Back to Multiple platform build/check report for BioC 3.14 |
|
This page was generated on 2022-04-13 12:07:26 -0400 (Wed, 13 Apr 2022).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 20.04.4 LTS) | x86_64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4324 |
tokay2 | Windows Server 2012 R2 Standard | x64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4077 |
machv2 | macOS 10.14.6 Mojave | x86_64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4137 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
To the developers/maintainers of the STATegRa package: - Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/STATegRa.git to reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information. - Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
Package 1887/2083 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
STATegRa 1.30.0 (landing page) David Gomez-Cabrero
| nebbiolo2 | Linux (Ubuntu 20.04.4 LTS) / x86_64 | OK | OK | OK | |||||||||
tokay2 | Windows Server 2012 R2 Standard / x64 | OK | OK | OK | OK | |||||||||
machv2 | macOS 10.14.6 Mojave / x86_64 | OK | OK | OK | OK | |||||||||
Package: STATegRa |
Version: 1.30.0 |
Command: C:\Users\biocbuild\bbs-3.14-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:STATegRa.install-out.txt --library=C:\Users\biocbuild\bbs-3.14-bioc\R\library --no-vignettes --timings STATegRa_1.30.0.tar.gz |
StartedAt: 2022-04-13 03:36:42 -0400 (Wed, 13 Apr 2022) |
EndedAt: 2022-04-13 03:42:44 -0400 (Wed, 13 Apr 2022) |
EllapsedTime: 362.1 seconds |
RetCode: 0 |
Status: OK |
CheckDir: STATegRa.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### C:\Users\biocbuild\bbs-3.14-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:STATegRa.install-out.txt --library=C:\Users\biocbuild\bbs-3.14-bioc\R\library --no-vignettes --timings STATegRa_1.30.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'C:/Users/biocbuild/bbs-3.14-bioc/meat/STATegRa.Rcheck' * using R version 4.1.3 (2022-03-10) * using platform: x86_64-w64-mingw32 (64-bit) * using session charset: ISO8859-1 * using option '--no-vignettes' * checking for file 'STATegRa/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'STATegRa' version '1.30.0' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'STATegRa' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * loading checks for arch 'i386' ** checking whether the package can be loaded ... OK ** checking whether the package can be loaded with stated dependencies ... OK ** checking whether the package can be unloaded cleanly ... OK ** checking whether the namespace can be loaded with stated dependencies ... OK ** checking whether the namespace can be unloaded cleanly ... OK * loading checks for arch 'x64' ** checking whether the package can be loaded ... OK ** checking whether the package can be loaded with stated dependencies ... OK ** checking whether the package can be unloaded cleanly ... OK ** checking whether the namespace can be loaded with stated dependencies ... OK ** checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... NOTE modelSelection,list-numeric-character: no visible binding for global variable 'components' modelSelection,list-numeric-character: no visible binding for global variable 'mylabel' plotVAF,caClass: no visible binding for global variable 'comp' plotVAF,caClass: no visible binding for global variable 'VAF' plotVAF,caClass: no visible binding for global variable 'block' selectCommonComps,list-numeric: no visible binding for global variable 'comps' selectCommonComps,list-numeric: no visible binding for global variable 'block' selectCommonComps,list-numeric: no visible binding for global variable 'comp' selectCommonComps,list-numeric: no visible binding for global variable 'ratio' Undefined global functions or variables: VAF block comp components comps mylabel ratio * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking files in 'vignettes' ... OK * checking examples ... ** running examples for arch 'i386' ... OK ** running examples for arch 'x64' ... OK * checking for unstated dependencies in 'tests' ... OK * checking tests ... ** running tests for arch 'i386' ... Running 'STATEgRa_Example.omicsCLUST.R' Running 'STATEgRa_Example.omicsPCA.R' Running 'STATegRa_Example.omicsNPC.R' Running 'runTests.R' OK ** running tests for arch 'x64' ... Running 'STATEgRa_Example.omicsCLUST.R' Running 'STATEgRa_Example.omicsPCA.R' Running 'STATegRa_Example.omicsNPC.R' Running 'runTests.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in 'inst/doc' ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 1 NOTE See 'C:/Users/biocbuild/bbs-3.14-bioc/meat/STATegRa.Rcheck/00check.log' for details.
STATegRa.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### C:\cygwin\bin\curl.exe -O http://155.52.207.166/BBS/3.14/bioc/src/contrib/STATegRa_1.30.0.tar.gz && rm -rf STATegRa.buildbin-libdir && mkdir STATegRa.buildbin-libdir && C:\Users\biocbuild\bbs-3.14-bioc\R\bin\R.exe CMD INSTALL --merge-multiarch --build --library=STATegRa.buildbin-libdir STATegRa_1.30.0.tar.gz && C:\Users\biocbuild\bbs-3.14-bioc\R\bin\R.exe CMD INSTALL STATegRa_1.30.0.zip && rm STATegRa_1.30.0.tar.gz STATegRa_1.30.0.zip ### ############################################################################## ############################################################################## % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 6 3177k 6 221k 0 0 422k 0 0:00:07 --:--:-- 0:00:07 422k 42 3177k 42 1336k 0 0 879k 0 0:00:03 0:00:01 0:00:02 879k 100 3177k 100 3177k 0 0 1300k 0 0:00:02 0:00:02 --:--:-- 1300k install for i386 * installing *source* package 'STATegRa' ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices converting help for package 'STATegRa' finding HTML links ... done STATegRa-defunct html STATegRa html STATegRaUsersGuide html STATegRa_data html STATegRa_data_TCGA_BRCA html bioDist html bioDistFeature html bioDistFeaturePlot html bioDistW html bioDistWPlot html bioDistclass html bioMap html caClass-class html combiningMappings html createOmicsExpressionSet html getInitialData html getLoadings html getMethodInfo html getPreprocessing html getScores html getVAF html holistOmics html modelSelection html finding level-2 HTML links ... done omicsCompAnalysis html omicsNPC html plotRes html plotVAF html ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path install for x64 * installing *source* package 'STATegRa' ... ** testing if installed package can be loaded * MD5 sums packaged installation of 'STATegRa' as STATegRa_1.30.0.zip * DONE (STATegRa) * installing to library 'C:/Users/biocbuild/bbs-3.14-bioc/R/library' package 'STATegRa' successfully unpacked and MD5 sums checked
STATegRa.Rcheck/tests_i386/runTests.Rout R version 4.1.3 (2022-03-10) -- "One Push-Up" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage("STATegRa") Common components [1] 2 Distinctive components [[1]] [1] 0 [[2]] [1] 0 Common components [1] 2 Distinctive components [[1]] [1] 1 [[2]] [1] 1 Common components [1] 2 Distinctive components [[1]] [1] 2 [[2]] [1] 2 RUNIT TEST PROTOCOL -- Wed Apr 13 03:40:50 2022 *********************************************** Number of test functions: 4 Number of errors: 0 Number of failures: 0 1 Test Suite : STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures Number of test functions: 4 Number of errors: 0 Number of failures: 0 Warning messages: 1: In rownames(pData) == colnames(exprs) : longer object length is not a multiple of shorter object length 2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum", : Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2 3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num", : Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3 > > proc.time() user system elapsed 3.48 0.28 3.73 |
STATegRa.Rcheck/tests_x64/runTests.Rout R version 4.1.3 (2022-03-10) -- "One Push-Up" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage("STATegRa") Common components [1] 2 Distinctive components [[1]] [1] 0 [[2]] [1] 0 Common components [1] 2 Distinctive components [[1]] [1] 1 [[2]] [1] 1 Common components [1] 2 Distinctive components [[1]] [1] 2 [[2]] [1] 2 RUNIT TEST PROTOCOL -- Wed Apr 13 03:42:36 2022 *********************************************** Number of test functions: 4 Number of errors: 0 Number of failures: 0 1 Test Suite : STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures Number of test functions: 4 Number of errors: 0 Number of failures: 0 Warning messages: 1: In rownames(pData) == colnames(exprs) : longer object length is not a multiple of shorter object length 2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum", : Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2 3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num", : Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3 > > proc.time() user system elapsed 3.82 0.29 4.10 |
