Back to Multiple platform build/check report for BioC 3.17: simplified long |
|
This page was generated on 2023-10-16 11:36:14 -0400 (Mon, 16 Oct 2023).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 22.04.2 LTS) | x86_64 | 4.3.1 (2023-06-16) -- "Beagle Scouts" | 4626 |
palomino3 | Windows Server 2022 Datacenter | x64 | 4.3.1 (2023-06-16 ucrt) -- "Beagle Scouts" | 4379 |
merida1 | macOS 12.6.4 Monterey | x86_64 | 4.3.1 (2023-06-16) -- "Beagle Scouts" | 4395 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 949/2230 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.6.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 22.04.2 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino3 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
merida1 | macOS 12.6.4 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson2 | macOS 12.6.1 Monterey / arm64 | see weekly results here | ||||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.6.0 |
Command: F:\biocbuild\bbs-3.17-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.17-bioc\R\library --no-vignettes --timings HPiP_1.6.0.tar.gz |
StartedAt: 2023-10-16 03:05:36 -0400 (Mon, 16 Oct 2023) |
EndedAt: 2023-10-16 03:09:51 -0400 (Mon, 16 Oct 2023) |
EllapsedTime: 255.1 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.17-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.17-bioc\R\library --no-vignettes --timings HPiP_1.6.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'F:/biocbuild/bbs-3.17-bioc/meat/HPiP.Rcheck' * using R version 4.3.1 (2023-06-16 ucrt) * using platform: x86_64-w64-mingw32 (64-bit) * R was compiled by gcc.exe (GCC) 12.2.0 GNU Fortran (GCC) 12.2.0 * running under: Windows Server 2022 x64 (build 20348) * using session charset: UTF-8 * using option '--no-vignettes' * checking for file 'HPiP/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'HPiP' version '1.6.0' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'HPiP' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: 'ftrCOOL' * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in 'vignettes' ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 29.30 0.77 30.08 FSmethod 28.35 1.40 29.78 corr_plot 27.85 0.90 28.77 pred_ensembel 12.34 0.37 9.47 enrichfindP 0.59 0.05 13.42 * checking for unstated dependencies in 'tests' ... OK * checking tests ... Running 'runTests.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in 'inst/doc' ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 1 NOTE See 'F:/biocbuild/bbs-3.17-bioc/meat/HPiP.Rcheck/00check.log' for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.17-bioc\R\bin\R.exe CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library 'F:/biocbuild/bbs-3.17-bioc/R/library' * installing *source* package 'HPiP' ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.3.1 (2023-06-16 ucrt) -- "Beagle Scouts" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 97.012204 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 96.341855 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 100.320226 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 103.633682 final value 94.038251 converged Fitting Repeat 5 # weights: 103 initial value 100.465221 iter 10 value 94.039103 final value 94.038252 converged Fitting Repeat 1 # weights: 305 initial value 100.160280 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 103.886861 final value 94.038251 converged Fitting Repeat 3 # weights: 305 initial value 97.459286 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 100.487062 final value 94.038251 converged Fitting Repeat 5 # weights: 305 initial value 94.269815 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 96.083455 iter 10 value 93.986804 iter 20 value 93.934417 iter 30 value 93.932248 final value 93.932129 converged Fitting Repeat 2 # weights: 507 initial value 96.217671 final value 94.038251 converged Fitting Repeat 3 # weights: 507 initial value 99.109879 final value 93.164740 converged Fitting Repeat 4 # weights: 507 initial value 124.876305 final value 94.038251 converged Fitting Repeat 5 # weights: 507 initial value 98.410552 final value 94.038252 converged Fitting Repeat 1 # weights: 103 initial value 98.508112 iter 10 value 94.045062 iter 20 value 88.690800 iter 30 value 85.328327 iter 40 value 81.973760 iter 50 value 81.882358 iter 60 value 81.644244 iter 70 value 81.635994 final value 81.635990 converged Fitting Repeat 2 # weights: 103 initial value 99.555889 iter 10 value 94.056764 iter 20 value 93.346427 iter 30 value 83.002267 iter 40 value 81.946345 iter 50 value 81.901615 iter 60 value 81.871332 final value 81.871260 converged Fitting Repeat 3 # weights: 103 initial value 100.704617 iter 10 value 93.979504 iter 20 value 90.506563 iter 30 value 89.530961 iter 40 value 89.437137 iter 50 value 84.026664 iter 60 value 81.310546 iter 70 value 80.390312 iter 80 value 80.190975 iter 90 value 80.098186 iter 100 value 79.719461 final value 79.719461 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 98.201433 iter 10 value 94.063827 iter 20 value 94.054962 iter 30 value 94.054904 iter 40 value 91.235012 iter 50 value 86.639406 iter 60 value 84.375628 iter 70 value 83.214549 iter 80 value 81.823215 iter 90 value 81.656393 iter 100 value 81.644863 final value 81.644863 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 114.745443 iter 10 value 94.021475 iter 20 value 88.854950 iter 30 value 86.865015 iter 40 value 85.015671 iter 50 value 84.881468 iter 60 value 83.359140 iter 70 value 82.534524 iter 80 value 81.619181 iter 90 value 81.609495 final value 81.608562 converged Fitting Repeat 1 # weights: 305 initial value 101.095828 iter 10 value 93.033005 iter 20 value 83.231372 iter 30 value 82.427429 iter 40 value 81.911515 iter 50 value 81.599147 iter 60 value 81.203991 iter 70 value 81.173387 iter 80 value 81.170928 iter 90 value 81.145456 iter 100 value 80.873061 final value 80.873061 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.099748 iter 10 value 93.241505 iter 20 value 82.607930 iter 30 value 81.885800 iter 40 value 81.392866 iter 50 value 81.210514 iter 60 value 80.850012 iter 70 value 79.490142 iter 80 value 78.988045 iter 90 value 78.518119 iter 100 value 78.246763 final value 78.246763 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.453347 iter 10 value 93.813210 iter 20 value 93.646338 iter 30 value 84.437157 iter 40 value 81.796606 iter 50 value 80.555529 iter 60 value 79.191812 iter 70 value 78.741660 iter 80 value 78.447707 iter 90 value 78.423374 iter 100 value 