Back to Multiple platform build/check report for BioC 3.17: simplified long |
|
This page was generated on 2023-10-16 11:36:13 -0400 (Mon, 16 Oct 2023).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 22.04.2 LTS) | x86_64 | 4.3.1 (2023-06-16) -- "Beagle Scouts" | 4626 |
palomino3 | Windows Server 2022 Datacenter | x64 | 4.3.1 (2023-06-16 ucrt) -- "Beagle Scouts" | 4379 |
merida1 | macOS 12.6.4 Monterey | x86_64 | 4.3.1 (2023-06-16) -- "Beagle Scouts" | 4395 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 924/2230 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HIBAG 1.36.4 (landing page) Xiuwen Zheng
| nebbiolo1 | Linux (Ubuntu 22.04.2 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino3 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
merida1 | macOS 12.6.4 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson2 | macOS 12.6.1 Monterey / arm64 | see weekly results here | ||||||||||||
To the developers/maintainers of the HIBAG package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HIBAG.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HIBAG |
Version: 1.36.4 |
Command: F:\biocbuild\bbs-3.17-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HIBAG.install-out.txt --library=F:\biocbuild\bbs-3.17-bioc\R\library --no-vignettes --timings HIBAG_1.36.4.tar.gz |
StartedAt: 2023-10-16 03:00:02 -0400 (Mon, 16 Oct 2023) |
EndedAt: 2023-10-16 03:01:36 -0400 (Mon, 16 Oct 2023) |
EllapsedTime: 93.8 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HIBAG.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.17-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HIBAG.install-out.txt --library=F:\biocbuild\bbs-3.17-bioc\R\library --no-vignettes --timings HIBAG_1.36.4.tar.gz ### ############################################################################## ############################################################################## * using log directory 'F:/biocbuild/bbs-3.17-bioc/meat/HIBAG.Rcheck' * using R version 4.3.1 (2023-06-16 ucrt) * using platform: x86_64-w64-mingw32 (64-bit) * R was compiled by gcc.exe (GCC) 12.2.0 GNU Fortran (GCC) 12.2.0 * running under: Windows Server 2022 x64 (build 20348) * using session charset: UTF-8 * using option '--no-vignettes' * checking for file 'HIBAG/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'HIBAG' version '1.36.4' * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'HIBAG' can be installed ... OK * used C compiler: 'gcc.exe (GCC) 12.2.0' * used C++ compiler: 'G__~1.EXE (GCC) 12.2.0' * checking C++ specification ... NOTE Specified C++11: please drop specification unless essential * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking startup messages can be suppressed ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking LazyData ... OK * checking data for ASCII and uncompressed saves ... OK * checking line endings in C/C++/Fortran sources/headers ... OK * checking line endings in Makefiles ... OK * checking compilation flags in Makevars ... OK * checking for GNU extensions in Makefiles ... NOTE GNU make is a SystemRequirements. * checking for portable use of $(BLAS_LIBS) and $(LAPACK_LIBS) ... OK * checking use of PKG_*FLAGS in Makefiles ... OK * checking compiled code ... NOTE Note: information on .o files for x64 is not available File 'F:/biocbuild/bbs-3.17-bioc/R/library/HIBAG/libs/x64/HIBAG.dll': Found 'abort', possibly from 'abort' (C), 'runtime' (Fortran) Found 'exit', possibly from 'exit' (C), 'stop' (Fortran) File 'HIBAG/libs/x64/HIBAG.dll': Found non-API call to R: 'R_new_custom_connection' Compiled code should not call entry points which might terminate R nor write to stdout/stderr instead of to the console, nor use Fortran I/O nor system RNGs nor [v]sprintf. The detected symbols are linked into the code but might come from libraries and not actually be called. Compiled code should not call non-API entry points in R. See 'Writing portable packages' in the 'Writing R Extensions' manual. * checking installed files from 'inst/doc' ... OK * checking files in 'vignettes' ... OK * checking examples ... OK * checking for unstated dependencies in 'tests' ... OK * checking tests ... Running 'runTests.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in 'inst/doc' ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See 'F:/biocbuild/bbs-3.17-bioc/meat/HIBAG.Rcheck/00check.log' for details.
HIBAG.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.17-bioc\R\bin\R.exe CMD INSTALL HIBAG ### ############################################################################## ############################################################################## * installing to library 'F:/biocbuild/bbs-3.17-bioc/R/library' * installing *source* package 'HIBAG' ... ** using staged installation ** libs using C compiler: 'gcc.exe (GCC) 12.2.0' using C++ compiler: 'G__~1.EXE (GCC) 12.2.0' using C++11 g++ -std=gnu++11 -I"F:/biocbuild/bbs-3.17-bioc/R/include" -DNDEBUG -I'F:/biocbuild/bbs-3.17-bioc/R/library/RcppParallel/include' -I"C:/rtools43/x86_64-w64-mingw32.static.posix/include" -DRCPP_PARALLEL_USE_TBB=1 -I../inst/include -O2 -Wall -mfpmath=sse -msse2 -mstackrealign -c HIBAG.cpp -o HIBAG.o g++ -std=gnu++11 -I"F:/biocbuild/bbs-3.17-bioc/R/include" -DNDEBUG -I'F:/biocbuild/bbs-3.17-bioc/R/library/RcppParallel/include' -I"C:/rtools43/x86_64-w64-mingw32.static.posix/include" -DRCPP_PARALLEL_USE_TBB=1 -I../inst/include -O2 -Wall -mfpmath=sse -msse2 -mstackrealign -c LibHLA.cpp -o LibHLA.o g++ -std=gnu++11 -I"F:/biocbuild/bbs-3.17-bioc/R/include" -DNDEBUG -I'F:/biocbuild/bbs-3.17-bioc/R/library/RcppParallel/include' -I"C:/rtools43/x86_64-w64-mingw32.static.posix/include" -DRCPP_PARALLEL_USE_TBB=1 -I../inst/include -O2 -Wall -mfpmath=sse -msse2 -mstackrealign -c LibHLA_ext_avx.cpp -o LibHLA_ext_avx.o g++ -std=gnu++11 -I"F:/biocbuild/bbs-3.17-bioc/R/include" -DNDEBUG -I'F:/biocbuild/bbs-3.17-bioc/R/library/RcppParallel/include' -I"C:/rtools43/x86_64-w64-mingw32.static.posix/include" -DRCPP_PARALLEL_USE_TBB=1 -I../inst/include -O2 -Wall -mfpmath=sse -msse2 -mstackrealign -c LibHLA_ext_avx2.cpp -o LibHLA_ext_avx2.o g++ -std=gnu++11 -I"F:/biocbuild/bbs-3.17-bioc/R/include" -DNDEBUG -I'F:/biocbuild/bbs-3.17-bioc/R/library/RcppParallel/include' -I"C:/rtools43/x86_64-w64-mingw32.static.posix/include" -DRCPP_PARALLEL_USE_TBB=1 -I../inst/include -O2 -Wall -mfpmath=sse -msse2 -mstackrealign -ffixed-xmm16 -ffixed-xmm17 -ffixed-xmm18 -ffixed-xmm19 -ffixed-xmm20 -ffixed-xmm21 -ffixed-xmm22 -ffixed-xmm23 -ffixed-xmm24 -ffixed-xmm25 -ffixed-xmm26 -ffixed-xmm27 -ffixed-xmm28 -ffixed-xmm29 -ffixed-xmm30 -ffixed-xmm31 LibHLA_ext_avx512bw.cpp -c -o LibHLA_ext_avx512bw.o g++ -std=gnu++11 -I"F:/biocbuild/bbs-3.17-bioc/R/include" -DNDEBUG -I'F:/biocbuild/bbs-3.17-bioc/R/library/RcppParallel/include' -I"C:/rtools43/x86_64-w64-mingw32.static.posix/include" -DRCPP_PARALLEL_USE_TBB=1 -I../inst/include -O2 -Wall -mfpmath=sse -msse2 -mstackrealign -ffixed-xmm16 -ffixed-xmm17 -ffixed-xmm18 -ffixed-xmm19 -ffixed-xmm20 -ffixed-xmm21 -ffixed-xmm22 -ffixed-xmm23 -ffixed-xmm24 -ffixed-xmm25 -ffixed-xmm26 -ffixed-xmm27 -ffixed-xmm28 -ffixed-xmm29 -ffixed-xmm30 -ffixed-xmm31 LibHLA_ext_avx512f.cpp -c -o LibHLA_ext_avx512f.o g++ -std=gnu++11 -I"F:/biocbuild/bbs-3.17-bioc/R/include" -DNDEBUG -I'F:/biocbuild/bbs-3.17-bioc/R/library/RcppParallel/include' -I"C:/rtools43/x86_64-w64-mingw32.static.posix/include" -DRCPP_PARALLEL_USE_TBB=1 -I../inst/include -O2 -Wall -mfpmath=sse -msse2 -mstackrealign -ffixed-xmm16 -ffixed-xmm17 -ffixed-xmm18 -ffixed-xmm19 -ffixed-xmm20 -ffixed-xmm21 -ffixed-xmm22 -ffixed-xmm23 -ffixed-xmm24 -ffixed-xmm25 -ffixed-xmm26 -ffixed-xmm27 -ffixed-xmm28 -ffixed-xmm29 -ffixed-xmm30 -ffixed-xmm31 LibHLA_ext_avx512vpopcnt.cpp -c -o LibHLA_ext_avx512vpopcnt.o g++ -std=gnu++11 -I"F:/biocbuild/bbs-3.17-bioc/R/include" -DNDEBUG -I'F:/biocbuild/bbs-3.17-bioc/R/library/RcppParallel/include' -I"C:/rtools43/x86_64-w64-mingw32.static.posix/include" -DRCPP_PARALLEL_USE_TBB=1 -I../inst/include -O2 -Wall -mfpmath=sse -msse2 -mstackrealign -c LibHLA_ext_sse2.cpp -o LibHLA_ext_sse2.o g++ -std=gnu++11 -I"F:/biocbuild/bbs-3.17-bioc/R/include" -DNDEBUG -I'F:/biocbuild/bbs-3.17-bioc/R/library/RcppParallel/include' -I"C:/rtools43/x86_64-w64-mingw32.static.posix/include" -DRCPP_PARALLEL_USE_TBB=1 -I../inst/include -O2 -Wall -mfpmath=sse -msse2 -mstackrealign -c LibHLA_ext_sse4_2.cpp -o LibHLA_ext_sse4_2.o gcc -I"F:/biocbuild/bbs-3.17-bioc/R/include" -DNDEBUG -I'F:/biocbuild/bbs-3.17-bioc/R/library/RcppParallel/include' -I"C:/rtools43/x86_64-w64-mingw32.static.posix/include" -O2 -Wall -mfpmath=sse -msse2 -mstackrealign -c samtools_ext.c -o samtools_ext.o g++ -shared -s -static-libgcc -o HIBAG.dll tmp.def HIBAG.o LibHLA.o LibHLA_ext_avx.o LibHLA_ext_avx2.o LibHLA_ext_avx512bw.o LibHLA_ext_avx512f.o LibHLA_ext_avx512vpopcnt.o LibHLA_ext_sse2.o LibHLA_ext_sse4_2.o samtools_ext.o -LF:/biocbuild/bbs-3.17-bioc/R/library/RcppParallel/lib/x64 -ltbb -ltbbmalloc -LC:/rtools43/x86_64-w64-mingw32.static.posix/lib/x64 -LC:/rtools43/x86_64-w64-mingw32.static.posix/lib -LF:/biocbuild/bbs-3.17-bioc/R/bin/x64 -lR installing to F:/biocbuild/bbs-3.17-bioc/R/library/00LOCK-HIBAG/00new/HIBAG/libs/x64 ** R ** data *** moving datasets to lazyload DB ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HIBAG)
HIBAG.Rcheck/tests/runTests.Rout
R version 4.3.1 (2023-06-16 ucrt) -- "Beagle Scouts" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ############################################################# > # > # DESCRIPTION: Unit tests in the HIBAG package > # > > # load the HIBAG package > library(HIBAG) HIBAG (HLA Genotype Imputation with Attribute Bagging) Kernel Version: v1.5 (64-bit, AVX512BW) > > > ############################################################# > > # a list of HLA genes > hla.list <- c("A", "B", "C", "DQA1", "DQB1", "DRB1") > > # pre-defined lower bound of prediction accuracy > hla.acc <- c(0.9, 0.8, 0.8, 0.8, 0.8, 0.7) > > > for (hla.idx in seq_along(hla.list)) + { + hla.id <- hla.list[hla.idx] + + # make a "hlaAlleleClass" object + hla <- hlaAllele(HLA_Type_Table$sample.id, + H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")], + H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")], + locus=hla.id, assembly="hg19") + + # divide HLA types randomly + set.seed(100) + hlatab <- hlaSplitAllele(hla, train.prop=0.5) + + # SNP predictors within the flanking region on each side + region <- 500 # kb + snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, + HapMap_CEU_Geno$snp.position, + hla.id, region*1000, assembly="hg19") + + # training and validation genotypes + train.geno <- hlaGenoSubset(HapMap_CEU_Geno, + snp.sel=match(snpid, HapMap_CEU_Geno$snp.id), + samp.sel=match(hlatab$training$value$sample.id, + HapMap_CEU_Geno$sample.id)) + test.geno <- hlaGenoSubset(HapMap_CEU_Geno, + samp.sel=match(hlatab$validation$value$sample.id, + HapMap_CEU_Geno$sample.id)) + + + # train a HIBAG model + set.seed(100) + model <- hlaAttrBagging(hlatab$training, train.geno, nclassifier=10) + summary(model) + + # validation + pred <- hlaPredict(model, test.geno, type="response") + summary(pred) + + # compare + comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model, + call.threshold=0) + print(comp$overall) + + # check + if (comp$overall$acc.haplo < hla.acc[hla.idx]) + stop("HLA - ", hla.id, ", 'acc.haplo' should be >= ", hla.acc[hla.idx], ".") + + cat("\n\n") + } Build a HIBAG model with 10 individual classifiers: MAF threshold: NaN excluding 11 monomorphic SNPs # of SNPs randomly sampled as candidates for each selection: 17 # of SNPs: 264 # of samples: 34 # of unique HLA alleles: 14 CPU flags: 64-bit, AVX512BW # of threads: 1 [-] 2023-10-16 03:01:08 === building individual classifier 1, out-of-bag (11/32.4%) === [1] 2023-10-16 03:01:08, oob acc: 77.27%, # of SNPs: 13, # of haplo: 23 === building individual classifier 2, out-of-bag (13/38.2%) === [2] 2023-10-16 03:01:08, oob acc: 88.46%, # of SNPs: 12, # of haplo: 48 === building individual classifier 3, out-of-bag (14/41.2%) === [3] 2023-10-16 03:01:08, oob acc: 85.71%, # of SNPs: 11, # of haplo: 14 === building individual classifier 4, out-of-bag (10/29.4%) === [4] 2023-10-16 03:01:08, oob acc: 75.00%, # of SNPs: 13, # of haplo: 23 === building individual classifier 5, out-of-bag (17/50.0%) === [5] 2023-10-16 03:01:08, oob acc: 79.41%, # of SNPs: 13, # of haplo: 34 === building individual classifier 6, out-of-bag (11/32.4%) === [6] 2023-10-16 03:01:08, oob acc: 100.00%, # of SNPs: 19, # of haplo: 72 === building individual classifier 7, out-of-bag (9/26.5%) === [7] 2023-10-16 03:01:08, oob acc: 100.00%, # of SNPs: 17, # of haplo: 37 === building individual classifier 8, out-of-bag (13/38.2%) === [8] 2023-10-16 03:01:08, oob acc: 88.46%, # of SNPs: 15, # of haplo: 57 === building individual classifier 9, out-of-bag (15/44.1%) === [9] 2023-10-16 03:01:08, oob acc: 93.33%, # of SNPs: 13, # of haplo: 22 === building individual classifier 10, out-of-bag (13/38.2%) === [10] 2023-10-16 03:01:08, oob acc: 80.77%, # of SNPs: 14, # of haplo: 24 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 0.0005514978 0.0005592583 0.0006291033 0.0043053528 0.0091076487 0.0245841398 Max. Mean SD 0.4332369854 0.0431831923 0.0993605214 Accuracy with training data: 98.53% Out-of-bag accuracy: 86.84% Gene: HLA-A Training dataset: 34 samples X 264 SNPs # of HLA alleles: 14 # of individual classifiers: 10 total # of SNPs used: 94 avg. # of SNPs in an individual classifier: 14.00 (sd: 2.40, min: 11, max: 19, median: 13.00) avg. # of haplotypes in an individual classifier: 35.40 (sd: 18.39, min: 14, max: 72, median: 29.00) avg. out-of-bag accuracy: 86.84% (sd: 8.94%, min: 75.00%, max: 100.00%, median: 87.09%) Matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 0.0005514978 0.0005592583 0.0006291033 0.0043053528 0.0091076487 0.0245841398 Max. Mean SD 0.4332369854 0.0431831923 0.0993605214 Genome assembly: hg19 HIBAG model for HLA-A: 10 individual classifiers 264 SNPs 14 unique HLA alleles: 01:01, 02:01, 02:06, ... Prediction: based on the averaged posterior probabilities Model assembly: hg19, SNP assembly: hg19 Matching the SNPs between the model and the test data: match.type="--" missing SNPs # Position 0 (0.0%) *being used [1] Pos+Allele 0 (0.0%) [2] RefSNP+Position 0 (0.0%) RefSNP 0 (0.0%) [1]: useful if ambiguous strands on array-based platforms [2]: suggested if the model and test data have been matched to the same reference genome Model platform: not applicable No allelic strand or A/B allele is flipped. # of samples: 26 CPU flags: 64-bit, AVX512BW # of threads: 1 Predicting (2023-10-16 03:01:09) 0% Predicting (2023-10-16 03:01:09) 100% Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 26 # of unique HLA alleles: 12 # of unique HLA genotypes: 14 Posterior probability: [0,0.25) [0.25,0.5) [0.5,0.75) [0.75,1] 1 (3.8%) 3 (11.5%) 4 (15.4%) 18 (69.2%) Matching proportion of SNP haplotype: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.000000 0.002500 0.007023 0.031426 0.026829 0.433237 total.num.ind crt.num.ind crt.num.haplo acc.ind acc.haplo call.threshold 1 26 25 51 0.9615385 0.9807692 0 n.call call.rate 1 26 1 Build a HIBAG model with 10 individual classifiers: MAF threshold: NaN excluding 1 monomorphic SNP # of SNPs randomly sampled as candidates for each selection: 19 # of SNPs: 340 # of samples: 28 # of unique HLA alleles: 22 CPU flags: 64-bit, AVX512BW # of threads: 1 [-] 2023-10-16 03:01:09 === building individual classifier 1, out-of-bag (12/42.9%) === [1] 2023-10-16 03:01:09, oob acc: 58.33%, # of SNPs: 17, # of haplo: 52 === building individual classifier 2, out-of-bag (11/39.3%) === [2] 2023-10-16 03:01:09, oob acc: 63.64%, # of SNPs: 18, # of haplo: 51 === building individual classifier 3, out-of-bag (13/46.4%) === [3] 2023-10-16 03:01:09, oob acc: 50.00%, # of SNPs: 15, # of haplo: 29 === building individual classifier 4, out-of-bag (11/39.3%) === [4] 2023-10-16 03:01:09, oob acc: 59.09%, # of SNPs: 12, # of haplo: 57 === building individual classifier 5, out-of-bag (11/39.3%) === [5] 2023-10-16 03:01:09, oob acc: 63.64%, # of SNPs: 15, # of haplo: 94 === building individual classifier 6, out-of-bag (12/42.9%) === [6] 2023-10-16 03:01:09, oob acc: 79.17%, # of SNPs: 18, # of haplo: 66 === building individual classifier 7, out-of-bag (12/42.9%) === [7] 2023-10-16 03:01:09, oob acc: 70.83%, # of SNPs: 15, # of haplo: 86 === building individual classifier 8, out-of-bag (9/32.1%) === [8] 2023-10-16 03:01:09, oob acc: 77.78%, # of SNPs: 16, # of haplo: 117 === building individual classifier 9, out-of-bag (9/32.1%) === [9] 2023-10-16 03:01:09, oob acc: 77.78%, # of SNPs: 18, # of haplo: 92 === building individual classifier 10, out-of-bag (9/32.1%) === [10] 2023-10-16 03:01:09, oob acc: 61.11%, # of SNPs: 15, # of haplo: 72 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 9.567411e-05 9.622439e-05 1.011769e-04 3.069782e-03 7.279682e-03 1.186415e-02 Max. Mean SD 1.196521e-01 1.281183e-02 2.267335e-02 Accuracy with training data: 100.00% Out-of-bag accuracy: 66.14% Gene: HLA-B Training dataset: 28 samples X 340 SNPs # of HLA alleles: 22 # of individual classifiers: 10 total # of SNPs used: 118 avg. # of SNPs in an individual classifier: 15.90 (sd: 1.91, min: 12, max: 18, median: 15.50) avg. # of haplotypes in an individual classifier: 71.60 (sd: 25.94, min: 29, max: 117, median: 69.00) avg. out-of-bag accuracy: 66.14% (sd: 9.84%, min: 50.00%, max: 79.17%, median: 63.64%) Matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 9.567411e-05 9.622439e-05 1.011769e-04 3.069782e-03 7.279682e-03 1.186415e-02 Max. Mean SD 1.196521e-01 1.281183e-02 2.267335e-02 Genome assembly: hg19 HIBAG model for HLA-B: 10 individual classifiers 340 SNPs 22 unique HLA alleles: 07:02, 08:01, 13:02, ... Prediction: based on the averaged posterior probabilities Model assembly: hg19, SNP assembly: hg19 Matching the SNPs between the model and the test data: match.type="--" missing SNPs # Position 0 (0.0%) *being used [1] Pos+Allele 0 (0.0%) [2] RefSNP+Position 0 (0.0%) RefSNP 0 (0.0%) [1]: useful if ambiguous strands on array-based platforms [2]: suggested if the model and test data have been matched to the same reference genome Model platform: not applicable No allelic strand or A/B allele is flipped. # of samples: 15 CPU flags: 64-bit, AVX512BW # of threads: 1 Predicting (2023-10-16 03:01:09) 0% Predicting (2023-10-16 03:01:09) 100% Gene: HLA-B Range: [31321649bp, 31324989bp] on hg19 # of samples: 15 # of unique HLA alleles: 9 # of unique HLA genotypes: 12 Posterior probability: [0,0.25) [0.25,0.5) [0.5,0.75) [0.75,1] 3 (20.0%) 5 (33.3%) 3 (20.0%) 4 (26.7%) Matching proportion of SNP haplotype: Min. 1st Qu. Median Mean 3rd Qu. Max. 2.000e-08 4.068e-05 2.934e-03 1.789e-02 6.076e-03 1.326e-01 total.num.ind crt.num.ind crt.num.haplo acc.ind acc.haplo call.threshold 1 15 11 25 0.7333333 0.8333333 0 n.call call.rate 1 15 1 Build a HIBAG model with 10 individual classifiers: MAF threshold: NaN excluding 2 monomorphic SNPs # of SNPs randomly sampled as candidates for each selection: 19 # of SNPs: 354 # of samples: 36 # of unique HLA alleles: 17 CPU flags: 64-bit, AVX512BW # of threads: 1 [-] 2023-10-16 03:01:09 === building individual classifier 1, out-of-bag (13/36.1%) === [1] 2023-10-16 03:01:10, oob acc: 80.77%, # of SNPs: 19, # of haplo: 40 === building individual classifier 2, out-of-bag (11/30.6%) === [2] 2023-10-16 03:01:10, oob acc: 90.91%, # of SNPs: 32, # of haplo: 32 === building individual classifier 3, out-of-bag (14/38.9%) === [3] 2023-10-16 03:01:10, oob acc: 89.29%, # of SNPs: 19, # of haplo: 43 === building individual classifier 4, out-of-bag (13/36.1%) === [4] 2023-10-16 03:01:10, oob acc: 84.62%, # of SNPs: 19, # of haplo: 100 === building individual classifier 5, out-of-bag (9/25.0%) === [5] 2023-10-16 03:01:10, oob acc: 94.44%, # of SNPs: 22, # of haplo: 58 === building individual classifier 6, out-of-bag (17/47.2%) === [6] 2023-10-16 03:01:10, oob acc: 79.41%, # of SNPs: 27, # of haplo: 63 === building individual classifier 7, out-of-bag (12/33.3%) === [7] 2023-10-16 03:01:10, oob acc: 75.00%, # of SNPs: 19, # of haplo: 40 === building individual classifier 8, out-of-bag (13/36.1%) === [8] 2023-10-16 03:01:10, oob acc: 80.77%, # of SNPs: 17, # of haplo: 60 === building individual classifier 9, out-of-bag (11/30.6%) === [9] 2023-10-16 03:01:10, oob acc: 86.36%, # of SNPs: 20, # of haplo: 33 === building individual classifier 10, out-of-bag (10/27.8%) === [10] 2023-10-16 03:01:10, oob acc: 90.00%, # of SNPs: 32, # of haplo: 77 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 0.0002218427 0.0002248414 0.0002518298 0.0017561996 0.0033916297 0.0102775434 Max. Mean SD 0.0909115957 0.0113752369 0.0199373731 Accuracy with training data: 100.00% Out-of-bag accuracy: 85.16% Gene: HLA-C Training dataset: 36 samples X 354 SNPs # of HLA alleles: 17 # of individual classifiers: 10 total # of SNPs used: 141 avg. # of SNPs in an individual classifier: 22.60 (sd: 5.64, min: 17, max: 32, median: 19.50) avg. # of haplotypes in an individual classifier: 54.60 (sd: 21.63, min: 32, max: 100, median: 50.50) avg. out-of-bag accuracy: 85.16% (sd: 6.11%, min: 75.00%, max: 94.44%, median: 85.49%) Matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 0.0002218427 0.0002248414 0.0002518298 0.0017561996 0.0033916297 0.0102775434 Max. Mean SD 0.0909115957 0.0113752369 0.0199373731 Genome assembly: hg19 HIBAG model for HLA-C: 10 individual classifiers 354 SNPs 17 unique HLA alleles: 01:02, 02:02, 03:03, ... Prediction: based on the averaged posterior probabilities Model assembly: hg19, SNP assembly: hg19 Matching the SNPs between the model and the test data: match.type="--" missing SNPs # Position 0 (0.0%) *being used [1] Pos+Allele 0 (0.0%) [2] RefSNP+Position 0 (0.0%) RefSNP 0 (0.0%) [1]: useful if ambiguous strands on array-based platforms [2]: suggested if the model and test data have been matched to the same reference genome Model platform: not applicable No allelic strand or A/B allele is flipped. # of samples: 24 CPU flags: 64-bit, AVX512BW # of threads: 1 Predicting (2023-10-16 03:01:10) 0% Predicting (2023-10-16 03:01:10) 100% Gene: HLA-C Range: [31236526bp, 31239913bp] on hg19 # of samples: 24 # of unique HLA alleles: 14 # of unique HLA genotypes: 19 Posterior probability: [0,0.25) [0.25,0.5) [0.5,0.75) [0.75,1] 1 (4.2%) 6 (25.0%) 3 (12.5%) 14 (58.3%) Matching proportion of SNP haplotype: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.000e+00 1.000e-08 3.503e-04 7.608e-03 4.485e-03 7.769e-02 total.num.ind crt.num.ind crt.num.haplo acc.ind acc.haplo call.threshold 1 24 16 39 0.6666667 0.8125 0 n.call call.rate 1 24 1 Build a HIBAG model with 10 individual classifiers: MAF threshold: NaN excluding 4 monomorphic SNPs # of SNPs randomly sampled as candidates for each selection: 19 # of SNPs: 345 # of samples: 31 # of unique HLA alleles: 7 CPU flags: 64-bit, AVX512BW # of threads: 1 [-] 2023-10-16 03:01:10 === building individual classifier 1, out-of-bag (11/35.5%) === [1] 2023-10-16 03:01:10, oob acc: 95.45%, # of SNPs: 11, # of haplo: 22 === building individual classifier 2, out-of-bag (11/35.5%) === [2] 2023-10-16 03:01:10, oob acc: 100.00%, # of SNPs: 13, # of haplo: 22 === building individual classifier 3, out-of-bag (15/48.4%) === [3] 2023-10-16 03:01:10, oob acc: 83.33%, # of SNPs: 15, # of haplo: 23 === building individual classifier 4, out-of-bag (14/45.2%) === [4] 2023-10-16 03:01:10, oob acc: 82.14%, # of SNPs: 8, # of haplo: 14 === building individual classifier 5, out-of-bag (13/41.9%) === [5] 2023-10-16 03:01:11, oob acc: 88.46%, # of SNPs: 11, # of