STATegRa.Rcheck/tests_i386/STATEgRa_Example.omicsCLUST.Rout R version 4.1.3 (2022-03-10) -- "One Push-Up" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ########################################### > ########### EXAMPLE OF THE OMICSCLUSTERING > ########################################### > require(STATegRa) Loading required package: STATegRa > > ############################################# > ## PART 1: CREATING a bioMap CLASS > ############################################# > ####### This part creates or reads the map between features. > ####### In the present example the map is downloaded from a resource. > ####### then the class is created. > > #load("../data/STATegRa_S2.rda") > data(STATegRa_S2) > > MAP.SYMBOL<-bioMap(name = "Symbol-miRNA", + metadata = list(type_v1="Gene",type_v2="miRNA", + source_database="targetscan.Hs.eg.db", + data_extraction="July2014"), + map=mapdata) > > > ############################################# > ## PART 2: CREATING a bioDist CLASS > ############################################# > ##### In the second part given a set of main features and surrogate feautres, > ##### the profile of the main features is computed through the surrogate features. > > # Load Data > data(STATegRa_S1) > #load("../data/STATegRa.S1.Rdata") > > ## Create ExpressionSets > # source("../R/STATegRa_omicsPCA_classes_and_methods.R") > # Block1 - Expression data > mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname")) > # Block2 - miRNA expression data > miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname")) > > # Create Gene-gene distance computed through miRNA data > bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1), + reference = "Var1", + mapping = MAP.SYMBOL, + surrogateData = miRNA.ds, ### miRNA data + referenceData = mRNA.ds, ### mRNA data + maxitems=2, + selectionRule="sd", + expfac=NULL, + aggregation = "sum", + distance = "spearman", + noMappingDist = 0, + filtering = NULL, + name = "mRNAbymiRNA") > > require(Biobase) Loading required package: Biobase Loading required package: BiocGenerics Attaching package: 'BiocGenerics' The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'. > > # Create Gene-gene distance through mRNA data > bioDistmRNA<-bioDistclass(name = "mRNAbymRNA", + distance = cor(t(exprs(mRNA.ds)),method="spearman"), + map.name = "id", + map.metadata = list(), + params = list()) > > ############################################# > ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList > ############################################# > > bioDistList<-list(bioDistmRNA,bioDistmiRNA) > weights<-matrix(0,4,2) > weights[,1]<-c(0,0.33,0.67,1) > weights[,2]<-c(1,0.67,0.33,0)# > > bioDistWList<-bioDistW(referenceFeatures = rownames(Block1), + bioDistList = bioDistList, + weights=weights) > length(bioDistWList) [1] 4 > > ############################################# > ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL > ############################################# > > bioDistWPlot(referenceFeatures = rownames(Block1) , + listDistW = bioDistWList, + method.cor="spearman") Warning messages: 1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 4: In plot.window(...) : relative range of values ( 0 * EPS) is small (axis 2) 5: In plot.window(...) : relative range of values ( 0 * EPS) is small (axis 2) 6: In plot.window(...) : relative range of values ( 0 * EPS) is small (axis 2) 7: In plot.window(...) : relative range of values ( 0 * EPS) is small (axis 2) > > ############################################# > ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE > ############################################# > > ## IDH1 > > IDH1.F<-bioDistFeature(Feature = "IDH1" , + listDistW = bioDistWList, + threshold.cor=0.7) > bioDistFeaturePlot(data=IDH1.F) > > ## PDGFRA > > #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" , > # listDistW = bioDistWList, > # threshold.cor=0.7) > #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png") > > ## EGFR > #EGFR.F<-bioDistFeature(Feature = "EGFR" , > # listDistW = bioDistWList, > # threshold.cor=0.7) > #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png") > > ## MGMT > #MGMT.F<-bioDistFeature(Feature = "MGMT" , > # listDistW = bioDistWList, > # threshold.cor=0.5) > #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png") > > > > > > proc.time() user system elapsed 24.76 0.59 25.32 |
STATegRa.Rcheck/tests_x64/STATEgRa_Example.omicsCLUST.Rout R version 4.1.3 (2022-03-10) -- "One Push-Up" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ########################################### > ########### EXAMPLE OF THE OMICSCLUSTERING > ########################################### > require(STATegRa) Loading required package: STATegRa > > ############################################# > ## PART 1: CREATING a bioMap CLASS > ############################################# > ####### This part creates or reads the map between features. > ####### In the present example the map is downloaded from a resource. > ####### then the class is created. > > #load("../data/STATegRa_S2.rda") > data(STATegRa_S2) > > MAP.SYMBOL<-bioMap(name = "Symbol-miRNA", + metadata = list(type_v1="Gene",type_v2="miRNA", + source_database="targetscan.Hs.eg.db", + data_extraction="July2014"), + map=mapdata) > > > ############################################# > ## PART 2: CREATING a bioDist CLASS > ############################################# > ##### In the second part given a set of main features and surrogate feautres, > ##### the profile of the main features is computed through the surrogate features. > > # Load Data > data(STATegRa_S1) > #load("../data/STATegRa.S1.Rdata") > > ## Create ExpressionSets > # source("../R/STATegRa_omicsPCA_classes_and_methods.R") > # Block1 - Expression data > mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname")) > # Block2 - miRNA expression data > miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname")) > > # Create Gene-gene distance computed through miRNA data > bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1), + reference = "Var1", + mapping = MAP.SYMBOL, + surrogateData = miRNA.ds, ### miRNA data + referenceData = mRNA.ds, ### mRNA data + maxitems=2, + selectionRule="sd", + expfac=NULL, + aggregation = "sum", + distance = "spearman", + noMappingDist = 0, + filtering = NULL, + name = "mRNAbymiRNA") > > require(Biobase) Loading required package: Biobase Loading required package: BiocGenerics Attaching package: 'BiocGenerics' The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'. > > # Create Gene-gene distance through mRNA data > bioDistmRNA<-bioDistclass(name = "mRNAbymRNA", + distance = cor(t(exprs(mRNA.ds)),method="spearman"), + map.name = "id", + map.metadata = list(), + params = list()) > > ############################################# > ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList > ############################################# > > bioDistList<-list(bioDistmRNA,bioDistmiRNA) > weights<-matrix(0,4,2) > weights[,1]<-c(0,0.33,0.67,1) > weights[,2]<-c(1,0.67,0.33,0)# > > bioDistWList<-bioDistW(referenceFeatures = rownames(Block1), + bioDistList = bioDistList, + weights=weights) > length(bioDistWList) [1] 4 > > ############################################# > ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL > ############################################# > > bioDistWPlot(referenceFeatures = rownames(Block1) , + listDistW = bioDistWList, + method.cor="spearman") Warning messages: 1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 4: In plot.window(...) : relative range of values ( 0 * EPS) is small (axis 2) 5: In plot.window(...) : relative range of values ( 0 * EPS) is small (axis 2) 6: In plot.window(...) : relative range of values ( 0 * EPS) is small (axis 2) 7: In plot.window(...) : relative range of values ( 0 * EPS) is small (axis 2) > > ############################################# > ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE > ############################################# > > ## IDH1 > > IDH1.F<-bioDistFeature(Feature = "IDH1" , + listDistW = bioDistWList, + threshold.cor=0.7) > bioDistFeaturePlot(data=IDH1.F) > > ## PDGFRA > > #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" , > # listDistW = bioDistWList, > # threshold.cor=0.7) > #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png") > > ## EGFR > #EGFR.F<-bioDistFeature(Feature = "EGFR" , > # listDistW = bioDistWList, > # threshold.cor=0.7) > #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png") > > ## MGMT > #MGMT.F<-bioDistFeature(Feature = "MGMT" , > # listDistW = bioDistWList, > # threshold.cor=0.5) > #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png") > > > > > > proc.time() user system elapsed 21.39 0.68 22.06 |
