Back to Multiple platform build/check report for BioC 3.17:   simplified   long
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2023-10-16 11:36:14 -0400 (Mon, 16 Oct 2023).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 22.04.2 LTS)x86_644.3.1 (2023-06-16) -- "Beagle Scouts" 4626
palomino3Windows Server 2022 Datacenterx644.3.1 (2023-06-16 ucrt) -- "Beagle Scouts" 4379
merida1macOS 12.6.4 Montereyx86_644.3.1 (2023-06-16) -- "Beagle Scouts" 4395
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 949/2230HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.6.0  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2023-10-15 14:00:13 -0400 (Sun, 15 Oct 2023)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: RELEASE_3_17
git_last_commit: 5d1c297
git_last_commit_date: 2023-04-25 11:32:43 -0400 (Tue, 25 Apr 2023)
nebbiolo1Linux (Ubuntu 22.04.2 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino3Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.6.4 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson2macOS 12.6.1 Monterey / arm64see weekly results here

CHECK results for HPiP on palomino3


To the developers/maintainers of the HPiP package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: HPiP
Version: 1.6.0
Command: F:\biocbuild\bbs-3.17-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.17-bioc\R\library --no-vignettes --timings HPiP_1.6.0.tar.gz
StartedAt: 2023-10-16 03:05:36 -0400 (Mon, 16 Oct 2023)
EndedAt: 2023-10-16 03:09:51 -0400 (Mon, 16 Oct 2023)
EllapsedTime: 255.1 seconds
RetCode: 0
Status:   OK  
CheckDir: HPiP.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   F:\biocbuild\bbs-3.17-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.17-bioc\R\library --no-vignettes --timings HPiP_1.6.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'F:/biocbuild/bbs-3.17-bioc/meat/HPiP.Rcheck'
* using R version 4.3.1 (2023-06-16 ucrt)
* using platform: x86_64-w64-mingw32 (64-bit)
* R was compiled by
    gcc.exe (GCC) 12.2.0
    GNU Fortran (GCC) 12.2.0
* running under: Windows Server 2022 x64 (build 20348)
* using session charset: UTF-8
* using option '--no-vignettes'
* checking for file 'HPiP/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'HPiP' version '1.6.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'HPiP' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: 'ftrCOOL'
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in 'vignettes' ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
               user system elapsed
var_imp       29.30   0.77   30.08
FSmethod      28.35   1.40   29.78
corr_plot     27.85   0.90   28.77
pred_ensembel 12.34   0.37    9.47
enrichfindP    0.59   0.05   13.42
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
  Running 'runTests.R'
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in 'inst/doc' ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  'F:/biocbuild/bbs-3.17-bioc/meat/HPiP.Rcheck/00check.log'
for details.



Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   F:\biocbuild\bbs-3.17-bioc\R\bin\R.exe CMD INSTALL HPiP
###
##############################################################################
##############################################################################


* installing to library 'F:/biocbuild/bbs-3.17-bioc/R/library'
* installing *source* package 'HPiP' ...
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)

Tests output

HPiP.Rcheck/tests/runTests.Rout


R version 4.3.1 (2023-06-16 ucrt) -- "Beagle Scouts"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 97.012204 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.341855 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 100.320226 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 103.633682 
final  value 94.038251 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.465221 
iter  10 value 94.039103
final  value 94.038252 
converged
Fitting Repeat 1 

# weights:  305
initial  value 100.160280 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 103.886861 
final  value 94.038251 
converged
Fitting Repeat 3 

# weights:  305
initial  value 97.459286 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  305
initial  value 100.487062 
final  value 94.038251 
converged
Fitting Repeat 5 

# weights:  305
initial  value 94.269815 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 96.083455 
iter  10 value 93.986804
iter  20 value 93.934417
iter  30 value 93.932248
final  value 93.932129 
converged
Fitting Repeat 2 

# weights:  507
initial  value 96.217671 
final  value 94.038251 
converged
Fitting Repeat 3 

# weights:  507
initial  value 99.109879 
final  value 93.164740 
converged
Fitting Repeat 4 

# weights:  507
initial  value 124.876305 
final  value 94.038251 
converged
Fitting Repeat 5 

# weights:  507
initial  value 98.410552 
final  value 94.038252 
converged
Fitting Repeat 1 

# weights:  103
initial  value 98.508112 
iter  10 value 94.045062
iter  20 value 88.690800
iter  30 value 85.328327
iter  40 value 81.973760
iter  50 value 81.882358
iter  60 value 81.644244
iter  70 value 81.635994
final  value 81.635990 
converged
Fitting Repeat 2 

# weights:  103
initial  value 99.555889 
iter  10 value 94.056764
iter  20 value 93.346427
iter  30 value 83.002267
iter  40 value 81.946345
iter  50 value 81.901615
iter  60 value 81.871332
final  value 81.871260 
converged
Fitting Repeat 3 