78.399916 final value 78.399916 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 98.072758 iter 10 value 84.007711 iter 20 value 81.853756 iter 30 value 80.775114 iter 40 value 80.390076 iter 50 value 79.369609 iter 60 value 78.560824 iter 70 value 78.374092 iter 80 value 78.331808 iter 90 value 78.263531 iter 100 value 78.143647 final value 78.143647 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.445175 iter 10 value 94.841763 iter 20 value 88.595826 iter 30 value 82.312576 iter 40 value 81.343017 iter 50 value 81.090071 iter 60 value 80.468052 iter 70 value 80.133214 iter 80 value 80.031708 iter 90 value 79.847356 iter 100 value 79.806660 final value 79.806660 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 117.036996 iter 10 value 94.463849 iter 20 value 93.882477 iter 30 value 87.017386 iter 40 value 82.214556 iter 50 value 81.578675 iter 60 value 80.599807 iter 70 value 78.332519 iter 80 value 77.723320 iter 90 value 77.677583 iter 100 value 77.622521 final value 77.622521 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.459735 iter 10 value 94.037765 iter 20 value 91.618213 iter 30 value 86.360155 iter 40 value 84.741129 iter 50 value 83.522998 iter 60 value 81.909554 iter 70 value 79.897670 iter 80 value 79.010352 iter 90 value 78.923167 iter 100 value 78.643734 final value 78.643734 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.546123 iter 10 value 94.361134 iter 20 value 89.340079 iter 30 value 84.422978 iter 40 value 82.051228 iter 50 value 81.402644 iter 60 value 80.136164 iter 70 value 79.051991 iter 80 value 78.515839 iter 90 value 78.152663 iter 100 value 77.891844 final value 77.891844 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.626373 iter 10 value 94.232724 iter 20 value 85.036394 iter 30 value 84.023016 iter 40 value 83.326189 iter 50 value 80.230646 iter 60 value 79.462153 iter 70 value 78.827859 iter 80 value 78.564170 iter 90 value 78.188529 iter 100 value 78.027845 final value 78.027845 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.736860 iter 10 value 94.256162 iter 20 value 85.149335 iter 30 value 82.672678 iter 40 value 81.413155 iter 50 value 81.121503 iter 60 value 80.962971 iter 70 value 80.152874 iter 80 value 78.927948 iter 90 value 78.351706 iter 100 value 78.016594 final value 78.016594 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.366358 final value 94.054473 converged Fitting Repeat 2 # weights: 103 initial value 94.563093 final value 94.054539 converged Fitting Repeat 3 # weights: 103 initial value 94.553827 final value 94.054435 converged Fitting Repeat 4 # weights: 103 initial value 94.955483 iter 10 value 94.054705 iter 20 value 94.052907 iter 30 value 91.656556 iter 40 value 86.584148 iter 50 value 86.503495 iter 60 value 86.380597 iter 70 value 86.281684 iter 80 value 86.280881 final value 86.280746 converged Fitting Repeat 5 # weights: 103 initial value 95.430194 final value 94.054565 converged Fitting Repeat 1 # weights: 305 initial value 107.896839 iter 10 value 94.043110 iter 20 value 94.038598 iter 30 value 94.021774 iter 40 value 84.622586 iter 50 value 81.581932 iter 60 value 80.635842 iter 70 value 80.586523 iter 80 value 80.586298 iter 80 value 80.586297 iter 80 value 80.586297 final value 80.586297 converged Fitting Repeat 2 # weights: 305 initial value 118.737411 iter 10 value 94.058200 iter 20 value 93.789160 iter 30 value 90.966348 iter 40 value 86.215212 iter 50 value 86.207409 iter 60 value 84.361950 iter 70 value 83.291365 iter 80 value 82.712945 iter 90 value 82.487960 iter 100 value 82.485425 final value 82.485425 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.310676 iter 10 value 92.198436 iter 20 value 92.052343 iter 30 value 91.506078 iter 40 value 91.408322 iter 50 value 82.572153 iter 60 value 81.590586 iter 70 value 81.577844 iter 80 value 80.613822 iter 90 value 80.588538 iter 100 value 80.588254 final value 80.588254 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.802903 iter 10 value 94.057883 iter 20 value 90.478693 iter 30 value 82.378598 final value 82.378560 converged Fitting Repeat 5 # weights: 305 initial value 95.071855 iter 10 value 93.675372 iter 20 value 84.686593 iter 30 value 84.577052 iter 40 value 84.402595 iter 50 value 84.385454 iter 60 value 84.255929 iter 70 value 82.016364 iter 80 value 78.775041 iter 90 value 78.527705 iter 100 value 78.522771 final value 78.522771 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 98.602789 iter 10 value 94.061475 iter 20 value 94.025942 iter 30 value 84.218952 iter 40 value 84.212564 final value 84.212543 converged Fitting Repeat 2 # weights: 507 initial value 119.518686 iter 10 value 94.061599 iter 20 value 94.053921 iter 30 value 94.044119 iter 40 value 94.018686 iter 50 value 93.980268 final value 93.980265 converged Fitting Repeat 3 # weights: 507 initial value 95.851098 iter 10 value 94.046456 iter 20 value 94.037679 iter 30 value 84.831767 iter 40 value 82.278528 iter 50 value 82.271556 iter 60 value 81.633463 iter 70 value 81.606524 iter 80 value 80.778662 iter 90 value 80.075310 iter 100 value 78.850646 final value 78.850646 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 101.332669 iter 10 value 94.058609 iter 20 value 93.680752 iter 30 value 86.909452 iter 40 value 79.895753 iter 50 value 78.925189 iter 60 value 78.469393 iter 70 value 78.027764 iter 80 value 77.980093 iter 90 value 77.906893 iter 100 value 77.628194 final value 77.628194 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.171248 iter 10 value 94.046227 iter 20 value 94.039428 iter 30 value 91.657504 iter 40 value 82.268041 iter 50 value 80.287226 iter 60 value 79.517260 iter 70 value 79.516046 iter 80 value 79.448754 iter 90 value 79.095902 iter 100 value 79.086193 final value 79.086193 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 112.539397 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 113.617999 final value 94.477594 converged Fitting Repeat 3 # weights: 103 initial value 100.588380 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 96.510988 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 99.251853 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 99.089981 final value 94.275362 converged Fitting Repeat 2 # weights: 305 initial value 99.495213 iter 10 value 94.275363 iter 10 value 94.275362 iter 10 value 94.275362 final value 94.275362 converged Fitting Repeat 3 # weights: 305 initial value 101.227281 final value 94.484210 converged Fitting Repeat 4 # weights: 305 initial value 110.890830 