Back to Multiple platform build/check report for BioC 3.15 |
|
This page was generated on 2022-10-19 13:23:05 -0400 (Wed, 19 Oct 2022).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 20.04.5 LTS) | x86_64 | 4.2.1 (2022-06-23) -- "Funny-Looking Kid" | 4386 |
palomino3 | Windows Server 2022 Datacenter | x64 | 4.2.1 (2022-06-23 ucrt) -- "Funny-Looking Kid" | 4138 |
merida1 | macOS 10.14.6 Mojave | x86_64 | 4.2.1 (2022-06-23) -- "Funny-Looking Kid" | 4205 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
To the developers/maintainers of the HPiP package: - Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information. - Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
Package 911/2140 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.2.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 20.04.5 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino3 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
merida1 | macOS 10.14.6 Mojave / x86_64 | OK | OK | OK | OK | |||||||||
Package: HPiP |
Version: 1.2.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.2.0.tar.gz |
StartedAt: 2022-10-19 03:31:26 -0400 (Wed, 19 Oct 2022) |
EndedAt: 2022-10-19 03:38:38 -0400 (Wed, 19 Oct 2022) |
EllapsedTime: 431.8 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.2.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.15-bioc/meat/HPiP.Rcheck’ * using R version 4.2.1 (2022-06-23) * using platform: x86_64-apple-darwin17.0 (64-bit) * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.2.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 51.677 0.937 52.804 corr_plot 49.880 0.931 50.965 FSmethod 49.185 1.027 50.310 pred_ensembel 22.232 0.373 17.514 enrichfindP 0.710 0.037 11.454 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in ‘inst/doc’ ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 1 NOTE See ‘/Users/biocbuild/bbs-3.15-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.2/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 96.329364 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 94.546918 iter 10 value 89.881583 iter 20 value 88.896936 iter 30 value 88.893590 iter 40 value 88.893442 final value 88.893434 converged Fitting Repeat 3 # weights: 103 initial value 96.750559 final value 94.484208 converged Fitting Repeat 4 # weights: 103 initial value 101.690059 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 99.922404 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 106.613340 iter 10 value 94.252933 final value 94.252920 converged Fitting Repeat 2 # weights: 305 initial value 111.033557 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 109.680756 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 98.893356 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 94.497184 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 99.862802 final value 94.354396 converged Fitting Repeat 2 # weights: 507 initial value 96.553363 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 128.396119 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 103.793428 iter 10 value 93.684898 iter 20 value 93.332482 final value 93.332475 converged Fitting Repeat 5 # weights: 507 initial value 125.051046 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 106.254748 iter 10 value 94.488410 iter 20 value 93.688300 iter 30 value 93.634191 iter 40 value 93.619512 iter 50 value 90.960046 iter 60 value 85.279659 iter 70 value 85.104541 iter 80 value 84.562172 iter 90 value 84.390087 iter 100 value 84.388159 final value 84.388159 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 102.806550 iter 10 value 93.913022 iter 20 value 85.614214 iter 30 value 84.969050 iter 40 value 84.580709 iter 50 value 84.385873 iter 60 value 84.378601 final value 84.378594 converged Fitting Repeat 3 # weights: 103 initial value 105.579666 iter 10 value 94.522853 iter 20 value 93.110669 iter 30 value 89.030891 iter 40 value 87.584012 iter 50 value 87.373993 iter 60 value 85.224821 iter 70 value 85.095360 iter 80 value 84.606163 iter 90 value 84.384358 iter 100 value 84.378598 final value 84.378598 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 97.535370 iter 10 value 94.484855 iter 20 value 93.726878 iter 30 value 92.714490 iter 40 value 85.768861 iter 50 value 83.812710 iter 60 value 83.431295 iter 70 value 83.162152 iter 80 value 82.831719 iter 90 value 82.594173 iter 100 value 82.390819 final value 82.390819 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 105.367284 iter 10 value 94.486495 iter 20 value 93.655040 iter 30 value 93.620416 iter 40 value 92.216019 iter 50 value 86.413037 iter 60 value 85.723208 iter 70 value 85.509466 iter 80 value 85.164822 iter 90 value 83.029281 iter 100 value 82.095062 final value 82.095062 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 114.731288 iter 10 value 94.490593 iter 20 value 93.926898 iter 30 value 86.654121 iter 40 value 85.533097 iter 50 value 85.010682 iter 60 value 84.710888 iter 70 value 83.980736 iter 80 value 82.113917 iter 90 value 81.672867 iter 100 value 81.548069 final value 81.548069 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 111.437300 iter 10 value 94.534313 iter 20 value 93.536969 iter 30 value 91.526568 iter 40 value 88.717485 iter 50 value 85.362109 iter 60 value 83.259016 iter 70 value 82.124924 iter 80 value 80.936509 iter 90 value 80.886242 iter 100 value 80.548405 final value 80.548405 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.247259 iter 10 value 94.022366 iter 20 value 85.302143 iter 30 value 84.658336 iter 40 value 84.293962 iter 50 value 84.153992 iter 60 value 84.107812 iter 70 value 83.199798 iter 80 value 81.343664 iter 90 value 81.109684 iter 100 value 81.077225 final value 81.077225 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.011112 iter 10 value 94.493242 iter 20 value 93.661862 iter 30 value 90.415164 iter 40 value 85.266866 iter 50 value 83.924252 iter 60 value 83.170183 iter 70 value 82.428690 iter 80 value 80.940519 iter 90 value 80.525283 iter 100 value 80.327908 final value 80.327908 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 114.774692 iter 10 value 96.651382 iter 20 value 93.462021 iter 30 value 85.264895 iter 40 value 84.943260 iter 50 value 84.708892 iter 60 value 83.569943 iter 70 value 82.879538 iter 80 value 82.366548 iter 90 value 81.876450 iter 100 value 81.296402 final value 81.296402 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 154.518920 iter 10 value 95.152664 iter 20 value 89.429683 iter 30 value 87.302372 iter 