# weights:  103
initial  value 100.704617 
iter  10 value 93.979504
iter  20 value 90.506563
iter  30 value 89.530961
iter  40 value 89.437137
iter  50 value 84.026664
iter  60 value 81.310546
iter  70 value 80.390312
iter  80 value 80.190975
iter  90 value 80.098186
iter 100 value 79.719461
final  value 79.719461 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 98.201433 
iter  10 value 94.063827
iter  20 value 94.054962
iter  30 value 94.054904
iter  40 value 91.235012
iter  50 value 86.639406
iter  60 value 84.375628
iter  70 value 83.214549
iter  80 value 81.823215
iter  90 value 81.656393
iter 100 value 81.644863
final  value 81.644863 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 114.745443 
iter  10 value 94.021475
iter  20 value 88.854950
iter  30 value 86.865015
iter  40 value 85.015671
iter  50 value 84.881468
iter  60 value 83.359140
iter  70 value 82.534524
iter  80 value 81.619181
iter  90 value 81.609495
final  value 81.608562 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.095828 
iter  10 value 93.033005
iter  20 value 83.231372
iter  30 value 82.427429
iter  40 value 81.911515
iter  50 value 81.599147
iter  60 value 81.203991
iter  70 value 81.173387
iter  80 value 81.170928
iter  90 value 81.145456
iter 100 value 80.873061
final  value 80.873061 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 106.099748 
iter  10 value 93.241505
iter  20 value 82.607930
iter  30 value 81.885800
iter  40 value 81.392866
iter  50 value 81.210514
iter  60 value 80.850012
iter  70 value 79.490142
iter  80 value 78.988045
iter  90 value 78.518119
iter 100 value 78.246763
final  value 78.246763 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 104.453347 
iter  10 value 93.813210
iter  20 value 93.646338
iter  30 value 84.437157
iter  40 value 81.796606
iter  50 value 80.555529
iter  60 value 79.191812
iter  70 value 78.741660
iter  80 value 78.447707
iter  90 value 78.423374
iter 100 value 78.399916
final  value 78.399916 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 98.072758 
iter  10 value 84.007711
iter  20 value 81.853756
iter  30 value 80.775114
iter  40 value 80.390076
iter  50 value 79.369609
iter  60 value 78.560824
iter  70 value 78.374092
iter  80 value 78.331808
iter  90 value 78.263531
iter 100 value 78.143647
final  value 78.143647 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 105.445175 
iter  10 value 94.841763
iter  20 value 88.595826
iter  30 value 82.312576
iter  40 value 81.343017
iter  50 value 81.090071
iter  60 value 80.468052
iter  70 value 80.133214
iter  80 value 80.031708
iter  90 value 79.847356
iter 100 value 79.806660
final  value 79.806660 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 117.036996 
iter  10 value 94.463849
iter  20 value 93.882477
iter  30 value 87.017386
iter  40 value 82.214556
iter  50 value 81.578675
iter  60 value 80.599807
iter  70 value 78.332519
iter  80 value 77.723320
iter  90 value 77.677583
iter 100 value 77.622521
final  value 77.622521 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 109.459735 
iter  10 value 94.037765
iter  20 value 91.618213
iter  30 value 86.360155
iter  40 value 84.741129
iter  50 value 83.522998
iter  60 value 81.909554
iter  70 value 79.897670
iter  80 value 79.010352
iter  90 value 78.923167
iter 100 value 78.643734
final  value 78.643734 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 104.546123 
iter  10 value 94.361134
iter  20 value 89.340079
iter  30 value 84.422978
iter  40 value 82.051228
iter  50 value 81.402644
iter  60 value 80.136164
iter  70 value 79.051991
iter  80 value 78.515839
iter  90 value 78.152663
iter 100 value 77.891844
final  value 77.891844 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 103.626373 
iter  10 value 94.232724
iter  20 value 85.036394
iter  30 value 84.023016
iter  40 value 83.326189
iter  50 value 80.230646
iter  60 value 79.462153
iter  70 value 78.827859
iter  80 value 78.564170
iter  90 value 78.188529
iter 100 value 78.027845
final  value 78.027845 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 110.736860 
iter  10 value 94.256162
iter  20 value 85.149335
iter  30 value 82.672678
iter  40 value 81.413155
iter  50 value 81.121503
iter  60 value 80.962971
iter  70 value 80.152874
iter  80 value 78.927948
iter  90 value 78.351706
iter 100 value 78.016594
final  value 78.016594 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 94.366358 
final  value 94.054473 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.563093 
final  value 94.054539 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.553827 
final  value 94.054435 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.955483 
iter  10 value 94.054705
iter  20 value 94.052907
iter  30 value 91.656556
iter  40 value 86.584148
iter  50 value 86.503495
iter  60 value 86.380597
iter  70 value 86.281684
iter  80 value 86.280881
final  value 86.280746 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.430194 
final  value 94.054565 
converged
Fitting Repeat 1 

# weights:  305
initial  value 107.896839 
iter  10 value 94.043110
iter  20 value 94.038598
iter  30 value 94.021774
iter  40 value 84.622586
iter  50 value 81.581932
iter  60 value 80.635842
iter  70 value 80.586523
iter  80 value 80.586298
iter  80 value 80.586297
iter  80 value 80.586297
final  value 80.586297 
converged
Fitting Repeat 2 

# weights:  305
initial  value 118.737411 
iter  10 value 94.058200
iter  20 value 93.789160
iter  30 value 90.966348
iter  40 value 86.215212
iter  50 value 86.207409
iter  60 value 84.361950
iter  70 value 83.291365
iter  80 value 82.712945
iter  90 value 82.487960
iter 100 value 82.485425
final  value 82.485425 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 102.310676 
iter  10 value 92.198436
iter  20 value 92.052343
iter  30 value 91.506078
iter  40 value 91.408322
iter  50 value 82.572153
iter  60 value 81.590586
iter  70 value 81.577844
iter  80 value 80.613822
iter  90 value 80.588538
iter 100 value 80.588254
final  value 80.588254 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 106.802903 
iter  10 value 94.057883
iter  20 value 90.478693
iter  30 value 82.378598
final  value 82.378560 
converged
Fitting Repeat 5 

# weights:  305
initial  value 95.071855 
iter  10 value 93.675372
iter  20 value 84.686593
iter  30 value 84.577052
iter  40 value 84.402595
iter  50 value 84.385454
iter  60 value 84.255929
iter  70 value 82.016364
iter  80 value 78.775041
iter  90 value 78.527705
iter 100 value 78.522771
final  value 78.522771 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 98.602789 
iter  10 value 94.061475
iter  20 value 94.025942
iter  30 value 84.218952
iter  40 value 84.212564
final  value 84.212543 
converged
Fitting Repeat 2 

# weights:  507
initial  value 119.518686 
iter  10 value 94.061599
iter  20 value 94.053921
iter  30 value 94.044119
iter  40 value 94.018686
iter  50 value 93.980268
final  value 93.980265 
converged
Fitting Repeat 3 

# weights:  507
initial  value 95.851098 
iter  10 value 94.046456
iter  20 value 94.037679
iter  30 value 84.831767
iter  40 value 82.278528
iter  50 value 82.271556
iter  60 value 81.633463
iter  70 value 81.606524
iter  80 value 80.778662
iter  90 value 80.075310
iter 100 value 78.850646
final  value 78.850646 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 101.332669 
iter  10 value 94.058609
iter  20 value 93.680752
iter  30 value 86.909452
iter  40 value 79.895753
iter  50 value 78.925189
iter  60 value 78.469393
iter  70 value 78.027764
iter  80 value 77.980093
iter  90 value 77.906893
iter 100 value 77.628194
final  value 77.628194 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 110.171248 
iter  10 value 94.046227
iter  20 value 94.039428
iter  30 value 91.657504
iter  40 value 82.268041
iter  50 value 80.287226
iter  60 value 79.517260
iter  70 value 79.516046
iter  80 value 79.448754
iter  90 value 79.095902
iter 100 value 79.086193
final  value 79.086193 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 112.539397 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 113.617999 
final  value 94.477594 
converged
Fitting Repeat 3 

# weights:  103
initial  value 100.588380 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.510988 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.251853 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 99.089981 
final  value 94.275362 
converged
Fitting Repeat 2 

# weights:  305
initial  value 99.495213 
iter  10 value 94.275363
iter  10 value 94.275362
iter  10 value 94.275362
final  value 94.275362 
converged
Fitting Repeat 3 

# weights:  305
initial  value 101.227281 
final  value 94.484210 
converged
Fitting Repeat 4 

# weights:  305
initial  value 110.890830 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 96.487155 
final  value 94.448052 
converged
Fitting Repeat 1 