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 96.487155 final value 94.448052 converged Fitting Repeat 1 # weights: 507 initial value 94.574917 iter 10 value 88.750729 iter 20 value 86.515857 iter 30 value 86.495713 final value 86.495642 converged Fitting Repeat 2 # weights: 507 initial value 120.980773 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 96.622461 iter 10 value 93.492775 iter 20 value 91.315701 iter 30 value 89.304840 final value 89.304766 converged Fitting Repeat 4 # weights: 507 initial value 125.793852 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 104.714561 iter 10 value 93.607287 iter 10 value 93.607287 iter 10 value 93.607287 final value 93.607287 converged Fitting Repeat 1 # weights: 103 initial value 107.083977 iter 10 value 94.568705 iter 20 value 89.842504 iter 30 value 85.732355 iter 40 value 84.952115 iter 50 value 84.749472 iter 60 value 84.689906 iter 70 value 84.650863 final value 84.644077 converged Fitting Repeat 2 # weights: 103 initial value 97.681589 iter 10 value 94.493969 iter 20 value 93.977385 iter 30 value 93.725822 iter 40 value 93.640683 iter 50 value 90.933744 iter 60 value 88.217184 iter 70 value 87.196882 iter 80 value 87.121454 iter 90 value 85.231349 iter 100 value 85.124465 final value 85.124465 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 104.493297 iter 10 value 94.487605 iter 20 value 92.625575 iter 30 value 87.279887 iter 40 value 87.180983 iter 50 value 87.119348 iter 60 value 85.810624 iter 70 value 84.066838 iter 80 value 83.127724 iter 90 value 82.892912 iter 100 value 82.815830 final value 82.815830 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 100.939696 iter 10 value 93.651858 iter 20 value 87.129015 iter 30 value 86.191881 iter 40 value 85.087346 iter 50 value 85.064442 iter 60 value 85.064350 final value 85.064349 converged Fitting Repeat 5 # weights: 103 initial value 99.918513 iter 10 value 94.500949 iter 20 value 87.483873 iter 30 value 86.899183 iter 40 value 85.211732 iter 50 value 83.539052 iter 60 value 82.856381 iter 70 value 82.806686 iter 80 value 82.732562 iter 90 value 82.661274 final value 82.661110 converged Fitting Repeat 1 # weights: 305 initial value 101.665725 iter 10 value 94.133372 iter 20 value 88.684825 iter 30 value 85.743640 iter 40 value 82.698457 iter 50 value 82.241819 iter 60 value 81.991533 iter 70 value 81.948615 iter 80 value 81.920896 iter 90 value 81.917576 iter 100 value 81.904250 final value 81.904250 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 145.180576 iter 10 value 94.369469 iter 20 value 93.804748 iter 30 value 93.530486 iter 40 value 92.644304 iter 50 value 85.361604 iter 60 value 83.831695 iter 70 value 83.177448 iter 80 value 82.463864 iter 90 value 82.162907 iter 100 value 82.000879 final value 82.000879 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.487029 iter 10 value 94.508207 iter 20 value 90.074750 iter 30 value 87.070197 iter 40 value 85.908209 iter 50 value 83.995718 iter 60 value 83.268485 iter 70 value 82.676055 iter 80 value 81.987288 iter 90 value 81.877607 iter 100 value 81.817376 final value 81.817376 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.726226 iter 10 value 94.632249 iter 20 value 88.814542 iter 30 value 86.286885 iter 40 value 84.535844 iter 50 value 84.234833 iter 60 value 84.002647 iter 70 value 83.940774 iter 80 value 83.845523 iter 90 value 83.621392 iter 100 value 83.394492 final value 83.394492 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 109.385739 iter 10 value 94.488577 iter 20 value 87.949190 iter 30 value 87.388456 iter 40 value 86.751506 iter 50 value 85.199899 iter 60 value 84.748659 iter 70 value 84.655200 iter 80 value 84.186022 iter 90 value 83.553419 iter 100 value 83.362846 final value 83.362846 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 127.309858 iter 10 value 94.461576 iter 20 value 87.312679 iter 30 value 85.288184 iter 40 value 85.101194 iter 50 value 85.006149 iter 60 value 84.790841 iter 70 value 83.553735 iter 80 value 82.871628 iter 90 value 82.601203 iter 100 value 82.083545 final value 82.083545 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 110.885735 iter 10 value 94.812630 iter 20 value 91.947606 iter 30 value 85.920171 iter 40 value 85.423813 iter 50 value 84.697008 iter 60 value 84.124162 iter 70 value 82.189813 iter 80 value 81.914013 iter 90 value 81.861575 iter 100 value 81.783743 final value 81.783743 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.721577 iter 10 value 94.503831 iter 20 value 93.965861 iter 30 value 85.850664 iter 40 value 85.208545 iter 50 value 84.959419 iter 60 value 84.616552 iter 70 value 83.833688 iter 80 value 83.090491 iter 90 value 83.030615 iter 100 value 82.278149 final value 82.278149 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.104906 iter 10 value 94.417202 iter 20 value 92.730148 iter 30 value 91.912455 iter 40 value 85.495747 iter 50 value 83.473433 iter 60 value 82.860052 iter 70 value 82.588512 iter 80 value 82.021739 iter 90 value 81.795293 iter 100 value 81.681889 final value 81.681889 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 119.429154 iter 10 value 95.186119 iter 20 value 91.006639 iter 30 value 88.580135 iter 40 value 87.147129 iter 50 value 86.429359 iter 60 value 85.027167 iter 70 value 83.553286 iter 80 value 82.229006 iter 90 value 81.899581 iter 100 value 81.756172 final value 81.756172 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.565841 final value 94.485632 converged Fitting Repeat 2 # weights: 103 initial value 107.107483 final value 94.485800 converged Fitting Repeat 3 # weights: 103 initial value 94.799998 final value 94.485892 converged Fitting Repeat 4 # weights: 103 initial value 101.587961 final value 94.485961 converged Fitting Repeat 5 # weights: 103 initial value 109.099135 final value 94.485838 converged Fitting Repeat 1 # weights: 305 initial value 104.136314 iter 10 value 94.489086 iter 20 value 94.439102 iter 30 value 85.078311 iter 40 value 84.689420 final value 84.687237 converged Fitting Repeat 2 # weights: 305 initial value 102.950293 iter 10 value 94.488550 iter 20 value 93.127066 iter 30 value 87.876091 iter 40 value 87.862391 iter 50 value 87.860677 iter 60 value 83.745212 iter 70 value 83.729341 iter 80 value 83.620068 iter 90 value 82.380315 iter 100 value 82.027773 final value 82.027773 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.676789 iter 10 value 94.310849 iter 20 value 94.042127 iter 30 value 93.583835 iter 40 value 93.575182 iter 