Back to Multiple platform build/check report for BioC 3.17:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2023-10-16 11:35:58 -0400 (Mon, 16 Oct 2023).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 22.04.2 LTS)x86_644.3.1 (2023-06-16) -- "Beagle Scouts" 4626
palomino3Windows Server 2022 Datacenterx644.3.1 (2023-06-16 ucrt) -- "Beagle Scouts" 4379
merida1macOS 12.6.4 Montereyx86_644.3.1 (2023-06-16) -- "Beagle Scouts" 4395
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 245/2230HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.64.0  (landing page)
Ben Bolstad
Snapshot Date: 2023-10-15 14:00:13 -0400 (Sun, 15 Oct 2023)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: RELEASE_3_17
git_last_commit: 3e3f8d6
git_last_commit_date: 2023-04-25 09:44:48 -0400 (Tue, 25 Apr 2023)
nebbiolo1Linux (Ubuntu 22.04.2 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino3Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.6.4 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson2macOS 12.6.1 Monterey / arm64see weekly results here

CHECK results for BufferedMatrix on palomino3


To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.64.0
Command: F:\biocbuild\bbs-3.17-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:BufferedMatrix.install-out.txt --library=F:\biocbuild\bbs-3.17-bioc\R\library --no-vignettes --timings BufferedMatrix_1.64.0.tar.gz
StartedAt: 2023-10-16 00:10:12 -0400 (Mon, 16 Oct 2023)
EndedAt: 2023-10-16 00:11:13 -0400 (Mon, 16 Oct 2023)
EllapsedTime: 61.0 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   F:\biocbuild\bbs-3.17-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:BufferedMatrix.install-out.txt --library=F:\biocbuild\bbs-3.17-bioc\R\library --no-vignettes --timings BufferedMatrix_1.64.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'F:/biocbuild/bbs-3.17-bioc/meat/BufferedMatrix.Rcheck'
* using R version 4.3.1 (2023-06-16 ucrt)
* using platform: x86_64-w64-mingw32 (64-bit)
* R was compiled by
    gcc.exe (GCC) 12.2.0
    GNU Fortran (GCC) 12.2.0
* running under: Windows Server 2022 x64 (build 20348)
* using session charset: UTF-8
* using option '--no-vignettes'
* checking for file 'BufferedMatrix/DESCRIPTION' ... OK
* this is package 'BufferedMatrix' version '1.64.0'
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'BufferedMatrix' can be installed ... OK
* used C compiler: 'gcc.exe (GCC) 12.2.0'
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files for x64 is not available
File 'F:/biocbuild/bbs-3.17-bioc/R/library/BufferedMatrix/libs/x64/BufferedMatrix.dll':
  Found 'abort', possibly from 'abort' (C), 'runtime' (Fortran)

Compiled code should not call entry points which might terminate R nor
write to stdout/stderr instead of to the console, nor use Fortran I/O
nor system RNGs nor [v]sprintf. The detected symbols are linked into
the code but might come from libraries and not actually be called.

See 'Writing portable packages' in the 'Writing R Extensions' manual.
* checking sizes of PDF files under 'inst/doc' ... OK
* checking files in 'vignettes' ... OK
* checking examples ... NONE
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
  Running 'Rcodetesting.R'
  Running 'c_code_level_tests.R'
  Running 'objectTesting.R'
  Running 'rawCalltesting.R'
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in 'inst/doc' ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  'F:/biocbuild/bbs-3.17-bioc/meat/BufferedMatrix.Rcheck/00check.log'
for details.



Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   F:\biocbuild\bbs-3.17-bioc\R\bin\R.exe CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library 'F:/biocbuild/bbs-3.17-bioc/R/library'
* installing *source* package 'BufferedMatrix' ...
** using staged installation
** libs
using C compiler: 'gcc.exe (GCC) 12.2.0'
gcc  -I"F:/biocbuild/bbs-3.17-bioc/R/include" -DNDEBUG     -I"C:/rtools43/x86_64-w64-mingw32.static.posix/include"     -O2 -Wall  -mfpmath=sse -msse2 -mstackrealign  -c RBufferedMatrix.c -o RBufferedMatrix.o
gcc  -I"F:/biocbuild/bbs-3.17-bioc/R/include" -DNDEBUG     -I"C:/rtools43/x86_64-w64-mingw32.static.posix/include"     -O2 -Wall  -mfpmath=sse -msse2 -mstackrealign  -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function 'dbm_ReadOnlyMode':
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of '!' or change '&' to '&&' or '!' to '~' [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: 'sort_double' defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
gcc  -I"F:/biocbuild/bbs-3.17-bioc/R/include" -DNDEBUG     -I"C:/rtools43/x86_64-w64-mingw32.static.posix/include"     -O2 -Wall  -mfpmath=sse -msse2 -mstackrealign  -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
gcc  -I"F:/biocbuild/bbs-3.17-bioc/R/include" -DNDEBUG     -I"C:/rtools43/x86_64-w64-mingw32.static.posix/include"     -O2 -Wall  -mfpmath=sse -msse2 -mstackrealign  -c init_package.c -o init_package.o
gcc -shared -s -static-libgcc -o BufferedMatrix.dll tmp.def RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -LC:/rtools43/x86_64-w64-mingw32.static.posix/lib/x64 -LC:/rtools43/x86_64-w64-mingw32.static.posix/lib -LF:/biocbuild/bbs-3.17-bioc/R/bin/x64 -lR
installing to F:/biocbuild/bbs-3.17-bioc/R/library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs/x64
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for 'rowMeans' in package 'BufferedMatrix'
Creating a new generic function for 'rowSums' in package 'BufferedMatrix'
Creating a new generic function for 'colMeans' in package 'BufferedMatrix'
Creating a new generic function for 'colSums' in package 'BufferedMatrix'
Creating a generic function for 'ncol' from package 'base' in package 'BufferedMatrix'
Creating a generic function for 'nrow' from package 'base' in package 'BufferedMatrix'
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.3.1 (2023-06-16 ucrt) -- "Beagle Scouts"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
   0.23    0.25    0.54 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.3.1 (2023-06-16 ucrt) -- "Beagle Scouts"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "F:/biocbuild/bbs-3.17-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 454300 24.3     977590 52.3   640820 34.3
Vcells 825159  6.3    8388608 64.0  2002707 15.3
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Mon Oct 16 00:10:35 2023"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Mon Oct 16 00:10:36 2023"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x000001e288b26fd0>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Mon Oct 16 00:10:41 2023"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Mon Oct 16 00:10:43 2023"
