Back to Multiple platform build/check report for BioC 3.14
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2022-04-13 12:07:26 -0400 (Wed, 13 Apr 2022).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 20.04.4 LTS)x86_644.1.3 (2022-03-10) -- "One Push-Up" 4324
tokay2Windows Server 2012 R2 Standardx644.1.3 (2022-03-10) -- "One Push-Up" 4077
machv2macOS 10.14.6 Mojavex86_644.1.3 (2022-03-10) -- "One Push-Up" 4137
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

CHECK results for STATegRa on tokay2


To the developers/maintainers of the STATegRa package:
- Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/STATegRa.git to
reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information.
- Make sure to use the following settings in order to reproduce any error or warning you see on this page.

raw results

Package 1887/2083HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
STATegRa 1.30.0  (landing page)
David Gomez-Cabrero , NĂºria Planell
Snapshot Date: 2022-04-12 01:55:07 -0400 (Tue, 12 Apr 2022)
git_url: https://git.bioconductor.org/packages/STATegRa
git_branch: RELEASE_3_14
git_last_commit: 9124807
git_last_commit_date: 2021-10-26 12:17:04 -0400 (Tue, 26 Oct 2021)
nebbiolo2Linux (Ubuntu 20.04.4 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
tokay2Windows Server 2012 R2 Standard / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
machv2macOS 10.14.6 Mojave / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published

Summary

Package: STATegRa
Version: 1.30.0
Command: C:\Users\biocbuild\bbs-3.14-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:STATegRa.install-out.txt --library=C:\Users\biocbuild\bbs-3.14-bioc\R\library --no-vignettes --timings STATegRa_1.30.0.tar.gz
StartedAt: 2022-04-13 03:36:42 -0400 (Wed, 13 Apr 2022)
EndedAt: 2022-04-13 03:42:44 -0400 (Wed, 13 Apr 2022)
EllapsedTime: 362.1 seconds
RetCode: 0
Status:   OK  
CheckDir: STATegRa.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   C:\Users\biocbuild\bbs-3.14-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:STATegRa.install-out.txt --library=C:\Users\biocbuild\bbs-3.14-bioc\R\library --no-vignettes --timings STATegRa_1.30.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'C:/Users/biocbuild/bbs-3.14-bioc/meat/STATegRa.Rcheck'
* using R version 4.1.3 (2022-03-10)
* using platform: x86_64-w64-mingw32 (64-bit)
* using session charset: ISO8859-1
* using option '--no-vignettes'
* checking for file 'STATegRa/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'STATegRa' version '1.30.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'STATegRa' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* loading checks for arch 'i386'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* loading checks for arch 'x64'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... NOTE
modelSelection,list-numeric-character: no visible binding for global
  variable 'components'
modelSelection,list-numeric-character: no visible binding for global
  variable 'mylabel'
plotVAF,caClass: no visible binding for global variable 'comp'
plotVAF,caClass: no visible binding for global variable 'VAF'
plotVAF,caClass: no visible binding for global variable 'block'
selectCommonComps,list-numeric: no visible binding for global variable
  'comps'
selectCommonComps,list-numeric: no visible binding for global variable
  'block'
selectCommonComps,list-numeric: no visible binding for global variable
  'comp'
selectCommonComps,list-numeric: no visible binding for global variable
  'ratio'
Undefined global functions or variables:
  VAF block comp components comps mylabel ratio
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking files in 'vignettes' ... OK
* checking examples ...
** running examples for arch 'i386' ... OK
** running examples for arch 'x64' ... OK
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
** running tests for arch 'i386' ...
  Running 'STATEgRa_Example.omicsCLUST.R'
  Running 'STATEgRa_Example.omicsPCA.R'
  Running 'STATegRa_Example.omicsNPC.R'
  Running 'runTests.R'
 OK
** running tests for arch 'x64' ...
  Running 'STATEgRa_Example.omicsCLUST.R'
  Running 'STATEgRa_Example.omicsPCA.R'
  Running 'STATegRa_Example.omicsNPC.R'
  Running 'runTests.R'
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in 'inst/doc' ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  'C:/Users/biocbuild/bbs-3.14-bioc/meat/STATegRa.Rcheck/00check.log'
for details.



Installation output

STATegRa.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   C:\cygwin\bin\curl.exe -O http://155.52.207.166/BBS/3.14/bioc/src/contrib/STATegRa_1.30.0.tar.gz && rm -rf STATegRa.buildbin-libdir && mkdir STATegRa.buildbin-libdir && C:\Users\biocbuild\bbs-3.14-bioc\R\bin\R.exe CMD INSTALL --merge-multiarch --build --library=STATegRa.buildbin-libdir STATegRa_1.30.0.tar.gz && C:\Users\biocbuild\bbs-3.14-bioc\R\bin\R.exe CMD INSTALL STATegRa_1.30.0.zip && rm STATegRa_1.30.0.tar.gz STATegRa_1.30.0.zip
###
##############################################################################
##############################################################################


  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed

  0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0
  6 3177k    6  221k    0     0   422k      0  0:00:07 --:--:--  0:00:07  422k
 42 3177k   42 1336k    0     0   879k      0  0:00:03  0:00:01  0:00:02  879k
100 3177k  100 3177k    0     0  1300k      0  0:00:02  0:00:02 --:--:-- 1300k

install for i386

* installing *source* package 'STATegRa' ...
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
  converting help for package 'STATegRa'
    finding HTML links ... done
    STATegRa-defunct                        html  
    STATegRa                                html  
    STATegRaUsersGuide                      html  
    STATegRa_data                           html  
    STATegRa_data_TCGA_BRCA                 html  
    bioDist                                 html  
    bioDistFeature                          html  
    bioDistFeaturePlot                      html  
    bioDistW                                html  
    bioDistWPlot                            html  
    bioDistclass                            html  
    bioMap                                  html  
    caClass-class                           html  
    combiningMappings                       html  
    createOmicsExpressionSet                html  
    getInitialData                          html  
    getLoadings                             html  
    getMethodInfo                           html  
    getPreprocessing                        html  
    getScores                               html  
    getVAF                                  html  
    holistOmics                             html  
    modelSelection                          html  
    finding level-2 HTML links ... done

    omicsCompAnalysis                       html  
    omicsNPC                                html  
    plotRes                                 html  
    plotVAF                                 html  
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path

install for x64

* installing *source* package 'STATegRa' ...
** testing if installed package can be loaded
* MD5 sums
packaged installation of 'STATegRa' as STATegRa_1.30.0.zip
* DONE (STATegRa)
* installing to library 'C:/Users/biocbuild/bbs-3.14-bioc/R/library'
package 'STATegRa' successfully unpacked and MD5 sums checked

Tests output

STATegRa.Rcheck/tests_i386/runTests.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage("STATegRa")
Common components
[1] 2

Distinctive components
[[1]]
[1] 0

[[2]]
[1] 0

Common components
[1] 2

Distinctive components
[[1]]
[1] 1

[[2]]
[1] 1

Common components
[1] 2

Distinctive components
[[1]]
[1] 2

[[2]]
[1] 2



RUNIT TEST PROTOCOL -- Wed Apr 13 03:40:50 2022 
*********************************************** 
Number of test functions: 4 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures
Number of test functions: 4 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: In rownames(pData) == colnames(exprs) :
  longer object length is not a multiple of shorter object length
2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum",  :
  Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2
3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num",  :
  Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3
> 
> proc.time()
   user  system elapsed 
   3.48    0.28    3.73 

STATegRa.Rcheck/tests_x64/runTests.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage("STATegRa")
Common components
[1] 2

Distinctive components
[[1]]
[1] 0

[[2]]
[1] 0

Common components
[1] 2

Distinctive components
[[1]]
[1] 1

[[2]]
[1] 1

Common components
[1] 2

Distinctive components
[[1]]
[1] 2

[[2]]
[1] 2



RUNIT TEST PROTOCOL -- Wed Apr 13 03:42:36 2022 
*********************************************** 
Number of test functions: 4 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures
Number of test functions: 4 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: In rownames(pData) == colnames(exprs) :
  longer object length is not a multiple of shorter object length
2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum",  :
  Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2
3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num",  :
  Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3
> 
> proc.time()
   user  system elapsed 
   3.82    0.29    4.10 

STATegRa.Rcheck/tests_i386/STATEgRa_Example.omicsCLUST.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> ###########################################
> ########### EXAMPLE OF THE OMICSCLUSTERING
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
> 
> #############################################
> ## PART 1: CREATING a bioMap CLASS
> #############################################
> ####### This part creates or reads the map between features.
> ####### In the present example the map is downloaded from a resource.
> #######   then the class is created.
> 
> #load("../data/STATegRa_S2.rda")
> data(STATegRa_S2)
> 
> MAP.SYMBOL<-bioMap(name = "Symbol-miRNA",
+                 metadata =  list(type_v1="Gene",type_v2="miRNA",
+                                  source_database="targetscan.Hs.eg.db",
+                                  data_extraction="July2014"),
+                 map=mapdata)
> 
> 
> #############################################
> ## PART 2: CREATING a bioDist CLASS
> #############################################
> ##### In the second part given a set of main features and surrogate feautres,
> #####    the profile of the main features is computed through the surrogate features.
> 
> # Load Data
> data(STATegRa_S1)
>   #load("../data/STATegRa.S1.Rdata")
> 
> ## Create ExpressionSets
> #  source("../R/STATegRa_omicsPCA_classes_and_methods.R")
> # Block1 - Expression data
> mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname"))
> 
> # Create Gene-gene distance computed through miRNA data
> bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1),     
+              reference = "Var1",
+              mapping = MAP.SYMBOL,
+              surrogateData = miRNA.ds,  ### miRNA data
+              referenceData = mRNA.ds,  ### mRNA data
+              maxitems=2,
+              selectionRule="sd",
+              expfac=NULL,
+              aggregation = "sum",
+              distance = "spearman",
+              noMappingDist = 0,
+              filtering = NULL,
+              name = "mRNAbymiRNA")
> 
> require(Biobase)
Loading required package: Biobase
Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
    tapply, union, unique, unsplit, which.max, which.min

Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.

> 
> # Create Gene-gene distance through mRNA data
> bioDistmRNA<-bioDistclass(name = "mRNAbymRNA",
+                  distance = cor(t(exprs(mRNA.ds)),method="spearman"),
+                  map.name = "id",
+                  map.metadata = list(),
+                  params = list())
> 
> #############################################
> ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList
> #############################################
> 
> bioDistList<-list(bioDistmRNA,bioDistmiRNA)
> weights<-matrix(0,4,2)
> weights[,1]<-c(0,0.33,0.67,1)
> weights[,2]<-c(1,0.67,0.33,0)#
> 
> bioDistWList<-bioDistW(referenceFeatures = rownames(Block1),
+                        bioDistList = bioDistList,
+                        weights=weights)
> length(bioDistWList)
[1] 4
> 
> #############################################
> ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL
> #############################################
> 
> bioDistWPlot(referenceFeatures = rownames(Block1) ,
+                listDistW = bioDistWList,
+                method.cor="spearman")
Warning messages:
1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures],  :
  Cannot compute exact p-value with ties
2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures],  :
  Cannot compute exact p-value with ties
3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures],  :
  Cannot compute exact p-value with ties
4: In plot.window(...) :
  relative range of values (   0 * EPS) is small (axis 2)
5: In plot.window(...) :
  relative range of values (   0 * EPS) is small (axis 2)
6: In plot.window(...) :
  relative range of values (   0 * EPS) is small (axis 2)
7: In plot.window(...) :
  relative range of values (   0 * EPS) is small (axis 2)
> 
> #############################################
> ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE
> #############################################
> 
> ## IDH1
> 
> IDH1.F<-bioDistFeature(Feature = "IDH1" ,
+                        listDistW = bioDistWList,
+                        threshold.cor=0.7)
> bioDistFeaturePlot(data=IDH1.F)
> 
> ## PDGFRA
> 
> #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" ,
> #                       listDistW = bioDistWList,
> #                       threshold.cor=0.7)
> #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png")
> 
> ## EGFR
> #EGFR.F<-bioDistFeature(Feature = "EGFR" ,
> #                         listDistW = bioDistWList,
> #                         threshold.cor=0.7)
> #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png")
> 
> ## MGMT
> #MGMT.F<-bioDistFeature(Feature = "MGMT" ,
> #                         listDistW = bioDistWList,
> #                         threshold.cor=0.5)
> #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png")
> 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  24.76    0.59   25.32 

STATegRa.Rcheck/tests_x64/STATEgRa_Example.omicsCLUST.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> ###########################################
> ########### EXAMPLE OF THE OMICSCLUSTERING
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
> 
> #############################################
> ## PART 1: CREATING a bioMap CLASS
> #############################################
> ####### This part creates or reads the map between features.
> ####### In the present example the map is downloaded from a resource.
> #######   then the class is created.
> 
> #load("../data/STATegRa_S2.rda")
> data(STATegRa_S2)
> 
> MAP.SYMBOL<-bioMap(name = "Symbol-miRNA",
+                 metadata =  list(type_v1="Gene",type_v2="miRNA",
+                                  source_database="targetscan.Hs.eg.db",
+                                  data_extraction="July2014"),
+                 map=mapdata)
> 
> 
> #############################################
> ## PART 2: CREATING a bioDist CLASS
> #############################################
> ##### In the second part given a set of main features and surrogate feautres,
> #####    the profile of the main features is computed through the surrogate features.
> 
> # Load Data
> data(STATegRa_S1)
>   #load("../data/STATegRa.S1.Rdata")
> 
> ## Create ExpressionSets
> #  source("../R/STATegRa_omicsPCA_classes_and_methods.R")
> # Block1 - Expression data
> mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname"))
> 
> # Create Gene-gene distance computed through miRNA data
> bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1),     
+              reference = "Var1",
+              mapping = MAP.SYMBOL,
+              surrogateData = miRNA.ds,  ### miRNA data
+              referenceData = mRNA.ds,  ### mRNA data
+              maxitems=2,
+              selectionRule="sd",
+              expfac=NULL,
+              aggregation = "sum",
+              distance = "spearman",
+              noMappingDist = 0,
+              filtering = NULL,
+              name = "mRNAbymiRNA")
> 
> require(Biobase)
Loading required package: Biobase
Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
    tapply, union, unique, unsplit, which.max, which.min

Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.

> 
> # Create Gene-gene distance through mRNA data
> bioDistmRNA<-bioDistclass(name = "mRNAbymRNA",
+                  distance = cor(t(exprs(mRNA.ds)),method="spearman"),
+                  map.name = "id",
+                  map.metadata = list(),
+                  params = list())
> 
> #############################################
> ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList
> #############################################
> 
> bioDistList<-list(bioDistmRNA,bioDistmiRNA)
> weights<-matrix(0,4,2)
> weights[,1]<-c(0,0.33,0.67,1)
> weights[,2]<-c(1,0.67,0.33,0)#
> 
> bioDistWList<-bioDistW(referenceFeatures = rownames(Block1),
+                        bioDistList = bioDistList,
+                        weights=weights)
> length(bioDistWList)
[1] 4
> 
> #############################################
> ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL
> #############################################
> 
> bioDistWPlot(referenceFeatures = rownames(Block1) ,
+                listDistW = bioDistWList,
+                method.cor="spearman")
Warning messages:
1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures],  :
  Cannot compute exact p-value with ties
2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures],  :
  Cannot compute exact p-value with ties
3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures],  :
  Cannot compute exact p-value with ties
4: In plot.window(...) :
  relative range of values (   0 * EPS) is small (axis 2)
5: In plot.window(...) :
  relative range of values (   0 * EPS) is small (axis 2)
6: In plot.window(...) :
  relative range of values (   0 * EPS) is small (axis 2)
7: In plot.window(...) :
  relative range of values (   0 * EPS) is small (axis 2)
> 
> #############################################
> ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE
> #############################################
> 
> ## IDH1
> 
> IDH1.F<-bioDistFeature(Feature = "IDH1" ,
+                        listDistW = bioDistWList,
+                        threshold.cor=0.7)
> bioDistFeaturePlot(data=IDH1.F)
> 
> ## PDGFRA
> 
> #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" ,
> #                       listDistW = bioDistWList,
> #                       threshold.cor=0.7)
> #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png")
> 
> ## EGFR
> #EGFR.F<-bioDistFeature(Feature = "EGFR" ,
> #                         listDistW = bioDistWList,
> #                         threshold.cor=0.7)
> #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png")
> 
> ## MGMT
> #MGMT.F<-bioDistFeature(Feature = "MGMT" ,
> #                         listDistW = bioDistWList,
> #                         threshold.cor=0.5)
> #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png")
> 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  21.39    0.68   22.06 

STATegRa.Rcheck/tests_i386/STATegRa_Example.omicsNPC.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> rm(list = ls())
> require("STATegRa")
Loading required package: STATegRa
> # Load the data
> data("TCGA_BRCA_Batch_93")
> # Setting dataTypes
> dataTypes <- c("count", "count", "continuous")
> # Setting methods to combine pvalues
> combMethods = c("Fisher", "Liptak", "Tippett")
> # Setting number of permutations
> numPerms = 1000
> # Setting number of cores
> numCores = 1
> # Setting holistOmics to print out the steps that it performs.
> verbose = TRUE
> # Run holistOmics analysis.
> output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose)
Compute initial statistics on data
Building NULL distributions by permuting data
Compute pseudo p-values based on NULL distributions...
NPC p-values calculation...
> 
> proc.time()
   user  system elapsed 
  74.82    0.18   75.07 