haplo: 34 === building individual classifier 6, out-of-bag (10/32.3%) === [6] 2023-10-16 03:01:11, oob acc: 90.00%, # of SNPs: 11, # of haplo: 21 === building individual classifier 7, out-of-bag (13/41.9%) === [7] 2023-10-16 03:01:11, oob acc: 92.31%, # of SNPs: 14, # of haplo: 23 === building individual classifier 8, out-of-bag (13/41.9%) === [8] 2023-10-16 03:01:11, oob acc: 96.15%, # of SNPs: 11, # of haplo: 16 === building individual classifier 9, out-of-bag (14/45.2%) === [9] 2023-10-16 03:01:11, oob acc: 89.29%, # of SNPs: 12, # of haplo: 19 === building individual classifier 10, out-of-bag (11/35.5%) === [10] 2023-10-16 03:01:11, oob acc: 86.36%, # of SNPs: 8, # of haplo: 13 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 0.001972961 0.001998819 0.002231547 0.005363515 0.008831104 0.018431530 Max. Mean SD 0.537093886 0.028877632 0.094687228 Accuracy with training data: 96.77% Out-of-bag accuracy: 90.35% Gene: HLA-DQA1 Training dataset: 31 samples X 345 SNPs # of HLA alleles: 7 # of individual classifiers: 10 total # of SNPs used: 80 avg. # of SNPs in an individual classifier: 11.40 (sd: 2.27, min: 8, max: 15, median: 11.00) avg. # of haplotypes in an individual classifier: 20.70 (sd: 5.96, min: 13, max: 34, median: 21.50) avg. out-of-bag accuracy: 90.35% (sd: 5.72%, min: 82.14%, max: 100.00%, median: 89.64%) Matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 0.001972961 0.001998819 0.002231547 0.005363515 0.008831104 0.018431530 Max. Mean SD 0.537093886 0.028877632 0.094687228 Genome assembly: hg19 HIBAG model for HLA-DQA1: 10 individual classifiers 345 SNPs 7 unique HLA alleles: 01:01, 01:02, 01:03, ... Prediction: based on the averaged posterior probabilities Model assembly: hg19, SNP assembly: hg19 Matching the SNPs between the model and the test data: match.type="--" missing SNPs # Position 0 (0.0%) *being used [1] Pos+Allele 0 (0.0%) [2] RefSNP+Position 0 (0.0%) RefSNP 0 (0.0%) [1]: useful if ambiguous strands on array-based platforms [2]: suggested if the model and test data have been matched to the same reference genome Model platform: not applicable No allelic strand or A/B allele is flipped. # of samples: 29 CPU flags: 64-bit, AVX512BW # of threads: 1 Predicting (2023-10-16 03:01:11) 0% Predicting (2023-10-16 03:01:11) 100% Gene: HLA-DQA1 Range: [32605169bp, 32612152bp] on hg19 # of samples: 29 # of unique HLA alleles: 6 # of unique HLA genotypes: 14 Posterior probability: [0,0.25) [0.25,0.5) [0.5,0.75) [0.75,1] 5 (17.2%) 5 (17.2%) 2 (6.9%) 17 (58.6%) Matching proportion of SNP haplotype: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0000001 0.0019253 0.0069908 0.0532601 0.0167536 0.5404845 total.num.ind crt.num.ind crt.num.haplo acc.ind acc.haplo call.threshold 1 29 21 49 0.7241379 0.8448276 0 n.call call.rate 1 29 1 Build a HIBAG model with 10 individual classifiers: MAF threshold: NaN excluding 6 monomorphic SNPs # of SNPs randomly sampled as candidates for each selection: 19 # of SNPs: 350 # of samples: 34 # of unique HLA alleles: 12 CPU flags: 64-bit, AVX512BW # of threads: 1 [-] 2023-10-16 03:01:11 === building individual classifier 1, out-of-bag (11/32.4%) === [1] 2023-10-16 03:01:11, oob acc: 86.36%, # of SNPs: 13, # of haplo: 34 === building individual classifier 2, out-of-bag (13/38.2%) === [2] 2023-10-16 03:01:11, oob acc: 76.92%, # of SNPs: 21, # of haplo: 42 === building individual classifier 3, out-of-bag (13/38.2%) === [3] 2023-10-16 03:01:11, oob acc: 80.77%, # of SNPs: 10, # of haplo: 17 === building individual classifier 4, out-of-bag (13/38.2%) === [4] 2023-10-16 03:01:11, oob acc: 92.31%, # of SNPs: 22, # of haplo: 78 === building individual classifier 5, out-of-bag (13/38.2%) === [5] 2023-10-16 03:01:11, oob acc: 92.31%, # of SNPs: 11, # of haplo: 40 === building individual classifier 6, out-of-bag (14/41.2%) === [6] 2023-10-16 03:01:11, oob acc: 71.43%, # of SNPs: 8, # of haplo: 22 === building individual classifier 7, out-of-bag (14/41.2%) === [7] 2023-10-16 03:01:11, oob acc: 71.43%, # of SNPs: 14, # of haplo: 53 === building individual classifier 8, out-of-bag (11/32.4%) === [8] 2023-10-16 03:01:11, oob acc: 86.36%, # of SNPs: 14, # of haplo: 40 === building individual classifier 9, out-of-bag (14/41.2%) === [9] 2023-10-16 03:01:11, oob acc: 100.00%, # of SNPs: 16, # of haplo: 56 === building individual classifier 10, out-of-bag (13/38.2%) === [10] 2023-10-16 03:01:11, oob acc: 88.46%, # of SNPs: 14, # of haplo: 34 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 0.0003282346 0.0003687353 0.0007332412 0.0038570393 0.0073528147 0.0148594626 Max. Mean SD 0.3073781820 0.0225078064 0.0573939534 Accuracy with training data: 98.53% Out-of-bag accuracy: 84.64% Gene: HLA-DQB1 Training dataset: 34 samples X 350 SNPs # of HLA alleles: 12 # of individual classifiers: 10 total # of SNPs used: 99 avg. # of SNPs in an individual classifier: 14.30 (sd: 4.45, min: 8, max: 22, median: 14.00) avg. # of haplotypes in an individual classifier: 41.60 (sd: 17.55, min: 17, max: 78, median: 40.00) avg. out-of-bag accuracy: 84.64% (sd: 9.41%, min: 71.43%, max: 100.00%, median: 86.36%) Matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 0.0003282346 0.0003687353 0.0007332412 0.0038570393 0.0073528147 0.0148594626 Max. Mean SD 0.3073781820 0.0225078064 0.0573939534 Genome assembly: hg19 HIBAG model for HLA-DQB1: 10 individual classifiers 350 SNPs 12 unique HLA alleles: 02:01, 02:02, 03:01, ... Prediction: based on the averaged posterior probabilities Model assembly: hg19, SNP assembly: hg19 Matching the SNPs between the model and the test data: match.type="--" missing SNPs # Position 0 (0.0%) *being used [1] Pos+Allele 0 (0.0%) [2] RefSNP+Position 0 (0.0%) RefSNP 0 (0.0%) [1]: useful if ambiguous strands on array-based platforms [2]: suggested if the model and test data have been matched to the same reference genome Model platform: not applicable No allelic strand or A/B allele is flipped. # of samples: 26 CPU flags: 64-bit, AVX512BW # of threads: 1 Predicting (2023-10-16 03:01:11) 0% Predicting (2023-10-16 03:01:11) 100% Gene: HLA-DQB1 Range: [32627241bp, 32634466bp] on hg19 # of samples: 26 # of unique HLA alleles: 10 # of unique HLA genotypes: 17 Posterior probability: [0,0.25) [0.25,0.5) [0.5,0.75) [0.75,1] 3 (11.5%) 7 (26.9%) 5 (19.2%) 11 (42.3%) Matching proportion of SNP haplotype: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0000000 0.0002253 0.0018486 0.0308488 0.0099906 0.4023552 total.num.ind crt.num.ind crt.num.haplo acc.ind acc.haplo call.threshold 1 26 21 46 0.8076923 0.8846154 0 n.call call.rate 1 26 1 Build a HIBAG model with 10 individual classifiers: MAF threshold: NaN excluding 5 monomorphic SNPs # of SNPs randomly sampled as candidates for each selection: 18 # of SNPs: 322 # of samples: 35 # of unique HLA alleles: 20 CPU flags: 64-bit, AVX512BW # of threads: 1 [-] 2023-10-16 03:01:11 === building individual classifier 1, out-of-bag (15/42.9%) === [1] 2023-10-16 03:01:12, oob acc: 70.00%, # of SNPs: 17, # of haplo: 77 === building individual classifier 2, out-of-bag (16/45.7%) === [2] 2023-10-16 03:01:12, oob acc: 56.25%, # of SNPs: 19, # of haplo: 92 === building individual classifier 3, out-of-bag (15/42.9%) === [3] 2023-10-16 03:01:12, oob acc: 70.00%, # of SNPs: 11, # of haplo: 32 === building individual classifier 4, out-of-bag (15/42.9%) === [4] 2023-10-16 03:01:12, oob acc: 73.33%, # of SNPs: 20, # of haplo: 138 === building individual classifier 5, out-of-bag (14/40.0%) === [5] 2023-10-16 03:01:12, oob acc: 75.00%, # of SNPs: 17, # of haplo: 73 === building individual classifier 6, out-of-bag (12/34.3%) === [6] 2023-10-16 03:01:13, oob acc: 66.67%, # of SNPs: 20, # of haplo: 154 === building individual classifier 7, out-of-bag (11/31.4%) === [7] 2023-10-16 03:01:13, oob acc: 63.64%, # of SNPs: 15, # of haplo: 38 === building individual classifier 8, out-of-bag (11/31.4%) === [8] 2023-10-16 03:01:13, oob acc: 68.18%, # of SNPs: 19, # of haplo: 115 === building individual classifier 9, out-of-bag (12/34.3%) === [9] 2023-10-16 03:01:13, oob acc: 83.33%, # of SNPs: 21, # of haplo: 141 === building individual classifier 10, out-of-bag (11/31.4%) === [10] 2023-10-16 03:01:13, oob acc: 81.82%, # of SNPs: 15, # of haplo: 89 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 5.613590e-05 7.650057e-05 2.597826e-04 1.561236e-03 3.938807e-03 8.196339e-03 Max. Mean SD 4.747113e-01 4.329295e-02 1.276469e-01 Accuracy with training data: 92.86% Out-of-bag accuracy: 70.82% Gene: HLA-DRB1 Training dataset: 35 samples X 322 SNPs # of HLA alleles: 20 # of individual classifiers: 10 total # of SNPs used: 119 avg. # of SNPs in an individual classifier: 17.40 (sd: 3.06, min: 11, max: 21, median: 18.00) avg. # of haplotypes in an individual classifier: 94.90 (sd: 42.05, min: 32, max: 154, median: 90.50) avg. out-of-bag accuracy: 70.82% (sd: 8.10%, min: 56.25%, max: 83.33%, median: 70.00%) Matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 5.613590e-05 7.650057e-05 2.597826e-04 1.561236e-03 3.938807e-03 8.196339e-03 Max. Mean SD 4.747113e-01 4.329295e-02 1.276469e-01 Genome assembly: hg19 HIBAG model for HLA-DRB1: 10 individual classifiers 322 SNPs 20 unique HLA alleles: 01:01, 01:03, 03:01, ... Prediction: based on the averaged posterior probabilities Model assembly: hg19, SNP assembly: hg19 Matching the SNPs between the model and the test data: match.type="--" missing SNPs # Position 0 (0.0%) *being used [1] Pos+Allele 0 (0.0%) [2] RefSNP+Position 0 (0.0%) RefSNP 0 (0.0%) [1]: useful if ambiguous strands on array-based platforms [2]: suggested if the model and test data have been matched to the same reference genome Model platform: not applicable No allelic strand or A/B allele is flipped. # of samples: 25 CPU flags: 64-bit, AVX512BW # of threads: 1 Predicting (2023-10-16 03:01:13) 0% Predicting (2023-10-16 03:01:13) 100% Gene: HLA-DRB1 Range: [32546546bp, 32557613bp] on hg19 # of samples: 25 # of unique HLA alleles: 11 # of unique HLA genotypes: 18 Posterior probability: [0,0.25) [0.25,0.5) [0.5,0.75) [0.75,1] 5 (20.0%) 3 (12.0%) 11 (44.0%) 6 (24.0%) Matching proportion of SNP haplotype: Min. 1st Qu. Median Mean 3rd Qu. Max. 3.062e-05 3.538e-04 2.041e-03 7.954e-03 3.179e-03 1.275e-01 total.num.ind crt.num.ind crt.num.haplo acc.ind acc.haplo call.threshold 1 25 16 40 0.64 0.8 0 n.call call.rate 1 25 1 > > > > ############################################################# > > { + function.list <- readRDS( + system.file("Meta", "Rd.rds", package="HIBAG"))$Name + + sapply(function.list, FUN = function(func.name) + { + args <- list( + topic = func.name, + package = "HIBAG", + echo = FALSE, + verbose = FALSE, + ask = FALSE + ) + suppressWarnings(do.call(example, args)) + NULL + }) + invisible() + } SNP genotypes: 60 samples X 1564 SNPs SNPs range from 25769023bp to 33421576bp on hg19 Missing rate per SNP: min: 0, max: 0.0666667, mean: 0.0651215, median: 0.0666667, sd: 0.00968287 Missing rate per sample: min: 0, max: 0.969949, mean: 0.0651215, median: 0.000639386, sd: 0.243737 Minor allele frequency: min: 0, max: 0.5, mean: 0.227582, median: 0.205357, sd: 0.1389 Allelic information: A/G C/T G/T A/C 655 632 141 136 Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 34 # of unique HLA alleles: 14 # of unique HLA genotypes: 23 Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 26 # of unique HLA alleles: 12 # of unique HLA genotypes: 14 Build a HIBAG model with 4 individual classifiers: MAF threshold: NaN excluding 11 monomorphic SNPs # of SNPs randomly sampled as candidates for each selection: 17 # of SNPs: 264 # of samples: 34 # of unique HLA alleles: 14 CPU flags: 64-bit, AVX512BW # of threads: 1 [-] 2023-10-16 03:01:13 === building individual classifier 1, out-of-bag (11/32.4%) === 1, SNP: 211, loss: 196.4, oob acc: 54.55%, # of haplo: 13 2, SNP: 66, loss: 173.548, oob acc: 63.64%, # of haplo: 13 3, SNP: 177, loss: 136.352, oob acc: 68.18%, # of haplo: 13 4, SNP: 108, loss: 95.8359, oob acc: 72.73%, # of haplo: 13 5, SNP: 127, loss: 67.3216, oob acc: 77.27%, # of haplo: 13 6, SNP: 95, loss: 47.5888, oob acc: 77.27%, # of haplo: 13 7, SNP: 33, loss: 37.2631, oob acc: 77.27%, # of haplo: 16 8, SNP: 6, loss: 29.7419, oob acc: 77.27%, # of haplo: 18 9, SNP: 208, loss: 25.6913, oob acc: 77.27%, # of haplo: 19 10, SNP: 225, loss: 25.3087, oob acc: 77.27%, # of haplo: 21 11, SNP: 11, loss: 24.8356, oob acc: 77.27%, # of haplo: 23 12, SNP: 151, loss: 19.4134, oob acc: 77.27%, # of haplo: 23 13, SNP: 199, loss: 17.011, oob acc: 77.27%, # of haplo: 23 [1] 2023-10-16 03:01:13, oob acc: 77.27%, # of SNPs: 13, # of haplo: 23 === building individual classifier 2, out-of-bag (13/38.2%) === 1, SNP: 160, loss: 221.236, oob acc: 76.92%, # of haplo: 17 2, SNP: 145, loss: 173.538, oob acc: 80.77%, # of haplo: 23 3, SNP: 177, loss: 128.58, oob acc: 84.62%, # of haplo: 31 4, SNP: 111, loss: 79.6877, oob acc: 84.62%, # of haplo: 31 5, SNP: 207, loss: 52.5557, oob acc: 88.46%, # of haplo: 32 6, SNP: 245, loss: 41.8731, oob acc: 88.46%, # of haplo: 34 7, SNP: 230, loss: 31.7937, oob acc: 88.46%, # of haplo: 38 8, SNP: 151, loss: 20.4566, oob acc: 88.46%, # of haplo: 36 9, SNP: 14, loss: 19.5805, oob acc: 88.46%, # of haplo: 42 10, SNP: 132, loss: 19.5101, oob acc: 88.46%, # of haplo: 42 11, SNP: 221, loss: 19.485, oob acc: 88.46%, # of haplo: 44 12, SNP: 251, loss: 18.5695, oob acc: 88.46%, # of haplo: 48 [2] 2023-10-16 03:01:13, oob acc: 88.46%, # of SNPs: 12, # of haplo: 48 === building individual classifier 3, out-of-bag (14/41.2%) === 1, SNP: 191, loss: 193.067, oob acc: 57.14%, # of haplo: 11 2, SNP: 264, loss: 150.427, oob acc: 64.29%, # of haplo: 12 3, SNP: 132, loss: 93.4067, oob acc: 67.86%, # of haplo: 12 4, SNP: 128, loss: 39.8353, oob acc: 71.43%, # of haplo: 12 5, SNP: 160, loss: 28.2998, oob acc: 75.00%, # of haplo: 12 6, SNP: 144, loss: 13.635, oob acc: 75.00%, # of haplo: 12 7, SNP: 111, loss: 6.04609, oob acc: 75.00%, # of haplo: 12 8, SNP: 40, loss: 6.04583, oob acc: 82.14%, # of haplo: 14 9, SNP: 141, loss: 6.04583, oob acc: 85.71%, # of haplo: 14 10, SNP: 73, loss: 2.9038, oob acc: 85.71%, # of haplo: 14 11, SNP: 199, loss: 2.20025, oob acc: 85.71%, # of haplo: 14 [3] 2023-10-16 03:01:14, oob acc: 85.71%, # of SNPs: 11, # of haplo: 14 === building individual classifier 4, out-of-bag (10/29.4%) === 1, SNP: 147, loss: 158.631, oob acc: 50.00%, # of haplo: 12 2, SNP: 152, loss: 140.375, oob acc: 55.00%, # of haplo: 13 3, SNP: 78, loss: 115.887, oob acc: 60.00%, # of haplo: 16 4, SNP: 115, loss: 77.8082, oob acc: 60.00%, # of haplo: 18 5, SNP: 148, loss: 62.6831, oob acc: 65.00%, # of haplo: 18 6, SNP: 13, loss: 46.5657, oob acc: 75.00%, # of haplo: 20 7, SNP: 109, loss: 31.0312, oob acc: 75.00%, # of haplo: 20 8, SNP: 176, loss: 22.5073, oob acc: 75.00%, # of haplo: 21 9, SNP: 145, loss: 20.9122, oob acc: 75.00%, # of haplo: 21 10, SNP: 128, loss: 20.6728, oob acc: 75.00%, # of haplo: 21 11, SNP: 73, loss: 14.6217, oob acc: 75.00%, # of haplo: 22 12, SNP: 151, loss: 10.2879, oob acc: 75.00%, # of haplo: 23 13, SNP: 199, loss: 8.74645, oob acc: 75.00%, # of haplo: 23 [4] 2023-10-16 03:01:14, oob acc: 75.00%, # of SNPs: 13, # of haplo: 23 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 0.0002162725 0.0002198443 0.0002519909 0.0043752063 0.0092453043 0.0265291653 Max. Mean SD 0.4711415503 0.0442439721 0.1054645240 Accuracy with training data: 97.06% Out-of-bag accuracy: 81.61% Gene: HLA-A Training dataset: 34 samples X 264 SNPs # of HLA alleles: 14 # of individual classifiers: 4 total # of SNPs used: 38 avg. # of SNPs in an individual classifier: 12.25 (sd: 0.96, min: 11, max: 13, median: 12.50) avg. # of haplotypes in an individual classifier: 27.00 (sd: 14.63, min: 14, max: 48, median: 23.00) avg. out-of-bag accuracy: 81.61% (sd: 6.49%, min: 75.00%, max: 88.46%, median: 81.49%) Matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 0.0002162725 0.0002198443 0.0002519909 0.0043752063 0.0092453043 0.0265291653 Max. Mean SD 0.4711415503 0.0442439721 0.1054645240 Genome assembly: hg19 HIBAG model for HLA-A: 4 individual classifiers 264 SNPs 14 unique HLA alleles: 01:01, 02:01, 02:06, ... Prediction: based on the averaged posterior probabilities Model assembly: hg19, SNP assembly: hg19 Matching the SNPs between the model and the test data: match.type="--" missing SNPs # Position 0 (0.0%) *being used [1] Pos+Allele 0 (0.0%) [2] RefSNP+Position 0 (0.0%) RefSNP 0 (0.0%) [1]: useful if ambiguous strands on array-based platforms [2]: suggested if the model and test data have been matched to the same reference genome Model platform: not applicable No allelic strand or A/B allele is flipped. # of samples: 26 CPU flags: 64-bit, AVX512BW # of threads: 1 Predicting (2023-10-16 03:01:14) 0% Predicting (2023-10-16 03:01:14) 100% Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 26 # of unique HLA alleles: 11 # of unique HLA genotypes: 14 Posterior probability: [0,0.25) [0.25,0.5) [0.5,0.75) [0.75,1] 1 (3.8%) 4 (15.4%) 4 (15.4%) 17 (65.4%) Matching proportion of SNP haplotype: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.000000 0.002097 0.007711 0.032190 0.028032 0.471142 Dosages: $dosage - num [1:14, 1:26] 2.50e-01 2.16e-04 2.50e-06 7.31e-01 1.11e-14 ... - attr(*, "dimnames")=List of 2 ..$ : chr [1:14] "01:01" "02:01" "02:06" "03:01" ... ..$ : chr [1:26] "NA11881" "NA11992" "NA11994" "NA12249" ... HIBAG model for HLA-A: 4 individual classifiers 264 SNPs 14 unique HLA alleles: 01:01, 02:01, 02:06, ... Prediction: based on the averaged posterior probabilities Model assembly: hg19, SNP assembly: hg19 Matching the SNPs between the model and the test data: match.type="--" missing SNPs # Position 0 (0.0%) *being used [1] Pos+Allele 0 (0.0%) [2] RefSNP+Position 0 (0.0%) RefSNP 0 (0.0%) [1]: useful if ambiguous strands on array-based platforms [2]: suggested if the model and test data have been matched to the same reference genome Model platform: not applicable No allelic strand or A/B allele is flipped. # of samples: 26 CPU flags: 64-bit, AVX512BW # of threads: 1 Predicting (2023-10-16 03:01:14) 0% Predicting (2023-10-16 03:01:14) 100% Open 'F:/biocbuild/bbs-3.17-bioc/R/library/HIBAG/extdata/HapMap_CEU.bed' (the individual-major mode) Open 'F:/biocbuild/bbs-3.17-bioc/R/library/HIBAG/extdata/HapMap_CEU.fam' Open 'F:/biocbuild/bbs-3.17-bioc/R/library/HIBAG/extdata/HapMap_CEU.bim' Import 3932 SNPs within the xMHC region on chromosome 6 HIBAG model for HLA-A: 4 individual classifiers 264 SNPs 14 unique HLA alleles: 01:01, 02:01, 02:06, ... Prediction: based on the averaged posterior probabilities Model assembly: hg19, SNP assembly: hg19 Matching the SNPs between the model and the test data: match.type="--" missing SNPs # Position 0 (0.0%) *being used [1] Pos+Allele 0 (0.0%) [2] RefSNP+Position 0 (0.0%) RefSNP 0 (0.0%) [1]: useful if ambiguous strands on array-based platforms [2]: suggested if the model and test data have been matched to the same reference genome Model platform: not applicable No allelic strand or A/B allele is flipped. # of samples: 90 CPU flags: 64-bit, AVX512BW # of threads: 1 Predicting (2023-10-16 03:01:14) 0% Predicting (2023-10-16 03:01:14) 100% Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 60 # of unique HLA alleles: 14 # of unique HLA genotypes: 29 using the default genome assembly (assembly="hg19") Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 60 # of unique HLA alleles: 14 # of unique HLA genotypes: 29 Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 60 # of unique HLA alleles: 12 # of unique HLA genotypes: 28 Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 60 # of unique HLA alleles: 14 # of unique HLA genotypes: 29 Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 100 # of unique HLA alleles: 14 # of unique HLA genotypes: 29 Build a HIBAG model with 2 individual classifiers: MAF threshold: NaN excluding 32 monomorphic SNPs # of SNPs randomly sampled as candidates for each selection: 40 # of SNPs: 1532 # of samples: 60 # of unique HLA alleles: 14 CPU flags: 64-bit, AVX512BW # of threads: 1 [-] 2023-10-16 03:01:14 === building individual classifier 1, out-of-bag (23/38.3%) === [1] 2023-10-16 03:01:15, oob acc: 78.26%, # of SNPs: 18, # of haplo: 90 === building individual classifier 2, out-of-bag (23/38.3%) === [2] 2023-10-16 03:01:15, oob acc: 95.65%, # of SNPs: 27, # of haplo: 97 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 7.799523e-15 7.953970e-15 9.343990e-15 1.231675e-04 6.160649e-04 2.017820e-03 Max. Mean SD 1.865571e-01 9.016315e-03 3.172989e-02 Accuracy with training data: 98.33% Out-of-bag accuracy: 86.96% Gene: HLA-A Training dataset: 60 samples X 1532 SNPs # of HLA alleles: 14 # of individual classifiers: 2 total # of SNPs used: 43 avg. # of SNPs in an individual classifier: 22.50 (sd: 6.36, min: 18, max: 27, median: 22.50) avg. # of haplotypes in an individual classifier: 93.50 (sd: 4.95, min: 90, max: 97, median: 93.50) avg. out-of-bag accuracy: 86.96% (sd: 12.30%, min: 78.26%, max: 95.65%, median: 86.96%) Matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 7.799523e-15 7.953970e-15 9.343990e-15 1.231675e-04 6.160649e-04 2.017820e-03 Max. Mean SD 1.865571e-01 9.016315e-03 3.172989e-02 Genome assembly: hg19 HIBAG model for HLA-A: 2 individual classifiers 1532 SNPs 14 unique HLA alleles: 01:01, 02:01, 02:06, ... Prediction: based on the averaged posterior probabilities Model assembly: hg19, SNP assembly: hg19 Matching the SNPs between the model and the test data: match.type="--" missing SNPs # Position 0 (0.0%) *being used [1] Pos+Allele 0 (0.0%) [2] RefSNP+Position 0 (0.0%) RefSNP 0 (0.0%) [1]: useful if ambiguous strands on array-based platforms [2]: suggested if the model and test data have been matched to the same reference genome Model platform: not applicable No allelic strand or A/B allele is flipped. # of samples: 60 CPU flags: 64-bit, AVX512BW # of threads: 1 Predicting (2023-10-16 03:01:15) 0% Predicting (2023-10-16 03:01:15) 100% Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 60 # of unique HLA alleles: 13 # of unique HLA genotypes: 28 Posterior probability: [0,0.25) [0.25,0.5) [0.5,0.75) [0.75,1] 2 (3.3%) 7 (11.7%) 5 (8.3%) 46 (76.7%) Matching proportion of SNP haplotype: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0000000 0.0001232 0.0006161 0.0090163 0.0020178 0.1865571 Dosages: $dosage - num [1:14, 1:60] 1.0 3.2e-01 2.0e-12 9.2e-15 1.8e-01 ... - attr(*, "dimnames")=List of 2 ..$ : chr [1:14] "01:01" "02:01" "02:06" "03:01" ... ..$ : chr [1:60] "NA11882" "NA11881" "NA11993" "NA11992" ... Convert to dosage VCF format: # of samples: 4 output: <connection> ##fileformat=VCFv4.0 ##fileDate=20231016 ##source=HIBAG_v1.36.4 ##reference=hg19 ##contig=<ID=6,length=171115067> ##FILTER=<ID=PASS,Description="All filters passed"> ##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype"> ##FORMAT=<ID=DS,Number=1,Type=Float,Description="Dosage of HLA allele"> #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA11882 NA11881 NA11993 NA11992 # of unique HLA-A alleles: 5 [ 01:01,02:01,03:01,26:01,29:02 ] 6 29911954 HLA-A*01:01 A P_0101 . PASS . GT:DS 1/0:9.9998e-01 0/0:2.4401e-15 0/0:1.0000e-15 1/0:1.0000e+00 6 29911954 HLA-A*02:01 A P_0201 . PASS . GT:DS 0/0:3.1975e-01 0/0:2.5339e-06 0/0:4.2766e-01 0/1:1.0000e+00 6 29911954 HLA-A*03:01 A P_0301 . PASS . GT:DS 0/0:9.1998e-15 1/0:1.0000e+00 0/0:7.2339e-02 0/0:1.6412e-25 6 29911954 HLA-A*26:01 A P_2601 . PASS . GT:DS 0/0:1.9985e-12 0/1:7.5000e-01 1/0:5.4276e-01 0/0:8.4434e-13 6 29911954 HLA-A*29:02 A P_2902 . PASS . GT:DS 0/1:5.0000e-01 0/0:2.5000e-21 0/1:5.0000e-01 0/0:3.1934e-26 dominant model: [-/-] [-/h,h/h] %.[-/-] %.