> 
> ColMode(tmp2)
<pointer: 0x000001e288b26fd0>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
           [,1]       [,2]        [,3]       [,4]
[1,] 99.8562344  0.3196729  1.25270208 -1.8588327
[2,]  1.3933733 -1.4089691  0.40048108  0.2778821
[3,]  0.1877901 -0.8010538 -0.26760984  1.4995236
[4,] -1.1746379 -0.5871921  0.08627554  1.6091802
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    F:/biocbuild/bbs-3.17-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]       [,3]      [,4]
[1,] 99.8562344 0.3196729 1.25270208 1.8588327
[2,]  1.3933733 1.4089691 0.40048108 0.2778821
[3,]  0.1877901 0.8010538 0.26760984 1.4995236
[4,]  1.1746379 0.5871921 0.08627554 1.6091802
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    F:/biocbuild/bbs-3.17-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]      [,2]      [,3]      [,4]
[1,] 9.9928091 0.5653963 1.1192417 1.3633902
[2,] 1.1804124 1.1870000 0.6328357 0.5271453
[3,] 0.4333476 0.8950161 0.5173102 1.2245504
[4,] 1.0838071 0.7662846 0.2937270 1.2685347
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    F:/biocbuild/bbs-3.17-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 224.78433 30.97364 37.44512 40.49273
[2,]  38.19750 38.27897 31.72884 30.54933
[3,]  29.52127 34.75121 30.44071 38.74503
[4,]  37.01271 33.25004 28.02355 39.29453
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x000001e288b274a0>
> exp(tmp5)
<pointer: 0x000001e288b274a0>
> log(tmp5,2)
<pointer: 0x000001e288b274a0>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 467.8591
> Min(tmp5)
[1] 54.71628
> mean(tmp5)
[1] 72.96984
> Sum(tmp5)
[1] 14593.97
> Var(tmp5)
[1] 847.0584
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 92.19917 71.22949 70.35502 71.96188 71.04032 72.97520 71.40664 71.21150
 [9] 68.24407 69.07515
> rowSums(tmp5)
 [1] 1843.983 1424.590 1407.100 1439.238 1420.806 1459.504 1428.133 1424.230
 [9] 1364.881 1381.503
> rowVars(tmp5)
 [1] 7868.03532   60.60408   52.20032   53.63811   86.64270   54.17294
 [7]   60.19740   51.01324   61.98419   73.42953
> rowSd(tmp5)
 [1] 88.701947  7.784862  7.224979  7.323805  9.308206  7.360227  7.758698
 [8]  7.142355  7.873004  8.569103
> rowMax(tmp5)
 [1] 467.85912  85.19878  82.55517  84.25649  87.18645  89.12406  82.69489
 [8]  85.34139  81.76527  83.15810
> rowMin(tmp5)
 [1] 59.73652 54.71628 58.25588 55.87584 55.18679 58.02704 55.83554 57.84785
 [9] 55.55461 55.21545
> 
> colMeans(tmp5)
 [1] 109.54100  74.60000  72.07061  73.62620  69.61562  69.71432  69.00417
 [8]  67.21886  69.27340  72.30131  72.56909  73.77451  67.78756  66.46985
[15]  71.40563  70.92317  67.44463  73.46580  74.69072  73.90039
> colSums(tmp5)
 [1] 1095.4100  746.0000  720.7061  736.2620  696.1562  697.1432  690.0417
 [8]  672.1886  692.7340  723.0131  725.6909  737.7451  677.8756  664.6985
[15]  714.0563  709.2317  674.4463  734.6580  746.9072  739.0039
> colVars(tmp5)
 [1] 15912.82361    40.38724    92.78810    76.16088    50.10867    51.53447
 [7]    41.21022    50.93710    59.80885    41.09912    83.39971   105.09440
[13]    67.83375    48.88548    16.00807    51.65617    45.92629    60.78810
[19]    48.16645    76.72132
> colSd(tmp5)
 [1] 126.146041   6.355095   9.632658   8.727020   7.078748   7.178752
 [7]   6.419519   7.137023   7.733618   6.410860   9.132344  10.251556
[13]   8.236125   6.991815   4.001008   7.187223   6.776894   7.796672
[19]   6.940205   8.759071
> colMax(tmp5)
 [1] 467.85912  87.18645  83.10027  84.28032  82.69489  81.73657  83.15810
 [8]  79.02364  80.21698  80.28176  85.34139  89.12406  81.95323  75.11659
[15]  75.59324  81.76527  76.49639  85.19878  84.25649  83.32770
> colMin(tmp5)
 [1] 55.55461 64.46756 58.32734 61.17854 56.85781 55.83554 62.01469 56.89018
 [9] 58.61665 58.02704 58.50990 55.94346 55.87584 55.21545 63.94086 62.01731
[17] 54.71628 63.19930 62.34831 55.18679
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 92.19917 71.22949 70.35502 71.96188 71.04032 72.97520 71.40664 71.21150
 [9]       NA 69.07515
> rowSums(tmp5)
 [1] 1843.983 1424.590 1407.100 1439.238 1420.806 1459.504 1428.133 1424.230
 [9]       NA 1381.503
> rowVars(tmp5)
 [1] 7868.03532   60.60408   52.20032   53.63811   86.64270   54.17294
 [7]   60.19740   51.01324   65.16743   73.42953
> rowSd(tmp5)
 [1] 88.701947  7.784862  7.224979  7.323805  9.308206  7.360227  7.758698
 [8]  7.142355  8.072634  8.569103
> rowMax(tmp5)
 [1] 467.85912  85.19878  82.55517  84.25649  87.18645  89.12406  82.69489
 [8]  85.34139        NA  83.15810
> rowMin(tmp5)
 [1] 59.73652 54.71628 58.25588 55.87584 55.18679 58.02704 55.83554 57.84785
 [9]       NA 55.21545
> 
> colMeans(tmp5)
 [1] 109.54100  74.60000        NA  73.62620  69.61562  69.71432  69.00417
 [8]  67.21886  69.27340  72.30131  72.56909  73.77451  67.78756  66.46985
[15]  71.40563  70.92317  67.44463  73.46580  74.69072  73.90039
> colSums(tmp5)
 [1] 1095.4100  746.0000        NA  736.2620  696.1562  697.1432  690.0417
 [8]  672.1886  692.7340  723.0131  725.6909  737.7451  677.8756  664.6985
[15]  714.0563  709.2317  674.4463  734.6580  746.9072  739.0039
> colVars(tmp5)
 [1] 15912.82361    40.38724          NA    76.16088    50.10867    51.53447
 [7]    41.21022    50.93710    59.80885    41.09912    83.39971   105.09440
[13]    67.83375    48.88548    16.00807    51.65617    45.92629    60.78810
[19]    48.16645    76.72132
> colSd(tmp5)
 [1] 126.146041   6.355095         NA   8.727020   7.078748   7.178752
 [7]   6.419519   7.137023   7.733618   6.410860   9.132344  10.251556
[13]   8.236125   6.991815   4.001008   7.187223   6.776894   7.796672
[19]   6.940205   8.759071
> colMax(tmp5)
 [1] 467.85912  87.18645        NA  84.28032  82.69489  81.73657  83.15810
 [8]  79.02364  80.21698  80.28176  85.34139  89.12406  81.95323  75.11659
[15]  75.59324  81.76527  76.49639  85.19878  84.25649  83.32770
> colMin(tmp5)
 [1] 55.55461 64.46756       NA 61.17854 56.85781 55.83554 62.01469 56.89018
 [9] 58.61665 58.02704 58.50990 55.94346 55.87584 55.21545 63.94086 62.01731
[17] 54.71628 63.19930 62.34831 55.18679
> 
> Max(tmp5,na.rm=TRUE)
[1] 467.8591
> Min(tmp5,na.rm=TRUE)
[1] 54.71628
> mean(tmp5,na.rm=TRUE)
[1] 72.98299
> Sum(tmp5,na.rm=TRUE)
[1] 14523.61
> Var(tmp5,na.rm=TRUE)
[1] 851.3017
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 92.19917 71.22949 70.35502 71.96188 71.04032 72.97520 71.40664 71.21150
 [9] 68.13302 69.07515