# weights:  507
initial  value 94.574917 
iter  10 value 88.750729
iter  20 value 86.515857
iter  30 value 86.495713
final  value 86.495642 
converged
Fitting Repeat 2 

# weights:  507
initial  value 120.980773 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  507
initial  value 96.622461 
iter  10 value 93.492775
iter  20 value 91.315701
iter  30 value 89.304840
final  value 89.304766 
converged
Fitting Repeat 4 

# weights:  507
initial  value 125.793852 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 104.714561 
iter  10 value 93.607287
iter  10 value 93.607287
iter  10 value 93.607287
final  value 93.607287 
converged
Fitting Repeat 1 

# weights:  103
initial  value 107.083977 
iter  10 value 94.568705
iter  20 value 89.842504
iter  30 value 85.732355
iter  40 value 84.952115
iter  50 value 84.749472
iter  60 value 84.689906
iter  70 value 84.650863
final  value 84.644077 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.681589 
iter  10 value 94.493969
iter  20 value 93.977385
iter  30 value 93.725822
iter  40 value 93.640683
iter  50 value 90.933744
iter  60 value 88.217184
iter  70 value 87.196882
iter  80 value 87.121454
iter  90 value 85.231349
iter 100 value 85.124465
final  value 85.124465 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 104.493297 
iter  10 value 94.487605
iter  20 value 92.625575
iter  30 value 87.279887
iter  40 value 87.180983
iter  50 value 87.119348
iter  60 value 85.810624
iter  70 value 84.066838
iter  80 value 83.127724
iter  90 value 82.892912
iter 100 value 82.815830
final  value 82.815830 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 100.939696 
iter  10 value 93.651858
iter  20 value 87.129015
iter  30 value 86.191881
iter  40 value 85.087346
iter  50 value 85.064442
iter  60 value 85.064350
final  value 85.064349 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.918513 
iter  10 value 94.500949
iter  20 value 87.483873
iter  30 value 86.899183
iter  40 value 85.211732
iter  50 value 83.539052
iter  60 value 82.856381
iter  70 value 82.806686
iter  80 value 82.732562
iter  90 value 82.661274
final  value 82.661110 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.665725 
iter  10 value 94.133372
iter  20 value 88.684825
iter  30 value 85.743640
iter  40 value 82.698457
iter  50 value 82.241819
iter  60 value 81.991533
iter  70 value 81.948615
iter  80 value 81.920896
iter  90 value 81.917576
iter 100 value 81.904250
final  value 81.904250 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 145.180576 
iter  10 value 94.369469
iter  20 value 93.804748
iter  30 value 93.530486
iter  40 value 92.644304
iter  50 value 85.361604
iter  60 value 83.831695
iter  70 value 83.177448
iter  80 value 82.463864
iter  90 value 82.162907
iter 100 value 82.000879
final  value 82.000879 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 100.487029 
iter  10 value 94.508207
iter  20 value 90.074750
iter  30 value 87.070197
iter  40 value 85.908209
iter  50 value 83.995718
iter  60 value 83.268485
iter  70 value 82.676055
iter  80 value 81.987288
iter  90 value 81.877607
iter 100 value 81.817376
final  value 81.817376 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 105.726226 
iter  10 value 94.632249
iter  20 value 88.814542
iter  30 value 86.286885
iter  40 value 84.535844
iter  50 value 84.234833
iter  60 value 84.002647
iter  70 value 83.940774
iter  80 value 83.845523
iter  90 value 83.621392
iter 100 value 83.394492
final  value 83.394492 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 109.385739 
iter  10 value 94.488577
iter  20 value 87.949190
iter  30 value 87.388456
iter  40 value 86.751506
iter  50 value 85.199899
iter  60 value 84.748659
iter  70 value 84.655200
iter  80 value 84.186022
iter  90 value 83.553419
iter 100 value 83.362846
final  value 83.362846 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 127.309858 
iter  10 value 94.461576
iter  20 value 87.312679
iter  30 value 85.288184
iter  40 value 85.101194
iter  50 value 85.006149
iter  60 value 84.790841
iter  70 value 83.553735
iter  80 value 82.871628
iter  90 value 82.601203
iter 100 value 82.083545
final  value 82.083545 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 110.885735 
iter  10 value 94.812630
iter  20 value 91.947606
iter  30 value 85.920171
iter  40 value 85.423813
iter  50 value 84.697008
iter  60 value 84.124162
iter  70 value 82.189813
iter  80 value 81.914013
iter  90 value 81.861575
iter 100 value 81.783743
final  value 81.783743 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 105.721577 
iter  10 value 94.503831
iter  20 value 93.965861
iter  30 value 85.850664
iter  40 value 85.208545
iter  50 value 84.959419
iter  60 value 84.616552
iter  70 value 83.833688
iter  80 value 83.090491
iter  90 value 83.030615
iter 100 value 82.278149
final  value 82.278149 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 109.104906 
iter  10 value 94.417202
iter  20 value 92.730148
iter  30 value 91.912455
iter  40 value 85.495747
iter  50 value 83.473433
iter  60 value 82.860052
iter  70 value 82.588512
iter  80 value 82.021739
iter  90 value 81.795293
iter 100 value 81.681889
final  value 81.681889 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 119.429154 
iter  10 value 95.186119
iter  20 value 91.006639
iter  30 value 88.580135
iter  40 value 87.147129
iter  50 value 86.429359
iter  60 value 85.027167
iter  70 value 83.553286
iter  80 value 82.229006
iter  90 value 81.899581
iter 100 value 81.756172
final  value 81.756172 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 101.565841 
final  value 94.485632 
converged
Fitting Repeat 2 

# weights:  103
initial  value 107.107483 
final  value 94.485800 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.799998 
final  value 94.485892 
converged
Fitting Repeat 4 

# weights:  103
initial  value 101.587961 
final  value 94.485961 
converged
Fitting Repeat 5 

# weights:  103
initial  value 109.099135 
final  value 94.485838 
converged
Fitting Repeat 1 

# weights:  305
initial  value 104.136314 
iter  10 value 94.489086
iter  20 value 94.439102
iter  30 value 85.078311
iter  40 value 84.689420
final  value 84.687237 
converged
Fitting Repeat 2 

# weights:  305
initial  value 102.950293 
iter  10 value 94.488550
iter  20 value 93.127066
iter  30 value 87.876091
iter  40 value 87.862391
iter  50 value 87.860677
iter  60 value 83.745212
iter  70 value 83.729341
iter  80 value 83.620068
iter  90 value 82.380315
iter 100 value 82.027773
final  value 82.027773 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 99.676789 
iter  10 value 94.310849
iter  20 value 94.042127
iter  30 value 93.583835
iter  40 value 93.575182
iter  50 value 91.215372
iter  60 value 82.650890
iter  70 value 82.427591
iter  80 value 82.061963
iter  90 value 82.049735
iter 100 value 82.020674
final  value 82.020674 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 107.377511 
iter  10 value 94.489156
iter  20 value 94.472249
final  value 94.275502 
converged
Fitting Repeat 5 