50 value 91.215372 iter 60 value 82.650890 iter 70 value 82.427591 iter 80 value 82.061963 iter 90 value 82.049735 iter 100 value 82.020674 final value 82.020674 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 107.377511 iter 10 value 94.489156 iter 20 value 94.472249 final value 94.275502 converged Fitting Repeat 5 # weights: 305 initial value 108.001324 iter 10 value 94.489150 iter 20 value 94.414616 iter 30 value 93.850335 iter 40 value 93.552122 iter 50 value 91.819815 iter 60 value 91.739077 iter 70 value 91.669147 iter 80 value 91.667880 iter 90 value 91.058850 iter 100 value 88.458521 final value 88.458521 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 101.180368 iter 10 value 94.492190 iter 20 value 94.408020 iter 30 value 92.455560 iter 40 value 86.787671 iter 50 value 86.754262 iter 60 value 86.668459 final value 86.668310 converged Fitting Repeat 2 # weights: 507 initial value 95.200629 iter 10 value 94.283785 iter 20 value 94.240841 iter 30 value 86.682400 iter 40 value 86.643248 iter 50 value 86.642177 iter 60 value 86.639221 iter 70 value 86.633334 iter 80 value 86.632136 iter 90 value 86.628786 iter 100 value 86.626678 final value 86.626678 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 108.857759 iter 10 value 92.348981 iter 20 value 83.985169 iter 30 value 83.900980 iter 40 value 83.897770 iter 50 value 83.847707 iter 60 value 83.846681 iter 70 value 83.839413 iter 80 value 83.813273 iter 90 value 83.735227 iter 100 value 83.727702 final value 83.727702 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 96.978663 iter 10 value 89.674176 iter 20 value 86.709986 iter 30 value 86.694413 iter 40 value 86.662352 iter 50 value 84.606423 iter 60 value 84.500189 iter 70 value 84.495560 final value 84.495556 converged Fitting Repeat 5 # weights: 507 initial value 97.085149 iter 10 value 91.487471 iter 20 value 87.478955 iter 30 value 87.391873 iter 40 value 87.390405 iter 50 value 87.387442 iter 50 value 87.387442 final value 87.387442 converged Fitting Repeat 1 # weights: 103 initial value 96.618933 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.834480 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.812550 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 96.713423 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 103.195125 iter 10 value 94.060582 iter 20 value 94.058489 final value 94.058479 converged Fitting Repeat 1 # weights: 305 initial value 95.181576 iter 10 value 94.354418 final value 94.354396 converged Fitting Repeat 2 # weights: 305 initial value 94.823531 final value 94.484137 converged Fitting Repeat 3 # weights: 305 initial value 101.321634 final value 94.354396 converged Fitting Repeat 4 # weights: 305 initial value 99.261816 final value 94.354396 converged Fitting Repeat 5 # weights: 305 initial value 103.679722 final value 94.052434 converged Fitting Repeat 1 # weights: 507 initial value 98.176602 final value 94.484137 converged Fitting Repeat 2 # weights: 507 initial value 114.331812 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 103.555586 final value 94.484210 converged Fitting Repeat 4 # weights: 507 initial value 112.807408 iter 10 value 93.618839 iter 20 value 91.829864 iter 30 value 90.691342 iter 40 value 90.328621 final value 90.324940 converged Fitting Repeat 5 # weights: 507 initial value 114.801463 iter 10 value 89.061925 iter 20 value 85.840146 iter 20 value 85.840146 iter 20 value 85.840146 final value 85.840146 converged Fitting Repeat 1 # weights: 103 initial value 103.710262 iter 10 value 94.488513 iter 20 value 92.378388 iter 30 value 84.502977 iter 40 value 84.017713 iter 50 value 81.858684 iter 60 value 80.399705 iter 70 value 80.369136 final value 80.368862 converged Fitting Repeat 2 # weights: 103 initial value 97.473704 iter 10 value 93.195633 iter 20 value 87.299019 iter 30 value 84.499459 iter 40 value 84.221116 iter 50 value 83.981184 iter 60 value 83.971505 iter 60 value 83.971504 iter 60 value 83.971504 final value 83.971504 converged Fitting Repeat 3 # weights: 103 initial value 102.849959 iter 10 value 94.263268 iter 20 value 85.680986 iter 30 value 84.368364 iter 40 value 84.333697 final value 84.333694 converged Fitting Repeat 4 # weights: 103 initial value 97.181219 iter 10 value 94.484472 iter 20 value 91.781345 iter 30 value 91.412119 iter 40 value 89.087748 iter 50 value 88.940185 iter 60 value 88.895249 iter 70 value 88.894593 final value 88.894589 converged Fitting Repeat 5 # weights: 103 initial value 97.619888 iter 10 value 94.520123 iter 20 value 94.488451 iter 30 value 85.216064 iter 40 value 84.422081 iter 50 value 84.025205 iter 60 value 82.874644 iter 70 value 82.435324 iter 80 value 82.399839 final value 82.399815 converged Fitting Repeat 1 # weights: 305 initial value 102.303646 iter 10 value 94.466986 iter 20 value 93.729849 iter 30 value 86.081128 iter 40 value 83.130124 iter 50 value 81.285316 iter 60 value 80.763698 iter 70 value 80.331881 iter 80 value 79.815509 iter 90 value 79.128863 iter 100 value 79.033028 final value 79.033028 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.804474 iter 10 value 94.254532 iter 20 value 87.491927 iter 30 value 83.982787 iter 40 value 82.419890 iter 50 value 82.022292 iter 60 value 79.839403 iter 70 value 79.453150 iter 80 value 79.373173 iter 90 value 79.145885 iter 100 value 78.926583 final value 78.926583 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.657962 iter 10 value 94.448185 iter 20 value 91.021756 iter 30 value 88.141586 iter 40 value 84.843296 iter 50 value 84.491745 iter 60 value 84.345478 iter 70 value 84.313711 iter 80 value 83.739810 iter 90 value 81.632652 iter 100 value 80.429435 final value 80.429435 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.443884 iter 10 value 94.610444 iter 20 value 94.211663 iter 30 value 94.141574 iter 40 value 92.922951 iter 50 value 88.215869 iter 60 value 83.143617 iter 70 value 81.951352 iter 80 value 81.560765 iter 90 value 81.074631 iter 100 value 80.419359 final value 80.419359 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 114.327949 iter 10 value 94.401240 iter 20 value 92.722808 iter 30 value 90.861662 iter 40 value 87.941876 iter 50 value 86.026040 iter 60 value 85.616175 iter 70 value 83.837095 iter 80 value 82.970390 iter 90 value 82.518722 iter 100 value 82.273619 final value 82.273619 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 103.887972 iter 10 value 94.507310 iter 20 value 94.220947 iter 30 value 92.758245 iter 40 value 84.875756 iter 