STATegRa.Rcheck/tests_x64/STATegRa_Example.omicsNPC.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> rm(list = ls())
> require("STATegRa")
Loading required package: STATegRa
> # Load the data
> data("TCGA_BRCA_Batch_93")
> # Setting dataTypes
> dataTypes <- c("count", "count", "continuous")
> # Setting methods to combine pvalues
> combMethods = c("Fisher", "Liptak", "Tippett")
> # Setting number of permutations
> numPerms = 1000
> # Setting number of cores
> numCores = 1
> # Setting holistOmics to print out the steps that it performs.
> verbose = TRUE
> # Run holistOmics analysis.
> output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose)
Compute initial statistics on data
Building NULL distributions by permuting data
Compute pseudo p-values based on NULL distributions...
NPC p-values calculation...
> 
> proc.time()
   user  system elapsed 
  67.98    0.25   68.21 

STATegRa.Rcheck/tests_i386/STATEgRa_Example.omicsPCA.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> ###########################################
> ########### EXAMPLE OF THE OMICSPCA
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
> 
> # g_legend (not exported by STATegRa any more)
> ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs
> g_legend<-function(a.gplot){
+     tmp <- ggplot_gtable(ggplot_build(a.gplot))
+     leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
+     legend <- tmp$grobs[[leg]]
+     return(legend)}
> 
> #########################
> ## PART 1. Load data
> 
> ## Load data
> data(STATegRa_S3)
> 
> ls()
[1] "Block1.PCA" "Block2.PCA" "ed.PCA"     "g_legend"  
> 
> ## Create ExpressionSets
> # Block1 - Expression data
> B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname"))
> 
> #########################
> ## PART 2.  Model Selection
> 
> require(grid)
Loading required package: grid
> require(gridExtra)
Loading required package: gridExtra
> require(ggplot2)
Loading required package: ggplot2
> 
> ## Select the optimal components
> ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE)
Common components
[1] 2