40 value 86.337995 iter 50 value 84.588109 iter 60 value 83.525647 iter 70 value 82.177941 iter 80 value 81.543368 iter 90 value 81.134944 iter 100 value 80.903699 final value 80.903699 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.344101 iter 10 value 93.300012 iter 20 value 88.154324 iter 30 value 86.050450 iter 40 value 83.103947 iter 50 value 82.083501 iter 60 value 81.765230 iter 70 value 81.501034 iter 80 value 81.074910 iter 90 value 80.947138 iter 100 value 80.918526 final value 80.918526 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 127.393138 iter 10 value 94.720386 iter 20 value 94.384272 iter 30 value 87.286988 iter 40 value 86.532591 iter 50 value 85.628268 iter 60 value 83.210572 iter 70 value 82.181389 iter 80 value 81.882753 iter 90 value 81.743998 iter 100 value 81.713610 final value 81.713610 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 108.703712 iter 10 value 94.560223 iter 20 value 88.422356 iter 30 value 86.215727 iter 40 value 85.104736 iter 50 value 84.291349 iter 60 value 83.179853 iter 70 value 80.924177 iter 80 value 80.418543 iter 90 value 80.346880 iter 100 value 80.310836 final value 80.310836 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.140125 iter 10 value 94.433372 iter 20 value 92.333908 iter 30 value 86.426511 iter 40 value 85.167937 iter 50 value 84.415844 iter 60 value 83.351798 iter 70 value 83.009350 iter 80 value 82.843312 iter 90 value 82.546109 iter 100 value 82.284620 final value 82.284620 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.809211 final value 94.485535 converged Fitting Repeat 2 # weights: 103 initial value 110.035817 final value 94.485652 converged Fitting Repeat 3 # weights: 103 initial value 96.192790 iter 10 value 94.485605 iter 20 value 94.482513 final value 94.354435 converged Fitting Repeat 4 # weights: 103 initial value 96.356725 iter 10 value 94.486019 iter 20 value 94.386783 iter 30 value 93.517391 final value 93.517172 converged Fitting Repeat 5 # weights: 103 initial value 94.635489 final value 94.485700 converged Fitting Repeat 1 # weights: 305 initial value 105.952129 iter 10 value 94.257212 iter 20 value 93.593072 iter 30 value 93.558692 iter 40 value 93.489413 final value 93.489394 converged Fitting Repeat 2 # weights: 305 initial value 95.931859 iter 10 value 94.488898 iter 20 value 94.157874 iter 30 value 93.574413 iter 40 value 93.559015 final value 93.558651 converged Fitting Repeat 3 # weights: 305 initial value 99.183227 iter 10 value 94.257843 iter 20 value 94.108808 iter 30 value 94.105593 iter 40 value 87.938997 iter 50 value 85.234388 iter 60 value 82.206476 iter 70 value 81.575234 iter 80 value 81.458918 iter 90 value 80.883497 iter 100 value 80.220276 final value 80.220276 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 95.408854 iter 10 value 93.563340 iter 20 value 93.536956 final value 93.522275 converged Fitting Repeat 5 # weights: 305 initial value 107.576236 iter 10 value 94.488593 iter 20 value 94.484273 iter 30 value 93.676602 iter 40 value 90.475507 iter 50 value 88.218904 iter 60 value 88.217392 iter 70 value 88.088933 iter 80 value 86.603438 iter 90 value 86.598175 iter 100 value 86.596048 final value 86.596048 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 111.405899 iter 10 value 94.362683 iter 20 value 90.678704 iter 30 value 86.396420 iter 40 value 83.954183 iter 50 value 83.217153 iter 60 value 82.959992 iter 70 value 82.932765 iter 80 value 82.900583 iter 90 value 82.897484 iter 100 value 82.895018 final value 82.895018 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 96.014489 iter 10 value 94.485845 iter 20 value 93.735114 final value 93.558574 converged Fitting Repeat 3 # weights: 507 initial value 108.602538 iter 10 value 94.491797 iter 20 value 94.425001 iter 30 value 93.558451 iter 40 value 93.450758 iter 50 value 93.333144 iter 50 value 93.333143 iter 50 value 93.333143 final value 93.333143 converged Fitting Repeat 4 # weights: 507 initial value 98.791377 iter 10 value 93.269113 iter 20 value 87.573942 iter 30 value 84.537944 iter 40 value 83.771968 iter 50 value 82.252739 iter 60 value 82.019657 iter 70 value 81.593276 iter 80 value 81.592171 iter 90 value 81.583226 final value 81.583205 converged Fitting Repeat 5 # weights: 507 initial value 101.665153 iter 10 value 93.787751 iter 20 value 93.728037 iter 30 value 93.721163 iter 40 value 93.570751 iter 50 value 84.451852 iter 60 value 83.006871 iter 70 value 82.954929 iter 80 value 82.954712 iter 90 value 82.954379 iter 90 value 82.954379 final value 82.954379 converged Fitting Repeat 1 # weights: 103 initial value 94.620070 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 103.585344 iter 10 value 93.672993 final value 93.672973 converged Fitting Repeat 3 # weights: 103 initial value 97.651316 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 95.507414 iter 10 value 93.369483 final value 93.276243 converged Fitting Repeat 5 # weights: 103 initial value 102.252233 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 100.587803 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 103.501994 iter 10 value 93.296874 iter 20 value 93.276257 final value 93.276243 converged Fitting Repeat 3 # weights: 305 initial value 100.019535 iter 10 value 93.385167 final value 93.346723 converged Fitting Repeat 4 # weights: 305 initial value 101.812780 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 101.540944 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 97.695993 iter 10 value 93.672705 final value 93.672553 converged Fitting Repeat 2 # weights: 507 initial value 99.748192 iter 10 value 93.299022 iter 20 value 93.276390 final value 93.276243 converged Fitting Repeat 3 # weights: 507 initial value 110.958269 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 97.942655 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 103.523612 final value 92.211112 converged Fitting Repeat 1 # weights: 103 initial value 97.894884 iter 10 value 94.052639 iter 20 value 88.469919 iter 30 value 81.614643 iter 40 value 81.351848 iter 50 value 81.081782 iter 60 value 80.726948 iter 70 value 80.664926 iter 80 value 80.650935 final value 80.650931 converged Fitting Repeat 2 # weights: 103 initial value 96.153065 iter 10 value 94.055078 iter 20 value 90.505020 iter 30 value 82.667697 iter 40 value 82.265989 iter 50 value 81.006005 iter 60 value 80.715832 iter 70 value 80.674521 iter 80 value 80.650932 final value 80.650931 converged Fitting Repeat 3 # weights: 103 initial value 