[-/h,h/h] chisq.st chisq.p fisher.p 24:02 49 11 42.9 81.8 4.0074 0.045* 0.042* ----- 01:01 36 24 50.0 50.0 0.0000 1.000 1.000 02:01 25 35 52.0 48.6 0.0000 1.000 1.000 02:06 59 1 50.8 0.0 0.0000 1.000 1.000 03:01 51 9 49.0 55.6 0.0000 1.000 1.000 11:01 55 5 50.9 40.0 0.0000 1.000 1.000 23:01 58 2 50.0 50.0 0.0000 1.000 1.000 24:03 59 1 50.8 0.0 0.0000 1.000 1.000 25:01 55 5 52.7 20.0 0.8727 0.350 0.353 26:01 57 3 52.6 0.0 1.4035 0.236 0.237 29:02 56 4 51.8 25.0 0.2679 0.605 0.612 31:01 57 3 49.1 66.7 0.0000 1.000 1.000 32:01 56 4 46.4 100.0 2.4107 0.121 0.112 68:01 57 3 52.6 0.0 1.4035 0.236 0.237 additive model: [-] [h] %.[-] %.[h] chisq.st chisq.p fisher.p 01:01 95 25 50.5 48.0 0.0000 1.000 1.000 02:01 77 43 48.1 53.5 0.1450 0.703 0.704 02:06 119 1 50.4 0.0 0.0000 1.000 1.000 03:01 111 9 49.5 55.6 0.0000 1.000 1.000 11:01 115 5 50.4 40.0 0.0000 1.000 1.000 23:01 117 3 50.4 33.3 0.0000 1.000 1.000 24:02 109 11 46.8 81.8 3.6030 0.058 0.053 24:03 119 1 50.4 0.0 0.0000 1.000 1.000 25:01 115 5 51.3 20.0 0.8348 0.361 0.364 26:01 117 3 51.3 0.0 1.3675 0.242 0.244 29:02 116 4 50.9 25.0 0.2586 0.611 0.619 31:01 117 3 49.6 66.7 0.0000 1.000 1.000 32:01 116 4 48.3 100.0 2.3276 0.127 0.119 68:01 117 3 51.3 0.0 1.3675 0.242 0.244 recessive model: [-/-,-/h] [h/h] %.[-/-,-/h] %.[h/h] chisq.st chisq.p fisher.p 01:01 59 1 50.8 0 0.000 1.000 1.000 02:01 52 8 46.2 75 1.298 0.255 0.254 02:06 60 0 50.0 . . . . 03:01 60 0 50.0 . . . . 11:01 60 0 50.0 . . . . 23:01 59 1 50.8 0 0.000 1.000 1.000 24:02 60 0 50.0 . . . . 24:03 60 0 50.0 . . . . 25:01 60 0 50.0 . . . . 26:01 60 0 50.0 . . . . 29:02 60 0 50.0 . . . . 31:01 60 0 50.0 . . . . 32:01 60 0 50.0 . . . . 68:01 60 0 50.0 . . . . genotype model: [-/-] [-/h] [h/h] %.[-/-] %.[-/h] %.[h/h] chisq.st chisq.p fisher.p 24:02 49 11 0 42.9 81.8 . 4.0074 0.045* 0.042* ----- 01:01 36 23 1 50.0 52.2 0 1.0435 0.593 1.000 02:01 25 27 8 52.0 40.7 75 2.9659 0.227 0.271 02:06 59 1 0 50.8 0.0 . 0.0000 1.000 1.000 03:01 51 9 0 49.0 55.6 . 0.0000 1.000 1.000 11:01 55 5 0 50.9 40.0 . 0.0000 1.000 1.000 23:01 58 1 1 50.0 100.0 0 2.0000 0.368 1.000 24:03 59 1 0 50.8 0.0 . 0.0000 1.000 1.000 25:01 55 5 0 52.7 20.0 . 0.8727 0.350 0.353 26:01 57 3 0 52.6 0.0 . 1.4035 0.236 0.237 29:02 56 4 0 51.8 25.0 . 0.2679 0.605 0.612 31:01 57 3 0 49.1 66.7 . 0.0000 1.000 1.000 32:01 56 4 0 46.4 100.0 . 2.4107 0.121 0.112 68:01 57 3 0 52.6 0.0 . 1.4035 0.236 0.237 dominant model: [-/-] [-/h,h/h] avg.[-/-] avg.[-/h,h/h] ttest.p 01:01 36 24 -0.14684 -0.117427 0.909 02:01 25 35 -0.32331 -0.000618 0.190 02:06 59 1 -0.14024 0.170057 . 03:01 51 9 -0.05600 -0.583178 0.147 11:01 55 5 -0.19188 0.489815 0.287 23:01 58 2 -0.15400 0.413687 0.281 24:02 49 11 -0.10486 -0.269664 0.537 24:03 59 1 -0.11409 -1.373118 . 25:01 55 5 -0.12237 -0.274749 0.742 26:01 57 3 -0.12473 -0.331558 0.690 29:02 56 4 -0.13044 -0.199941 0.789 31:01 57 3 -0.10097 -0.783003 0.607 32:01 56 4 -0.07702 -0.947791 0.092 68:01 57 3 -0.16915 0.512457 0.196 genotype model: [-/-] [-/h] [h/h] avg.[-/-] avg.[-/h] avg.[h/h] anova.p 01:01 36 23 1 -0.14684 -0.08833 -0.78655 0.784 02:01 25 27 8 -0.32331 -0.02341 0.07631 0.446 02:06 59 1 0 -0.14024 0.17006 . 0.756 03:01 51 9 0 -0.05600 -0.58318 . 0.138 11:01 55 5 0 -0.19188 0.48981 . 0.137 23:01 58 1 1 -0.15400 0.10762 0.71975 0.663 24:02 49 11 0 -0.10486 -0.26966 . 0.618 24:03 59 1 0 -0.11409 -1.37312 . 0.205 25:01 55 5 0 -0.12237 -0.27475 . 0.742 26:01 57 3 0 -0.12473 -0.33156 . 0.725 29:02 56 4 0 -0.13044 -0.19994 . 0.892 31:01 57 3 0 -0.10097 -0.78300 . 0.243 32:01 56 4 0 -0.07702 -0.94779 . 0.086 68:01 57 3 0 -0.16915 0.51246 . 0.243 Logistic regression (dominant model) with 60 individuals: glm(case ~ h, family = binomial, data = data) [-/-] [-/h,h/h] %.[-/-] %.[-/h,h/h] chisq.st chisq.p fisher.p h.est 24:02 49 11 42.9 81.8 4.0074 0.045* 0.042* 1.792e+00 ----- 01:01 36 24 50.0 50.0 0.0000 1.000 1.000 -9.362e-16 02:01 25 35 52.0 48.6 0.0000 1.000 1.000 -1.372e-01 02:06 59 1 50.8 0.0 0.0000 1.000 1.000 -1.560e+01 03:01 51 9 49.0 55.6 0.0000 1.000 1.000 2.624e-01 11:01 55 5 50.9 40.0 0.0000 1.000 1.000 -4.418e-01 23:01 58 2 50.0 50.0 0.0000 1.000 1.000 2.874e-15 24:03 59 1 50.8 0.0 0.0000 1.000 1.000 -1.560e+01 25:01 55 5 52.7 20.0 0.8727 0.350 0.353 -1.495e+00 26:01 57 3 52.6 0.0 1.4035 0.236 0.237 -1.667e+01 29:02 56 4 51.8 25.0 0.2679 0.605 0.612 -1.170e+00 31:01 57 3 49.1 66.7 0.0000 1.000 1.000 7.282e-01 32:01 56 4 46.4 100.0 2.4107 0.121 0.112 1.771e+01 68:01 57 3 52.6 0.0 1.4035 0.236 0.237 -1.667e+01 h.2.5% h.97.5% h.pval 24:02 0.1585 3.4251 0.032* ----- 01:01 -1.0330 1.0330 1.000 02:01 -1.1643 0.8899 0.793 02:06 -2868.1268 2836.9268 0.991 03:01 -1.1624 1.6872 0.718 11:01 -2.3074 1.4237 0.643 23:01 -2.8192 2.8192 1.000 24:03 -2868.1268 2836.9268 0.991 25:01 -3.7498 0.7588 0.194 26:01 -2731.9621 2698.6192 0.990 29:02 -3.4931 1.1530 0.324 31:01 -1.7277 3.1842 0.561 32:01 -3859.2763 3894.6947 0.993 68:01 -2731.9621 2698.6192 0.990 Logistic regression (dominant model) with 60 individuals: glm(case ~ h + pc1, family = binomial, data = data) [-/-] [-/h,h/h] %.[-/-] %.[-/h,h/h] chisq.st chisq.p fisher.p h.est 24:02 49 11 42.9 81.8 4.0074 0.045* 0.042* 1.793e+00 ----- 01:01 36 24 50.0 50.0 0.0000 1.000 1.000 -2.268e-04 02:01 25 35 52.0 48.6 0.0000 1.000 1.000 -1.370e-01 02:06 59 1 50.8 0.0 0.0000 1.000 1.000 -1.562e+01 03:01 51 9 49.0 55.6 0.0000 1.000 1.000 2.686e-01 11:01 55 5 50.9 40.0 0.0000 1.000 1.000 -4.451e-01 23:01 58 2 50.0 50.0 0.0000 1.000 1.000 -3.062e-03 24:03 59 1 50.8 0.0 0.0000 1.000 1.000 -1.560e+01 25:01 55 5 52.7 20.0 0.8727 0.350 0.353 -1.501e+00 26:01 57 3 52.6 0.0 1.4035 0.236 0.237 -1.667e+01 29:02 56 4 51.8 25.0 0.2679 0.605 0.612 -1.189e+00 31:01 57 3 49.1 66.7 0.0000 1.000 1.000 7.289e-01 32:01 56 4 46.4 100.0 2.4107 0.121 0.112 1.781e+01 68:01 57 3 52.6 0.0 1.4035 0.236 0.237 -1.673e+01 h.2.5% h.97.5% h.pval pc1.est pc1.2.5% pc1.97.5% pc1.pval 24:02 0.1587 3.4264 0.032* 0.011111 -0.5249 0.5471 0.968 ----- 01:01 -1.0334 1.0330 1.000 -0.005807 -0.5126 0.5010 0.982 02:01 -1.1652 0.8913 0.794 -0.002618 -0.5102 0.5049 0.992 02:06 -2868.1460 2836.9076 0.991 -0.028534 -0.5374 0.4803 0.912 03:01 -1.1813 1.7185 0.717 0.011958 -0.5044 0.5283 0.964 11:01 -2.3225 1.4322 0.642 0.008025 -0.5026 0.5186 0.975 23:01 -2.8348 2.8287 0.998 -0.005857 -0.5148 0.5031 0.982 24:03 -2868.1286 2836.9250 0.991 -0.011249 -0.5182 0.4957 0.965 25:01 -3.7579 0.7568 0.193 -0.025685 -0.5490 0.4976 0.923 26:01 -2731.8901 2698.5450 0.990 -0.014069 -0.5297 0.5015 0.957 29:02 -3.5309 1.1526 0.320 0.033234 -0.4796 0.5461 0.899 31:01 -1.7274 3.1851 0.561 -0.008320 -0.5153 0.4987 0.974 32:01 -3845.6317 3881.2510 0.993 -0.125426 -0.6671 0.4162 0.650 68:01 -2721.2124 2687.7497 0.990 -0.086589 -0.6512 0.4781 0.764 Logistic regression (dominant model) with 60 individuals: glm(case ~ h + pc1, family = binomial, data = data) [-/-] [-/h,h/h] %.[-/-] %.[-/h,h/h] chisq.st chisq.p fisher.p h.est_OR 24:02 49 11 42.9 81.8 4.0074 0.045* 0.042* 6.005e+00 ----- 01:01 36 24 50.0 50.0 0.0000 1.000 1.000 9.998e-01 02:01 25 35 52.0 48.6 0.0000 1.000 1.000 8.720e-01 02:06 59 1 50.8 0.0 0.0000 1.000 1.000 1.647e-07 03:01 51 9 49.0 55.6 0.0000 1.000 1.000 1.308e+00 11:01 55 5 50.9 40.0 0.0000 1.000 1.000 6.407e-01 23:01 58 2 50.0 50.0 0.0000 1.000 1.000 9.969e-01 24:03 59 1 50.8 0.0 0.0000 1.000 1.000 1.676e-07 25:01 55 5 52.7 20.0 0.8727 0.350 0.353 2.230e-01 26:01 57 3 52.6 0.0 1.4035 0.236 0.237 5.744e-08 29:02 56 4 51.8 25.0 0.2679 0.605 0.612 3.045e-01 31:01 57 3 49.1 66.7 0.0000 1.000 1.000 2.073e+00 32:01 56 4 46.4 100.0 2.4107 0.121 0.112 5.428e+07 68:01 57 3 52.6 0.0 1.4035 0.236 0.237 5.416e-08 h.2.5%_OR h.97.5%_OR h.pval pc1.est pc1.2.5% pc1.97.5% pc1.pval 24:02 1.17200 30.766 0.032* 0.011111 -0.5249 0.5471 0.968 ----- 01:01 0.35579 2.809 1.000 -0.005807 -0.5126 0.5010 0.982 02:01 0.31185 2.438 0.794 -0.002618 -0.5102 0.5049 0.992 02:06 0.00000 Inf 0.991 -0.028534 -0.5374 0.4803 0.912 03:01 0.30687 5.576 0.717 0.011958 -0.5044 0.5283 0.964 11:01 0.09803 4.188 0.642 0.008025 -0.5026 0.5186 0.975 23:01 0.05873 16.923 0.998 -0.005857 -0.5148 0.5031 0.982 24:03 0.00000 Inf 0.991 -0.011249 -0.5182 0.4957 0.965 25:01 0.02333 2.131 0.193 -0.025685 -0.5490 0.4976 0.923 26:01 0.00000 Inf 0.990 -0.014069 -0.5297 0.5015 0.957 29:02 0.02928 3.167 0.320 0.033234 -0.4796 0.5461 0.899 31:01 0.17774 24.171 0.561 -0.008320 -0.5153 0.4987 0.974 32:01 0.00000 Inf 0.993 -0.125426 -0.6671 0.4162 0.650 68:01 0.00000 Inf 0.990 -0.086589 -0.6512 0.4781 0.764 Linear regression (dominant model) with 60 individuals: glm(y ~ h, data = data) [-/-] [-/h,h/h] avg.[-/-] avg.[-/h,h/h] ttest.p h.est h.2.5% h.97.5% 01:01 36 24 -0.14684 -0.117427 0.909 0.02941 -0.4805 0.5393 02:01 25 35 -0.32331 -0.000618 0.190 0.32269 -0.1772 0.8226 02:06 59 1 -0.14024 0.170057 . 0.31030 -1.6397 2.2603 03:01 51 9 -0.05600 -0.583178 0.147 -0.52718 -1.2136 0.1592 11:01 55 5 -0.19188 0.489815 0.287 0.68170 -0.2051 1.5685 23:01 58 2 -0.15400 0.413687 0.281 0.56768 -0.8165 1.9518 24:02 49 11 -0.10486 -0.269664 0.537 -0.16481 -0.8091 0.4795 24:03 59 1 -0.11409 -1.373118 . -1.25903 -3.1835 0.6655 25:01 55 5 -0.12237 -0.274749 0.742 -0.15237 -1.0555 0.7507 26:01 57 3 -0.12473 -0.331558 0.690 -0.20683 -1.3519 0.9383 29:02 56 4 -0.13044 -0.199941 0.789 -0.06950 -1.0709 0.9319 31:01 57 3 -0.10097 -0.783003 0.607 -0.68203 -1.8149 0.4508 32:01 56 4 -0.07702 -0.947791 0.092 -0.87077 -1.8470 0.1054 68:01 57 3 -0.16915 0.512457 0.196 0.68161 -0.4512 1.8145 h.pval 01:01 0.910 02:01 0.211 02:06 0.756 03:01 0.138 11:01 0.137 23:01 0.425 24:02 0.618 24:03 0.205 25:01 0.742 26:01 0.725 29:02 0.892 31:01 0.243 32:01 0.086 68:01 0.243 Linear regression (dominant model) with 60 individuals: glm(y ~ h + pc1, data = data) [-/-] [-/h,h/h] avg.[-/-] avg.[-/h,h/h] ttest.p h.est h.2.5% 01:01 36 24 -0.14684 -0.117427 0.909 0.03377 -0.4773 02:01 25 35 -0.32331 -0.000618 0.190 0.31273 -0.1891 02:06 59 1 -0.14024 0.170057 . 0.38821 -1.5722 03:01 51 9 -0.05600 -0.583178 0.147 -0.48613 -1.1884 11:01 55 5 -0.19188 0.489815 0.287 0.64430 -0.2520 23:01 58 2 -0.15400 0.413687 0.281 0.63150 -0.7598 24:02 49 11 -0.10486 -0.269664 0.537 -0.15742 -0.8034 24:03 59 1 -0.11409 -1.373118 . -1.24145 -3.1708 25:01 55 5 -0.12237 -0.274749 0.742 -0.13241 -1.0388 26:01 57 3 -0.12473 -0.331558 0.690 -0.19823 -1.3460 29:02 56 4 -0.13044 -0.199941 0.789 -0.13606 -1.1496 31:01 57 3 -0.10097 -0.783003 0.607 -0.69057 -1.8254 32:01 56 4 -0.07702 -0.947791 0.092 -0.99595 -1.9862 68:01 57 3 -0.16915 0.512457 0.196 0.76795 -0.3749 h.97.5% h.pval pc1.est pc1.2.5% pc1.97.5% pc1.pval 01:01 0.544844 0.897 0.11172 -0.1390 0.3624 0.386 02:01 0.814606 0.227 0.10412 -0.1436 0.3519 0.414 02:06 2.348616 0.699 0.11570 -0.1356 0.3670 0.371 03:01 0.216142 0.180 0.07919 -0.1719 0.3303 0.539 11:01 1.540569 0.164 0.09117 -0.1569 0.3392 0.474 23:01 2.022811 0.377 0.12207 -0.1280 0.3721 0.343 24:02 0.488543 0.635 0.10982 -0.1404 0.3601 0.393 24:03 0.687920 0.212 0.10809 -0.1392 0.3554 0.395 25:01 0.773943 0.776 0.10956 -0.1413 0.3604 0.396 26:01 0.949529 0.736 0.11067 -0.1398 0.3611 0.390 29:02 0.877431 0.793 0.11626 -0.1369 0.3694 0.372 31:01 0.444260 0.238 0.11387 -0.1338 0.3615 0.371 32:01 -0.005739 0.054 0.16001 -0.0873 0.4073 0.210 68:01 1.910822 0.193 0.13482 -0.1146 0.3842 0.294 Linear regression (dominant model) with 60 individuals: glm(y ~ h + pc1, data = data) [-/-] [-/h,h/h] avg.[-/-] avg.[-/h,h/h] ttest.p h.est h.2.5% 01:01 36 24 -0.14684 -0.117427 0.909 0.03377 -0.4773 02:01 25 35 -0.32331 -0.000618 0.190 0.31273 -0.1891 02:06 59 1 -0.14024 0.170057 . 0.38821 -1.5722 03:01 51 9 -0.05600 -0.583178 0.147 -0.48613 -1.1884 11:01 55 5 -0.19188 0.489815 0.287 0.64430 -0.2520 23:01 58 2 -0.15400 0.413687 0.281 0.63150 -0.7598 24:02 49 11 -0.10486 -0.269664 0.537 -0.15742 -0.8034 24:03 59 1 -0.11409 -1.373118 . -1.24145 -3.1708 25:01 55 5 -0.12237 -0.274749 0.742 -0.13241 -1.0388 26:01 57 3 -0.12473 -0.331558 0.690 -0.19823 -1.3460 29:02 56 4 -0.13044 -0.199941 0.789 -0.13606 -1.1496 31:01 57 3 -0.10097 -0.783003 0.607 -0.69057 -1.8254 32:01 56 4 -0.07702 -0.947791 0.092 -0.99595 -1.9862 68:01 57 3 -0.16915 0.512457 0.196 0.76795 -0.3749 h.97.5% h.pval pc1.est pc1.2.5% pc1.97.5% pc1.pval 01:01 0.544844 0.897 0.11172 -0.1390 0.3624 0.386 02:01 0.814606 0.227 0.10412 -0.1436 0.3519 0.414 02:06 2.348616 0.699 0.11570 -0.1356 0.3670 0.371 03:01 0.216142 0.180 0.07919 -0.1719 0.3303 0.539 11:01 1.540569 0.164 0.09117 -0.1569 0.3392 0.474 23:01 2.022811 0.377 0.12207 -0.1280 0.3721 0.343 24:02 0.488543 0.635 0.10982 -0.1404 0.3601 0.393 24:03 0.687920 0.212 0.10809 -0.1392 0.3554 0.395 25:01 0.773943 0.776 0.10956 -0.1413 0.3604 0.396 26:01 0.949529 0.736 0.11067 -0.1398 0.3611 0.390 29:02 0.877431 0.793 0.11626 -0.1369 0.3694 0.372 31:01 0.444260 0.238 0.11387 -0.1338 0.3615 0.371 32:01 -0.005739 0.054 0.16001 -0.0873 0.4073 0.210 68:01 1.910822 0.193 0.13482 -0.1146 0.3842 0.294 Logistic regression (additive model) with 60 individuals: glm(case ~ h, family = binomial, data = data) [-] [h] %.[-] %.[h] chisq.st chisq.p fisher.p h.est h.2.5% 24:02 109 11 46.8 81.8 3.6030 0.058 0.053 1.7918 0.1585 ----- 01:01 95 25 50.5 48.0 0.0000 1.000 1.000 -0.1207 -1.0843 02:01 77 43 48.1 53.5 0.1450 0.703 0.704 0.2137 -0.5289 02:06 119 1 50.4 0.0 0.0000 1.000 1.000 -15.6000 -2868.1268 03:01 111 9 49.5 55.6 0.0000 1.000 1.000 0.2624 -1.1624 11:01 115 5 50.4 40.0 0.0000 1.000 1.000 -0.4418 -2.3074 23:01 117 3 50.4 33.3 0.0000 1.000 1.000 -0.4323 -2.3435 24:03 119 1 50.4 0.0 0.0000 1.000 1.000 -15.6000 -2868.1268 25:01 115 5 51.3 20.0 0.8348 0.361 0.364 -1.4955 -3.7498 26:01 117 3 51.3 0.0 1.3675 0.242 0.244 -16.6714 -2731.9621 29:02 116 4 50.9 25.0 0.2586 0.611 0.619 -1.1701 -3.4931 31:01 117 3 49.6 66.7 0.0000 1.000 1.000 0.7282 -1.7277 32:01 116 4 48.3 100.0 2.3276 0.127 0.119 17.7092 -3859.2763 68:01 117 3 51.3 0.0 1.3675 0.242 0.244 -16.6714 -2731.9621 h.97.5% h.pval 24:02 3.4251 0.032* ----- 01:01 0.8430 0.806 02:01 0.9563 0.573 02:06 2836.9268 0.991 03:01 1.6872 0.718 11:01 1.4237 0.643 23:01 1.4789 0.658 24:03 2836.9268 0.991 25:01 0.7588 0.194 26:01 2698.6192 0.990 29:02 1.1530 0.324 31:01 3.1842 0.561 32:01 3894.6947 0.993 68:01 2698.6192 0.990 Logistic regression (recessive model) with 60 individuals: glm(case ~ h, family = binomial, data = data) [-/-,-/h] [h/h] %.[-/-,-/h] %.[h/h] chisq.st chisq.p fisher.p h.est 01:01 59 1 50.8 0 0.000 1.000 1.000 -15.600 02:01 52 8 46.2 75 1.298 0.255 0.254 1.253 02:06 60 0 50.0 . . . . . 03:01 60 0 50.0 . . . . . 11:01 60 0 50.0 . . . . . 23:01 59 1 50.8 0 0.000 1.000 1.000 -15.600 24:02 60 0 50.0 . . . . . 24:03 60 0 50.0 . . . . . 25:01 60 0 50.0 . . . . . 26:01 60 0 50.0 . . . . . 29:02 60 0 50.0 . . . . . 31:01 60 0 50.0 . . . . . 32:01 60 0 50.0 . . . . . 68:01 60 0 50.0 . . . . . h.2.5% h.97.5% h.pval 01:01 -2868.1268 2836.927 0.991 02:01 -0.4379 2.943 0.146 02:06 . . . 03:01 . . . 11:01 . . . 23:01 -2868.1268 2836.927 0.991 24:02 . . . 24:03 . . . 25:01 . . . 26:01 . . . 29:02 . . . 31:01 . . . 32:01 . . . 68:01 . . . Logistic regression (genotype model) with 60 individuals: glm(case ~ h, family = binomial, data = data) [-/-] [-/h] [h/h] %.[-/-] %.[-/h] %.[h/h] chisq.st chisq.p fisher.p 24:02 49 11 0 42.9 81.8 . 4.0074 0.045* 0.042* ----- 01:01 36 23 1 50.0 52.2 0 1.0435 0.593 1.000 02:01 25 27 8 52.0 40.7 75 2.9659 0.227 0.271 02:06 59 1 0 50.8 0.0 . 0.0000 1.000 1.000 03:01 51 9 0 49.0 55.6 . 0.0000 1.000 1.000 11:01 55 5 0 50.9 40.0 . 0.0000 1.000 1.000 23:01 58 1 1 50.0 100.0 0 2.0000 0.368 1.000 24:03 59 1 0 50.8 0.0 . 0.0000 1.000 1.000 25:01 55 5 0 52.7 20.0 . 0.8727 0.350 0.353 26:01 57 3 0 52.6 0.0 . 1.4035 0.236 0.237 29:02 56 4 0 51.8 25.0 . 0.2679 0.605 0.612 31:01 57 3 0 49.1 66.7 . 0.0000 1.000 1.000 32:01 56 4 0 46.4 100.0 . 2.4107 0.121 0.112 68:01 57 3 0 52.6 0.0 . 1.4035 0.236 0.237 h1.est h1.2.5% h1.97.5% h1.pval h2.est h2.2.5% h2.97.5% 24:02 1.79176 0.1585 3.4251 0.032* . . . ----- 01:01 0.08701 -0.9600 1.1340 0.871 -15.566 -2868.0929 2836.961 02:01 -0.45474 -1.5524 0.6430 0.417 1.019 -0.7637 2.801 02:06 -15.59997 -2868.1268 2836.9268 0.991 . . . 03:01 0.26236 -1.1624 1.6872 0.718 . . . 11:01 -0.44183 -2.3074 1.4237 0.643 . . . 23:01 16.56607 -4686.4552 4719.5873 0.994 -16.566 -4719.5873 4686.455 24:03 -15.59997 -2868.1268 2836.9268 0.991 . . . 25:01 -1.49549 -3.7498 0.7588 0.194 . . . 26:01 -16.67143 -2731.9621 2698.6192 0.990 . . . 29:02 -1.17007 -3.4931 1.1530 0.324 . . . 31:01 0.72824 -1.7277 3.1842 0.561 . . . 32:01 17.70917 -3859.2763 3894.6947 0.993 . . . 68:01 -16.67143 -2731.9621 2698.6192 0.990 . . . h2.pval 24:02 . ----- 01:01 0.991 02:01 0.263 02:06 . 03:01 . 11:01 . 23:01 0.994 24:03 . 25:01 . 26:01 . 29:02 . 31:01 . 32:01 . 68:01 . Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 34 # of unique HLA alleles: 14 # of unique HLA genotypes: 23 Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 26 # of unique HLA alleles: 12 # of unique HLA genotypes: 14 Build a HIBAG model with 4 individual classifiers: MAF threshold: NaN excluding 11 monomorphic SNPs # of SNPs randomly sampled as candidates for each selection: 17 # of SNPs: 264 # of samples: 34 # of unique HLA alleles: 14 CPU flags: 64-bit, AVX512BW # of threads: 1 [-] 2023-10-16 03:01:16 === building individual classifier 1, out-of-bag (11/32.4%) === 1, SNP: 211, loss: 196.4, oob acc: 54.55%, # of haplo: 13 2, SNP: 66, loss: 173.548, oob acc: 63.64%, # of haplo: 13 3, SNP: 177, loss: 136.352, oob acc: 68.18%, # of haplo: 13 4, SNP: 108, loss: 95.8359, oob acc: 72.73%, # of haplo: 13 5, SNP: 127, loss: 67.3216, oob acc: 77.27%, # of haplo: 13 6, SNP: 95, loss: 47.5888, oob acc: 77.27%, # of haplo: 13 7, SNP: 33, loss: 37.2631, oob acc: 77.27%, # of haplo: 16 8, SNP: 6, loss: 29.7419, oob acc: 77.27%, # of haplo: 18 9, SNP: 208, loss: 25.6913, oob acc: 77.27%, # of haplo: 19 10, SNP: 225, loss: 25.3087, oob acc: 77.27%, # of haplo: 21 11, SNP: 11, loss: 24.8356, oob acc: 77.27%, # of haplo: 23 12, SNP: 151, loss: 19.4134, oob acc: 77.27%, # of haplo: 23 13, SNP: 199, loss: 17.011, oob acc: 77.27%, # of haplo: 23 [1] 2023-10-16 03:01:16, oob acc: 77.27%, # of SNPs: 13, # of haplo: 23 === building individual classifier 2, out-of-bag (13/38.2%) === 1, SNP: 160, loss: 221.236, oob acc: 76.92%, # of haplo: 17 2, SNP: 145, loss: 173.538, oob acc: 80.77%, # of haplo: 23 3, SNP: 177, loss: 128.58, oob acc: 84.62%, # of haplo: 31 4, SNP: 111, loss: 79.6877, oob acc: 84.62%, # of haplo: 31 5, SNP: 207, loss: 52.5557, oob acc: 88.46%, # of haplo: 32 6, SNP: 245, loss: 41.8731, oob acc: 88.46%, # of haplo: 34 7, SNP: 230, loss: 31.7937, oob acc: 88.46%, # of haplo: 38 8, SNP: 151, loss: 20.4566, oob acc: 88.46%, # of haplo: 36 9, SNP: 14, loss: 19.5805, oob acc: 88.46%, # of haplo: 42 10, SNP: 132, loss: 19.5101, oob acc: 88.46%, # of haplo: 42 11, SNP: 221, loss: 19.485, oob acc: 88.46%, # of haplo: 44 12, SNP: 251, loss: 18.5695, oob acc: 88.46%, # of haplo: 48 [2] 2023-10-16 03:01:16, oob acc: 88.46%, # of SNPs: 12, # of haplo: 48 === building individual classifier 3, out-of-bag (14/41.2%) === 1, SNP: 191, loss: 193.067, oob acc: 57.14%, # of haplo: 11 2, SNP: 264, loss: 150.427, oob acc: 64.29%, # of haplo: 12 3, SNP: 132, loss: 93.4067, oob acc: 67.86%, # of haplo: 12 4, SNP: 128, loss: 39.8353, oob acc: 71.43%, # of haplo: 12 5, SNP: 160, loss: 28.2998, oob acc: 75.00%, # of haplo: 12 6, SNP: 144, loss: 13.635, oob acc: 75.00%, # of haplo: 12 7, SNP: 111, loss: 6.04609, oob acc: 75.00%, # of haplo: 12 8, SNP: 40, loss: 6.04583, oob acc: 82.14%, # of haplo: 14 9, SNP: 141, loss: 6.04583, oob acc: 85.71%, # of haplo: 14 10, SNP: 73, loss: 2.9038, oob acc: 85.71%, # of haplo: 14 11, SNP: 199, loss: 2.20025, oob acc: 85.71%, # of haplo: 14 [3] 2023-10-16 03:01:16, oob acc: 85.71%, # of SNPs: 11, # of haplo: 14 === building individual classifier 4, out-of-bag (10/29.4%) === 1, SNP: 147, loss: 158.631, oob acc: 50.00%, # of haplo: 12 2, SNP: 152, loss: 140.375, oob acc: 55.00%, # of haplo: 13 3, SNP: 78, loss: 115.887, oob acc: 60.00%, # of haplo: 16 4, SNP: 115, loss: 77.8082, oob acc: 60.00%, # of haplo: 18 5, SNP: 148, loss: 62.6831, oob acc: 65.00%, # of haplo: 18 6, SNP: 13, loss: 46.5657, oob acc: 75.00%, # of haplo: 20 7, SNP: 109, loss: 31.0312, oob acc: 75.00%, # of haplo: 20 8, SNP: 176, loss: 22.5073, oob acc: 75.00%, # of haplo: 21 9, SNP: 145, loss: 20.9122, oob acc: 75.00%, # of haplo: 21 10, SNP: 128, loss: 20.6728, oob acc: 75.00%, # of haplo: 21 11, SNP: 73, loss: 14.6217, oob acc: 75.00%, # of haplo: 22 12, SNP: 151, loss: 10.2879, oob acc: 75.00%, # of haplo: 23 13, SNP: 199, loss: 8.74645, oob acc: 75.00%, # of haplo: 23 [4] 2023-10-16 03:01:16, oob acc: 75.00%, # of SNPs: 13, # of haplo: 23 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 0.0002162725 0.0002198443 0.0002519909 0.0043752063 0.0092453043 0.0265291653 Max. Mean SD 0.4711415503 0.0442439721 0.1054645240 Accuracy with training data: 97.06% Out-of-bag accuracy: 81.61% Gene: HLA-A Training dataset: 34 samples X 264 SNPs # of HLA alleles: 14 # of individual classifiers: 4 total # of SNPs used: 38 avg. # of SNPs in an individual classifier: 12.25 (sd: 0.96, min: 11, max: 13, median: 12.50) avg. # of haplotypes in an individual classifier: 27.00 (sd: 14.63, min: 14, max: 48, median: 23.00) avg. out-of-bag accuracy: 81.61% (sd: 6.49%, min: 75.00%, max: 88.46%, median: 81.49%) Matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 0.0002162725 0.0002198443 0.0002519909 0.0043752063 0.0092453043 0.0265291653 Max. Mean SD 0.4711415503 0.0442439721 0.1054645240 Genome assembly: hg19 HIBAG model for HLA-A: 4 individual classifiers 264 SNPs 14 unique HLA alleles: 01:01, 02:01, 02:06, ... Prediction: based on the averaged posterior probabilities Model assembly: hg19, SNP assembly: hg19 Matching the SNPs between the model and the test data: match.type="--" missing SNPs # Position 0 (0.0%) *being used [1] Pos+Allele 0 (0.0%) [2] RefSNP+Position 0 (0.0%) RefSNP 0 (0.0%) [1]: useful if ambiguous strands on array-based platforms [2]: suggested if the model and test data have been matched to the same reference genome Model platform: not applicable No allelic strand or A/B allele is flipped. # of samples: 26 CPU flags: 64-bit, AVX512BW # of threads: 1 Predicting (2023-10-16 03:01:16) 0% Predicting (2023-10-16 03:01:16) 100% Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 26 # of unique HLA alleles: 11 # of unique HLA genotypes: 14 Posterior probability: [0,0.25) [0.25,0.5) [0.5,0.75) [0.75,1] 1 (3.8%) 4 (15.4%) 4 (15.4%) 17 (65.4%) Matching proportion of SNP haplotype: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.000000 0.002097 0.007711 0.032190 0.028032 0.471142 Dosages: $dosage - num [1:14, 1:26] 2.50e-01 2.16e-04 2.50e-06 7.31e-01 1.11e-14 ... - attr(*, "dimnames")=List of 2 ..$ : chr [1:14] "01:01" "02:01" "02:06" "03:01" ... ..