Back to Multiple platform build/check report for BioC 3.14 |
|
This page was generated on 2022-04-13 12:06:31 -0400 (Wed, 13 Apr 2022).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 20.04.4 LTS) | x86_64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4324 |
tokay2 | Windows Server 2012 R2 Standard | x64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4077 |
machv2 | macOS 10.14.6 Mojave | x86_64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4137 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
To the developers/maintainers of the evaluomeR package: - Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/evaluomeR.git to reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information. - Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
Package 608/2083 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
evaluomeR 1.10.0 (landing page) José Antonio Bernabé-Díaz
| nebbiolo2 | Linux (Ubuntu 20.04.4 LTS) / x86_64 | OK | OK | OK | |||||||||
tokay2 | Windows Server 2012 R2 Standard / x64 | OK | OK | OK | OK | |||||||||
machv2 | macOS 10.14.6 Mojave / x86_64 | OK | OK | OK | OK | |||||||||
Package: evaluomeR |
Version: 1.10.0 |
Command: C:\Users\biocbuild\bbs-3.14-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:evaluomeR.install-out.txt --library=C:\Users\biocbuild\bbs-3.14-bioc\R\library --no-vignettes --timings evaluomeR_1.10.0.tar.gz |
StartedAt: 2022-04-12 19:26:25 -0400 (Tue, 12 Apr 2022) |
EndedAt: 2022-04-12 19:31:56 -0400 (Tue, 12 Apr 2022) |
EllapsedTime: 330.7 seconds |
RetCode: 0 |
Status: OK |
CheckDir: evaluomeR.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### C:\Users\biocbuild\bbs-3.14-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:evaluomeR.install-out.txt --library=C:\Users\biocbuild\bbs-3.14-bioc\R\library --no-vignettes --timings evaluomeR_1.10.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'C:/Users/biocbuild/bbs-3.14-bioc/meat/evaluomeR.Rcheck' * using R version 4.1.3 (2022-03-10) * using platform: x86_64-w64-mingw32 (64-bit) * using session charset: ISO8859-1 * using option '--no-vignettes' * checking for file 'evaluomeR/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'evaluomeR' version '1.10.0' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... NOTE Depends: includes the non-default packages: 'SummarizedExperiment', 'MultiAssayExperiment', 'cluster', 'fpc', 'randomForest', 'flexmix' Adding so many packages to the search path is excessive and importing selectively is preferable. * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'evaluomeR' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... NOTE File LICENSE is not mentioned in the DESCRIPTION file. * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * loading checks for arch 'i386' ** checking whether the package can be loaded ... OK ** checking whether the package can be loaded with stated dependencies ... OK ** checking whether the package can be unloaded cleanly ... OK ** checking whether the namespace can be loaded with stated dependencies ... OK ** checking whether the namespace can be unloaded cleanly ... OK * loading checks for arch 'x64' ** checking whether the package can be loaded ... OK ** checking whether the package can be loaded with stated dependencies ... OK ** checking whether the package can be unloaded cleanly ... OK ** checking whether the namespace can be loaded with stated dependencies ... OK ** checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... NOTE Namespace in Imports field not imported from: 'kableExtra' All declared Imports should be used. Packages in Depends field not imported from: 'flexmix' 'randomForest' These packages need to be imported from (in the NAMESPACE file) for when this namespace is loaded but not attached. * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... NOTE flemixModel: no visible global function definition for 'FLXMRglm' flemixModel: no visible global function definition for 'stepFlexmix' flemixModel: no visible global function definition for 'getModel' globalMetric: no visible global function definition for 'prior' metrics_pca: no visible global function definition for 'prcomp' metrics_randomforest: no visible global function definition for 'randomForest' metrics_randomforest: no visible global function definition for 'head' speccCBI: no visible global function definition for 'specc' Undefined global functions or variables: FLXMRglm getModel head prcomp prior randomForest specc stepFlexmix Consider adding importFrom("stats", "prcomp") importFrom("utils", "head") to your NAMESPACE file. * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking LazyData ... OK * checking data for ASCII and uncompressed saves ... OK * checking files in 'vignettes' ... OK * checking examples ... ** running examples for arch 'i386' ... OK ** running examples for arch 'x64' ... OK * checking for unstated dependencies in 'tests' ... OK * checking tests ... ** running tests for arch 'i386' ... Running 'testAll.R' Running 'testAnalysis.R' OK ** running tests for arch 'x64' ... Running 'testAll.R' Running 'testAnalysis.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in 'inst/doc' ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 4 NOTEs See 'C:/Users/biocbuild/bbs-3.14-bioc/meat/evaluomeR.Rcheck/00check.log' for details.