101.510685 iter 10 value 94.056526 iter 20 value 93.632880 iter 30 value 86.847403 iter 40 value 84.033675 iter 50 value 83.663851 iter 60 value 82.707772 iter 70 value 81.045314 iter 80 value 80.724183 iter 90 value 80.651054 final value 80.650931 converged Fitting Repeat 4 # weights: 103 initial value 100.880236 iter 10 value 93.455544 iter 20 value 89.324530 iter 30 value 83.019730 iter 40 value 81.217098 iter 50 value 81.036615 iter 60 value 80.833872 iter 70 value 80.668469 iter 80 value 80.650934 final value 80.650932 converged Fitting Repeat 5 # weights: 103 initial value 103.343853 iter 10 value 94.056925 iter 20 value 88.420014 iter 30 value 84.879968 iter 40 value 82.994404 iter 50 value 82.445976 iter 60 value 82.073903 iter 70 value 79.222717 iter 80 value 78.554918 iter 90 value 78.346947 iter 100 value 77.980350 final value 77.980350 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 104.606126 iter 10 value 94.528675 iter 20 value 82.820675 iter 30 value 82.015077 iter 40 value 81.079737 iter 50 value 80.356883 iter 60 value 80.331506 iter 70 value 80.225866 iter 80 value 80.088357 iter 90 value 79.184107 iter 100 value 78.802875 final value 78.802875 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.815731 iter 10 value 93.817261 iter 20 value 92.636496 iter 30 value 83.687605 iter 40 value 82.463327 iter 50 value 80.935076 iter 60 value 80.693609 iter 70 value 80.612573 iter 80 value 80.488466 iter 90 value 80.338828 iter 100 value 80.255687 final value 80.255687 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 108.331288 iter 10 value 94.231112 iter 20 value 92.636163 iter 30 value 83.067608 iter 40 value 81.245426 iter 50 value 80.754570 iter 60 value 80.656097 iter 70 value 79.032514 iter 80 value 77.298360 iter 90 value 76.861935 iter 100 value 76.759316 final value 76.759316 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.540730 iter 10 value 94.725820 iter 20 value 92.865624 iter 30 value 85.668265 iter 40 value 84.843385 iter 50 value 84.039649 iter 60 value 82.210151 iter 70 value 78.293971 iter 80 value 76.913276 iter 90 value 76.621972 iter 100 value 76.551056 final value 76.551056 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 109.188652 iter 10 value 94.047403 iter 20 value 92.702850 iter 30 value 92.056011 iter 40 value 89.535307 iter 50 value 78.569343 iter 60 value 77.719788 iter 70 value 77.476833 iter 80 value 77.405141 iter 90 value 77.334004 iter 100 value 77.034877 final value 77.034877 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 120.819788 iter 10 value 94.455644 iter 20 value 92.275944 iter 30 value 91.136162 iter 40 value 90.861447 iter 50 value 90.744949 iter 60 value 88.279536 iter 70 value 80.630023 iter 80 value 79.799257 iter 90 value 79.254422 iter 100 value 78.547001 final value 78.547001 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.188113 iter 10 value 95.576094 iter 20 value 85.366448 iter 30 value 79.249035 iter 40 value 77.942839 iter 50 value 77.198181 iter 60 value 76.682694 iter 70 value 76.546170 iter 80 value 76.261740 iter 90 value 76.195751 iter 100 value 76.037709 final value 76.037709 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.067465 iter 10 value 93.996294 iter 20 value 87.769542 iter 30 value 81.987638 iter 40 value 79.943566 iter 50 value 77.236344 iter 60 value 76.806879 iter 70 value 76.438545 iter 80 value 76.280999 iter 90 value 76.070623 iter 100 value 75.960272 final value 75.960272 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.238865 iter 10 value 94.170389 iter 20 value 91.710835 iter 30 value 90.130151 iter 40 value 85.025927 iter 50 value 81.175785 iter 60 value 80.475474 iter 70 value 79.989116 iter 80 value 78.964557 iter 90 value 77.257900 iter 100 value 76.618299 final value 76.618299 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.185143 iter 10 value 92.346102 iter 20 value 81.838508 iter 30 value 81.603324 iter 40 value 80.334147 iter 50 value 79.773102 iter 60 value 79.744286 iter 70 value 79.561839 iter 80 value 78.757543 iter 90 value 78.092878 iter 100 value 77.491632 final value 77.491632 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 112.534786 final value 94.054652 converged Fitting Repeat 2 # weights: 103 initial value 100.050254 final value 94.054371 converged Fitting Repeat 3 # weights: 103 initial value 94.645202 final value 94.054279 converged Fitting Repeat 4 # weights: 103 initial value 96.669469 iter 10 value 93.674970 iter 20 value 93.673296 iter 30 value 93.650813 iter 40 value 92.393365 iter 50 value 86.170911 iter 60 value 84.021218 iter 70 value 83.998776 iter 80 value 83.995835 iter 90 value 83.995387 iter 100 value 83.994407 final value 83.994407 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 94.179917 final value 94.054360 converged Fitting Repeat 1 # weights: 305 initial value 94.305395 iter 10 value 93.678015 iter 20 value 93.451947 iter 30 value 84.321331 iter 40 value 83.845417 iter 50 value 83.759105 iter 60 value 83.753393 iter 70 value 82.198914 iter 80 value 81.214345 iter 90 value 79.083830 iter 100 value 78.816485 final value 78.816485 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 108.818030 iter 10 value 94.057705 iter 20 value 94.052932 final value 94.052914 converged Fitting Repeat 3 # weights: 305 initial value 102.040913 iter 10 value 94.043601 iter 20 value 84.414560 iter 30 value 83.967877 iter 40 value 82.612067 iter 50 value 82.159115 iter 60 value 79.837160 iter 70 value 79.541973 final value 79.536274 converged Fitting Repeat 4 # weights: 305 initial value 106.088160 iter 10 value 94.057613 iter 20 value 93.877332 iter 30 value 84.428312 iter 40 value 84.391157 iter 50 value 81.151215 iter 60 value 81.149460 final value 81.149319 converged Fitting Repeat 5 # weights: 305 initial value 108.311992 iter 10 value 93.678465 iter 20 value 93.677074 iter 30 value 82.965702 iter 40 value 79.512415 iter 50 value 77.157139 iter 60 value 76.561919 iter 70 value 76.521389 iter 80 value 76.457893 iter 90 value 76.456925 iter 100 value 75.469502 final value 75.469502 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 98.476974 iter 10 value 93.953194 iter 20 value 93.681196 iter 30 value 93.284635 iter 40 value 93.282729 iter 50 value 92.821774 iter 60 value 87.195106 iter 70 value 81.394630 iter 80 value 81.283491 iter 90 value 78.865278 iter 100 value 77.500537 final value 77.500537 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 98.884105 iter 10 value 93.681019 iter 20 value 