Distinctive components
[[1]]
[1] 2

[[2]]
[1] 2

> 
> 
> #########################
> ## PART 3. Component Analysis
> 
> ## 3.1 Component analysis of the three methods
> discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+                               scale=TRUE,weight=TRUE)
> jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+                              scale=TRUE,weight=TRUE)
> o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+                               scale=TRUE,weight=TRUE)
> 
> ## 3.2 Exploring scores structures
> 
> # Exploring DISCO-SCA scores structure
> discoRes@scores$common ## Common scores
                      1             2
sample1   -0.0781575686 -0.0431549533
sample2    0.1192221422  0.0294020207
sample3    0.0531408611 -0.0746837613
sample4   -0.0292971736 -0.0006035739
sample5   -0.0202090730  0.0110455017
sample6   -0.1226088416  0.1053493739
sample7   -0.1078931389 -0.0322417760
sample8   -0.1782891055  0.1449329620
sample9   -0.0468697282 -0.0455171510
sample10   0.0036032722  0.0420076977
sample11   0.0035566353 -0.0566284813
sample12  -0.1006129709  0.0641394582
sample13   0.1174412911  0.0907475078
sample14  -0.0981203548  0.0617764134
sample15  -0.0085337319 -0.0086954581
sample16  -0.0783146765  0.1581334546
sample17   0.1483610685  0.0638580071
sample18   0.0963084380  0.0556689030
sample19   0.0217243036 -0.0720129744
sample20   0.0635633885 -0.0779609059
sample21   0.0201844078  0.1566381696
sample22  -0.0218273938 -0.0764054635
sample23  -0.0852039015 -0.0032766865
sample24   0.1287181697  0.1924423457
sample25   0.0430575653 -0.0456640561
sample26   0.1453899821  0.0541457625
sample27   0.0197483522 -0.1185591271
sample28   0.1025339479  0.0650654665
sample29  -0.0706022548 -0.0682931260
sample30   0.1295622928 -0.0066675493
sample31  -0.1147449293  0.1232728262
sample32   0.0374308183  0.0380251356
sample33  -0.0599520839  0.0136937773
sample34   0.0984199286  0.0375365757
sample35   0.0543096407 -0.0378033398
sample36  -0.1403628045 -0.0343636114
sample37  -0.0228947726 -0.0732685836
sample38   0.0222072930 -0.0962566391
sample39   0.0941739224  0.0215180109
sample40  -0.0643807133 -0.0687716201
sample41   0.0327634905 -0.1232187192
sample42   0.0500431620 -0.0292514935
sample43   0.0184497160  0.0233045183
sample44  -0.1487889184  0.1171206428
sample45   0.1050778876  0.1123138797
sample46   0.1151191517 -0.1093994935
sample47   0.0962591490 -0.0288416786
sample48  -0.0004832558 -0.0310381922
sample49  -0.1135203779  0.1213935470
sample50   0.0123549818 -0.1740763210
sample51  -0.0550527371  0.1258931983
sample52  -0.0499118416  0.0728581960
sample53  -0.1119772625  0.1588065653
sample54   0.0360055728  0.0228585800
sample55  -0.0210418824  0.0006751247
sample56   0.0434171549  0.0633131402
sample57  -0.0197820593  0.1150755110
sample58  -0.0030440707  0.0326128283
sample59  -0.0500256778  0.0129524242
sample60  -0.0184280081  0.0136221770
sample61  -0.0150298891  0.0635098895
sample62   0.0304758668 -0.0201233977
sample63  -0.1102250083  0.1285968366
sample64  -0.1552586805  0.0971185879
sample65   0.0058503822  0.0207102480
sample66   0.0025607515  0.0424283514
sample67  -0.1546638698 -0.0661574640
sample68  -0.0536374334 -0.0923602087
sample69  -0.0640333052  0.0082004427
sample70  -0.0163521833 -0.0663227092
sample71   0.0102536065 -0.1345966122
sample72   0.0654191693 -0.0196034128
sample73   0.1048553194  0.0221001730
sample74  -0.0123800514  0.0586157976
sample75  -0.0392079775 -0.0209725374
sample76  -0.0648954581 -0.0524759583
sample77  -0.1172922641 -0.0201201002
sample78   0.1463072709  0.0708397577
sample79  -0.0265208827 -0.1603428560
sample80  -0.0279739266 -0.0214151781
sample81  -0.0079212181 -0.0738496738
sample82   0.1544234571 -0.0361450223
sample83   0.0494205323 -0.0049936109
sample84   0.0259039744 -0.0346592739
sample85  -0.1116487465 -0.0031401870
sample86   0.1306478991 -0.0377154499
sample87   0.0554777869 -0.0459739536
sample88   0.0301626609  0.0382206801
sample89   0.1016866197  0.0694079369
sample90  -0.0086821673 -0.0201324061
sample91  -0.1578629911 -0.2097790710
sample92  -0.0170933480 -0.1655939809
sample93   0.0979805056 -0.0121500084
sample94  -0.0131486275 -0.0114929313
sample95  -0.0315682482 -0.0758918648
sample96  -0.0024125865 -0.0470186507
sample97  -0.0634545830  0.0270302983
sample98   0.0359372507 -0.0135465854
sample99   0.1009167695  0.1124710878
sample100 -0.0551754111  0.0246502455
sample101  0.0080115892 -0.1627408051
sample102  0.0046451289  0.0095468812
sample103  0.0472520811 -0.0940383235
sample104 -0.0198157432 -0.0591148628
sample105  0.0400239018 -0.0160950255
sample106  0.0923810179  0.0369003477
sample107  0.1019372333  0.0224967665
sample108  0.0877091503 -0.0128850110
sample109 -0.0864820246 -0.0901084364
sample110  0.1223116496 -0.0096109122
sample111 -0.0257352435 -0.0936283920
sample112  0.0765285918  0.0270380131
sample113 -0.0258799796  0.0377436971
sample114 -0.0021141155 -0.0882040821
sample115 -0.0303455243 -0.0723738857
sample116 -0.0780504400 -0.0685164747
sample117 -0.0536894005 -0.0912028471
sample118 -0.0666649873 -0.0236261805
sample119 -0.1021872653 -0.2325005045
sample120 -0.0750216338  0.0243344816
sample121  0.0756937912  0.0942971131
sample122  0.0259632135  0.0731919510
sample123  0.1037844664 -0.0369178398
sample124 -0.0611205136  0.0421645209
sample125  0.0738472629  0.0066943933
sample126 -0.0972919188  0.0762700510
sample127 -0.0824699488 -0.0096644811
sample128  0.1249411585  0.0929252511
sample129  0.0734063633 -0.0434312517
sample130  0.0003500217 -0.0309857432
sample131 -0.0930184066  0.0155970946
sample132 -0.0736220576  0.0732970735
sample133  0.0498398363 -0.0462456464
sample134 -0.1644872596  0.0720048065
sample135  0.0752295008  0.0003870935
sample136 -0.0227150061 -0.0495468515
sample137 -0.0564721784 -0.0288859322
sample138 -0.0255986473 -0.0610932416
sample139 -0.0621218761  0.0235858790
sample140  0.0604148870 -0.0435530744
sample141 -0.0246743022  0.0532629783
sample142  0.0409563939  0.0316233086
sample143  0.0077356417 -0.0476909217
sample144 -0.0173241016 -0.0156786047
sample145 -0.0485467560  0.1202737179
sample146 -0.0419650072 -0.0811239930
sample147  0.0977304604 -0.0274769808
sample148 -0.0368253212  0.0803969169
sample149  0.0072864848 -0.1533017869
sample150 -0.1020825496  0.0624823714
sample151 -0.0305397139 -0.0289338493
sample152  0.0533595192 -0.0638335453
sample153  0.0891639654  0.1799450436
sample154  0.0727554337 -0.0834128672
sample155  0.0880665773 -0.0220769195
sample156  0.0276558789 -0.0326601114
sample157  0.1155031550  0.0183636051
sample158  0.0281506685 -0.0104911263
sample159 -0.0663233728  0.0443808922
sample160  0.0302644022  0.0404302194
sample161 -0.0114712910 -0.0591084598
sample162  0.1337091084  0.1398131510
sample163 -0.1330120671  0.1688769169
sample164  0.0150338182  0.0028374327
sample165 -0.0076518810 -0.0164146293
sample166 -0.0367791439  0.0630613017
sample167 -0.1111989841  0.0030066688
sample168  0.0672983017  0.0446266299
sample169  0.0413003625  0.0224448354
> discoRes@scores$dist[[1]] ## Distinctive scores for Block 1
                      1             2
sample1   -0.0420462544  0.0867866143
sample2   -0.0820849705 -0.0410968918
sample3    0.0155966415 -0.0195186212
sample4   -0.1001342712 -0.0410776476
sample5   -0.0153479690 -0.0253257768
sample6    0.0340238963 -0.0408223482
sample7    0.0722602471  0.0002324021
sample8   -0.0457619717 -0.0370007181
sample9   -0.0086216737  0.0820184513
sample10  -0.0423631253 -0.0083917738
sample11   0.0022593440  0.0787764172
sample12   0.0322075853  0.1479823348
sample13  -0.0293970426 -0.0306743045
sample14   0.0337430835 -0.0367508412
sample15   0.0815560055  0.1275613938
sample16   0.0508331615  0.0540604179
sample17   0.0062555095  0.0041024820
sample18   0.0705600814 -0.0351053335
sample19  -0.0476783450 -0.0509595374
sample20   0.0523027179  0.0715514213
sample21  -0.0119251267 -0.0376087300
sample22   0.0724458193 -0.0095634730
sample23  -0.0992529537  0.0134298867
sample24  -0.1595266080  0.0728683810
sample25  -0.0920660871 -0.0749749275
sample26  -0.0595567256  0.0848973563
sample27   0.0826577298 -0.0086747328
sample28  -0.0384833845  0.0440972619
sample29   0.0777740797  0.1735298653
sample30   0.1229474469 -0.0819018342
sample31   0.0579750350 -0.0238646966
sample32   0.0970365705 -0.0111435095
sample33   0.1017580221 -0.0630452503
sample34   0.0637902543  0.0377936234
sample35   0.0790003439 -0.0229732390
sample36   0.1224933255 -0.1274968262
sample37   0.1798847778 -0.1673447834
sample38   0.0466393950  0.0888153346
sample39  -0.0168694806  0.0421536020
sample40   0.1756418254 -0.1526662170
sample41   0.0042469580  0.0004924730
sample42  -0.0447825344 -0.0651501363
sample43   0.0482292032 -0.0253533518
sample44  -0.1986819597 -0.0545754095
sample45  -0.0741918296  0.0054714033
sample46   0.0478862300 -0.0007080195
sample47   0.0608216572  0.0481615529
sample48  -0.1381464785  0.0578300937
sample49  -0.0530630929 -0.1405523792
sample50  -0.0173646454  0.1602386326
sample51   0.0462456352  0.0303472889
sample52   0.0279995822  0.0280387760
sample53   0.0667498401  0.0237699989
sample54   0.0121811735 -0.0521354919
sample55   0.0182392180  0.0221326632
sample56  -0.0001309027  0.0030909208
sample57   0.0316574452  0.0530190492
sample58   0.0393891008 -0.0297801799
sample59   0.1278271441 -0.0546540532
sample60   0.1486964359  0.1069141894
sample61   0.0793067314  0.0569790361
sample62   0.1172821948 -0.0149211050
sample63  -0.0028813033  0.1300523972
sample64   0.0237295957  0.1073288273
sample65  -0.0126543741  0.0589810328
sample66  -0.0468233810 -0.0771066689
sample67   0.1494286112 -0.0769877267
sample68   0.0978023709 -0.0577363659
sample69   0.0403090486  0.0156038284
sample70   0.0221598072  0.0315436742
sample71  -0.0546329809 -0.0272394835
sample72   0.1107501141 -0.0537331272
sample73   0.0906756573  0.0579957937
sample74   0.0586513335  0.0121417432
sample75   0.0390512644  0.0349278260
sample76  -0.0022939256 -0.1676560046
sample77  -0.0232101129 -0.2067300942
sample78  -0.0929809868 -0.0434928079
sample79  -0.1619380575 -0.0378102423
sample80   0.0680392603  0.1424655981
sample81  -0.0530725382 -0.0358347616
sample82   0.0266850552 -0.0577449015
sample83   0.1517242136 -0.0448569976
sample84  -0.0570943117 -0.0273808460
sample85   0.1086271690 -0.1228130375
sample86   0.0833891749 -0.0442924691
sample87   0.0022040947 -0.0943908457
sample88  -0.0078276751 -0.1140504613
sample89   0.0611005811 -0.0094589420
sample90   0.0022941807 -0.0936254829
sample91   0.0433772989  0.3205972377
sample92  -0.1815217498 -0.0334666640
sample93   0.0267653999  0.0614425855
sample94   0.0181901439  0.0605088209
sample95  -0.0720314195 -0.0013040529
sample96  -0.0559672571 -0.0118787111
sample97  -0.0217420652  0.0195417175
sample98   0.0379199226  0.0588352812
sample99  -0.0792508368 -0.0151262540
sample100  0.0222100316 -0.0023322942
sample101 -0.0387084137  0.1224225372
sample102 -0.2094625952 -0.0516421025
sample103  0.0138558075  0.0301047754
sample104 -0.0807947915 -0.0162712396
sample105 -0.0520491659 -0.1229660369
sample106 -0.0192643025 -0.0185235217
sample107  0.0319014300  0.0405120600
sample108 -0.0140674174  0.0163422358
sample109 -0.1831856870  0.0613023638
sample110 -0.0292782596 -0.0199846482
sample111 -0.1423173632  0.0327352090
sample112  0.0426313216 -0.0029087048
sample113 -0.0771932240  0.0268742635
sample114 -0.0241567693 -0.0184080553
sample115 -0.1958956003  0.0460148524
sample116 -0.1394437202 -0.0530793545
sample117 -0.1672311361 -0.1386521994
sample118 -0.0448331537 -0.0117618005
sample119 -0.0910192457  0.2217435935
sample120 -0.0331404974 -0.0057270372
sample121  0.0307515935  0.1392506118
sample122 -0.0839838126 -0.0291983752
sample123  0.0239675598 -0.0642167331
sample124 -0.0909176584  0.0130430022
sample125 -0.0065362303 -0.1092631017
sample126  0.0935272754  0.1368276816
sample127  0.0035405834  0.0292755035
sample128 -0.0660350930  0.1018575657
sample129  0.0693671557 -0.0695430143
sample130  0.0008517473 -0.0669705339
sample131  0.0431011807  0.0174061009
sample132 -0.0637089518  0.0029383393
sample133 -0.0289464233 -0.0390817269
sample134  0.0446141302  0.0456332219
sample135  0.0712343760  0.0521627654
sample136  0.0596319001  0.0197291800
sample137  0.0793175865 -0.0380637199
sample138 -0.0973505017 -0.0454210122
sample139  0.0539865883 -0.1534332114
sample140  0.0850872493  0.0955804546
sample141 -0.0192724268 -0.0554446535
sample142 -0.0672294730 -0.0461313163
sample143 -0.0303706774 -0.0519258527
sample144 -0.0089350410  0.0145815380
sample145 -0.0638878249  0.0122268514
sample146  0.0585923424  0.0063075030
sample147  0.0894147141 -0.1124625694
sample148 -0.0216440434 -0.0615962525
sample149 -0.0515315033 -0.0839902731
sample150  0.0568228116 -0.0124472790
sample151 -0.0789513379 -0.0261823967
sample152 -0.0330692807  0.1306445046
sample153 -0.1752067295  0.1497755169
sample154  0.0421490591 -0.0037016989
sample155  0.0680199066  0.0095703586
sample156  0.0388950562  0.1057558019
sample157  0.0314764931  0.0561364660
sample158  0.0329630322  0.0353943647
sample159 -0.0398462032 -0.1007368366
sample160  0.0424905337  0.0108493025
sample161 -0.0888339747 -0.0679692830
sample162 -0.0027572316  0.1237848136
sample163 -0.0126231149  0.0725440678
sample164 -0.0566787219 -0.0458318332
sample165 -0.0315331454 -0.0236359595
sample166 -0.0612109864 -0.0425224935
sample167  0.0142729542  0.0179306992
sample168 -0.0169543415 -0.0769614921
sample169  0.0675063138  0.0131499086
> discoRes@scores$dist[[2]] ## Distinctive scores for Block 2
                      1             2
sample1    0.0012331686  0.1635715895
sample2    0.0724353275  0.0060221492
sample3    0.0188459931  0.1080029041
sample4   -0.0390143085 -0.0003106379
sample5   -0.1774810611  0.0299642960
sample6    0.0451446491  0.0345589917
sample7    0.0226463430  0.0070191906
sample8    0.1033684629  0.0098579723
sample9   -0.1350014262 -0.0897911439
sample10  -0.1259884370  0.0509793880
sample11  -0.0979790969 -0.0708656763
sample12   0.0863021000  0.0862032176
sample13   0.1381401858 -0.1827998062
sample14   0.0615074749  0.0264280805
sample15  -0.0381600628  0.0310159999
sample16   0.0048779431 -0.0012710073
sample17   0.0788483268  0.0154760717
sample18   0.0884189509  0.0379547710
sample19  -0.0703043502  0.1084002992
sample20   0.0025581280 -0.0797597175
sample21  -0.0941596548  0.0412689631
sample22   0.0550270810  0.0780661444
sample23  -0.0679492775  0.0410207821
sample24   0.1310969573 -0.1649281728
sample25  -0.0113583527  0.0442690087
sample26   0.1402948965 -0.0201645737
sample27  -0.0261566135 -0.0015899904
sample28   0.0724200826 -0.0585050853
sample29   0.0330054687 -0.0020621067
sample30   0.0228750294  0.0201534281
sample31   0.0635070444  0.0667036961
sample32  -0.0685100015  0.0495524562
sample33   0.0777764913  0.1272069987
sample34  -0.0157842084  0.0302431073
sample35   0.0529627853 -0.1500981221
sample36  -0.0070908100 -0.2025320838
sample37   0.0442411657 -0.1802109341
sample38   0.0781508317  0.0367629606
sample39  -0.0120330038  0.0338888439
sample40   0.0473283699 -0.1471581947
sample41  -0.0228192241  0.0267345618
sample42   0.0245361891  0.0796087794
sample43  -0.1036362004  0.0822957746
sample44   0.1012234897 -0.0704923654
sample45  -0.0013726596  0.0245107220
sample46   0.0558506390 -0.0029486048
sample47   0.0380478671 -0.0455423783
sample48  -0.0784340429 -0.0488889010
sample49   0.0605168151  0.0116247368
sample50  -0.0530082990  0.0273781081
sample51  -0.1514645334 -0.0567825876
sample52  -0.1860936023 -0.1246711051
sample53   0.0064179743  0.0270106118
sample54  -0.0697037547  0.0230841296
sample55  -0.1633577719 -0.0136643273
sample56  -0.1011483974 -0.0468213237
sample57  -0.1730374406 -0.1609593619
sample58   0.0071384891  0.0166695078
sample59   0.0030458415 -0.0300537722
sample60  -0.0215842316 -0.2665887408
sample61  -0.1510585366 -0.1002383778
sample62   0.0925531537  0.0484572609
sample63   0.0596315491  0.0413710991
sample64   0.0449227297  0.0026009647
sample65  -0.0939382227  0.0440695052
sample66  -0.1063397680  0.0571007942
sample67   0.0201580657 -0.2361746374
sample68  -0.0037208482 -0.0241854528
sample69   0.0645162000  0.1155617985
sample70   0.1013439732  0.1351779930
sample71   0.0016466076  0.0297677210
sample72  -0.0328895450  0.0283576997
sample73  -0.0275080402  0.0514815192
sample74  -0.1341718352  0.0789530316
sample75  -0.0951576668  0.0394314701
sample76   0.0864719921 -0.0303505421
sample77   0.1035749512  0.0254532485
sample78   0.1575647948 -0.0493947233
sample79  -0.0189138388 -0.0487469021
sample80  -0.1384142821 -0.0000431641
sample81   0.0118846669  0.0635790757
sample82   0.1675306619 -0.0353396928
sample83   0.0065671108  0.0781249560
sample84  -0.1486890640  0.0310909644
sample85   0.0532720276 -0.0741798973
sample86   0.1138474876  0.0000181892
sample87  -0.0432865974 -0.0608049961
sample88  -0.0433451196 -0.1402485863
sample89  -0.0331204785  0.0139542877
sample90   0.0607413489  0.0861038531
sample91   0.0566263580 -0.1303770421
sample92   0.0359580680 -0.1061604828
sample93   0.0433646453  0.0444360929
sample94   0.0477292133  0.1059570523
sample95   0.0249595927  0.0398050913
sample96  -0.0035217558  0.0929393117
sample97   0.0066052049  0.1527233711
sample98  -0.0020367076  0.0557951459
sample99   0.0886621830  0.0372837676
sample100  0.1091259607  0.0356040087
sample101  0.0739723781  0.0431788287
sample102 -0.0574455607  0.0278408877
sample103 -0.0142733797 -0.0097063665
sample104 -0.0710395583 -0.0406833053
sample105 -0.0980829911  0.0345299747
sample106  0.0254260519 -0.0362893198
sample107  0.0160655060  0.0917339833
sample108  0.0200988323  0.0237969902
sample109  0.0389781966 -0.0169231105
sample110  0.0326305264 -0.0298808636
sample111 -0.0676935910  0.0603824949
sample112 -0.0167883512 -0.0053369227
sample113 -0.0969213905  0.0275770455
sample114  0.0026397966  0.0920910097
sample115  0.0308049608 -0.0160374298
sample116  0.1240306394 -0.1272997789
sample117 -0.0334728628 -0.0539266130
sample118  0.1037152149 -0.0625243968
sample119  0.1064170480 -0.1196217517
sample120  0.0771357746  0.1004935053
sample121  0.0129352335 -0.0318191357
sample122 -0.0847487478  0.0556846588
sample123  0.0041335502 -0.0076935560
sample124  0.0583462270  0.0839647708
sample125 -0.0634843225  0.0523256822
sample126  0.0662582097  0.1091729718
sample127  0.0865025623  0.1094172399
sample128  0.0627822104  0.0147109531
sample129  0.0336274559  0.0400777361
sample130  0.0293518119  0.0804608619
sample131  0.0469196774  0.0022093782
sample132  0.0241745708  0.1248607954
sample133 -0.0907303804 -0.0146669771
sample134  0.0350841214 -0.0753965983
sample135 -0.0001334909 -0.0091858253
sample136  0.0335874776  0.0986018007
sample137  0.0640147237  0.0755437004
sample138 -0.0060964031  0.0174278285
sample139  0.0592082742 -0.0561500626
sample140 -0.0427988656  0.0109946415
sample141 -0.0618793224  0.0930110286
sample142 -0.0898552469 -0.0357332250
sample143 -0.0817391085 -0.0888052774
sample144 -0.0787754473  0.0382139508
sample145 -0.1085819468 -0.1569460395
sample146  0.0589554949  0.0437323487
sample147  0.0495327876 -0.0072780684
sample148 -0.1161590446 -0.0090781216
sample149  0.0121575452 -0.0778846331
sample150  0.0314511966 -0.0352021985
sample151 -0.0575380924  0.0194539297
sample152  0.0494540330 -0.0702556632
sample153  0.0941338642 -0.2153269394
sample154  0.0335928781 -0.0207882627
sample155 -0.0690459070  0.0278036060
sample156 -0.1039902324  0.0629248745
sample157  0.0408645841 -0.0080655292
sample158 -0.1018106361 -0.0078170250
sample159  0.0281732565  0.0120726094
sample160 -0.1643052863 -0.0029778074
sample161 -0.0374330084 -0.0852458829
sample162  0.0804538313 -0.0834963331
sample163  0.0743232457  0.0140634810
sample164 -0.1208804250  0.0213952481
sample165 -0.1608115952 -0.0202515846
sample166  0.0425947986  0.0266080205
sample167  0.0226849501  0.0446425740
sample168  0.0180737401  0.0007471653
sample169 -0.0190780228 -0.0264542687
> # Exploring O2PLS scores structure
> o2plsRes@scores$common[[1]] ## Common scores for Block 1
                   [,1]          [,2]
sample1   -0.0572060227 -1.729087e-02
sample2    0.0875245208  1.112588e-02
sample3    0.0403482602 -3.168994e-02
sample4   -0.0218345996  4.052760e-06
sample5   -0.0150905011  4.795041e-03
sample6   -0.0924362933  4.511003e-02
sample7   -0.0793066751 -1.243823e-02
sample8   -0.1342997187  6.215220e-02
sample9   -0.0338886944 -1.854401e-02
sample10   0.0020547173  1.749421e-02
sample11   0.0037275602 -2.364116e-02
sample12  -0.0753094533  2.772698e-02
sample13   0.0856160091  3.679963e-02
sample14  -0.0737457307  2.668452e-02
sample15  -0.0062111746 -3.554864e-03
sample16  -0.0602355268  6.675115e-02
sample17   0.1086768843  2.524534e-02
sample18   0.0702999472  2.231671e-02
sample19   0.0173785882 -3.024846e-02
sample20   0.0484173812 -3.310904e-02
sample21   0.0124657042  6.517144e-02
sample22  -0.0140989936 -3.159137e-02
sample23  -0.0627028403 -5.393710e-04
sample24   0.0919972100  7.909297e-02
sample25   0.0326998483 -1.945206e-02
sample26   0.1064741246  2.120849e-02
sample27   0.0166058995 -4.964993e-02
sample28   0.0743504770  2.614211e-02
sample29  -0.0511008491 -2.782647e-02
sample30   0.0962250842 -3.974893e-03
sample31  -0.0869563008  5.250819e-02
sample32   0.0271858919  1.552005e-02
sample33  -0.0448364581  6.243160e-03
sample34   0.0718415218  1.469396e-02
sample35   0.0403086451 -1.632629e-02
sample36  -0.1036402827 -1.304320e-02
sample37  -0.0159385744 -3.036525e-02
sample38   0.0182198369 -4.034805e-02
sample39   0.0690363619  8.058350e-03
sample40  -0.0467312750 -2.810325e-02
sample41   0.0263674438 -5.171216e-02
sample42   0.0374578960 -1.268634e-02
sample43   0.0132336869  9.536642e-03
sample44  -0.1119154428  5.028683e-02
sample45   0.0759639367  4.587903e-02
sample46   0.0871885519 -4.670385e-02
sample47   0.0721490571 -1.288540e-02
sample48   0.0005086144 -1.290565e-02
sample49  -0.0858177028  5.173760e-02
sample50   0.0118992665 -7.276215e-02
sample51  -0.0426446855  5.306205e-02
sample52  -0.0381605826  3.086785e-02
sample53  -0.0855757630  6.730043e-02
sample54   0.0261723092  9.184260e-03
sample55  -0.0156418304  4.682404e-04
sample56   0.0307831193  2.597550e-02
sample57  -0.0157242103  4.829381e-02
sample58  -0.0031174404  1.359898e-02
sample59  -0.0373001859  5.868397e-03
sample60  -0.0142609099  5.831654e-03
sample61  -0.0122255144  2.663579e-02
sample62   0.0228002942 -8.692265e-03
sample63  -0.0833127581  5.473229e-02
sample64  -0.1166548159  4.196500e-02
sample65   0.0038808902  8.568590e-03
sample66   0.0011561811  1.766612e-02
sample67  -0.1129311062 -2.608702e-02
sample68  -0.0382526429 -3.804045e-02
sample69  -0.0476502440  4.003241e-03
sample70  -0.0110329882 -2.752719e-02
sample71   0.0096850282 -5.627056e-02
sample72   0.0487124704 -8.800131e-03
sample73   0.0773058132  8.239864e-03
sample74  -0.0102488176  2.454957e-02
sample75  -0.0286613976 -8.387293e-03
sample76  -0.0472655595 -2.129315e-02
sample77  -0.0865043074 -7.296820e-03
sample78   0.1070293698  2.818346e-02
sample79  -0.0165060681 -6.659721e-02
sample80  -0.0206765949 -8.712112e-03
sample81  -0.0050943615 -3.079175e-02
sample82   0.1153622361 -1.647054e-02
sample83   0.0367979217 -2.538114e-03
sample84   0.0199463070 -1.468961e-02
sample85  -0.0827122185 -2.709824e-04
sample86   0.0969487314 -1.699897e-02
sample87   0.0421957457 -1.965953e-02
sample88   0.0215934743  1.566050e-02
sample89   0.0751559502  2.811652e-02
sample90  -0.0057328000 -8.283795e-03
sample91  -0.1134005268 -8.603522e-02
sample92  -0.0101689918 -6.894992e-02
sample93   0.0725967502 -6.003176e-03
sample94  -0.0096878852 -4.693081e-03
sample95  -0.0223502239 -3.139636e-02
sample96  -0.0013232863 -1.963604e-02
sample97  -0.0476541710  1.183660e-02
sample98   0.0269546160 -5.978398e-03
sample99   0.0728179461  4.597884e-02
sample100 -0.0413398038  1.079347e-02
sample101  0.0087536994 -6.796076e-02
sample102  0.0032509529  3.932612e-03
sample103  0.0360342395 -3.973263e-02
sample104 -0.0141722563 -2.453107e-02
sample105  0.0294940465 -7.140722e-03
sample106  0.0686472054  1.462895e-02
sample107  0.0748635927  8.401339e-03
sample108  0.0650175850 -6.211942e-03
sample109 -0.0628017242 -3.681224e-02
sample110  0.0905513691 -5.169053e-03
sample111 -0.0176679473 -3.884777e-02
sample112  0.0570870472  1.066018e-02