> rowSums(tmp5,na.rm=TRUE)
 [1] 1843.983 1424.590 1407.100 1439.238 1420.806 1459.504 1428.133 1424.230
 [9] 1294.527 1381.503
> rowVars(tmp5,na.rm=TRUE)
 [1] 7868.03532   60.60408   52.20032   53.63811   86.64270   54.17294
 [7]   60.19740   51.01324   65.16743   73.42953
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.701947  7.784862  7.224979  7.323805  9.308206  7.360227  7.758698
 [8]  7.142355  8.072634  8.569103
> rowMax(tmp5,na.rm=TRUE)
 [1] 467.85912  85.19878  82.55517  84.25649  87.18645  89.12406  82.69489
 [8]  85.34139  81.76527  83.15810
> rowMin(tmp5,na.rm=TRUE)
 [1] 59.73652 54.71628 58.25588 55.87584 55.18679 58.02704 55.83554 57.84785
 [9] 55.55461 55.21545
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 109.54100  74.60000  72.26135  73.62620  69.61562  69.71432  69.00417
 [8]  67.21886  69.27340  72.30131  72.56909  73.77451  67.78756  66.46985
[15]  71.40563  70.92317  67.44463  73.46580  74.69072  73.90039
> colSums(tmp5,na.rm=TRUE)
 [1] 1095.4100  746.0000  650.3522  736.2620  696.1562  697.1432  690.0417
 [8]  672.1886  692.7340  723.0131  725.6909  737.7451  677.8756  664.6985
[15]  714.0563  709.2317  674.4463  734.6580  746.9072  739.0039
> colVars(tmp5,na.rm=TRUE)
 [1] 15912.82361    40.38724   103.97732    76.16088    50.10867    51.53447
 [7]    41.21022    50.93710    59.80885    41.09912    83.39971   105.09440
[13]    67.83375    48.88548    16.00807    51.65617    45.92629    60.78810
[19]    48.16645    76.72132
> colSd(tmp5,na.rm=TRUE)
 [1] 126.146041   6.355095  10.196927   8.727020   7.078748   7.178752
 [7]   6.419519   7.137023   7.733618   6.410860   9.132344  10.251556
[13]   8.236125   6.991815   4.001008   7.187223   6.776894   7.796672
[19]   6.940205   8.759071
> colMax(tmp5,na.rm=TRUE)
 [1] 467.85912  87.18645  83.10027  84.28032  82.69489  81.73657  83.15810
 [8]  79.02364  80.21698  80.28176  85.34139  89.12406  81.95323  75.11659
[15]  75.59324  81.76527  76.49639  85.19878  84.25649  83.32770
> colMin(tmp5,na.rm=TRUE)
 [1] 55.55461 64.46756 58.32734 61.17854 56.85781 55.83554 62.01469 56.89018
 [9] 58.61665 58.02704 58.50990 55.94346 55.87584 55.21545 63.94086 62.01731
[17] 54.71628 63.19930 62.34831 55.18679
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 92.19917 71.22949 70.35502 71.96188 71.04032 72.97520 71.40664 71.21150
 [9]      NaN 69.07515
> rowSums(tmp5,na.rm=TRUE)
 [1] 1843.983 1424.590 1407.100 1439.238 1420.806 1459.504 1428.133 1424.230
 [9]    0.000 1381.503
> rowVars(tmp5,na.rm=TRUE)
 [1] 7868.03532   60.60408   52.20032   53.63811   86.64270   54.17294
 [7]   60.19740   51.01324         NA   73.42953
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.701947  7.784862  7.224979  7.323805  9.308206  7.360227  7.758698
 [8]  7.142355        NA  8.569103
> rowMax(tmp5,na.rm=TRUE)
 [1] 467.85912  85.19878  82.55517  84.25649  87.18645  89.12406  82.69489
 [8]  85.34139        NA  83.15810
> rowMin(tmp5,na.rm=TRUE)
 [1] 59.73652 54.71628 58.25588 55.87584 55.18679 58.02704 55.83554 57.84785
 [9]       NA 55.21545
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 115.53949  74.49903       NaN  73.06683  71.03316  69.57794  69.21154
 [8]  67.69400  70.45748  72.37616  72.36506  75.75574  67.13332  66.35182
[15]  71.55632  69.71849  68.24674  74.31558  75.34670  73.39182
> colSums(tmp5,na.rm=TRUE)
 [1] 1039.8554  670.4912    0.0000  657.6015  639.2984  626.2015  622.9039
 [8]  609.2460  634.1173  651.3854  651.2855  681.8017  604.1999  597.1664
[15]  644.0069  627.4664  614.2207  668.8402  678.1203  660.5264
> colVars(tmp5,na.rm=TRUE)
 [1] 17497.13069    45.32094          NA    82.16095    33.76645    57.76706
 [7]    45.87774    54.76448    51.51186    46.17350    93.35637    74.07197
[13]    71.49769    54.83944    17.75361    41.78665    44.42902    60.26270
[19]    49.34634    83.40173
> colSd(tmp5,na.rm=TRUE)
 [1] 132.276720   6.732083         NA   9.064268   5.810890   7.600464
 [7]   6.773310   7.400303   7.177176   6.795108   9.662110   8.606508
[13]   8.455630   7.405366   4.213503   6.464260   6.665510   7.762906
[19]   7.024695   9.132455
> colMax(tmp5,na.rm=TRUE)
 [1] 467.85912  87.18645      -Inf  84.28032  82.69489  81.73657  83.15810
 [8]  79.02364  80.21698  80.28176  85.34139  89.12406  81.95323  75.11659
[15]  75.59324  79.58545  76.49639  85.19878  84.25649  83.32770
> colMin(tmp5,na.rm=TRUE)
 [1] 61.44465 64.46756      Inf 61.17854 61.98092 55.83554 62.01469 56.89018
 [9] 60.79285 58.02704 58.50990 64.71498 55.87584 55.21545 63.94086 62.01731
[17] 54.71628 63.19930 62.34831 55.18679
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 194.3700 376.7189 181.8782 146.4474 234.5499 185.1146 202.8558 163.2405
 [9] 132.4411 333.5689
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 194.3700 376.7189 181.8782 146.4474 234.5499 185.1146 202.8558 163.2405
 [9] 132.4411 333.5689
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1] -2.842171e-14  1.989520e-13 -1.421085e-13  1.136868e-13  2.842171e-14
 [6] -2.273737e-13  2.842171e-14 -1.136868e-13  5.684342e-14 -1.421085e-13
[11]  1.705303e-13  0.000000e+00 -8.526513e-14 -5.684342e-14  1.136868e-13
[16]  5.684342e-14  1.705303e-13 -2.273737e-13 -2.273737e-13 -1.136868e-13
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
10   17 
4   14 
5   1 
3   14 
3   15 
8   10 
9   16 
7   14 
4   12 
10   5 
8   11 
10   11 
3   8 
10   16 
7   11 
7   20 
5   8 
5   10 
6   9 
10   2 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 3.304863
> Min(tmp)
[1] -2.527198
> mean(tmp)
[1] -0.1938976
> Sum(tmp)
[1] -19.38976
> Var(tmp)
[1] 1.127741
> 
> rowMeans(tmp)
[1] -0.1938976
> rowSums(tmp)
[1] -19.38976
> rowVars(tmp)
[1] 1.127741
> rowSd(tmp)
[1] 1.061951
> rowMax(tmp)
[1] 3.304863
> rowMin(tmp)
[1] -2.527198
> 
> colMeans(tmp)
  [1] -0.126650629 -0.199048410 -0.868172734 -0.403447990 -0.711208385
  [6] -2.174133959  0.764052499 -1.120286035 -1.887160874  0.220144738
 [11] -0.794719192 -0.536324814  0.985771104 -0.713963744  1.054207348
 [16]  0.687069896  0.974369037  1.229847676  0.939827316 -1.019816662
 [21]  1.433291862 -0.601445004 -0.947719715  0.149869985  2.254371865
 [26]  0.241008179 -1.026255909 -0.419595499  1.044282335 -2.527197790
 [31]  1.170851655 -0.296187510 -0.537104586  3.304862729 -2.460036044
 [36] -0.255322134 -1.112095976  1.171570309 -0.157954206 -1.311340606
 [41] -1.865207776  0.483888579 -0.256834592 -0.274752753  1.257462593
 [46] -1.144545068 -0.262084952 -0.008836457  0.351573431 -1.296311672