93.674226 iter 30 value 93.275164 iter 40 value 93.245481 iter 50 value 79.775802 iter 60 value 79.327079 iter 70 value 79.283151 final value 79.283135 converged Fitting Repeat 3 # weights: 507 initial value 98.185479 iter 10 value 93.680690 iter 20 value 93.674895 final value 93.674460 converged Fitting Repeat 4 # weights: 507 initial value 99.166998 iter 10 value 94.060619 iter 20 value 93.922846 iter 30 value 86.050325 iter 40 value 82.160081 iter 50 value 82.158977 iter 60 value 82.017078 iter 70 value 81.803921 iter 80 value 81.798095 iter 90 value 81.797452 iter 100 value 80.453247 final value 80.453247 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 100.915195 iter 10 value 84.296517 iter 20 value 84.088072 iter 30 value 84.084976 iter 40 value 84.083358 iter 50 value 82.105060 iter 60 value 81.432575 iter 70 value 81.355401 iter 80 value 80.737318 iter 90 value 79.017004 iter 100 value 76.124371 final value 76.124371 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.506993 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 97.039630 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 109.673650 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 107.287496 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 98.747606 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 101.908997 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 96.559274 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 102.382955 final value 94.482932 converged Fitting Repeat 4 # weights: 305 initial value 105.541354 iter 10 value 94.325662 iter 20 value 94.252982 final value 94.252921 converged Fitting Repeat 5 # weights: 305 initial value 102.149890 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 99.269336 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 96.120361 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 109.296435 iter 10 value 92.069355 final value 92.068571 converged Fitting Repeat 4 # weights: 507 initial value 110.369048 final value 94.322897 converged Fitting Repeat 5 # weights: 507 initial value 100.955356 final value 94.443243 converged Fitting Repeat 1 # weights: 103 initial value 100.930882 iter 10 value 94.528212 iter 20 value 94.476785 iter 30 value 86.784464 iter 40 value 85.248622 iter 50 value 84.350304 iter 60 value 84.155440 iter 70 value 84.005571 iter 80 value 83.988084 final value 83.988065 converged Fitting Repeat 2 # weights: 103 initial value 110.416154 iter 10 value 94.404362 iter 20 value 86.769360 iter 30 value 86.316653 iter 40 value 85.030646 iter 50 value 84.563315 iter 60 value 84.494731 iter 70 value 84.419298 iter 80 value 84.405216 final value 84.405135 converged Fitting Repeat 3 # weights: 103 initial value 100.279621 iter 10 value 94.488045 iter 20 value 92.969718 iter 30 value 88.885184 iter 40 value 88.235209 iter 50 value 88.199704 iter 60 value 88.056421 iter 70 value 87.825265 iter 80 value 87.722475 iter 90 value 85.708176 iter 100 value 85.472177 final value 85.472177 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 97.009800 iter 10 value 94.439042 iter 20 value 94.087148 iter 30 value 92.746525 iter 40 value 85.668831 iter 50 value 84.835229 iter 60 value 84.438683 iter 70 value 84.407331 final value 84.405135 converged Fitting Repeat 5 # weights: 103 initial value 104.121568 iter 10 value 95.466158 iter 20 value 94.471536 iter 30 value 93.087973 iter 40 value 92.680360 iter 50 value 90.976609 iter 60 value 90.937375 final value 90.937372 converged Fitting Repeat 1 # weights: 305 initial value 118.833056 iter 10 value 94.409330 iter 20 value 90.870389 iter 30 value 85.283052 iter 40 value 83.186303 iter 50 value 81.509871 iter 60 value 81.166950 iter 70 value 80.311988 iter 80 value 79.894351 iter 90 value 79.790198 iter 100 value 79.758620 final value 79.758620 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.689691 iter 10 value 94.792244 iter 20 value 90.447718 iter 30 value 88.139884 iter 40 value 86.334212 iter 50 value 85.044189 iter 60 value 84.577898 iter 70 value 84.368431 iter 80 value 84.188535 iter 90 value 83.924548 iter 100 value 82.529106 final value 82.529106 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 113.089417 iter 10 value 94.413349 iter 20 value 93.149572 iter 30 value 84.578165 iter 40 value 83.767259 iter 50 value 82.576479 iter 60 value 81.704032 iter 70 value 81.627633 iter 80 value 81.208126 iter 90 value 80.924030 iter 100 value 80.521253 final value 80.521253 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.888973 iter 10 value 94.533240 iter 20 value 94.326016 iter 30 value 93.812443 iter 40 value 84.874338 iter 50 value 83.477306 iter 60 value 81.271530 iter 70 value 81.060764 iter 80 value 80.697789 iter 90 value 80.498334 iter 100 value 80.365904 final value 80.365904 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 122.767166 iter 10 value 94.511654 iter 20 value 93.190625 iter 30 value 86.064631 iter 40 value 84.026940 iter 50 value 82.091638 iter 60 value 81.663165 iter 70 value 81.523177 iter 80 value 81.401063 iter 90 value 80.912824 iter 100 value 80.520108 final value 80.520108 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 111.004709 iter 10 value 94.510213 iter 20 value 87.850815 iter 30 value 86.098526 iter 40 value 85.534099 iter 50 value 83.371482 iter 60 value 82.750392 iter 70 value 82.043099 iter 80 value 81.422586 iter 90 value 80.940943 iter 100 value 80.125888 final value 80.125888 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.321795 iter 10 value 94.536684 iter 20 value 88.813685 iter 30 value 87.807903 iter 40 value 87.487966 iter 50 value 84.041041 iter 60 value 82.917734 iter 70 value 82.619257 iter 80 value 81.504731 iter 90 value 80.543613 iter 100 value 79.929490 final value 79.929490 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 112.487062 iter 10 value 94.766479 iter 20 value 94.340025 iter 30 value 86.863505 iter 40 value 84.756013 iter 50 value 84.356754 iter 60 value 84.304791 iter 70 value 84.075738 iter 80 value 83.824511 iter 90 value 82.847898 iter 100 value 82.317937 final value 82.317937 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.316851 iter 10 value 94.602248 iter 20 value 94.192962 iter 30 value 93.816696 iter 40 value 85.483871 iter 50 value 84.542927 iter 60 value 84.097863 iter 70 value 83.922552 iter 80 value 83.685264 iter 90 value 82.155324 iter 100 value 81.255314 final value 81.255314 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.559829 iter 10 value 94.704958 iter 