sample113 -0.0200110554  1.596044e-02
sample114 -0.0001474542 -3.679272e-02
sample115 -0.0213333038 -2.991667e-02
sample116 -0.0567675453 -2.785636e-02
sample117 -0.0379865990 -3.752078e-02
sample118 -0.0484878786 -9.173691e-03
sample119 -0.0713511831 -9.598634e-02
sample120 -0.0555093586  1.089843e-02
sample121  0.0542443861  3.861344e-02
sample122  0.0178575357  3.027138e-02
sample123  0.0775020581 -1.636852e-02
sample124 -0.0460701050  1.814758e-02
sample125  0.0543846585  2.075898e-03
sample126 -0.0729417144  3.276659e-02
sample127 -0.0609509157 -3.270814e-03
sample128  0.0908136899  3.758801e-02
sample129  0.0552445878 -1.879062e-02
sample130  0.0007128089 -1.294308e-02
sample131 -0.0693311345  7.357082e-03
sample132 -0.0556565156  3.126995e-02
sample133  0.0375870104 -1.977240e-02
sample134 -0.1229130924  3.159495e-02
sample135  0.0555550315 -5.563250e-04
sample136 -0.0159768414 -2.046339e-02
sample137 -0.0412337694 -1.151652e-02
sample138 -0.0180604476 -2.526505e-02
sample139 -0.0465649201  1.040683e-02
sample140  0.0452288969 -1.876279e-02
sample141 -0.0189142561  2.247042e-02
sample142  0.0297545566  1.280524e-02
sample143  0.0064292003 -1.997706e-02
sample144 -0.0124284903 -6.369733e-03
sample145 -0.0377141491  5.066743e-02
sample146 -0.0296240067 -3.344465e-02
sample147  0.0726083535 -1.239968e-02
sample148 -0.0284795794  3.389732e-02
sample149  0.0082261455 -6.399305e-02
sample150 -0.0765013197  2.704021e-02
sample151 -0.0220567356 -1.178159e-02
sample152  0.0403422737 -2.714879e-02
sample153  0.0629117719  7.425085e-02
sample154  0.0551622927 -3.548984e-02
sample155  0.0654439133 -1.005306e-02
sample156  0.0209310714 -1.390213e-02
sample157  0.0851522597  6.577150e-03
sample158  0.0208354599 -4.663078e-03
sample159 -0.0498794349  1.913257e-02
sample160  0.0216074437  1.656579e-02
sample161 -0.0075742328 -2.455676e-02
sample162  0.0963663017  5.705881e-02
sample163 -0.1009542191  7.174224e-02
sample164  0.0109881996  1.026806e-03
sample165 -0.0053146157 -6.772855e-03
sample166 -0.0275757357  2.673084e-02
sample167 -0.0825048036  2.278863e-03
sample168  0.0486147429  1.793843e-02
sample169  0.0302506727  8.984253e-03
> o2plsRes@scores$common[[2]] ## Common scores for Block 2
                   [,1]          [,2]
sample1   -0.0621842115 -1.364509e-02
sample2    0.0944623785  9.720892e-03
sample3    0.0406196267 -2.236338e-02
sample4   -0.0229316496 -3.932487e-04
sample5   -0.0157330047  3.231033e-03
sample6   -0.0945794025  3.120720e-02
sample7   -0.0854427118 -1.052880e-02
sample8   -0.1376625920  4.286608e-02
sample9   -0.0377115311 -1.415134e-02
sample10   0.0035244506  1.280825e-02
sample11   0.0016639987 -1.717895e-02
sample12  -0.0781403168  1.884368e-02
sample13   0.0938400516  2.838858e-02
sample14  -0.0759839772  1.810989e-02
sample15  -0.0068340837 -2.705361e-03
sample16  -0.0590150849  4.757848e-02
sample17   0.1178805097  2.040526e-02
sample18   0.0767858320  1.756604e-02
sample19   0.0157112113 -2.172867e-02
sample20   0.0485318300 -2.327033e-02
sample21   0.0185928176  4.777095e-02
sample22  -0.0191358702 -2.329775e-02
sample23  -0.0672994194 -1.535656e-03
sample24   0.1047476642  5.935707e-02
sample25   0.0329844953 -1.358036e-02
sample26   0.1154952052  1.741529e-02
sample27   0.0133849853 -3.590922e-02
sample28   0.0821554039  2.042376e-02
sample29  -0.0567643690 -2.123848e-02
sample30   0.1016073931 -1.134728e-03
sample31  -0.0880396372  3.670548e-02
sample32   0.0300363338  1.182406e-02
sample33  -0.0467252272  3.739254e-03
sample34   0.0783666394  1.203777e-02
sample35   0.0424227097 -1.118559e-02
sample36  -0.1107646166 -1.143464e-02
sample37  -0.0191667664 -2.246060e-02
sample38   0.0155968095 -2.909621e-02
sample39   0.0746847148  7.148218e-03
sample40  -0.0517028178 -2.137267e-02
sample41   0.0234979494 -3.723018e-02
sample42   0.0388797356 -8.557228e-03
sample43   0.0149555568  7.210002e-03
sample44  -0.1150305613  3.461805e-02
sample45   0.0846146236  3.486020e-02
sample46   0.0884426404 -3.246853e-02
sample47   0.0748644971 -8.083045e-03
sample48  -0.0012033198 -9.403647e-03
sample49  -0.0872662737  3.616245e-02
sample50   0.0066941314 -5.284863e-02
sample51  -0.0411777630  3.791830e-02
sample52  -0.0379355780  2.180834e-02
sample53  -0.0851639886  4.751761e-02
sample54   0.0288006248  7.184424e-03
sample55  -0.0164920835  5.919925e-05
sample56   0.0355115616  1.951043e-02
sample57  -0.0141146068  3.492409e-02
sample58  -0.0015636132  9.862883e-03
sample59  -0.0390656483  3.590929e-03
sample60  -0.0139454780  3.963030e-03
sample61  -0.0106410274  1.919705e-02
sample62   0.0236748439 -5.922677e-03
sample63  -0.0846790877  3.839102e-02
sample64  -0.1202581015  2.846469e-02
sample65   0.0050548584  6.328644e-03
sample66   0.0028013072  1.291807e-02
sample67  -0.1231623009 -2.112565e-02
sample68  -0.0437782161 -2.845072e-02
sample69  -0.0501199692  2.053469e-03
sample70  -0.0140278645 -2.027157e-02
sample71   0.0057489505 -4.085977e-02
sample72   0.0511212704 -5.522408e-03
sample73   0.0828141409  7.431582e-03
sample74  -0.0085959456  1.772951e-02
sample75  -0.0312180394 -6.636869e-03
sample76  -0.0519051781 -1.640191e-02
sample77  -0.0925924762 -6.907800e-03
sample78   0.1163971046  2.251122e-02
sample79  -0.0240906926 -4.887766e-02
sample80  -0.0221327065 -6.730703e-03
sample81  -0.0072114968 -2.254399e-02
sample82   0.1204416674 -9.907422e-03
sample83   0.0386739485 -1.171663e-03
sample84   0.0195988488 -1.033806e-02
sample85  -0.0877680171 -1.725057e-03
sample86   0.1023541048 -1.062501e-02
sample87   0.0425213089 -1.356865e-02
sample88   0.0244788514  1.180820e-02
sample89   0.0804276691  2.188588e-02
sample90  -0.0074639871 -6.140721e-03
sample91  -0.1278832404 -6.485140e-02
sample92  -0.0162199697 -5.048358e-02
sample93   0.0769344893 -3.045135e-03
sample94  -0.0104345587 -3.593172e-03
sample95  -0.0260058453 -2.330475e-02
sample96  -0.0025018700 -1.433516e-02
sample97  -0.0492358305  7.774183e-03
sample98   0.0279220220 -3.862141e-03
sample99   0.0813921923  3.487339e-02
sample100 -0.0428797405  7.112807e-03
sample101  0.0032855240 -4.940743e-02
sample102  0.0038439317  2.938008e-03
sample103  0.0358511139 -2.831881e-02
sample104 -0.0162784000 -1.815061e-02
sample105  0.0314853405 -4.656633e-03
sample106  0.0726456731  1.192390e-02
sample107  0.0807342975  7.508627e-03
sample108  0.0688338003 -3.336161e-03
sample109 -0.0694151950 -2.800146e-02
sample110  0.0961218924 -2.111997e-03
sample111 -0.0217900036 -2.864702e-02
sample112  0.0599954082  8.820317e-03
sample113 -0.0195006577  1.128215e-02
sample114 -0.0032126533 -2.682851e-02
sample115 -0.0251101087 -2.221077e-02
sample116 -0.0625141551 -2.137258e-02
sample117 -0.0440473375 -2.806256e-02
sample118 -0.0532042630 -7.590494e-03
sample119 -0.0848603028 -7.133574e-02
sample120 -0.0588832131  6.937326e-03
sample121  0.0613899126  2.915307e-02
sample122  0.0218424338  2.241775e-02
sample123  0.0809008460 -1.051759e-02
sample124 -0.0472109313  1.239887e-02
sample125  0.0583180947  2.521167e-03
sample126 -0.0753941872  2.256455e-02
sample127 -0.0649774209 -3.496964e-03
sample128  0.1000212216  2.908091e-02
sample129  0.0568033049 -1.269016e-02
sample130 -0.0002370832 -9.419675e-03
sample131 -0.0727030877  4.091672e-03
sample132 -0.0566219024  2.179861e-02
sample133  0.0384172955 -1.372840e-02
sample134 -0.1280862736  2.077912e-02
sample135  0.0592633273  6.106685e-04
sample136 -0.0187635410 -1.521173e-02
sample137 -0.0449958970 -9.152840e-03
sample138 -0.0211348699 -1.875415e-02
sample139 -0.0482882861  6.729304e-03
sample140  0.0468926306 -1.285498e-02
sample141 -0.0186248693  1.605439e-02
sample142  0.0328031246  9.887746e-03
sample143  0.0052919839 -1.445666e-02
sample144 -0.0140067923 -4.867248e-03
sample145 -0.0361804310  3.625323e-02
sample146 -0.0345286735 -2.493652e-02
sample147  0.0765025670 -7.714769e-03
sample148 -0.0276016641  2.420589e-02
sample149  0.0027545308 -4.653007e-02
sample150 -0.0792296010  1.831289e-02
sample151 -0.0245894512 -8.991738e-03
sample152  0.0409796547 -1.907063e-02
sample153  0.0734301757  5.528780e-02
sample154  0.0557740684 -2.487723e-02
sample155  0.0689436560 -6.127635e-03
sample156  0.0212272938 -9.747423e-03
sample157  0.0911931194  6.355708e-03
sample158  0.0220840645 -3.016357e-03
sample159 -0.0513244242  1.304175e-02
sample160  0.0246213576  1.248444e-02
sample161 -0.0100369130 -1.805391e-02
sample162  0.1078802043  4.337260e-02
sample163 -0.1017965082  5.047171e-02
sample164  0.0119430799  9.593002e-04
sample165 -0.0063708014 -5.032148e-03
sample166 -0.0283181180  1.899222e-02
sample167 -0.0872832229  1.516582e-04
sample168  0.0540714512  1.397701e-02
sample169  0.0328432652  7.104347e-03
> o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1
                   [,1]          [,2]
sample1    0.0133684846  2.195848e-02
sample2    0.0254157197 -1.058416e-02
sample3   -0.0049551479 -4.840017e-03
sample4    0.0310390570 -1.063929e-02
sample5    0.0046941318 -6.488426e-03
sample6   -0.0107406753 -1.026702e-02
sample7   -0.0225157631  2.624712e-04
sample8    0.0141320952 -9.505821e-03
sample9    0.0029681280  2.078210e-02
sample10   0.0131729174 -2.275042e-03
sample11  -0.0004164298  1.994019e-02
sample12  -0.0095211620  3.759883e-02
sample13   0.0091018604 -7.953956e-03
sample14  -0.0106557524 -9.181659e-03
sample15  -0.0249924121  3.262724e-02
sample16  -0.0156216400  1.375700e-02
sample17  -0.0019382446  1.073994e-03
sample18  -0.0221072481 -8.703592e-03
sample19   0.0146917619 -1.311712e-02
sample20  -0.0160353760  1.826290e-02
sample21   0.0035947899 -9.616341e-03
sample22  -0.0225060762 -2.532589e-03
sample23   0.0310000683  3.033060e-03
sample24   0.0499544372  1.809450e-02
sample25   0.0284442301 -1.932558e-02
sample26   0.0188220043  2.146985e-02
sample27  -0.0257763219 -1.999228e-03
sample28   0.0120888648  1.125834e-02
sample29  -0.0236482520  4.426726e-02
sample30  -0.0385486305 -2.055935e-02
sample31  -0.0181539336 -5.877838e-03
sample32  -0.0302630460 -2.607192e-03
sample33  -0.0319565715 -1.562628e-02
sample34  -0.0197970124  9.906813e-03
sample35  -0.0247412713 -5.434440e-03
sample36  -0.0386259060 -3.190394e-02
sample37  -0.0566199273 -4.192574e-02
sample38  -0.0142060273  2.259644e-02
sample39   0.0053589035  1.076485e-02
sample40  -0.0552546493 -3.819896e-02
sample41  -0.0013089975  9.278818e-05
sample42   0.0137252142 -1.664652e-02
sample43  -0.0151259626 -6.290953e-03
sample44   0.0617391754 -1.442883e-02
sample45   0.0231410886  1.163143e-03
sample46  -0.0148898209 -1.384176e-04
sample47  -0.0187252536  1.221690e-02
sample48   0.0432839432  1.416671e-02
sample49   0.0160818605 -3.588745e-02
sample50   0.0059333545  4.067003e-02
sample51  -0.0142914866  7.776270e-03
sample52  -0.0086339952  7.208917e-03
sample53  -0.0207386980  6.272432e-03
sample54  -0.0039856719 -1.316934e-02
sample55  -0.0056217017  5.692315e-03
sample56   0.0000123292  8.978290e-04
sample57  -0.0095805555  1.324253e-02
sample58  -0.0124160295 -7.326376e-03
sample59  -0.0400195442 -1.349736e-02
sample60  -0.0460063358  2.770091e-02
sample61  -0.0245266456  1.470710e-02
sample62  -0.0366022783 -3.437352e-03
sample63   0.0013742171  3.288796e-02
sample64  -0.0070599859  2.739588e-02
sample65   0.0041201911  1.498268e-02
sample66   0.0143173351 -1.968812e-02
sample67  -0.0467477531 -1.929938e-02
sample68  -0.0306751978 -1.436184e-02
sample69  -0.0125317217  4.130407e-03
sample70  -0.0068071487  8.080857e-03
sample71   0.0169170264 -7.027348e-03
sample72  -0.0346909749 -1.333770e-02
sample73  -0.0280506153  1.493843e-02
sample74  -0.0182611498  3.294697e-03
sample75  -0.0120563964  8.974612e-03
sample76   0.0001437236 -4.253184e-02
sample77   0.0065330299 -5.252886e-02
sample78   0.0288278141 -1.127782e-02
sample79   0.0503961481 -1.023318e-02
sample80  -0.0207693429  3.648391e-02
sample81   0.0163562768 -9.074596e-03
sample82  -0.0084317129 -1.478976e-02
sample83  -0.0474097918 -1.103126e-02
sample84   0.0177181395 -7.191197e-03
sample85  -0.0342718548 -3.082360e-02
sample86  -0.0261671791 -1.089491e-02
sample87  -0.0009486358 -2.411514e-02
sample88   0.0020528931 -2.894615e-02
sample89  -0.0189361111 -2.638639e-03
sample90  -0.0009863658 -2.390075e-02
sample91  -0.0124352695  8.153234e-02
sample92   0.0564264106 -8.909537e-03
sample93  -0.0081461774  1.570851e-02
sample94  -0.0054896581  1.547251e-02
sample95   0.0224073150 -4.374348e-04
sample96   0.0173528924 -3.050441e-03
sample97   0.0067948115  5.008237e-03
sample98  -0.0116030825  1.498764e-02
sample99   0.0246422688 -4.054795e-03
sample100 -0.0069420745 -4.846343e-04
sample101  0.0124923691  3.091503e-02
sample102  0.0650835386 -1.367400e-02
sample103 -0.0042741828  7.855985e-03
sample104  0.0250591040 -4.171938e-03
sample105  0.0157516368 -3.121990e-02
sample106  0.0060593853 -5.101693e-03
sample107 -0.0098329626  1.044506e-02
sample108  0.0044269853  4.142036e-03
sample109  0.0572473486  1.517542e-02
sample110  0.0090474827 -5.119868e-03
sample111  0.0444263015  7.983232e-03
sample112 -0.0131765484 -9.696342e-04
sample113  0.0241047399  6.706740e-03
sample114  0.0074558775 -4.728652e-03
sample115  0.0611851433  1.117210e-02
sample116  0.0432646951 -1.380556e-02
sample117  0.0516750066 -3.575617e-02
sample118  0.0139942100 -3.279138e-03
sample119  0.0291722987  5.587946e-02
sample120  0.0103515853 -1.690016e-03
sample121 -0.0091396331  3.552116e-02
sample122  0.0260431679 -7.583975e-03
sample123 -0.0076666389 -1.628489e-02
sample124  0.0283466326  3.127845e-03
sample125  0.0016472378 -2.770692e-02
sample126 -0.0286529417  3.489336e-02
sample127 -0.0010224500  7.483214e-03
sample128  0.0209049296  2.572016e-02
sample129 -0.0218184878 -1.755347e-02
sample130 -0.0005009620 -1.697978e-02
sample131 -0.0134032968  4.637390e-03
sample132  0.0198526786  5.723983e-04
sample133  0.0088812957 -9.988115e-03
sample134 -0.0137484514  1.172591e-02
sample135 -0.0220314568  1.347465e-02
sample136 -0.0185173353  5.168079e-03
sample137 -0.0248352123 -9.472788e-03
sample138  0.0301635767 -1.175283e-02
sample139 -0.0173576929 -3.872592e-02
sample140 -0.0262157762  2.456863e-02
sample141  0.0058369763 -1.420854e-02
sample142  0.0207886071 -1.188764e-02
sample143  0.0092832598 -1.324238e-02
sample144  0.0028442140  3.627979e-03
sample145  0.0199749569  2.862202e-03
sample146 -0.0182236697  1.726556e-03
sample147 -0.0282519995 -2.825595e-02
sample148  0.0065435868 -1.572917e-02
sample149  0.0158233820 -2.159451e-02
sample150 -0.0177383738 -3.020633e-03
sample151  0.0245166984 -6.888241e-03
sample152  0.0107259913  3.314630e-02
sample153  0.0550963965  3.758760e-02
sample154 -0.0131452472 -8.153903e-04
sample155 -0.0211742574  2.642246e-03
sample156 -0.0117803505  2.698265e-02
sample157 -0.0096167165  1.433840e-02
sample158 -0.0101754772  9.137620e-03
sample159  0.0120662931 -2.565236e-02
sample160 -0.0132238202  2.916023e-03
sample161  0.0274491966 -1.748284e-02
sample162  0.0012482909  3.152261e-02
sample163  0.0042031315  1.830701e-02
sample164  0.0174896157 -1.175915e-02
sample165  0.0097517662 -6.119019e-03
sample166  0.0190134679 -1.121582e-02
sample167 -0.0044140836  4.665585e-03
sample168  0.0049689168 -1.941822e-02
sample169 -0.0209802098  3.498729e-03
> o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2
                   [,1]          [,2]
sample1   -0.0515543627 -0.0305856787
sample2   -0.0144993256  0.0236342950
sample3   -0.0371833108 -0.0140263348
sample4    0.0068945388 -0.0132539692
sample5    0.0215035333 -0.0663338101
sample6   -0.0187055152  0.0088773016
sample7   -0.0061521552  0.0064029054
sample8   -0.0210874459  0.0334652901
sample9    0.0516865043 -0.0291142799
sample10   0.0059440366 -0.0527217447
sample11   0.0393010793 -0.0200624712
sample12  -0.0420837100  0.0131331362
sample13   0.0333252565  0.0818552509
sample14  -0.0190062644  0.0160202175
sample15  -0.0030968049 -0.0189230681
sample16  -0.0004452158  0.0018880102
sample17  -0.0185848615  0.0240170131
sample18  -0.0273093598  0.0230213640
sample19  -0.0217761111 -0.0445894441
sample20   0.0245820821  0.0159812738
sample21   0.0034527644 -0.0400016054
sample22  -0.0340789054  0.0039289109
sample23  -0.0010344929 -0.0310161212
sample24   0.0289468503  0.0760962436
sample25  -0.0119098496 -0.0122798760
sample26  -0.0181001057  0.0517892852
sample27   0.0050465417 -0.0086515844
sample28   0.0057491502  0.0358830107
sample29  -0.0051104246  0.0116605117
sample30  -0.0103085904  0.0039678538
sample31  -0.0319929858  0.0090606113
sample32  -0.0036232521 -0.0328202010
sample33  -0.0534742153  0.0024751837
sample34  -0.0067495749 -0.0111000311
sample35   0.0378745721  0.0465929296
sample36   0.0647886800  0.0359987924
sample37   0.0488441236  0.0492906912
sample38  -0.0251514062  0.0197110110
sample39  -0.0085428066 -0.0105117852
sample40   0.0379324087  0.0440810741
sample41  -0.0044199152 -0.0128820644
sample42  -0.0292553573 -0.0067045265
sample43  -0.0077829155 -0.0510178219
sample44   0.0045122248  0.0479660309
sample45  -0.0074444298 -0.0051116726
sample46  -0.0088025512  0.0196186661
sample47   0.0076696301  0.0215947965
sample48   0.0290108585 -0.0175568376
sample49  -0.0141754858  0.0184717099
sample50   0.0006282201 -0.0233054373
sample51   0.0441995177 -0.0410022921
sample52   0.0715329391 -0.0399499475
sample53  -0.0095954087 -0.0029140909
sample54   0.0048933768 -0.0281884386
sample55   0.0327325487 -0.0532290012
sample56   0.0323068984 -0.0256595538
sample57   0.0806603122 -0.0286748097
sample58  -0.0064792049 -0.0006945349
sample59   0.0088958941  0.0067389649
sample60   0.0874124612  0.0431964341
sample61   0.0577604571 -0.0326112099
sample62  -0.0313318464  0.0224391756
sample63  -0.0233625220  0.0125110562
sample64  -0.0086426068  0.0148770341
sample65   0.0025256193 -0.0404466327
sample66   0.0006014071 -0.0471576264
sample67   0.0706087042  0.0516228406
sample68   0.0082301011  0.0033109509
sample69  -0.0475076743  0.0001452708
sample70  -0.0600773716  0.0089986962
sample71  -0.0096321627 -0.0050761187
sample72  -0.0031773546 -0.0166221542
sample73  -0.0113700517 -0.0191726684
sample74  -0.0014179662 -0.0608101325
sample75   0.0041911740 -0.0399981269
sample76  -0.0055326449  0.0353114263
sample77  -0.0260214459  0.0305731380
sample78  -0.0119267436  0.0632236007
sample79   0.0186017239  0.0027402910
sample80   0.0241047889 -0.0472697181
sample81  -0.0220288317 -0.0079577210
sample82  -0.0180751258  0.0639051029
sample83  -0.0256671713 -0.0125898269
sample84   0.0161392598 -0.0567222449
sample85   0.0139988188  0.0322763454
sample86  -0.0198382995  0.0389225776
sample87   0.0266270281 -0.0032979996
sample88   0.0515677078  0.0117902495
sample89   0.0014022125 -0.0140510488
sample90  -0.0375949749  0.0044004551
sample91   0.0310397965  0.0440610926
sample92   0.0270570567  0.0324380452
sample93  -0.0215009202  0.0063993941
sample94  -0.0415702912 -0.0037692077
sample95  -0.0168416047  0.0010019120
sample96  -0.0285582661 -0.0187991000
sample97  -0.0490843868 -0.0266760748
sample98  -0.0171579033 -0.0112897471
sample99  -0.0271316525  0.0232395583
sample100 -0.0301789816  0.0305498693
sample101 -0.0264371151  0.0170723968
sample102  0.0012767734 -0.0248949597
sample103  0.0055214687 -0.0030040587
sample104  0.0251346074 -0.0165212671
sample105  0.0062424215 -0.0400309901
sample106  0.0069768684  0.0154982315
sample107 -0.0315912602 -0.0118883820
sample108 -0.0109690679  0.0023637162
sample109 -0.0014762845  0.0165583675
sample110  0.0036971063  0.0168260726
sample111 -0.0071624739 -0.0345651461
sample112  0.0046098120 -0.0048009350
sample113  0.0082236008 -0.0383233357
sample114 -0.0293642209 -0.0165595240
sample115 -0.0003260453  0.0135805368
sample116  0.0183575759  0.0665377581
sample117  0.0227640036 -0.0012287760
sample118  0.0015695248  0.0472617382
sample119  0.0190084932  0.0590034062
sample120 -0.0449645755  0.0072755697
sample121  0.0077307184  0.0104738937
sample122 -0.0027132063 -0.0394983138
sample123  0.0016959300  0.0028593594
sample124 -0.0365091615  0.0040382925
sample125 -0.0053658663 -0.0316029164
sample126 -0.0458032408  0.0019165544
sample127 -0.0494064872  0.0088209044
sample128 -0.0155454766  0.0186819802
sample129 -0.0184340400  0.0038684312
sample130 -0.0303640987 -0.0052225766
sample131 -0.0088697422  0.0156339713
sample132 -0.0433916471 -0.0154075483
sample133  0.0204029276 -0.0282209049
sample134  0.0175513332  0.0262883962
sample135  0.0029009925  0.0017003151
sample136 -0.0367997573 -0.0072249751
sample137 -0.0348600323  0.0075400273
sample138 -0.0044063824 -0.0053752428
sample139  0.0073103935  0.0308956174
sample140  0.0039925654 -0.0167019605
sample141 -0.0184093462 -0.0387953445
sample142  0.0268670676 -0.0239229634
sample143  0.0421049126 -0.0110888235
sample144  0.0017253664 -0.0341766012
sample145  0.0681741320 -0.0073526377
sample146 -0.0239965222  0.0118396767
sample147 -0.0063453522  0.0183130585
sample148  0.0230825251 -0.0379753037
sample149  0.0223298673  0.0188909118
sample150  0.0055709108  0.0174179009
sample151  0.0039177786 -0.0233533275
sample152  0.0134325667  0.0302344591
sample153  0.0511990309  0.0730230140
sample154  0.0006698324  0.0154177486
sample155  0.0032926626 -0.0288651601
sample156 -0.0016463495 -0.0474657733
sample157 -0.0045857599  0.0154934573
sample158  0.0201775524 -0.0332982124
sample159 -0.0086909001  0.0073496711
sample160  0.0295437331 -0.0555734536
sample161  0.0332754288  0.0033779619
sample162  0.0121954537  0.0433540412
sample163 -0.0173490933  0.0227219128
sample164  0.0143374783 -0.0453542590
sample165  0.0343612593 -0.0511194536
sample166 -0.0157536004  0.0094621170
sample167 -0.0179654624 -0.0006982358
sample168 -0.0033829919  0.0060747155
sample169  0.0116231468 -0.0015112800
> 
> ## 3.3 Plotting VAF
> 
> # DISCO-SCA plotVAF
> plotVAF(discoRes)
> 
> # JIVE plotVAF
> plotVAF(jiveRes)
> 
> 
> #########################
> ## PART 4. Plot Results
> 
> # Scores for common part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,2),what="scores",type="common",
+              combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+              background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+              axisSize=NULL,titleSize=NULL)
> 
> # Scores for common part. JIVE
> plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common",
+              combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+              background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+              axisSize=NULL,titleSize=NULL)
> 
> # Scores for common part. O2PLS.
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Combined plot of scores for common part. O2PLS.
> plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common",
+              combined=TRUE,block=NULL,color="classname",shape=NULL,
+              labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+              labelSize=NULL,axisSize=NULL,titleSize=NULL)
> 
> 
> # Scores for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Combined plot of scores for distinctive part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual",
+              combined=TRUE,block=NULL,color="classname",shape=NULL,
+              labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+              labelSize=NULL,axisSize=NULL,titleSize=NULL)
> 
> # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block)
> p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Combined plot of scores for common and distinctive part. DISCO  (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Loadings for common part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> # Loadings for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> # Combined plot for loadings from common and distinctive part  (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> 
> ## Plot scores and loadings togheter: Common components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+         combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+         background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+         axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> ## Plot scores and loadings togheter:  Common components O2PLS
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+               combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> ## Plot scores and loadings togheter: Distintive components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+               combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  11.71    0.39   12.07 