STATegRa.Rcheck/tests_i386/STATegRa_Example.omicsNPC.Rout R version 4.1.3 (2022-03-10) -- "One Push-Up" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > rm(list = ls()) > require("STATegRa") Loading required package: STATegRa > # Load the data > data("TCGA_BRCA_Batch_93") > # Setting dataTypes > dataTypes <- c("count", "count", "continuous") > # Setting methods to combine pvalues > combMethods = c("Fisher", "Liptak", "Tippett") > # Setting number of permutations > numPerms = 1000 > # Setting number of cores > numCores = 1 > # Setting holistOmics to print out the steps that it performs. > verbose = TRUE > # Run holistOmics analysis. > output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose) Compute initial statistics on data Building NULL distributions by permuting data Compute pseudo p-values based on NULL distributions... NPC p-values calculation... > > proc.time() user system elapsed 74.82 0.18 75.07 |
STATegRa.Rcheck/tests_x64/STATegRa_Example.omicsNPC.Rout R version 4.1.3 (2022-03-10) -- "One Push-Up" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > rm(list = ls()) > require("STATegRa") Loading required package: STATegRa > # Load the data > data("TCGA_BRCA_Batch_93") > # Setting dataTypes > dataTypes <- c("count", "count", "continuous") > # Setting methods to combine pvalues > combMethods = c("Fisher", "Liptak", "Tippett") > # Setting number of permutations > numPerms = 1000 > # Setting number of cores > numCores = 1 > # Setting holistOmics to print out the steps that it performs. > verbose = TRUE > # Run holistOmics analysis. > output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose) Compute initial statistics on data Building NULL distributions by permuting data Compute pseudo p-values based on NULL distributions... NPC p-values calculation... > > proc.time() user system elapsed 67.98 0.25 68.21 |
STATegRa.Rcheck/tests_i386/STATEgRa_Example.omicsPCA.Rout R version 4.1.3 (2022-03-10) -- "One Push-Up" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ########################################### > ########### EXAMPLE OF THE OMICSPCA > ########################################### > require(STATegRa) Loading required package: STATegRa > > # g_legend (not exported by STATegRa any more) > ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs > g_legend<-function(a.gplot){ + tmp <- ggplot_gtable(ggplot_build(a.gplot)) + leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box") + legend <- tmp$grobs[[leg]] + return(legend)} > > ######################### > ## PART 1. Load data > > ## Load data > data(STATegRa_S3) > > ls() [1] "Block1.PCA" "Block2.PCA" "ed.PCA" "g_legend" > > ## Create ExpressionSets > # Block1 - Expression data > B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname")) > # Block2 - miRNA expression data > B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname")) > > ######################### > ## PART 2. Model Selection > > require(grid) Loading required package: grid > require(gridExtra) Loading required package: gridExtra > require(ggplot2) Loading required package: ggplot2 > > ## Select the optimal components > ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE) Common components [1] 2 Distinctive components [[1]] [1] 2 [[2]] [1] 2 > > > ######################### > ## PART 3. Component Analysis > > ## 3.1 Component analysis of the three methods > discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > > ## 3.2 Exploring scores structures > > # Exploring DISCO-SCA scores structure > discoRes@scores$common ## Common scores 1 2 sample1 -0.0781575686 -0.0431549533 sample2 0.1192221422 0.0294020207 sample3 0.0531408611 -0.0746837613 sample4 -0.0292971736 -0.0006035739 sample5 -0.0202090730 0.0110455017 sample6 -0.1226088416 0.1053493739 sample7 -0.1078931389 -0.0322417760 sample8 -0.1782891055 0.1449329620 sample9 -0.0468697282 -0.0455171510 sample10 0.0036032722 0.0420076977 sample11 0.0035566353 -0.0566284813 sample12 -0.1006129709 0.0641394582 sample13 0.1174412911 0.0907475078 sample14 -0.0981203548 0.0617764134 sample15 -0.0085337319 -0.0086954581 sample16 -0.0783146765 0.1581334546 sample17 0.1483610685 0.0638580071 sample18 0.0963084380 0.0556689030 sample19 0.0217243036 -0.0720129744 sample20 0.0635633885 -0.0779609059 sample21 0.0201844078 0.1566381696 sample22 -0.0218273938 -0.0764054635 sample23 -0.0852039015 -0.0032766865 sample24 0.1287181697 0.1924423457 sample25 0.0430575653 -0.0456640561 sample26 0.1453899821 0.0541457625 sample27 0.0197483522 -0.1185591271 sample28 0.1025339479 0.0650654665 sample29 -0.0706022548 -0.0682931260 sample30 0.1295622928 -0.0066675493 sample31 -0.1147449293 0.1232728262 sample32 0.0374308183 0.0380251356 sample33 -0.0599520839 0.0136937773 sample34 0.0984199286 0.0375365757 sample35 0.0543096407 -0.0378033398 sample36 -0.1403628045 -0.0343636114 sample37 -0.0228947726 -0.0732685836 sample38 0.0222072930 -0.0962566391 sample39 0.0941739224 0.0215180109 sample40 -0.0643807133 -0.0687716201 sample41 0.0327634905 -0.1232187192 sample42 0.0500431620 -0.0292514935 sample43 0.0184497160 0.0233045183 sample44 -0.1487889184 0.1171206428 sample45 0.1050778876 0.1123138797 sample46 0.1151191517 -0.1093994935 sample47 0.0962591490 -0.0288416786 sample48 -0.0004832558 -0.0310381922 sample49 -0.1135203779 0.1213935470 sample50 0.0123549818 -0.1740763210 sample51 -0.0550527371 0.1258931983 sample52 -0.0499118416 0.0728581960 sample53 -0.1119772625 0.1588065653 sample54 0.0360055728 0.0228585800 sample55 -0.0210418824 0.0006751247 sample56 0.0434171549 0.0633131402 sample57 -0.0197820593 0.1150755110 sample58 -0.0030440707 0.0326128283 sample59 -0.0500256778 0.0129524242 sample60 -0.0184280081 0.0136221770 sample61 -0.0150298891 0.0635098895 sample62 0.0304758668 -0.0201233977 sample63 -0.1102250083 0.1285968366 sample64 -0.1552586805 0.0971185879 sample65 0.0058503822 0.0207102480 sample66 0.0025607515 0.0424283514 sample67 -0.1546638698 -0.0661574640 sample68 -0.0536374334 -0.0923602087 sample69 -0.0640333052 0.0082004427 sample70 -0.0163521833 -0.0663227092 sample71 0.0102536065 -0.1345966122 sample72 0.0654191693 -0.0196034128 sample73 0.1048553194 0.0221001730 sample74 -0.0123800514 0.0586157976 sample75 -0.0392079775 -0.0209725374 sample76 -0.0648954581 -0.0524759583 sample77 -0.1172922641 -0.0201201002 sample78 0.1463072709 0.0708397577 sample79 -0.0265208827 -0.1603428560 sample80 -0.0279739266 -0.0214151781 sample81 -0.0079212181 -0.0738496738 sample82 0.1544234571 -0.0361450223 sample83 0.0494205323 -0.0049936109 sample84 0.0259039744 -0.0346592739 sample85 -0.1116487465 -0.0031401870 sample86 0.1306478991 -0.0377154499 sample87 0.0554777869 -0.0459739536 sample88 0.0301626609 0.0382206801 sample89 0.1016866197 0.0694079369 sample90 -0.0086821673 -0.0201324061 sample91 -0.1578629911 -0.2097790710 sample92 -0.0170933480 -0.1655939809 sample93 0.0979805056 -0.0121500084 sample94 -0.0131486275 -0.0114929313 sample95 -0.0315682482 -0.0758918648 sample96 -0.0024125865 -0.0470186507 sample97 -0.0634545830 0.0270302983 sample98 0.0359372507 -0.0135465854 sample99 0.1009167695 0.1124710878 sample100 -0.0551754111 0.0246502455 sample101 0.0080115892 -0.1627408051 sample102 0.0046451289 0.0095468812 sample103 0.0472520811 -0.0940383235 sample104 -0.0198157432 -0.0591148628 sample105 0.0400239018 -0.0160950255 sample106 0.0923810179 0.0369003477 sample107 0.1019372333 0.0224967665 sample108 0.0877091503 -0.0128850110 sample109 -0.0864820246 -0.0901084364 sample110 0.1223116496 -0.0096109122 sample111 -0.0257352435 -0.0936283920 sample112 0.0765285918 0.0270380131 sample113 -0.0258799796 0.0377436971 sample114 -0.0021141155 -0.0882040821 sample115 -0.0303455243 -0.0723738857 sample116 -0.0780504400 -0.0685164747 sample117 -0.0536894005 -0.0912028471 sample118 -0.0666649873 -0.0236261805 sample119 -0.1021872653 -0.2325005045 sample120 -0.0750216338 0.0243344816 sample121 0.0756937912 0.0942971131 sample122 0.0259632135 0.0731919510 sample123 0.1037844664 -0.0369178398 sample124 -0.0611205136 0.0421645209 sample125 0.0738472629 0.0066943933 sample126 -0.0972919188 0.0762700510 sample127 -0.0824699488 -0.0096644811 sample128 0.1249411585 0.0929252511 sample129 0.0734063633 -0.0434312517 sample130 0.0003500217 -0.0309857432 sample131 -0.0930184066 0.0155970946 sample132 -0.0736220576 0.0732970735 sample133 0.0498398363 -0.0462456464 sample134 -0.1644872596 0.0720048065 sample135 0.0752295008 0.0003870935 sample136 -0.0227150061 -0.0495468515 sample137 -0.0564721784 -0.0288859322 sample138 -0.0255986473 -0.0610932416 sample139 -0.0621218761 0.0235858790 sample140 0.0604148870 -0.0435530744 sample141 -0.0246743022 0.0532629783 sample142 0.0409563939 0.0316233086 sample143 0.0077356417 -0.0476909217 sample144 -0.0173241016 -0.0156786047 sample145 -0.0485467560 0.1202737179 sample146 -0.0419650072 -0.0811239930 sample147 0.0977304604 -0.0274769808 sample148 -0.0368253212 0.0803969169 sample149 0.0072864848 -0.1533017869 sample150 -0.1020825496 0.0624823714 sample151 -0.0305397139 -0.0289338493 sample152 0.0533595192 -0.0638335453 sample153 0.0891639654 0.1799450436 sample154 0.0727554337 -0.0834128672 sample155 0.0880665773 -0.0220769195 sample156 0.0276558789 -0.0326601114 sample157 0.1155031550 0.0183636051 sample158 0.0281506685 -0.0104911263 sample159 -0.0663233728 0.0443808922 sample160 0.0302644022 0.0404302194 sample161 -0.0114712910 -0.0591084598 sample162 0.1337091084 0.1398131510 sample163 -0.1330120671 0.1688769169 sample164 0.0150338182 0.0028374327 sample165 -0.0076518810 -0.0164146293 sample166 -0.0367791439 0.0630613017 sample167 -0.1111989841 0.0030066688 sample168 0.0672983017 0.0446266299 sample169 0.0413003625 0.0224448354 > discoRes@scores$dist[[1]] ## Distinctive scores for Block 1 1 2 sample1 -0.0420462544 0.0867866143 sample2 -0.0820849705 -0.0410968918 sample3 0.0155966415 -0.0195186212 sample4 -0.1001342712 -0.0410776476 sample5 -0.0153479690 -0.0253257768 sample6 0.0340238963 -0.0408223482 sample7 0.0722602471 0.0002324021 sample8 -0.0457619717 -0.0370007181 sample9 -0.0086216737 0.0820184513 sample10 -0.0423631253 -0.0083917738 sample11 0.0022593440 0.0787764172 sample12 0.0322075853 0.1479823348 sample13 -0.0293970426 -0.0306743045 sample14 0.0337430835 -0.0367508412 sample15 0.0815560055 0.1275613938 sample16 0.0508331615 0.0540604179 sample17 0.0062555095 0.0041024820 sample18 0.0705600814 -0.0351053335 sample19 -0.0476783450 -0.0509595374 sample20 0.0523027179 0.0715514213 sample21 -0.0119251267 -0.0376087300 sample22 0.0724458193 -0.0095634730 sample23 -0.0992529537 0.0134298867 sample24 -0.1595266080 0.0728683810 sample25 -0.0920660871 -0.0749749275 sample26 -0.0595567256 0.0848973563 sample27 0.0826577298 -0.0086747328 sample28 -0.0384833845 0.0440972619 sample29 0.0777740797 0.1735298653 sample30 0.1229474469 -0.0819018342 sample31 0.0579750350 -0.0238646966 sample32 0.0970365705 -0.0111435095 sample33 0.1017580221 -0.0630452503 sample34 0.0637902543 0.0377936234 sample35 0.0790003439 -0.0229732390 sample36 0.1224933255 -0.1274968262 sample37 0.1798847778 -0.1673447834 sample38 0.0466393950 0.0888153346 sample39 -0.0168694806 0.0421536020 sample40 0.1756418254 -0.1526662170 sample41 0.0042469580 0.0004924730 sample42 -0.0447825344 -0.0651501363 sample43 0.0482292032 -0.0253533518 sample44 -0.1986819597 -0.0545754095 sample45 -0.0741918296 0.0054714033 sample46 0.0478862300 -0.0007080195 sample47 0.0608216572 0.0481615529 sample48 -0.1381464785 0.0578300937 sample49 -0.0530630929 -0.1405523792 sample50 -0.0173646454 0.1602386326 sample51 0.0462456352 0.0303472889 sample52 0.0279995822 0.0280387760 sample53 0.0667498401 0.0237699989 sample54 0.0121811735 -0.0521354919 sample55 0.0182392180 0.0221326632 sample56 -0.0001309027 0.0030909208 sample57 0.0316574452 0.0530190492 sample58 0.0393891008 -0.0297801799 sample59 0.1278271441 -0.0546540532 sample60 0.1486964359 0.1069141894 sample61 0.0793067314 0.0569790361 sample62 0.1172821948 -0.0149211050 sample63 -0.0028813033 0.1300523972 sample64 0.0237295957 0.1073288273 sample65 -0.0126543741 0.0589810328 sample66 -0.0468233810 -0.0771066689 sample67 0.1494286112 -0.0769877267 sample68 0.0978023709 -0.0577363659 sample69 0.0403090486 0.0156038284 sample70 0.0221598072 0.0315436742 sample71 -0.0546329809 -0.0272394835 sample72 0.1107501141 -0.0537331272 sample73 0.0906756573 0.0579957937 sample74 0.0586513335 0.0121417432 sample75 0.0390512644 0.0349278260 sample76 -0.0022939256 -0.1676560046 sample77 -0.0232101129 -0.2067300942 sample78 -0.0929809868 -0.0434928079 sample79 -0.1619380575 -0.0378102423 sample80 0.0680392603 0.1424655981 sample81 -0.0530725382 -0.0358347616 sample82 0.0266850552 -0.0577449015 sample83 0.1517242136 -0.0448569976 sample84 -0.0570943117 -0.0273808460 sample85 0.1086271690 -0.1228130375 sample86 0.0833891749 -0.0442924691 sample87 0.0022040947 -0.0943908457 sample88 -0.0078276751 -0.1140504613 sample89 0.0611005811 -0.0094589420 sample90 0.0022941807 -0.0936254829 sample91 0.0433772989 0.3205972377 sample92 -0.1815217498 -0.0334666640 sample93 0.0267653999 0.0614425855 sample94 0.0181901439 0.0605088209 sample95 -0.0720314195 -0.0013040529 sample96 -0.0559672571 -0.0118787111 sample97 -0.0217420652 0.0195417175 sample98 0.0379199226 0.0588352812 sample99 -0.0792508368 -0.0151262540 sample100 0.0222100316 -0.0023322942 sample101 -0.0387084137 0.1224225372 sample102 -0.2094625952 -0.0516421025 sample103 0.0138558075 0.0301047754 sample104 -0.0807947915 -0.0162712396 sample105 -0.0520491659 -0.1229660369 sample106 -0.0192643025 -0.0185235217 sample107 0.0319014300 0.0405120600 sample108 -0.0140674174 0.0163422358 sample109 -0.1831856870 0.0613023638 sample110 -0.0292782596 -0.0199846482 sample111 -0.1423173632 0.0327352090 sample112 0.0426313216 -0.0029087048 sample113 -0.0771932240 0.0268742635 sample114 -0.0241567693 -0.0184080553 sample115 -0.1958956003 0.0460148524 sample116 -0.1394437202 -0.0530793545 sample117 -0.1672311361 -0.1386521994 sample118 -0.0448331537 -0.0117618005 sample119 -0.0910192457 0.2217435935 sample120 -0.0331404974 -0.0057270372 sample121 0.0307515935 0.1392506118 sample122 -0.0839838126 -0.0291983752 sample123 0.0239675598 -0.0642167331 sample124 -0.0909176584 0.0130430022 sample125 -0.0065362303 -0.1092631017 sample126 0.0935272754 0.1368276816 sample127 0.0035405834 0.0292755035 sample128 -0.0660350930 0.1018575657 sample129 0.0693671557 -0.0695430143 sample130 0.0008517473 -0.0669705339 sample131 0.0431011807 0.0174061009 sample132 -0.0637089518 0.0029383393 sample133 -0.0289464233 -0.0390817269 sample134 0.0446141302 0.0456332219 sample135 0.0712343760 0.0521627654 sample136 0.0596319001 0.0197291800 sample137 0.0793175865 -0.0380637199 sample138 -0.0973505017 -0.0454210122 sample139 0.0539865883 -0.1534332114 sample140 0.0850872493 0.0955804546 sample141 -0.0192724268 -0.0554446535 sample142 -0.0672294730 -0.0461313163 sample143 -0.0303706774 -0.0519258527 sample144 -0.0089350410 0.0145815380 sample145 -0.0638878249 0.0122268514 sample146 0.0585923424 0.0063075030 sample147 0.0894147141 -0.1124625694 sample148 -0.0216440434 -0.0615962525 sample149 -0.0515315033 -0.0839902731 sample150 0.0568228116 -0.0124472790 sample151 -0.0789513379 -0.0261823967 sample152 -0.0330692807 0.1306445046 sample153 -0.1752067295 0.1497755169 sample154 0.0421490591 -0.0037016989 sample155 0.0680199066 0.0095703586 sample156 0.0388950562 0.1057558019 sample157 0.0314764931 0.0561364660 sample158 0.0329630322 0.0353943647 sample159 -0.0398462032 -0.1007368366 sample160 0.0424905337 0.0108493025 sample161 -0.0888339747 -0.0679692830 sample162 -0.0027572316 0.1237848136 sample163 -0.0126231149 0.0725440678 sample164 -0.0566787219 -0.0458318332 sample165 -0.0315331454 -0.0236359595 sample166 -0.0612109864 -0.0425224935 sample167 0.0142729542 0.0179306992 sample168 -0.0169543415 -0.0769614921 sample169 0.0675063138 0.0131499086 > discoRes@scores$dist[[2]] ## Distinctive scores for Block 2 1 2 sample1 0.0012331686 0.1635715895 sample2 0.0724353275 0.0060221492 sample3 0.0188459931 0.1080029041 sample4 -0.0390143085 -0.0003106379 sample5 -0.1774810611 0.0299642960 sample6 0.0451446491 0.0345589917 sample7 0.0226463430 0.0070191906 sample8 0.1033684629 0.0098579723 sample9 -0.1350014262 -0.0897911439 sample10 -0.1259884370 0.0509793880 sample11 -0.0979790969 -0.0708656763 sample12 0.0863021000 0.0862032176 sample13 0.1381401858 -0.1827998062 sample14 0.0615074749 0.0264280805 sample15 -0.0381600628 0.0310159999 sample16 0.0048779431 -0.0012710073 sample17 0.0788483268 0.0154760717 sample18 0.0884189509 0.0379547710 sample19 -0.0703043502 0.1084002992 sample20 0.0025581280 -0.0797597175 sample21 -0.0941596548 0.0412689631 sample22 0.0550270810 0.0780661444 sample23 -0.0679492775 0.0410207821 sample24 0.1310969573 -0.1649281728 sample25 -0.0113583527 0.0442690087 sample26 0.1402948965 -0.0201645737 sample27 -0.0261566135 -0.0015899904 sample28 0.0724200826 -0.0585050853 sample29 0.0330054687 -0.0020621067 sample30 0.0228750294 0.0201534281 sample31 0.0635070444 0.0667036961 sample32 -0.0685100015 0.0495524562 sample33 0.0777764913 0.1272069987 sample34 -0.0157842084 0.0302431073 sample35 0.0529627853 -0.1500981221 sample36 -0.0070908100 -0.2025320838 sample37 0.0442411657 -0.1802109341 sample38 0.0781508317 0.0367629606 sample39 -0.0120330038 0.0338888439 sample40 0.0473283699 -0.1471581947 sample41 -0.0228192241 0.0267345618 sample42 0.0245361891 0.0796087794 sample43 -0.1036362004 0.0822957746 sample44 0.1012234897 -0.0704923654 sample45 -0.0013726596 0.0245107220 sample46 0.0558506390 -0.0029486048 sample47 0.0380478671 -0.0455423783 sample48 -0.0784340429 -0.0488889010 sample49 0.0605168151 0.0116247368 sample50 -0.0530082990 0.0273781081 sample51 -0.1514645334 -0.0567825876 sample52 -0.1860936023 -0.1246711051 sample53 0.0064179743 0.0270106118 sample54 -0.0697037547 0.0230841296 sample55 -0.1633577719 -0.0136643273 sample56 -0.1011483974 -0.0468213237 sample57 -0.1730374406 -0.1609593619 sample58 0.0071384891 0.0166695078 sample59 0.0030458415 -0.0300537722 sample60 -0.0215842316 -0.2665887408 sample61 -0.1510585366 -0.1002383778 sample62 0.0925531537 0.0484572609 sample63 0.0596315491 0.0413710991 sample64 0.0449227297 0.0026009647 sample65 -0.0939382227 0.0440695052 sample66 -0.1063397680 0.0571007942 sample67 0.0201580657 -0.2361746374 sample68 -0.0037208482 -0.0241854528 sample69 0.0645162000 0.1155617985 sample70 0.1013439732 0.1351779930 sample71 0.0016466076 0.0297677210 sample72 -0.0328895450 0.0283576997 sample73 -0.0275080402 0.0514815192 sample74 -0.1341718352 0.0789530316 sample75 -0.0951576668 0.0394314701 sample76 0.0864719921 -0.0303505421 sample77 0.1035749512 0.0254532485 sample78 0.1575647948 -0.0493947233 sample79 -0.0189138388 -0.0487469021 sample80 -0.1384142821 -0.0000431641 sample81 0.0118846669 0.0635790757 sample82 0.1675306619 -0.0353396928 sample83 0.0065671108 0.0781249560 sample84 -0.1486890640 0.0310909644 sample85 0.0532720276 -0.0741798973 sample86 0.1138474876 0.0000181892 sample87 -0.0432865974 -0.0608049961 sample88 -0.0433451196 -0.1402485863 sample89 -0.0331204785 0.0139542877 sample90 0.0607413489 0.0861038531 sample91 0.0566263580 -0.1303770421 sample92 0.0359580680 -0.1061604828 sample93 0.0433646453 0.0444360929 sample94 0.0477292133 0.1059570523 sample95 0.0249595927 0.0398050913 sample96 -0.0035217558 0.0929393117 sample97 0.0066052049 0.1527233711 sample98 -0.0020367076 0.0557951459 sample99 0.0886621830 0.0372837676 sample100 0.1091259607 0.0356040087 sample101 0.0739723781 0.0431788287 sample102 -0.0574455607 0.0278408877 sample103 -0.0142733797 -0.0097063665 sample104 -0.0710395583 -0.0406833053 sample105 -0.0980829911 0.0345299747 sample106 0.0254260519 -0.0362893198 sample107 0.0160655060 0.0917339833 sample108 0.0200988323 0.0237969902 sample109 0.0389781966 -0.0169231105 sample110 0.0326305264 -0.0298808636 sample111 -0.0676935910 0.0603824949 sample112 -0.0167883512 -0.0053369227 sample113 -0.0969213905 0.0275770455 sample114 0.0026397966 0.0920910097 sample115 0.0308049608 -0.0160374298 sample116 0.1240306394 -0.1272997789 sample117 -0.0334728628 -0.0539266130 sample118 0.1037152149 -0.0625243968 sample119 0.1064170480 -0.1196217517 sample120 0.0771357746 0.1004935053 sample121 0.0129352335 -0.0318191357 sample122 -0.0847487478 0.0556846588 sample123 0.0041335502 -0.0076935560 sample124 0.0583462270 0.0839647708 sample125 -0.0634843225 0.0523256822 sample126 0.0662582097 0.1091729718 sample127 0.0865025623 0.1094172399 sample128 0.0627822104 0.0147109531 sample129 0.0336274559 0.0400777361 sample130 0.0293518119 0.0804608619 sample131 0.0469196774 0.0022093782 sample132 0.0241745708 0.1248607954 sample133 -0.0907303804 -0.0146669771 sample134 0.0350841214 -0.0753965983 sample135 -0.0001334909 -0.0091858253 sample136 0.0335874776 0.0986018007 sample137 0.0640147237 0.0755437004 sample138 -0.0060964031 0.0174278285 sample139 0.0592082742 -0.0561500626 sample140 -0.0427988656 0.0109946415 sample141 -0.0618793224 0.0930110286 sample142 -0.0898552469 -0.0357332250 sample143 -0.0817391085 -0.0888052774 sample144 -0.0787754473 0.0382139508 sample145 -0.1085819468 -0.1569460395 sample146 0.0589554949 0.0437323487 sample147 0.0495327876 -0.0072780684 sample148 -0.1161590446 -0.0090781216 sample149 0.0121575452 -0.0778846331 sample150 0.0314511966 -0.0352021985 sample151 -0.0575380924 0.0194539297 sample152 0.0494540330 -0.0702556632 sample153 0.0941338642 -0.2153269394 sample154 0.0335928781 -0.0207882627 sample155 -0.0690459070 0.0278036060 sample156 -0.1039902324 0.0629248745 sample157 0.0408645841 -0.0080655292 sample158 -0.1018106361 -0.0078170250 sample159 0.0281732565 0.0120726094 sample160 -0.1643052863 -0.0029778074 sample161 -0.0374330084 -0.0852458829 sample162 0.0804538313 -0.0834963331 sample163 0.0743232457 0.0140634810 sample164 -0.1208804250 0.0213952481 sample165 -0.1608115952 -0.0202515846 sample166 0.0425947986 0.0266080205 sample167 0.0226849501 0.0446425740 sample168 0.0180737401 0.0007471653 sample169 -0.0190780228 -0.0264542687 > # Exploring O2PLS scores structure > o2plsRes@scores$common[[1]] ## Common scores for Block 1 [,1] [,2] sample1 -0.0572060227 -1.729087e-02 sample2 0.0875245208 1.112588e-02 sample3 0.0403482602 -3.168994e-02 sample4 -0.0218345996 4.052760e-06 sample5 -0.0150905011 4.795041e-03 sample6 -0.0924362933 4.511003e-02 sample7 -0.0793066751 -1.243823e-02 sample8 -0.1342997187 6.215220e-02 sample9 -0.0338886944 -1.854401e-02 sample10 0.0020547173 1.749421e-02 sample11 0.0037275602 -2.364116e-02 sample12 -0.0753094533 2.772698e-02 sample13 0.0856160091 3.679963e-02 sample14 -0.0737457307 2.668452e-02 sample15 -0.0062111746 -3.554864e-03 sample16 -0.0602355268 6.675115e-02 sample17 0.1086768843 2.524534e-02 sample18 0.0702999472 2.231671e-02 sample19 0.0173785882 -3.024846e-02 sample20 0.0484173812 -3.310904e-02 sample21 0.0124657042 6.517144e-02 sample22 -0.0140989936 -3.159137e-02 sample23 -0.0627028403 -5.393710e-04 sample24 0.0919972100 7.909297e-02 sample25 0.0326998483 -1.945206e-02 sample26 0.1064741246 2.120849e-02 sample27 0.0166058995 -4.964993e-02 sample28 0.0743504770 2.614211e-02 sample29 -0.0511008491 -2.782647e-02 sample30 0.0962250842 -3.974893e-03 sample31 -0.0869563008 5.250819e-02 sample32 0.0271858919 1.552005e-02 sample33 -0.0448364581 6.243160e-03 sample34 0.0718415218 1.469396e-02 sample35 0.0403086451 -1.632629e-02 sample36 -0.1036402827 -1.304320e-02 sample37 -0.0159385744 -3.036525e-02 sample38 0.0182198369 -4.034805e-02 sample39 0.0690363619 8.058350e-03 sample40 -0.0467312750 -2.810325e-02 sample41 0.0263674438 -5.171216e-02 sample42 0.0374578960 -1.268634e-02 sample43 0.0132336869 9.536642e-03 sample44 -0.1119154428 5.028683e-02 sample45 0.0759639367 4.587903e-02 sample46 0.0871885519 -4.670385e-02 sample47 0.0721490571 -1.288540e-02 sample48 0.0005086144 -1.290565e-02 sample49 -0.0858177028 5.173760e-02 sample50 0.0118992665 -7.276215e-02 sample51 -0.0426446855 5.306205e-02 sample52 -0.0381605826 3.086785e-02 sample53 -0.0855757630 6.730043e-02 sample54 