 [51] -1.163299648 -0.872438076 -1.278818956  0.447908937 -0.947949887
 [56] -1.693420501  1.390362430  1.039924164 -0.068883879  1.159419070
 [61] -0.615287202 -0.537555123 -0.191958355 -0.558386493  0.759175362
 [66]  0.429709492 -1.716426206  1.058676020 -0.357939525  0.895771642
 [71]  1.155030203 -1.032517806  0.385684701  0.269776445  1.614170292
 [76] -0.013509494 -1.256334975 -0.329999082 -0.057568294 -0.795830895
 [81] -1.632147487  0.442721725  0.379718633  0.945064766  0.071453859
 [86] -0.367322152 -1.738521046 -1.282950518 -1.629185354 -0.133781984
 [91] -0.345169119 -0.361878850  0.230579355  0.647288473 -0.904189362
 [96]  0.925849523 -1.703944508 -0.856430718 -1.619397072  0.022435468
> colSums(tmp)
  [1] -0.126650629 -0.199048410 -0.868172734 -0.403447990 -0.711208385
  [6] -2.174133959  0.764052499 -1.120286035 -1.887160874  0.220144738
 [11] -0.794719192 -0.536324814  0.985771104 -0.713963744  1.054207348
 [16]  0.687069896  0.974369037  1.229847676  0.939827316 -1.019816662
 [21]  1.433291862 -0.601445004 -0.947719715  0.149869985  2.254371865
 [26]  0.241008179 -1.026255909 -0.419595499  1.044282335 -2.527197790
 [31]  1.170851655 -0.296187510 -0.537104586  3.304862729 -2.460036044
 [36] -0.255322134 -1.112095976  1.171570309 -0.157954206 -1.311340606
 [41] -1.865207776  0.483888579 -0.256834592 -0.274752753  1.257462593
 [46] -1.144545068 -0.262084952 -0.008836457  0.351573431 -1.296311672
 [51] -1.163299648 -0.872438076 -1.278818956  0.447908937 -0.947949887
 [56] -1.693420501  1.390362430  1.039924164 -0.068883879  1.159419070
 [61] -0.615287202 -0.537555123 -0.191958355 -0.558386493  0.759175362
 [66]  0.429709492 -1.716426206  1.058676020 -0.357939525  0.895771642
 [71]  1.155030203 -1.032517806  0.385684701  0.269776445  1.614170292
 [76] -0.013509494 -1.256334975 -0.329999082 -0.057568294 -0.795830895
 [81] -1.632147487  0.442721725  0.379718633  0.945064766  0.071453859
 [86] -0.367322152 -1.738521046 -1.282950518 -1.629185354 -0.133781984
 [91] -0.345169119 -0.361878850  0.230579355  0.647288473 -0.904189362
 [96]  0.925849523 -1.703944508 -0.856430718 -1.619397072  0.022435468
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -0.126650629 -0.199048410 -0.868172734 -0.403447990 -0.711208385
  [6] -2.174133959  0.764052499 -1.120286035 -1.887160874  0.220144738
 [11] -0.794719192 -0.536324814  0.985771104 -0.713963744  1.054207348
 [16]  0.687069896  0.974369037  1.229847676  0.939827316 -1.019816662
 [21]  1.433291862 -0.601445004 -0.947719715  0.149869985  2.254371865
 [26]  0.241008179 -1.026255909 -0.419595499  1.044282335 -2.527197790
 [31]  1.170851655 -0.296187510 -0.537104586  3.304862729 -2.460036044
 [36] -0.255322134 -1.112095976  1.171570309 -0.157954206 -1.311340606
 [41] -1.865207776  0.483888579 -0.256834592 -0.274752753  1.257462593
 [46] -1.144545068 -0.262084952 -0.008836457  0.351573431 -1.296311672
 [51] -1.163299648 -0.872438076 -1.278818956  0.447908937 -0.947949887
 [56] -1.693420501  1.390362430  1.039924164 -0.068883879  1.159419070
 [61] -0.615287202 -0.537555123 -0.191958355 -0.558386493  0.759175362
 [66]  0.429709492 -1.716426206  1.058676020 -0.357939525  0.895771642
 [71]  1.155030203 -1.032517806  0.385684701  0.269776445  1.614170292
 [76] -0.013509494 -1.256334975 -0.329999082 -0.057568294 -0.795830895
 [81] -1.632147487  0.442721725  0.379718633  0.945064766  0.071453859
 [86] -0.367322152 -1.738521046 -1.282950518 -1.629185354 -0.133781984
 [91] -0.345169119 -0.361878850  0.230579355  0.647288473 -0.904189362
 [96]  0.925849523 -1.703944508 -0.856430718 -1.619397072  0.022435468
> colMin(tmp)
  [1] -0.126650629 -0.199048410 -0.868172734 -0.403447990 -0.711208385
  [6] -2.174133959  0.764052499 -1.120286035 -1.887160874  0.220144738
 [11] -0.794719192 -0.536324814  0.985771104 -0.713963744  1.054207348
 [16]  0.687069896  0.974369037  1.229847676  0.939827316 -1.019816662
 [21]  1.433291862 -0.601445004 -0.947719715  0.149869985  2.254371865
 [26]  0.241008179 -1.026255909 -0.419595499  1.044282335 -2.527197790
 [31]  1.170851655 -0.296187510 -0.537104586  3.304862729 -2.460036044
 [36] -0.255322134 -1.112095976  1.171570309 -0.157954206 -1.311340606
 [41] -1.865207776  0.483888579 -0.256834592 -0.274752753  1.257462593
 [46] -1.144545068 -0.262084952 -0.008836457  0.351573431 -1.296311672
 [51] -1.163299648 -0.872438076 -1.278818956  0.447908937 -0.947949887
 [56] -1.693420501  1.390362430  1.039924164 -0.068883879  1.159419070
 [61] -0.615287202 -0.537555123 -0.191958355 -0.558386493  0.759175362
 [66]  0.429709492 -1.716426206  1.058676020 -0.357939525  0.895771642
 [71]  1.155030203 -1.032517806  0.385684701  0.269776445  1.614170292
 [76] -0.013509494 -1.256334975 -0.329999082 -0.057568294 -0.795830895
 [81] -1.632147487  0.442721725  0.379718633  0.945064766  0.071453859
 [86] -0.367322152 -1.738521046 -1.282950518 -1.629185354 -0.133781984
 [91] -0.345169119 -0.361878850  0.230579355  0.647288473 -0.904189362
 [96]  0.925849523 -1.703944508 -0.856430718 -1.619397072  0.022435468
> colMedians(tmp)
  [1] -0.126650629 -0.199048410 -0.868172734 -0.403447990 -0.711208385
  [6] -2.174133959  0.764052499 -1.120286035 -1.887160874  0.220144738
 [11] -0.794719192 -0.536324814  0.985771104 -0.713963744  1.054207348
 [16]  0.687069896  0.974369037  1.229847676  0.939827316 -1.019816662
 [21]  1.433291862 -0.601445004 -0.947719715  0.149869985  2.254371865
 [26]  0.241008179 -1.026255909 -0.419595499  1.044282335 -2.527197790
 [31]  1.170851655 -0.296187510 -0.537104586  3.304862729 -2.460036044
 [36] -0.255322134 -1.112095976  1.171570309 -0.157954206 -1.311340606
 [41] -1.865207776  0.483888579 -0.256834592 -0.274752753  1.257462593
 [46] -1.144545068 -0.262084952 -0.008836457  0.351573431 -1.296311672
 [51] -1.163299648 -0.872438076 -1.278818956  0.447908937 -0.947949887
 [56] -1.693420501  1.390362430  1.039924164 -0.068883879  1.159419070
 [61] -0.615287202 -0.537555123 -0.191958355 -0.558386493  0.759175362
 [66]  0.429709492 -1.716426206  1.058676020 -0.357939525  0.895771642
 [71]  1.155030203 -1.032517806  0.385684701  0.269776445  1.614170292
 [76] -0.013509494 -1.256334975 -0.329999082 -0.057568294 -0.795830895
 [81] -1.632147487  0.442721725  0.379718633  0.945064766  0.071453859
 [86] -0.367322152 -1.738521046 -1.282950518 -1.629185354 -0.133781984
 [91] -0.345169119 -0.361878850  0.230579355  0.647288473 -0.904189362
 [96]  0.925849523 -1.703944508 -0.856430718 -1.619397072  0.022435468
> colRanges(tmp)
           [,1]       [,2]       [,3]      [,4]       [,5]      [,6]      [,7]