evaluomeR.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### C:\cygwin\bin\curl.exe -O http://155.52.207.166/BBS/3.14/bioc/src/contrib/evaluomeR_1.10.0.tar.gz && rm -rf evaluomeR.buildbin-libdir && mkdir evaluomeR.buildbin-libdir && C:\Users\biocbuild\bbs-3.14-bioc\R\bin\R.exe CMD INSTALL --merge-multiarch --build --library=evaluomeR.buildbin-libdir evaluomeR_1.10.0.tar.gz && C:\Users\biocbuild\bbs-3.14-bioc\R\bin\R.exe CMD INSTALL evaluomeR_1.10.0.zip && rm evaluomeR_1.10.0.tar.gz evaluomeR_1.10.0.zip ### ############################################################################## ############################################################################## % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 100 108k 100 108k 0 0 321k 0 --:--:-- --:--:-- --:--:-- 320k install for i386 * installing *source* package 'evaluomeR' ... ** using staged installation ** R ** data *** moving datasets to lazyload DB ** inst ** byte-compile and prepare package for lazy loading ** help Loading required namespace: evaluomeR *** installing help indices converting help for package 'evaluomeR' finding HTML links ... done bioMetrics html evaluomeRSupportedCBI html getDataQualityRange html finding level-2 HTML links ... done getOptimalKValue html globalMetric html metricsCorrelations html ontMetrics html plotMetricsBoxplot html plotMetricsCluster html plotMetricsClusterComparison html plotMetricsMinMax html plotMetricsViolin html quality html qualityRange html qualitySet html rnaMetrics html stability html stabilityRange html stabilitySet html ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path install for x64 * installing *source* package 'evaluomeR' ... ** testing if installed package can be loaded * MD5 sums packaged installation of 'evaluomeR' as evaluomeR_1.10.0.zip * DONE (evaluomeR) * installing to library 'C:/Users/biocbuild/bbs-3.14-bioc/R/library' package 'evaluomeR' successfully unpacked and MD5 sums checked
evaluomeR.Rcheck/tests_i386/testAll.Rout R version 4.1.3 (2022-03-10) -- "One Push-Up" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(evaluomeR) Loading required package: SummarizedExperiment Loading required package: MatrixGenerics Loading required package: matrixStats Attaching package: 'MatrixGenerics' The following objects are masked from 'package:matrixStats': colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars Loading required package: GenomicRanges Loading required package: stats4 Loading required package: BiocGenerics Attaching package: 'BiocGenerics' The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Loading required package: S4Vectors Attaching package: 'S4Vectors' The following objects are masked from 'package:base': I, expand.grid, unname Loading required package: IRanges Attaching package: 'IRanges' The following object is masked from 'package:grDevices': windows Loading required package: GenomeInfoDb Loading required package: Biobase Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'. Attaching package: 'Biobase' The following object is masked from 'package:MatrixGenerics': rowMedians The following objects are masked from 'package:matrixStats': anyMissing, rowMedians Loading required package: MultiAssayExperiment Loading required package: cluster Loading required package: fpc Loading required package: randomForest randomForest 4.7-1 Type rfNews() to see new features/changes/bug fixes. Attaching package: 'randomForest' The following object is masked from 'package:Biobase': combine The following object is masked from 'package:BiocGenerics': combine Loading required package: flexmix Loading required package: lattice > > data("rnaMetrics") > > dataFrame <- stability(data=rnaMetrics, k=4, bs=100, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 4 Processing metric: DegFact(2) Calculation of k = 4 > dataFrame <- stabilityRange(data=rnaMetrics, k.range=c(2,4), bs=20, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 Processing metric: DegFact(2) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 > assay(dataFrame) Metric Mean_stability_k_2 Mean_stability_k_3 Mean_stability_k_4 [1,] "RIN" "0.825833333333333" "0.778412698412698" "0.69625" [2,] "DegFact" "0.955595238095238" "0.977777777777778" "0.820833333333333" > # Metric Mean_stability_k_2 Mean_stability_k_3 Mean_stability_k_4 > # [1,] "RIN" "0.825833333333333" "0.778412698412698" "0.69625" > # [2,] "DegFact" "0.955595238095238" "0.977777777777778" "0.820833333333333" > dataFrame <- stabilitySet(data=rnaMetrics, k.set=c(2,3,4), bs=20, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 Processing metric: DegFact(2) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 > > dataFrame <- quality(data=rnaMetrics, cbi="kmeans", k=3, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 3 Processing metric: DegFact(2) Calculation of k = 3 > assay(dataFrame) Metric Cluster_1_SilScore Cluster_2_SilScore Cluster_3_SilScore [1,] "RIN" "0.420502645502646" "0.724044583696066" "0.68338517747747" [2,] "DegFact" "0.876516605981734" "0.643613928123002" "0.521618857725795" Avg_Silhouette_Width Cluster_1_Size Cluster_2_Size Cluster_3_Size [1,] "0.627829396038413" "4" "4" "8" [2,] "0.737191191352892" "8" "5" "3" > # Metric Cluster_1_SilScore Cluster_2_SilScore Cluster_3_SilScore > # [1,] "RIN" "0.420502645502646" "0.724044583696066" "0.68338517747747" > # [2,] "DegFact" "0.876516605981734" "0.643613928123002" "0.521618857725795" > # Avg_Silhouette_Width Cluster_1_Size Cluster_2_Size Cluster_3_Size > # [1,] "0.627829396038413" "4" "4" "8" > # [2,] "0.737191191352892" "8" "5" "3" > dataFrame <- qualityRange(data=rnaMetrics, k.range=c(2,4), seed = 20, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 Processing metric: DegFact(2) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 > assay(getDataQualityRange(dataFrame, 2)) Metric Cluster_1_SilScore Cluster_2_SilScore Avg_Silhouette_Width 1 "RIN" "0.583166775069983" "0.619872562681118" "0.608402004052639" 2 "DegFact" "0.664573423022171" "0.675315791048653" "0.666587617027136" Cluster_1_Size Cluster_2_Size 1 "5" "11" 2 "13" "3" > # Metric Cluster_1_SilScore Cluster_2_SilScore Avg_Silhouette_Width Cluster_1_Size > # 1 "RIN" "0.583166775069983" "0.619872562681118" "0.608402004052639" "5" > # 2 "DegFact" "0.664573423022171" "0.675315791048653" "0.666587617027136" "13" > # Cluster_2_Size > # 1 "11" > # 2 "3" > assay(getDataQualityRange(dataFrame, 4)) Metric Cluster_1_SilScore Cluster_2_SilScore Cluster_3_SilScore 1 "RIN" "0.420502645502646" "0.674226581940152" "0.433333333333333" 2 "DegFact" "0.759196481622952" "0.59496499852177" "0.600198799385732" Cluster_4_SilScore Avg_Silhouette_Width Cluster_1_Size Cluster_2_Size 1 "0.348714574898785" "0.463905611516569" "4" "4" 2 "0.521618857725795" "0.634170498361632" "5" "3" Cluster_3_Size Cluster_4_Size 1 "3" "5" 2 "5" "3" > # Metric Cluster_1_SilScore Cluster_2_SilScore Cluster_3_SilScore > # 1 "RIN" "0.420502645502646" "0.674226581940152" "0.433333333333333" > # 2 "DegFact" "0.759196481622952" "0.59496499852177" "0.600198799385732" > # Cluster_4_SilScore Avg_Silhouette_Width Cluster_1_Size Cluster_2_Size Cluster_3_Size > # 1 "0.348714574898785" "0.463905611516569" "4" "4" "3" > # 2 "0.521618857725795" "0.634170498361632" "5" "3" "5" > # Cluster_4_Size > # 1 "5" > # 2 "3" > dataFrame1 <- qualitySet(data=rnaMetrics, k.set=c(2,3,4), getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 