0.0261723092 9.184260e-03 sample55 -0.0156418304 4.682404e-04 sample56 0.0307831193 2.597550e-02 sample57 -0.0157242103 4.829381e-02 sample58 -0.0031174404 1.359898e-02 sample59 -0.0373001859 5.868397e-03 sample60 -0.0142609099 5.831654e-03 sample61 -0.0122255144 2.663579e-02 sample62 0.0228002942 -8.692265e-03 sample63 -0.0833127581 5.473229e-02 sample64 -0.1166548159 4.196500e-02 sample65 0.0038808902 8.568590e-03 sample66 0.0011561811 1.766612e-02 sample67 -0.1129311062 -2.608702e-02 sample68 -0.0382526429 -3.804045e-02 sample69 -0.0476502440 4.003241e-03 sample70 -0.0110329882 -2.752719e-02 sample71 0.0096850282 -5.627056e-02 sample72 0.0487124704 -8.800131e-03 sample73 0.0773058132 8.239864e-03 sample74 -0.0102488176 2.454957e-02 sample75 -0.0286613976 -8.387293e-03 sample76 -0.0472655595 -2.129315e-02 sample77 -0.0865043074 -7.296820e-03 sample78 0.1070293698 2.818346e-02 sample79 -0.0165060681 -6.659721e-02 sample80 -0.0206765949 -8.712112e-03 sample81 -0.0050943615 -3.079175e-02 sample82 0.1153622361 -1.647054e-02 sample83 0.0367979217 -2.538114e-03 sample84 0.0199463070 -1.468961e-02 sample85 -0.0827122185 -2.709824e-04 sample86 0.0969487314 -1.699897e-02 sample87 0.0421957457 -1.965953e-02 sample88 0.0215934743 1.566050e-02 sample89 0.0751559502 2.811652e-02 sample90 -0.0057328000 -8.283795e-03 sample91 -0.1134005268 -8.603522e-02 sample92 -0.0101689918 -6.894992e-02 sample93 0.0725967502 -6.003176e-03 sample94 -0.0096878852 -4.693081e-03 sample95 -0.0223502239 -3.139636e-02 sample96 -0.0013232863 -1.963604e-02 sample97 -0.0476541710 1.183660e-02 sample98 0.0269546160 -5.978398e-03 sample99 0.0728179461 4.597884e-02 sample100 -0.0413398038 1.079347e-02 sample101 0.0087536994 -6.796076e-02 sample102 0.0032509529 3.932612e-03 sample103 0.0360342395 -3.973263e-02 sample104 -0.0141722563 -2.453107e-02 sample105 0.0294940465 -7.140722e-03 sample106 0.0686472054 1.462895e-02 sample107 0.0748635927 8.401339e-03 sample108 0.0650175850 -6.211942e-03 sample109 -0.0628017242 -3.681224e-02 sample110 0.0905513691 -5.169053e-03 sample111 -0.0176679473 -3.884777e-02 sample112 0.0570870472 1.066018e-02 sample113 -0.0200110554 1.596044e-02 sample114 -0.0001474542 -3.679272e-02 sample115 -0.0213333038 -2.991667e-02 sample116 -0.0567675453 -2.785636e-02 sample117 -0.0379865990 -3.752078e-02 sample118 -0.0484878786 -9.173691e-03 sample119 -0.0713511831 -9.598634e-02 sample120 -0.0555093586 1.089843e-02 sample121 0.0542443861 3.861344e-02 sample122 0.0178575357 3.027138e-02 sample123 0.0775020581 -1.636852e-02 sample124 -0.0460701050 1.814758e-02 sample125 0.0543846585 2.075898e-03 sample126 -0.0729417144 3.276659e-02 sample127 -0.0609509157 -3.270814e-03 sample128 0.0908136899 3.758801e-02 sample129 0.0552445878 -1.879062e-02 sample130 0.0007128089 -1.294308e-02 sample131 -0.0693311345 7.357082e-03 sample132 -0.0556565156 3.126995e-02 sample133 0.0375870104 -1.977240e-02 sample134 -0.1229130924 3.159495e-02 sample135 0.0555550315 -5.563250e-04 sample136 -0.0159768414 -2.046339e-02 sample137 -0.0412337694 -1.151652e-02 sample138 -0.0180604476 -2.526505e-02 sample139 -0.0465649201 1.040683e-02 sample140 0.0452288969 -1.876279e-02 sample141 -0.0189142561 2.247042e-02 sample142 0.0297545566 1.280524e-02 sample143 0.0064292003 -1.997706e-02 sample144 -0.0124284903 -6.369733e-03 sample145 -0.0377141491 5.066743e-02 sample146 -0.0296240067 -3.344465e-02 sample147 0.0726083535 -1.239968e-02 sample148 -0.0284795794 3.389732e-02 sample149 0.0082261455 -6.399305e-02 sample150 -0.0765013197 2.704021e-02 sample151 -0.0220567356 -1.178159e-02 sample152 0.0403422737 -2.714879e-02 sample153 0.0629117719 7.425085e-02 sample154 0.0551622927 -3.548984e-02 sample155 0.0654439133 -1.005306e-02 sample156 0.0209310714 -1.390213e-02 sample157 0.0851522597 6.577150e-03 sample158 0.0208354599 -4.663078e-03 sample159 -0.0498794349 1.913257e-02 sample160 0.0216074437 1.656579e-02 sample161 -0.0075742328 -2.455676e-02 sample162 0.0963663017 5.705881e-02 sample163 -0.1009542191 7.174224e-02 sample164 0.0109881996 1.026806e-03 sample165 -0.0053146157 -6.772855e-03 sample166 -0.0275757357 2.673084e-02 sample167 -0.0825048036 2.278863e-03 sample168 0.0486147429 1.793843e-02 sample169 0.0302506727 8.984253e-03 > o2plsRes@scores$common[[2]] ## Common scores for Block 2 [,1] [,2] sample1 -0.0621842115 -1.364509e-02 sample2 0.0944623785 9.720892e-03 sample3 0.0406196267 -2.236338e-02 sample4 -0.0229316496 -3.932487e-04 sample5 -0.0157330047 3.231033e-03 sample6 -0.0945794025 3.120720e-02 sample7 -0.0854427118 -1.052880e-02 sample8 -0.1376625920 4.286608e-02 sample9 -0.0377115311 -1.415134e-02 sample10 0.0035244506 1.280825e-02 sample11 0.0016639987 -1.717895e-02 sample12 -0.0781403168 1.884368e-02 sample13 0.0938400516 2.838858e-02 sample14 -0.0759839772 1.810989e-02 sample15 -0.0068340837 -2.705361e-03 sample16 -0.0590150849 4.757848e-02 sample17 0.1178805097 2.040526e-02 sample18 0.0767858320 1.756604e-02 sample19 0.0157112113 -2.172867e-02 sample20 0.0485318300 -2.327033e-02 sample21 0.0185928176 4.777095e-02 sample22 -0.0191358702 -2.329775e-02 sample23 -0.0672994194 -1.535656e-03 sample24 0.1047476642 5.935707e-02 sample25 0.0329844953 -1.358036e-02 sample26 0.1154952052 1.741529e-02 sample27 0.0133849853 -3.590922e-02 sample28 0.0821554039 2.042376e-02 sample29 -0.0567643690 -2.123848e-02 sample30 0.1016073931 -1.134728e-03 sample31 -0.0880396372 3.670548e-02 sample32 0.0300363338 1.182406e-02 sample33 -0.0467252272 3.739254e-03 sample34 0.0783666394 1.203777e-02 sample35 0.0424227097 -1.118559e-02 sample36 -0.1107646166 -1.143464e-02 sample37 -0.0191667664 -2.246060e-02 sample38 0.0155968095 -2.909621e-02 sample39 0.0746847148 7.148218e-03 sample40 -0.0517028178 -2.137267e-02 sample41 0.0234979494 -3.723018e-02 sample42 0.0388797356 -8.557228e-03 sample43 0.0149555568 7.210002e-03 sample44 -0.1150305613 3.461805e-02 sample45 0.0846146236 3.486020e-02 sample46 0.0884426404 -3.246853e-02 sample47 0.0748644971 -8.083045e-03 sample48 -0.0012033198 -9.403647e-03 sample49 -0.0872662737 3.616245e-02 sample50 0.0066941314 -5.284863e-02 sample51 -0.0411777630 3.791830e-02 sample52 -0.0379355780 2.180834e-02 sample53 -0.0851639886 4.751761e-02 sample54 0.0288006248 7.184424e-03 sample55 -0.0164920835 5.919925e-05 sample56 0.0355115616 1.951043e-02 sample57 -0.0141146068 3.492409e-02 sample58 -0.0015636132 9.862883e-03 sample59 -0.0390656483 3.590929e-03 sample60 -0.0139454780 3.963030e-03 sample61 -0.0106410274 1.919705e-02 sample62 0.0236748439 -5.922677e-03 sample63 -0.0846790877 3.839102e-02 sample64 -0.1202581015 2.846469e-02 sample65 0.0050548584 6.328644e-03 sample66 0.0028013072 1.291807e-02 sample67 -0.1231623009 -2.112565e-02 sample68 -0.0437782161 -2.845072e-02 sample69 -0.0501199692 2.053469e-03 sample70 -0.0140278645 -2.027157e-02 sample71 0.0057489505 -4.085977e-02 sample72 0.0511212704 -5.522408e-03 sample73 0.0828141409 7.431582e-03 sample74 -0.0085959456 1.772951e-02 sample75 -0.0312180394 -6.636869e-03 sample76 -0.0519051781 -1.640191e-02 sample77 -0.0925924762 -6.907800e-03 sample78 0.1163971046 2.251122e-02 sample79 -0.0240906926 -4.887766e-02 sample80 -0.0221327065 -6.730703e-03 sample81 -0.0072114968 -2.254399e-02 sample82 0.1204416674 -9.907422e-03 sample83 0.0386739485 -1.171663e-03 sample84 0.0195988488 -1.033806e-02 sample85 -0.0877680171 -1.725057e-03 sample86 0.1023541048 -1.062501e-02 sample87 0.0425213089 -1.356865e-02 sample88 0.0244788514 1.180820e-02 sample89 0.0804276691 2.188588e-02 sample90 -0.0074639871 -6.140721e-03 sample91 -0.1278832404 -6.485140e-02 sample92 -0.0162199697 -5.048358e-02 sample93 0.0769344893 -3.045135e-03 sample94 -0.0104345587 -3.593172e-03 sample95 -0.0260058453 -2.330475e-02 sample96 -0.0025018700 -1.433516e-02 sample97 -0.0492358305 7.774183e-03 sample98 0.0279220220 -3.862141e-03 sample99 0.0813921923 3.487339e-02 sample100 -0.0428797405 7.112807e-03 sample101 0.0032855240 -4.940743e-02 sample102 0.0038439317 2.938008e-03 sample103 0.0358511139 -2.831881e-02 sample104 -0.0162784000 -1.815061e-02 sample105 0.0314853405 -4.656633e-03 sample106 0.0726456731 1.192390e-02 sample107 0.0807342975 7.508627e-03 sample108 0.0688338003 -3.336161e-03 sample109 -0.0694151950 -2.800146e-02 sample110 0.0961218924 -2.111997e-03 sample111 -0.0217900036 -2.864702e-02 sample112 