# weights:  305
initial  value 108.001324 
iter  10 value 94.489150
iter  20 value 94.414616
iter  30 value 93.850335
iter  40 value 93.552122
iter  50 value 91.819815
iter  60 value 91.739077
iter  70 value 91.669147
iter  80 value 91.667880
iter  90 value 91.058850
iter 100 value 88.458521
final  value 88.458521 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 101.180368 
iter  10 value 94.492190
iter  20 value 94.408020
iter  30 value 92.455560
iter  40 value 86.787671
iter  50 value 86.754262
iter  60 value 86.668459
final  value 86.668310 
converged
Fitting Repeat 2 

# weights:  507
initial  value 95.200629 
iter  10 value 94.283785
iter  20 value 94.240841
iter  30 value 86.682400
iter  40 value 86.643248
iter  50 value 86.642177
iter  60 value 86.639221
iter  70 value 86.633334
iter  80 value 86.632136
iter  90 value 86.628786
iter 100 value 86.626678
final  value 86.626678 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 108.857759 
iter  10 value 92.348981
iter  20 value 83.985169
iter  30 value 83.900980
iter  40 value 83.897770
iter  50 value 83.847707
iter  60 value 83.846681
iter  70 value 83.839413
iter  80 value 83.813273
iter  90 value 83.735227
iter 100 value 83.727702
final  value 83.727702 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 96.978663 
iter  10 value 89.674176
iter  20 value 86.709986
iter  30 value 86.694413
iter  40 value 86.662352
iter  50 value 84.606423
iter  60 value 84.500189
iter  70 value 84.495560
final  value 84.495556 
converged
Fitting Repeat 5 

# weights:  507
initial  value 97.085149 
iter  10 value 91.487471
iter  20 value 87.478955
iter  30 value 87.391873
iter  40 value 87.390405
iter  50 value 87.387442
iter  50 value 87.387442
final  value 87.387442 
converged
Fitting Repeat 1 

# weights:  103
initial  value 96.618933 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.834480 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.812550 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.713423 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 103.195125 
iter  10 value 94.060582
iter  20 value 94.058489
final  value 94.058479 
converged
Fitting Repeat 1 

# weights:  305
initial  value 95.181576 
iter  10 value 94.354418
final  value 94.354396 
converged
Fitting Repeat 2 

# weights:  305
initial  value 94.823531 
final  value 94.484137 
converged
Fitting Repeat 3 

# weights:  305
initial  value 101.321634 
final  value 94.354396 
converged
Fitting Repeat 4 

# weights:  305
initial  value 99.261816 
final  value 94.354396 
converged
Fitting Repeat 5 

# weights:  305
initial  value 103.679722 
final  value 94.052434 
converged
Fitting Repeat 1 

# weights:  507
initial  value 98.176602 
final  value 94.484137 
converged
Fitting Repeat 2 

# weights:  507
initial  value 114.331812 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  507
initial  value 103.555586 
final  value 94.484210 
converged
Fitting Repeat 4 

# weights:  507
initial  value 112.807408 
iter  10 value 93.618839
iter  20 value 91.829864
iter  30 value 90.691342
iter  40 value 90.328621
final  value 90.324940 
converged
Fitting Repeat 5 

# weights:  507
initial  value 114.801463 
iter  10 value 89.061925
iter  20 value 85.840146
iter  20 value 85.840146
iter  20 value 85.840146
final  value 85.840146 
converged
Fitting Repeat 1 

# weights:  103
initial  value 103.710262 
iter  10 value 94.488513
iter  20 value 92.378388
iter  30 value 84.502977
iter  40 value 84.017713
iter  50 value 81.858684
iter  60 value 80.399705
iter  70 value 80.369136
final  value 80.368862 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.473704 
iter  10 value 93.195633
iter  20 value 87.299019
iter  30 value 84.499459
iter  40 value 84.221116
iter  50 value 83.981184
iter  60 value 83.971505
iter  60 value 83.971504
iter  60 value 83.971504
final  value 83.971504 
converged
Fitting Repeat 3 

# weights:  103
initial  value 102.849959 
iter  10 value 94.263268
iter  20 value 85.680986
iter  30 value 84.368364
iter  40 value 84.333697
final  value 84.333694 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.181219 
iter  10 value 94.484472
iter  20 value 91.781345
iter  30 value 91.412119
iter  40 value 89.087748
iter  50 value 88.940185
iter  60 value 88.895249
iter  70 value 88.894593
final  value 88.894589 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.619888 
iter  10 value 94.520123
iter  20 value 94.488451
iter  30 value 85.216064
iter  40 value 84.422081
iter  50 value 84.025205
iter  60 value 82.874644
iter  70 value 82.435324
iter  80 value 82.399839
final  value 82.399815 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.303646 
iter  10 value 94.466986
iter  20 value 93.729849
iter  30 value 86.081128
iter  40 value 83.130124
iter  50 value 81.285316
iter  60 value 80.763698
iter  70 value 80.331881
iter  80 value 79.815509
iter  90 value 79.128863
iter 100 value 79.033028
final  value 79.033028 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 99.804474 
iter  10 value 94.254532
iter  20 value 87.491927
iter  30 value 83.982787
iter  40 value 82.419890
iter  50 value 82.022292
iter  60 value 79.839403
iter  70 value 79.453150
iter  80 value 79.373173
iter  90 value 79.145885
iter 100 value 78.926583
final  value 78.926583 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 101.657962 
iter  10 value 94.448185
iter  20 value 91.021756
iter  30 value 88.141586
iter  40 value 84.843296
iter  50 value 84.491745
iter  60 value 84.345478
iter  70 value 84.313711
iter  80 value 83.739810
iter  90 value 81.632652
iter 100 value 80.429435
final  value 80.429435 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 103.443884 
iter  10 value 94.610444
iter  20 value 94.211663
iter  30 value 94.141574
iter  40 value 92.922951
iter  50 value 88.215869
iter  60 value 83.143617
iter  70 value 81.951352
iter  80 value 81.560765
iter  90 value 81.074631
iter 100 value 80.419359
final  value 80.419359 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 114.327949 
iter  10 value 94.401240
iter  20 value 92.722808
iter  30 value 90.861662
iter  40 value 87.941876
iter  50 value 86.026040
iter  60 value 85.616175
iter  70 value 83.837095
iter  80 value 82.970390
iter  90 value 82.518722
iter 100 value 82.273619
final  value 82.273619 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 103.887972 
iter  10 value 94.507310
iter  20 value 94.220947
iter  30 value 92.758245
iter  40 value 84.875756
iter  50 value 84.159463
iter  60 value 83.862999
iter  70 value 81.636246
iter  80 value 79.681258
iter  90 value 79.422720
iter 100 value 79.233066
final  value 79.233066 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 105.422231 
iter  10 value 94.512673
iter  20 value 85.535190
iter  30 value 83.975174
iter  40 value 82.563209
iter  50 value 81.150999
iter  60 value 80.876315
iter  70 value 80.177273
iter  80 value 79.861517
iter  90 value 79.781277
iter 100 value 79.759679
final  value 79.759679 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 104.186987 
iter  10 value 93.916235
iter  20 value 85.627785
iter  30 value 84.059321
iter  40 value 81.580747
iter  50 value 80.523860
iter  60 value 80.328270
iter  70 value 79.463723
iter  80 value 79.036668
iter  90 value 78.651576
iter 100 value 78.596260
final  value 78.596260 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 120.015712 
iter  10 value 92.953481
iter  20 value 91.686347
iter  30 value 90.946056
iter  40 value 90.786335
iter  50 value 84.119689
iter  60 value 82.074475
iter  70 value 80.685214
iter  80 value 79.730893
iter  90 value 79.462314
iter 100 value 79.367654
final  value 79.367654 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 114.287409 
iter  10 value 95.130416
iter  20 value 92.257676
iter  30 value 90.832020
iter  40 value 88.816393
iter  50 value 87.987158
iter  60 value 85.173733
iter  70 value 82.669103
iter  80 value 80.850249
iter  90 value 80.474027
iter 100 value 79.457152
final  value 79.457152 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 103.019419 
final  value 94.485862 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.639142 
final  value 94.485927 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.072990 
final  value 94.256237 
converged
Fitting Repeat 4 