[1,] -0.1266506 -0.1990484 -0.8681727 -0.403448 -0.7112084 -2.174134 0.7640525
[2,] -0.1266506 -0.1990484 -0.8681727 -0.403448 -0.7112084 -2.174134 0.7640525
          [,8]      [,9]     [,10]      [,11]      [,12]     [,13]      [,14]
[1,] -1.120286 -1.887161 0.2201447 -0.7947192 -0.5363248 0.9857711 -0.7139637
[2,] -1.120286 -1.887161 0.2201447 -0.7947192 -0.5363248 0.9857711 -0.7139637
        [,15]     [,16]    [,17]    [,18]     [,19]     [,20]    [,21]
[1,] 1.054207 0.6870699 0.974369 1.229848 0.9398273 -1.019817 1.433292
[2,] 1.054207 0.6870699 0.974369 1.229848 0.9398273 -1.019817 1.433292
         [,22]      [,23]   [,24]    [,25]     [,26]     [,27]      [,28]
[1,] -0.601445 -0.9477197 0.14987 2.254372 0.2410082 -1.026256 -0.4195955
[2,] -0.601445 -0.9477197 0.14987 2.254372 0.2410082 -1.026256 -0.4195955
        [,29]     [,30]    [,31]      [,32]      [,33]    [,34]     [,35]
[1,] 1.044282 -2.527198 1.170852 -0.2961875 -0.5371046 3.304863 -2.460036
[2,] 1.044282 -2.527198 1.170852 -0.2961875 -0.5371046 3.304863 -2.460036
          [,36]     [,37]   [,38]      [,39]     [,40]     [,41]     [,42]
[1,] -0.2553221 -1.112096 1.17157 -0.1579542 -1.311341 -1.865208 0.4838886
[2,] -0.2553221 -1.112096 1.17157 -0.1579542 -1.311341 -1.865208 0.4838886
          [,43]      [,44]    [,45]     [,46]     [,47]        [,48]     [,49]
[1,] -0.2568346 -0.2747528 1.257463 -1.144545 -0.262085 -0.008836457 0.3515734
[2,] -0.2568346 -0.2747528 1.257463 -1.144545 -0.262085 -0.008836457 0.3515734
         [,50]   [,51]      [,52]     [,53]     [,54]      [,55]     [,56]
[1,] -1.296312 -1.1633 -0.8724381 -1.278819 0.4479089 -0.9479499 -1.693421
[2,] -1.296312 -1.1633 -0.8724381 -1.278819 0.4479089 -0.9479499 -1.693421
        [,57]    [,58]       [,59]    [,60]      [,61]      [,62]      [,63]
[1,] 1.390362 1.039924 -0.06888388 1.159419 -0.6152872 -0.5375551 -0.1919584
[2,] 1.390362 1.039924 -0.06888388 1.159419 -0.6152872 -0.5375551 -0.1919584
          [,64]     [,65]     [,66]     [,67]    [,68]      [,69]     [,70]
[1,] -0.5583865 0.7591754 0.4297095 -1.716426 1.058676 -0.3579395 0.8957716
[2,] -0.5583865 0.7591754 0.4297095 -1.716426 1.058676 -0.3579395 0.8957716
       [,71]     [,72]     [,73]     [,74]   [,75]       [,76]     [,77]
[1,] 1.15503 -1.032518 0.3856847 0.2697764 1.61417 -0.01350949 -1.256335
[2,] 1.15503 -1.032518 0.3856847 0.2697764 1.61417 -0.01350949 -1.256335
          [,78]       [,79]      [,80]     [,81]     [,82]     [,83]     [,84]
[1,] -0.3299991 -0.05756829 -0.7958309 -1.632147 0.4427217 0.3797186 0.9450648
[2,] -0.3299991 -0.05756829 -0.7958309 -1.632147 0.4427217 0.3797186 0.9450648
          [,85]      [,86]     [,87]     [,88]     [,89]     [,90]      [,91]
[1,] 0.07145386 -0.3673222 -1.738521 -1.282951 -1.629185 -0.133782 -0.3451691
[2,] 0.07145386 -0.3673222 -1.738521 -1.282951 -1.629185 -0.133782 -0.3451691
          [,92]     [,93]     [,94]      [,95]     [,96]     [,97]      [,98]
[1,] -0.3618788 0.2305794 0.6472885 -0.9041894 0.9258495 -1.703945 -0.8564307
[2,] -0.3618788 0.2305794 0.6472885 -0.9041894 0.9258495 -1.703945 -0.8564307
         [,99]     [,100]
[1,] -1.619397 0.02243547
[2,] -1.619397 0.02243547
> 
> 
> Max(tmp2)
[1] 2.161284
> Min(tmp2)
[1] -3.103854
> mean(tmp2)
[1] 0.009090756
> Sum(tmp2)
[1] 0.9090756
> Var(tmp2)
[1] 1.144747
> 
> rowMeans(tmp2)
  [1] -3.10385359 -0.35283922 -1.85877861 -0.04529194 -0.63996183 -0.12451772
  [7]  0.68777985 -0.66558497 -0.60777155  0.20424768 -0.51002194  1.49385406
 [13]  0.56624538  1.17569584  1.25041614 -0.48574906  0.75820429  0.24178982
 [19] -2.11672892  0.54063001  0.04138854 -0.86975727  0.52415766 -0.64179422
 [25]  0.56325245  0.77153321  1.43538026 -1.00417949  0.03271116  0.03070315
 [31] -0.45652820 -0.51540055 -1.01051949 -1.07838544  0.55420110  0.14525426
 [37] -1.61397404 -0.09861646 -1.78259562  0.81848613 -1.33680863  0.35229071
 [43]  0.88414320  0.27273291 -0.88517783  0.64975024  2.16128352 -1.92811422
 [49]  1.44724047  0.94597283  1.28736844  1.28126711  0.44416846  0.89811852
 [55] -0.64841936 -0.98075369 -0.02867285  1.37356971 -0.50619844  0.94476377
 [61] -0.68163264  0.40382488  1.03326974  0.19850278  0.23389805  1.22135979
 [67]  1.38664492  0.67771289  0.49501995 -0.88080609 -0.03501748 -0.85928749
 [73] -0.72305174 -1.21350758  0.91227335  1.52956679 -0.39126508 -0.96765270
 [79]  0.22061632  0.94640819 -0.89592927  1.05029796 -1.21013814  1.84613310
 [85] -0.42679705  1.24204011  0.11797975 -0.82198696  1.17618393  0.30799441
 [91]  1.05983566 -1.24214874  1.17242405 -0.25138313  0.50742331 -0.84240957
 [97] -2.01243020 -2.84119755  1.92954388 -1.34484246
> rowSums(tmp2)
  [1] -3.10385359 -0.35283922 -1.85877861 -0.04529194 -0.63996183 -0.12451772
  [7]  0.68777985 -0.66558497 -0.60777155  0.20424768 -0.51002194  1.49385406
 [13]  0.56624538  1.17569584  1.25041614 -0.48574906  0.75820429  0.24178982
 [19] -2.11672892  0.54063001  0.04138854 -0.86975727  0.52415766 -0.64179422
 [25]  0.56325245  0.77153321  1.43538026 -1.00417949  0.03271116  0.03070315
 [31] -0.45652820 -0.51540055 -1.01051949 -1.07838544  0.55420110  0.14525426
 [37] -1.61397404 -0.09861646 -1.78259562  0.81848613 -1.33680863  0.35229071
 [43]  0.88414320  0.27273291 -0.88517783  0.64975024  2.16128352 -1.92811422
 [49]  1.44724047  0.94597283  1.28736844  1.28126711  0.44416846  0.89811852
 [55] -0.64841936 -0.98075369 -0.02867285  1.37356971 -0.50619844  0.94476377
 [61] -0.68163264  0.40382488  1.03326974  0.19850278  0.23389805  1.22135979
 [67]  1.38664492  0.67771289  0.49501995 -0.88080609 -0.03501748 -0.85928749
 [73] -0.72305174 -1.21350758  0.91227335  1.52956679 -0.39126508 -0.96765270
 [79]  0.22061632  0.94640819 -0.89592927  1.05029796 -1.21013814  1.84613310
 [85] -0.42679705  1.24204011  0.11797975 -0.82198696  1.17618393  0.30799441
 [91]  1.05983566 -1.24214874  1.17242405 -0.25138313  0.50742331 -0.84240957
 [97] -2.01243020 -2.84119755  1.92954388 -1.34484246
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1] -3.10385359 -0.35283922 -1.85877861 -0.04529194 -0.63996183 -0.12451772
  [7]  0.68777985 -0.66558497 -0.60777155  0.20424768 -0.51002194  1.49385406
 [13]  0.56624538  1.17569584  1.25041614 -0.48574906  0.75820429  0.24178982
 [19] -2.11672892  0.54063001  0.04138854 -0.86975727  0.52415766 -0.64179422
 [25]  0.56325245  0.77153321  1.43538026 -1.00417949  0.03271116  0.03070315
 [31] -0.45652820 -0.51540055 -1.01051949 -1.07838544  0.55420110  0.14525426