20 value 91.775936 iter 30 value 88.137645 iter 40 value 85.424155 iter 50 value 82.188997 iter 60 value 80.683674 iter 70 value 80.068282 iter 80 value 79.646625 iter 90 value 79.573351 iter 100 value 79.528964 final value 79.528964 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 102.554510 iter 10 value 92.781247 iter 20 value 92.605133 iter 30 value 92.604646 iter 30 value 92.604646 iter 30 value 92.604646 final value 92.604646 converged Fitting Repeat 2 # weights: 103 initial value 97.624649 final value 94.485508 converged Fitting Repeat 3 # weights: 103 initial value 95.865229 final value 94.485706 converged Fitting Repeat 4 # weights: 103 initial value 95.347162 final value 94.485730 converged Fitting Repeat 5 # weights: 103 initial value 97.609568 final value 94.486041 converged Fitting Repeat 1 # weights: 305 initial value 106.176370 iter 10 value 94.103078 iter 20 value 94.101152 final value 94.100837 converged Fitting Repeat 2 # weights: 305 initial value 99.555757 iter 10 value 94.489297 iter 20 value 94.484433 iter 30 value 94.127100 iter 40 value 94.113208 iter 50 value 94.112175 iter 60 value 91.569665 iter 70 value 90.322190 iter 80 value 90.318308 iter 90 value 90.245580 iter 100 value 90.241256 final value 90.241256 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.925370 iter 10 value 94.489120 iter 20 value 94.420381 iter 30 value 85.001669 iter 40 value 83.410682 iter 50 value 82.801117 iter 60 value 82.276583 iter 70 value 82.268559 iter 70 value 82.268558 final value 82.268558 converged Fitting Repeat 4 # weights: 305 initial value 101.676524 iter 10 value 94.488630 iter 20 value 94.483733 iter 30 value 85.920144 final value 85.706908 converged Fitting Repeat 5 # weights: 305 initial value 103.204036 iter 10 value 94.488641 iter 20 value 94.395112 iter 30 value 86.004407 iter 40 value 85.596697 final value 85.592634 converged Fitting Repeat 1 # weights: 507 initial value 104.754582 iter 10 value 94.261034 iter 20 value 94.080580 iter 30 value 90.941781 iter 40 value 90.594924 final value 90.566664 converged Fitting Repeat 2 # weights: 507 initial value 109.041346 iter 10 value 94.313924 iter 20 value 94.311473 iter 30 value 94.099736 iter 40 value 93.531214 iter 50 value 91.786788 iter 60 value 91.616638 iter 70 value 91.615496 final value 91.615483 converged Fitting Repeat 3 # weights: 507 initial value 98.723870 iter 10 value 94.451307 iter 20 value 94.392268 iter 30 value 85.721910 iter 40 value 85.710140 iter 50 value 85.653506 iter 60 value 84.508035 final value 84.501656 converged Fitting Repeat 4 # weights: 507 initial value 103.658170 iter 10 value 91.024492 iter 20 value 86.829057 iter 30 value 86.798491 iter 40 value 86.216353 iter 50 value 86.079990 iter 60 value 86.077649 iter 70 value 86.074888 iter 80 value 80.223178 iter 90 value 79.801379 iter 100 value 79.302486 final value 79.302486 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 97.686736 iter 10 value 94.362495 iter 20 value 94.354655 iter 30 value 87.963756 iter 40 value 85.813464 iter 50 value 85.622275 iter 60 value 85.619219 final value 85.619096 converged Fitting Repeat 1 # weights: 103 initial value 97.474794 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 115.448556 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 99.759701 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.858835 iter 10 value 94.029287 iter 20 value 93.963572 final value 93.963388 converged Fitting Repeat 5 # weights: 103 initial value 98.673187 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 97.023211 final value 94.305882 converged Fitting Repeat 2 # weights: 305 initial value 98.938834 iter 10 value 94.442072 iter 10 value 94.442072 iter 10 value 94.442072 final value 94.442072 converged Fitting Repeat 3 # weights: 305 initial value 98.798937 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 102.390321 iter 10 value 89.044531 iter 20 value 87.027178 iter 30 value 85.718076 iter 40 value 85.695389 final value 85.695387 converged Fitting Repeat 5 # weights: 305 initial value 96.276410 final value 94.466823 converged Fitting Repeat 1 # weights: 507 initial value 101.836193 iter 10 value 86.867644 iter 20 value 85.696608 iter 30 value 85.695366 final value 85.695035 converged Fitting Repeat 2 # weights: 507 initial value 127.479372 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 94.984421 iter 10 value 92.275878 iter 20 value 83.989202 iter 30 value 83.669339 final value 83.669318 converged Fitting Repeat 4 # weights: 507 initial value 97.854812 final value 94.461539 converged Fitting Repeat 5 # weights: 507 initial value 108.360783 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 97.892527 iter 10 value 94.449857 iter 20 value 88.103323 iter 30 value 85.454375 iter 40 value 85.072391 iter 50 value 85.030276 iter 60 value 83.939294 iter 70 value 83.806133 iter 80 value 83.076124 iter 90 value 82.837430 iter 100 value 82.820333 final value 82.820333 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 96.098451 iter 10 value 94.357236 iter 20 value 89.382374 iter 30 value 88.193135 iter 40 value 86.550241 iter 50 value 86.322915 iter 60 value 86.314948 iter 70 value 86.314618 iter 70 value 86.314617 iter 70 value 86.314617 final value 86.314617 converged Fitting Repeat 3 # weights: 103 initial value 105.155529 iter 10 value 94.503474 iter 20 value 92.887447 iter 30 value 91.513044 iter 40 value 91.329348 iter 50 value 87.145832 iter 60 value 86.770201 iter 70 value 85.593447 iter 80 value 85.499603 iter 90 value 85.450466 final value 85.450437 converged Fitting Repeat 4 # weights: 103 initial value 98.680797 iter 10 value 94.476693 iter 20 value 89.928361 iter 30 value 88.272304 iter 40 value 86.629622 iter 50 value 85.755223 iter 60 value 85.065342 iter 70 value 84.530010 iter 80 value 84.340528 iter 90 value 84.329869 iter 100 value 84.231115 final value 84.231115 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 110.990546 iter 10 value 94.287150 iter 20 value 88.349116 iter 30 value 86.734974 iter 40 value 86.456368 iter 50 value 86.315445 final value 86.314617 converged Fitting Repeat 1 # weights: 305 initial value 110.507631 iter 10 value 96.230011 iter 20 value 94.647458 iter 30 value 94.327747 iter 40 value 88.622304 iter 50 value 87.896782 iter 60 value 85.982322 iter 70 value 85.562767 iter 80 value 85.462943 iter 90 value 85.450326 iter 100 value 85.423823 final value 85.423823 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.117206 iter 10 value 