STATegRa.Rcheck/tests_x64/STATEgRa_Example.omicsPCA.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> ###########################################
> ########### EXAMPLE OF THE OMICSPCA
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
> 
> # g_legend (not exported by STATegRa any more)
> ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs
> g_legend<-function(a.gplot){
+     tmp <- ggplot_gtable(ggplot_build(a.gplot))
+     leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
+     legend <- tmp$grobs[[leg]]
+     return(legend)}
> 
> #########################
> ## PART 1. Load data
> 
> ## Load data
> data(STATegRa_S3)
> 
> ls()
[1] "Block1.PCA" "Block2.PCA" "ed.PCA"     "g_legend"  
> 
> ## Create ExpressionSets
> # Block1 - Expression data
> B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname"))
> 
> #########################
> ## PART 2.  Model Selection
> 
> require(grid)
Loading required package: grid
> require(gridExtra)
Loading required package: gridExtra
> require(ggplot2)
Loading required package: ggplot2
> 
> ## Select the optimal components
> ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE)
Common components
[1] 2

Distinctive components
[[1]]
[1] 2

[[2]]
[1] 2

> 
> 
> #########################
> ## PART 3. Component Analysis
> 
> ## 3.1 Component analysis of the three methods
> discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+                               scale=TRUE,weight=TRUE)
> jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+                              scale=TRUE,weight=TRUE)
> o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+                               scale=TRUE,weight=TRUE)
> 
> ## 3.2 Exploring scores structures
> 
> # Exploring DISCO-SCA scores structure
> discoRes@scores$common ## Common scores
                      1             2
sample1   -0.0781575678  0.0431548193
sample2    0.1192221315 -0.0294022709
sample3    0.0531408705  0.0746837807
sample4   -0.0292971859  0.0006033024
sample5   -0.0202090799 -0.0110455254
sample6   -0.1226088470 -0.1053492788
sample7   -0.1078931272  0.0322419835
sample8   -0.1782891223 -0.1449330873
sample9   -0.0468697275  0.0455171627
sample10   0.0036032607 -0.0420078082
sample11   0.0035566391  0.0566285110
sample12  -0.1006129698 -0.0641393815
sample13   0.1174412815 -0.0907475903
sample14  -0.0981203557 -0.0617763221
sample15  -0.0085337216  0.0086956872
sample16  -0.0783146852 -0.1581333055
sample17   0.1483610650 -0.0638580159
sample18   0.0963084425 -0.0556687328
sample19   0.0217243035  0.0720128312
sample20   0.0635634022  0.0779610581
sample21   0.0201843893 -0.1566381997
sample22  -0.0218273770  0.0764056484
sample23  -0.0852039135  0.0032764205
sample24   0.1287181367 -0.1924427924
sample25   0.0430575586  0.0456637896
sample26   0.1453899742 -0.0541459556
sample27   0.0197483720  0.1185593588
sample28   0.1025339393 -0.0650655830
sample29  -0.0706022374  0.0682933471
sample30   0.1295623070  0.0066678727
sample31  -0.1147449331 -0.1232726722
sample32   0.0374308241 -0.0380248681
sample33  -0.0599520722 -0.0136935179
sample34   0.0984199323 -0.0375364097
sample35   0.0543096536  0.0378035707
sample36  -0.1403627895  0.0343639964
sample37  -0.0228947466  0.0732691071
sample38   0.0222073100  0.0962567524
sample39   0.0941739187 -0.0215180701
sample40  -0.0643806880  0.0687721305
sample41   0.0327635022  0.1232187267
sample42   0.0500431600  0.0292513483
sample43   0.0184497169 -0.0233043857
sample44  -0.1487889501 -0.1171211843
sample45   0.1050778688 -0.1123140997
sample46   0.1151191687  0.1093996094
sample47   0.0962591596  0.0288418415
sample48  -0.0004832697  0.0310378253
sample49  -0.1135203952 -0.1213936946
sample50   0.0123549967  0.1740762754
sample51  -0.0550527472 -0.1258930366
sample52  -0.0499118498 -0.0728580709
sample53  -0.1119772697 -0.1588063736
sample54   0.0360055700 -0.0228585449
sample55  -0.0210418840 -0.0006750494
sample56   0.0434171465 -0.0633131250
sample57  -0.0197820707 -0.1150753744
sample58  -0.0030440694 -0.0326127220
sample59  -0.0500256652 -0.0129520598
sample60  -0.0184279933 -0.0136217168
sample61  -0.0150298895 -0.0635096327
sample62   0.0304758840  0.0201237023
sample63  -0.1102250182 -0.1285968467
sample64  -0.1552586851 -0.0971185120
sample65   0.0058503774 -0.0207102783
sample66   0.0025607393 -0.0424284783
sample67  -0.1546638479  0.0661579276
sample68  -0.0536374144  0.0923604897
sample69  -0.0640332995 -0.0082003499
sample70  -0.0163521715  0.0663227395
sample71   0.0102536130  0.1345964541
sample72   0.0654191824  0.0196037142
sample73   0.1048553275 -0.0220999343
sample74  -0.0123800531 -0.0586156284
sample75  -0.0392079729  0.0209726560
sample76  -0.0648954530  0.0524759504
sample77  -0.1172922642  0.0201200280
sample78   0.1463072568 -0.0708400429
sample79  -0.0265208865  0.1603424170
sample80  -0.0279739189  0.0214153887
sample81  -0.0079212168  0.0738495152
sample82   0.1544234667  0.0361450661
sample83   0.0494205497  0.0049940155
sample84   0.0259039678  0.0346591259
sample85  -0.1116487342  0.0031405037
sample86   0.1306479141  0.0377156552
sample87   0.0554777895  0.0459739683
sample88   0.0301626540 -0.0382206790
sample89   0.1016866191 -0.0694077745
sample90  -0.0086821643  0.0201323917
sample91  -0.1578629627  0.2097792227
sample92  -0.0170933524  0.1655934885
sample93   0.0979805115  0.0121500621
sample94  -0.0131486224  0.0114929616
sample95  -0.0315682484  0.0758916580
sample96  -0.0024125881  0.0470184812
sample97  -0.0634545871 -0.0270303768
sample98   0.0359372569  0.0135466799
sample99   0.1009167521 -0.1124713349
sample100 -0.0551754084 -0.0246501975
sample101  0.0080116032  0.1627406819
sample102  0.0046451029 -0.0095474625
sample103  0.0472520915  0.0940383612
sample104 -0.0198157485  0.0591146546
sample105  0.0400238943  0.0160948825
sample106  0.0923810126 -0.0369004079
sample107  0.1019372357 -0.0224967030
sample108  0.0877091506  0.0128849575
sample109 -0.0864820351  0.0901079328
sample110  0.1223116477  0.0096108195
sample111 -0.0257352515  0.0936279977
sample112  0.0765285936 -0.0270378988
sample113 -0.0258799937 -0.0377439016
sample114 -0.0021141096  0.0882040004
sample115 -0.0303455382  0.0723733422
sample116 -0.0780504471  0.0685160974
sample117 -0.0536894127  0.0912023977
sample118 -0.0666649880  0.0236260585
sample119 -0.1021872495  0.2325002679
sample120 -0.0750216378 -0.0243345918
sample121  0.0756937871 -0.0942970301
sample122  0.0259631952 -0.0731921855
sample123  0.1037844721  0.0369178968
sample124 -0.0611205260 -0.0421647882
sample125  0.0738472593 -0.0066944197
sample126 -0.0972919125 -0.0762698049
sample127 -0.0824699449  0.0096644716
sample128  0.1249411447 -0.0929254559
sample129  0.0734063754  0.0434314269
sample130  0.0003500251  0.0309857289
sample131 -0.0930184021 -0.0155969718
sample132 -0.0736220706 -0.0732972659
sample133  0.0498398350  0.0462455742
sample134 -0.1644872605 -0.0720046591
sample135  0.0752295091 -0.0003869004
sample136 -0.0227149935  0.0495470007
sample137 -0.0564721654  0.0288861386
sample138 -0.0255986528  0.0610929706
sample139 -0.0621218725 -0.0235857230
sample140  0.0604149005  0.0435533101
sample141 -0.0246743110 -0.0532630367
sample142  0.0409563808 -0.0316234835
sample143  0.0077356402  0.0476908596
sample144 -0.0173241026  0.0156785855
sample145 -0.0485467775 -0.1202738536
sample146 -0.0419649914  0.0811241462
sample147  0.0977304731  0.0274772144
sample148 -0.0368253345 -0.0803969585
sample149  0.0072864928  0.1533016523
sample150 -0.1020825487 -0.0624822021
sample151 -0.0305397215  0.0289336363
sample152  0.0533595237  0.0638334540
sample153  0.0891639316 -0.1799455172
sample154  0.0727554470  0.0834129766
sample155  0.0880665856  0.0220771050
sample156  0.0276558851  0.0326602214
sample157  0.1155031582 -0.0183635317
sample158  0.0281506712  0.0104912296
sample159 -0.0663233817 -0.0443810032
sample160  0.0302643995 -0.0404300831
sample161 -0.0114712971  0.0591082306
sample162  0.1337090975 -0.1398131674
sample163 -0.1330120821 -0.1688769502
sample164  0.0150338085 -0.0028375807
sample165 -0.0076518870  0.0164145650
sample166 -0.0367791560 -0.0630614784
sample167 -0.1111989820 -0.0030066280
sample168  0.0672982954 -0.0446266866
sample169  0.0413003675 -0.0224446448
> discoRes@scores$dist[[1]] ## Distinctive scores for Block 1
                      1             2
sample1    0.0420464203  0.0867866051
sample2    0.0820849002 -0.0410969124
sample3   -0.0155964082 -0.0195186185
sample4    0.1001342562 -0.0410776708
sample5    0.0153479195 -0.0253257790
sample6   -0.0340242017 -0.0408223382
sample7   -0.0722601657  0.0002324198
sample8    0.0457615511 -0.0370007266
sample9    0.0086217835  0.0820184498
sample10   0.0423630055 -0.0083917825
sample11  -0.0022591910  0.0787764176
sample12  -0.0322077143  0.1479823436
sample13   0.0293967710 -0.0306743131
sample14  -0.0337432640 -0.0367508321
sample15  -0.0815559492  0.1275614134
sample16  -0.0508335975  0.0540604321
sample17  -0.0062556592  0.0041024823
sample18  -0.0705602179 -0.0351053175
sample19   0.0476785516 -0.0509595488
sample20  -0.0523024929  0.0715514322
sample21   0.0119246836 -0.0376087308
sample22  -0.0724455901 -0.0095634564
sample23   0.0992529585  0.0134298645
sample24   0.1595260821  0.0728683426
sample25   0.0920662094 -0.0749749499
sample26   0.0595566202  0.0848973405
sample27  -0.0826574023 -0.0086747143
sample28   0.0384832200  0.0440972518
sample29  -0.0777738537  0.1735298835
sample30  -0.1229474270 -0.0819018064
sample31  -0.0579753770 -0.0238646808
sample32  -0.0970366711 -0.0111434859
sample33  -0.1017580484 -0.0630452256
sample34  -0.0637903341  0.0377936382
sample35  -0.0790002640 -0.0229732220
sample36  -0.1224933181 -0.1274967969
sample37  -0.1798846489 -0.1673447422
sample38  -0.0466390886  0.0888153442
sample39   0.0168694470  0.0421535975
sample40  -0.1756417032 -0.1526661762
sample41  -0.0042466077  0.0004924728
sample42   0.0447826247 -0.0651501475
sample43  -0.0482292648 -0.0253533394
sample44   0.1986815990 -0.0545754550
sample45   0.0741915348  0.0054713859
sample46  -0.0478859081 -0.0007080105
sample47  -0.0608215605  0.0481615658
sample48   0.1381465611  0.0578300610
sample49   0.0530627170 -0.1405523900
sample50   0.0173651701  0.1602386271
sample51  -0.0462460106  0.0303473022
sample52  -0.0279998271  0.0280387845
sample53  -0.0667502830  0.0237700173
sample54  -0.0121812473 -0.0521354886
sample55  -0.0182392350  0.0221326687
sample56   0.0001307129  0.0030909215
sample57  -0.0316578046  0.0530190585
sample58  -0.0393891949 -0.0297801702
sample59  -0.1278272047 -0.0546540224
sample60  -0.1486965075  0.1069142242
sample61  -0.0793069312  0.0569790562
sample62  -0.1172821202 -0.0149210781
sample63   0.0028809779  0.1300523984
sample64  -0.0237298533  0.1073288350
sample65   0.0126543314  0.0589810306
sample66   0.0468232467 -0.0771066788
sample67  -0.1494285093 -0.0769876914
sample68  -0.0978021387 -0.0577363432
sample69  -0.0403090450  0.0156038385
sample70  -0.0221595795  0.0315436787
sample71   0.0546333567 -0.0272394978
sample72  -0.1107500622 -0.0537331014
sample73  -0.0906756853  0.0579958148
sample74  -0.0586514915  0.0121417589
sample75  -0.0390512029  0.0349278361
sample76   0.0022940265 -0.1676560057
sample77   0.0232101218 -0.2067300994
sample78   0.0929808002 -0.0434928317
sample79   0.1619384802 -0.0378102820
sample80  -0.0680391830  0.1424656151
sample81   0.0530727487 -0.0358347746
sample82  -0.0266849426 -0.0577448981
sample83  -0.1517241881 -0.0448569620
sample84   0.0570943971 -0.0273808591
sample85  -0.1086272121 -0.1228130114
sample86  -0.0833890551 -0.0442924515
sample87  -0.0022039994 -0.0943908460
sample88   0.0078275121 -0.1140504633
sample89  -0.0611007655 -0.0094589275
sample90  -0.0022941243 -0.0936254825
sample91  -0.0433766780  0.3205972466
sample92   0.1815221825 -0.0334667090
sample93  -0.0267653273  0.0614425907
sample94  -0.0181900727  0.0605088252
sample95   0.0720316375 -0.0013040704
sample96   0.0559674037 -0.0118787245
sample97   0.0217420196  0.0195417136
sample98  -0.0379198557  0.0588352899
sample99   0.0792505472 -0.0151262730
sample100 -0.0222100894 -0.0023322887
sample101  0.0387089126  0.1224225261
sample102  0.2094625573 -0.0516421517
sample103 -0.0138555366  0.0301047775
sample104  0.0807949350 -0.0162712588
sample105  0.0520491839 -0.1229660491
sample106  0.0192642005 -0.0185235270
sample107 -0.0319014512  0.0405120671
sample108  0.0140674737  0.0163422315
sample109  0.1831859429  0.0613023200
sample110  0.0292782921 -0.0199846566
sample111  0.1423176349  0.0327351752
sample112 -0.0426313917 -0.0029086951
sample113  0.0771931190  0.0268742464
sample114  0.0241570296 -0.0184080616
sample115  0.1958958089  0.0460148054
sample116  0.1394438750 -0.0530793887
sample117  0.1672313369 -0.1386522393
sample118  0.0448332061 -0.0117618116
sample119  0.0910199195  0.2217435696
sample120  0.0331404478 -0.0057270443
sample121 -0.0307518200  0.1392506191
sample122  0.0839836084 -0.0291983939
sample123 -0.0239674619 -0.0642167288
sample124  0.0909175600  0.0130429815
sample125  0.0065361988 -0.1092631033
sample126 -0.0935274375  0.1368277053
sample127 -0.0035405281  0.0292755048
sample128  0.0660348812  0.1018575495
sample129 -0.0693670317 -0.0695429990
sample130 -0.0008516576 -0.0669705339
sample131 -0.0431012255  0.0174061118
sample132  0.0637087682  0.0029383258
sample133  0.0289465368 -0.0390817342
sample134 -0.0446143504  0.0456332341
sample135 -0.0712343582  0.0521627816
sample136 -0.0596317365  0.0197291939
sample137 -0.0793174998 -0.0380637010
sample138  0.0973506612 -0.0454210355
sample139 -0.0539867033 -0.1534331983
sample140 -0.0850871003  0.0955804741
sample141  0.0192722760 -0.0554446567
sample142  0.0672293628 -0.0461313318
sample143  0.0303707729 -0.0519258602
sample144  0.0089350867  0.0145815365
sample145  0.0638874450  0.0122268380
sample146 -0.0585921051  0.0063075162
sample147 -0.0894146502 -0.1124625497
sample148  0.0216437881 -0.0615962558
sample149  0.0515318961 -0.0839902871
sample150 -0.0568230042 -0.0124472643
sample151  0.0789514074 -0.0261824150
sample152  0.0330694855  0.1306444952
sample153  0.1752062383  0.1497754750
sample154 -0.0421488207 -0.0037016906
sample155 -0.0680198338  0.0095703743
sample156 -0.0388949339  0.1057558114
sample157 -0.0314765159  0.0561364723
sample158 -0.0329630026  0.0353943728
sample159  0.0398460535 -0.1007368451
sample160 -0.0424906563  0.0108493137
sample161  0.0888341009 -0.0679693045
sample162  0.0027568768  0.1237848123
sample163  0.0126226569  0.0725440672
sample164  0.0566786980 -0.0458318459
sample165  0.0315331654 -0.0236359661
sample166  0.0612108061 -0.0425225072
sample167 -0.0142729594  0.0179307037
sample168  0.0169542084 -0.0769614964
sample169 -0.0675063758  0.0131499245
> discoRes@scores$dist[[2]] ## Distinctive scores for Block 2
                     1             2
sample1    0.001233159  1.635716e-01
sample2    0.072435313  6.022133e-03
sample3    0.018845994  1.080029e-01
sample4   -0.039014317 -3.106613e-04
sample5   -0.177481066  2.996428e-02
sample6    0.045144639  3.455899e-02
sample7    0.022646356  7.019213e-03
sample8    0.103368444  9.857950e-03
sample9   -0.135001413 -8.979115e-02
sample10  -0.125988450  5.097936e-02
sample11  -0.097979084 -7.086568e-02
sample12   0.086302092  8.620322e-02
sample13   0.138140183 -1.827998e-01
sample14   0.061507470  2.642808e-02
sample15  -0.038160056  3.101601e-02
sample16   0.004877930 -1.271021e-03
sample17   0.078848315  1.547607e-02
sample18   0.088418945  3.795478e-02
sample19  -0.070304355  1.084003e-01
sample20   0.002558148 -7.975970e-02
sample21  -0.094159679  4.126893e-02
sample22   0.055027092  7.806618e-02
sample23  -0.067949288  4.102076e-02
sample24   0.131096929 -1.649282e-01
sample25  -0.011358361  4.426900e-02
sample26   0.140294883 -2.016458e-02
sample27  -0.026156591 -1.589957e-03
sample28   0.072420073 -5.850510e-02
sample29   0.033005487 -2.062078e-03
sample30   0.022875037  2.015346e-02
sample31   0.063507032  6.670369e-02
sample32  -0.068510002  4.955246e-02
sample33   0.077776490  1.272070e-01
sample34  -0.015784211  3.024311e-02
sample35   0.052962808 -1.500981e-01
sample36  -0.007090776 -2.025321e-01
sample37   0.044241205 -1.802109e-01
sample38   0.078150845  3.676299e-02
sample39  -0.012033013  3.388884e-02
sample40   0.047328407 -1.471581e-01
sample41  -0.022819211  2.673458e-02
sample42   0.024536181  7.960878e-02
sample43  -0.103636206  8.229577e-02
sample44   0.101223465 -7.049242e-02
sample45  -0.001372685  2.451069e-02
sample46   0.055850655 -2.948574e-03
sample47   0.038047878 -4.554236e-02
sample48  -0.078434048 -4.888893e-02