50 value 84.159463 iter 60 value 83.862999 iter 70 value 81.636246 iter 80 value 79.681258 iter 90 value 79.422720 iter 100 value 79.233066 final value 79.233066 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.422231 iter 10 value 94.512673 iter 20 value 85.535190 iter 30 value 83.975174 iter 40 value 82.563209 iter 50 value 81.150999 iter 60 value 80.876315 iter 70 value 80.177273 iter 80 value 79.861517 iter 90 value 79.781277 iter 100 value 79.759679 final value 79.759679 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.186987 iter 10 value 93.916235 iter 20 value 85.627785 iter 30 value 84.059321 iter 40 value 81.580747 iter 50 value 80.523860 iter 60 value 80.328270 iter 70 value 79.463723 iter 80 value 79.036668 iter 90 value 78.651576 iter 100 value 78.596260 final value 78.596260 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 120.015712 iter 10 value 92.953481 iter 20 value 91.686347 iter 30 value 90.946056 iter 40 value 90.786335 iter 50 value 84.119689 iter 60 value 82.074475 iter 70 value 80.685214 iter 80 value 79.730893 iter 90 value 79.462314 iter 100 value 79.367654 final value 79.367654 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 114.287409 iter 10 value 95.130416 iter 20 value 92.257676 iter 30 value 90.832020 iter 40 value 88.816393 iter 50 value 87.987158 iter 60 value 85.173733 iter 70 value 82.669103 iter 80 value 80.850249 iter 90 value 80.474027 iter 100 value 79.457152 final value 79.457152 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 103.019419 final value 94.485862 converged Fitting Repeat 2 # weights: 103 initial value 98.639142 final value 94.485927 converged Fitting Repeat 3 # weights: 103 initial value 95.072990 final value 94.256237 converged Fitting Repeat 4 # weights: 103 initial value 108.311162 iter 10 value 94.485797 iter 20 value 94.484117 iter 30 value 91.363953 iter 40 value 87.703661 iter 50 value 87.671180 iter 60 value 86.669050 iter 70 value 86.640441 iter 80 value 85.555635 iter 90 value 85.527818 iter 100 value 85.527380 final value 85.527380 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 100.324107 final value 94.485700 converged Fitting Repeat 1 # weights: 305 initial value 128.573308 iter 10 value 94.488977 iter 20 value 94.475510 iter 30 value 84.208876 iter 40 value 83.626005 iter 50 value 83.607637 iter 60 value 83.485513 iter 70 value 83.480016 iter 80 value 83.478752 iter 90 value 83.211048 iter 100 value 83.059446 final value 83.059446 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 105.611921 iter 10 value 94.488842 iter 20 value 94.361206 final value 94.354590 converged Fitting Repeat 3 # weights: 305 initial value 112.494118 iter 10 value 94.488084 final value 94.484597 converged Fitting Repeat 4 # weights: 305 initial value 99.248704 iter 10 value 94.497769 iter 20 value 94.430057 iter 30 value 93.705883 iter 40 value 91.903640 iter 50 value 91.066344 iter 60 value 90.359762 iter 70 value 88.100605 iter 80 value 88.077186 iter 90 value 88.076423 iter 90 value 88.076423 iter 90 value 88.076423 final value 88.076423 converged Fitting Repeat 5 # weights: 305 initial value 97.150418 iter 10 value 94.358843 iter 20 value 94.070019 iter 30 value 94.058083 iter 40 value 93.988698 iter 50 value 86.970439 iter 60 value 86.873966 iter 70 value 86.873746 final value 86.872674 converged Fitting Repeat 1 # weights: 507 initial value 112.339392 iter 10 value 94.362575 iter 20 value 94.351103 iter 30 value 92.878679 final value 92.787063 converged Fitting Repeat 2 # weights: 507 initial value 112.582090 iter 10 value 94.492650 iter 20 value 94.303606 iter 30 value 88.880490 iter 40 value 86.809520 iter 50 value 85.589917 iter 60 value 85.579101 iter 70 value 85.243959 iter 80 value 82.405448 iter 90 value 79.654085 iter 100 value 79.339475 final value 79.339475 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 98.551650 iter 10 value 94.363147 iter 20 value 94.354791 iter 30 value 90.749696 iter 40 value 83.792338 iter 50 value 83.657727 iter 60 value 83.656647 iter 70 value 83.651934 final value 83.651813 converged Fitting Repeat 4 # weights: 507 initial value 98.461416 iter 10 value 93.977749 iter 20 value 93.973863 iter 30 value 93.418833 iter 40 value 90.322994 iter 50 value 83.708248 iter 60 value 81.207080 iter 70 value 80.993533 iter 80 value 80.964330 iter 90 value 80.962474 iter 100 value 80.961339 final value 80.961339 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 113.442423 iter 10 value 94.491488 iter 20 value 94.469656 iter 30 value 94.354617 iter 40 value 94.353833 iter 50 value 94.353787 final value 94.353782 converged Fitting Repeat 1 # weights: 103 initial value 109.464648 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 109.953178 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 102.575872 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 100.249436 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 99.095184 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 102.576767 final value 94.050155 converged Fitting Repeat 2 # weights: 305 initial value 95.041795 iter 10 value 88.266941 final value 86.376995 converged Fitting Repeat 3 # weights: 305 initial value 97.250229 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 105.730594 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 127.591263 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 120.620610 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 112.407692 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 108.619609 iter 10 value 93.582487 final value 93.582418 converged Fitting Repeat 4 # weights: 507 initial value 95.305548 iter 10 value 87.327223 iter 20 value 86.706905 iter 30 value 86.703327 final value 86.703310 converged Fitting Repeat 5 # weights: 507 initial value 118.787573 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 100.501623 iter 10 value 94.056679 iter 20 value 88.987358 iter 30 value 88.131517 iter 40 value 87.762750 iter 50 value 87.312684 iter 60 value 86.097339 iter 70 value 85.545520 iter 80 value 84.941156 iter 90 value 84.756883 final value 84.698294 converged Fitting Repeat 2 # weights: 103 initial value 104.267752 iter 10 value 93.972504 iter 20 value 93.686983 iter 30 value 93.683707 iter 40 value 88.599826 iter 50 value 86.478004 iter 60 value 86.233200 iter 70 value 86.080479 iter 80 value 85.587632 iter 90 value 85.523214 final value 85.523048 converged Fitting Repeat 3 # weights: 103 initial value 104.195213 iter 10 value 93.605598 iter 20 value 89.036921 