$ : chr [1:26] "NA11881" "NA11992" "NA11994" "NA12249" ... HIBAG model for HLA-A: 4 individual classifiers 264 SNPs 14 unique HLA alleles: 01:01, 02:01, 02:06, ... Prediction: based on the averaged posterior probabilities Model assembly: hg19, SNP assembly: hg19 Matching the SNPs between the model and the test data: match.type="--" missing SNPs # Position 0 (0.0%) *being used [1] Pos+Allele 0 (0.0%) [2] RefSNP+Position 0 (0.0%) RefSNP 0 (0.0%) [1]: useful if ambiguous strands on array-based platforms [2]: suggested if the model and test data have been matched to the same reference genome Model platform: not applicable No allelic strand or A/B allele is flipped. # of samples: 26 CPU flags: 64-bit, AVX512BW # of threads: 1 Predicting (2023-10-16 03:01:16) 0% Predicting (2023-10-16 03:01:16) 100% Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 26 # of unique HLA alleles: 11 # of unique HLA genotypes: 14 Posterior probability: [0,0.25) [0.25,0.5) [0.5,0.75) [0.75,1] 1 (3.8%) 4 (15.4%) 4 (15.4%) 17 (65.4%) Matching proportion of SNP haplotype: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.000000 0.002097 0.007711 0.032190 0.028032 0.471142 Open 'F:/biocbuild/bbs-3.17-bioc/R/library/HIBAG/extdata/HapMap_CEU.bed' (the individual-major mode) Open 'F:/biocbuild/bbs-3.17-bioc/R/library/HIBAG/extdata/HapMap_CEU.fam' Open 'F:/biocbuild/bbs-3.17-bioc/R/library/HIBAG/extdata/HapMap_CEU.bim' Import 3932 SNPs within the xMHC region on chromosome 6 SNP genotypes: 90 samples X 3932 SNPs SNPs range from 28694391bp to 33426848bp on hg19 Missing rate per SNP: min: 0, max: 0.1, mean: 0.0888861, median: 0.1, sd: 0.0298489 Missing rate per sample: min: 0, max: 0.869786, mean: 0.0888861, median: 0.00101729, sd: 0.261554 Minor allele frequency: min: 0, max: 0.5, mean: 0.210453, median: 0.191358, sd: 0.155144 Allelic information: A/G C/T G/T A/C C/G A/T 1567 1510 348 332 111 64 Open 'F:/biocbuild/bbs-3.17-bioc/R/library/HIBAG/extdata/HapMap_CEU.bed' (the individual-major mode) Open 'F:/biocbuild/bbs-3.17-bioc/R/library/HIBAG/extdata/HapMap_CEU.fam' Open 'F:/biocbuild/bbs-3.17-bioc/R/library/HIBAG/extdata/HapMap_CEU.bim' Import 5316 SNPs from chromosome 6 SNP genotypes: 90 samples X 5316 SNPs SNPs range from 25651262bp to 33426848bp on hg19 Missing rate per SNP: min: 0, max: 0.1, mean: 0.0882054, median: 0.1, sd: 0.030674 Missing rate per sample: min: 0, max: 0.863619, mean: 0.0882054, median: 0.00131678, sd: 0.259735 Minor allele frequency: min: 0, max: 0.5, mean: 0.201867, median: 0.179012, sd: 0.155475 Allelic information: A/G C/T G/T A/C C/G A/T 2102 2046 480 471 134 83 Build a HIBAG model with 2 individual classifiers: MAF threshold: NaN excluding 1 monomorphic SNP # of SNPs randomly sampled as candidates for each selection: 9 # of SNPs: 77 # of samples: 60 # of unique HLA alleles: 12 CPU flags: 64-bit, AVX512BW # of threads: 1 [-] 2023-10-16 03:01:17 === building individual classifier 1, out-of-bag (25/41.7%) === [1] 2023-10-16 03:01:17, oob acc: 98.00%, # of SNPs: 13, # of haplo: 20 === building individual classifier 2, out-of-bag (22/36.7%) === [2] 2023-10-16 03:01:17, oob acc: 90.91%, # of SNPs: 15, # of haplo: 21 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 7.678603e-08 2.465759e-05 2.458848e-04 5.196909e-03 1.419916e-02 2.996040e-02 Max. Mean SD 4.735980e-01 4.413724e-02 1.070518e-01 Accuracy with training data: 95.00% Out-of-bag accuracy: 94.45% Gene: HLA-DQB1 Training dataset: 60 samples X 77 SNPs # of HLA alleles: 12 # of individual classifiers: 2 total # of SNPs used: 20 avg. # of SNPs in an individual classifier: 14.00 (sd: 1.41, min: 13, max: 15, median: 14.00) avg. # of haplotypes in an individual classifier: 20.50 (sd: 0.71, min: 20, max: 21, median: 20.50) avg. out-of-bag accuracy: 94.45% (sd: 5.01%, min: 90.91%, max: 98.00%, median: 94.45%) Matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 7.678603e-08 2.465759e-05 2.458848e-04 5.196909e-03 1.419916e-02 2.996040e-02 Max. Mean SD 4.735980e-01 4.413724e-02 1.070518e-01 Genome assembly: hg19 The HIBAG model: There are 77 SNP predictors in total. There are 2 individual classifiers. Summarize the missing fractions of SNP predictors per classifier: Min. 1st Qu. Median Mean 3rd Qu. Max. 0 0 0 0 0 0 Gene: HLA-C Range: [31236526bp, 31239913bp] on hg19 # of samples: 60 # of unique HLA alleles: 17 # of unique HLA genotypes: 35 Gene: HLA-C Range: [31236526bp, 31239913bp] on hg19 # of samples: 100 # of unique HLA alleles: 17 # of unique HLA genotypes: 35 Gene: HLA-C Range: [31236526bp, 31239913bp] on hg19 # of samples: 100 # of unique HLA alleles: 0 # of unique HLA genotypes: 0 Gene: HLA-C Range: [31236526bp, 31239913bp] on hg19 # of samples: 200 # of unique HLA alleles: 17 # of unique HLA genotypes: 35 Build a HIBAG model with 1 individual classifier: MAF threshold: NaN excluding 9 monomorphic SNPs # of SNPs randomly sampled as candidates for each selection: 17 # of SNPs: 266 # of samples: 60 # of unique HLA alleles: 14 CPU flags: 64-bit, AVX512BW # of threads: 1 [-] 2023-10-16 03:01:17 === building individual classifier 1, out-of-bag (23/38.3%) === [1] 2023-10-16 03:01:17, oob acc: 89.13%, # of SNPs: 13, # of haplo: 49 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 3.479687e-10 4.543785e-10 1.412066e-09 1.030115e-03 1.953276e-02 1.350847e-01 Max. Mean SD 6.267394e-01 7.586913e-02 1.432682e-01 Accuracy with training data: 95.00% Out-of-bag accuracy: 89.13% Build a HIBAG model with 1 individual classifier: MAF threshold: NaN excluding 9 monomorphic SNPs # of SNPs randomly sampled as candidates for each selection: 17 # of SNPs: 266 # of samples: 60 # of unique HLA alleles: 14 CPU flags: 64-bit, AVX512BW # of threads: 1 [-] 2023-10-16 03:01:17 === building individual classifier 1, out-of-bag (24/40.0%) === [1] 2023-10-16 03:01:17, oob acc: 89.58%, # of SNPs: 21, # of haplo: 45 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 1.388896e-28 1.783259e-28 5.332524e-28 1.674146e-04 2.844265e-03 1.527780e-02 Max. Mean SD 2.750054e-01 2.409134e-02 6.196090e-02 Accuracy with training data: 95.83% Out-of-bag accuracy: 89.58% Gene: HLA-A Training dataset: 60 samples X 266 SNPs # of HLA alleles: 14 # of individual classifiers: 2 total # of SNPs used: 30 avg. # of SNPs in an individual classifier: 17.00 (sd: 5.66, min: 13, max: 21, median: 17.00) avg. # of haplotypes in an individual classifier: 47.00 (sd: 2.83, min: 45, max: 49, median: 47.00) avg. out-of-bag accuracy: 89.36% (sd: 0.32%, min: 89.13%, max: 89.58%, median: 89.36%) Matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 1.740230e-10 1.065174e-09 9.085536e-09 1.634294e-03 1.128283e-02 6.784132e-02 Max. Mean SD 4.508724e-01 4.998023e-02 1.012466e-01 Genome assembly: hg19 Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 34 # of unique HLA alleles: 14 # of unique HLA genotypes: 23 Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 26 # of unique HLA alleles: 12 # of unique HLA genotypes: 14 Build a HIBAG model with 4 individual classifiers: MAF threshold: NaN excluding 11 monomorphic SNPs # of SNPs randomly sampled as candidates for each selection: 17 # of SNPs: 264 # of samples: 34 # of unique HLA alleles: 14 CPU flags: 64-bit, AVX512BW # of threads: 1 [-] 2023-10-16 03:01:17 === building individual classifier 1, out-of-bag (11/32.4%) === 1, SNP: 211, loss: 196.4, oob acc: 54.55%, # of haplo: 13 2, SNP: 66, loss: 173.548, oob acc: 63.64%, # of haplo: 13 3, SNP: 177, loss: 136.352, oob acc: 68.18%, # of haplo: 13 4, SNP: 108, loss: 95.8359, oob acc: 72.73%, # of haplo: 13 5, SNP: 127, loss: 67.3216, oob acc: 77.27%, # of haplo: 13 6, SNP: 95, loss: 47.5888, oob acc: 77.27%, # of haplo: 13 7, SNP: 33, loss: 37.2631, oob acc: 77.27%, # of haplo: 16 8, SNP: 6, loss: 29.7419, oob acc: 77.27%, # of haplo: 18 9, SNP: 208, loss: 25.6913, oob acc: 77.27%, # of haplo: 19 10, SNP: 225, loss: 25.3087, oob acc: 77.27%, # of haplo: 21 11, SNP: 11, loss: 24.8356, oob acc: 77.27%, # of haplo: 23 12, SNP: 151, loss: 19.4134, oob acc: 77.27%, # of haplo: 23 13, SNP: 199, loss: 17.011, oob acc: 77.27%, # of haplo: 23 [1] 2023-10-16 03:01:17, oob acc: 77.27%, # of SNPs: 13, # of haplo: 23 === building individual classifier 2, out-of-bag (13/38.2%) === 1, SNP: 160, loss: 221.236, oob acc: 76.92%, # of haplo: 17 2, SNP: 145, loss: 173.538, oob acc: 80.77%, # of haplo: 23 3, SNP: 177, loss: 128.58, oob acc: 84.62%, # of haplo: 31 4, SNP: 111, loss: 79.6877, oob acc: 84.62%, # of haplo: 31 5, SNP: 207, loss: 52.5557, oob acc: 88.46%, # of haplo: 32 6, SNP: 245, loss: 41.8731, oob acc: 88.46%, # of haplo: 34 7, SNP: 230, loss: 31.7937, oob acc: 88.46%, # of haplo: 38 8, SNP: 151, loss: 20.4566, oob acc: 88.46%, # of haplo: 36 9, SNP: 14, loss: 19.5805, oob acc: 88.46%, # of haplo: 42 10, SNP: 132, loss: 19.5101, oob acc: 88.46%, # of haplo: 42 11, SNP: 221, loss: 19.485, oob acc: 88.46%, # of haplo: 44 12, SNP: 251, loss: 18.5695, oob acc: 88.46%, # of haplo: 48 [2] 2023-10-16 03:01:17, oob acc: 88.46%, # of SNPs: 12, # of haplo: 48 === building individual classifier 3, out-of-bag (14/41.2%) === 1, SNP: 191, loss: 193.067, oob acc: 57.14%, # of haplo: 11 2, SNP: 264, loss: 150.427, oob acc: 64.29%, # of haplo: 12 3, SNP: 132, loss: 93.4067, oob acc: 67.86%, # of haplo: 12 4, SNP: 128, loss: 39.8353, oob acc: 71.43%, # of haplo: 12 5, SNP: 160, loss: 28.2998, oob acc: 75.00%, # of haplo: 12 6, SNP: 144, loss: 13.635, oob acc: 75.00%, # of haplo: 12 7, SNP: 111, loss: 6.04609, oob acc: 75.00%, # of haplo: 12 8, SNP: 40, loss: 6.04583, oob acc: 82.14%, # of haplo: 14 9, SNP: 141, loss: 6.04583, oob acc: 85.71%, # of haplo: 14 10, SNP: 73, loss: 2.9038, oob acc: 85.71%, # of haplo: 14 11, SNP: 199, loss: 2.20025, oob acc: 85.71%, # of haplo: 14 [3] 2023-10-16 03:01:17, oob acc: 85.71%, # of SNPs: 11, # of haplo: 14 === building individual classifier 4, out-of-bag (10/29.4%) === 1, SNP: 147, loss: 158.631, oob acc: 50.00%, # of haplo: 12 2, SNP: 152, loss: 140.375, oob acc: 55.00%, # of haplo: 13 3, SNP: 78, loss: 115.887, oob acc: 60.00%, # of haplo: 16 4, SNP: 115, loss: 77.8082, oob acc: 60.00%, # of haplo: 18 5, SNP: 148, loss: 62.6831, oob acc: 65.00%, # of haplo: 18 6, SNP: 13, loss: 46.5657, oob acc: 75.00%, # of haplo: 20 7, SNP: 109, loss: 31.0312, oob acc: 75.00%, # of haplo: 20 8, SNP: 176, loss: 22.5073, oob acc: 75.00%, # of haplo: 21 9, SNP: 145, loss: 20.9122, oob acc: 75.00%, # of haplo: 21 10, SNP: 128, loss: 20.6728, oob acc: 75.00%, # of haplo: 21 11, SNP: 73, loss: 14.6217, oob acc: 75.00%, # of haplo: 22 12, SNP: 151, loss: 10.2879, oob acc: 75.00%, # of haplo: 23 13, SNP: 199, loss: 8.74645, oob acc: 75.00%, # of haplo: 23 [4] 2023-10-16 03:01:17, oob acc: 75.00%, # of SNPs: 13, # of haplo: 23 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 0.0002162725 0.0002198443 0.0002519909 0.0043752063 0.0092453043 0.0265291653 Max. Mean SD 0.4711415503 0.0442439721 0.1054645240 Accuracy with training data: 97.06% Out-of-bag accuracy: 81.61% Gene: HLA-A Training dataset: 34 samples X 264 SNPs # of HLA alleles: 14 # of individual classifiers: 4 total # of SNPs used: 38 avg. # of SNPs in an individual classifier: 12.25 (sd: 0.96, min: 11, max: 13, median: 12.50) avg. # of haplotypes in an individual classifier: 27.00 (sd: 14.63, min: 14, max: 48, median: 23.00) avg. out-of-bag accuracy: 81.61% (sd: 6.49%, min: 75.00%, max: 88.46%, median: 81.49%) Matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 0.0002162725 0.0002198443 0.0002519909 0.0043752063 0.0092453043 0.0265291653 Max. Mean SD 0.4711415503 0.0442439721 0.1054645240 Genome assembly: hg19 HIBAG model for HLA-A: 4 individual classifiers 264 SNPs 14 unique HLA alleles: 01:01, 02:01, 02:06, ... Prediction: based on the averaged posterior probabilities Model assembly: hg19, SNP assembly: hg19 Matching the SNPs between the model and the test data: match.type="--" missing SNPs # Position 0 (0.0%) *being used [1] Pos+Allele 0 (0.0%) [2] RefSNP+Position 0 (0.0%) RefSNP 0 (0.0%) [1]: useful if ambiguous strands on array-based platforms [2]: suggested if the model and test data have been matched to the same reference genome Model platform: not applicable No allelic strand or A/B allele is flipped. # of samples: 26 CPU flags: 64-bit, AVX512BW # of threads: 1 Predicting (2023-10-16 03:01:17) 0% Predicting (2023-10-16 03:01:17) 100% Allelic ambiguity: 01:01, 02:02 Allelic ambiguity: 01:01, 02:02 Allelic ambiguity: 09:01 Allelic ambiguity: 09:01 Allelic ambiguity: 05:01, 06:01 Allelic ambiguity: 05:01, 06:01 Allelic ambiguity: 01:01, 03:01, 26:01, 02:01, 23:01, 02:06, 11:01, 25:01, 31:01, 24:02, 29:02, 68:01, 24:03, 32:01 Pos Num * - A D E F G H I K L M N Q R S T V W Y 1 120 120 . . . . . . . . . . . . . . . . . . . 9 120 . 81 . . . . . . . . . . . . . 15 7 . . 17 44 120 . 25 . . . . . . . . . . . . 95 . . . . . 56 120 . 117 . . . . . . . . . . . . 3 . . . . . 62 120 . 46 . . 15 . 44 . . . 4 . . . 11 . . . . . 63 120 . 105 . . . . . . . . . . 11 4 . . . . . . 65 120 . 105 . . . . 15 . . . . . . . . . . . . . 66 120 . 61 . . . . . . . 59 . . . . . . . . . . 67 120 . 25 . . . . . . . . . . . . . . . 95 . . 70 120 . 99 . . . . . . . . . . . 21 . . . . . . 73 120 . 117 . . . . . . 3 . . . . . . . . . . . 74 120 . 76 . . . . . 44 . . . . . . . . . . . . 76 120 . 32 . . 24 . . . . . . . . . . . . 64 . . 77 120 . 47 . 64 . . . . . . . . . . . 9 . . . . 79 120 . 96 . . . . . . . . . . . . 24 . . . . . 80 120 . 96 . . . . . . 24 . . . . . . . . . . . 81 120 . 96 24 . . . . . . . . . . . . . . . . . 82 120 . 96 . . . . . . . . 24 . . . . . . . . . 83 120 . 96 . . . . . . . . . . . . 24 . . . . . 90 120 . 38 82 . . . . . . . . . . . . . . . . . 95 120 . 61 . . . . . . . . 15 . . . . . . 44 . . 97 120 . 39 . . . . . . . . . 29 . . 52 . . . . . 99 120 . 105 . . . 15 . . . . . . . . . . . . . . 105 120 . 42 . . . . . . . . . . . . . 78 . . . . 107 120 . 76 . . . . . . . . . . . . . . . . 44 . 109 120 . 116 . . . . . . . . 4 . . . . . . . . . 114 120 . 46 . . . . . 59 . . . . . 15 . . . . . . 116 120 . 61 . . . . . . . . . . . . . . . . . 59 127 120 . 58 . . . . . . . 62 . . . . . . . . . . 142 120 . 73 . . . . . . . . . . . . . . 47 . . . 144 120 . 98 . . . . . . . . . . . 22 . . . . . . 145 120 . 73 . . . . . 47 . . . . . . . . . . . . 149 120 . 112 . . . . . . . . . . . . . . 8 . . . 150 120 . 25 95 . . . . . . . . . . . . . . . . . 151 120 . 106 . . . . . . . . . . . . 14 . . . . . 152 120 . 30 . . 17 . . . . . . . . . . . . 73 . . 156 120 . 25 . . . . . . . . 67 . . 17 . . . . 11 . 158 120 . 25 95 . . . . . . . . . . . . . . . . . 161 120 . 111 . 9 . . . . . . . . . . . . . . . . 163 120 . 38 . . . . . . . . . . . . . . 82 . . . 166 120 . 39 . . 81 . . . . . . . . . . . . . . . 167 120 . 39 . . . . . . . . . . . . . . . . 81 . 183 120 120 . . . . . . . . . . . . . . . . . . . Allelic ambiguity: 01:01, 03:01, 26:01, 02:01, 23:01, 02:06, 11:01, 25:01, 31:01, 24:02, 29:02, 68:01, 24:03, 32:01 Pos Num * - A D E F G H I K L M N Q R S T V W Y -23 120 120 . . . . . . . . . . . . . . . . . . . -22 120 120 . . . . . . . . . . . . . . . . . . . -21 120 120 . . . . . . . . . . . . . . . . . . . -20 120 120 . . . . . . . . . . . . . . . . . . . -19 120 120 . . . . . . . . . . . . . . . . . . . -18 120 120 . . . . . . . . . . . . . . . . . . . -17 120 120 . . . . . . . . . . . . . . . . . . . -16 120 120 . . . . . . . . . . . . . . . . . . . -15 120 120 . . . . . . . . . . . . . . . . . . . -14 120 120 . . . . . . . . . . . . . . . . . . . -13 120 120 . . . . . . . . . . . . . . . . . . . -12 120 120 . . . . . . . . . . . . . . . . . . . -11 120 120 . . . . . . . . . . . . . . . . . . . -10 120 120 . . . . . . . . . . . . . . . . . . . -9 120 120 . . . . . . . . . . . . . . . . . . . -8 120 120 . . . . . . . . . . . . . . . . . . . -7 120 120 . . . . . . . . . . . . . . . . . . . -6 120 120 . . . . . . . . . . . . . . . . . . . -5 120 120 . . . . . . . . . . . . . . . . . . . -4 120 120 . . . . . . . . . . . . . . . . . . . -3 120 120 . . . . . . . . . . . . . . . . . . . -2 120 120 . . . . . . . . . . . . . . . . . . . -1 120 120 . . . . . . . . . . . . . . . . . . . . 120 120 . . . . . . . . . . . . . . . . . . . 1 120 120 . . . . . . . . . . . . . . . . . . . 9 120 . 81 . . . . . . . . . . . . . 15 7 . . 17 44 120 . 25 . . . . . . . . . . . . 95 . . . . . 56 120 . 117 . . . . . . . . . . . . 3 . . . . . 62 120 . 46 . . 15 . 44 . . . 4 . . . 11 . . . . . 63 120 . 105 . . . . . . . . . . 11 4 . . . . . . 65 120 . 105 . . . . 15 . . . . . . . . . . . . . 66 120 . 61 . . . . . . . 59 . . . . . . . . . . 67 120 . 25 . . . . . . . . . . . . . . . 95 . . 70 120 . 99 . . . . . . . . . . . 21 . . . . . . 73 120 . 117 . . . . . . 3 . . . . . . . . . . . 74 120 . 76 . . . . . 44 . . . . . . . . . . . . 76 120 . 32 . . 24 . . . . . . . . . . . . 64 . . 77 120 . 47 . 64 . . . . . . . . . . . 9 . . . . 79 120 . 96 . . . . . . . . . . . . 24 . . . . . 80 120 . 96 . . . . . . 24 . . . . . . . . . . . 81 120 . 96 24 . . . . . . . . . . . . . . . . . 82 120 . 96 . . . . . . . . 24 . . . . . . . . . 83 120 . 96 . . . . . . . . . . . . 24 . . . . . 90 120 . 38 82 . . . . . . . . . . . . . . . . . 95 120 . 61 . . . . . . . . 15 . . . . . . 44 . . 97 120 . 39 . . . . . . . . . 29 . . 52 . . . . . 99 120 . 105 . . . 15 . . . . . . . . . . . . . . 105 120 . 42 . . . . . . . . . . . . . 78 . . . . 107 120 . 76 . . . . . . . . . . . . . . . . 44 . 109 120 . 116 . . . . . . . . 4 . . . . . . . . . 114 120 . 46 . . . . . 59 . . . . . 15 . . . . . . 116 120 . 61 . . . . . . . . . . . . . . . . . 59 127 120 . 58 . . . . . . . 62 . . . . . . . . . . 142 120 . 73 . . . . . . . . . . . . . . 47 . . . 144 120 . 98 . . . . . . . . . . . 22 . . . . . . 145 120 . 73 . . . . . 47 . . . . . . . . . . . . 149 120 . 112 . . . . . . . . . . . . . . 8 . . . 150 120 . 25 95 . . . . . . . . . . . . . . . . . 151 120 . 106 . . . . . . . . . . . . 14 . . . . . 152 120 . 30 . . 17 . . . . . . . . . . . . 73 . . 156 120 . 25 . . . . . . . . 67 . . 17 . . . . 11 . 158 120 . 25 95 . . . . . . . . . . . . . . . . . 161 120 . 111 . 9 . . . . . . . . . . . . . . . . 163 120 . 38 . . . . . . . . . . . . . . 82 . . . 166 120 . 39 . . 81 . . . . . . . . . . . . . . . 167 120 . 39 . . . . . . . . . . . . . . . . 81 . 183 120 120 . . . . . . . . . . . . . . . . . . . 184 120 120 . . . . . . . . . . . . . . . . . . . 185 120 120 . . . . . . . . . . . . . . . . . . . 186 120 120 . . . . . . . . . . . . . . . . . . . 187 120 120 . . . . . . . . . . . . . . . . . . . 188 120 120 . . . . . . . . . . . . . . . . . . . 189 120 120 . . . . . . . . . . . . . . . . . . . 190 120 120 . . . . . . . . . . . . . . . . . . . 191 120 120 . . . . . . . . . . . . . . . . . . . 192 120 120 . . . . . . . . . . . . . . . . . . . 193 120 120 . . . . . . . . . . . . . . . . . . . 194 120 120 . . . . . . . . . . . . . . . . . . . 195 120 120 . . . . . . . . . . . . . . . . . . . 196 120 120 . . . . . . . . . . . . . . . . . . . 197 120 120 . . . . . . . . . . . . . . . . . . . 198 120 120 . . . . . . . . . . . . . . . . . . . 199 120 120 . . . . . . . . . . . . . . . . . . . 200 120 120 . . . . . . . . . . . . . . . . . . . 201 120 120 . . . . . . . . . . . . . . . . . . . 202 120 120 . . . . . . . . . . . . . . . . . . . 203 120 120 . . . . . . . . . . . . . . . . . . . 204 120 120 . . . . . . . . . . . . . . . . . . . 205 120 120 . . . . . . . . . . . . . . . . . . . 206 120 120 . . . . . . . . . . . . . . . . . . . 207 120 120 . . . . . . . . . . . . . . . . . . . 208 120 120 . . . . . . . . . . . . . . . . . . . 209 120 120 . . . . . . . . . . . . . . . . . . . 210 120 120 . . . . . . . . . . . . . . . . . . . 211 120 120 . . . . . . . . . . . . . . . . . . . 212 120 120 . . . . . . . . . . . . . . . . . . . 213 120 120 . . . . . . . . . . . . . . . . . . . 214 120 120 . . . . . . . . . . . . . . . . . . . 215 120 120 . . . . . . . . . . . . . . . . . . . 216 120 120 . . . . . . . . . . . . . . . . . . . 217 120 120 . . . . . . . . . . . . . . . . . . . 218 120 120 . . . . . . . . . . . . . . . . . . . 219 120 120 . . . . . . . . . . . . . . . . . . . 220 120 120 . . . . . . . . . . . . . . . . . . . 221 120 120 . . . . . . . . . . . . . . . . . . . 222 120 120 . . . . . . . . . . . . . . . . . . . 223 120 120 . . . . . . . . . . . . . . . . . . . 224 120 120 . . . . . . . . . . . . . . . . . . . 225 120 120 . . . . . . . . . . . . . . . . . . . 226 120 120 . . . . . . . . . . . . . . . . . . . 227 120 120 . . . . . . . . . . . . . . . . . . . 228 120 120 . . . . . . . . . . . . . . . . . . . 229 120 120 . . . . . . . . . . . . . . . . . . . 230 120 120 . . . . . . . . . . . . . . . . . . . 231 120 120 . . . . . . . . . . . . . . . . . . . 232 120 120 . . . . . . . . . . . . . . . . . . . 233 120 120 . . . . . . . . . . . . . . . . . . . 234 120 120 . . . . . . . . . . . . . . . . . . . 235 120 120 . . . . . . . . . . . . . . . . . . . 236 120 120 . . . . . . . . . . . . . . . . . . . 237 120 120 . . . . . . . . . . . . . . . . . . . 238 120 120 . . . . . . . . . . . . . . . . . . . 239 120 120 . . . . . . . . . . . . . . . . . . . 240 120 120 . . . . . . . . . . . . . . . . . . . 241 120 120 . . . . . . . . . . . . . . . . . . . 242 120 120 . . . . . . . . . . . . . . . . . . . 243 120 120 . . . . . . . . . . . . . . . . . . . 244 120 120 . . . . . . . . . . . . . . . . . . . 245 120 120 . . . . . . . . . . . . . . . . . . . 246 120 120 . . . . . . . . . . . . . . . . . . . 247 120 120 . . . . . . . . . . . . . . . . . . . 248 120 120 . . . . . . . . . . . . . . . . . . . 249 120 120 . . . . . . . . . . . . . . . . . . . 250 120 120 . . . . . . . . . . . . . . . . . . . 251 120 120 . . . . . . . . . . . . . . . . . . . 252 120 120 . . . . . . . . . . . . . . . . . . . 253 120 120 . . . . . . . . . . . . . . . . . . . 254 120 120 . . . . . . . . . . . . . . . . . . . 255 120 120 . . . . . . . . . . . . . . . . . . . 256 120 120 . . . . . . . . . . . . . . . . . . . 257 120 120 . . . . . . . . . . . . . . . . . . . 258 120 120 . . . . . . . . . . . . . . . . . . . 259 120 120 . . . . . . . . . . . . . . . . . . . 260 120 120 . . . . . . . . . . . . . . . . . . . 261 120 120 . . . . . . . . . . . . . . . . . . . 262 120 120 . . . . . . . . . . . . . . . . . . . 263 120 120 . . . . . . . . . . . . . . . . . . . 264 120 120 . . . . . . . . . . . . . . . . . . . 265 120 120 . . . . . . . . . . . . . . . . . . . 266 120 120 . . . . . . . . . . . . . . . . . . . 267 120 120 . . . . . . . . . . . . . . . . . . . 268 120 120 . . . . . . . . . . . . . . . . . . . 269 120 120 . . . . . . . . . . . . . . . . . . . 270 120 120 . . . . . . . . . . . . . . . . . . . 271 120 120 . . . . . . . . . . . . . . . . . . . 272 120 120 . . . . . . . . . . . . . . . . . . . 273 120 120 . . . . . . . . . . . . . . . . . . . 274 120 120 . . . . . . . . . . . . . . . . . . . 275 120 120 . . . . . . . . . . . . . . . . . . . 276 120 120 . . . . . . . . . . . . . . . . . . . 277 120 120 . . . . . . . . . . . . . . . . . . . 278 120 120 . . . . . . . . . . . . . . . . . . . 279 120 120 . . . . . . . . . . . . . . . . . . . 280 120 120 . . . . . . . . . . . . . . . . . . . 281 120 120 . . . . . . . . . . . . . . . . . . . 282 120 120 . . . . . . . . . . . . . . . . . . . 283 120 120 . . . . . . . . . . . . . . . . . . . 284 120 120 . . . . . . . . . . . . . . . . . . . 285 120 120 . . . . . . . . . . . . . . . . . . . 286 120 120 . . . . . . . . . . . . . . . . . . . 287 120 120 . . . . . . . . . . . . . . . . . . . 288 120 120 . . . . . . . . . . . . . . . . . . . 289 120 120 . . . . . . . . . . . . . . . . . . . 290 120 120 . . . . . . . . . . . . . . . . . . . 291 120 120 . . . . . . . . . . . . . . . . . . . 292 120 120 . . . . . . . . . . . . . . . . . . . 293 120 120 . . . . . . . . . . . . . . . . . . . 294 120 120 . . . . . . . . . . . . . . . . . . . 295 120 120 . . . . . . . . . . . . . . . . . . . 296 120 120 . . . . . . . . . . . . . . . . . . . 297 120 120 . . . . . . . . . . . . . . . . . . . 298 120 120 . . . . . . . . . . . . . . . . . . . 299 120 120 . . . . . . . . . . . . . . . . . . . 300 120 120 . . . . . . . . . . . . . . . . . . . 301 120 120 . . . . . . . . . . . . . . . . . . . 302 120 120 . . . . . . . . . . . . . . . . . . . 303 120 120 . . . . . . . . . . . . . . . . . . . 304 120 120 . . . . . . . . . . . . . . . . . . . 305 120 120 . . . . . . . . . . . . . . . . . . . 306 120 120 . . . . . . . . . . . . . . . . . . . 307 120 120 . . . . . . . . . . . . . . . . . . . 308 120 120 . . . . . . . . . . . . . . . . . . . 