# weights:  103
initial  value 108.311162 
iter  10 value 94.485797
iter  20 value 94.484117
iter  30 value 91.363953
iter  40 value 87.703661
iter  50 value 87.671180
iter  60 value 86.669050
iter  70 value 86.640441
iter  80 value 85.555635
iter  90 value 85.527818
iter 100 value 85.527380
final  value 85.527380 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 100.324107 
final  value 94.485700 
converged
Fitting Repeat 1 

# weights:  305
initial  value 128.573308 
iter  10 value 94.488977
iter  20 value 94.475510
iter  30 value 84.208876
iter  40 value 83.626005
iter  50 value 83.607637
iter  60 value 83.485513
iter  70 value 83.480016
iter  80 value 83.478752
iter  90 value 83.211048
iter 100 value 83.059446
final  value 83.059446 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 105.611921 
iter  10 value 94.488842
iter  20 value 94.361206
final  value 94.354590 
converged
Fitting Repeat 3 

# weights:  305
initial  value 112.494118 
iter  10 value 94.488084
final  value 94.484597 
converged
Fitting Repeat 4 

# weights:  305
initial  value 99.248704 
iter  10 value 94.497769
iter  20 value 94.430057
iter  30 value 93.705883
iter  40 value 91.903640
iter  50 value 91.066344
iter  60 value 90.359762
iter  70 value 88.100605
iter  80 value 88.077186
iter  90 value 88.076423
iter  90 value 88.076423
iter  90 value 88.076423
final  value 88.076423 
converged
Fitting Repeat 5 

# weights:  305
initial  value 97.150418 
iter  10 value 94.358843
iter  20 value 94.070019
iter  30 value 94.058083
iter  40 value 93.988698
iter  50 value 86.970439
iter  60 value 86.873966
iter  70 value 86.873746
final  value 86.872674 
converged
Fitting Repeat 1 

# weights:  507
initial  value 112.339392 
iter  10 value 94.362575
iter  20 value 94.351103
iter  30 value 92.878679
final  value 92.787063 
converged
Fitting Repeat 2 

# weights:  507
initial  value 112.582090 
iter  10 value 94.492650
iter  20 value 94.303606
iter  30 value 88.880490
iter  40 value 86.809520
iter  50 value 85.589917
iter  60 value 85.579101
iter  70 value 85.243959
iter  80 value 82.405448
iter  90 value 79.654085
iter 100 value 79.339475
final  value 79.339475 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 98.551650 
iter  10 value 94.363147
iter  20 value 94.354791
iter  30 value 90.749696
iter  40 value 83.792338
iter  50 value 83.657727
iter  60 value 83.656647
iter  70 value 83.651934
final  value 83.651813 
converged
Fitting Repeat 4 

# weights:  507
initial  value 98.461416 
iter  10 value 93.977749
iter  20 value 93.973863
iter  30 value 93.418833
iter  40 value 90.322994
iter  50 value 83.708248
iter  60 value 81.207080
iter  70 value 80.993533
iter  80 value 80.964330
iter  90 value 80.962474
iter 100 value 80.961339
final  value 80.961339 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 113.442423 
iter  10 value 94.491488
iter  20 value 94.469656
iter  30 value 94.354617
iter  40 value 94.353833
iter  50 value 94.353787
final  value 94.353782 
converged
Fitting Repeat 1 

# weights:  103
initial  value 109.464648 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 109.953178 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 102.575872 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.249436 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.095184 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.576767 
final  value 94.050155 
converged
Fitting Repeat 2 

# weights:  305
initial  value 95.041795 
iter  10 value 88.266941
final  value 86.376995 
converged
Fitting Repeat 3 

# weights:  305
initial  value 97.250229 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  305
initial  value 105.730594 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 127.591263 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 120.620610 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  507
initial  value 112.407692 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  507
initial  value 108.619609 
iter  10 value 93.582487
final  value 93.582418 
converged
Fitting Repeat 4 

# weights:  507
initial  value 95.305548 
iter  10 value 87.327223
iter  20 value 86.706905
iter  30 value 86.703327
final  value 86.703310 
converged
Fitting Repeat 5 

# weights:  507
initial  value 118.787573 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  103
initial  value 100.501623 
iter  10 value 94.056679
iter  20 value 88.987358
iter  30 value 88.131517
iter  40 value 87.762750
iter  50 value 87.312684
iter  60 value 86.097339
iter  70 value 85.545520
iter  80 value 84.941156
iter  90 value 84.756883
final  value 84.698294 
converged
Fitting Repeat 2 

# weights:  103
initial  value 104.267752 
iter  10 value 93.972504
iter  20 value 93.686983
iter  30 value 93.683707
iter  40 value 88.599826
iter  50 value 86.478004
iter  60 value 86.233200
iter  70 value 86.080479
iter  80 value 85.587632
iter  90 value 85.523214
final  value 85.523048 
converged
Fitting Repeat 3 