sample49   0.060516796  1.162471e-02
sample50  -0.053008280  2.737813e-02
sample51  -0.151464539 -5.678261e-02
sample52  -0.186093598 -1.246711e-01
sample53   0.006417961  2.701060e-02
sample54  -0.069703759  2.308412e-02
sample55  -0.163357769 -1.366434e-02
sample56  -0.101148403 -4.682134e-02
sample57  -0.173037438 -1.609594e-01
sample58   0.007138487  1.666951e-02
sample59   0.003045855 -3.005375e-02
sample60  -0.021584197 -2.665887e-01
sample61  -0.151058529 -1.002384e-01
sample62   0.092553163  4.845730e-02
sample63   0.059631533  4.137108e-02
sample64   0.044922724  2.600958e-03
sample65  -0.093938230  4.406949e-02
sample66  -0.106339783  5.710077e-02
sample67   0.020158109 -2.361746e-01
sample68  -0.003720825 -2.418542e-02
sample69   0.064516195  1.155618e-01
sample70   0.101343973  1.351780e-01
sample71   0.001646616  2.976773e-02
sample72  -0.032889536  2.835772e-02
sample73  -0.027508041  5.148153e-02
sample74  -0.134171843  7.895302e-02
sample75  -0.095157663  3.943147e-02
sample76   0.086472001 -3.035053e-02
sample77   0.103574951  2.545326e-02
sample78   0.157564778 -4.939474e-02
sample79  -0.018913830 -4.874691e-02
sample80  -0.138414272 -4.315805e-05
sample81   0.011884666  6.357908e-02
sample82   0.167530668 -3.533967e-02
sample83   0.006567118  7.812499e-02
sample84  -0.148689068  3.109095e-02
sample85   0.053272046 -7.417987e-02
sample86   0.113847497  1.822078e-05
sample87  -0.043286589 -6.080499e-02
sample88  -0.043345115 -1.402486e-01
sample89  -0.033120485  1.395429e-02
sample90   0.060741344  8.610386e-02
sample91   0.056626404 -1.303770e-01
sample92   0.035958080 -1.061605e-01
sample93   0.043364644  4.443610e-02
sample94   0.047729209  1.059571e-01
sample95   0.024959593  3.980509e-02
sample96  -0.003521763  9.293931e-02
sample97   0.006605189  1.527234e-01
sample98  -0.002036707  5.579516e-02
sample99   0.088662156  3.728374e-02
sample100  0.109125958  3.560402e-02
sample101  0.073972392  4.317885e-02
sample102 -0.057445584  2.784084e-02
sample103 -0.014273367 -9.706351e-03
sample104 -0.071039555 -4.068332e-02
sample105 -0.098082998  3.452996e-02
sample106  0.025426046 -3.628933e-02
sample107  0.016065497  9.173399e-02
sample108  0.020098829  2.379699e-02
sample109  0.038978194 -1.692313e-02
sample110  0.032630524 -2.988087e-02
sample111 -0.067693597  6.038247e-02
sample112 -0.016788352 -5.336920e-03
sample113 -0.096921404  2.757702e-02
sample114  0.002639798  9.209102e-02
sample115  0.030804954 -1.603746e-02
sample116  0.124030646 -1.272998e-01
sample117 -0.033472863 -5.392664e-02
sample118  0.103715220 -6.252439e-02
sample119  0.106417081 -1.196217e-01
sample120  0.077135762  1.004935e-01
sample121  0.012935226 -3.181914e-02
sample122 -0.084748770  5.568462e-02
sample123  0.004133555 -7.693545e-03
sample124  0.058346208  8.396475e-02
sample125 -0.063484330  5.232567e-02
sample126  0.066258204  1.091730e-01
sample127  0.086502557  1.094172e-01
sample128  0.062782189  1.471093e-02
sample129  0.033627463  4.007776e-02
sample130  0.029351809  8.046087e-02
sample131  0.046919682  2.209389e-03
sample132  0.024174548  1.248608e-01
sample133 -0.090730378 -1.466698e-02
sample134  0.035084127 -7.539660e-02
sample135 -0.000133485 -9.185811e-03
sample136  0.033587482  9.860182e-02
sample137  0.064014730  7.554373e-02
sample138 -0.006096406  1.742782e-02
sample139  0.059208281 -5.615005e-02
sample140 -0.042798854  1.099466e-02
sample141 -0.061879338  9.301101e-02
sample142 -0.089855256 -3.573325e-02
sample143 -0.081739099 -8.880528e-02
sample144 -0.078775449  3.821395e-02
sample145 -0.108581954 -1.569461e-01
sample146  0.058955508  4.373238e-02
sample147  0.049532797 -7.278042e-03
sample148 -0.116159055 -9.078147e-03
sample149  0.012157565 -7.788462e-02
sample150  0.031451199 -3.520219e-02
sample151 -0.057538097  1.945391e-02
sample152  0.049454043 -7.025566e-02
sample153  0.094133841 -2.153270e-01
sample154  0.033592892 -2.078824e-02
sample155 -0.069045902  2.780362e-02
sample156 -0.103990230  6.292488e-02
sample157  0.040864583 -8.065523e-03
sample158 -0.101810632 -7.817025e-03
sample159  0.028173247  1.207260e-02
sample160 -0.164305288 -2.977818e-03
sample161 -0.037433003 -8.524589e-02
sample162  0.080453818 -8.349635e-02
sample163  0.074323226  1.406346e-02
sample164 -0.120880433  2.139523e-02
sample165 -0.160811594 -2.025160e-02
sample166  0.042594784  2.660800e-02
sample167  0.022684950  4.464258e-02
sample168  0.018073731  7.471564e-04
sample169 -0.019078018 -2.645426e-02
> # Exploring O2PLS scores structure
> o2plsRes@scores$common[[1]] ## Common scores for Block 1
                   [,1]          [,2]
sample1   -0.0572060227 -1.729087e-02
sample2    0.0875245208  1.112588e-02
sample3    0.0403482602 -3.168994e-02
sample4   -0.0218345996  4.052760e-06
sample5   -0.0150905011  4.795041e-03
sample6   -0.0924362933  4.511003e-02
sample7   -0.0793066751 -1.243823e-02
sample8   -0.1342997187  6.215220e-02
sample9   -0.0338886944 -1.854401e-02
sample10   0.0020547173  1.749421e-02
sample11   0.0037275602 -2.364116e-02
sample12  -0.0753094533  2.772698e-02
sample13   0.0856160091  3.679963e-02
sample14  -0.0737457307  2.668452e-02
sample15  -0.0062111746 -3.554864e-03
sample16  -0.0602355268  6.675115e-02
sample17   0.1086768843  2.524534e-02
sample18   0.0702999472  2.231671e-02
sample19   0.0173785882 -3.024846e-02
sample20   0.0484173812 -3.310904e-02
sample21   0.0124657042  6.517144e-02
sample22  -0.0140989936 -3.159137e-02
sample23  -0.0627028403 -5.393710e-04
sample24   0.0919972100  7.909297e-02
sample25   0.0326998483 -1.945206e-02
sample26   0.1064741246  2.120849e-02
sample27   0.0166058995 -4.964993e-02
sample28   0.0743504770  2.614211e-02
sample29  -0.0511008491 -2.782647e-02
sample30   0.0962250842 -3.974893e-03
sample31  -0.0869563008  5.250819e-02
sample32   0.0271858919  1.552005e-02
sample33  -0.0448364581  6.243160e-03
sample34   0.0718415218  1.469396e-02
sample35   0.0403086451 -1.632629e-02
sample36  -0.1036402827 -1.304320e-02
sample37  -0.0159385744 -3.036525e-02
sample38   0.0182198369 -4.034805e-02
sample39   0.0690363619  8.058350e-03
sample40  -0.0467312750 -2.810325e-02
sample41   0.0263674438 -5.171216e-02
sample42   0.0374578960 -1.268634e-02
sample43   0.0132336869  9.536642e-03
sample44  -0.1119154428  5.028683e-02
sample45   0.0759639367  4.587903e-02
sample46   0.0871885519 -4.670385e-02
sample47   0.0721490571 -1.288540e-02
sample48   0.0005086144 -1.290565e-02
sample49  -0.0858177028  5.173760e-02
sample50   0.0118992665 -7.276215e-02
sample51  -0.0426446855  5.306205e-02
sample52  -0.0381605826  3.086785e-02
sample53  -0.0855757630  6.730043e-02
sample54   0.0261723092  9.184260e-03
sample55  -0.0156418304  4.682404e-04
sample56   0.0307831193  2.597550e-02
sample57  -0.0157242103  4.829381e-02
sample58  -0.0031174404  1.359898e-02
sample59  -0.0373001859  5.868397e-03
sample60  -0.0142609099  5.831654e-03
sample61  -0.0122255144  2.663579e-02
sample62   0.0228002942 -8.692265e-03
sample63  -0.0833127581  5.473229e-02
sample64  -0.1166548159  4.196500e-02
sample65   0.0038808902  8.568590e-03
sample66   0.0011561811  1.766612e-02
sample67  -0.1129311062 -2.608702e-02
sample68  -0.0382526429 -3.804045e-02
sample69  -0.0476502440  4.003241e-03
sample70  -0.0110329882 -2.752719e-02
sample71   0.0096850282 -5.627056e-02
sample72   0.0487124704 -8.800131e-03
sample73   0.0773058132  8.239864e-03
sample74  -0.0102488176  2.454957e-02
sample75  -0.0286613976 -8.387293e-03
sample76  -0.0472655595 -2.129315e-02
sample77  -0.0865043074 -7.296820e-03
sample78   0.1070293698  2.818346e-02
sample79  -0.0165060681 -6.659721e-02
sample80  -0.0206765949 -8.712112e-03
sample81  -0.0050943615 -3.079175e-02
sample82   0.1153622361 -1.647054e-02
sample83   0.0367979217 -2.538114e-03
sample84   0.0199463070 -1.468961e-02
sample85  -0.0827122185 -2.709824e-04
sample86   0.0969487314 -1.699897e-02
sample87   0.0421957457 -1.965953e-02
sample88   0.0215934743  1.566050e-02
sample89   0.0751559502  2.811652e-02
sample90  -0.0057328000 -8.283795e-03
sample91  -0.1134005268 -8.603522e-02
sample92  -0.0101689918 -6.894992e-02
sample93   0.0725967502 -6.003176e-03
sample94  -0.0096878852 -4.693081e-03
sample95  -0.0223502239 -3.139636e-02
sample96  -0.0013232863 -1.963604e-02
sample97  -0.0476541710  1.183660e-02
sample98   0.0269546160 -5.978398e-03
sample99   0.0728179461  4.597884e-02
sample100 -0.0413398038  1.079347e-02
sample101  0.0087536994 -6.796076e-02
sample102  0.0032509529  3.932612e-03
sample103  0.0360342395 -3.973263e-02
sample104 -0.0141722563 -2.453107e-02
sample105  0.0294940465 -7.140722e-03
sample106  0.0686472054  1.462895e-02
sample107  0.0748635927  8.401339e-03
sample108  0.0650175850 -6.211942e-03
sample109 -0.0628017242 -3.681224e-02
sample110  0.0905513691 -5.169053e-03
sample111 -0.0176679473 -3.884777e-02
sample112  0.0570870472  1.066018e-02
sample113 -0.0200110554  1.596044e-02
sample114 -0.0001474542 -3.679272e-02
sample115 -0.0213333038 -2.991667e-02
sample116 -0.0567675453 -2.785636e-02
sample117 -0.0379865990 -3.752078e-02
sample118 -0.0484878786 -9.173691e-03
sample119 -0.0713511831 -9.598634e-02
sample120 -0.0555093586  1.089843e-02
sample121  0.0542443861  3.861344e-02
sample122  0.0178575357  3.027138e-02
sample123  0.0775020581 -1.636852e-02
sample124 -0.0460701050  1.814758e-02
sample125  0.0543846585  2.075898e-03
sample126 -0.0729417144  3.276659e-02
sample127 -0.0609509157 -3.270814e-03
sample128  0.0908136899  3.758801e-02
sample129  0.0552445878 -1.879062e-02
sample130  0.0007128089 -1.294308e-02
sample131 -0.0693311345  7.357082e-03
sample132 -0.0556565156  3.126995e-02
sample133  0.0375870104 -1.977240e-02
sample134 -0.1229130924  3.159495e-02
sample135  0.0555550315 -5.563250e-04
sample136 -0.0159768414 -2.046339e-02
sample137 -0.0412337694 -1.151652e-02
sample138 -0.0180604476 -2.526505e-02
sample139 -0.0465649201  1.040683e-02
sample140  0.0452288969 -1.876279e-02
sample141 -0.0189142561  2.247042e-02
sample142  0.0297545566  1.280524e-02
sample143  0.0064292003 -1.997706e-02
sample144 -0.0124284903 -6.369733e-03
sample145 -0.0377141491  5.066743e-02
sample146 -0.0296240067 -3.344465e-02
sample147  0.0726083535 -1.239968e-02
sample148 -0.0284795794  3.389732e-02
sample149  0.0082261455 -6.399305e-02
sample150 -0.0765013197  2.704021e-02
sample151 -0.0220567356 -1.178159e-02
sample152  0.0403422737 -2.714879e-02
sample153  0.0629117719  7.425085e-02
sample154  0.0551622927 -3.548984e-02
sample155  0.0654439133 -1.005306e-02
sample156  0.0209310714 -1.390213e-02
sample157  0.0851522597  6.577150e-03
sample158  0.0208354599 -4.663078e-03
sample159 -0.0498794349  1.913257e-02
sample160  0.0216074437  1.656579e-02
sample161 -0.0075742328 -2.455676e-02
sample162  0.0963663017  5.705881e-02
sample163 -0.1009542191  7.174224e-02
sample164  0.0109881996  1.026806e-03
sample165 -0.0053146157 -6.772855e-03
sample166 -0.0275757357  2.673084e-02
sample167 -0.0825048036  2.278863e-03
sample168  0.0486147429  1.793843e-02
sample169  0.0302506727  8.984253e-03
> o2plsRes@scores$common[[2]] ## Common scores for Block 2
                   [,1]          [,2]
sample1   -0.0621842115 -1.364509e-02
sample2    0.0944623785  9.720892e-03
sample3    0.0406196267 -2.236338e-02
sample4   -0.0229316496 -3.932487e-04
sample5   -0.0157330047  3.231033e-03
sample6   -0.0945794025  3.120720e-02
sample7   -0.0854427118 -1.052880e-02
sample8   -0.1376625920  4.286608e-02
sample9   -0.0377115311 -1.415134e-02
sample10   0.0035244506  1.280825e-02
sample11   0.0016639987 -1.717895e-02
sample12  -0.0781403168  1.884368e-02
sample13   0.0938400516  2.838858e-02
sample14  -0.0759839772  1.810989e-02
sample15  -0.0068340837 -2.705361e-03
sample16  -0.0590150849  4.757848e-02
sample17   0.1178805097  2.040526e-02
sample18   0.0767858320  1.756604e-02
sample19   0.0157112113 -2.172867e-02
sample20   0.0485318300 -2.327033e-02
sample21   0.0185928176  4.777095e-02
sample22  -0.0191358702 -2.329775e-02
sample23  -0.0672994194 -1.535656e-03
sample24   0.1047476642  5.935707e-02
sample25   0.0329844953 -1.358036e-02
sample26   0.1154952052  1.741529e-02
sample27   0.0133849853 -3.590922e-02
sample28   0.0821554039  2.042376e-02
sample29  -0.0567643690 -2.123848e-02
sample30   0.1016073931 -1.134728e-03
sample31  -0.0880396372  3.670548e-02
sample32   0.0300363338  1.182406e-02
sample33  -0.0467252272  3.739254e-03
sample34   0.0783666394  1.203777e-02
sample35   0.0424227097 -1.118559e-02
sample36  -0.1107646166 -1.143464e-02
sample37  -0.0191667664 -2.246060e-02
sample38   0.0155968095 -2.909621e-02
sample39   0.0746847148  7.148218e-03
sample40  -0.0517028178 -2.137267e-02
sample41   0.0234979494 -3.723018e-02
sample42   0.0388797356 -8.557228e-03
sample43   0.0149555568  7.210002e-03
sample44  -0.1150305613  3.461805e-02
sample45   0.0846146236  3.486020e-02
sample46   0.0884426404 -3.246853e-02
sample47   0.0748644971 -8.083045e-03
sample48  -0.0012033198 -9.403647e-03
sample49  -0.0872662737  3.616245e-02
sample50   0.0066941314 -5.284863e-02
sample51  -0.0411777630  3.791830e-02
sample52  -0.0379355780  2.180834e-02
sample53  -0.0851639886  4.751761e-02
sample54   0.0288006248  7.184424e-03
sample55  -0.0164920835  5.919925e-05
sample56   0.0355115616  1.951043e-02
sample57  -0.0141146068  3.492409e-02
sample58  -0.0015636132  9.862883e-03
sample59  -0.0390656483  3.590929e-03
sample60  -0.0139454780  3.963030e-03
sample61  -0.0106410274  1.919705e-02
sample62   0.0236748439 -5.922677e-03
sample63  -0.0846790877  3.839102e-02
sample64  -0.1202581015  2.846469e-02
sample65   0.0050548584  6.328644e-03
sample66   0.0028013072  1.291807e-02
sample67  -0.1231623009 -2.112565e-02
sample68  -0.0437782161 -2.845072e-02
sample69  -0.0501199692  2.053469e-03
sample70  -0.0140278645 -2.027157e-02
sample71   0.0057489505 -4.085977e-02
sample72   0.0511212704 -5.522408e-03
sample73   0.0828141409  7.431582e-03
sample74  -0.0085959456  1.772951e-02
sample75  -0.0312180394 -6.636869e-03
sample76  -0.0519051781 -1.640191e-02
sample77  -0.0925924762 -6.907800e-03
sample78   0.1163971046  2.251122e-02
sample79  -0.0240906926 -4.887766e-02
sample80  -0.0221327065 -6.730703e-03
sample81  -0.0072114968 -2.254399e-02
sample82   0.1204416674 -9.907422e-03
sample83   0.0386739485 -1.171663e-03
sample84   0.0195988488 -1.033806e-02
sample85  -0.0877680171 -1.725057e-03
sample86   0.1023541048 -1.062501e-02
sample87   0.0425213089 -1.356865e-02
sample88   0.0244788514  1.180820e-02
sample89   0.0804276691  2.188588e-02
sample90  -0.0074639871 -6.140721e-03
sample91  -0.1278832404 -6.485140e-02
sample92  -0.0162199697 -5.048358e-02
sample93   0.0769344893 -3.045135e-03
sample94  -0.0104345587 -3.593172e-03
sample95  -0.0260058453 -2.330475e-02
sample96  -0.0025018700 -1.433516e-02
sample97  -0.0492358305  7.774183e-03
sample98   0.0279220220 -3.862141e-03
sample99   0.0813921923  3.487339e-02
sample100 -0.0428797405  7.112807e-03
sample101  0.0032855240 -4.940743e-02
sample102  0.0038439317  2.938008e-03
sample103  0.0358511139 -2.831881e-02
sample104 -0.0162784000 -1.815061e-02
sample105  0.0314853405 -4.656633e-03
sample106  0.0726456731  1.192390e-02
sample107  0.0807342975  7.508627e-03
sample108  0.0688338003 -3.336161e-03
sample109 -0.0694151950 -2.800146e-02
sample110  0.0961218924 -2.111997e-03
sample111 -0.0217900036 -2.864702e-02
sample112  0.0599954082  8.820317e-03
sample113 -0.0195006577  1.128215e-02
sample114 -0.0032126533 -2.682851e-02
sample115 -0.0251101087 -2.221077e-02
sample116 -0.0625141551 -2.137258e-02
sample117 -0.0440473375 -2.806256e-02
sample118 -0.0532042630 -7.590494e-03
sample119 -0.0848603028 -7.133574e-02
sample120 -0.0588832131  6.937326e-03
sample121  0.0613899126  2.915307e-02
sample122  0.0218424338  2.241775e-02
sample123  0.0809008460 -1.051759e-02
sample124 -0.0472109313  1.239887e-02
sample125  0.0583180947  2.521167e-03
sample126 -0.0753941872  2.256455e-02
sample127 -0.0649774209 -3.496964e-03
sample128  0.1000212216  2.908091e-02
sample129  0.0568033049 -1.269016e-02
sample130 -0.0002370832 -9.419675e-03
sample131 -0.0727030877  4.091672e-03
sample132 -0.0566219024  2.179861e-02
sample133  0.0384172955 -1.372840e-02
sample134 -0.1280862736  2.077912e-02
sample135  0.0592633273  6.106685e-04
sample136 -0.0187635410 -1.521173e-02
sample137 -0.0449958970 -9.152840e-03
sample138 -0.0211348699 -1.875415e-02
sample139 -0.0482882861  6.729304e-03
sample140  0.0468926306 -1.285498e-02
sample141 -0.0186248693  1.605439e-02
sample142  0.0328031246  9.887746e-03
sample143  0.0052919839 -1.445666e-02
sample144 -0.0140067923 -4.867248e-03
sample145 -0.0361804310  3.625323e-02
sample146 -0.0345286735 -2.493652e-02