309 120 120 . . . . . . . . . . . . . . . . . . . 310 120 120 . . . . . . . . . . . . . . . . . . . 311 120 120 . . . . . . . . . . . . . . . . . . . 312 120 120 . . . . . . . . . . . . . . . . . . . 313 120 120 . . . . . . . . . . . . . . . . . . . 314 120 120 . . . . . . . . . . . . . . . . . . . 315 120 120 . . . . . . . . . . . . . . . . . . . 316 120 120 . . . . . . . . . . . . . . . . . . . 317 120 120 . . . . . . . . . . . . . . . . . . . 318 120 120 . . . . . . . . . . . . . . . . . . . 319 120 120 . . . . . . . . . . . . . . . . . . . 320 120 120 . . . . . . . . . . . . . . . . . . . 321 120 120 . . . . . . . . . . . . . . . . . . . 322 120 120 . . . . . . . . . . . . . . . . . . . 323 120 120 . . . . . . . . . . . . . . . . . . . 324 120 120 . . . . . . . . . . . . . . . . . . . 325 120 120 . . . . . . . . . . . . . . . . . . . 326 120 120 . . . . . . . . . . . . . . . . . . . 327 120 120 . . . . . . . . . . . . . . . . . . . 328 120 120 . . . . . . . . . . . . . . . . . . . 329 120 120 . . . . . . . . . . . . . . . . . . . 330 120 120 . . . . . . . . . . . . . . . . . . . 331 120 120 . . . . . . . . . . . . . . . . . . . 332 120 120 . . . . . . . . . . . . . . . . . . . 333 120 120 . . . . . . . . . . . . . . . . . . . 334 120 120 . . . . . . . . . . . . . . . . . . . 335 120 120 . . . . . . . . . . . . . . . . . . . 336 120 120 . . . . . . . . . . . . . . . . . . . 337 120 120 . . . . . . . . . . . . . . . . . . . 338 120 120 . . . . . . . . . . . . . . . . . . . 339 120 120 . . . . . . . . . . . . . . . . . . . 340 120 120 . . . . . . . . . . . . . . . . . . . 341 120 120 . . . . . . . . . . . . . . . . . . . Allelic ambiguity: 03:02, 06:02, 05:01, 02:01, 05:03, 03:03, 03:01, 04:02, 06:03, 06:04, 05:02 Pos Num * - A D E F G I K L M N P Q R S T Y 5 120 112 . . . . . . . . . . 8 . . . . . . 6 120 20 92 8 . . . . . . . . . . . . . . . 7 112 20 92 . . . . . . . . . . . . . . . . 8 112 20 92 . . . . . . . . . . . . . . . . 9 112 3 76 . . . 33 . . . . . . . . . . . . 10 112 3 109 . . . . . . . . . . . . . . . . 11 112 3 109 . . . . . . . . . . . . . . . . 12 112 3 109 . . . . . . . . . . . . . . . . 13 112 3 93 16 . . . . . . . . . . . . . . . 14 112 3 14 . . . . . . . . 95 . . . . . . . 15 112 3 109 . . . . . . . . . . . . . . . . 16 112 3 109 . . . . . . . . . . . . . . . . 17 112 3 109 . . . . . . . . . . . . . . . . 18 112 3 109 . . . . . . . . . . . . . . . . 19 112 3 109 . . . . . . . . . . . . . . . . 20 112 3 109 . . . . . . . . . . . . . . . . 26 112 . 20 . . . . . . . 76 . . . . . . . 16 28 112 . 100 . . . . . . . . . . . . . 12 . . 30 112 . 24 . . . . . . . . . . . . . 12 . 76 37 112 . 100 . . . . . 12 . . . . . . . . . . 38 112 . 29 83 . . . . . . . . . . . . . . . 45 112 . 96 . . 16 . . . . . . . . . . . . . 46 112 . 100 . . 12 . . . . . . . . . . . . . 47 112 . 100 . . . 12 . . . . . . . . . . . . 52 112 . 100 . . . . . . . 12 . . . . . . . . 53 112 . 54 . . . . . . . 58 . . . . . . . . 55 112 . 57 . . . . . . . 12 . . 43 . . . . . 56 112 . 109 . . . . . . . 3 . . . . . . . . 57 112 . 14 33 64 . . . . . . . . . . . 1 . . 66 112 . 97 . 15 . . . . . . . . . . . . . . 67 112 . 97 . . . . . 15 . . . . . . . . . . 70 112 3 50 . . 3 . . . . . . . . . 56 . . . 71 112 3 14 . 3 . . . . 12 . . . . . . . 80 . 72 112 3 109 . . . . . . . . . . . . . . . . 73 112 3 109 . . . . . . . . . . . . . . . . 74 112 3 17 12 . 80 . . . . . . . . . . . . . 75 112 3 29 . . . . . . . 80 . . . . . . . . 76 112 3 109 . . . . . . . . . . . . . . . . 77 112 3 26 . . . . . . . . . . . . . . 83 . 78 112 3 109 . . . . . . . . . . . . . . . . 79 112 3 109 . . . . . . . . . . . . . . . . 80 112 3 109 . . . . . . . . . . . . . . . . 81 112 3 109 . . . . . . . . . . . . . . . . 82 112 3 109 . . . . . . . . . . . . . . . . 83 112 3 109 . . . . . . . . . . . . . . . . 84 112 3 51 . . . . . . . . . . . 58 . . . . 85 112 3 51 . . . . . . . 58 . . . . . . . . 86 112 3 50 . . 58 . 1 . . . . . . . . . . . 87 112 3 15 . . . 36 . . . 58 . . . . . . . . 88 112 3 109 . . . . . . . . . . . . . . . . 89 112 3 51 . . . . . . . . . . . . . . 58 . 90 112 3 51 . . . . . . . . . . . . . . 58 . 91 112 3 109 . . . . . . . . . . . . . . . . 92 112 3 109 . . . . . . . . . . . . . . . . 93 112 3 109 . . . . . . . . . . . . . . . . 94 112 17 95 . . . . . . . . . . . . . . . . 95 112 112 . . . . . . . . . . . . . . . . . Allelic ambiguity: 03:02, 06:02, 05:01, 02:01, 05:03, 03:03, 03:01, 04:02, 06:03, 06:04, 05:02 Pos Num * - A D E F G I K L M N P Q R S T Y -31 120 112 . . . . . . . . . . 8 . . . . . . -30 120 112 . 8 . . . . . . . . . . . . . . . -29 112 112 . . . . . . . . . . . . . . . . . -28 112 112 . . . . . . . . . . . . . . . . . -27 112 112 . . . . . . . . . . . . . . . . . -26 112 112 . . . . . . . . . . . . . . . . . -25 112 112 . . . . . . . . . . . . . . . . . -24 112 112 . . . . . . . . . . . . . . . . . -23 112 112 . . . . . . . . . . . . . . . . . -22 112 112 . . . . . . . . . . . . . . . . . -21 112 112 . . . . . . . . . . . . . . . . . -20 112 112 . . . . . . . . . . . . . . . . . -19 112 112 . . . . . . . . . . . . . . . . . -18 112 112 . . . . . . . . . . . . . . . . . -17 112 112 . . . . . . . . . . . . . . . . . -16 112 112 . . . . . . . . . . . . . . . . . -15 112 112 . . . . . . . . . . . . . . . . . -14 112 112 . . . . . . . . . . . . . . . . . -13 112 112 . . . . . . . . . . . . . . . . . -12 112 112 . . . . . . . . . . . . . . . . . -11 112 112 . . . . . . . . . . . . . . . . . -10 112 112 . . . . . . . . . . . . . . . . . -9 112 112 . . . . . . . . . . . . . . . . . -8 112 112 . . . . . . . . . . . . . . . . . -7 112 112 . . . . . . . . . . . . . . . . . -6 112 112 . . . . . . . . . . . . . . . . . -5 112 112 . . . . . . . . . . . . . . . . . -4 112 112 . . . . . . . . . . . . . . . . . -3 112 112 . . . . . . . . . . . . . . . . . -2 112 112 . . . . . . . . . . . . . . . . . -1 112 112 . . . . . . . . . . . . . . . . . . 112 112 . . . . . . . . . . . . . . . . . 1 112 112 . . . . . . . . . . . . . . . . . 2 112 112 . . . . . . . . . . . . . . . . . 3 112 112 . . . . . . . . . . . . . . . . . 4 112 112 . . . . . . . . . . . . . . . . . 5 112 112 . . . . . . . . . . . . . . . . . 6 112 20 92 . . . . . . . . . . . . . . . . 7 112 20 92 . . . . . . . . . . . . . . . . 8 112 20 92 . . . . . . . . . . . . . . . . 9 112 3 76 . . . 33 . . . . . . . . . . . . 10 112 3 109 . . . . . . . . . . . . . . . . 11 112 3 109 . . . . . . . . . . . . . . . . 12 112 3 109 . . . . . . . . . . . . . . . . 13 112 3 93 16 . . . . . . . . . . . . . . . 14 112 3 14 . . . . . . . . 95 . . . . . . . 15 112 3 109 . . . . . . . . . . . . . . . . 16 112 3 109 . . . . . . . . . . . . . . . . 17 112 3 109 . . . . . . . . . . . . . . . . 18 112 3 109 . . . . . . . . . . . . . . . . 19 112 3 109 . . . . . . . . . . . . . . . . 20 112 3 109 . . . . . . . . . . . . . . . . 26 112 . 20 . . . . . . . 76 . . . . . . . 16 28 112 . 100 . . . . . . . . . . . . . 12 . . 30 112 . 24 . . . . . . . . . . . . . 12 . 76 37 112 . 100 . . . . . 12 . . . . . . . . . . 38 112 . 29 83 . . . . . . . . . . . . . . . 45 112 . 96 . . 16 . . . . . . . . . . . . . 46 112 . 100 . . 12 . . . . . . . . . . . . . 47 112 . 100 . . . 12 . . . . . . . . . . . . 52 112 . 100 . . . . . . . 12 . . . . . . . . 53 112 . 54 . . . . . . . 58 . . . . . . . . 55 112 . 57 . . . . . . . 12 . . 43 . . . . . 56 112 . 109 . . . . . . . 3 . . . . . . . . 57 112 . 14 33 64 . . . . . . . . . . . 1 . . 66 112 . 97 . 15 . . . . . . . . . . . . . . 67 112 . 97 . . . . . 15 . . . . . . . . . . 70 112 3 50 . . 3 . . . . . . . . . 56 . . . 71 112 3 14 . 3 . . . . 12 . . . . . . . 80 . 72 112 3 109 . . . . . . . . . . . . . . . . 73 112 3 109 . . . . . . . . . . . . . . . . 74 112 3 17 12 . 80 . . . . . . . . . . . . . 75 112 3 29 . . . . . . . 80 . . . . . . . . 76 112 3 109 . . . . . . . . . . . . . . . . 77 112 3 26 . . . . . . . . . . . . . . 83 . 78 112 3 109 . . . . . . . . . . . . . . . . 79 112 3 109 . . . . . . . . . . . . . . . . 80 112 3 109 . . . . . . . . . . . . . . . . 81 112 3 109 . . . . . . . . . . . . . . . . 82 112 3 109 . . . . . . . . . . . . . . . . 83 112 3 109 . . . . . . . . . . . . . . . . 84 112 3 51 . . . . . . . . . . . 58 . . . . 85 112 3 51 . . . . . . . 58 . . . . . . . . 86 112 3 50 . . 58 . 1 . . . . . . . . . . . 87 112 3 15 . . . 36 . . . 58 . . . . . . . . 88 112 3 109 . . . . . . . . . . . . . . . . 89 112 3 51 . . . . . . . . . . . . . . 58 . 90 112 3 51 . . . . . . . . . . . . . . 58 . 91 112 3 109 . . . . . . . . . . . . . . . . 92 112 3 109 . . . . . . . . . . . . . . . . 93 112 3 109 . . . . . . . . . . . . . . . . 94 112 17 95 . . . . . . . . . . . . . . . . 95 112 112 . . . . . . . . . . . . . . . . . 96 112 112 . . . . . . . . . . . . . . . . . 97 112 112 . . . . . . . . . . . . . . . . . 98 112 112 . . . . . . . . . . . . . . . . . 99 112 112 . . . . . . . . . . . . . . . . . 100 112 112 . . . . . . . . . . . . . . . . . 101 112 112 . . . . . . . . . . . . . . . . . 102 112 112 . . . . . . . . . . . . . . . . . 103 112 112 . . . . . . . . . . . . . . . . . 104 112 112 . . . . . . . . . . . . . . . . . 105 112 112 . . . . . . . . . . . . . . . . . 106 112 112 . . . . . . . . . . . . . . . . . 107 112 112 . . . . . . . . . . . . . . . . . 108 112 112 . . . . . . . . . . . . . . . . . 109 112 112 . . . . . . . . . . . . . . . . . 110 112 112 . . . . . . . . . . . . . . . . . 111 112 112 . . . . . . . . . . . . . . . . . 112 112 112 . . . . . . . . . . . . . . . . . 113 112 112 . . . . . . . . . . . . . . . . . 114 112 112 . . . . . . . . . . . . . . . . . 115 112 112 . . . . . . . . . . . . . . . . . 116 112 112 . . . . . . . . . . . . . . . . . 117 112 112 . . . . . . . . . . . . . . . . . 118 112 112 . . . . . . . . . . . . . . . . . 119 112 112 . . . . . . . . . . . . . . . . . 120 112 112 . . . . . . . . . . . . . . . . . 121 112 112 . . . . . . . . . . . . . . . . . 122 112 112 . . . . . . . . . . . . . . . . . 123 112 112 . . . . . . . . . . . . . . . . . 124 112 112 . . . . . . . . . . . . . . . . . 125 112 112 . . . . . . . . . . . . . . . . . 126 112 112 . . . . . . . . . . . . . . . . . 127 112 112 . . . . . . . . . . . . . . . . . 128 112 112 . . . . . . . . . . . . . . . . . 129 112 112 . . . . . . . . . . . . . . . . . 130 112 112 . . . . . . . . . . . . . . . . . 131 112 112 . . . . . . . . . . . . . . . . . 132 112 112 . . . . . . . . . . . . . . . . . 133 112 112 . . . . . . . . . . . . . . . . . 134 112 112 . . . . . . . . . . . . . . . . . 135 112 112 . . . . . . . . . . . . . . . . . 136 112 112 . . . . . . . . . . . . . . . . . 137 112 112 . . . . . . . . . . . . . . . . . 138 112 112 . . . . . . . . . . . . . . . . . 139 112 112 . . . . . . . . . . . . . . . . . 140 112 112 . . . . . . . . . . . . . . . . . 141 112 112 . . . . . . . . . . . . . . . . . 142 112 112 . . . . . . . . . . . . . . . . . 143 112 112 . . . . . . . . . . . . . . . . . 144 112 112 . . . . . . . . . . . . . . . . . 145 112 112 . . . . . . . . . . . . . . . . . 146 112 112 . . . . . . . . . . . . . . . . . 147 112 112 . . . . . . . . . . . . . . . . . 148 112 112 . . . . . . . . . . . . . . . . . 149 112 112 . . . . . . . . . . . . . . . . . 150 112 112 . . . . . . . . . . . . . . . . . 151 112 112 . . . . . . . . . . . . . . . . . 152 112 112 . . . . . . . . . . . . . . . . . 153 112 112 . . . . . . . . . . . . . . . . . 154 112 112 . . . . . . . . . . . . . . . . . 155 112 112 . . . . . . . . . . . . . . . . . 156 112 112 . . . . . . . . . . . . . . . . . 157 112 112 . . . . . . . . . . . . . . . . . 158 112 112 . . . . . . . . . . . . . . . . . 159 112 112 . . . . . . . . . . . . . . . . . 160 112 112 . . . . . . . . . . . . . . . . . 161 112 112 . . . . . . . . . . . . . . . . . 162 112 112 . . . . . . . . . . . . . . . . . 163 112 112 . . . . . . . . . . . . . . . . . 164 112 112 . . . . . . . . . . . . . . . . . 165 112 112 . . . . . . . . . . . . . . . . . 166 112 112 . . . . . . . . . . . . . . . . . 167 112 112 . . . . . . . . . . . . . . . . . 168 112 112 . . . . . . . . . . . . . . . . . 169 112 112 . . . . . . . . . . . . . . . . . 170 112 112 . . . . . . . . . . . . . . . . . 171 112 112 . . . . . . . . . . . . . . . . . 172 112 112 . . . . . . . . . . . . . . . . . 173 112 112 . . . . . . . . . . . . . . . . . 174 112 112 . . . . . . . . . . . . . . . . . 175 112 112 . . . . . . . . . . . . . . . . . 176 112 112 . . . . . . . . . . . . . . . . . 177 112 112 . . . . . . . . . . . . . . . . . 178 112 112 . . . . . . . . . . . . . . . . . 179 112 112 . . . . . . . . . . . . . . . . . 180 112 112 . . . . . . . . . . . . . . . . . 181 112 112 . . . . . . . . . . . . . . . . . 182 112 112 . . . . . . . . . . . . . . . . . 183 112 112 . . . . . . . . . . . . . . . . . 184 112 112 . . . . . . . . . . . . . . . . . 185 112 112 . . . . . . . . . . . . . . . . . 186 112 112 . . . . . . . . . . . . . . . . . 187 112 112 . . . . . . . . . . . . . . . . . 188 112 112 . . . . . . . . . . . . . . . . . 189 112 112 . . . . . . . . . . . . . . . . . 190 112 112 . . . . . . . . . . . . . . . . . 191 112 112 . . . . . . . . . . . . . . . . . 192 112 112 . . . . . . . . . . . . . . . . . 193 112 112 . . . . . . . . . . . . . . . . . 194 112 112 . . . . . . . . . . . . . . . . . 195 112 112 . . . . . . . . . . . . . . . . . 196 112 112 . . . . . . . . . . . . . . . . . 197 112 112 . . . . . . . . . . . . . . . . . 198 112 112 . . . . . . . . . . . . . . . . . 199 112 112 . . . . . . . . . . . . . . . . . 200 112 112 . . . . . . . . . . . . . . . . . 201 112 112 . . . . . . . . . . . . . . . . . 202 112 112 . . . . . . . . . . . . . . . . . 203 112 112 . . . . . . . . . . . . . . . . . 204 112 112 . . . . . . . . . . . . . . . . . 205 112 112 . . . . . . . . . . . . . . . . . 206 112 112 . . . . . . . . . . . . . . . . . 207 112 112 . . . . . . . . . . . . . . . . . 208 112 112 . . . . . . . . . . . . . . . . . 209 112 112 . . . . . . . . . . . . . . . . . 210 112 112 . . . . . . . . . . . . . . . . . 211 112 112 . . . . . . . . . . . . . . . . . 212 112 112 . . . . . . . . . . . . . . . . . 213 112 112 . . . . . . . . . . . . . . . . . 214 112 112 . . . . . . . . . . . . . . . . . 215 112 112 . . . . . . . . . . . . . . . . . 216 112 112 . . . . . . . . . . . . . . . . . 217 112 112 . . . . . . . . . . . . . . . . . 218 112 112 . . . . . . . . . . . . . . . . . 219 112 112 . . . . . . . . . . . . . . . . . 220 112 112 . . . . . . . . . . . . . . . . . 221 112 112 . . . . . . . . . . . . . . . . . 222 112 112 . . . . . . . . . . . . . . . . . 223 112 112 . . . . . . . . . . . . . . . . . 224 112 112 . . . . . . . . . . . . . . . . . 225 112 112 . . . . . . . . . . . . . . . . . 226 112 112 . . . . . . . . . . . . . . . . . 227 112 112 . . . . . . . . . . . . . . . . . 228 112 112 . . . . . . . . . . . . . . . . . 229 112 112 . . . . . . . . . . . . . . . . . 230 112 112 . . . . . . . . . . . . . . . . . 231 112 112 . . . . . . . . . . . . . . . . . 232 112 112 . . . . . . . . . . . . . . . . . 233 112 112 . . . . . . . . . . . . . . . . . 234 112 112 . . . . . . . . . . . . . . . . . 235 112 112 . . . . . . . . . . . . . . . . . 236 112 112 . . . . . . . . . . . . . . . . . 237 112 112 . . . . . . . . . . . . . . . . . using the default genome assembly (assembly="hg19") SNP genotypes: 60 samples X 275 SNPs SNPs range from 29417816bp to 30410205bp on hg19 Missing rate per SNP: min: 0, max: 0.0666667, mean: 0.0652727, median: 0.0666667, sd: 0.00939558 Missing rate per sample: min: 0, max: 0.974545, mean: 0.0652727, median: 0, sd: 0.245066 Minor allele frequency: min: 0, max: 0.491071, mean: 0.215181, median: 0.1875, sd: 0.139271 Allelic information: C/T A/G G/T A/C 125 97 32 21 Build a HIBAG model with 10 individual classifiers: MAF threshold: NaN excluding 9 monomorphic SNPs # of SNPs randomly sampled as candidates for each selection: 17 # of SNPs: 266 # of samples: 60 # of unique HLA alleles: 14 CPU flags: 64-bit, AVX512BW # of threads: 1 [-] 2023-10-16 03:01:19 === building individual classifier 1, out-of-bag (23/38.3%) === [1] 2023-10-16 03:01:19, oob acc: 89.13%, # of SNPs: 13, # of haplo: 49 === building individual classifier 2, out-of-bag (24/40.0%) === [2] 2023-10-16 03:01:20, oob acc: 89.58%, # of SNPs: 21, # of haplo: 45 === building individual classifier 3, out-of-bag (24/40.0%) === [3] 2023-10-16 03:01:20, oob acc: 91.67%, # of SNPs: 19, # of haplo: 38 === building individual classifier 4, out-of-bag (19/31.7%) === [4] 2023-10-16 03:01:20, oob acc: 97.37%, # of SNPs: 17, # of haplo: 44 === building individual classifier 5, out-of-bag (22/36.7%) === [5] 2023-10-16 03:01:20, oob acc: 90.91%, # of SNPs: 15, # of haplo: 60 === building individual classifier 6, out-of-bag (23/38.3%) === [6] 2023-10-16 03:01:20, oob acc: 93.48%, # of SNPs: 19, # of haplo: 79 === building individual classifier 7, out-of-bag (18/30.0%) === [7] 2023-10-16 03:01:20, oob acc: 100.00%, # of SNPs: 18, # of haplo: 47 === building individual classifier 8, out-of-bag (20/33.3%) === [8] 2023-10-16 03:01:20, oob acc: 95.00%, # of SNPs: 12, # of haplo: 23 === building individual classifier 9, out-of-bag (23/38.3%) === [9] 2023-10-16 03:01:20, oob acc: 100.00%, # of SNPs: 14, # of haplo: 48 === building individual classifier 10, out-of-bag (22/36.7%) === [10] 2023-10-16 03:01:20, oob acc: 100.00%, # of SNPs: 16, # of haplo: 38 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 0.0001840333 0.0001887449 0.0002311489 0.0033116516 0.0112003631 0.0256476008 Max. Mean SD 0.4572385232 0.0419991093 0.1000703516 Accuracy with training data: 98.33% Out-of-bag accuracy: 94.71% Gene: HLA-A Training dataset: 60 samples X 266 SNPs # of HLA alleles: 14 # of individual classifiers: 10 total # of SNPs used: 106 avg. # of SNPs in an individual classifier: 16.40 (sd: 2.91, min: 12, max: 21, median: 16.50) avg. # of haplotypes in an individual classifier: 47.10 (sd: 14.72, min: 23, max: 79, median: 46.00) avg. out-of-bag accuracy: 94.71% (sd: 4.39%, min: 89.13%, max: 100.00%, median: 94.24%) Matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 0.0001840333 0.0001887449 0.0002311489 0.0033116516 0.0112003631 0.0256476008 Max. Mean SD 0.4572385232 0.0419991093 0.1000703516 Genome assembly: hg19 SNP genotypes: 60 samples X 275 SNPs SNPs range from 29417816bp to 30410205bp on hg19 Missing rate per SNP: min: 0, max: 0.0666667, mean: 0.0652727, median: 0.0666667, sd: 0.00939558 Missing rate per sample: min: 0, max: 0.974545, mean: 0.0652727, median: 0, sd: 0.245066 Minor allele frequency: min: 0, max: 0.491071, mean: 0.215181, median: 0.1875, sd: 0.139271 Allelic information: C/T A/G G/T A/C 125 97 32 21 using the default genome assembly (assembly="hg19") SNP genotypes: 60 samples X 275 SNPs SNPs range from 29417816bp to 30410205bp on hg19 Missing rate per SNP: min: 0, max: 0.0666667, mean: 0.0652727, median: 0.0666667, sd: 0.00939558 Missing rate per sample: min: 0, max: 0.974545, mean: 0.0652727, median: 0, sd: 0.245066 Minor allele frequency: min: 0, max: 0.491071, mean: 0.215181, median: 0.1875, sd: 0.139271 Allelic information: C/T A/G G/T A/C 125 97 32 21 Loading required namespace: gdsfmt Loading required namespace: SNPRelate Open 'F:/biocbuild/bbs-3.17-bioc/R/library/HIBAG/extdata/HapMap_CEU_Chr6.gds' Import 1668 SNPs within the xMHC region on chromosome 6 2 SNPs with invalid alleles have been removed. SNP genotypes: 165 samples X 1666 SNPs SNPs range from 28837960bp to 33524089bp on hg18 Missing rate per SNP: min: 0, max: 0.0484848, mean: 0.00175707, median: 0, sd: 0.00515153 Missing rate per sample: min: 0, max: 0.0120048, mean: 0.00175707, median: 0.00120048, sd: 0.00210091 Minor allele frequency: min: 0, max: 0.5, mean: 0.19767, median: 0.175758, sd: 0.150469 Allelic information: A/G T/C G/A C/T T/G A/C C/A G/T A/T C/G G/C T/A 412 318 299 285 79 76 75 56 20 19 16 11 SNP genotypes: 60 samples X 1564 SNPs SNPs range from 25769023bp to 33421576bp on hg19 Missing rate per SNP: min: 0, max: 0.0666667, mean: 0.0651215, median: 0.0666667, sd: 0.00968287 Missing rate per sample: min: 0, max: 0.969949, mean: 0.0651215, median: 0.000639386, sd: 0.243737 Minor allele frequency: min: 0, max: 0.5, mean: 0.227582, median: 0.205357, sd: 0.1389 Allelic information: A/G C/T G/T A/C 655 632 141 136 Open 'F:/biocbuild/bbs-3.17-bioc/R/library/HIBAG/extdata/HapMap_CEU.bed' (the individual-major mode) Open 'F:/biocbuild/bbs-3.17-bioc/R/library/HIBAG/extdata/HapMap_CEU.fam' Open 'F:/biocbuild/bbs-3.17-bioc/R/library/HIBAG/extdata/HapMap_CEU.bim' Import 3932 SNPs within the xMHC region on chromosome 6 No allelic strand or A/B allele is flipped. SNP genotypes: 150 samples X 1214 SNPs SNPs range from 28695148bp to 33421576bp on hg19 Missing rate per SNP: min: 0, max: 0.0866667, mean: 0.0844646, median: 0.0866667, sd: 0.0128841 Missing rate per sample: min: 0, max: 0.968699, mean: 0.0844646, median: 0.000823723, sd: 0.273119 Minor allele frequency: min: 0, max: 0.5, mean: 0.234168, median: 0.218978, sd: 0.137855 Allelic information: A/G C/T G/T A/C 505 496 109 104 SNP genotypes: 60 samples X 1564 SNPs SNPs range from 25769023bp to 33421576bp on hg19 Missing rate per SNP: min: 0, max: 0.0666667, mean: 0.0651215, median: 0.0666667, sd: 0.00968287 Missing rate per sample: min: 0, max: 0.969949, mean: 0.0651215, median: 0.000639386, sd: 0.243737 Minor allele frequency: min: 0, max: 0.5, mean: 0.227582, median: 0.205357, sd: 0.1389 Allelic information: A/G C/T G/T A/C 655 632 141 136 SNP genotypes: 60 samples X 1564 SNPs SNPs range from 25769023bp to 33421576bp on hg19 Missing rate per SNP: min: 0, max: 0.0666667, mean: 0.0651215, median: 0.0666667, sd: 0.00968287 Missing rate per sample: min: 0, max: 0.969949, mean: 0.0651215, median: 0.000639386, sd: 0.243737 Minor allele frequency: min: 0, max: 0.5, mean: 0.227582, median: 0.205357, sd: 0.1389 Allelic information: A/G C/T G/T A/C 655 632 141 136 SNP genotypes: 60 samples X 1564 SNPs SNPs range from 25769023bp to 33421576bp on hg19 Missing rate per SNP: min: 0, max: 0.0666667, mean: 0.0651215, median: 0.0666667, sd: 0.00968287 Missing rate per sample: min: 0, max: 0.969949, mean: 0.0651215, median: 0.000639386, sd: 0.243737 Minor allele frequency: min: 0, max: 0.5, mean: 0.227582, median: 0.205357, sd: 0.1389 Allelic information: A/G C/T G/T A/C 655 632 141 136 SNP genotypes: 60 samples X 1564 SNPs SNPs range from 25769023bp to 33421576bp on hg19 Missing rate per SNP: min: 0, max: 0.0666667, mean: 0.0651215, median: 0.0666667, sd: 0.00968287 Missing rate per sample: min: 0, max: 0.969949, mean: 0.0651215, median: 0.000639386, sd: 0.243737 Minor allele frequency: min: 0, max: 0.5, mean: 0.227582, median: 0.205357, sd: 0.1389 Allelic information: A/G C/T G/T A/C 655 632 141 136 SNP genotypes: 60 samples X 1197 SNPs SNPs range from 25769023bp to 33421576bp on hg19 Missing rate per SNP: min: 0, max: 0.0666667, mean: 0.0657059, median: 0.0666667, sd: 0.00757446 Missing rate per sample: min: 0, max: 0.978279, mean: 0.0657059, median: 0.000835422, sd: 0.245786 Minor allele frequency: min: 0.101695, max: 0.5, mean: 0.278734, median: 0.267857, sd: 0.117338 Allelic information: A/G C/T A/C G/T 511 476 105 105 SNP genotypes: 60 samples X 1564 SNPs SNPs range from 25769023bp to 33421576bp on hg19 Missing rate per SNP: min: 0, max: 0.0666667, mean: 0.0651215, median: 0.0666667, sd: 0.00968287 Missing rate per sample: min: 0, max: 0.969949, mean: 0.0651215, median: 0.000639386, sd: 0.243737 Minor allele frequency: min: 0, max: 0.5, mean: 0.227582, median: 0.205357, sd: 0.1389 Allelic information: A/G C/T G/T A/C 655 632 141 136 Open 'F:/biocbuild/bbs-3.17-bioc/R/library/HIBAG/extdata/HapMap_CEU.bed' (the