 [37] -1.61397404 -0.09861646 -1.78259562  0.81848613 -1.33680863  0.35229071
 [43]  0.88414320  0.27273291 -0.88517783  0.64975024  2.16128352 -1.92811422
 [49]  1.44724047  0.94597283  1.28736844  1.28126711  0.44416846  0.89811852
 [55] -0.64841936 -0.98075369 -0.02867285  1.37356971 -0.50619844  0.94476377
 [61] -0.68163264  0.40382488  1.03326974  0.19850278  0.23389805  1.22135979
 [67]  1.38664492  0.67771289  0.49501995 -0.88080609 -0.03501748 -0.85928749
 [73] -0.72305174 -1.21350758  0.91227335  1.52956679 -0.39126508 -0.96765270
 [79]  0.22061632  0.94640819 -0.89592927  1.05029796 -1.21013814  1.84613310
 [85] -0.42679705  1.24204011  0.11797975 -0.82198696  1.17618393  0.30799441
 [91]  1.05983566 -1.24214874  1.17242405 -0.25138313  0.50742331 -0.84240957
 [97] -2.01243020 -2.84119755  1.92954388 -1.34484246
> rowMin(tmp2)
  [1] -3.10385359 -0.35283922 -1.85877861 -0.04529194 -0.63996183 -0.12451772
  [7]  0.68777985 -0.66558497 -0.60777155  0.20424768 -0.51002194  1.49385406
 [13]  0.56624538  1.17569584  1.25041614 -0.48574906  0.75820429  0.24178982
 [19] -2.11672892  0.54063001  0.04138854 -0.86975727  0.52415766 -0.64179422
 [25]  0.56325245  0.77153321  1.43538026 -1.00417949  0.03271116  0.03070315
 [31] -0.45652820 -0.51540055 -1.01051949 -1.07838544  0.55420110  0.14525426
 [37] -1.61397404 -0.09861646 -1.78259562  0.81848613 -1.33680863  0.35229071
 [43]  0.88414320  0.27273291 -0.88517783  0.64975024  2.16128352 -1.92811422
 [49]  1.44724047  0.94597283  1.28736844  1.28126711  0.44416846  0.89811852
 [55] -0.64841936 -0.98075369 -0.02867285  1.37356971 -0.50619844  0.94476377
 [61] -0.68163264  0.40382488  1.03326974  0.19850278  0.23389805  1.22135979
 [67]  1.38664492  0.67771289  0.49501995 -0.88080609 -0.03501748 -0.85928749
 [73] -0.72305174 -1.21350758  0.91227335  1.52956679 -0.39126508 -0.96765270
 [79]  0.22061632  0.94640819 -0.89592927  1.05029796 -1.21013814  1.84613310
 [85] -0.42679705  1.24204011  0.11797975 -0.82198696  1.17618393  0.30799441
 [91]  1.05983566 -1.24214874  1.17242405 -0.25138313  0.50742331 -0.84240957
 [97] -2.01243020 -2.84119755  1.92954388 -1.34484246
> 
> colMeans(tmp2)
[1] 0.009090756
> colSums(tmp2)
[1] 0.9090756
> colVars(tmp2)
[1] 1.144747
> colSd(tmp2)
[1] 1.069928
> colMax(tmp2)
[1] 2.161284
> colMin(tmp2)
[1] -3.103854
> colMedians(tmp2)
[1] 0.131617
> colRanges(tmp2)
          [,1]
[1,] -3.103854
[2,]  2.161284
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  0.35352558  2.30472764 -3.89566289  1.57224493 -5.41977832 -3.16345361
 [7] -0.09008804  1.55682027 -6.97478028  7.57750835
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.0618143
[2,] -0.6645264
[3,]  0.3100437
[4,]  0.6466596
[5,]  0.8986522
> 
> rowApply(tmp,sum)
 [1]  1.8167372 -0.3631579  1.5069840 -2.8529533  0.4602930 -3.5723440
 [7]  3.4390992 -3.7425068 -2.6960898 -0.1749979
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    7    7    6    8    2    4    7    3    9     1
 [2,]    5   10    4    9    4    7    3    6    4     9
 [3,]    9    3    5    3    1    5    1    9    7     2
 [4,]    8    9   10    4    3    2    6    8    3     7
 [5,]    6    5    1    2    5    1    9    2    2     5
 [6,]    3    1    3   10    9    8   10    1    5     3
 [7,]    2    8    7    5    8    9    5    5    8     4
 [8,]    4    6    8    6   10    6    2   10    1     8
 [9,]    1    2    2    1    7    3    4    4   10     6
[10,]   10    4    9    7    6   10    8    7    6    10
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  0.2668428  2.0485370 -1.1690419  1.1532678 -5.4214739 -0.2682451
 [7] -0.2455221  0.1150355  3.9756511  1.7036471 -0.4405408  1.6008519
[13] -3.4878423  3.0615943 -2.8533384  0.7806710  1.8792100 -0.4351011
[19] -2.5148257 -3.4925536
> colApply(tmp,quantile)[,1]
            [,1]
[1,] -1.83125708
[2,] -0.01176326
[3,]  0.38757682
[4,]  0.48120177
[5,]  1.24108456
> 
> rowApply(tmp,sum)
[1]  4.852587  5.093230 -2.513756 -1.801790 -9.373446
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]    9   18   14   15    3
[2,]   11   20    9   11   16
[3,]    2   14   19    2   10
[4,]    8   11   20   17    9
[5,]    7    7   10    1    1
> 
> 
> as.matrix(tmp)
            [,1]       [,2]       [,3]       [,4]       [,5]       [,6]
[1,] -0.01176326  0.1412289 -0.7867839 -0.2047967 -0.3718475  1.1405551
[2,]  1.24108456  1.7693320  0.6233738  0.4212914 -0.1856830  0.4491741
[3,]  0.38757682 -0.2652773  0.7400136  0.8191875 -0.1177165  0.5553522
[4,]  0.48120177  0.1633742 -1.3513686  0.6153587 -1.3671269 -0.4165031
[5,] -1.83125708  0.2398792 -0.3942767 -0.4977731 -3.3791000 -1.9968233
            [,7]        [,8]       [,9]      [,10]       [,11]      [,12]
[1,] -0.51361231  0.35298765  2.4495567  1.0900309 -1.83152578  1.3874468
[2,] -0.85103026  0.05692261  0.9494524 -0.3632760  0.46140716  1.2570276
[3,] -0.08648023  0.68848851 -0.4911856  0.4123281  0.21663716 -1.9058518
[4,]  0.33517777 -0.84470686  1.6664625  0.4154896 -0.09977615  0.9637993
[5,]  0.87042295 -0.13865645 -0.5986348  0.1490745  0.81271682 -0.1015700
          [,13]      [,14]      [,15]      [,16]       [,17]      [,18]
[1,]  0.6296677  1.1155059  0.7889222  1.1163283  0.03780014 -0.7173849
[2,] -0.6757234  0.6716580 -1.1565379  1.2230363 -0.09433908  0.2392294
[3,] -1.0857366  0.7025230 -1.3776723 -0.5297040  0.13362209 -0.3850726
[4,] -1.0231160  0.8827597  0.1901070 -1.3034500 -0.75690098  0.5689546
[5,] -1.3329340 -0.3108524 -1.2981574  0.2744604  2.55902786 -0.1408275
          [,19]      [,20]
[1,] -0.4814131 -0.4783162
[2,] -0.3817490 -0.5614211
[3,] -0.6041658 -0.3206223
[4,] -0.5110860 -0.4104411
[5,] -0.5364118 -1.7217530
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    F:/biocbuild/bbs-3.17-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.8  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    F:/biocbuild/bbs-3.17-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  626  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    F:/biocbuild/bbs-3.17-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  542  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    F:/biocbuild/bbs-3.17-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.8  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
          col1      col2      col3      col4      col5     col6       col7
row1 0.5248108 -1.804183 0.7838345 0.0489631 -1.597679 1.561852 0.02918775
           col8     col9      col10      col11     col12    col13    col14