iter 30 value 86.585275 iter 40 value 86.232562 iter 50 value 85.976828 iter 60 value 85.483443 iter 70 value 85.377993 iter 80 value 85.371959 final value 85.371958 converged Fitting Repeat 4 # weights: 103 initial value 103.313771 iter 10 value 94.031937 iter 20 value 89.548190 iter 30 value 86.768835 iter 40 value 86.306186 iter 50 value 85.930754 iter 60 value 85.736436 iter 70 value 85.684644 iter 80 value 85.348577 iter 90 value 85.216653 iter 100 value 85.070237 final value 85.070237 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 107.966055 iter 10 value 94.020695 iter 20 value 93.779174 iter 30 value 91.125519 iter 40 value 89.124629 iter 50 value 88.160664 iter 60 value 85.596084 iter 70 value 85.382812 iter 80 value 83.953284 iter 90 value 83.862734 iter 100 value 83.855103 final value 83.855103 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 102.872374 iter 10 value 94.309177 iter 20 value 92.986438 iter 30 value 88.373273 iter 40 value 86.872421 iter 50 value 84.313334 iter 60 value 82.913692 iter 70 value 82.231151 iter 80 value 82.057904 iter 90 value 81.983896 iter 100 value 81.955414 final value 81.955414 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.659213 iter 10 value 94.099332 iter 20 value 93.920180 iter 30 value 93.382859 iter 40 value 89.438581 iter 50 value 88.586173 iter 60 value 87.412901 iter 70 value 86.979190 iter 80 value 86.847445 iter 90 value 86.053826 iter 100 value 85.437831 final value 85.437831 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 106.885478 iter 10 value 94.054857 iter 20 value 93.707822 iter 30 value 93.254067 iter 40 value 91.950347 iter 50 value 89.344997 iter 60 value 88.329886 iter 70 value 87.799362 iter 80 value 86.261575 iter 90 value 85.136807 iter 100 value 84.271972 final value 84.271972 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.546885 iter 10 value 94.227448 iter 20 value 93.802054 iter 30 value 93.076005 iter 40 value 88.280070 iter 50 value 86.373394 iter 60 value 85.680237 iter 70 value 84.670051 iter 80 value 84.124081 iter 90 value 83.692357 iter 100 value 82.903395 final value 82.903395 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 111.567010 iter 10 value 93.863518 iter 20 value 88.165507 iter 30 value 87.377639 iter 40 value 85.147787 iter 50 value 83.157286 iter 60 value 82.919611 iter 70 value 82.881757 iter 80 value 82.759816 iter 90 value 82.158788 iter 100 value 82.027538 final value 82.027538 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.445917 iter 10 value 94.078783 iter 20 value 92.966595 iter 30 value 87.515919 iter 40 value 87.036176 iter 50 value 86.717247 iter 60 value 86.476124 iter 70 value 83.531462 iter 80 value 82.568409 iter 90 value 82.295641 iter 100 value 82.248939 final value 82.248939 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.045478 iter 10 value 94.306190 iter 20 value 90.881652 iter 30 value 87.766474 iter 40 value 86.234008 iter 50 value 84.470580 iter 60 value 83.877167 iter 70 value 83.283299 iter 80 value 83.199077 iter 90 value 83.174025 iter 100 value 82.841765 final value 82.841765 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.619823 iter 10 value 93.452303 iter 20 value 92.062066 iter 30 value 87.606778 iter 40 value 86.183481 iter 50 value 85.016578 iter 60 value 82.749664 iter 70 value 82.376893 iter 80 value 82.344848 iter 90 value 82.162212 iter 100 value 81.858132 final value 81.858132 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.000621 iter 10 value 94.563097 iter 20 value 94.371284 iter 30 value 93.251354 iter 40 value 88.506129 iter 50 value 87.987281 iter 60 value 86.298488 iter 70 value 85.162693 iter 80 value 84.048330 iter 90 value 83.748541 iter 100 value 83.042907 final value 83.042907 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.944987 iter 10 value 94.102085 iter 20 value 93.105792 iter 30 value 88.048214 iter 40 value 84.312154 iter 50 value 82.974967 iter 60 value 82.842609 iter 70 value 82.401451 iter 80 value 82.189286 iter 90 value 82.145310 iter 100 value 82.121041 final value 82.121041 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 104.652985 final value 94.054372 converged Fitting Repeat 2 # weights: 103 initial value 97.101922 iter 10 value 93.584539 iter 20 value 93.582739 final value 93.582592 converged Fitting Repeat 3 # weights: 103 initial value 97.712237 final value 94.054611 converged Fitting Repeat 4 # weights: 103 initial value 100.780701 final value 94.054525 converged Fitting Repeat 5 # weights: 103 initial value 100.652286 final value 94.054527 converged Fitting Repeat 1 # weights: 305 initial value 96.928280 iter 10 value 94.057721 iter 20 value 94.045121 iter 30 value 93.779665 iter 40 value 92.737889 iter 50 value 92.734780 iter 60 value 92.733615 iter 70 value 89.203980 iter 80 value 89.003553 iter 90 value 88.001011 iter 100 value 87.976354 final value 87.976354 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 94.846511 iter 10 value 94.057755 iter 20 value 94.046830 final value 93.582695 converged Fitting Repeat 3 # weights: 305 initial value 102.430028 iter 10 value 93.947991 iter 20 value 93.942224 iter 30 value 93.806152 iter 40 value 93.805742 iter 50 value 93.803334 iter 60 value 91.149515 iter 70 value 90.659655 iter 80 value 90.657471 iter 90 value 90.657238 iter 100 value 90.657030 final value 90.657030 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 109.560765 iter 10 value 92.749943 iter 20 value 92.432060 iter 30 value 92.280476 iter 40 value 92.276592 final value 92.275893 converged Fitting Repeat 5 # weights: 305 initial value 117.179633 iter 10 value 90.070303 iter 20 value 88.968199 iter 30 value 88.950007 iter 40 value 88.744211 iter 50 value 88.728096 iter 60 value 88.565933 iter 70 value 87.691895 iter 80 value 87.001835 iter 90 value 86.994244 iter 100 value 86.993870 final value 86.993870 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 95.102533 iter 10 value 93.605512 iter 20 value 93.589514 iter 30 value 93.583932 iter 40 value 93.582698 iter 50 value 93.564563 iter 60 value 90.967193 iter 70 value 90.706484 iter 80 value 90.703030 iter 90 value 90.702486 iter 100 value 90.702336 final value 90.702336 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 102.485042 iter 10 value 93.591260 iter 20 value 93.583004 final value 93.582856 converged Fitting Repeat 3 # weights: 507 initial value 101.157201 iter 10 value 94.061194 iter 20 value 93.980085 iter 30 value 93.603525 final value 93.583031 converged Fitting Repeat 4 # weights: 507 initial value 103.052216 iter 10 value 94.060356 iter 20 value 93.908518 iter 30 value 91.563818 iter 40 value 87.205986 iter 50 value 87.202607 final value 87.202595 converged Fitting Repeat 5 # weights: 507 initial value 98.496042 iter 10 value 94.003522 iter 20 value 92.004730 iter 30 value 91.982724 iter 40 value 91.973978 iter 50 value 91.933480 iter 60 value 91.911821 iter 70 value 91.907147 iter 80 value 91.410053 iter 90 value 91.206753 final value 91.206458 converged Fitting Repeat 1 # weights: 103 initial value 103.033259 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 101.506993 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 95.923475 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.556919 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 97.725149 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 102.473567 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 99.785831 iter 10 value 94.422598 final value 94.422596 converged Fitting Repeat 3 # weights: 305 initial value 109.791911 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 94.344044 iter 10 value 84.908606 iter 20 value 84.628527 iter 30 value 82.556321 iter 40 value 81.788076 iter 50 value 81.763325 final value 81.763268 converged Fitting Repeat 5 # weights: 305 initial value 97.523660 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 99.806057 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 130.242146 iter 10 value 93.991342 iter 10 value 93.991342 iter 10 value 93.991342 final value 93.991342 converged Fitting Repeat 3 # weights: 507 initial value 98.994940 iter 10 value 93.957832 final value 93.957576 converged Fitting Repeat 4 # weights: 507 initial value 96.648819 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 108.783725 iter 10 value 94.371628 iter 20 value 93.998066 final value 93.991348 converged Fitting Repeat 1 # weights: 103 initial value 100.373334 iter 10 value 94.209891 iter 20 value 90.097587 iter 30 value 85.881298 iter 40 value 82.738941 iter 50 value 81.707012 iter 60 value 79.886778 iter 70 value 79.480532 iter 80 value 79.032823 iter 90 value 78.747969 iter 100 value 78.687630 final value 78.687630 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 100.038791 iter 10 value 94.505124 iter 20 value 94.382394 iter 30 value 93.797613 iter 40 value 92.436815 iter 50 value 92.181376 iter 60 value 92.146899 iter 70 value 89.828265 iter 80 value 85.642440 iter 90 value 83.684054 iter 100 value 80.879000 final value 80.879000 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 99.542741 iter 10 value 94.447521 iter 20 value 92.642335 iter 30 value 84.416530 iter 40 value 83.603752 iter 50 value 80.227360 iter 60 value 79.194118 iter 70 value 78.964596 iter 80 value 78.893321 iter 90 value 78.833635 iter 100 value 78.717077 final value 78.717077 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 103.918837 iter 10 value 94.487251 iter 20 value 94.141829 iter 30 value 88.596327 iter 40 value 87.031938 iter 50 value 80.180063 iter 60 value 79.629248 iter 70 value 79.428262 iter 80 value 79.185202 iter 90 value 78.956060 iter 100 value 78.805639 final value 78.805639 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 99.216715 iter 10 value 94.488787 iter 20 value 94.370671 iter 30 value 94.037351 iter 40 value 93.927280 iter 50 value 90.659293 iter 60 value 87.413120 iter 70 value 85.670675 iter 80 value 79.721865 iter 90 value 79.182210 iter 100 value 78.926318 final value 78.926318 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 105.552736 iter 10 value 94.550060 iter 20 value 93.611348 iter 30 value 90.583916 iter 40 value 90.462273 iter 50 value 86.489073 iter 60 value 81.171459 iter 70 value 78.220285 iter 80 value 76.957609 iter 90 value 76.659931 iter 100 value 76.611526 final value 76.611526 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 104.354189 iter 10 value 94.473959 iter 20 value 92.985307 iter 30 value 84.759655 iter 40 value 80.891681 iter 50 value 79.890298 iter 60 value 79.392183 iter 70 value 79.144361 iter 80 value 78.947710 iter 90 value 78.182988 iter 100 value 77.890272 final value 77.890272 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 110.048047 iter 10 value 94.450383 iter 20 value 86.101465 iter 30 value 82.257341 iter 40 value 81.822854 iter 50 value 81.719565 iter 60 value 80.159634 iter 70 value 79.365723 iter 80 value 79.092379 iter 90 value 79.035742 iter 100 value 78.976165 final value 78.976165 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.469423 iter 10 value 94.168258 iter 20 value 94.043485 iter 30 value 94.015538 iter 40 value 87.129919 iter 50 value 81.469594 iter 60 value 79.615900 iter 70 value 77.485656 iter 80 value 77.118690 iter 90 value 77.054746 iter 100 value 77.038111 final value 77.038111 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 134.594522 iter 10 value 94.090859 iter 20 value 90.773640 iter 30 value 83.746482 iter 40 value 80.753327 iter 50 value 80.483305 iter 60 value 80.193608 iter 70 value 79.470210 iter 80 value 78.966418 iter 90 value 78.130903 iter 100 value 77.871180 final value 77.871180 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 120.478566 iter 10 value 94.469939 iter 20 value 86.112125 iter 30 value 82.190126 iter 40 value 80.603075 iter 50 value 79.956046 iter 60 value 78.242642 iter 70 value 77.799016 iter 80 value 77.492170 iter 90 value 77.462927 iter 100 value 77.406700 final value 77.406700 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 139.808078 iter 10 value 94.664582 iter 20 value 89.779000 iter 30 value 85.676556 iter 40 value 84.368391 iter 50 value 81.828606 iter 60 value 81.229665 iter 70 value 80.358411 iter 80 value 79.921197 iter 90 value 78.573709 iter 100 value 77.177613 final value 77.177613 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.979527 iter 10 value 94.406731 iter 20 value 88.962559 iter 30 value 82.192841 iter 40 value 81.764825 iter 50 value 81.566705 iter 60 value 80.261502 iter 70 value 79.338922 iter 80 value 79.188367 iter 90 value 78.365063 iter 100 value 77.777666 final value 77.777666 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 117.580469 iter 10 value 95.638775 iter 20 value 86.377488 iter 30 value 84.840535 iter 40 value 82.150757 iter 50 value 79.157072 iter 60 value 78.212023 iter 70 value 78.031565 iter 80 value 77.838112 iter 90 value 77.492562 iter 100 value 77.260017 final value 77.260017 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 116.596202 iter 10 value 