Processing metric: DegFact(2) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 > > > dataFrame <- metricsCorrelations(data=rnaMetrics, getImages = FALSE, margins = c(4,4,11,10)) Data loaded. Number of rows: 16 Number of columns: 3 > assay(dataFrame, 1) RIN DegFact RIN 1.0000000 -0.9744685 DegFact -0.9744685 1.0000000 > > > dataFrame <- stability(data=rnaMetrics, cbi="kmeans", k=2, bs=100, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Processing metric: DegFact(2) Calculation of k = 2 > dataFrame <- stability(data=rnaMetrics, cbi="clara", k=2, bs=100, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Processing metric: DegFact(2) Calculation of k = 2 > dataFrame <- stability(data=rnaMetrics, cbi="clara_pam", k=2, bs=100, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Processing metric: DegFact(2) Calculation of k = 2 > dataFrame <- stability(data=rnaMetrics, cbi="hclust", k=2, bs=100, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Processing metric: DegFact(2) Calculation of k = 2 > dataFrame <- stability(data=rnaMetrics, cbi="pamk", k=2, bs=100, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Processing metric: DegFact(2) Calculation of k = 2 > dataFrame <- stability(data=rnaMetrics, cbi="pamk_pam", k=2, bs=100, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Processing metric: DegFact(2) Calculation of k = 2 > > # Supported CBIs: > evaluomeRSupportedCBI() [1] "kmeans" "clara" "clara_pam" "hclust" "pamk" "pamk_pam" > > dataFrame <- qualityRange(data=rnaMetrics, k.range=c(2,10), getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 Calculation of k = 5 Calculation of k = 6 Calculation of k = 7 Calculation of k = 8 Calculation of k = 9 Calculation of k = 10 Processing metric: DegFact(2) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 Calculation of k = 5 Calculation of k = 6 Calculation of k = 7 Calculation of k = 8 Calculation of k = 9 Calculation of k = 10 > dataFrame ExperimentList class object of length 9: [1] k_2: SummarizedExperiment with 2 rows and 6 columns [2] k_3: SummarizedExperiment with 2 rows and 8 columns [3] k_4: SummarizedExperiment with 2 rows and 10 columns [4] k_5: SummarizedExperiment with 2 rows and 12 columns [5] k_6: SummarizedExperiment with 2 rows and 14 columns [6] k_7: SummarizedExperiment with 2 rows and 16 columns [7] k_8: SummarizedExperiment with 2 rows and 18 columns [8] k_9: SummarizedExperiment with 2 rows and 20 columns [9] k_10: SummarizedExperiment with 2 rows and 22 columns > > #dataFrame <- stabilityRange(data=rnaMetrics, k.range=c(2,8), bs=20, getImages = FALSE) > #assay(dataFrame) > > proc.time() user system elapsed 11.25 0.96 12.18 |
evaluomeR.Rcheck/tests_x64/testAll.Rout R version 4.1.3 (2022-03-10) -- "One Push-Up" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(evaluomeR) Loading required package: SummarizedExperiment Loading required package: MatrixGenerics Loading required package: matrixStats Attaching package: 'MatrixGenerics' The following objects are masked from 'package:matrixStats': colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars Loading required package: GenomicRanges Loading required package: stats4 Loading required package: BiocGenerics Attaching package: 'BiocGenerics' The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Loading required package: S4Vectors Attaching package: 'S4Vectors' The following objects are masked from 'package:base': I, expand.grid, unname Loading required package: IRanges Attaching package: 'IRanges' The following object is masked from 'package:grDevices': windows Loading required package: GenomeInfoDb Loading required package: Biobase Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'. Attaching package: 'Biobase' The following object is masked from 'package:MatrixGenerics': rowMedians The following objects are masked from 'package:matrixStats': anyMissing, rowMedians Loading required package: MultiAssayExperiment Loading required package: cluster Loading required package: fpc Loading required package: randomForest randomForest 4.7-1 Type rfNews() to see new features/changes/bug fixes. Attaching package: 'randomForest' The following object is masked from 'package:Biobase': combine The following object is masked from 'package:BiocGenerics': combine Loading required package: flexmix Loading required package: lattice > > data("rnaMetrics") > > dataFrame <- stability(data=rnaMetrics, k=4, bs=100, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 4 Processing metric: DegFact(2) Calculation of k = 4 > dataFrame <- stabilityRange(data=rnaMetrics, k.range=c(2,4), bs=20, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 Processing metric: DegFact(2) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 > assay(dataFrame) Metric Mean_stability_k_2 Mean_stability_k_3 Mean_stability_k_4 [1,] "RIN" "0.825833333333333" "0.778412698412698" "0.69625" [2,] "DegFact" "0.955595238095238" "0.977777777777778" "0.820833333333333" > # Metric Mean_stability_k_2 Mean_stability_k_3 Mean_stability_k_4 > # [1,] "RIN" "0.825833333333333" "0.778412698412698" "0.69625" > # [2,] "DegFact" "0.955595238095238" "0.977777777777778" "0.820833333333333" > dataFrame <- stabilitySet(data=rnaMetrics, k.set=c(2,3,4), bs=20, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 Processing metric: DegFact(2) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 > > dataFrame <- quality(data=rnaMetrics, cbi="kmeans", k=3, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 3 Processing metric: DegFact(2) Calculation of k = 3 > assay(dataFrame) Metric Cluster_1_SilScore Cluster_2_SilScore Cluster_3_SilScore [1,] "RIN" "0.420502645502646" "0.724044583696066" "0.68338517747747" [2,] "DegFact" "0.876516605981734" "0.643613928123002" "0.521618857725795" Avg_Silhouette_Width Cluster_1_Size Cluster_2_Size Cluster_3_Size [1,] "0.627829396038413" "4" "4" "8" [2,] "0.737191191352892" "8" "5" "3" > # Metric Cluster_1_SilScore Cluster_2_SilScore Cluster_3_SilScore > # [1,] "RIN" "0.420502645502646" "0.724044583696066" "0.68338517747747" > # [2,] "DegFact" "0.876516605981734" "0.643613928123002" "0.521618857725795" > # Avg_Silhouette_Width Cluster_1_Size Cluster_2_Size Cluster_3_Size > # [1,] "0.627829396038413" "4" "4" "8" > # [2,] "0.737191191352892" "8" "5" "3" > dataFrame <- qualityRange(data=rnaMetrics, k.range=c(2,4), seed = 20, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 Processing metric: DegFact(2) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 > assay(getDataQualityRange(dataFrame, 2)) Metric Cluster_1_SilScore Cluster_2_SilScore Avg_Silhouette_Width 1 "RIN" "0.583166775069983" "0.619872562681118" "0.608402004052639" 2 "DegFact" "0.664573423022171" "0.675315791048653" "0.666587617027136" Cluster_1_Size Cluster_2_Size 1 "5" "11" 2 "13" "3" > # Metric Cluster_1_SilScore Cluster_2_SilScore Avg_Silhouette_Width Cluster_1_Size > # 1 "RIN" "0.583166775069983" "0.619872562681118" "0.608402004052639" "5" > # 2 "DegFact" "0.664573423022171" "0.675315791048653" "0.666587617027136" "13" > # Cluster_2_Size > # 1 "11" > # 2 "3" > assay(getDataQualityRange(dataFrame, 4)) Metric Cluster_1_SilScore Cluster_2_SilScore Cluster_3_SilScore 1 "RIN" "0.420502645502646" "0.674226581940152" "0.433333333333333" 2 "DegFact" "0.759196481622952" "0.59496499852177" "0.600198799385732" Cluster_4_SilScore