== | 55% | |======================================= | 55% | |======================================= | 56% | |======================================== | 57% | |======================================== | 58% | |========================================= | 58% | |========================================= | 59% | |========================================== | 59% | |========================================== | 60% | |========================================== | 61% | |=========================================== | 61% | |=========================================== | 62% | |============================================ | 62% | |============================================ | 63% | |============================================= | 64% | |============================================= | 65% | |============================================== | 65% | |============================================== | 66% | |=============================================== | 67% | |=============================================== | 68% | |================================================ | 68% | |================================================ | 69% | |================================================= | 69% | |================================================= | 70% | |================================================= | 71% | |================================================== | 71% | |================================================== | 72% | |=================================================== | 72% | |=================================================== | 73% | |==================================================== | 74% | |==================================================== | 75% | |===================================================== | 75% | |===================================================== | 76% | |====================================================== | 77% | |====================================================== | 78% | |======================================================= | 78% | |======================================================= | 79% | |======================================================== | 79% | |======================================================== | 80% | |======================================================== | 81% | |========================================================= | 81% | |========================================================= | 82% | |========================================================== | 82% | |========================================================== | 83% | |=========================================================== | 84% | |=========================================================== | 85% | |============================================================ | 85% | |============================================================ | 86% | |============================================================= | 87% | |============================================================= | 88% | |============================================================== | 88% | |============================================================== | 89% | |=============================================================== | 89% | |=============================================================== | 90% | |=============================================================== | 91% | |================================================================ | 91% | |================================================================ | 92% | |================================================================= | 92% | |================================================================= | 93% | |================================================================== | 94% | |================================================================== | 95% | |=================================================================== | 95% | |=================================================================== | 96% | |==================================================================== | 97% | |==================================================================== | 98% | |===================================================================== | 98% | |===================================================================== | 99% | |======================================================================| 99% | |======================================================================| 100% Centering and scaling data matrix | | | 0% | |======================================================================| 100% Calling ScaleData.SC_GDSMatrix() with SC_GDSMatrix [1000x850] ... Centering and scaling data matrix (SC_GDSMatrix [500x850]) Writing to '_scale_data2.gds' Data split (SC_GDSMatrix [500,425]): FALSE Calling SCArray::scRowMeanVar() with SC_GDSMatrix [500x425] ... | | | 0% | |================================================================| 100% | | | 0% | |================================================================| 100% Data split (SC_GDSMatrix [500,425]): TRUE Calling SCArray::scRowMeanVar() with SC_GDSMatrix [500x425] ... | | | 0% | |================================================================| 100% | | | 0% | |================================================================| 100% Centering and scaling data matrix Centering and scaling data from split FALSE | | | 0% | |======================================================================| 100% Centering and scaling data from split TRUE | | | 0% | |======================================================================| 100% Calling ScaleData.SC_GDSMatrix() with SC_GDSMatrix [1000x850] ... Centering and scaling data matrix (SC_GDSMatrix [500x850]) Calling SCArray::scRowMeanVar() with SC_GDSMatrix [500x850] ... | | | 0% | |================================================================| 100% Centering and scaling data matrix | | | 0% | |======================================================================| 100% Calling RunPCA.SCArrayAssay() ... Calling RunPCA.SC_GDSMatrix() with SC_GDSMatrix [500x850] ... Calling SCArray:::x_rowVars() with SC_GDSMatrix [500x850] ... | | | 0% | |================================================================| 100% Calling SCArray:::x_crossprod_x() with transposed SC_GDSMatrix [850x500] ... | | | 0% | |================================================================| 100% Calling SCArray:::x_multiply_x_yANY() with transposed SC_GDSMatrix [850x500] ... RUNIT TEST PROTOCOL -- Mon Oct 16 00:50:22 2023 *********************************************** Number of test functions: 1 Number of errors: 0 Number of failures: 0 1 Test Suite : SCArray.sat RUnit Tests - 1 test function, 0 errors, 0 failures Number of test functions: 1 Number of errors: 0 Number of failures: 0 > > proc.time() user system elapsed 26.372 1.321 27.683
SCArray.sat.Rcheck/SCArray.sat-Ex.timings
name | user | system | elapsed | |
CreateAssayObject2 | 0.092 | 0.000 | 0.091 | |
NormalizeData | 1.815 | 0.128 | 1.943 | |
RunPCA | 2.159 | 0.056 | 2.215 | |
ScaleData | 2.328 | 0.099 | 2.428 | |
scGetFiles | 0.430 | 0.012 | 0.441 | |
scMemory | 1.874 | 0.176 | 2.050 | |
scNewAssayGDS | 0.378 | 0.004 | 0.382 | |
scNewSeuratGDS | 0.440 | 0.027 | 0.468 | |