93.868256 iter 20 value 84.013059 iter 30 value 81.577768 iter 40 value 79.619142 iter 50 value 78.984555 iter 60 value 78.854394 iter 70 value 78.632329 iter 80 value 78.396509 iter 90 value 77.999067 iter 100 value 77.789928 final value 77.789928 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.903143 final value 94.485965 converged Fitting Repeat 2 # weights: 103 initial value 97.443853 iter 10 value 94.485956 iter 20 value 94.476368 iter 30 value 84.725718 iter 40 value 83.140927 iter 50 value 81.177166 iter 60 value 81.008070 iter 70 value 81.003526 iter 80 value 81.003260 final value 81.003213 converged Fitting Repeat 3 # weights: 103 initial value 94.868220 final value 94.486056 converged Fitting Repeat 4 # weights: 103 initial value 108.837282 final value 94.485772 converged Fitting Repeat 5 # weights: 103 initial value 103.042631 final value 94.485868 converged Fitting Repeat 1 # weights: 305 initial value 96.287998 iter 10 value 94.495642 iter 20 value 89.739453 iter 30 value 86.950557 iter 40 value 86.949170 iter 50 value 86.944659 iter 60 value 85.112672 iter 70 value 82.478219 iter 80 value 82.472216 iter 90 value 82.378508 iter 100 value 82.300884 final value 82.300884 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 96.319332 iter 10 value 91.496645 iter 20 value 85.530422 iter 30 value 84.819724 iter 40 value 84.818723 iter 50 value 84.818221 iter 60 value 84.815705 iter 70 value 84.215005 iter 80 value 84.212888 iter 90 value 84.212356 final value 84.211725 converged Fitting Repeat 3 # weights: 305 initial value 95.068943 iter 10 value 94.447757 iter 20 value 94.440096 iter 30 value 85.217401 iter 40 value 80.663405 iter 50 value 79.311561 iter 60 value 77.263680 iter 70 value 77.068908 iter 80 value 77.068465 final value 77.067909 converged Fitting Repeat 4 # weights: 305 initial value 137.594802 iter 10 value 94.489560 iter 20 value 94.485195 iter 30 value 94.255866 iter 40 value 86.068720 iter 50 value 85.742750 iter 60 value 80.428235 iter 70 value 80.263824 iter 80 value 80.263096 iter 90 value 80.014807 iter 100 value 79.991781 final value 79.991781 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 95.020200 iter 10 value 82.756003 iter 20 value 82.477842 iter 30 value 82.473953 iter 40 value 82.472295 iter 50 value 79.783313 iter 60 value 78.479630 iter 70 value 78.388924 iter 80 value 78.367118 final value 78.367083 converged Fitting Repeat 1 # weights: 507 initial value 96.112758 iter 10 value 94.162983 iter 20 value 94.158100 iter 30 value 94.007672 iter 40 value 84.651775 iter 50 value 80.859647 iter 60 value 79.708093 iter 70 value 79.366652 iter 80 value 79.093516 iter 90 value 78.681968 iter 100 value 76.776316 final value 76.776316 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 96.961454 iter 10 value 94.197689 iter 20 value 94.192056 iter 30 value 89.001339 iter 40 value 85.311748 iter 50 value 85.293434 iter 60 value 85.292642 iter 70 value 85.200577 iter 80 value 85.162615 iter 90 value 85.162175 final value 85.161929 converged Fitting Repeat 3 # weights: 507 initial value 98.894215 iter 10 value 94.455520 iter 20 value 94.257865 iter 30 value 94.018601 iter 40 value 93.994927 final value 93.992561 converged Fitting Repeat 4 # weights: 507 initial value 96.518844 iter 10 value 93.999506 iter 20 value 93.992387 iter 30 value 93.967843 final value 93.967837 converged Fitting Repeat 5 # weights: 507 initial value 96.163727 iter 10 value 94.262810 iter 20 value 94.257665 iter 30 value 93.978139 iter 40 value 93.977263 iter 50 value 93.975467 iter 60 value 93.975282 iter 70 value 93.975052 final value 93.975020 converged Fitting Repeat 1 # weights: 305 initial value 139.968367 iter 10 value 117.875505 iter 20 value 108.533945 iter 30 value 103.806051 iter 40 value 102.794329 iter 50 value 102.158159 iter 60 value 101.856718 iter 70 value 101.342043 iter 80 value 101.257764 iter 90 value 101.213397 iter 100 value 101.158558 final value 101.158558 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 127.358689 iter 10 value 118.397302 iter 20 value 116.283995 iter 30 value 115.531132 iter 40 value 115.338299 iter 50 value 108.870083 iter 60 value 105.816465 iter 70 value 104.998062 iter 80 value 104.721896 iter 90 value 103.841446 iter 100 value 103.355962 final value 103.355962 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 141.056648 iter 10 value 117.904052 iter 20 value 114.150751 iter 30 value 110.013916 iter 40 value 106.014490 iter 50 value 105.444851 iter 60 value 104.157582 iter 70 value 103.514031 iter 80 value 103.043413 iter 90 value 102.409584 iter 100 value 101.810771 final value 101.810771 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 132.931308 iter 10 value 118.147429 iter 20 value 113.972875 iter 30 value 111.973080 iter 40 value 106.849982 iter 50 value 105.300400 iter 60 value 104.875180 iter 70 value 103.887320 iter 80 value 103.645454 iter 90 value 102.909250 iter 100 value 102.222177 final value 102.222177 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 136.063654 iter 10 value 118.031636 iter 20 value 115.467510 iter 30 value 114.954470 iter 40 value 113.568666 iter 50 value 109.152280 iter 60 value 108.280346 iter 70 value 104.919323 iter 80 value 104.113359 iter 90 value 102.530745 iter 100 value 101.956169 final value 101.956169 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Mon Oct 16 03:09:42 2023 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 40.07 1.64 42.31
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 28.35 | 1.40 | 29.78 | |
FreqInteractors | 0.25 | 0.02 | 0.28 | |
calculateAAC | 0.05 | 0.00 | 0.05 | |
calculateAutocor | 0.37 | 0.08 | 0.45 | |
calculateCTDC | 0.08 | 0.00 | 0.08 | |
calculateCTDD | 0.69 | 0.07 | 0.76 | |
calculateCTDT | 0.26 | 0.00 | 0.27 | |
calculateCTriad | 0.35 | 0.00 | 0.36 | |
calculateDC | 0.08 | 0.00 | 0.08 | |
calculateF | 0.34 | 0.02 | 0.36 | |
calculateKSAAP | 0.10 | 0.00 | 0.09 | |
calculateQD_Sm | 1.54 | 0.09 | 1.64 | |
calculateTC | 1.60 | 0.05 | 1.64 | |
calculateTC_Sm | 0.22 | 0.02 | 0.23 | |
corr_plot | 27.85 | 0.90 | 28.77 | |
enrichfindP | 0.59 | 0.05 | 13.42 | |
enrichfind_hp | 0.05 | 0.03 | 1.01 | |
enrichplot | 0.23 | 0.02 | 0.25 | |
filter_missing_values | 0 | 0 | 0 | |
getFASTA | 0.02 | 0.00 | 2.49 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0.01 | 0.00 | 0.01 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0 | 0 | 0 | |
plotPPI | 0.08 | 0.00 | 0.08 | |
pred_ensembel | 12.34 | 0.37 | 9.47 | |
var_imp | 29.30 | 0.77 | 30.08 | |