Avg_Silhouette_Width Cluster_1_Size Cluster_2_Size 1 "0.348714574898785" "0.463905611516569" "4" "4" 2 "0.521618857725795" "0.634170498361632" "5" "3" Cluster_3_Size Cluster_4_Size 1 "3" "5" 2 "5" "3" > # Metric Cluster_1_SilScore Cluster_2_SilScore Cluster_3_SilScore > # 1 "RIN" "0.420502645502646" "0.674226581940152" "0.433333333333333" > # 2 "DegFact" "0.759196481622952" "0.59496499852177" "0.600198799385732" > # Cluster_4_SilScore Avg_Silhouette_Width Cluster_1_Size Cluster_2_Size Cluster_3_Size > # 1 "0.348714574898785" "0.463905611516569" "4" "4" "3" > # 2 "0.521618857725795" "0.634170498361632" "5" "3" "5" > # Cluster_4_Size > # 1 "5" > # 2 "3" > dataFrame1 <- qualitySet(data=rnaMetrics, k.set=c(2,3,4), getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 Processing metric: DegFact(2) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 > > > dataFrame <- metricsCorrelations(data=rnaMetrics, getImages = FALSE, margins = c(4,4,11,10)) Data loaded. Number of rows: 16 Number of columns: 3 > assay(dataFrame, 1) RIN DegFact RIN 1.0000000 -0.9744685 DegFact -0.9744685 1.0000000 > > > dataFrame <- stability(data=rnaMetrics, cbi="kmeans", k=2, bs=100, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Processing metric: DegFact(2) Calculation of k = 2 > dataFrame <- stability(data=rnaMetrics, cbi="clara", k=2, bs=100, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Processing metric: DegFact(2) Calculation of k = 2 > dataFrame <- stability(data=rnaMetrics, cbi="clara_pam", k=2, bs=100, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Processing metric: DegFact(2) Calculation of k = 2 > dataFrame <- stability(data=rnaMetrics, cbi="hclust", k=2, bs=100, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Processing metric: DegFact(2) Calculation of k = 2 > dataFrame <- stability(data=rnaMetrics, cbi="pamk", k=2, bs=100, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Processing metric: DegFact(2) Calculation of k = 2 > dataFrame <- stability(data=rnaMetrics, cbi="pamk_pam", k=2, bs=100, getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Processing metric: DegFact(2) Calculation of k = 2 > > # Supported CBIs: > evaluomeRSupportedCBI() [1] "kmeans" "clara" "clara_pam" "hclust" "pamk" "pamk_pam" > > dataFrame <- qualityRange(data=rnaMetrics, k.range=c(2,10), getImages = FALSE) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 Calculation of k = 5 Calculation of k = 6 Calculation of k = 7 Calculation of k = 8 Calculation of k = 9 Calculation of k = 10 Processing metric: DegFact(2) Calculation of k = 2 Calculation of k = 3 Calculation of k = 4 Calculation of k = 5 Calculation of k = 6 Calculation of k = 7 Calculation of k = 8 Calculation of k = 9 Calculation of k = 10 > dataFrame ExperimentList class object of length 9: [1] k_2: SummarizedExperiment with 2 rows and 6 columns [2] k_3: SummarizedExperiment with 2 rows and 8 columns [3] k_4: SummarizedExperiment with 2 rows and 10 columns [4] k_5: SummarizedExperiment with 2 rows and 12 columns [5] k_6: SummarizedExperiment with 2 rows and 14 columns [6] k_7: SummarizedExperiment with 2 rows and 16 columns [7] k_8: SummarizedExperiment with 2 rows and 18 columns [8] k_9: SummarizedExperiment with 2 rows and 20 columns [9] k_10: SummarizedExperiment with 2 rows and 22 columns > > #dataFrame <- stabilityRange(data=rnaMetrics, k.range=c(2,8), bs=20, getImages = FALSE) > #assay(dataFrame) > > proc.time() user system elapsed 12.71 0.50 13.20 |