# weights:  103
initial  value 104.195213 
iter  10 value 93.605598
iter  20 value 89.036921
iter  30 value 86.585275
iter  40 value 86.232562
iter  50 value 85.976828
iter  60 value 85.483443
iter  70 value 85.377993
iter  80 value 85.371959
final  value 85.371958 
converged
Fitting Repeat 4 

# weights:  103
initial  value 103.313771 
iter  10 value 94.031937
iter  20 value 89.548190
iter  30 value 86.768835
iter  40 value 86.306186
iter  50 value 85.930754
iter  60 value 85.736436
iter  70 value 85.684644
iter  80 value 85.348577
iter  90 value 85.216653
iter 100 value 85.070237
final  value 85.070237 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 107.966055 
iter  10 value 94.020695
iter  20 value 93.779174
iter  30 value 91.125519
iter  40 value 89.124629
iter  50 value 88.160664
iter  60 value 85.596084
iter  70 value 85.382812
iter  80 value 83.953284
iter  90 value 83.862734
iter 100 value 83.855103
final  value 83.855103 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 102.872374 
iter  10 value 94.309177
iter  20 value 92.986438
iter  30 value 88.373273
iter  40 value 86.872421
iter  50 value 84.313334
iter  60 value 82.913692
iter  70 value 82.231151
iter  80 value 82.057904
iter  90 value 81.983896
iter 100 value 81.955414
final  value 81.955414 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 103.659213 
iter  10 value 94.099332
iter  20 value 93.920180
iter  30 value 93.382859
iter  40 value 89.438581
iter  50 value 88.586173
iter  60 value 87.412901
iter  70 value 86.979190
iter  80 value 86.847445
iter  90 value 86.053826
iter 100 value 85.437831
final  value 85.437831 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 106.885478 
iter  10 value 94.054857
iter  20 value 93.707822
iter  30 value 93.254067
iter  40 value 91.950347
iter  50 value 89.344997
iter  60 value 88.329886
iter  70 value 87.799362
iter  80 value 86.261575
iter  90 value 85.136807
iter 100 value 84.271972
final  value 84.271972 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 99.546885 
iter  10 value 94.227448
iter  20 value 93.802054
iter  30 value 93.076005
iter  40 value 88.280070
iter  50 value 86.373394
iter  60 value 85.680237
iter  70 value 84.670051
iter  80 value 84.124081
iter  90 value 83.692357
iter 100 value 82.903395
final  value 82.903395 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 111.567010 
iter  10 value 93.863518
iter  20 value 88.165507
iter  30 value 87.377639
iter  40 value 85.147787
iter  50 value 83.157286
iter  60 value 82.919611
iter  70 value 82.881757
iter  80 value 82.759816
iter  90 value 82.158788
iter 100 value 82.027538
final  value 82.027538 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 106.445917 
iter  10 value 94.078783
iter  20 value 92.966595
iter  30 value 87.515919
iter  40 value 87.036176
iter  50 value 86.717247
iter  60 value 86.476124
iter  70 value 83.531462
iter  80 value 82.568409
iter  90 value 82.295641
iter 100 value 82.248939
final  value 82.248939 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 103.045478 
iter  10 value 94.306190
iter  20 value 90.881652
iter  30 value 87.766474
iter  40 value 86.234008
iter  50 value 84.470580
iter  60 value 83.877167
iter  70 value 83.283299
iter  80 value 83.199077
iter  90 value 83.174025
iter 100 value 82.841765
final  value 82.841765 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 104.619823 
iter  10 value 93.452303
iter  20 value 92.062066
iter  30 value 87.606778
iter  40 value 86.183481
iter  50 value 85.016578
iter  60 value 82.749664
iter  70 value 82.376893
iter  80 value 82.344848
iter  90 value 82.162212
iter 100 value 81.858132
final  value 81.858132 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 104.000621 
iter  10 value 94.563097
iter  20 value 94.371284
iter  30 value 93.251354
iter  40 value 88.506129
iter  50 value 87.987281
iter  60 value 86.298488
iter  70 value 85.162693
iter  80 value 84.048330
iter  90 value 83.748541
iter 100 value 83.042907
final  value 83.042907 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 104.944987 
iter  10 value 94.102085
iter  20 value 93.105792
iter  30 value 88.048214
iter  40 value 84.312154
iter  50 value 82.974967
iter  60 value 82.842609
iter  70 value 82.401451
iter  80 value 82.189286
iter  90 value 82.145310
iter 100 value 82.121041
final  value 82.121041 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 104.652985 
final  value 94.054372 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.101922 
iter  10 value 93.584539
iter  20 value 93.582739
final  value 93.582592 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.712237 
final  value 94.054611 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.780701 
final  value 94.054525 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.652286 
final  value 94.054527 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.928280 
iter  10 value 94.057721
iter  20 value 94.045121
iter  30 value 93.779665
iter  40 value 92.737889
iter  50 value 92.734780
iter  60 value 92.733615
iter  70 value 89.203980
iter  80 value 89.003553
iter  90 value 88.001011
iter 100 value 87.976354
final  value 87.976354 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 94.846511 
iter  10 value 94.057755
iter  20 value 94.046830
final  value 93.582695 
converged
Fitting Repeat 3 

# weights:  305
initial  value 102.430028 
iter  10 value 93.947991
iter  20 value 93.942224
iter  30 value 93.806152
iter  40 value 93.805742
iter  50 value 93.803334
iter  60 value 91.149515
iter  70 value 90.659655
iter  80 value 90.657471
iter  90 value 90.657238
iter 100 value 90.657030
final  value 90.657030 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 109.560765 
iter  10 value 92.749943
iter  20 value 92.432060
iter  30 value 92.280476
iter  40 value 92.276592
final  value 92.275893 
converged
Fitting Repeat 5 

# weights:  305
initial  value 117.179633 
iter  10 value 90.070303
iter  20 value 88.968199
iter  30 value 88.950007
iter  40 value 88.744211
iter  50 value 88.728096
iter  60 value 88.565933
iter  70 value 87.691895
iter  80 value 87.001835
iter  90 value 86.994244
iter 100 value 86.993870
final  value 86.993870 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 95.102533 
iter  10 value 93.605512
iter  20 value 93.589514
iter  30 value 93.583932
iter  40 value 93.582698
iter  50 value 93.564563
iter  60 value 90.967193
iter  70 value 90.706484
iter  80 value 90.703030
iter  90 value 90.702486
iter 100 value 90.702336
final  value 90.702336 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 102.485042 
iter  10 value 93.591260
iter  20 value 93.583004
final  value 93.582856 
converged
Fitting Repeat 3 

# weights:  507
initial  value 101.157201 
iter  10 value 94.061194
iter  20 value 93.980085
iter  30 value 93.603525
final  value 93.583031 
converged
Fitting Repeat 4 