sample147  0.0765025670 -7.714769e-03
sample148 -0.0276016641  2.420589e-02
sample149  0.0027545308 -4.653007e-02
sample150 -0.0792296010  1.831289e-02
sample151 -0.0245894512 -8.991738e-03
sample152  0.0409796547 -1.907063e-02
sample153  0.0734301757  5.528780e-02
sample154  0.0557740684 -2.487723e-02
sample155  0.0689436560 -6.127635e-03
sample156  0.0212272938 -9.747423e-03
sample157  0.0911931194  6.355708e-03
sample158  0.0220840645 -3.016357e-03
sample159 -0.0513244242  1.304175e-02
sample160  0.0246213576  1.248444e-02
sample161 -0.0100369130 -1.805391e-02
sample162  0.1078802043  4.337260e-02
sample163 -0.1017965082  5.047171e-02
sample164  0.0119430799  9.593002e-04
sample165 -0.0063708014 -5.032148e-03
sample166 -0.0283181180  1.899222e-02
sample167 -0.0872832229  1.516582e-04
sample168  0.0540714512  1.397701e-02
sample169  0.0328432652  7.104347e-03
> o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1
                   [,1]          [,2]
sample1    0.0133684846  2.195848e-02
sample2    0.0254157197 -1.058416e-02
sample3   -0.0049551479 -4.840017e-03
sample4    0.0310390570 -1.063929e-02
sample5    0.0046941318 -6.488426e-03
sample6   -0.0107406753 -1.026702e-02
sample7   -0.0225157631  2.624712e-04
sample8    0.0141320952 -9.505821e-03
sample9    0.0029681280  2.078210e-02
sample10   0.0131729174 -2.275042e-03
sample11  -0.0004164298  1.994019e-02
sample12  -0.0095211620  3.759883e-02
sample13   0.0091018604 -7.953956e-03
sample14  -0.0106557524 -9.181659e-03
sample15  -0.0249924121  3.262724e-02
sample16  -0.0156216400  1.375700e-02
sample17  -0.0019382446  1.073994e-03
sample18  -0.0221072481 -8.703592e-03
sample19   0.0146917619 -1.311712e-02
sample20  -0.0160353760  1.826290e-02
sample21   0.0035947899 -9.616341e-03
sample22  -0.0225060762 -2.532589e-03
sample23   0.0310000683  3.033060e-03
sample24   0.0499544372  1.809450e-02
sample25   0.0284442301 -1.932558e-02
sample26   0.0188220043  2.146985e-02
sample27  -0.0257763219 -1.999228e-03
sample28   0.0120888648  1.125834e-02
sample29  -0.0236482520  4.426726e-02
sample30  -0.0385486305 -2.055935e-02
sample31  -0.0181539336 -5.877838e-03
sample32  -0.0302630460 -2.607192e-03
sample33  -0.0319565715 -1.562628e-02
sample34  -0.0197970124  9.906813e-03
sample35  -0.0247412713 -5.434440e-03
sample36  -0.0386259060 -3.190394e-02
sample37  -0.0566199273 -4.192574e-02
sample38  -0.0142060273  2.259644e-02
sample39   0.0053589035  1.076485e-02
sample40  -0.0552546493 -3.819896e-02
sample41  -0.0013089975  9.278818e-05
sample42   0.0137252142 -1.664652e-02
sample43  -0.0151259626 -6.290953e-03
sample44   0.0617391754 -1.442883e-02
sample45   0.0231410886  1.163143e-03
sample46  -0.0148898209 -1.384176e-04
sample47  -0.0187252536  1.221690e-02
sample48   0.0432839432  1.416671e-02
sample49   0.0160818605 -3.588745e-02
sample50   0.0059333545  4.067003e-02
sample51  -0.0142914866  7.776270e-03
sample52  -0.0086339952  7.208917e-03
sample53  -0.0207386980  6.272432e-03
sample54  -0.0039856719 -1.316934e-02
sample55  -0.0056217017  5.692315e-03
sample56   0.0000123292  8.978290e-04
sample57  -0.0095805555  1.324253e-02
sample58  -0.0124160295 -7.326376e-03
sample59  -0.0400195442 -1.349736e-02
sample60  -0.0460063358  2.770091e-02
sample61  -0.0245266456  1.470710e-02
sample62  -0.0366022783 -3.437352e-03
sample63   0.0013742171  3.288796e-02
sample64  -0.0070599859  2.739588e-02
sample65   0.0041201911  1.498268e-02
sample66   0.0143173351 -1.968812e-02
sample67  -0.0467477531 -1.929938e-02
sample68  -0.0306751978 -1.436184e-02
sample69  -0.0125317217  4.130407e-03
sample70  -0.0068071487  8.080857e-03
sample71   0.0169170264 -7.027348e-03
sample72  -0.0346909749 -1.333770e-02
sample73  -0.0280506153  1.493843e-02
sample74  -0.0182611498  3.294697e-03
sample75  -0.0120563964  8.974612e-03
sample76   0.0001437236 -4.253184e-02
sample77   0.0065330299 -5.252886e-02
sample78   0.0288278141 -1.127782e-02
sample79   0.0503961481 -1.023318e-02
sample80  -0.0207693429  3.648391e-02
sample81   0.0163562768 -9.074596e-03
sample82  -0.0084317129 -1.478976e-02
sample83  -0.0474097918 -1.103126e-02
sample84   0.0177181395 -7.191197e-03
sample85  -0.0342718548 -3.082360e-02
sample86  -0.0261671791 -1.089491e-02
sample87  -0.0009486358 -2.411514e-02
sample88   0.0020528931 -2.894615e-02
sample89  -0.0189361111 -2.638639e-03
sample90  -0.0009863658 -2.390075e-02
sample91  -0.0124352695  8.153234e-02
sample92   0.0564264106 -8.909537e-03
sample93  -0.0081461774  1.570851e-02
sample94  -0.0054896581  1.547251e-02
sample95   0.0224073150 -4.374348e-04
sample96   0.0173528924 -3.050441e-03
sample97   0.0067948115  5.008237e-03
sample98  -0.0116030825  1.498764e-02
sample99   0.0246422688 -4.054795e-03
sample100 -0.0069420745 -4.846343e-04
sample101  0.0124923691  3.091503e-02
sample102  0.0650835386 -1.367400e-02
sample103 -0.0042741828  7.855985e-03
sample104  0.0250591040 -4.171938e-03
sample105  0.0157516368 -3.121990e-02
sample106  0.0060593853 -5.101693e-03
sample107 -0.0098329626  1.044506e-02
sample108  0.0044269853  4.142036e-03
sample109  0.0572473486  1.517542e-02
sample110  0.0090474827 -5.119868e-03
sample111  0.0444263015  7.983232e-03
sample112 -0.0131765484 -9.696342e-04
sample113  0.0241047399  6.706740e-03
sample114  0.0074558775 -4.728652e-03
sample115  0.0611851433  1.117210e-02
sample116  0.0432646951 -1.380556e-02
sample117  0.0516750066 -3.575617e-02
sample118  0.0139942100 -3.279138e-03
sample119  0.0291722987  5.587946e-02
sample120  0.0103515853 -1.690016e-03
sample121 -0.0091396331  3.552116e-02
sample122  0.0260431679 -7.583975e-03
sample123 -0.0076666389 -1.628489e-02
sample124  0.0283466326  3.127845e-03
sample125  0.0016472378 -2.770692e-02
sample126 -0.0286529417  3.489336e-02
sample127 -0.0010224500  7.483214e-03
sample128  0.0209049296  2.572016e-02
sample129 -0.0218184878 -1.755347e-02
sample130 -0.0005009620 -1.697978e-02
sample131 -0.0134032968  4.637390e-03
sample132  0.0198526786  5.723983e-04
sample133  0.0088812957 -9.988115e-03
sample134 -0.0137484514  1.172591e-02
sample135 -0.0220314568  1.347465e-02
sample136 -0.0185173353  5.168079e-03
sample137 -0.0248352123 -9.472788e-03
sample138  0.0301635767 -1.175283e-02
sample139 -0.0173576929 -3.872592e-02
sample140 -0.0262157762  2.456863e-02
sample141  0.0058369763 -1.420854e-02
sample142  0.0207886071 -1.188764e-02
sample143  0.0092832598 -1.324238e-02
sample144  0.0028442140  3.627979e-03
sample145  0.0199749569  2.862202e-03
sample146 -0.0182236697  1.726556e-03
sample147 -0.0282519995 -2.825595e-02
sample148  0.0065435868 -1.572917e-02
sample149  0.0158233820 -2.159451e-02
sample150 -0.0177383738 -3.020633e-03
sample151  0.0245166984 -6.888241e-03
sample152  0.0107259913  3.314630e-02
sample153  0.0550963965  3.758760e-02
sample154 -0.0131452472 -8.153903e-04
sample155 -0.0211742574  2.642246e-03
sample156 -0.0117803505  2.698265e-02
sample157 -0.0096167165  1.433840e-02
sample158 -0.0101754772  9.137620e-03
sample159  0.0120662931 -2.565236e-02
sample160 -0.0132238202  2.916023e-03
sample161  0.0274491966 -1.748284e-02
sample162  0.0012482909  3.152261e-02
sample163  0.0042031315  1.830701e-02
sample164  0.0174896157 -1.175915e-02
sample165  0.0097517662 -6.119019e-03
sample166  0.0190134679 -1.121582e-02
sample167 -0.0044140836  4.665585e-03
sample168  0.0049689168 -1.941822e-02
sample169 -0.0209802098  3.498729e-03
> o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2
                   [,1]          [,2]
sample1   -0.0515543627 -0.0305856787
sample2   -0.0144993256  0.0236342950
sample3   -0.0371833108 -0.0140263348
sample4    0.0068945388 -0.0132539692
sample5    0.0215035333 -0.0663338101
sample6   -0.0187055152  0.0088773016
sample7   -0.0061521552  0.0064029054
sample8   -0.0210874459  0.0334652901
sample9    0.0516865043 -0.0291142799
sample10   0.0059440366 -0.0527217447
sample11   0.0393010793 -0.0200624712
sample12  -0.0420837100  0.0131331362
sample13   0.0333252565  0.0818552509
sample14  -0.0190062644  0.0160202175
sample15  -0.0030968049 -0.0189230681
sample16  -0.0004452158  0.0018880102
sample17  -0.0185848615  0.0240170131
sample18  -0.0273093598  0.0230213640
sample19  -0.0217761111 -0.0445894441
sample20   0.0245820821  0.0159812738
sample21   0.0034527644 -0.0400016054
sample22  -0.0340789054  0.0039289109
sample23  -0.0010344929 -0.0310161212
sample24   0.0289468503  0.0760962436
sample25  -0.0119098496 -0.0122798760
sample26  -0.0181001057  0.0517892852
sample27   0.0050465417 -0.0086515844
sample28   0.0057491502  0.0358830107
sample29  -0.0051104246  0.0116605117
sample30  -0.0103085904  0.0039678538
sample31  -0.0319929858  0.0090606113
sample32  -0.0036232521 -0.0328202010
sample33  -0.0534742153  0.0024751837
sample34  -0.0067495749 -0.0111000311
sample35   0.0378745721  0.0465929296
sample36   0.0647886800  0.0359987924
sample37   0.0488441236  0.0492906912
sample38  -0.0251514062  0.0197110110
sample39  -0.0085428066 -0.0105117852
sample40   0.0379324087  0.0440810741
sample41  -0.0044199152 -0.0128820644
sample42  -0.0292553573 -0.0067045265
sample43  -0.0077829155 -0.0510178219
sample44   0.0045122248  0.0479660309
sample45  -0.0074444298 -0.0051116726
sample46  -0.0088025512  0.0196186661
sample47   0.0076696301  0.0215947965
sample48   0.0290108585 -0.0175568376
sample49  -0.0141754858  0.0184717099
sample50   0.0006282201 -0.0233054373
sample51   0.0441995177 -0.0410022921
sample52   0.0715329391 -0.0399499475
sample53  -0.0095954087 -0.0029140909
sample54   0.0048933768 -0.0281884386
sample55   0.0327325487 -0.0532290012
sample56   0.0323068984 -0.0256595538
sample57   0.0806603122 -0.0286748097
sample58  -0.0064792049 -0.0006945349
sample59   0.0088958941  0.0067389649
sample60   0.0874124612  0.0431964341
sample61   0.0577604571 -0.0326112099
sample62  -0.0313318464  0.0224391756
sample63  -0.0233625220  0.0125110562
sample64  -0.0086426068  0.0148770341
sample65   0.0025256193 -0.0404466327
sample66   0.0006014071 -0.0471576264
sample67   0.0706087042  0.0516228406
sample68   0.0082301011  0.0033109509
sample69  -0.0475076743  0.0001452708
sample70  -0.0600773716  0.0089986962
sample71  -0.0096321627 -0.0050761187
sample72  -0.0031773546 -0.0166221542
sample73  -0.0113700517 -0.0191726684
sample74  -0.0014179662 -0.0608101325
sample75   0.0041911740 -0.0399981269
sample76  -0.0055326449  0.0353114263
sample77  -0.0260214459  0.0305731380
sample78  -0.0119267436  0.0632236007
sample79   0.0186017239  0.0027402910
sample80   0.0241047889 -0.0472697181
sample81  -0.0220288317 -0.0079577210
sample82  -0.0180751258  0.0639051029
sample83  -0.0256671713 -0.0125898269
sample84   0.0161392598 -0.0567222449
sample85   0.0139988188  0.0322763454
sample86  -0.0198382995  0.0389225776
sample87   0.0266270281 -0.0032979996
sample88   0.0515677078  0.0117902495
sample89   0.0014022125 -0.0140510488
sample90  -0.0375949749  0.0044004551
sample91   0.0310397965  0.0440610926
sample92   0.0270570567  0.0324380452
sample93  -0.0215009202  0.0063993941
sample94  -0.0415702912 -0.0037692077
sample95  -0.0168416047  0.0010019120
sample96  -0.0285582661 -0.0187991000
sample97  -0.0490843868 -0.0266760748
sample98  -0.0171579033 -0.0112897471
sample99  -0.0271316525  0.0232395583
sample100 -0.0301789816  0.0305498693
sample101 -0.0264371151  0.0170723968
sample102  0.0012767734 -0.0248949597
sample103  0.0055214687 -0.0030040587
sample104  0.0251346074 -0.0165212671
sample105  0.0062424215 -0.0400309901
sample106  0.0069768684  0.0154982315
sample107 -0.0315912602 -0.0118883820
sample108 -0.0109690679  0.0023637162
sample109 -0.0014762845  0.0165583675
sample110  0.0036971063  0.0168260726
sample111 -0.0071624739 -0.0345651461
sample112  0.0046098120 -0.0048009350
sample113  0.0082236008 -0.0383233357
sample114 -0.0293642209 -0.0165595240
sample115 -0.0003260453  0.0135805368
sample116  0.0183575759  0.0665377581
sample117  0.0227640036 -0.0012287760
sample118  0.0015695248  0.0472617382
sample119  0.0190084932  0.0590034062
sample120 -0.0449645755  0.0072755697
sample121  0.0077307184  0.0104738937
sample122 -0.0027132063 -0.0394983138
sample123  0.0016959300  0.0028593594
sample124 -0.0365091615  0.0040382925
sample125 -0.0053658663 -0.0316029164
sample126 -0.0458032408  0.0019165544
sample127 -0.0494064872  0.0088209044
sample128 -0.0155454766  0.0186819802
sample129 -0.0184340400  0.0038684312
sample130 -0.0303640987 -0.0052225766
sample131 -0.0088697422  0.0156339713
sample132 -0.0433916471 -0.0154075483
sample133  0.0204029276 -0.0282209049
sample134  0.0175513332  0.0262883962
sample135  0.0029009925  0.0017003151
sample136 -0.0367997573 -0.0072249751
sample137 -0.0348600323  0.0075400273
sample138 -0.0044063824 -0.0053752428
sample139  0.0073103935  0.0308956174
sample140  0.0039925654 -0.0167019605
sample141 -0.0184093462 -0.0387953445
sample142  0.0268670676 -0.0239229634
sample143  0.0421049126 -0.0110888235
sample144  0.0017253664 -0.0341766012
sample145  0.0681741320 -0.0073526377
sample146 -0.0239965222  0.0118396767
sample147 -0.0063453522  0.0183130585
sample148  0.0230825251 -0.0379753037
sample149  0.0223298673  0.0188909118
sample150  0.0055709108  0.0174179009
sample151  0.0039177786 -0.0233533275
sample152  0.0134325667  0.0302344591
sample153  0.0511990309  0.0730230140
sample154  0.0006698324  0.0154177486
sample155  0.0032926626 -0.0288651601
sample156 -0.0016463495 -0.0474657733
sample157 -0.0045857599  0.0154934573
sample158  0.0201775524 -0.0332982124
sample159 -0.0086909001  0.0073496711
sample160  0.0295437331 -0.0555734536
sample161  0.0332754288  0.0033779619
sample162  0.0121954537  0.0433540412
sample163 -0.0173490933  0.0227219128
sample164  0.0143374783 -0.0453542590
sample165  0.0343612593 -0.0511194536
sample166 -0.0157536004  0.0094621170
sample167 -0.0179654624 -0.0006982358
sample168 -0.0033829919  0.0060747155
sample169  0.0116231468 -0.0015112800
> 
> ## 3.3 Plotting VAF
> 
> # DISCO-SCA plotVAF
> plotVAF(discoRes)
> 
> # JIVE plotVAF
> plotVAF(jiveRes)
> 
> 
> #########################
> ## PART 4. Plot Results
> 
> # Scores for common part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,2),what="scores",type="common",
+              combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+              background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+              axisSize=NULL,titleSize=NULL)
> 
> # Scores for common part. JIVE
> plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common",
+              combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+              background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+              axisSize=NULL,titleSize=NULL)
> 
> # Scores for common part. O2PLS.
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Combined plot of scores for common part. O2PLS.
> plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common",
+              combined=TRUE,block=NULL,color="classname",shape=NULL,
+              labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+              labelSize=NULL,axisSize=NULL,titleSize=NULL)
> 
> 
> # Scores for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Combined plot of scores for distinctive part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual",
+              combined=TRUE,block=NULL,color="classname",shape=NULL,
+              labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+              labelSize=NULL,axisSize=NULL,titleSize=NULL)
> 
> # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block)
> p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Combined plot of scores for common and distinctive part. DISCO  (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Loadings for common part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> # Loadings for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> # Combined plot for loadings from common and distinctive part  (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> 
> ## Plot scores and loadings togheter: Common components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+         combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+         background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+         axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> ## Plot scores and loadings togheter:  Common components O2PLS
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+               combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> ## Plot scores and loadings togheter: Distintive components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+               combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  10.53    0.29   10.79 