evaluomeR.Rcheck/tests_i386/testAnalysis.Rout R version 4.1.3 (2022-03-10) -- "One Push-Up" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(evaluomeR) Loading required package: SummarizedExperiment Loading required package: MatrixGenerics Loading required package: matrixStats Attaching package: 'MatrixGenerics' The following objects are masked from 'package:matrixStats': colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars Loading required package: GenomicRanges Loading required package: stats4 Loading required package: BiocGenerics Attaching package: 'BiocGenerics' The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Loading required package: S4Vectors Attaching package: 'S4Vectors' The following objects are masked from 'package:base': I, expand.grid, unname Loading required package: IRanges Attaching package: 'IRanges' The following object is masked from 'package:grDevices': windows Loading required package: GenomeInfoDb Loading required package: Biobase Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'. Attaching package: 'Biobase' The following object is masked from 'package:MatrixGenerics': rowMedians The following objects are masked from 'package:matrixStats': anyMissing, rowMedians Loading required package: MultiAssayExperiment Loading required package: cluster Loading required package: fpc Loading required package: randomForest randomForest 4.7-1 Type rfNews() to see new features/changes/bug fixes. Attaching package: 'randomForest' The following object is masked from 'package:Biobase': combine The following object is masked from 'package:BiocGenerics': combine Loading required package: flexmix Loading required package: lattice > > data("rnaMetrics") > plotMetricsMinMax(rnaMetrics) There were 17 warnings (use warnings() to see them) > plotMetricsBoxplot(rnaMetrics) Warning messages: 1: Use of `data.melt$variable` is discouraged. Use `variable` instead. 2: Use of `data.melt$value` is discouraged. Use `value` instead. > cluster = plotMetricsCluster(ontMetrics, scale = TRUE) > plotMetricsViolin(rnaMetrics) Warning messages: 1: Use of `data.melt$variable` is discouraged. Use `variable` instead. 2: Use of `data.melt$value` is discouraged. Use `value` instead. 3: Use of `data.melt$variable` is discouraged. Use `variable` instead. 4: Use of `data.melt$value` is discouraged. Use `value` instead. > > stabilityData <- stabilityRange(data=rnaMetrics, k.range=c(3,4), bs=20, getImages = FALSE, seed=100) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 3 Calculation of k = 4 Processing metric: DegFact(2) Calculation of k = 3 Calculation of k = 4 > qualityData <- qualityRange(data=rnaMetrics, k.range=c(3,4), getImages = FALSE, seed=100) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 3 Calculation of k = 4 Processing metric: DegFact(2) Calculation of k = 3 Calculation of k = 4 > > kOptTable <- getOptimalKValue(stabilityData, qualityData, k.range=c(3,4)) Processing metric: RIN Maximum stability and quality values matches the same K value: '3' Processing metric: DegFact Maximum stability and quality values matches the same K value: '3' > kOptTable Metric Stability_max_k Stability_max_k_stab Stability_max_k_qual 1 RIN 3 0.8901389 0.6278294 2 DegFact 3 1.0000000 0.7371912 Quality_max_k Quality_max_k_stab Quality_max_k_qual Global_optimal_k 1 3 0.8901389 0.6278294 3 2 3 1.0000000 0.7371912 3 > > > df = assay(rnaMetrics) > k.vector1=rep(5,length(colnames(df))-1) > k.vector2=rep(2,length(colnames(df))-1) > > plotMetricsClusterComparison(rnaMetrics, k.vector1=k.vector1, k.vector2=k.vector2) > plotMetricsClusterComparison(rnaMetrics, k.vector1=3, k.vector2=c(2,5)) > > > proc.time() user system elapsed 9.23 1.20 10.40 |