# weights:  507
initial  value 103.052216 
iter  10 value 94.060356
iter  20 value 93.908518
iter  30 value 91.563818
iter  40 value 87.205986
iter  50 value 87.202607
final  value 87.202595 
converged
Fitting Repeat 5 

# weights:  507
initial  value 98.496042 
iter  10 value 94.003522
iter  20 value 92.004730
iter  30 value 91.982724
iter  40 value 91.973978
iter  50 value 91.933480
iter  60 value 91.911821
iter  70 value 91.907147
iter  80 value 91.410053
iter  90 value 91.206753
final  value 91.206458 
converged
Fitting Repeat 1 

# weights:  103
initial  value 103.033259 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 101.506993 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.923475 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.556919 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.725149 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.473567 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 99.785831 
iter  10 value 94.422598
final  value 94.422596 
converged
Fitting Repeat 3 

# weights:  305
initial  value 109.791911 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 94.344044 
iter  10 value 84.908606
iter  20 value 84.628527
iter  30 value 82.556321
iter  40 value 81.788076
iter  50 value 81.763325
final  value 81.763268 
converged
Fitting Repeat 5 

# weights:  305
initial  value 97.523660 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 99.806057 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 130.242146 
iter  10 value 93.991342
iter  10 value 93.991342
iter  10 value 93.991342
final  value 93.991342 
converged
Fitting Repeat 3 

# weights:  507
initial  value 98.994940 
iter  10 value 93.957832
final  value 93.957576 
converged
Fitting Repeat 4 

# weights:  507
initial  value 96.648819 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 108.783725 
iter  10 value 94.371628
iter  20 value 93.998066
final  value 93.991348 
converged
Fitting Repeat 1 

# weights:  103
initial  value 100.373334 
iter  10 value 94.209891
iter  20 value 90.097587
iter  30 value 85.881298
iter  40 value 82.738941
iter  50 value 81.707012
iter  60 value 79.886778
iter  70 value 79.480532
iter  80 value 79.032823
iter  90 value 78.747969
iter 100 value 78.687630
final  value 78.687630 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 100.038791 
iter  10 value 94.505124
iter  20 value 94.382394
iter  30 value 93.797613
iter  40 value 92.436815
iter  50 value 92.181376
iter  60 value 92.146899
iter  70 value 89.828265
iter  80 value 85.642440
iter  90 value 83.684054
iter 100 value 80.879000
final  value 80.879000 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 99.542741 
iter  10 value 94.447521
iter  20 value 92.642335
iter  30 value 84.416530
iter  40 value 83.603752
iter  50 value 80.227360
iter  60 value 79.194118
iter  70 value 78.964596
iter  80 value 78.893321
iter  90 value 78.833635
iter 100 value 78.717077
final  value 78.717077 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 103.918837 
iter  10 value 94.487251
iter  20 value 94.141829
iter  30 value 88.596327
iter  40 value 87.031938
iter  50 value 80.180063
iter  60 value 79.629248
iter  70 value 79.428262
iter  80 value 79.185202
iter  90 value 78.956060
iter 100 value 78.805639
final  value 78.805639 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 99.216715 
iter  10 value 94.488787
iter  20 value 94.370671
iter  30 value 94.037351
iter  40 value 93.927280
iter  50 value 90.659293
iter  60 value 87.413120
iter  70 value 85.670675
iter  80 value 79.721865
iter  90 value 79.182210
iter 100 value 78.926318
final  value 78.926318 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 105.552736 
iter  10 value 94.550060
iter  20 value 93.611348
iter  30 value 90.583916
iter  40 value 90.462273
iter  50 value 86.489073
iter  60 value 81.171459
iter  70 value 78.220285
iter  80 value 76.957609
iter  90 value 76.659931
iter 100 value 76.611526
final  value 76.611526 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 104.354189 
iter  10 value 94.473959
iter  20 value 92.985307
iter  30 value 84.759655
iter  40 value 80.891681
iter  50 value 79.890298
iter  60 value 79.392183
iter  70 value 79.144361
iter  80 value 78.947710
iter  90 value 78.182988
iter 100 value 77.890272
final  value 77.890272 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 110.048047 
iter  10 value 94.450383
iter  20 value 86.101465
iter  30 value 82.257341
iter  40 value 81.822854
iter  50 value 81.719565
iter  60 value 80.159634
iter  70 value 79.365723
iter  80 value 79.092379
iter  90 value 79.035742
iter 100 value 78.976165
final  value 78.976165 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 99.469423 
iter  10 value 94.168258
iter  20 value 94.043485
iter  30 value 94.015538
iter  40 value 87.129919
iter  50 value 81.469594
iter  60 value 79.615900
iter  70 value 77.485656
iter  80 value 77.118690
iter  90 value 77.054746
iter 100 value 77.038111
final  value 77.038111 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 134.594522 
iter  10 value 94.090859
iter  20 value 90.773640
iter  30 value 83.746482
iter  40 value 80.753327
iter  50 value 80.483305
iter  60 value 80.193608
iter  70 value 79.470210
iter  80 value 78.966418
iter  90 value 78.130903
iter 100 value 77.871180
final  value 77.871180 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 120.478566 
iter  10 value 94.469939
iter  20 value 86.112125
iter  30 value 82.190126
iter  40 value 80.603075
iter  50 value 79.956046
iter  60 value 78.242642
iter  70 value 77.799016
iter  80 value 77.492170
iter  90 value 77.462927
iter 100 value 77.406700
final  value 77.406700 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 139.808078 
iter  10 value 94.664582
iter  20 value 89.779000
iter  30 value 85.676556
iter  40 value 84.368391
iter  50 value 81.828606
iter  60 value 81.229665
iter  70 value 80.358411
iter  80 value 79.921197
iter  90 value 78.573709
iter 100 value 77.177613
final  value 77.177613 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 106.979527 
iter  10 value 94.406731
iter  20 value 88.962559
iter  30 value 82.192841
iter  40 value 81.764825
iter  50 value 81.566705
iter  60 value 80.261502
iter  70 value 79.338922
iter  80 value 79.188367
iter  90 value 78.365063
iter 100 value 77.777666
final  value 77.777666 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 117.580469 
iter  10 value 95.638775
iter  20 value 86.377488
iter  30 value 84.840535
iter  40 value 82.150757
iter  50 value 79.157072
iter  60 value 78.212023
iter  70 value 78.031565
iter  80 value 77.838112
iter  90 value 77.492562
iter 100 value 77.260017
final  value 77.260017 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 116.596202 
iter  10 value 93.868256
iter  20 value 84.013059
iter  30 value 81.577768
iter  40 value 79.619142
iter  50 value 78.984555
iter  60 value 78.854394
iter  70 value 78.632329
iter  80 value 78.396509
iter  90 value 77.999067
iter 100 value 77.789928
final  value 77.789928 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 97.903143 
final  value 94.485965 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.443853 
iter  10 value 94.485956
iter  20 value 94.476368
iter  30 value 84.725718
iter  40 value 83.140927
iter  50 value 81.177166
iter  60 value 81.008070
iter  70 value 81.003526
iter  80 value 81.003260
final  value 81.003213 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.868220 
final  value 94.486056 
converged
Fitting Repeat 4 