98.906118 iter 20 value 91.329492 iter 30 value 87.787164 iter 40 value 84.600362 iter 50 value 83.197925 iter 60 value 82.799091 iter 70 value 82.661038 iter 80 value 82.037937 iter 90 value 81.758006 iter 100 value 81.756273 final value 81.756273 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.581806 iter 10 value 94.613625 iter 20 value 89.670175 iter 30 value 86.849918 iter 40 value 85.647144 iter 50 value 84.410663 iter 60 value 83.961754 iter 70 value 83.211252 iter 80 value 82.636959 iter 90 value 82.521124 iter 100 value 82.449971 final value 82.449971 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 114.058607 iter 10 value 94.993586 iter 20 value 91.740561 iter 30 value 87.115174 iter 40 value 85.188449 iter 50 value 84.989748 iter 60 value 84.868912 iter 70 value 84.465220 iter 80 value 84.337199 iter 90 value 83.997142 iter 100 value 82.636330 final value 82.636330 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.409851 iter 10 value 94.501021 iter 20 value 94.093453 iter 30 value 90.961594 iter 40 value 89.175233 iter 50 value 87.475770 iter 60 value 86.099869 iter 70 value 85.516743 iter 80 value 85.276906 iter 90 value 85.097480 iter 100 value 85.012413 final value 85.012413 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 107.159231 iter 10 value 95.590817 iter 20 value 89.828902 iter 30 value 86.088018 iter 40 value 83.892404 iter 50 value 83.349537 iter 60 value 83.183108 iter 70 value 82.884500 iter 80 value 82.328339 iter 90 value 81.904443 iter 100 value 81.709214 final value 81.709214 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 126.286431 iter 10 value 98.489470 iter 20 value 88.950837 iter 30 value 87.403586 iter 40 value 84.643943 iter 50 value 84.347172 iter 60 value 83.724174 iter 70 value 82.777245 iter 80 value 81.974117 iter 90 value 81.720554 iter 100 value 81.654699 final value 81.654699 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.674391 iter 10 value 94.502412 iter 20 value 92.539696 iter 30 value 88.731146 iter 40 value 86.970151 iter 50 value 86.170327 iter 60 value 85.081323 iter 70 value 83.159225 iter 80 value 82.587033 iter 90 value 82.106686 iter 100 value 81.624478 final value 81.624478 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 112.636150 iter 10 value 93.619295 iter 20 value 88.616024 iter 30 value 85.478978 iter 40 value 85.000225 iter 50 value 83.616563 iter 60 value 83.318873 iter 70 value 83.011217 iter 80 value 82.776802 iter 90 value 82.231450 iter 100 value 82.011473 final value 82.011473 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.794529 iter 10 value 94.395749 iter 20 value 86.610071 iter 30 value 84.391799 iter 40 value 83.634685 iter 50 value 83.296030 iter 60 value 83.050107 iter 70 value 82.976217 iter 80 value 82.320456 iter 90 value 82.076413 iter 100 value 81.962779 final value 81.962779 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 102.479469 final value 94.485735 converged Fitting Repeat 2 # weights: 103 initial value 100.214173 iter 10 value 94.468490 iter 20 value 94.466918 final value 94.466844 converged Fitting Repeat 3 # weights: 103 initial value 96.521733 iter 10 value 94.486195 final value 94.484280 converged Fitting Repeat 4 # weights: 103 initial value 95.670645 final value 94.485848 converged Fitting Repeat 5 # weights: 103 initial value 110.232535 final value 94.486019 converged Fitting Repeat 1 # weights: 305 initial value 101.716285 iter 10 value 94.471561 iter 20 value 93.973616 iter 30 value 90.839666 iter 40 value 89.836006 iter 50 value 87.830878 iter 60 value 87.754626 iter 70 value 87.742673 iter 80 value 87.466922 iter 90 value 87.137584 iter 100 value 85.217413 final value 85.217413 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 121.034967 iter 10 value 94.489232 iter 20 value 94.479206 iter 30 value 94.308661 iter 40 value 94.288525 iter 50 value 93.947617 iter 60 value 89.919400 iter 70 value 88.435429 iter 80 value 88.308874 iter 90 value 88.308795 iter 100 value 88.190097 final value 88.190097 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 117.655278 iter 10 value 94.499065 iter 20 value 94.470938 iter 30 value 94.466905 iter 40 value 91.832342 iter 50 value 89.437570 iter 60 value 89.221815 iter 70 value 85.208348 iter 80 value 84.828371 iter 90 value 84.828147 iter 100 value 84.823558 final value 84.823558 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.941561 iter 10 value 94.488925 iter 20 value 94.443676 iter 30 value 91.790321 iter 40 value 89.392004 iter 50 value 88.221126 iter 60 value 87.732100 iter 70 value 87.714693 iter 80 value 87.697346 iter 90 value 87.685754 iter 100 value 87.680229 final value 87.680229 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 135.575098 iter 10 value 94.473221 iter 20 value 94.342330 iter 30 value 94.307934 iter 40 value 94.302495 final value 94.288373 converged Fitting Repeat 1 # weights: 507 initial value 99.153033 iter 10 value 94.492044 iter 20 value 94.413616 iter 30 value 87.684643 iter 40 value 87.611597 iter 50 value 85.046451 iter 60 value 83.920714 iter 70 value 83.302867 iter 80 value 83.300310 iter 90 value 83.162152 iter 100 value 82.667182 final value 82.667182 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.879710 iter 10 value 94.413805 iter 20 value 93.773492 iter 30 value 87.894314 iter 40 value 87.852570 iter 50 value 87.849973 iter 60 value 87.758193 iter 70 value 87.747027 iter 80 value 87.745448 iter 90 value 84.415873 iter 100 value 82.586844 final value 82.586844 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 117.290666 iter 10 value 94.225975 iter 20 value 94.221306 iter 30 value 94.218228 iter 40 value 94.059676 iter 50 value 94.054165 final value 94.054109 converged Fitting Repeat 4 # weights: 507 initial value 116.181439 iter 10 value 94.474216 iter 20 value 94.198921 iter 30 value 89.467504 iter 40 value 89.142700 iter 50 value 87.821386 iter 60 value 83.222723 iter 70 value 82.583049 iter 80 value 82.404655 iter 90 value 81.831510 iter 100 value 80.516667 final value 80.516667 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 99.015020 iter 10 value 94.463301 iter 20 value 93.716419 iter 30 value 93.494195 iter 40 value 93.173877 iter 50 value 93.067793 iter 60 value 93.059546 final value 93.059499 converged Fitting Repeat 1 # weights: 103 initial value 94.555331 final value 94.005848 converged Fitting Repeat 2 # weights: 103 initial value 94.475921 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 94.473649 