row1 -0.4519261 2.000204 -0.4795773 -0.4827209 0.4447715 0.125148 0.209125
        col15     col16     col17     col18    col19     col20
row1 0.702604 -1.604412 0.8160316 -1.441128 1.786404 0.8265253
> tmp[,"col10"]
          col10
row1 -0.4795773
row2  1.0846231
row3 -1.0140618
row4  0.9209830
row5  0.5184376
> tmp[c("row1","row5"),]
          col1       col2      col3       col4       col5       col6       col7
row1 0.5248108 -1.8041825 0.7838345  0.0489631 -1.5976792  1.5618515 0.02918775
row5 0.3637038 -0.1177182 0.7992645 -0.3908466  0.2454845 -0.8384231 0.22708789
           col8      col9      col10      col11      col12    col13    col14
row1 -0.4519261 2.0002044 -0.4795773 -0.4827209  0.4447715 0.125148 0.209125
row5 -0.6760514 0.6557638  0.5184376 -0.5194967 -0.6913661 1.427181 1.191334
        col15     col16     col17      col18     col19     col20
row1 0.702604 -1.604412 0.8160316 -1.4411277 1.7864035 0.8265253
row5 1.864426  1.288684 1.1603039  0.5918822 0.2617054 0.7365261
> tmp[,c("col6","col20")]
           col6      col20
row1  1.5618515  0.8265253
row2 -0.6607824 -1.5106283
row3 -0.2621080 -0.3940125
row4  1.0317653  0.8337003
row5 -0.8384231  0.7365261
> tmp[c("row1","row5"),c("col6","col20")]
           col6     col20
row1  1.5618515 0.8265253
row5 -0.8384231 0.7365261
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6    col7     col8
row1 49.28073 49.29684 50.55985 49.24938 50.55719 104.7708 51.0289 50.35945
        col9    col10    col11    col12    col13    col14    col15    col16
row1 49.7613 48.74641 50.46585 49.54018 48.64875 48.51027 49.67671 49.45157
        col17    col18    col19    col20
row1 50.33274 49.08393 51.13364 103.4975
> tmp[,"col10"]
        col10
row1 48.74641
row2 28.60095
row3 30.45167
row4 29.53914
row5 51.86720
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 49.28073 49.29684 50.55985 49.24938 50.55719 104.7708 51.02890 50.35945
row5 48.12682 48.53213 50.60670 49.98353 49.83699 106.5201 49.35128 51.35666
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.76130 48.74641 50.46585 49.54018 48.64875 48.51027 49.67671 49.45157
row5 50.21382 51.86720 49.58627 49.91152 51.75051 46.47539 49.33465 50.04163
        col17    col18    col19    col20
row1 50.33274 49.08393 51.13364 103.4975
row5 49.91074 48.77838 49.90005 106.8713
> tmp[,c("col6","col20")]
          col6     col20
row1 104.77085 103.49749
row2  75.16411  75.05095
row3  76.85955  74.72392
row4  75.95819  75.57598
row5 106.52013 106.87126
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 104.7708 103.4975
row5 106.5201 106.8713
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 104.7708 103.4975
row5 106.5201 106.8713
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,]  0.5291710
[2,] -0.4772360
[3,]  1.8518806
[4,] -1.7336159
[5,] -0.6290488
> tmp[,c("col17","col7")]
          col17       col7
[1,] -1.6596412  0.2696629
[2,]  0.4192289  0.5686484
[3,]  0.5015230  2.2752761
[4,]  1.8483969  0.7371610
[5,]  1.0182955 -1.4601596
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6      col20
[1,] -2.5254469  0.8173588
[2,]  0.2985860  1.1238288
[3,] -0.9118105  0.4523379
[4,]  1.0933031 -0.6938822
[5,] -0.2855578  0.2733942
> subBufferedMatrix(tmp,1,c("col6"))[,1]
          col1
[1,] -2.525447
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
          col6
[1,] -2.525447
[2,]  0.298586
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
          [,1]       [,2]      [,3]       [,4]       [,5]      [,6]       [,7]
row3 0.7334345 -0.2371230 0.2289513 -0.7255269 -0.5992071 0.8557676 -0.2710493
row1 0.6588856  0.2002081 0.1465486 -0.3368049  0.7902457 0.2792689  0.5480142
           [,8]       [,9]      [,10]      [,11]      [,12]       [,13]
row3  0.2191966 -0.4494733 -1.1700292 -0.4407252 -0.7033564 -0.06636854
row1 -0.1707114 -0.3617307 -0.7899342 -0.7889852  0.2783509 -1.47633637
        [,14]      [,15]      [,16]      [,17]       [,18]     [,19]     [,20]
row3 2.009998 -0.3040165  2.2499257 -0.6926471  0.05435199 -2.301738 0.3100017
row1 2.060943  1.1457912 -0.8270291  0.5637743 -0.28995299 -1.341780 0.2191324
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
           [,1]        [,2]      [,3]     [,4]       [,5]      [,6]      [,7]
row2 0.03254367 -0.09574008 0.6445228 1.563406 -0.9550142 0.4549303 -1.678718
          [,8]       [,9]     [,10]
row2 -1.618571 0.03555281 0.7235518
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
            [,1]      [,2]       [,3]       [,4]     [,5]     [,6]     [,7]
row5 -0.03582106 -0.368367 -0.3413875 -0.9104851 2.174523 1.184103 1.534599
           [,8]      [,9]      [,10]     [,11]      [,12]     [,13]    [,14]
row5 -0.5855074 0.3710277 -0.1248983 0.4609678 -0.2445019 -1.591054 2.026011
         [,15]     [,16]     [,17]    [,18]    [,19]     [,20]
row5 0.5598734 -1.708997 -1.362135 2.455902 1.179098 0.4136064
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x000001e288b27190>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "F:/biocbuild/bbs-3.17-bioc/meat/BufferedMatrix.Rcheck/tests\\BM44481941a5a" 
 [2] "F:/biocbuild/bbs-3.17-bioc/meat/BufferedMatrix.Rcheck/tests\\BM444825c66038"
 [3] "F:/biocbuild/bbs-3.17-bioc/meat/BufferedMatrix.Rcheck/tests\\BM444840f53bef"
 [4] "F:/biocbuild/bbs-3.17-bioc/meat/BufferedMatrix.Rcheck/tests\\BM44484b1b563b"
 [5] "F:/biocbuild/bbs-3.17-bioc/meat/BufferedMatrix.Rcheck/tests\\BM44482021110" 
 [6] "F:/biocbuild/bbs-3.17-bioc/meat/BufferedMatrix.Rcheck/tests\\BM444861123c8d"
 [7] "F:/biocbuild/bbs-3.17-bioc/meat/BufferedMatrix.Rcheck/tests\\BM44486bcd3c65"
 [8] "F:/biocbuild/bbs-3.17-bioc/meat/BufferedMatrix.Rcheck/tests\\BM444854039b6" 
 [9] "F:/biocbuild/bbs-3.17-bioc/meat/BufferedMatrix.Rcheck/tests\\BM444872707c62"
[10] "F:/biocbuild/bbs-3.17-bioc/meat/BufferedMatrix.Rcheck/tests\\BM44485edd2066"
[11] "F:/biocbuild/bbs-3.17-bioc/meat/BufferedMatrix.Rcheck/tests\\BM4448230d7ec9"
[12] "F:/biocbuild/bbs-3.17-bioc/meat/BufferedMatrix.Rcheck/tests\\BM444854311f13"
[13] "F:/biocbuild/bbs-3.17-bioc/meat/BufferedMatrix.Rcheck/tests\\BM4448e4c7d70" 
[14] "F:/biocbuild/bbs-3.17-bioc/meat/BufferedMatrix.Rcheck/tests\\BM4448344912e4"
[15] "F:/biocbuild/bbs-3.17-bioc/meat/BufferedMatrix.Rcheck/tests\\BM44487dd03844"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x000001e28780f870>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x000001e28780f870>
Warning message:
In dir.create(new.directory) :
  'F:\biocbuild\bbs-3.17-bioc\meat\BufferedMatrix.Rcheck\tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x000001e28780f870>