individual-major mode) Open 'F:/biocbuild/bbs-3.17-bioc/R/library/HIBAG/extdata/HapMap_CEU.fam' Open 'F:/biocbuild/bbs-3.17-bioc/R/library/HIBAG/extdata/HapMap_CEU.bim' Import 3932 SNPs within the xMHC region on chromosome 6 SNP genotypes: 90 samples X 3932 SNPs SNPs range from 28694391bp to 33426848bp on hg19 Missing rate per SNP: min: 0, max: 0.1, mean: 0.0888861, median: 0.1, sd: 0.0298489 Missing rate per sample: min: 0, max: 0.869786, mean: 0.0888861, median: 0.00101729, sd: 0.261554 Minor allele frequency: min: 0, max: 0.5, mean: 0.210453, median: 0.191358, sd: 0.155144 Allelic information: A/G C/T G/T A/C C/G A/T 1567 1510 348 332 111 64 No allelic strand or A/B allele is flipped. SNP genotypes: 60 samples X 1214 SNPs SNPs range from 28695148bp to 33421576bp on hg19 Missing rate per SNP: min: 0, max: 0.0666667, mean: 0.0650879, median: 0.0666667, sd: 0.0097381 Missing rate per sample: min: 0, max: 0.968699, mean: 0.0650879, median: 0.000823723, sd: 0.243373 Minor allele frequency: min: 0, max: 0.5, mean: 0.234476, median: 0.223214, sd: 0.13833 Allelic information: A/G C/T G/T A/C 505 496 109 104 using the default genome assembly (assembly="hg19") SNP genotypes: 60 samples X 275 SNPs SNPs range from 29417816bp to 30410205bp on hg19 Missing rate per SNP: min: 0, max: 0.0666667, mean: 0.0652727, median: 0.0666667, sd: 0.00939558 Missing rate per sample: min: 0, max: 0.974545, mean: 0.0652727, median: 0, sd: 0.245066 Minor allele frequency: min: 0, max: 0.491071, mean: 0.215181, median: 0.1875, sd: 0.139271 Allelic information: C/T A/G G/T A/C 125 97 32 21 MAF filter (>=0.01), excluding 9 SNP(s) using the default genome assembly (assembly="hg19") SNP genotypes: 60 samples X 1564 SNPs SNPs range from 25769023bp to 33421576bp on hg19 Missing rate per SNP: min: 0, max: 0.0666667, mean: 0.0651215, median: 0.0666667, sd: 0.00968287 Missing rate per sample: min: 0, max: 0.969949, mean: 0.0651215, median: 0.000639386, sd: 0.243737 Minor allele frequency: min: 0, max: 0.5, mean: 0.227582, median: 0.205357, sd: 0.1389 Allelic information: A/G C/T G/T A/C 655 632 141 136 SNP genotypes: 60 samples X 1564 SNPs SNPs range from 25769023bp to 33421576bp on hg19 Missing rate per SNP: min: 0, max: 0.0666667, mean: 0.0651215, median: 0.0666667, sd: 0.00968287 Missing rate per sample: min: 0, max: 0.969949, mean: 0.0651215, median: 0.000639386, sd: 0.243737 Minor allele frequency: min: 0, max: 0.5, mean: 0.227582, median: 0.205357, sd: 0.1389 Allelic information: A/G C/T G/T A/C 655 632 141 136 Build a HIBAG model with 1 individual classifier: MAF threshold: NaN # of SNPs randomly sampled as candidates for each selection: 10 # of SNPs: 83 # of samples: 60 # of unique HLA alleles: 17 CPU flags: 64-bit, AVX512BW # of threads: 1 [-] 2023-10-16 03:01:22 === building individual classifier 1, out-of-bag (25/41.7%) === [1] 2023-10-16 03:01:22, oob acc: 92.00%, # of SNPs: 24, # of haplo: 29 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 2.222247e-28 1.128571e-24 1.128371e-23 6.944660e-04 8.333349e-03 3.673611e-02 Max. Mean SD 9.105734e-02 2.054649e-02 2.598603e-02 Accuracy with training data: 96.67% Out-of-bag accuracy: 92.00% Build a HIBAG model with 1 individual classifier: MAF threshold: NaN # of SNPs randomly sampled as candidates for each selection: 10 # of SNPs: 83 # of samples: 60 # of unique HLA alleles: 17 CPU flags: 64-bit, AVX512BW # of threads: 1 [-] 2023-10-16 03:01:22 === building individual classifier 1, out-of-bag (20/33.3%) === [1] 2023-10-16 03:01:22, oob acc: 97.50%, # of SNPs: 18, # of haplo: 34 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 5.014366e-13 4.671716e-10 4.667203e-09 1.640727e-03 7.504546e-03 2.126745e-02 Max. Mean SD 9.784316e-02 1.490504e-02 1.947399e-02 Accuracy with training data: 97.50% Out-of-bag accuracy: 97.50% Build a HIBAG model with 1 individual classifier: MAF threshold: NaN # of SNPs randomly sampled as candidates for each selection: 10 # of SNPs: 83 # of samples: 60 # of unique HLA alleles: 17 CPU flags: 64-bit, AVX512BW # of threads: 1 [-] 2023-10-16 03:01:22 === building individual classifier 1, out-of-bag (18/30.0%) === [1] 2023-10-16 03:01:22, oob acc: 88.89%, # of SNPs: 14, # of haplo: 38 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 2.222223e-18 6.603163e-16 6.583163e-15 1.944468e-03 1.020834e-02 4.122739e-02 Max. Mean SD 1.808372e-01 2.422083e-02 3.699146e-02 Accuracy with training data: 95.83% Out-of-bag accuracy: 88.89% Gene: HLA-C Training dataset: 60 samples X 83 SNPs # of HLA alleles: 17 # of individual classifiers: 3 total # of SNPs used: 40 avg. # of SNPs in an individual classifier: 18.67 (sd: 5.03, min: 14, max: 24, median: 18.00) avg. # of haplotypes in an individual classifier: 33.67 (sd: 4.51, min: 29, max: 38, median: 34.00) avg. out-of-bag accuracy: 92.80% (sd: 4.36%, min: 88.89%, max: 97.50%, median: 92.00%) Matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 1.708707e-13 1.229313e-05 1.229313e-04 1.860746e-03 9.050936e-03 3.332722e-02 Max. Mean SD 1.210500e-01 1.989079e-02 2.507466e-02 Genome assembly: hg19 Build a HIBAG model with 2 individual classifiers: MAF threshold: NaN excluding 1 monomorphic SNP # of SNPs randomly sampled as candidates for each selection: 9 # of SNPs: 77 # of samples: 60 # of unique HLA alleles: 12 CPU flags: 64-bit, AVX512BW # of threads: 1 [-] 2023-10-16 03:01:22 === building individual classifier 1, out-of-bag (25/41.7%) === [1] 2023-10-16 03:01:22, oob acc: 98.00%, # of SNPs: 13, # of haplo: 20 === building individual classifier 2, out-of-bag (22/36.7%) === [2] 2023-10-16 03:01:22, oob acc: 90.91%, # of SNPs: 15, # of haplo: 21 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 7.678603e-08 2.465759e-05 2.458848e-04 5.196909e-03 1.419916e-02 2.996040e-02 Max. Mean SD 4.735980e-01 4.413724e-02 1.070518e-01 Accuracy with training data: 95.00% Out-of-bag accuracy: 94.45% Gene: HLA-DQB1 Training dataset: 60 samples X 77 SNPs # of HLA alleles: 12 # of individual classifiers: 2 total # of SNPs used: 20 avg. # of SNPs in an individual classifier: 14.00 (sd: 1.41, min: 13, max: 15, median: 14.00) avg. # of haplotypes in an individual classifier: 20.50 (sd: 0.71, min: 20, max: 21, median: 20.50) avg. out-of-bag accuracy: 94.45% (sd: 5.01%, min: 90.91%, max: 98.00%, median: 94.45%) Matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 7.678603e-08 2.465759e-05 2.458848e-04 5.196909e-03 1.419916e-02 2.996040e-02 Max. Mean SD 4.735980e-01 4.413724e-02 1.070518e-01 Genome assembly: hg19 Build a HIBAG model with 4 individual classifiers: MAF threshold: NaN excluding 9 monomorphic SNPs # of SNPs randomly sampled as candidates for each selection: 17 # of SNPs: 266 # of samples: 60 # of unique HLA alleles: 14 CPU flags: 64-bit, AVX512BW # of threads: 1 [-] 2023-10-16 03:01:22 === building individual classifier 1, out-of-bag (23/38.3%) === [1] 2023-10-16 03:01:22, oob acc: 89.13%, # of SNPs: 13, # of haplo: 49 === building individual classifier 2, out-of-bag (24/40.0%) === [2] 2023-10-16 03:01:23, oob acc: 89.58%, # of SNPs: 21, # of haplo: 45 === building individual classifier 3, out-of-bag (24/40.0%) === [3] 2023-10-16 03:01:23, oob acc: 91.67%, # of SNPs: 19, # of haplo: 38 === building individual classifier 4, out-of-bag (19/31.7%) === [4] 2023-10-16 03:01:23, oob acc: 97.37%, # of SNPs: 17, # of haplo: 44 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 0.0001388903 0.0001450361 0.0002003484 0.0024541490 0.0129509766 0.0377797811 Max. Mean SD 0.4302198785 0.0406177754 0.0924307480 Accuracy with training data: 98.33% Out-of-bag accuracy: 91.94% Gene: HLA-A Training dataset: 60 samples X 266 SNPs # of HLA alleles: 14 # of individual classifiers: 4 total # of SNPs used: 57 avg. # of SNPs in an individual classifier: 17.50 (sd: 3.42, min: 13, max: 21, median: 18.00) avg. # of haplotypes in an individual classifier: 44.00 (sd: 4.55, min: 38, max: 49, median: 44.50) avg. out-of-bag accuracy: 91.94% (sd: 3.79%, min: 89.13%, max: 97.37%, median: 90.62%) Matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 0.0001388903 0.0001450361 0.0002003484 0.0024541490 0.0129509766 0.0377797811 Max. Mean SD 0.4302198785 0.0406177754 0.0924307480 Genome assembly: hg19 Gene: HLA-A Training dataset: 60 samples X 266 SNPs # of HLA alleles: 14 # of individual classifiers: 4 total # of SNPs used: 57 avg. # of SNPs in an individual classifier: 17.50 (sd: 3.42, min: 13, max: 21, median: 18.00) avg. # of haplotypes in an individual classifier: 44.00 (sd: 4.55, min: 38, max: 49, median: 44.50) avg. out-of-bag accuracy: 91.94% (sd: 3.79%, min: 89.13%, max: 97.37%, median: 90.62%) Matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 0.0001388903 0.0001450361 0.0002003484 0.0024541490 0.0129509766 0.0377797811 Max. Mean SD 0.4302198785 0.0406177754 0.0924307480 Genome assembly: hg19 Mon Oct 16 03:01:23 2023, passing the 1/4 classifiers. Mon Oct 16 03:01:23 2023, passing the 2/4 classifiers. Mon Oct 16 03:01:23 2023, passing the 3/4 classifiers. Mon Oct 16 03:01:23 2023, passing the 4/4 classifiers. Allele Num. Freq. CR ACC SEN SPE PPV NPV Miscall Valid. Valid. (%) (%) (%) (%) (%) (%) (%) ---- Overall accuracy: 91.9%, Call rate: 100.0% 01:01 25 0.2083 100.0 98.4 100.0 97.9 95.0 100.0 -- 02:01 43 0.3583 100.0 98.9 100.0 98.5 96.8 100.0 -- 02:06 1 0.0083 25.0 97.9 0.0 100.0 -- 97.9 02:01 (100) 03:01 9 0.0750 100.0 100.0 100.0 100.0 100.0 100.0 -- 11:01 5 0.0417 100.0 100.0 100.0 100.0 100.0 100.0 -- 23:01 3 0.0250 75.0 97.9 66.7 100.0 100.0 97.9 24:02 (100) 24:02 11 0.0917 100.0 97.9 100.0 97.7 87.5 100.0 -- 24:03 1 0.0083 50.0 97.9 0.0 100.0 -- 97.9 02:01 (50) 25:01 5 0.0417 100.0 98.3 100.0 98.2 74.2 100.0 -- 26:01 3 0.0250 100.0 98.8 62.5 100.0 100.0 98.8 25:01 (100) 29:02 4 0.0333 100.0 97.8 75.0 100.0 100.0 97.8 02:06 (75) 31:01 3 0.0250 75.0 97.9 66.7 100.0 100.0 97.9 01:01 (100) 32:01 4 0.0333 100.0 100.0 100.0 100.0 100.0 100.0 -- 68:01 3 0.0250 100.0 100.0 100.0 100.0 100.0 100.0 -- \title{Imputation Evaluation} \documentclass[12pt]{article} \usepackage{fullpage} \usepackage{longtable} \begin{document} \maketitle \setlength{\LTcapwidth}{6.5in} % -------- BEGIN TABLE -------- \begin{longtable}{rrr | rrrrrrl} \caption{The sensitivity (SEN), specificity (SPE), positive predictive value (PPV), negative predictive value (NPV) and call rate (CR).} \label{tab:accuracy} \\ Allele & Num. & Freq. & CR & ACC & SEN & SPE & PPV & NPV & Miscall \\ & Valid. & Valid. & (\%) & (\%) & (\%) & (\%) & (\%) & (\%) & (\%) \\ \hline\hline \endfirsthead \multicolumn{10}{c}{{\normalsize \tablename\ \thetable{} -- Continued from previous page}} \\ Allele & Num. & Freq. & CR & ACC & SEN & SPE & PPV & NPV & Miscall \\ & Valid. & Valid. & (\%) & (\%) & (\%) & (\%) & (\%) & (\%) & (\%) \\ \hline\hline \endhead \hline \multicolumn{10}{r}{Continued on next page ...} \\ \hline \endfoot \hline\hline \endlastfoot \multicolumn{10}{l}{\it Overall accuracy: 91.9\%, Call rate: 100.0\%} \\ 01:01 & 25 & 0.2083 & 100.0 & 98.4 & 100.0 & 97.9 & 95.0 & 100.0 & -- \\ 02:01 & 43 & 0.3583 & 100.0 & 98.9 & 100.0 & 98.5 & 96.8 & 100.0 & -- \\ 02:06 & 1 & 0.0083 & 25.0 & 97.9 & 0.0 & 100.0 & -- & 97.9 & 02:01 (100) \\ 03:01 & 9 & 0.0750 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & -- \\ 11:01 & 5 & 0.0417 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & -- \\ 23:01 & 3 & 0.0250 & 75.0 & 97.9 & 66.7 & 100.0 & 100.0 & 97.9 & 24:02 (100) \\ 24:02 & 11 & 0.0917 & 100.0 & 97.9 & 100.0 & 97.7 & 87.5 & 100.0 & -- \\ 24:03 & 1 & 0.0083 & 50.0 & 97.9 & 0.0 & 100.0 & -- & 97.9 & 02:01 (50) \\ 25:01 & 5 & 0.0417 & 100.0 & 98.3 & 100.0 & 98.2 & 74.2 & 100.0 & -- \\ 26:01 & 3 & 0.0250 & 100.0 & 98.8 & 62.5 & 100.0 & 100.0 & 98.8 & 25:01 (100) \\ 29:02 & 4 & 0.0333 & 100.0 & 97.8 & 75.0 & 100.0 & 100.0 & 97.8 & 02:06 (75) \\ 31:01 & 3 & 0.0250 & 75.0 & 97.9 & 66.7 & 100.0 & 100.0 & 97.9 & 01:01 (100) \\ 32:01 & 4 & 0.0333 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & -- \\ 68:01 & 3 & 0.0250 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & -- \\ \end{longtable} % -------- END TABLE -------- \end{document} <!DOCTYPE html> <html> <head> <title>Imputation Evaluation</title> </head> <body> <h1>Imputation Evaluation</h1> <p></p> <h3><b>Table 1L:</b> The sensitivity (SEN), specificity (SPE), positive predictive value (PPV), negative predictive value (NPV) and call rate (CR).</h3> <table id="TB-Acc" class="tabular" border="1" CELLSPACING="1"> <tr> <th>Allele </th> <th>Num. Valid.</th> <th>Freq. Valid.</th> <th>CR (%)</th> <th>ACC (%)</th> <th>SEN (%)</th> <th>SPE (%)</th> <th>PPV (%)</th> <th>NPV (%)</th> <th>Miscall (%)</th> </tr> <tr> <td colspan="10"> <i> Overall accuracy: 91.9%, Call rate: 100.0% </i> </td> </tr> <tr> <td>01:01</td> <td>25</td> <td>0.2083</td> <td>100.0</td> <td>98.4</td> <td>100.0</td> <td>97.9</td> <td>95.0</td> <td>100.0</td> <td>--</td> </tr> <tr> <td>02:01</td> <td>43</td> <td>0.3583</td> <td>100.0</td> <td>98.9</td> <td>100.0</td> <td>98.5</td> <td>96.8</td> <td>100.0</td> <td>--</td> </tr> <tr> <td>02:06</td> <td>1</td> <td>0.0083</td> <td>25.0</td> <td>97.9</td> <td>0.0</td> <td>100.0</td> <td>--</td> <td>97.9</td> <td>02:01 (100)</td> </tr> <tr> <td>03:01</td> <td>9</td> <td>0.0750</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>--</td> </tr> <tr> <td>11:01</td> <td>5</td> <td>0.0417</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>--</td> </tr> <tr> <td>23:01</td> <td>3</td> <td>0.0250</td> <td>75.0</td> <td>97.9</td> <td>66.7</td> <td>100.0</td> <td>100.0</td> <td>97.9</td> <td>24:02 (100)</td> </tr> <tr> <td>24:02</td> <td>11</td> <td>0.0917</td> <td>100.0</td> <td>97.9</td> <td>100.0</td> <td>97.7</td> <td>87.5</td> <td>100.0</td> <td>--</td> </tr> <tr> <td>24:03</td> <td>1</td> <td>0.0083</td> <td>50.0</td> <td>97.9</td> <td>0.0</td> <td>100.0</td> <td>--</td> <td>97.9</td> <td>02:01 (50)</td> </tr> <tr> <td>25:01</td> <td>5</td> <td>0.0417</td> <td>100.0</td> <td>98.3</td> <td>100.0</td> <td>98.2</td> <td>74.2</td> <td>100.0</td> <td>--</td> </tr> <tr> <td>26:01</td> <td>3</td> <td>0.0250</td> <td>100.0</td> <td>98.8</td> <td>62.5</td> <td>100.0</td> <td>100.0</td> <td>98.8</td> <td>25:01 (100)</td> </tr> <tr> <td>29:02</td> <td>4</td> <td>0.0333</td> <td>100.0</td> <td>97.8</td> <td>75.0</td> <td>100.0</td> <td>100.0</td> <td>97.8</td> <td>02:06 (75)</td> </tr> <tr> <td>31:01</td> <td>3</td> <td>0.0250</td> <td>75.0</td> <td>97.9</td> <td>66.7</td> <td>100.0</td> <td>100.0</td> <td>97.9</td> <td>01:01 (100)</td> </tr> <tr> <td>32:01</td> <td>4</td> <td>0.0333</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>--</td> </tr> <tr> <td>68:01</td> <td>3</td> <td>0.0250</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>--</td> </tr> </table> </body> </html> Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 34 # of unique HLA alleles: 14 # of unique HLA genotypes: 23 Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 26 # of unique HLA alleles: 12 # of unique HLA genotypes: 14 Building a HIBAG model: 4 individual classifiers run in parallel with 1 compute node Build a HIBAG model with 4 individual classifiers: MAF threshold: NaN excluding 11 monomorphic SNPs # of SNPs randomly sampled as candidates for each selection: 17 # of SNPs: 264 # of samples: 34 # of unique HLA alleles: 14 CPU flags: 64-bit, AVX512BW # of threads: 2 [-] 2023-10-16 03:01:23 === building individual classifier 1, out-of-bag (11/32.4%) === [1] 2023-10-16 03:01:23, oob acc: 77.27%, # of SNPs: 13, # of haplo: 23 === building individual classifier 2, out-of-bag (13/38.2%) === [2] 2023-10-16 03:01:23, oob acc: 88.46%, # of SNPs: 12, # of haplo: 48 === building individual classifier 3, out-of-bag (14/41.2%) === [3] 2023-10-16 03:01:23, oob acc: 85.71%, # of SNPs: 11, # of haplo: 14 === building individual classifier 4, out-of-bag (10/29.4%) === [4] 2023-10-16 03:01:23, oob acc: 75.00%, # of SNPs: 13, # of haplo: 23 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 0.0002162725 0.0002198443 0.0002519909 0.0043752063 0.0092453043 0.0265291653 Max. Mean SD 0.4711415503 0.0442439721 0.1054645240 Accuracy with training data: 97.06% Out-of-bag accuracy: 81.61% Building a HIBAG model: 4 individual classifiers run in parallel with 2 compute nodes autosave to 'tmp_model.RData' [-] 2023-10-16 03:01:23 [1] 2023-10-16 03:01:23, worker 2, # of SNPs: 12, # of haplo: 53, oob acc: 90.9% ==Saved== #1, avg oob acc: 90.91%, sd: NA%, min: 90.91%, max: 90.91% [2] 2023-10-16 03:01:24, worker 2, # of SNPs: 14, # of haplo: 26, oob acc: 90.9% ==Saved== #2, avg oob acc: 90.91%, sd: 0.00%, min: 90.91%, max: 90.91% [3] 2023-10-16 03:01:24, worker 1, # of SNPs: 16, # of haplo: 65, oob acc: 90.9% Stop "job 1". ==Saved== #3, avg oob acc: 90.91%, sd: 0.00%, min: 90.91%, max: 90.91% [4] 2023-10-16 03:01:24, worker 1, # of SNPs: 15, # of haplo: 51, oob acc: 70.8% Stop "job 1". ==Saved== #4, avg oob acc: 85.89%, sd: 10.04%, min: 70.83%, max: 90.91% Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 5.407034e-05 7.372288e-05 2.505958e-04 2.162886e-03 8.003050e-03 3.061200e-02 Max. Mean SD 3.972988e-01 4.348663e-02 9.666056e-02 Accuracy with training data: 98.53% Out-of-bag accuracy: 85.89% Gene: HLA-A Training dataset: 34 samples X 264 SNPs # of HLA alleles: 14 # of individual classifiers: 4 total # of SNPs used: 48 avg. # of SNPs in an individual classifier: 14.25 (sd: 1.71, min: 12, max: 16, median: 14.50) avg. # of haplotypes in an individual classifier: 48.75 (sd: 16.38, min: 26, max: 65, median: 52.00) avg. out-of-bag accuracy: 85.89% (sd: 10.04%, min: 70.83%, max: 90.91%, median: 90.91%) Matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 5.407034e-05 7.372288e-05 2.505958e-04 2.162886e-03 8.003050e-03 3.061200e-02 Max. Mean SD 3.972988e-01 4.348663e-02 9.666056e-02 Genome assembly: hg19 HIBAG model for HLA-A: 4 individual classifiers 264 SNPs 14 unique HLA alleles: 01:01, 02:01, 02:06, ... Prediction: based on the averaged posterior probabilities Model assembly: hg19, SNP assembly: hg19 Matching the SNPs between the model and the test data: match.type="--" missing SNPs # Position 0 (0.0%) *being used [1] Pos+Allele 0 (0.0%) [2] RefSNP+Position 0 (0.0%) RefSNP 0 (0.0%) [1]: useful if ambiguous strands on array-based platforms [2]: suggested if the model and test data have been matched to the same reference genome Model platform: not applicable No allelic strand or A/B allele is flipped. # of samples: 26 CPU flags: 64-bit, AVX512BW # of threads: 1 Predicting (2023-10-16 03:01:24) 0% Predicting (2023-10-16 03:01:24) 100% Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 26 # of unique HLA alleles: 11 # of unique HLA genotypes: 14 Posterior probability: [0,0.25) [0.25,0.5) [0.5,0.75) [0.75,1] 1 (3.8%) 2 (7.7%) 7 (26.9%) 16 (61.5%) Matching proportion of SNP haplotype: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.000000 0.001535 0.003090 0.029405 0.027387 0.397299 Dosages: $dosage - num [1:14, 1:26] 1.74e-10 5.39e-09 2.53e-11 1.00 2.08e-15 ... - attr(*, "dimnames")=List of 2 ..$ : chr [1:14] "01:01" "02:01" "02:06" "03:01" ... ..$ : chr [1:26] "NA11881" "NA11992" "NA11994" "NA12249" ... HIBAG model for HLA-A: 4 individual classifiers 264 SNPs 14 unique HLA alleles: 01:01, 02:01, 02:06, ... Prediction: based on the averaged posterior probabilities run in parallel with 2 compute nodes Model assembly: hg19, SNP assembly: hg19 Matching the SNPs between the model and the test data: match.type="--" missing SNPs # Position 0 (0.0%) *being used [1] Pos+Allele 0 (0.0%) [2] RefSNP+Position 0 (0.0%) RefSNP 0 (0.0%) [1]: useful if ambiguous strands on array-based platforms [2]: suggested if the model and test data have been matched to the same reference genome Model platform: not applicable No allelic strand or A/B allele is flipped. # of samples: 26 CPU flags: 64-bit, AVX512BW Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 26 # of unique HLA alleles: 11 # of unique HLA genotypes: 14 Posterior probability: [0,0.25) [0.25,0.5) [0.5,0.75) [0.75,1] 1 (3.8%) 2 (7.7%) 7 (26.9%) 16 (61.5%) Matching proportion of SNP haplotype: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.000000 0.001535 0.003090 0.029405 0.027387 0.397299 Dosages: $dosage - num [1:14, 1:26] 1.74e-10 5.39e-09 2.53e-11 1.00 2.08e-15 ... - attr(*, "dimnames")=List of 2 ..$ : chr [1:14] "01:01" "02:01" "02:06" "03:01" ... ..$ : chr [1:26] "NA11881" "NA11992" "NA11994" "NA12249" ... Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 34 # of unique HLA alleles: 14 # of unique HLA genotypes: 21 Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 26 # of unique HLA alleles: 12 # of unique HLA genotypes: 17 Build a HIBAG model with 2 individual classifiers: MAF threshold: NaN excluding 11 monomorphic SNPs # of SNPs randomly sampled as candidates for each selection: 17 # of SNPs: 264 # of samples: 34 # of unique HLA alleles: 14 CPU flags: 64-bit, AVX512BW # of threads: 1 [-] 2023-10-16 03:01:24 === building individual classifier 1, out-of-bag (11/32.4%) === 1, SNP: 235, loss: 208.912, oob acc: 59.09%, # of haplo: 14 2, SNP: 136, loss: 139.316, oob acc: 63.64%, # of haplo: 14 3, SNP: 126, loss: 96.148, oob acc: 72.73%, # of haplo: 14 4, SNP: 89, loss: 76.2917, oob acc: 77.27%, # of haplo: 15 5, SNP: 102, loss: 61.3783, oob acc: 86.36%, # of haplo: 15 6, SNP: 105, loss: 49.1567, oob acc: 90.91%, # of haplo: 15 7, SNP: 117, loss: 43.0927, oob acc: 95.45%, # of haplo: 15 8, SNP: 259, loss: 26.6243, oob acc: 95.45%, # of haplo: 17 9, SNP: 60, loss: 17.6253, oob acc: 95.45%, # of haplo: 19 10, SNP: 236, loss: 9.50329, oob acc: 95.45%, # of haplo: 20 11, SNP: 94, loss: 7.27191, oob acc: 95.45%, # of haplo: 21 12, SNP: 58, loss: 6.70503, oob acc: 95.45%, # of haplo: 27 13, SNP: 243, loss: 2.87079, oob acc: 95.45%, # of haplo: 30 14, SNP: 5, loss: 2.77321, oob acc: 95.45%, # of haplo: 31 [1] 2023-10-16 03:01:24, oob acc: 95.45%, # of SNPs: 14, # of haplo: 31 === building individual classifier 2, out-of-bag (9/26.5%) === 1, SNP: 149, loss: 171.797, oob acc: 66.67%, # of haplo: 13 2, SNP: 176, loss: 120.459, oob acc: 72.22%, # of haplo: 14 3, SNP: 97, loss: 80.1731, oob acc: 83.33%, # of haplo: 14 4, SNP: 56, loss: 51.5193, oob acc: 94.44%, # of haplo: 16 5, SNP: 182, loss: 34.5643, oob acc: 94.44%, # of haplo: 18 6, SNP: 121, loss: 23.0259, oob acc: 94.44%, # of haplo: 18 7, SNP: 234, loss: 15.0596, oob acc: 94.44%, # of haplo: 20 8, SNP: 148, loss: 9.66757, oob acc: 94.44%, # of haplo: 20 9, SNP: 19, loss: 4.29975, oob acc: 94.44%, # of haplo: 27 10, SNP: 226, loss: 0.481093, oob acc: 94.44%, # of haplo: 27 11, SNP: 64, loss: 0.447483, oob acc: 94.44%, # of haplo: 28 12, SNP: 240, loss: 0.365545, oob acc: 94.44%, # of haplo: 37 13, SNP: 57, loss: 0.365132, oob acc: 94.44%, # of haplo: 38 [2] 2023-10-16 03:01:24, oob acc: 94.44%, # of SNPs: 13, # of haplo: 38 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 1.275953e-07 1.742509e-05 1.731025e-04 2.811482e-03 8.650597e-03 1.989621e-02 Max. Mean SD 5.990492e-02 1.464043e-02 1.658610e-02 Accuracy with training data: 100.00% Out-of-bag accuracy: 94.95% Build a HIBAG model with 2 individual classifiers: MAF threshold: NaN excluding 11 monomorphic SNPs # of SNPs randomly sampled as candidates for each selection: 17 # of SNPs: 264 # of samples: 34 # of unique HLA alleles: 14 CPU flags: 64-bit, AVX512BW # of threads: 1 [-] 2023-10-16 03:01:24 === building individual classifier 1, out-of-bag (14/41.2%) === 1, SNP: 118, loss: 190.304, oob acc: 53.57%, # of haplo: 13 2, SNP: 175, loss: 157.208, oob acc: 60.71%, # of haplo: 15 3, SNP: 103, loss: 128.429, oob acc: 64.29%, # of haplo: 15 4, SNP: 182, loss: 66.6054, oob acc: 71.43%, # of haplo: 15 5, SNP: 152, loss: 58.8041, oob acc: 78.57%, # of haplo: 15 6, SNP: 111, loss: 30.086, oob acc: 82.14%, # of haplo: 15 7, SNP: 130, loss: 15.3177, oob acc: 89.29%, # of haplo: 19 8, SNP: 229, loss: 9.99758, oob acc: 89.29%, # of haplo: 28 9, SNP: 185, loss: 7.40712, oob acc: 89.29%, # of haplo: 29 10, SNP: 199, loss: 6.21341, oob acc: 89.29%, # of haplo: 29 11, SNP: 217, loss: 1.38739, oob acc: 89.29%, # of haplo: 30 [1] 2023-10-16 03:01:24, oob acc: 89.29%, # of SNPs: 11, # of haplo: 30 === building individual classifier 2, out-of-bag (13/38.2%) === 1, SNP: 101, loss: 154.355, oob acc: 46.15%, # of haplo: 16 2, SNP: 102, loss: 139.148, oob acc: 61.54%, # of haplo: 22 3, SNP: 132, loss: 95.2502, oob acc: 73.08%, # of haplo: 23 4, SNP: 147, loss: 76.9692, oob acc: 76.92%, # of haplo: 34 5, SNP: 53, loss: 68.3851, oob acc: 88.46%, # of haplo: 51 6, SNP: 186, loss: 41.8787, oob acc: 88.46%, # of haplo: 53 7, SNP: 128, loss: 33.5437, oob acc: 92.31%, # of haplo: 53 8, SNP: 14, loss: 23.3103, oob acc: 92.31%, # of haplo: 55 9, SNP: 219, loss: 18.3628, oob acc: 92.31%, # of haplo: 57 10, SNP: 149, loss: 17.9413, oob acc: 92.31%, # of haplo: 89 11, SNP: 73, loss: 16.3172, oob acc: 92.31%, # of haplo: 90 12, SNP: 70, loss: 16.1056, oob acc: 92.31%, # of haplo: 90 13, SNP: 199, loss: 12.3057, oob acc: 92.31%, # of haplo: 90 14, SNP: 203, loss: 12.2013, oob acc: 92.31%, # of haplo: 90 15, SNP: 151, loss: 11.1795, oob acc: 92.31%, # of haplo: 90 [2] 2023-10-16 03:01:24, oob acc: 92.31%, # of SNPs: 15, # of haplo: 90 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 0.0002703521 0.0002971139 0.0005379705 0.0036521203 0.0131584084 0.0415528465 Max. Mean SD 0.5087413114 0.0420589840 0.0891771528 Accuracy with training data: 97.06% Out-of-bag accuracy: 90.80% HIBAG model for HLA-A: 2 individual classifiers 264 SNPs 14 unique HLA alleles: 01:01, 02:01, 02:06, ... Prediction: based on the averaged posterior probabilities Model assembly: hg19, SNP assembly: hg19 Matching the SNPs between the model and the test data: match.type="--" missing SNPs # Position 0 (0.0%) *being used [1] Pos+Allele 0 (0.0%) [2] RefSNP+Position 0 (0.0%) RefSNP 0 (0.0%) [1]: useful if ambiguous strands on array-based platforms [2]: suggested if the model and test data have been matched to the same reference genome Model platform: not applicable No allelic strand or A/B allele is flipped. # of samples: 26 CPU flags: 64-bit, AVX512BW # of threads: 1 Predicting (2023-10-16 03:01:24) 0% Predicting (2023-10-16 03:01:24) 100% HIBAG model for HLA-A: 2 individual classifiers 264 SNPs 14 unique HLA alleles: 01:01, 02:01, 02:06, ... Prediction: based on the averaged posterior probabilities Model assembly: hg19, SNP assembly: hg19 Matching the SNPs between the model and the test data: match.type="--" missing SNPs # Position 0 (0.0%) *being used [1] Pos+Allele 0 (0.0%) [2] RefSNP+Position 0 (0.0%) RefSNP 0 (0.0%) [1]: useful if ambiguous strands on array-based platforms [2]: suggested if the model and test data have been matched to the same reference genome Model platform: not applicable No allelic strand or A/B allele is flipped. # of samples: 26 CPU flags: 64-bit, AVX512BW # of threads: 1 Predicting (2023-10-16 03:01:24) 0% Predicting (2023-10-16 03:01:24) 100% Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 34 # of unique HLA alleles: 14 # of unique HLA genotypes: 21 Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 26 # of unique HLA alleles: 12 # of unique HLA genotypes: 17 Build a HIBAG model with 4 individual classifiers: MAF threshold: NaN excluding 11 monomorphic SNPs # of SNPs randomly sampled as candidates for each selection: 17 # of SNPs: 264 # of samples: 34 # of unique HLA alleles: 14 CPU flags: 64-bit, AVX512BW # of threads: 1 [-] 2023-10-16 03:01:24 === building individual classifier 1, out-of-bag (11/32.4%) === 1, SNP: 235, loss: 208.912, oob acc: 59.09%, # of haplo: 14 2, SNP: 136, loss: 139.316, oob acc: 63.64%, # of haplo: 14 3, SNP: 126, loss: 96.148, oob acc: 72.73%, # of haplo: 14 4, SNP: 89, loss: 76.2917, oob acc: 77.27%, # of haplo: 15 5, SNP: 102, loss: 61.3783, oob acc: 86.36%, # of haplo: 15 6, SNP: 105, loss: 49.1567, oob acc: 90.91%, # of haplo: 15 7, SNP: 117, loss: 43.0927, oob acc: 95.45%, # of haplo: 15 8, SNP: 259, loss: 26.6243, oob acc: 95.45%, # of haplo: 17 9, SNP: 60, loss: 17.6253, oob acc: 95.45%, # of haplo: 19 10, SNP: 236, loss: 9.50329, oob acc: 95.45%, # of haplo: 20 11, SNP: 94, loss: 7.27191, oob acc: 95.45%, # of haplo: 21 12, SNP: 58, loss: 6.70503, oob acc: 95.45%, # of haplo: 27 13, SNP: 243, loss: 2.87079, oob acc: 95.45%, # of haplo: 30 14, SNP: 5, loss: 2.77321, oob acc: 95.45%, # of haplo: 31 [1] 2023-10-16 03:01:24, oob acc: 95.45%, # of SNPs: 14, # of haplo: 31 === building individual classifier 2, out-of-bag (9/26.5%) === 1, SNP: 149, loss: 171.797, oob acc: 66.67%, # of haplo: 13 2, SNP: 176, loss: 120.459, oob acc: 72.22%, # of haplo: 14 3, SNP: 97, loss: 80.1731, oob acc: 83.33%, # of haplo: 14 4, SNP: 56, loss: 51.5193, oob acc: 94.44%, # of haplo: 16 5, SNP: 182, loss: 34.5643, oob acc: 94.44%, # of haplo: 18 6, SNP: 121, loss: 23.0259, oob acc: 94.44%, # of haplo: 18 7, SNP: 234, loss: 15.0596, oob acc: 94.44%, # of haplo: 20 8, SNP: 148, loss: 9.66757, oob acc: 94.44%, # of haplo: 20 9, SNP: 19, loss: 4.29975, oob acc: 94.44%, # of haplo: 27 10, SNP: 226, loss: 0.481093, oob acc: 94.44%, # of haplo: 27 11, SNP: 64, loss: 0.447483, oob acc: 94.44%, # of haplo: 28 12, SNP: 240, loss: 0.365545, oob acc: 94.44%, # of haplo: 37 13, SNP: 57, loss: 0.365132, oob acc: 94.44%, # of haplo: 38 [2] 2023-10-16 03:01:24, oob acc: 94.44%, # of SNPs: 13, # of haplo: 38 === building individual classifier 3, out-of-bag (14/41.2%) === 1, SNP: 118, loss: 190.304, oob acc: 53.57%, # of haplo: 13 2, SNP: 175, loss: 157.208, oob acc: 60.71%, # of haplo: 15 3, SNP: 103, loss: 128.429, oob acc: 64.29%, # of haplo: 15 4, SNP: 182, loss: 66.6054, oob acc: 71.43%, # of haplo: 15 5, SNP: 152, loss: 58.8041, oob acc: 78.57%, # of haplo: 15 6, SNP: 111, loss: 30.086, oob acc: 82.14%, # of haplo: 15 7, SNP: 130, loss: 15.3177, oob acc: 89.29%, # of haplo: 19 8, SNP: 229, loss: 9.99758, oob acc: 89.29%, # of haplo: 28 9, SNP: 185, loss: 7.40712, oob acc: 89.29%, # of haplo: 29 10, SNP: 199, loss: 6.21341, oob acc: 89.29%, # of haplo: 29 11, SNP: 217, loss: 1.38739, oob acc: 89.29%, # of haplo: 30 [3] 2023-10-16 03:01:24, oob acc: 89.29%, # of SNPs: 11, # of haplo: 30 === building individual classifier 4, out-of-bag (13/38.2%) === 1, SNP: 101, loss: 154.355, oob acc: 46.15%, # of haplo: 16 2, SNP: 102, loss: 139.148, oob acc: 61.54%, # of haplo: 22 3, SNP: 132, loss: 95.2502, oob acc: 73.08%, # of haplo: 23 4, SNP: 147, loss: 76.9692, oob acc: 76.92%, # of haplo: 34 5, SNP: 53, loss: 68.3851, oob acc: 88.46%, # of haplo: 51 6, SNP: 186, loss: 41.8787, oob acc: 88.46%, # of haplo: 53 7, SNP: 128, loss: 33.5437, oob acc: 92.31%, # of haplo: 53 8, SNP: 14, loss: 23.3103, oob acc: 92.31%, # of haplo: 55 9, SNP: 219, loss: 18.3628, oob acc: 92.31%, # of haplo: 57 10, SNP: 149, loss: 17.9413, oob acc: 92.31%, # of haplo: 89 11, SNP: 73, loss: 16.3172, oob acc: 92.31%, # of haplo: 90 12, SNP: 70, loss: 16.1056, oob acc: 92.31%, # of haplo: 90 13, SNP: 199, loss: 12.3057, oob acc: 92.31%, # of haplo: 90 14, SNP: 203, loss: 12.2013, oob acc: 92.31%, # of haplo: 90 15, SNP: 151, loss: 11.1795, oob acc: 92.31%, # of haplo: 90 [4] 2023-10-16 03:01:25, oob acc: 92.31%, # of SNPs: 15, # of haplo: 90 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 0.0004055642 0.0004189435 0.0005393566 0.0035332670 0.0110835407 0.0312705424 Max. Mean SD 0.5148772297 0.0357753361 0.0879935706 Accuracy with training data: 97.06% Out-of-bag accuracy: 92.87% Gene: HLA-A Training dataset: 34 samples X 264 SNPs # of HLA alleles: 14 # of individual classifiers: 4 total # of SNPs used: 49 avg. # of SNPs in an individual classifier: 13.25 (sd: 1.71, min: 11, max: 15, median: 13.50) avg. # of haplotypes in an individual classifier: 47.25 (sd: 28.72, min: 30, max: 90, median: 34.50) avg. out-of-bag accuracy: 92.87% (sd: 2.73%, min: 89.29%, max: 95.45%, median: 93.38%) Matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 0.0004055642 0.0004189435 0.0005393566 0.0035332670 0.0110835407 0.0312705424 Max. Mean SD 0.5148772297 0.0357753361 0.0879935706 Genome assembly: hg19 HIBAG model for HLA-A: 4 individual classifiers 264 SNPs 14 unique HLA alleles: 01:01, 02:01, 02:06, ... Prediction: based on the averaged posterior probabilities Model assembly: hg19, SNP assembly: hg19 Matching the SNPs between the model and the test data: match.type="--" missing SNPs # Position 0 (0.0%) *being used [1] Pos+Allele 0 (0.0%) [2] RefSNP+Position 0 (0.0%) RefSNP 0 (0.0%) [1]: useful if ambiguous strands on array-based platforms [2]: suggested if the model and test data have been matched to the same reference genome Model platform: not applicable No allelic strand or A/B allele is flipped. # of samples: 26 CPU flags: 64-bit, AVX512BW # of threads: 1 Predicting (2023-10-16 03:01:25) 0% Predicting (2023-10-16 03:01:25) 100% Build a HIBAG model with 2 individual classifiers: MAF threshold: NaN excluding 1 monomorphic SNP # of SNPs randomly sampled as candidates for each selection: 13 # of SNPs: 158 # of samples: 60 # of unique HLA alleles: 14 CPU flags: 64-bit, AVX512BW # of threads: 1 [-] 2023-10-16 03:01:25 === building individual classifier 1, out-of-bag (24/40.0%) === 1, SNP: 141, loss: 378.06, oob acc: 52.08%, # of haplo: 14 2, SNP: 74, loss: 262.497, oob acc: 58.33%, # of haplo: 15 3, SNP: 78, loss: 162.497, oob acc: 68.75%, # of haplo: 19 4, SNP: 118, loss: 70.0426, oob acc: 72.92%, # of haplo: 23 5, SNP: 82, loss: 45.8279, oob acc: 83.33%, # of haplo: 23 6, SNP: 95, loss: 35.4414, oob acc: 89.58%, # of haplo: 27 7, SNP: 89, loss: 32.6134, oob acc: 89.58%, # of haplo: 35 8, SNP: 83, loss: 31.7921, oob acc: 89.58%, # of haplo: 51 9, SNP: 151, loss: 31.0653, oob acc: 91.67%, # of haplo: 55 10, SNP: 107, loss: 30.2634, oob acc: 91.67%, # of haplo: 58 11, SNP: 154, loss: 18.9485, oob acc: 91.67%, # of haplo: 58 12, SNP: 93, loss: 17.5074, oob acc: 93.75%, # of haplo: 58 13, SNP: 17, loss: 17.02, oob acc: 93.75%, # of haplo: 60 14, SNP: 15, loss: 14.3651, oob acc: 93.75%, # of haplo: 61 [1] 2023-10-16 03:01:25, oob acc: 93.75%, # of SNPs: 14, # of haplo: 61 === building individual classifier 2, out-of-bag (19/31.7%) === 1, SNP: 94, loss: 403.365, oob acc: 63.16%, # of haplo: 15 2, SNP: 82, loss: 294.053, oob acc: 71.05%, # of haplo: 18 3, SNP: 57, loss: 226.142, oob acc: 76.32%, # of haplo: 23 4, SNP: 155, loss: 197.199, oob acc: 84.21%, # of haplo: 29 5, SNP: 44, loss: 132.804, oob acc: 86.84%, # of haplo: 40 6, SNP: 30, loss: 122.507, oob acc: 92.11%, # of haplo: 40 7, SNP: 109, loss: 72.0179, oob acc: 92.11%, # of haplo: 41 8, SNP: 72, loss: 59.3281, oob acc: 92.11%, # of haplo: 41 9, SNP: 36, loss: 54.939, oob acc: 94.74%, # of haplo: 43 10, SNP: 127, loss: 48.1392, oob acc: 94.74%, # of haplo: 43 11, SNP: 53, loss: 44.7676, oob acc: 94.74%, # of haplo: 43 12, SNP: 148, loss: 43.047, oob acc: 94.74%, # of haplo: 44 13, SNP: 152, loss: 40.2104, oob acc: 94.74%, # of haplo: 45 14, SNP: 125, loss: 39.8862, oob acc: 94.74%, # of haplo: 45 15, SNP: 77, loss: 39.5652, oob acc: 94.74%, # of haplo: 45 16, SNP: 3, loss: 39.0621, oob acc: 94.74%, # of haplo: 47 17, SNP: 141, loss: 37.6822, oob acc: 94.74%, # of haplo: 47 18, SNP: 1, loss: 36.5022, oob acc: 94.74%, # of haplo: 50 [2] 2023-10-16 03:01:25, oob acc: 94.74%, # of SNPs: 18, # of haplo: 50 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 9.548712e-09 5.370348e-08 4.510964e-07 2.299046e-03 1.410115e-02 3.767877e-02 Max. Mean SD 4.764725e-01 4.879021e-02 1.089441e-01 Accuracy with training data: 96.67% Out-of-bag accuracy: 94.24% Gene: HLA-A Training dataset: 60 samples X 158 SNPs # of HLA alleles: 14 # of individual classifiers: 2 total # of SNPs used: 30 avg. # of SNPs in an individual classifier: 16.00 (sd: 2.83, min: 14, max: 18, median: 16.00) avg. # of haplotypes in an individual classifier: 55.50 (sd: 7.78, min: 50, max: 61, median: 55.50) avg. out-of-bag accuracy: 94.24% (sd: 0.70%, min: 93.75%, max: 94.74%, median: 94.24%) Matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 9.548712e-09 5.370348e-08 4.510964e-07 2.299046e-03 1.410115e-02 3.767877e-02 Max. Mean SD 4.764725e-01 4.879021e-02 1.089441e-01 Genome assembly: hg19 Remove 128 unused SNPs. Gene: HLA-A Training dataset: 60 samples X 30 SNPs # of HLA alleles: 14 # of individual classifiers: 2 total # of SNPs used: 30 avg. # of SNPs in an individual classifier: 16.00 (sd: 2.83, min: 14, max: 18, median: 16.00) avg. # of haplotypes in an individual classifier: 55.50 (sd: 7.78, min: 50, max: 61, median: 55.50) avg. out-of-bag accuracy: 94.24% (sd: 0.70%, min: 93.75%, max: 94.74%, median: 94.24%) Matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 9.548712e-09 5.370348e-08 4.510964e-07 2.299046e-03 1.410115e-02 3.767877e-02 Max. Mean SD 4.764725e-01 4.879021e-02 1.089441e-01 Genome assembly: hg19 Platform: Illumina 1M Duo Information: Training set -- HapMap Phase II HIBAG model for HLA-A: 2 individual classifiers 158 SNPs 14 unique HLA alleles: 01:01, 02:01, 02:06, ... Prediction: based on the averaged posterior probabilities Model assembly: hg19, SNP assembly: hg19 Matching the SNPs between the model and the test data: match.type="--" missing SNPs # Position 0 (0.0%) *being used [1] Pos+Allele 0 (0.0%) [2] RefSNP+Position 0 (0.0%) RefSNP 0 (0.0%) [1]: useful if ambiguous strands on array-based platforms [2]: suggested if the model and test data have been matched to the same reference genome Model platform: not applicable No allelic strand or A/B allele is flipped. # of samples: 60 CPU flags: 64-bit, AVX512BW # of threads: 1 Predicting (2023-10-16 03:01:25) 0% Predicting (2023-10-16 03:01:25) 100% HIBAG model for HLA-A: 2 individual classifiers 30 SNPs 14 unique HLA alleles: 01:01, 02:01, 02:06, ... Prediction: based on the averaged posterior probabilities Model assembly: hg19, SNP assembly: hg19 Matching the SNPs between the model and the test data: match.type="--" missing SNPs # Position 0 (0.0%) *being used [1] Pos+Allele 0 (0.0%) [2] RefSNP+Position 0 (0.0%) RefSNP 0 (0.0%) [1]: useful if ambiguous strands on array-based platforms [2]: suggested if the model and test data have been matched to the same reference genome Model platform: Illumina 1M Duo No allelic strand or A/B allele is flipped. # of samples: 60 CPU flags: 64-bit, AVX512BW # of threads: 1 Predicting (2023-10-16 03:01:25) 0% Predicting (2023-10-16 03:01:25) 100% Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 34 # of unique HLA alleles: 14 # of unique HLA genotypes: 21 Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 26 # of unique HLA alleles: 12 # of unique HLA genotypes: 17 Build a HIBAG model with 4 individual classifiers: MAF threshold: NaN excluding 11 monomorphic SNPs # of SNPs randomly sampled as candidates for each selection: 17 # of SNPs: 264 # of samples: 34 # of unique HLA alleles: 14 CPU flags: 64-bit, AVX512BW # of threads: 1 [-] 2023-10-16 03:01:25 === building individual classifier 1, out-of-bag (11/32.4%) === 1, SNP: 235, loss: 208.912, oob acc: 59.09%, # of haplo: 14 2, SNP: 136, loss: 139.316, oob acc: 63.64%, # of haplo: 14 3, SNP: 126, loss: 96.148, oob acc: 72.73%, # of haplo: 14 4, SNP: 89, loss: 76.2917, oob acc: 77.27%, # of haplo: 15 5, SNP: 102, loss: 61.3783, oob acc: 86.36%, # of haplo: 15 6, SNP: 105, loss: 49.1567, oob acc: 90.91%, # of haplo: 15 7, SNP: 117, loss: 43.0927, oob acc: 95.45%, # of haplo: 15 8, SNP: 259, loss: 26.6243, oob acc: 95.45%, # of haplo: 17 9, SNP: 60, loss: 17.6253, oob acc: 95.45%, # of haplo: 19 10, SNP: 236, loss: 9.50329, oob acc: 95.45%, # of haplo: 20 11, SNP: 94, loss: 7.27191, oob acc: 95.45%, # of haplo: 21 12, SNP: 58, loss: 6.70503, oob acc: 95.45%, # of haplo: 27 13, SNP: 243, loss: 2.87079, oob acc: 95.45%, # of haplo: 30 14, SNP: 5, loss: 2.77321, oob acc: 95.45%, # of haplo: 31 [1] 2023-10-16 03:01:25, oob acc: 95.45%, # of SNPs: 14, # of haplo: 31 === building individual classifier 2, out-of-bag (9/26.5%) === 1, SNP: 149, loss: 171.797, oob acc: 66.67%, # of haplo: 13 2, SNP: 176, loss: 120.459, oob acc: 72.22%, # of haplo: 14 3, SNP: 97, loss: 80.1731, oob acc: 83.33%, # of haplo: 14 4, SNP: 56, loss: 51.5193, oob acc: 94.44%, # of haplo: 16 5, SNP: 182, loss: 34.5643, oob acc: 94.44%, # of haplo: 18 6, SNP: 121, loss: 23.0259, oob acc: 94.44%, # of haplo: 18 7, SNP: 234, loss: 15.0596, oob acc: 94.44%, # of haplo: 20 8, SNP: 148, loss: 9.66757, oob acc: 94.44%, # of haplo: 20 9, SNP: 19, loss: 4.29975, oob acc: 94.44%, # of haplo: 27 10, SNP: 226, loss: 0.481093, oob acc: 94.44%, # of haplo: 27 11, SNP: 64, loss: 0.447483, oob acc: 94.44%, # of haplo: 28 12, SNP: 240, loss: 0.365545, oob acc: 94.44%, # of haplo: 37 13, SNP: 57, loss: 0.365132, oob acc: 94.44%, # of haplo: 38 [2] 2023-10-16 03:01:25, oob acc: 94.44%, # of SNPs: 13, # of haplo: 38 === building individual classifier 3, out-of-bag (14/41.2%) === 1, SNP: 118, loss: 190.304, oob acc: 53.57%, # of haplo: 13 2, SNP: 175, loss: 157.208, oob acc: 60.71%, # of haplo: 15 3, SNP: 103, loss: 128.429, oob acc: 64.29%, # of haplo: 15 4, SNP: 182, loss: 66.6054, oob acc: 71.43%, # of haplo: 15 5, SNP: 152, loss: 58.8041, oob acc: 78.57%, # of haplo: 15 6, SNP: 111, loss: 30.086, oob acc: 82.14%, # of haplo: 15 7, SNP: 130, loss: 15.3177, oob acc: 89.29%, # of haplo: 19 8, SNP: 229, loss: 9.99758, oob acc: 89.29%, # of haplo: 28 9, SNP: 185, loss: 7.40712, oob acc: 89.29%, # of haplo: 29 10, SNP: 199, loss: 6.21341, oob acc: 89.29%, # of haplo: 29 11, SNP: 217, loss: 1.38739, oob acc: 89.29%, # of haplo: 30 [3] 2023-10-16 03:01:25, oob acc: 89.29%, # of SNPs: 11, # of haplo: 30 === building individual classifier 4, out-of-bag (13/38.2%) === 1, SNP: 101, loss: 154.355, oob acc: 46.15%, # of haplo: 16 2, SNP: 102, loss: 139.148, oob acc: 61.54%, # of haplo: 22 3, SNP: 132, loss: 95.2502, oob acc: 73.08%, # of haplo: 23 4, SNP: 147, loss: 76.9692, oob acc: 76.92%, # of haplo: 34 5, SNP: 53, loss: 68.3851, oob acc: 88.46%, # of haplo: 51 6, SNP: 186, loss: 41.8787, oob acc: 88.46%, # of haplo: 53 7, SNP: 128, loss: 33.5437, oob acc: 92.31%, # of haplo: 53 8, SNP: 14, loss: 23.3103, oob acc: 92.31%, # of haplo: 55 9, SNP: 219, loss: 18.3628, oob acc: 92.31%, # of haplo: 57 10, SNP: 149, loss: 17.9413, oob acc: 92.31%, # of haplo: 89 11, SNP: 73, loss: 16.3172, oob acc: 92.31%, # of haplo: 90 12, SNP: 70, loss: 16.1056, oob acc: 92.31%, # of haplo: 90 13, SNP: 199, loss: 12.3057, oob acc: 92.31%, # of haplo: 90 14, SNP: 203, loss: 12.2013, oob acc: 92.31%, # of haplo: 90 15, SNP: 151, loss: 11.1795, oob acc: 92.31%, # of haplo: 90 [4] 2023-10-16 03:01:25, oob acc: 92.31%, # of SNPs: 15, # of haplo: 90 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 0.0004055642 0.0004189435 0.0005393566 0.0035332670 0.0110835407 0.0312705424 Max. Mean SD 0.5148772297 0.0357753361 0.0879935706 Accuracy with training data: 97.06% Out-of-bag accuracy: 92.87% Gene: HLA-A Training dataset: 34 samples X 264 SNPs # of HLA alleles: 14 # of individual classifiers: 4 total # of SNPs used: 49 avg. # of SNPs in an individual classifier: 13.25 (sd: 1.71, min: 11, max: 15, median: 13.50) avg. # of haplotypes in an individual classifier: 47.25 (sd: 28.72, min: 30, max: 90, median: 34.50) avg. out-of-bag accuracy: 92.87% (sd: 2.73%, min: 89.29%, max: 95.45%, median: 93.38%) Matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 0.0004055642 0.0004189435 0.0005393566 0.0035332670 0.0110835407 0.0312705424 Max. Mean SD 0.5148772297 0.0357753361 0.0879935706 Genome assembly: hg19 HIBAG model for HLA-A: 4 individual classifiers 264 SNPs 14 unique HLA alleles: 01:01, 02:01, 02:06, ... Prediction: based on the averaged posterior probabilities Model assembly: hg19, SNP assembly: hg19 Matching the SNPs between the model and the test data: match.type="--" missing SNPs # Position 0 (0.0%) *being used [1] Pos+Allele 0 (0.0%) [2] RefSNP+Position 0 (0.0%) RefSNP 0 (0.0%) [1]: useful if ambiguous strands on array-based platforms [2]: suggested if the model and test data have been matched to the same reference genome Model platform: not applicable No allelic strand or A/B allele is flipped. # of samples: 26 CPU flags: 64-bit, AVX512BW # of threads: 1 Predicting (2023-10-16 03:01:25) 0% Predicting (2023-10-16 03:01:25) 100% Allele Num. Freq. Num. Freq. CR ACC SEN SPE PPV NPV Miscall Train Train Valid. Valid. (%) (%) (%) (%) (%) (%) (%) ---- Overall accuracy: 88.5%, Call rate: 100.0% 01:01 13 0.1912 12 0.2308 100.0 96.2 100.0 95.0 85.7 100.0 -- 02:01 25 0.3676 18 0.3462 100.0 98.1 94.4 100.0 100.0 97.1 01:01 (100) 02:06 1 0.0147 0 0 -- -- -- -- -- -- -- 03:01 4 0.0588 5 0.0962 100.0 98.1 100.0 97.9 83.3 100.0 -- 11:01 2 0.0294 3 0.0577 100.0 100.0 100.0 100.0 100.0 100.0 -- 23:01 1 0.0147 2 0.0385 100.0 96.2 0.0 100.0 -- 96.2 24:02 (100) 24:02 6 0.0882 5 0.0962 100.0 92.3 60.0 95.7 60.0 95.7 01:01 (50) 24:03 1 0.0147 0 0 -- -- -- -- -- -- -- 25:01 4 0.0588 1 0.0192 100.0 100.0 100.0 100.0 100.0 100.0 -- 26:01 2 0.0294 1 0.0192 100.0 100.0 100.0 100.0 100.0 100.0 -- 29:02 3 0.0441 1 0.0192 100.0 98.1 0.0 100.0 -- 98.1 03:01 (50) 31:01 2 0.0294 1 0.0192 100.0 100.0 100.0 100.0 100.0 100.0 -- 32:01 2 0.0294 2 0.0385 100.0 100.0 100.0 100.0 100.0 100.0 -- 68:01 2 0.0294 1 0.0192 100.0 98.1 100.0 98.0 50.0 100.0 -- \title{Imputation Evaluation} \documentclass[12pt]{article} \usepackage{fullpage} \usepackage{longtable} \begin{document} \maketitle \setlength{\LTcapwidth}{6.5in} % -------- BEGIN TABLE -------- \begin{longtable}{rrrrr | rrrrrrl} \caption{The sensitivity (SEN), specificity (SPE), positive predictive value (PPV), negative predictive value (NPV) and call rate (CR).} \label{tab:accuracy} \\ Allele & Num. & Freq. & Num. & Freq. & CR & ACC & SEN & SPE & PPV & NPV & Miscall \\ & Train & Train & Valid. & Valid. & (\%) & (\%) & (\%) & (\%) & (\%) & (\%) & (\%) \\ \hline\hline \endfirsthead \multicolumn{12}{c}{{\normalsize \tablename\ \thetable{} -- Continued from previous page}} \\ Allele & Num. & Freq. & Num. & Freq. & CR & ACC & SEN & SPE & PPV & NPV & Miscall \\ & Train & Train & Valid. & Valid. & (\%) & (\%) & (\%) & (\%) & (\%) & (\%) & (\%) \\ \hline\hline \endhead \hline \multicolumn{12}{r}{Continued on next page ...} \\ \hline \endfoot \hline\hline \endlastfoot \multicolumn{12}{l}{\it Overall accuracy: 88.5\%, Call rate: 100.0\%} \\ 01:01 & 13 & 0.1912 & 12 & 0.2308 & 100.0 & 96.2 & 100.0 & 95.0 & 85.7 & 100.0 & -- \\ 02:01 & 25 & 0.3676 & 18 & 0.3462 & 100.0 & 98.1 & 94.4 & 100.0 & 100.0 & 97.1 & 01:01 (100) \\ 02:06 & 1 & 0.0147 & 0 & 0 & -- & -- & -- & -- & -- & -- & -- \\ 03:01 & 4 & 0.0588 & 5 & 0.0962 & 100.0 & 98.1 & 100.0 & 97.9 & 83.3 & 100.0 & -- \\ 11:01 & 2 & 0.0294 & 3 & 0.0577 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & -- \\ 23:01 & 1 & 0.0147 & 2 & 0.0385 & 100.0 & 96.2 & 0.0 & 100.0 & -- & 96.2 & 24:02 (100) \\ 24:02 & 6 & 0.0882 & 5 & 0.0962 & 100.0 & 92.3 & 60.0 & 95.7 & 60.0 & 95.7 & 01:01 (50) \\ 24:03 & 1 & 0.0147 & 0 & 0 & -- & -- & -- & -- & -- & -- & -- \\ 25:01 & 4 & 0.0588 & 1 & 0.0192 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & -- \\ 26:01 & 2 & 0.0294 & 1 & 0.0192 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & -- \\ 29:02 & 3 & 0.0441 & 1 & 0.0192 & 100.0 & 98.1 & 0.0 & 100.0 & -- & 98.1 & 03:01 (50) \\ 31:01 & 2 & 0.0294 & 1 & 0.0192 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & -- \\ 32:01 & 2 & 0.0294 & 2 & 0.0385 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & -- \\ 68:01 & 2 & 0.0294 & 1 & 0.0192 & 100.0 & 98.1 & 100.0 & 98.0 & 50.0 & 100.0 & -- \\ \end{longtable} % -------- END TABLE -------- \end{document} <!DOCTYPE html> <html> <head> <title>Imputation Evaluation</title> </head> <body> <h1>Imputation Evaluation</h1> <p></p> <h3><b>Table 1L:</b> The sensitivity (SEN), specificity (SPE), positive predictive value (PPV), negative predictive value (NPV) and call rate (CR).