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 94.560174 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 95.847496 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 127.129824 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 111.244438 final value 93.915746 converged Fitting Repeat 3 # weights: 305 initial value 119.700286 iter 10 value 93.288778 iter 20 value 93.212951 iter 20 value 93.212951 iter 20 value 93.212951 final value 93.212951 converged Fitting Repeat 4 # weights: 305 initial value 100.023514 final value 93.671508 converged Fitting Repeat 5 # weights: 305 initial value 106.853196 final value 94.005848 converged Fitting Repeat 1 # weights: 507 initial value 105.821747 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 117.080085 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 125.647809 final value 93.915746 converged Fitting Repeat 4 # weights: 507 initial value 140.273138 iter 10 value 93.915748 final value 93.915746 converged Fitting Repeat 5 # weights: 507 initial value 106.405147 iter 10 value 91.526283 iter 20 value 89.284036 final value 89.283951 converged Fitting Repeat 1 # weights: 103 initial value 101.818077 iter 10 value 93.944072 iter 20 value 91.774759 iter 30 value 84.732287 iter 40 value 84.236560 iter 50 value 84.145060 iter 60 value 83.608633 iter 70 value 82.946530 iter 80 value 82.888150 final value 82.888032 converged Fitting Repeat 2 # weights: 103 initial value 96.634882 iter 10 value 94.054515 iter 20 value 90.957276 iter 30 value 87.732136 iter 40 value 83.352006 iter 50 value 83.186641 iter 60 value 83.039345 iter 70 value 82.925166 iter 80 value 82.803417 iter 90 value 82.772600 final value 82.772598 converged Fitting Repeat 3 # weights: 103 initial value 110.418455 iter 10 value 92.820952 iter 20 value 85.484088 iter 30 value 84.192746 iter 40 value 83.508639 iter 50 value 82.908879 iter 60 value 82.887518 iter 70 value 82.801046 final value 82.786318 converged Fitting Repeat 4 # weights: 103 initial value 108.695119 iter 10 value 94.054945 iter 20 value 93.983850 iter 30 value 89.271779 iter 40 value 85.665223 iter 50 value 85.143489 iter 60 value 84.616153 iter 70 value 84.216492 iter 80 value 83.961801 final value 83.954178 converged Fitting Repeat 5 # weights: 103 initial value 111.316912 iter 10 value 93.811042 iter 20 value 91.455622 iter 30 value 90.614952 iter 40 value 90.560097 iter 50 value 90.452504 final value 90.451400 converged Fitting Repeat 1 # weights: 305 initial value 120.947476 iter 10 value 94.280949 iter 20 value 94.081842 iter 30 value 91.237867 iter 40 value 87.494671 iter 50 value 87.231639 iter 60 value 86.860390 iter 70 value 86.123338 iter 80 value 82.447355 iter 90 value 82.078896 iter 100 value 81.853844 final value 81.853844 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 117.117383 iter 10 value 93.638540 iter 20 value 84.995664 iter 30 value 82.315437 iter 40 value 81.961567 iter 50 value 81.762340 iter 60 value 81.591808 iter 70 value 81.362547 iter 80 value 81.358793 iter 90 value 81.331890 iter 100 value 81.275026 final value 81.275026 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 106.626400 iter 10 value 94.304828 iter 20 value 86.900305 iter 30 value 85.815004 iter 40 value 84.538483 iter 50 value 84.460562 iter 60 value 82.993898 iter 70 value 82.080459 iter 80 value 81.788662 iter 90 value 81.640523 iter 100 value 81.564767 final value 81.564767 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.095352 iter 10 value 91.403882 iter 20 value 86.369836 iter 30 value 85.208938 iter 40 value 84.593277 iter 50 value 84.020266 iter 60 value 83.615358 iter 70 value 83.465533 iter 80 value 82.712377 iter 90 value 82.418213 iter 100 value 82.206246 final value 82.206246 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 138.752032 iter 10 value 95.309393 iter 20 value 92.556481 iter 30 value 88.329364 iter 40 value 87.898073 iter 50 value 85.680844 iter 60 value 83.279519 iter 70 value 83.024475 iter 80 value 82.408332 iter 90 value 81.607163 iter 100 value 81.339776 final value 81.339776 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 107.275668 iter 10 value 95.155207 iter 20 value 92.567042 iter 30 value 91.969661 iter 40 value 86.432101 iter 50 value 86.007649 iter 60 value 85.135300 iter 70 value 84.935924 iter 80 value 84.859314 iter 90 value 84.667754 iter 100 value 83.337532 final value 83.337532 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 113.133350 iter 10 value 94.163084 iter 20 value 93.009285 iter 30 value 85.113635 iter 40 value 83.016202 iter 50 value 82.266616 iter 60 value 81.452225 iter 70 value 81.317537 iter 80 value 81.117752 iter 90 value 80.957418 iter 100 value 80.887931 final value 80.887931 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.321359 iter 10 value 94.443427 iter 20 value 91.481032 iter 30 value 85.947135 iter 40 value 85.096615 iter 50 value 82.896175 iter 60 value 82.584921 iter 70 value 82.438647 iter 80 value 82.344905 iter 90 value 81.731469 iter 100 value 81.376746 final value 81.376746 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.716200 iter 10 value 94.626953 iter 20 value 87.273058 iter 30 value 85.463766 iter 40 value 84.024614 iter 50 value 83.886962 iter 60 value 82.622598 iter 70 value 82.201071 iter 80 value 81.953901 iter 90 value 81.838529 iter 100 value 81.532234 final value 81.532234 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 121.570637 iter 10 value 94.352451 iter 20 value 93.413974 iter 30 value 89.673335 iter 40 value 84.303801 iter 50 value 82.835666 iter 60 value 82.012608 iter 70 value 81.784162 iter 80 value 81.597659 iter 90 value 81.333718 iter 100 value 81.149826 final value 81.149826 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.060376 final value 94.054621 converged Fitting Repeat 2 # weights: 103 initial value 100.355002 final value 94.054561 converged Fitting Repeat 3 # weights: 103 initial value 98.453947 iter 10 value 94.054530 iter 20 value 93.793269 iter 30 value 84.860502 iter 40 value 84.857989 iter 50 value 84.844428 iter 60 value 83.918586 iter 60 value 83.918585 iter 70 value 83.658434 iter 80 value 83.595642 final value 83.595624 converged Fitting Repeat 4 # weights: 103 initial value 101.860506 iter 10 value 94.054622 iter 20 value 92.016577 iter 30 value 87.796722 iter 40 value 85.297856 iter 50 value 83.919733 iter 60 value 83.919101 iter 70 value 83.917755 iter 80 value 83.916515 final value 83.916488 converged Fitting Repeat 5 # weights: 103 