> rowMedians(tmp)
  [1]  0.4309385052 -0.5010015914 -0.3477657969  0.0526066278 -0.1617766549
  [6]  0.1303563761  0.1891386934  0.2006003746  0.0033105669  0.4092706941
 [11]  0.2627050804  0.0556267767 -0.3101965079  0.4085838575 -0.2469698370
 [16]  0.2820554336  0.0940798361  0.1842008807  0.4846959465  0.1209595003
 [21]  0.3586809291 -0.2071178964 -0.1992779979  0.4525748716  0.2542043324
 [26] -0.1776683506  0.5751886691 -0.2381140859  0.2854800378  0.3171157344
 [31]  0.2497130796  0.1721284535 -0.4386592730 -0.0331715718 -0.0408730102
 [36] -0.1858060373 -0.5113939964  0.0531918750 -0.4328796837  0.0967789338
 [41] -0.0801767427  0.1098729642 -0.2693571598  0.5945202022  0.4527656075
 [46]  0.0968863851 -0.5110595751  0.1894255027  0.5111913374 -0.4948633278
 [51]  0.0021847178  0.1450374897 -0.0514566463 -0.1182480499 -0.1610138825
 [56]  0.6177697157  0.1223144227  0.1442279123 -0.0383844209  0.4179481997
 [61]  0.1559184714  0.0631602473 -0.0288535414 -0.0711293385 -0.1111234991
 [66] -0.0006212879 -0.4043388924  0.3713236030  0.5635193749  0.1977478946
 [71] -0.5926028392  0.1129865884  0.1389868739  0.2478607035  0.3068745689
 [76] -0.5747453921 -0.7750927237 -0.4591737780 -0.0416699926  0.3414814129
 [81] -0.2268998322 -0.3907113501  0.2385190773  0.0330623901 -0.3453023678
 [86]  0.2036023190 -0.1470595610 -0.0615520780 -0.2330234370 -0.0248043921
 [91]  0.0710795142 -0.0358627527  0.3915010177 -0.2511016240 -0.4741082232
 [96] -0.1909542666  0.3445524212  0.1880188803  0.0930491290 -0.3409167251
[101] -0.4697789597 -0.0240863768 -0.1222322346 -0.0028776307 -0.0865599079
[106] -0.1679191095  0.3633261387  0.0150689199 -0.0900261462  0.1359765035
[111] -0.3584499440 -0.6337695764 -0.0967237525 -0.0560083688  0.0133676579
[116] -0.4306031785 -0.1276226081  0.3623597686 -0.0223214713  0.3058644635
[121]  0.0705716084 -0.3108202995  0.2607541252 -0.1661031133  0.1422488719
[126]  0.4944275478  0.4047775680 -0.4598785414 -0.1156046588 -0.0228754666
[131] -0.0245179778  0.3183453313 -0.4614194890  0.4043849355  0.0685352370
[136] -0.3707851109  0.0955649855 -0.2154038108  0.3805045811  0.0317156971
[141] -0.1573602624 -0.3401998953  0.2527748843  0.1525102448 -0.4453134866
[146] -0.4112036817  0.8402546890 -0.5144877787 -0.1308734976  0.4270566268
[151] -0.5935821117 -0.5228937571  0.7706752201  0.1826525914 -0.0317633199
[156] -0.5656421014 -0.4038172218  0.1441973911  0.1527098746  0.0095337062
[161] -0.4057313840  0.2708980501 -0.0065815496  0.3570825065 -0.4305091358
[166]  0.1370228705  0.0578567039 -0.2624025536 -0.5045035761 -0.4139143574
[171]  0.3857952132  0.1226180264 -0.7840002053  0.2213970451  0.3950838166
[176] -0.2731072590  0.1524357721 -0.6400188818  0.2338153445  0.2017440020
[181]  0.1872135470 -0.2393103993  0.0181407883  0.3190831812  0.0375003758
[186]  0.2676224580 -0.2067329198 -0.0671960961  0.0538018364 -0.3097870610
[191]  0.3696210295  0.5395049578  0.5368711876 -0.3602869222  0.0624648403
[196]  0.5339012380 -0.2393374789 -0.5583718296 -0.2079006605 -0.3119548246
[201]  0.1895216769  0.0991741464  0.2479781586  0.0249356588 -0.2924858980
[206]  0.2594437538  0.2998299155 -0.0565191852 -0.0167434372  0.0543139646
[211] -0.0307179214  0.0539384911  0.0068205919  0.4192304686  0.4948145225
[216]  0.1900339351 -0.2403039484  0.0656903233 -0.0590219431 -0.2119607966
[221]  0.0817854711  0.2074781493  0.1646093256 -0.1609641458  0.5345702244
[226] -0.3631445991  0.5144155388  0.1468476750 -0.3751708347  0.1333172535
> 
> proc.time()
   user  system elapsed 
   2.96   16.25   31.26 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.3.1 (2023-06-16 ucrt) -- "Beagle Scouts"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x00000280acf59500>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x00000280acf59500>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x00000280acf59500>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x00000280acf59500>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x00000280acf5a0d0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x00000280acf5a0d0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x00000280acf5a0d0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x00000280acf5a0d0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x00000280acf5a0d0>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x00000280acf59810>
> .Call("R_bm_AddColumn",P)
<pointer: 0x00000280acf59810>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x00000280acf59810>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x00000280acf59810>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x00000280acf59810>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x00000280acf59810>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x00000280acf59810>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x00000280acf59810>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x00000280acf59810>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x00000280acf5a290>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x00000280acf5a290>
> .Call("R_bm_AddColumn",P)
<pointer: 0x00000280acf5a290>
> .Call("R_bm_AddColumn",P)
<pointer: 0x00000280acf5a290>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFilead81102fbe"  "BufferedMatrixFilead81d006d05"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFilead81102fbe"  "BufferedMatrixFilead81d006d05"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x00000280acf59730>
> .Call("R_bm_AddColumn",P)
<pointer: 0x00000280acf59730>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x00000280acf59730>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x00000280acf59730>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x00000280acf59730>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x00000280acf59730>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x00000280acf59ce0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x00000280acf59ce0>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x00000280acf59ce0>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x00000280acf59ce0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x00000280acf59ab0>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x00000280acf59ab0>
> rm(P)
> 
> proc.time()
   user  system elapsed 
   0.26    0.17    0.45 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.3.1 (2023-06-16 ucrt) -- "Beagle Scouts"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
   0.25    0.09    0.42 

Example timings