evaluomeR.Rcheck/tests_x64/testAnalysis.Rout R version 4.1.3 (2022-03-10) -- "One Push-Up" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(evaluomeR) Loading required package: SummarizedExperiment Loading required package: MatrixGenerics Loading required package: matrixStats Attaching package: 'MatrixGenerics' The following objects are masked from 'package:matrixStats': colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars Loading required package: GenomicRanges Loading required package: stats4 Loading required package: BiocGenerics Attaching package: 'BiocGenerics' The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Loading required package: S4Vectors Attaching package: 'S4Vectors' The following objects are masked from 'package:base': I, expand.grid, unname Loading required package: IRanges Attaching package: 'IRanges' The following object is masked from 'package:grDevices': windows Loading required package: GenomeInfoDb Loading required package: Biobase Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'. Attaching package: 'Biobase' The following object is masked from 'package:MatrixGenerics': rowMedians The following objects are masked from 'package:matrixStats': anyMissing, rowMedians Loading required package: MultiAssayExperiment Loading required package: cluster Loading required package: fpc Loading required package: randomForest randomForest 4.7-1 Type rfNews() to see new features/changes/bug fixes. Attaching package: 'randomForest' The following object is masked from 'package:Biobase': combine The following object is masked from 'package:BiocGenerics': combine Loading required package: flexmix Loading required package: lattice > > data("rnaMetrics") > plotMetricsMinMax(rnaMetrics) There were 17 warnings (use warnings() to see them) > plotMetricsBoxplot(rnaMetrics) Warning messages: 1: Use of `data.melt$variable` is discouraged. Use `variable` instead. 2: Use of `data.melt$value` is discouraged. Use `value` instead. > cluster = plotMetricsCluster(ontMetrics, scale = TRUE) > plotMetricsViolin(rnaMetrics) Warning messages: 1: Use of `data.melt$variable` is discouraged. Use `variable` instead. 2: Use of `data.melt$value` is discouraged. Use `value` instead. 3: Use of `data.melt$variable` is discouraged. Use `variable` instead. 4: Use of `data.melt$value` is discouraged. Use `value` instead. > > stabilityData <- stabilityRange(data=rnaMetrics, k.range=c(3,4), bs=20, getImages = FALSE, seed=100) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 3 Calculation of k = 4 Processing metric: DegFact(2) Calculation of k = 3 Calculation of k = 4 > qualityData <- qualityRange(data=rnaMetrics, k.range=c(3,4), getImages = FALSE, seed=100) Data loaded. Number of rows: 16 Number of columns: 3 Processing metric: RIN(1) Calculation of k = 3 Calculation of k = 4 Processing metric: DegFact(2) Calculation of k = 3 Calculation of k = 4 > > kOptTable <- getOptimalKValue(stabilityData, qualityData, k.range=c(3,4)) Processing metric: RIN Maximum stability and quality values matches the same K value: '3' Processing metric: DegFact Maximum stability and quality values matches the same K value: '3' > kOptTable Metric Stability_max_k Stability_max_k_stab Stability_max_k_qual 1 RIN 3 0.8901389 0.6278294 2 DegFact 3 1.0000000 0.7371912 Quality_max_k Quality_max_k_stab Quality_max_k_qual Global_optimal_k 1 3 0.8901389 0.6278294 3 2 3 1.0000000 0.7371912 3 > > > df = assay(rnaMetrics) > k.vector1=rep(5,length(colnames(df))-1) > k.vector2=rep(2,length(colnames(df))-1) > > plotMetricsClusterComparison(rnaMetrics, k.vector1=k.vector1, k.vector2=k.vector2) > plotMetricsClusterComparison(rnaMetrics, k.vector1=3, k.vector2=c(2,5)) > > > proc.time() user system elapsed 9.10 0.45 9.54 |
evaluomeR.Rcheck/examples_i386/evaluomeR-Ex.timings
|
evaluomeR.Rcheck/examples_x64/evaluomeR-Ex.timings
|