initial value 94.934628 iter 10 value 94.054603 iter 20 value 93.760574 iter 30 value 87.689720 iter 40 value 87.671181 iter 50 value 87.298171 iter 60 value 87.280370 iter 70 value 87.151221 iter 80 value 87.107437 iter 90 value 86.718241 iter 100 value 86.414909 final value 86.414909 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 106.206282 iter 10 value 94.057605 iter 20 value 93.986395 iter 30 value 86.367161 iter 40 value 84.595986 iter 50 value 84.581244 iter 60 value 84.577905 iter 70 value 84.275530 final value 84.271273 converged Fitting Repeat 2 # weights: 305 initial value 114.214546 iter 10 value 94.057163 iter 20 value 94.052938 iter 30 value 86.231706 iter 40 value 86.035225 iter 50 value 85.601119 iter 60 value 84.663702 iter 70 value 84.536993 iter 80 value 84.536519 final value 84.536517 converged Fitting Repeat 3 # weights: 305 initial value 101.664296 iter 10 value 90.003123 iter 20 value 85.867542 iter 30 value 85.857707 iter 40 value 85.771334 iter 50 value 85.116512 iter 60 value 85.087260 iter 70 value 85.085773 final value 85.085645 converged Fitting Repeat 4 # weights: 305 initial value 98.251270 iter 10 value 86.964056 iter 20 value 85.007812 iter 30 value 83.792843 iter 40 value 83.737894 iter 50 value 83.383537 iter 60 value 83.320499 iter 70 value 83.294834 iter 80 value 83.290168 iter 90 value 83.289754 iter 100 value 83.284979 final value 83.284979 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.329256 iter 10 value 94.058243 iter 20 value 94.008733 iter 30 value 92.331078 iter 40 value 88.664698 iter 50 value 88.647158 iter 60 value 88.645136 iter 70 value 88.642345 iter 80 value 87.138459 iter 90 value 87.046261 final value 87.045543 converged Fitting Repeat 1 # weights: 507 initial value 96.562406 iter 10 value 94.055273 iter 20 value 85.590570 iter 30 value 84.839056 iter 40 value 83.395995 iter 50 value 82.237371 iter 60 value 81.607646 iter 70 value 81.323883 iter 80 value 81.318168 iter 90 value 81.073895 iter 100 value 80.934461 final value 80.934461 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.856618 iter 10 value 93.954931 iter 20 value 93.929127 iter 30 value 93.724238 iter 40 value 93.690453 iter 50 value 93.685914 iter 60 value 92.901646 iter 70 value 89.510471 iter 80 value 83.658675 iter 90 value 82.346440 iter 100 value 81.660167 final value 81.660167 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.176323 iter 10 value 93.924167 iter 20 value 90.391505 iter 30 value 85.742025 iter 40 value 85.353193 iter 50 value 82.369921 iter 60 value 82.001458 iter 70 value 81.919412 iter 80 value 81.790746 iter 90 value 81.749942 iter 100 value 81.745646 final value 81.745646 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 95.566671 iter 10 value 94.059300 iter 20 value 94.052945 final value 94.052900 converged Fitting Repeat 5 # weights: 507 initial value 100.292787 iter 10 value 93.924416 iter 20 value 93.801313 iter 30 value 91.207777 iter 40 value 88.967920 iter 50 value 85.626743 iter 60 value 85.071352 iter 70 value 85.066255 iter 80 value 83.632046 iter 90 value 83.443743 iter 100 value 83.443431 final value 83.443431 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 124.041984 iter 10 value 117.903945 iter 20 value 117.894374 iter 30 value 117.651352 iter 40 value 111.874925 iter 50 value 108.999593 iter 60 value 105.822411 iter 70 value 105.222626 iter 80 value 104.962268 iter 90 value 104.818009 iter 100 value 104.780952 final value 104.780952 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 121.386797 iter 10 value 116.308601 iter 20 value 106.647653 iter 30 value 104.794034 iter 40 value 103.619423 iter 50 value 103.495505 iter 60 value 102.602255 iter 70 value 102.344846 iter 80 value 102.325296 final value 102.325293 converged Fitting Repeat 3 # weights: 103 initial value 121.727921 iter 10 value 117.896407 final value 117.892494 converged Fitting Repeat 4 # weights: 103 initial value 122.032757 iter 10 value 117.922309 iter 20 value 117.892578 iter 30 value 113.962199 iter 40 value 106.244318 iter 50 value 105.149693 iter 60 value 103.687207 iter 70 value 103.546371 iter 80 value 103.269845 iter 90 value 102.554914 iter 100 value 102.326334 final value 102.326334 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 132.974028 iter 10 value 117.859025 iter 20 value 117.613649 iter 30 value 116.634733 iter 40 value 114.534206 iter 50 value 108.393549 iter 60 value 106.812475 iter 70 value 106.160760 iter 80 value 105.587410 iter 90 value 105.566341 iter 90 value 105.566340 iter 90 value 105.566340 final value 105.566340 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Wed Oct 19 03:38:28 2022 *********************************************** Number of test functions: 8 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 8 test functions, 0 errors, 0 failures Number of test functions: 8 Number of errors: 0 Number of failures: 0 Warning messages: 1: The `.data` argument of `add_column()` must have unique names as of tibble 3.0.0. ℹ Use `.name_repair = "minimal"`. ℹ The deprecated feature was likely used in the tibble package. Please report the issue at <https://github.com/tidyverse/tibble/issues>. 2: `repeats` has no meaning for this resampling method. 3: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 69.774 1.942 71.367
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 49.185 | 1.027 | 50.310 | |
FreqInteractors | 0.387 | 0.012 | 0.401 | |
calculateAAC | 0.115 | 0.016 | 0.130 | |
calculateAutocor | 0.741 | 0.073 | 0.815 | |
calculateBE | 0.370 | 0.013 | 0.383 | |
calculateCTDC | 0.156 | 0.013 | 0.170 | |
calculateCTDD | 1.367 | 0.043 | 1.412 | |
calculateCTDT | 0.430 | 0.011 | 0.441 | |
calculateCTriad | 0.738 | 0.033 | 0.771 | |
calculateDC | 0.227 | 0.009 | 0.236 | |
calculateF | 0.605 | 0.009 | 0.615 | |
calculateKSAAP | 0.254 | 0.012 | 0.266 | |
calculateQD_Sm | 3.110 | 0.109 | 3.222 | |
calculateTC | 4.194 | 0.187 | 4.392 | |
calculateTC_Sm | 0.439 | 0.013 | 0.452 | |
corr_plot | 49.880 | 0.931 | 50.965 | |
enrichfindP | 0.710 | 0.037 | 11.454 | |
enrichfind_hp | 0.108 | 0.012 | 0.721 | |
enrichplot | 0.445 | 0.009 | 0.455 | |
filter_missing_values | 0.001 | 0.000 | 0.001 | |
getFASTA | 0.143 | 0.009 | 3.557 | |
getHPI | 0.001 | 0.000 | 0.001 | |
get_negativePPI | 0.003 | 0.001 | 0.003 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.002 | 0.000 | 0.003 | |
plotPPI | 0.112 | 0.002 | 0.114 | |
pred_ensembel | 22.232 | 0.373 | 17.514 | |
var_imp | 51.677 | 0.937 | 52.804 | |