Example timings

STATegRa.Rcheck/examples_i386/STATegRa-Ex.timings

nameusersystemelapsed
STATegRaUsersGuide0.010.000.01
STATegRa_data0.300.020.31
STATegRa_data_TCGA_BRCA000
bioDist0.490.040.53
bioDistFeature0.400.020.42
bioDistFeaturePlot0.380.050.43
bioDistW0.560.000.56
bioDistWPlot0.600.060.65
bioMap0.010.000.02
combiningMappings0.020.010.03
createOmicsExpressionSet0.260.020.28
getInitialData0.820.140.96
getLoadings0.820.201.03
getMethodInfo0.880.110.98
getPreprocessing1.310.331.64
getScores0.580.030.61
getVAF0.620.030.66
holistOmics0.000.020.01
modelSelection1.830.452.28
omicsCompAnalysis3.50.13.6
omicsNPC000
plotRes4.790.074.88
plotVAF4.110.004.11

STATegRa.Rcheck/examples_x64/STATegRa-Ex.timings

nameusersystemelapsed
STATegRaUsersGuide000
STATegRa_data0.260.010.28
STATegRa_data_TCGA_BRCA000
bioDist0.410.000.41
bioDistFeature0.360.000.36
bioDistFeaturePlot0.320.000.33
bioDistW0.30.00.3
bioDistWPlot0.280.030.31
bioMap000
combiningMappings0.010.000.02
createOmicsExpressionSet0.140.000.14
getInitialData0.440.110.54
getLoadings0.520.210.72
getMethodInfo0.510.110.63
getPreprocessing0.990.231.22
getScores0.450.130.57
getVAF0.640.100.75
holistOmics000
modelSelection1.420.491.91
omicsCompAnalysis3.370.123.50
omicsNPC000
plotRes3.960.104.04
plotVAF3.320.013.35