# weights:  103
initial  value 108.837282 
final  value 94.485772 
converged
Fitting Repeat 5 

# weights:  103
initial  value 103.042631 
final  value 94.485868 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.287998 
iter  10 value 94.495642
iter  20 value 89.739453
iter  30 value 86.950557
iter  40 value 86.949170
iter  50 value 86.944659
iter  60 value 85.112672
iter  70 value 82.478219
iter  80 value 82.472216
iter  90 value 82.378508
iter 100 value 82.300884
final  value 82.300884 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 96.319332 
iter  10 value 91.496645
iter  20 value 85.530422
iter  30 value 84.819724
iter  40 value 84.818723
iter  50 value 84.818221
iter  60 value 84.815705
iter  70 value 84.215005
iter  80 value 84.212888
iter  90 value 84.212356
final  value 84.211725 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.068943 
iter  10 value 94.447757
iter  20 value 94.440096
iter  30 value 85.217401
iter  40 value 80.663405
iter  50 value 79.311561
iter  60 value 77.263680
iter  70 value 77.068908
iter  80 value 77.068465
final  value 77.067909 
converged
Fitting Repeat 4 

# weights:  305
initial  value 137.594802 
iter  10 value 94.489560
iter  20 value 94.485195
iter  30 value 94.255866
iter  40 value 86.068720
iter  50 value 85.742750
iter  60 value 80.428235
iter  70 value 80.263824
iter  80 value 80.263096
iter  90 value 80.014807
iter 100 value 79.991781
final  value 79.991781 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 95.020200 
iter  10 value 82.756003
iter  20 value 82.477842
iter  30 value 82.473953
iter  40 value 82.472295
iter  50 value 79.783313
iter  60 value 78.479630
iter  70 value 78.388924
iter  80 value 78.367118
final  value 78.367083 
converged
Fitting Repeat 1 

# weights:  507
initial  value 96.112758 
iter  10 value 94.162983
iter  20 value 94.158100
iter  30 value 94.007672
iter  40 value 84.651775
iter  50 value 80.859647
iter  60 value 79.708093
iter  70 value 79.366652
iter  80 value 79.093516
iter  90 value 78.681968
iter 100 value 76.776316
final  value 76.776316 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 96.961454 
iter  10 value 94.197689
iter  20 value 94.192056
iter  30 value 89.001339
iter  40 value 85.311748
iter  50 value 85.293434
iter  60 value 85.292642
iter  70 value 85.200577
iter  80 value 85.162615
iter  90 value 85.162175
final  value 85.161929 
converged
Fitting Repeat 3 

# weights:  507
initial  value 98.894215 
iter  10 value 94.455520
iter  20 value 94.257865
iter  30 value 94.018601
iter  40 value 93.994927
final  value 93.992561 
converged
Fitting Repeat 4 

# weights:  507
initial  value 96.518844 
iter  10 value 93.999506
iter  20 value 93.992387
iter  30 value 93.967843
final  value 93.967837 
converged
Fitting Repeat 5 

# weights:  507
initial  value 96.163727 
iter  10 value 94.262810
iter  20 value 94.257665
iter  30 value 93.978139
iter  40 value 93.977263
iter  50 value 93.975467
iter  60 value 93.975282
iter  70 value 93.975052
final  value 93.975020 
converged
Fitting Repeat 1 

# weights:  305
initial  value 139.968367 
iter  10 value 117.875505
iter  20 value 108.533945
iter  30 value 103.806051
iter  40 value 102.794329
iter  50 value 102.158159
iter  60 value 101.856718
iter  70 value 101.342043
iter  80 value 101.257764
iter  90 value 101.213397
iter 100 value 101.158558
final  value 101.158558 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 127.358689 
iter  10 value 118.397302
iter  20 value 116.283995
iter  30 value 115.531132
iter  40 value 115.338299
iter  50 value 108.870083
iter  60 value 105.816465
iter  70 value 104.998062
iter  80 value 104.721896
iter  90 value 103.841446
iter 100 value 103.355962
final  value 103.355962 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 141.056648 
iter  10 value 117.904052
iter  20 value 114.150751
iter  30 value 110.013916
iter  40 value 106.014490
iter  50 value 105.444851
iter  60 value 104.157582
iter  70 value 103.514031
iter  80 value 103.043413
iter  90 value 102.409584
iter 100 value 101.810771
final  value 101.810771 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 132.931308 
iter  10 value 118.147429
iter  20 value 113.972875
iter  30 value 111.973080
iter  40 value 106.849982
iter  50 value 105.300400
iter  60 value 104.875180
iter  70 value 103.887320
iter  80 value 103.645454
iter  90 value 102.909250
iter 100 value 102.222177
final  value 102.222177 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 136.063654 
iter  10 value 118.031636
iter  20 value 115.467510
iter  30 value 114.954470
iter  40 value 113.568666
iter  50 value 109.152280
iter  60 value 108.280346
iter  70 value 104.919323
iter  80 value 104.113359
iter  90 value 102.530745
iter 100 value 101.956169
final  value 101.956169 
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Mon Oct 16 03:09:42 2023 
*********************************************** 
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: `repeats` has no meaning for this resampling method. 
2: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  40.07    1.64   42.31 

Example timings

HPiP.Rcheck/HPiP-Ex.timings

nameusersystemelapsed
FSmethod28.35 1.4029.78
FreqInteractors0.250.020.28
calculateAAC0.050.000.05
calculateAutocor0.370.080.45
calculateCTDC0.080.000.08
calculateCTDD0.690.070.76
calculateCTDT0.260.000.27
calculateCTriad0.350.000.36
calculateDC0.080.000.08
calculateF0.340.020.36
calculateKSAAP0.100.000.09
calculateQD_Sm1.540.091.64
calculateTC1.600.051.64
calculateTC_Sm0.220.020.23
corr_plot27.85 0.9028.77
enrichfindP 0.59 0.0513.42
enrichfind_hp0.050.031.01
enrichplot0.230.020.25
filter_missing_values000
getFASTA0.020.002.49
getHPI000
get_negativePPI0.010.000.01
get_positivePPI000
impute_missing_data000
plotPPI0.080.000.08
pred_ensembel12.34 0.37 9.47
var_imp29.30 0.7730.08