</h3> <table id="TB-Acc" class="tabular" border="1" CELLSPACING="1"> <tr> <th>Allele </th> <th>Num. Train</th> <th>Freq. Train</th> <th>Num. Valid.</th> <th>Freq. Valid.</th> <th>CR (%)</th> <th>ACC (%)</th> <th>SEN (%)</th> <th>SPE (%)</th> <th>PPV (%)</th> <th>NPV (%)</th> <th>Miscall (%)</th> </tr> <tr> <td colspan="12"> <i> Overall accuracy: 88.5%, Call rate: 100.0% </i> </td> </tr> <tr> <td>01:01</td> <td>13</td> <td>0.1912</td> <td>12</td> <td>0.2308</td> <td>100.0</td> <td>96.2</td> <td>100.0</td> <td>95.0</td> <td>85.7</td> <td>100.0</td> <td>--</td> </tr> <tr> <td>02:01</td> <td>25</td> <td>0.3676</td> <td>18</td> <td>0.3462</td> <td>100.0</td> <td>98.1</td> <td>94.4</td> <td>100.0</td> <td>100.0</td> <td>97.1</td> <td>01:01 (100)</td> </tr> <tr> <td>02:06</td> <td>1</td> <td>0.0147</td> <td>0</td> <td>0</td> <td>--</td> <td>--</td> <td>--</td> <td>--</td> <td>--</td> <td>--</td> <td>--</td> </tr> <tr> <td>03:01</td> <td>4</td> <td>0.0588</td> <td>5</td> <td>0.0962</td> <td>100.0</td> <td>98.1</td> <td>100.0</td> <td>97.9</td> <td>83.3</td> <td>100.0</td> <td>--</td> </tr> <tr> <td>11:01</td> <td>2</td> <td>0.0294</td> <td>3</td> <td>0.0577</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>--</td> </tr> <tr> <td>23:01</td> <td>1</td> <td>0.0147</td> <td>2</td> <td>0.0385</td> <td>100.0</td> <td>96.2</td> <td>0.0</td> <td>100.0</td> <td>--</td> <td>96.2</td> <td>24:02 (100)</td> </tr> <tr> <td>24:02</td> <td>6</td> <td>0.0882</td> <td>5</td> <td>0.0962</td> <td>100.0</td> <td>92.3</td> <td>60.0</td> <td>95.7</td> <td>60.0</td> <td>95.7</td> <td>01:01 (50)</td> </tr> <tr> <td>24:03</td> <td>1</td> <td>0.0147</td> <td>0</td> <td>0</td> <td>--</td> <td>--</td> <td>--</td> <td>--</td> <td>--</td> <td>--</td> <td>--</td> </tr> <tr> <td>25:01</td> <td>4</td> <td>0.0588</td> <td>1</td> <td>0.0192</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>--</td> </tr> <tr> <td>26:01</td> <td>2</td> <td>0.0294</td> <td>1</td> <td>0.0192</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>--</td> </tr> <tr> <td>29:02</td> <td>3</td> <td>0.0441</td> <td>1</td> <td>0.0192</td> <td>100.0</td> <td>98.1</td> <td>0.0</td> <td>100.0</td> <td>--</td> <td>98.1</td> <td>03:01 (50)</td> </tr> <tr> <td>31:01</td> <td>2</td> <td>0.0294</td> <td>1</td> <td>0.0192</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>--</td> </tr> <tr> <td>32:01</td> <td>2</td> <td>0.0294</td> <td>2</td> <td>0.0385</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>--</td> </tr> <tr> <td>68:01</td> <td>2</td> <td>0.0294</td> <td>1</td> <td>0.0192</td> <td>100.0</td> <td>98.1</td> <td>100.0</td> <td>98.0</td> <td>50.0</td> <td>100.0</td> <td>--</td> </tr> </table> </body> </html> **Overall accuracy: 88.5%, Call rate: 100.0%** | Allele | # Train | Freq. Train | # Valid. | Freq. Valid. | CR (%) | ACC (%) | SEN (%) | SPE (%) | PPV (%) | NPV (%) | Miscall (%) | |:--|--:|--:|--:|--:|--:|--:|--:|--:|--:|--:|:--| | 01:01 | 13 | 0.1912 | 12 | 0.2308 | 100.0 | 96.2 | 100.0 | 95.0 | 85.7 | 100.0 | -- | | 02:01 | 25 | 0.3676 | 18 | 0.3462 | 100.0 | 98.1 | 94.4 | 100.0 | 100.0 | 97.1 | 01:01 (100) | | 02:06 | 1 | 0.0147 | 0 | 0 | -- | -- | -- | -- | -- | -- | -- | | 03:01 | 4 | 0.0588 | 5 | 0.0962 | 100.0 | 98.1 | 100.0 | 97.9 | 83.3 | 100.0 | -- | | 11:01 | 2 | 0.0294 | 3 | 0.0577 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | -- | | 23:01 | 1 | 0.0147 | 2 | 0.0385 | 100.0 | 96.2 | 0.0 | 100.0 | -- | 96.2 | 24:02 (100) | | 24:02 | 6 | 0.0882 | 5 | 0.0962 | 100.0 | 92.3 | 60.0 | 95.7 | 60.0 | 95.7 | 01:01 (50) | | 24:03 | 1 | 0.0147 | 0 | 0 | -- | -- | -- | -- | -- | -- | -- | | 25:01 | 4 | 0.0588 | 1 | 0.0192 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | -- | | 26:01 | 2 | 0.0294 | 1 | 0.0192 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | -- | | 29:02 | 3 | 0.0441 | 1 | 0.0192 | 100.0 | 98.1 | 0.0 | 100.0 | -- | 98.1 | 03:01 (50) | | 31:01 | 2 | 0.0294 | 1 | 0.0192 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | -- | | 32:01 | 2 | 0.0294 | 2 | 0.0385 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | -- | | 68:01 | 2 | 0.0294 | 1 | 0.0192 | 100.0 | 98.1 | 100.0 | 98.0 | 50.0 | 100.0 | -- | Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 34 # of unique HLA alleles: 14 # of unique HLA genotypes: 21 Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 26 # of unique HLA alleles: 12 # of unique HLA genotypes: 17 Build a HIBAG model with 4 individual classifiers: MAF threshold: NaN excluding 11 monomorphic SNPs # of SNPs randomly sampled as candidates for each selection: 17 # of SNPs: 264 # of samples: 34 # of unique HLA alleles: 14 CPU flags: 64-bit, AVX512BW # of threads: 1 [-] 2023-10-16 03:01:25 === building individual classifier 1, out-of-bag (11/32.4%) === 1, SNP: 235, loss: 208.912, oob acc: 59.09%, # of haplo: 14 2, SNP: 136, loss: 139.316, oob acc: 63.64%, # of haplo: 14 3, SNP: 126, loss: 96.148, oob acc: 72.73%, # of haplo: 14 4, SNP: 89, loss: 76.2917, oob acc: 77.27%, # of haplo: 15 5, SNP: 102, loss: 61.3783, oob acc: 86.36%, # of haplo: 15 6, SNP: 105, loss: 49.1567, oob acc: 90.91%, # of haplo: 15 7, SNP: 117, loss: 43.0927, oob acc: 95.45%, # of haplo: 15 8, SNP: 259, loss: 26.6243, oob acc: 95.45%, # of haplo: 17 9, SNP: 60, loss: 17.6253, oob acc: 95.45%, # of haplo: 19 10, SNP: 236, loss: 9.50329, oob acc: 95.45%, # of haplo: 20 11, SNP: 94, loss: 7.27191, oob acc: 95.45%, # of haplo: 21 12, SNP: 58, loss: 6.70503, oob acc: 95.45%, # of haplo: 27 13, SNP: 243, loss: 2.87079, oob acc: 95.45%, # of haplo: 30 14, SNP: 5, loss: 2.77321, oob acc: 95.45%, # of haplo: 31 [1] 2023-10-16 03:01:25, oob acc: 95.45%, # of SNPs: 14, # of haplo: 31 === building individual classifier 2, out-of-bag (9/26.5%) === 1, SNP: 149, loss: 171.797, oob acc: 66.67%, # of haplo: 13 2, SNP: 176, loss: 120.459, oob acc: 72.22%, # of haplo: 14 3, SNP: 97, loss: 80.1731, oob acc: 83.33%, # of haplo: 14 4, SNP: 56, loss: 51.5193, oob acc: 94.44%, # of haplo: 16 5, SNP: 182, loss: 34.5643, oob acc: 94.44%, # of haplo: 18 6, SNP: 121, loss: 23.0259, oob acc: 94.44%, # of haplo: 18 7, SNP: 234, loss: 15.0596, oob acc: 94.44%, # of haplo: 20 8, SNP: 148, loss: 9.66757, oob acc: 94.44%, # of haplo: 20 9, SNP: 19, loss: 4.29975, oob acc: 94.44%, # of haplo: 27 10, SNP: 226, loss: 0.481093, oob acc: 94.44%, # of haplo: 27 11, SNP: 64, loss: 0.447483, oob acc: 94.44%, # of haplo: 28 12, SNP: 240, loss: 0.365545, oob acc: 94.44%, # of haplo: 37 13, SNP: 57, loss: 0.365132, oob acc: 94.44%, # of haplo: 38 [2] 2023-10-16 03:01:25, oob acc: 94.44%, # of SNPs: 13, # of haplo: 38 === building individual classifier 3, out-of-bag (14/41.2%) === 1, SNP: 118, loss: 190.304, oob acc: 53.57%, # of haplo: 13 2, SNP: 175, loss: 157.208, oob acc: 60.71%, # of haplo: 15 3, SNP: 103, loss: 128.429, oob acc: 64.29%, # of haplo: 15 4, SNP: 182, loss: 66.6054, oob acc: 71.43%, # of haplo: 15 5, SNP: 152, loss: 58.8041, oob acc: 78.57%, # of haplo: 15 6, SNP: 111, loss: 30.086, oob acc: 82.14%, # of haplo: 15 7, SNP: 130, loss: 15.3177, oob acc: 89.29%, # of haplo: 19 8, SNP: 229, loss: 9.99758, oob acc: 89.29%, # of haplo: 28 9, SNP: 185, loss: 7.40712, oob acc: 89.29%, # of haplo: 29 10, SNP: 199, loss: 6.21341, oob acc: 89.29%, # of haplo: 29 11, SNP: 217, loss: 1.38739, oob acc: 89.29%, # of haplo: 30 [3] 2023-10-16 03:01:25, oob acc: 89.29%, # of SNPs: 11, # of haplo: 30 === building individual classifier 4, out-of-bag (13/38.2%) === 1, SNP: 101, loss: 154.355, oob acc: 46.15%, # of haplo: 16 2, SNP: 102, loss: 139.148, oob acc: 61.54%, # of haplo: 22 3, SNP: 132, loss: 95.2502, oob acc: 73.08%, # of haplo: 23 4, SNP: 147, loss: 76.9692, oob acc: 76.92%, # of haplo: 34 5, SNP: 53, loss: 68.3851, oob acc: 88.46%, # of haplo: 51 6, SNP: 186, loss: 41.8787, oob acc: 88.46%, # of haplo: 53 7, SNP: 128, loss: 33.5437, oob acc: 92.31%, # of haplo: 53 8, SNP: 14, loss: 23.3103, oob acc: 92.31%, # of haplo: 55 9, SNP: 219, loss: 18.3628, oob acc: 92.31%, # of haplo: 57 10, SNP: 149, loss: 17.9413, oob acc: 92.31%, # of haplo: 89 11, SNP: 73, loss: 16.3172, oob acc: 92.31%, # of haplo: 90 12, SNP: 70, loss: 16.1056, oob acc: 92.31%, # of haplo: 90 13, SNP: 199, loss: 12.3057, oob acc: 92.31%, # of haplo: 90 14, SNP: 203, loss: 12.2013, oob acc: 92.31%, # of haplo: 90 15, SNP: 151, loss: 11.1795, oob acc: 92.31%, # of haplo: 90 [4] 2023-10-16 03:01:26, oob acc: 92.31%, # of SNPs: 15, # of haplo: 90 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 0.0004055642 0.0004189435 0.0005393566 0.0035332670 0.0110835407 0.0312705424 Max. Mean SD 0.5148772297 0.0357753361 0.0879935706 Accuracy with training data: 97.06% Out-of-bag accuracy: 92.87% Gene: HLA-A Training dataset: 34 samples X 264 SNPs # of HLA alleles: 14 # of individual classifiers: 4 total # of SNPs used: 49 avg. # of SNPs in an individual classifier: 13.25 (sd: 1.71, min: 11, max: 15, median: 13.50) avg. # of haplotypes in an individual classifier: 47.25 (sd: 28.72, min: 30, max: 90, median: 34.50) avg. out-of-bag accuracy: 92.87% (sd: 2.73%, min: 89.29%, max: 95.45%, median: 93.38%) Matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 0.0004055642 0.0004189435 0.0005393566 0.0035332670 0.0110835407 0.0312705424 Max. Mean SD 0.5148772297 0.0357753361 0.0879935706 Genome assembly: hg19 HIBAG model for HLA-A: 4 individual classifiers 264 SNPs 14 unique HLA alleles: 01:01, 02:01, 02:06, ... Prediction: based on the averaged posterior probabilities Model assembly: hg19, SNP assembly: hg19 Matching the SNPs between the model and the test data: match.type="--" missing SNPs # Position 0 (0.0%) *being used [1] Pos+Allele 0 (0.0%) [2] RefSNP+Position 0 (0.0%) RefSNP 0 (0.0%) [1]: useful if ambiguous strands on array-based platforms [2]: suggested if the model and test data have been matched to the same reference genome Model platform: not applicable No allelic strand or A/B allele is flipped. # of samples: 26 CPU flags: 64-bit, AVX512BW # of threads: 1 Predicting (2023-10-16 03:01:26) 0% Predicting (2023-10-16 03:01:26) 100% Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 60 # of unique HLA alleles: 14 # of unique HLA genotypes: 29 Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 34 # of unique HLA alleles: 14 # of unique HLA genotypes: 21 Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 26 # of unique HLA alleles: 12 # of unique HLA genotypes: 17 Build a HIBAG model with 2 individual classifiers: MAF threshold: NaN # of SNPs randomly sampled as candidates for each selection: 8 # of SNPs: 51 # of samples: 60 # of unique HLA alleles: 17 CPU flags: 64-bit, AVX2 # of threads: 1 [-] 2023-10-16 03:01:26 === building individual classifier 1, out-of-bag (24/40.0%) === 1, SNP: 13, loss: 391.274, oob acc: 41.67%, # of haplo: 17 2, SNP: 2, loss: 321.685, oob acc: 52.08%, # of haplo: 18 3, SNP: 36, loss: 232.846, oob acc: 58.33%, # of haplo: 19 4, SNP: 28, loss: 178.077, oob acc: 62.50%, # of haplo: 20 5, SNP: 35, loss: 107.151, oob acc: 68.75%, # of haplo: 20 6, SNP: 3, loss: 72.2736, oob acc: 72.92%, # of haplo: 23 7, SNP: 19, loss: 50.8439, oob acc: 77.08%, # of haplo: 25 8, SNP: 4, loss: 47.2744, oob acc: 83.33%, # of haplo: 29 9, SNP: 42, loss: 47.0092, oob acc: 85.42%, # of haplo: 37 10, SNP: 33, loss: 41.5486, oob acc: 85.42%, # of haplo: 41 11, SNP: 5, loss: 39.769, oob acc: 85.42%, # of haplo: 51 12, SNP: 10, loss: 34.0977, oob acc: 85.42%, # of haplo: 51 13, SNP: 37, loss: 32.3969, oob acc: 85.42%, # of haplo: 52 14, SNP: 7, loss: 28.1492, oob acc: 85.42%, # of haplo: 52 15, SNP: 15, loss: 27.2163, oob acc: 85.42%, # of haplo: 55 [1] 2023-10-16 03:01:26, oob acc: 85.42%, # of SNPs: 15, # of haplo: 55 === building individual classifier 2, out-of-bag (17/28.3%) === 1, SNP: 18, loss: 453.852, oob acc: 44.12%, # of haplo: 17 2, SNP: 4, loss: 358.517, oob acc: 50.00%, # of haplo: 18 3, SNP: 49, loss: 258.495, oob acc: 52.94%, # of haplo: 18 4, SNP: 5, loss: 172.555, oob acc: 67.65%, # of haplo: 21 5, SNP: 42, loss: 144.905, oob acc: 76.47%, # of haplo: 21 6, SNP: 38, loss: 98.7462, oob acc: 79.41%, # of haplo: 21 7, SNP: 36, loss: 83.4743, oob acc: 82.35%, # of haplo: 24 8, SNP: 19, loss: 60.2385, oob acc: 88.24%, # of haplo: 24 9, SNP: 46, loss: 49.1775, oob acc: 88.24%, # of haplo: 24 10, SNP: 20, loss: 42.3205, oob acc: 88.24%, # of haplo: 24 11, SNP: 12, loss: 41.1299, oob acc: 91.18%, # of haplo: 25 12, SNP: 1, loss: 33.8332, oob acc: 91.18%, # of haplo: 25 13, SNP: 37, loss: 32.8313, oob acc: 91.18%, # of haplo: 26 14, SNP: 7, loss: 38.8398, oob acc: 94.12%, # of haplo: 27 15, SNP: 15, loss: 35.0817, oob acc: 94.12%, # of haplo: 32 16, SNP: 39, loss: 33.7063, oob acc: 94.12%, # of haplo: 30 [2] 2023-10-16 03:01:26, oob acc: 94.12%, # of SNPs: 16, # of haplo: 30 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 3.464062e-10 4.686489e-10 1.568833e-09 3.197938e-03 1.266674e-02 3.773631e-02 Max. Mean SD 9.739941e-02 2.429599e-02 2.696412e-02 Accuracy with training data: 95.83% Out-of-bag accuracy: 89.77% Gene: HLA-C Training dataset: 60 samples X 51 SNPs # of HLA alleles: 17 # of individual classifiers: 2 total # of SNPs used: 23 avg. # of SNPs in an individual classifier: 15.50 (sd: 0.71, min: 15, max: 16, median: 15.50) avg. # of haplotypes in an individual classifier: 42.50 (sd: 17.68, min: 30, max: 55, median: 42.50) avg. out-of-bag accuracy: 89.77% (sd: 6.15%, min: 85.42%, max: 94.12%, median: 89.77%) Matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 3.464062e-10 4.686489e-10 1.568833e-09 3.197938e-03 1.266674e-02 3.773631e-02 Max. Mean SD 9.739941e-02 2.429599e-02 2.696412e-02 Genome assembly: hg19 Gene: HLA-C Training dataset: 60 samples X 51 SNPs # of HLA alleles: 17 # of individual classifiers: 1 total # of SNPs used: 15 avg. # of SNPs in an individual classifier: 15.00 (sd: NA, min: 15, max: 15, median: 15.00) avg. # of haplotypes in an individual classifier: 55.00 (sd: NA, min: 55, max: 55, median: 55.00) avg. out-of-bag accuracy: 85.42% (sd: NA%, min: 85.42%, max: 85.42%, median: 85.42%) Matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 3.464062e-10 4.686489e-10 1.568833e-09 3.197938e-03 1.266674e-02 3.773631e-02 Max. Mean SD 9.739941e-02 2.429599e-02 2.696412e-02 Genome assembly: hg19 Gene: HLA-A Range: [29910247bp, 29913661bp] on hg19 # of samples: 60 # of unique HLA alleles: 14 # of unique HLA genotypes: 29 Build a HIBAG model with 2 individual classifiers: MAF threshold: NaN # of SNPs randomly sampled as candidates for each selection: 10 # of SNPs: 83 # of samples: 60 # of unique HLA alleles: 17 CPU flags: 64-bit, AVX2 # of threads: 1 [-] 2023-10-16 03:01:26 === building individual classifier 1, out-of-bag (24/40.0%) === 1, SNP: 44, loss: 396.506, oob acc: 41.67%, # of haplo: 17 2, SNP: 58, loss: 291.148, oob acc: 50.00%, # of haplo: 17 3, SNP: 80, loss: 211.469, oob acc: 56.25%, # of haplo: 20 4, SNP: 18, loss: 138.615, oob acc: 60.42%, # of haplo: 20 5, SNP: 29, loss: 111.977, oob acc: 62.50%, # of haplo: 22 6, SNP: 62, loss: 90.976, oob acc: 68.75%, # of haplo: 24 7, SNP: 13, loss: 70.2962, oob acc: 72.92%, # of haplo: 24 8, SNP: 14, loss: 54.5685, oob acc: 77.08%, # of haplo: 22 9, SNP: 72, loss: 35.1951, oob acc: 77.08%, # of haplo: 24 10, SNP: 3, loss: 23.2868, oob acc: 79.17%, # of haplo: 24 11, SNP: 70, loss: 21.089, oob acc: 79.17%, # of haplo: 28 12, SNP: 5, loss: 20.9664, oob acc: 79.17%, # of haplo: 29 13, SNP: 40, loss: 20.9662, oob acc: 83.33%, # of haplo: 37 14, SNP: 24, loss: 20.2385, oob acc: 85.42%, # of haplo: 38 15, SNP: 2, loss: 20.2383, oob acc: 87.50%, # of haplo: 39 16, SNP: 74, loss: 20.0601, oob acc: 87.50%, # of haplo: 40 17, SNP: 57, loss: 17.8846, oob acc: 87.50%, # of haplo: 41 18, SNP: 56, loss: 14.7377, oob acc: 89.58%, # of haplo: 43 19, SNP: 27, loss: 10.7709, oob acc: 89.58%, # of haplo: 43 [1] 2023-10-16 03:01:26, oob acc: 89.58%, # of SNPs: 19, # of haplo: 43 === building individual classifier 2, out-of-bag (17/28.3%) === 1, SNP: 66, loss: 434.369, oob acc: 44.12%, # of haplo: 19 2, SNP: 28, loss: 337.451, oob acc: 58.82%, # of haplo: 21 3, SNP: 30, loss: 302.194, oob acc: 73.53%, # of haplo: 21 4, SNP: 59, loss: 209.932, oob acc: 73.53%, # of haplo: 21 5, SNP: 69, loss: 146.631, oob acc: 82.35%, # of haplo: 21 6, SNP: 73, loss: 96.4111, oob acc: 91.18%, # of haplo: 21 7, SNP: 70, loss: 81.5466, oob acc: 91.18%, # of haplo: 21 8, SNP: 3, loss: 71.8294, oob acc: 91.18%, # of haplo: 22 9, SNP: 5, loss: 66.5825, oob acc: 94.12%, # of haplo: 23 10, SNP: 27, loss: 46.6959, oob acc: 94.12%, # of haplo: 23 11, SNP: 72, loss: 39.0572, oob acc: 94.12%, # of haplo: 23 12, SNP: 6, loss: 35.0674, oob acc: 94.12%, # of haplo: 24 13, SNP: 78, loss: 34.8741, oob acc: 94.12%, # of haplo: 32 14, SNP: 82, loss: 33.4558, oob acc: 94.12%, # of haplo: 38 15, SNP: 57, loss: 30.709, oob acc: 94.12%, # of haplo: 41 16, SNP: 32, loss: 26.6513, oob acc: 94.12%, # of haplo: 42 17, SNP: 23, loss: 26.6236, oob acc: 94.12%, # of haplo: 46 18, SNP: 2, loss: 25.7938, oob acc: 94.12%, # of haplo: 56 [2] 2023-10-16 03:01:26, oob acc: 94.12%, # of SNPs: 18, # of haplo: 56 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 1.736136e-08 5.138167e-06 5.122542e-05 1.574056e-03 6.457411e-03 3.142989e-02 Max. Mean SD 8.812257e-02 1.848522e-02 2.222954e-02 Accuracy with training data: 96.67% Out-of-bag accuracy: 91.85% Build a HIBAG model with 2 individual classifiers: MAF threshold: NaN # of SNPs randomly sampled as candidates for each selection: 10 # of SNPs: 83 # of samples: 60 # of unique HLA alleles: 17 CPU flags: 64-bit, AVX2 # of threads: 1 [-] 2023-10-16 03:01:26 === building individual classifier 1, out-of-bag (24/40.0%) === 1, SNP: 44, loss: 396.506, oob acc: 41.67%, # of haplo: 17 2, SNP: 58, loss: 291.148, oob acc: 50.00%, # of haplo: 17 3, SNP: 80, loss: 211.469, oob acc: 56.25%, # of haplo: 20 4, SNP: 18, loss: 138.615, oob acc: 60.42%, # of haplo: 20 5, SNP: 29, loss: 111.977, oob acc: 62.50%, # of haplo: 22 6, SNP: 62, loss: 90.976, oob acc: 68.75%, # of haplo: 24 7, SNP: 13, loss: 70.2962, oob acc: 72.92%, # of haplo: 24 8, SNP: 14, loss: 54.5685, oob acc: 77.08%, # of haplo: 22 9, SNP: 72, loss: 35.1951, oob acc: 77.08%, # of haplo: 24 10, SNP: 3, loss: 23.2868, oob acc: 79.17%, # of haplo: 24 11, SNP: 70, loss: 21.089, oob acc: 79.17%, # of haplo: 28 12, SNP: 5, loss: 20.9664, oob acc: 79.17%, # of haplo: 29 13, SNP: 40, loss: 20.9662, oob acc: 83.33%, # of haplo: 37 14, SNP: 24, loss: 20.2385, oob acc: 85.42%, # of haplo: 38 15, SNP: 2, loss: 20.2383, oob acc: 87.50%, # of haplo: 39 16, SNP: 74, loss: 20.0601, oob acc: 87.50%, # of haplo: 40 17, SNP: 57, loss: 17.8846, oob acc: 87.50%, # of haplo: 41 18, SNP: 56, loss: 14.7377, oob acc: 89.58%, # of haplo: 43 19, SNP: 27, loss: 10.7709, oob acc: 89.58%, # of haplo: 43 [1] 2023-10-16 03:01:26, oob acc: 89.58%, # of SNPs: 19, # of haplo: 43 === building individual classifier 2, out-of-bag (17/28.3%) === 1, SNP: 66, loss: 434.369, oob acc: 44.12%, # of haplo: 19 2, SNP: 28, loss: 337.451, oob acc: 58.82%, # of haplo: 21 3, SNP: 30, loss: 302.194, oob acc: 73.53%, # of haplo: 21 4, SNP: 59, loss: 209.932, oob acc: 73.53%, # of haplo: 21 5, SNP: 69, loss: 146.631, oob acc: 82.35%, # of haplo: 21 6, SNP: 73, loss: 96.4111, oob acc: 91.18%, # of haplo: 21 7, SNP: 70, loss: 81.5466, oob acc: 91.18%, # of haplo: 21 8, SNP: 3, loss: 71.8294, oob acc: 91.18%, # of haplo: 22 9, SNP: 5, loss: 66.5825, oob acc: 94.12%, # of haplo: 23 10, SNP: 27, loss: 46.6959, oob acc: 94.12%, # of haplo: 23 11, SNP: 72, loss: 39.0572, oob acc: 94.12%, # of haplo: 23 12, SNP: 6, loss: 35.0674, oob acc: 94.12%, # of haplo: 24 13, SNP: 78, loss: 34.8741, oob acc: 94.12%, # of haplo: 32 14, SNP: 82, loss: 33.4558, oob acc: 94.12%, # of haplo: 38 15, SNP: 57, loss: 30.709, oob acc: 94.12%, # of haplo: 41 16, SNP: 32, loss: 26.6513, oob acc: 94.12%, # of haplo: 42 17, SNP: 23, loss: 26.6236, oob acc: 94.12%, # of haplo: 46 18, SNP: 2, loss: 25.7938, oob acc: 94.12%, # of haplo: 56 [2] 2023-10-16 03:01:26, oob acc: 94.12%, # of SNPs: 18, # of haplo: 56 Calculating matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 1.736136e-08 5.138167e-06 5.122542e-05 1.574056e-03 6.457411e-03 3.142989e-02 Max. Mean SD 8.812257e-02 1.848522e-02 2.222954e-02 Accuracy with training data: 96.67% Out-of-bag accuracy: 91.85% Gene: HLA-C Training dataset: 60 samples X 83 SNPs # of HLA alleles: 17 # of individual classifiers: 2 total # of SNPs used: 30 avg. # of SNPs in an individual classifier: 18.50 (sd: 0.71, min: 18, max: 19, median: 18.50) avg. # of haplotypes in an individual classifier: 49.50 (sd: 9.19, min: 43, max: 56, median: 49.50) avg. out-of-bag accuracy: 91.85% (sd: 3.21%, min: 89.58%, max: 94.12%, median: 91.85%) Matching proportion: Min. 0.1% Qu. 1% Qu. 1st Qu. Median 3rd Qu. 1.736136e-08 5.138167e-06 5.122542e-05 1.574056e-03 6.457411e-03 3.142989e-02 Max. Mean SD 8.812257e-02 1.848522e-02 2.222954e-02 Genome assembly: hg19 SNP genotypes: 60 samples X 1564 SNPs SNPs range from 25769023bp to 33421576bp on hg19 Missing rate per SNP: min: 0, max: 0.0666667, mean: 0.0651215, median: 0.0666667, sd: 0.00968287 Missing rate per sample: min: 0, max: 0.969949, mean: 0.0651215, median: 0.000639386, sd: 0.243737 Minor allele frequency: min: 0, max: 0.5, mean: 0.227582, median: 0.205357, sd: 0.1389 Allelic information: A/G C/T G/T A/C 655 632 141 136 > > proc.time() user system elapsed 16.89 0.68 18.42
HIBAG.Rcheck/HIBAG-Ex.timings
name | user | system | elapsed | |
HIBAG-package | 0.28 | 0.03 | 0.50 | |
hlaAllele | 0.02 | 0.02 | 0.03 | |
hlaAlleleDigit | 0 | 0 | 0 | |
hlaAlleleSubset | 0.00 | 0.02 | 0.01 | |
hlaAlleleToVCF | 1.52 | 0.02 | 1.53 | |
hlaAssocTest | 0.78 | 0.01 | 0.80 | |
hlaAttrBagging | 0.22 | 0.03 | 0.26 | |
hlaBED2Geno | 0.06 | 0.02 | 0.08 | |
hlaCheckAllele | 0 | 0 | 0 | |
hlaCheckSNPs | 0.06 | 0.00 | 0.08 | |
hlaCombineAllele | 0.02 | 0.00 | 0.02 | |
hlaCombineModelObj | 0.21 | 0.00 | 0.23 | |
hlaCompareAllele | 0.19 | 0.01 | 0.20 | |
hlaConvSequence | 2.08 | 0.14 | 2.22 | |
hlaDistance | 1.14 | 0.00 | 1.16 | |
hlaFlankingSNP | 0.02 | 0.00 | 0.01 | |
hlaGDS2Geno | 0.06 | 0.00 | 0.08 | |
hlaGeno2PED | 0.04 | 0.02 | 0.06 | |
hlaGenoAFreq | 0.01 | 0.00 | 0.02 | |
hlaGenoCombine | 0.05 | 0.00 | 0.04 | |
hlaGenoLD | 0.37 | 0.06 | 0.44 | |
hlaGenoMFreq | 0 | 0 | 0 | |
hlaGenoMRate | 0 | 0 | 0 | |
hlaGenoMRate_Samp | 0.02 | 0.00 | 0.02 | |
hlaGenoSubset | 0 | 0 | 0 | |
hlaGenoSwitchStrand | 0.03 | 0.02 | 0.04 | |
hlaLDMatrix | 1.25 | 0.19 | 1.46 | |
hlaLociInfo | 0 | 0 | 0 | |
hlaMakeSNPGeno | 0.03 | 0.00 | 0.03 | |
hlaModelFiles | 0.12 | 0.00 | 0.14 | |
hlaModelFromObj | 0.06 | 0.01 | 0.08 | |
hlaOutOfBag | 0.5 | 0.0 | 0.5 | |
hlaParallelAttrBagging | 0.42 | 0.03 | 1.09 | |
hlaPredMerge | 0.25 | 0.03 | 0.30 | |
hlaPredict | 0.22 | 0.00 | 0.22 | |
hlaPublish | 0.22 | 0.00 | 0.23 | |
hlaReport | 0.17 | 0.02 | 0.20 | |
hlaReportPlot | 1.24 | 0.01 | 1.25 | |
hlaSNPID | 0.01 | 0.00 | 0.02 | |
hlaSampleAllele | 0.02 | 0.00 | 0.02 | |
hlaSetKernelTarget | 0 | 0 | 0 | |
hlaSplitAllele | 0.04 | 0.00 | 0.04 | |
hlaSubModelObj | 0.05 | 0.00 | 0.05 | |
hlaUniqueAllele | 0.00 | 0.02 | 0.02 | |
plot.hlaAttrBagObj | 0.24 | 0.00 | 0.25 | |
print.hlaAttrBagClass | 0.07 | 0.02 | 0.09 | |
summary.hlaSNPGenoClass | 0 | 0 | 0 | |