0.0599954082 8.820317e-03 sample113 -0.0195006577 1.128215e-02 sample114 -0.0032126533 -2.682851e-02 sample115 -0.0251101087 -2.221077e-02 sample116 -0.0625141551 -2.137258e-02 sample117 -0.0440473375 -2.806256e-02 sample118 -0.0532042630 -7.590494e-03 sample119 -0.0848603028 -7.133574e-02 sample120 -0.0588832131 6.937326e-03 sample121 0.0613899126 2.915307e-02 sample122 0.0218424338 2.241775e-02 sample123 0.0809008460 -1.051759e-02 sample124 -0.0472109313 1.239887e-02 sample125 0.0583180947 2.521167e-03 sample126 -0.0753941872 2.256455e-02 sample127 -0.0649774209 -3.496964e-03 sample128 0.1000212216 2.908091e-02 sample129 0.0568033049 -1.269016e-02 sample130 -0.0002370832 -9.419675e-03 sample131 -0.0727030877 4.091672e-03 sample132 -0.0566219024 2.179861e-02 sample133 0.0384172955 -1.372840e-02 sample134 -0.1280862736 2.077912e-02 sample135 0.0592633273 6.106685e-04 sample136 -0.0187635410 -1.521173e-02 sample137 -0.0449958970 -9.152840e-03 sample138 -0.0211348699 -1.875415e-02 sample139 -0.0482882861 6.729304e-03 sample140 0.0468926306 -1.285498e-02 sample141 -0.0186248693 1.605439e-02 sample142 0.0328031246 9.887746e-03 sample143 0.0052919839 -1.445666e-02 sample144 -0.0140067923 -4.867248e-03 sample145 -0.0361804310 3.625323e-02 sample146 -0.0345286735 -2.493652e-02 sample147 0.0765025670 -7.714769e-03 sample148 -0.0276016641 2.420589e-02 sample149 0.0027545308 -4.653007e-02 sample150 -0.0792296010 1.831289e-02 sample151 -0.0245894512 -8.991738e-03 sample152 0.0409796547 -1.907063e-02 sample153 0.0734301757 5.528780e-02 sample154 0.0557740684 -2.487723e-02 sample155 0.0689436560 -6.127635e-03 sample156 0.0212272938 -9.747423e-03 sample157 0.0911931194 6.355708e-03 sample158 0.0220840645 -3.016357e-03 sample159 -0.0513244242 1.304175e-02 sample160 0.0246213576 1.248444e-02 sample161 -0.0100369130 -1.805391e-02 sample162 0.1078802043 4.337260e-02 sample163 -0.1017965082 5.047171e-02 sample164 0.0119430799 9.593002e-04 sample165 -0.0063708014 -5.032148e-03 sample166 -0.0283181180 1.899222e-02 sample167 -0.0872832229 1.516582e-04 sample168 0.0540714512 1.397701e-02 sample169 0.0328432652 7.104347e-03 > o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1 [,1] [,2] sample1 0.0133684846 2.195848e-02 sample2 0.0254157197 -1.058416e-02 sample3 -0.0049551479 -4.840017e-03 sample4 0.0310390570 -1.063929e-02 sample5 0.0046941318 -6.488426e-03 sample6 -0.0107406753 -1.026702e-02 sample7 -0.0225157631 2.624712e-04 sample8 0.0141320952 -9.505821e-03 sample9 0.0029681280 2.078210e-02 sample10 0.0131729174 -2.275042e-03 sample11 -0.0004164298 1.994019e-02 sample12 -0.0095211620 3.759883e-02 sample13 0.0091018604 -7.953956e-03 sample14 -0.0106557524 -9.181659e-03 sample15 -0.0249924121 3.262724e-02 sample16 -0.0156216400 1.375700e-02 sample17 -0.0019382446 1.073994e-03 sample18 -0.0221072481 -8.703592e-03 sample19 0.0146917619 -1.311712e-02 sample20 -0.0160353760 1.826290e-02 sample21 0.0035947899 -9.616341e-03 sample22 -0.0225060762 -2.532589e-03 sample23 0.0310000683 3.033060e-03 sample24 0.0499544372 1.809450e-02 sample25 0.0284442301 -1.932558e-02 sample26 0.0188220043 2.146985e-02 sample27 -0.0257763219 -1.999228e-03 sample28 0.0120888648 1.125834e-02 sample29 -0.0236482520 4.426726e-02 sample30 -0.0385486305 -2.055935e-02 sample31 -0.0181539336 -5.877838e-03 sample32 -0.0302630460 -2.607192e-03 sample33 -0.0319565715 -1.562628e-02 sample34 -0.0197970124 9.906813e-03 sample35 -0.0247412713 -5.434440e-03 sample36 -0.0386259060 -3.190394e-02 sample37 -0.0566199273 -4.192574e-02 sample38 -0.0142060273 2.259644e-02 sample39 0.0053589035 1.076485e-02 sample40 -0.0552546493 -3.819896e-02 sample41 -0.0013089975 9.278818e-05 sample42 0.0137252142 -1.664652e-02 sample43 -0.0151259626 -6.290953e-03 sample44 0.0617391754 -1.442883e-02 sample45 0.0231410886 1.163143e-03 sample46 -0.0148898209 -1.384176e-04 sample47 -0.0187252536 1.221690e-02 sample48 0.0432839432 1.416671e-02 sample49 0.0160818605 -3.588745e-02 sample50 0.0059333545 4.067003e-02 sample51 -0.0142914866 7.776270e-03 sample52 -0.0086339952 7.208917e-03 sample53 -0.0207386980 6.272432e-03 sample54 -0.0039856719 -1.316934e-02 sample55 -0.0056217017 5.692315e-03 sample56 0.0000123292 8.978290e-04 sample57 -0.0095805555 1.324253e-02 sample58 -0.0124160295 -7.326376e-03 sample59 -0.0400195442 -1.349736e-02 sample60 -0.0460063358 2.770091e-02 sample61 -0.0245266456 1.470710e-02 sample62 -0.0366022783 -3.437352e-03 sample63 0.0013742171 3.288796e-02 sample64 -0.0070599859 2.739588e-02 sample65 0.0041201911 1.498268e-02 sample66 0.0143173351 -1.968812e-02 sample67 -0.0467477531 -1.929938e-02 sample68 -0.0306751978 -1.436184e-02 sample69 -0.0125317217 4.130407e-03 sample70 -0.0068071487 8.080857e-03 sample71 0.0169170264 -7.027348e-03 sample72 -0.0346909749 -1.333770e-02 sample73 -0.0280506153 1.493843e-02 sample74 -0.0182611498 3.294697e-03 sample75 -0.0120563964 8.974612e-03 sample76 0.0001437236 -4.253184e-02 sample77 0.0065330299 -5.252886e-02 sample78 0.0288278141 -1.127782e-02 sample79 0.0503961481 -1.023318e-02 sample80 -0.0207693429 3.648391e-02 sample81 0.0163562768 -9.074596e-03 sample82 -0.0084317129 -1.478976e-02 sample83 -0.0474097918 -1.103126e-02 sample84 0.0177181395 -7.191197e-03 sample85 -0.0342718548 -3.082360e-02 sample86 -0.0261671791 -1.089491e-02 sample87 -0.0009486358 -2.411514e-02 sample88 0.0020528931 -2.894615e-02 sample89 -0.0189361111 -2.638639e-03 sample90 -0.0009863658 -2.390075e-02 sample91 -0.0124352695 8.153234e-02 sample92 0.0564264106 -8.909537e-03 sample93 -0.0081461774 1.570851e-02 sample94 -0.0054896581 1.547251e-02 sample95 0.0224073150 -4.374348e-04 sample96 0.0173528924 -3.050441e-03 sample97 0.0067948115 5.008237e-03 sample98 -0.0116030825 1.498764e-02 sample99 0.0246422688 -4.054795e-03 sample100 -0.0069420745 -4.846343e-04 sample101 0.0124923691 3.091503e-02 sample102 0.0650835386 -1.367400e-02 sample103 -0.0042741828 7.855985e-03 sample104 0.0250591040 -4.171938e-03 sample105 0.0157516368 -3.121990e-02 sample106 0.0060593853 -5.101693e-03 sample107 -0.0098329626 1.044506e-02 sample108 0.0044269853 4.142036e-03 sample109 0.0572473486 1.517542e-02 sample110 0.0090474827 -5.119868e-03 sample111 0.0444263015 7.983232e-03 sample112 -0.0131765484 -9.696342e-04 sample113 0.0241047399 6.706740e-03 sample114 0.0074558775 -4.728652e-03 sample115 0.0611851433 1.117210e-02 sample116 0.0432646951 -1.380556e-02 sample117 0.0516750066 -3.575617e-02 sample118 0.0139942100 -3.279138e-03 sample119 0.0291722987 5.587946e-02 sample120 0.0103515853 -1.690016e-03 sample121 -0.0091396331 3.552116e-02 sample122 0.0260431679 -7.583975e-03 sample123 -0.0076666389 -1.628489e-02 sample124 0.0283466326 3.127845e-03 sample125 0.0016472378 -2.770692e-02 sample126 -0.0286529417 3.489336e-02 sample127 -0.0010224500 7.483214e-03 sample128 0.0209049296 2.572016e-02 sample129 -0.0218184878 -1.755347e-02 sample130 -0.0005009620 -1.697978e-02 sample131 -0.0134032968 4.637390e-03 sample132 0.0198526786 5.723983e-04 sample133 0.0088812957 -9.988115e-03 sample134 -0.0137484514 1.172591e-02 sample135 -0.0220314568 1.347465e-02 sample136 -0.0185173353 5.168079e-03 sample137 -0.0248352123 -9.472788e-03 sample138 0.0301635767 -1.175283e-02 sample139 -0.0173576929 -3.872592e-02 sample140 -0.0262157762 2.456863e-02 sample141 0.0058369763 -1.420854e-02 sample142 0.0207886071 -1.188764e-02 sample143 0.0092832598 -1.324238e-02 sample144 0.0028442140 3.627979e-03 sample145 0.0199749569 2.862202e-03 sample146 -0.0182236697 1.726556e-03 sample147 -0.0282519995 -2.825595e-02 sample148 0.0065435868 -1.572917e-02 sample149 0.0158233820 -2.159451e-02 sample150 -0.0177383738 -3.020633e-03 sample151 0.0245166984 -6.888241e-03 sample152 0.0107259913 3.314630e-02 sample153 0.0550963965 3.758760e-02 sample154 -0.0131452472 -8.153903e-04 sample155 -0.0211742574 2.642246e-03 sample156 -0.0117803505 2.698265e-02 sample157 -0.0096167165 1.433840e-02 sample158 -0.0101754772 9.137620e-03 sample159 0.0120662931 -2.565236e-02 sample160 -0.0132238202 2.916023e-03 sample161 0.0274491966 -1.748284e-02 sample162 0.0012482909 3.152261e-02 sample163 0.0042031315 1.830701e-02 sample164 0.0174896157 -1.175915e-02 sample165 0.0097517662 -6.119019e-03 sample166 0.0190134679 -1.121582e-02 sample167 -0.0044140836 4.665585e-03 sample168 0.0049689168 -1.941822e-02 sample169 -0.0209802098 3.498729e-03 > o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2 [,1] [,2] sample1 -0.0515543627 -0.0305856787 sample2 -0.0144993256 0.0236342950 sample3 -0.0371833108 -0.0140263348 sample4 0.0068945388 -0.0132539692 sample5 0.0215035333 -0.0663338101 sample6 -0.0187055152 0.0088773016 sample7 -0.0061521552 0.0064029054 sample8 -0.0210874459 0.0334652901 sample9 0.0516865043 -0.0291142799 sample10 0.0059440366 -0.0527217447 sample11 0.0393010793 -0.0200624712 sample12 -0.0420837100 0.0131331362 sample13 0.0333252565 0.0818552509 sample14 -0.0190062644 0.0160202175 sample15 -0.0030968049 -0.0189230681 sample16 -0.0004452158 0.0018880102 sample17 -0.0185848615 0.0240170131 sample18 -0.0273093598 0.0230213640 sample19 -0.0217761111 -0.0445894441 sample20 0.0245820821 0.0159812738 sample21 0.0034527644 -0.0400016054 sample22 -0.0340789054 0.0039289109 sample23 -0.0010344929 -0.0310161212 sample24 0.0289468503 0.0760962436 sample25 -0.0119098496 -0.0122798760 sample26 -0.0181001057 0.0517892852 sample27 0.0050465417 -0.0086515844 sample28 0.0057491502 0.0358830107 sample29 -0.0051104246 0.0116605117 sample30 -0.0103085904 0.0039678538 sample31 -0.0319929858 0.0090606113 sample32 -0.0036232521 -0.0328202010 sample33 -0.0534742153 0.0024751837 sample34 -0.0067495749 -0.0111000311 sample35 0.0378745721 0.0465929296 sample36 0.0647886800 0.0359987924 sample37 0.0488441236 0.0492906912 sample38 -0.0251514062 0.0197110110 sample39 -0.0085428066 -0.0105117852 sample40 0.0379324087 0.0440810741 sample41 -0.0044199152 -0.0128820644 sample42 -0.0292553573 -0.0067045265 sample43 -0.0077829155 -0.0510178219 sample44 0.0045122248 0.0479660309 sample45 -0.0074444298 -0.0051116726 sample46 -0.0088025512 0.0196186661 sample47 0.0076696301 0.0215947965 sample48 0.0290108585 -0.0175568376 sample49 -0.0141754858 0.0184717099 sample50 0.0006282201 -0.0233054373 sample51 0.0441995177 -0.0410022921 sample52 0.0715329391 -0.0399499475 sample53 -0.0095954087 -0.0029140909 sample54 0.0048933768 -0.0281884386 sample55 0.0327325487 -0.0532290012 sample56 0.0323068984 -0.0256595538 sample57 0.0806603122 -0.0286748097 sample58 -0.0064792049 -0.0006945349 sample59 0.0088958941 0.0067389649 sample60 0.0874124612 0.0431964341 sample61 0.0577604571 -0.0326112099 sample62 -0.0313318464 0.0224391756 sample63 -0.0233625220 0.0125110562 sample64 -0.0086426068 0.0148770341 sample65 0.0025256193 -0.0404466327 sample66 0.0006014071 -0.0471576264 sample67 0.0706087042 0.0516228406 sample68 0.0082301011 0.0033109509 sample69 -0.0475076743 0.0001452708 sample70 -0.0600773716 0.0089986962 sample71 -0.0096321627 -0.0050761187 sample72 -0.0031773546 -0.0166221542 sample73 -0.0113700517 -0.0191726684 sample74 -0.0014179662 -0.0608101325 sample75 0.0041911740 -0.0399981269 sample76 -0.0055326449 0.0353114263 sample77 -0.0260214459 0.0305731380 sample78 -0.0119267436 0.0632236007 sample79 0.0186017239 0.0027402910 sample80 0.0241047889 -0.0472697181 sample81 -0.0220288317 -0.0079577210 sample82 -0.0180751258 0.0639051029 sample83 -0.0256671713 -0.0125898269 sample84 0.0161392598 -0.0567222449 sample85 0.0139988188 0.0322763454 sample86 -0.0198382995 0.0389225776 sample87 0.0266270281 -0.0032979996 sample88 0.0515677078 0.0117902495 sample89 0.0014022125 -0.0140510488 sample90 -0.0375949749 0.0044004551 sample91 0.0310397965 0.0440610926 sample92 0.0270570567 0.0324380452 sample93 -0.0215009202 0.0063993941 sample94 -0.0415702912 -0.0037692077 sample95 -0.0168416047 0.0010019120 sample96 -0.0285582661 -0.0187991000 sample97 -0.0490843868 -0.0266760748 sample98 -0.0171579033 -0.0112897471 sample99 -0.0271316525 0.0232395583 sample100 -0.0301789816 0.0305498693 sample101 -0.0264371151 0.0170723968 sample102 0.0012767734 -0.0248949597 sample103 0.0055214687 -0.0030040587 sample104 0.0251346074 -0.0165212671 sample105 0.0062424215 -0.0400309901 sample106 0.0069768684 0.0154982315 sample107 -0.0315912602 -0.0118883820 sample108 -0.0109690679 0.0023637162 sample109 -0.0014762845 0.0165583675 sample110 0.0036971063 0.0168260726 sample111 -0.0071624739 -0.0345651461 sample112 0.0046098120 -0.0048009350 sample113 0.0082236008 -0.0383233357 sample114 -0.0293642209 -0.0165595240 sample115 -0.0003260453 0.0135805368 sample116 0.0183575759 0.0665377581 sample117 0.0227640036 -0.0012287760 sample118 0.0015695248 0.0472617382 sample119 0.0190084932 0.0590034062 sample120 -0.0449645755 0.0072755697 sample121 0.0077307184 0.0104738937 sample122 -0.0027132063 -0.0394983138 sample123 0.0016959300 0.0028593594 sample124 -0.0365091615 0.0040382925 sample125 -0.0053658663 -0.0316029164 sample126 -0.0458032408 0.0019165544 sample127 -0.0494064872 0.0088209044 sample128 -0.0155454766 0.0186819802 sample129 -0.0184340400 0.0038684312 sample130 -0.0303640987 -0.0052225766 sample131 -0.0088697422 0.0156339713 sample132 -0.0433916471 -0.0154075483 sample133 0.0204029276 -0.0282209049 sample134 0.0175513332 0.0262883962 sample135 0.0029009925 0.0017003151 sample136 -0.0367997573 -0.0072249751 sample137 -0.0348600323 0.0075400273 sample138 -0.0044063824 -0.0053752428 sample139 0.0073103935 0.0308956174 sample140 0.0039925654 -0.0167019605 sample141 -0.0184093462 -0.0387953445 sample142 0.0268670676 -0.0239229634 sample143 0.0421049126 -0.0110888235 sample144 0.0017253664 -0.0341766012 sample145 0.0681741320 -0.0073526377 sample146 -0.0239965222 0.0118396767 sample147 -0.0063453522 0.0183130585 sample148 0.0230825251 -0.0379753037 sample149 0.0223298673 0.0188909118 sample150 0.0055709108 0.0174179009 sample151 0.0039177786 -0.0233533275 sample152 0.0134325667 0.0302344591 sample153 0.0511990309 0.0730230140 sample154 0.0006698324 0.0154177486 sample155 0.0032926626 -0.0288651601 sample156 -0.0016463495 -0.0474657733 sample157 -0.0045857599 0.0154934573 sample158 0.0201775524 -0.0332982124 sample159 -0.0086909001 0.0073496711 sample160 0.0295437331 -0.0555734536 sample161 0.0332754288 0.0033779619 sample162 0.0121954537 0.0433540412 sample163 -0.0173490933 0.0227219128 sample164 0.0143374783 -0.0453542590 sample165 0.0343612593 -0.0511194536 sample166 -0.0157536004 0.0094621170 sample167 -0.0179654624 -0.0006982358 sample168 -0.0033829919 0.0060747155 sample169 0.0116231468 -0.0015112800 > > ## 3.3 Plotting VAF > > # DISCO-SCA plotVAF > plotVAF(discoRes) > > # JIVE plotVAF > plotVAF(jiveRes) > > > ######################### > ## PART 4. Plot Results > > # Scores for common part. DISCO-SCA > plotRes(object=discoRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > > # Scores for common part. JIVE > plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > > # Scores for common part. O2PLS. > p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for common part. O2PLS. > plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common", + combined=TRUE,block=NULL,color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > > # Scores for distinctive part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for distinctive part. DISCO-SCA > plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual", + combined=TRUE,block=NULL,color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block) > p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for common and distinctive part. DISCO (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Loadings for common part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > # Loadings for distinctive part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > # Combined plot for loadings from common and distinctive part (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > > ## Plot scores and loadings togheter: Common components DISCO-SCA > p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > ## Plot scores and loadings togheter: Common components O2PLS > p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > ## Plot scores and loadings togheter: Distintive components DISCO-SCA > p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > > > proc.time() user system elapsed 11.71 0.39 12.07 |
STATegRa.Rcheck/tests_x64/STATEgRa_Example.omicsPCA.Rout R version 4.1.3 (2022-03-10) -- "One Push-Up" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ########################################### > ########### EXAMPLE OF THE OMICSPCA > ########################################### > require(STATegRa) Loading required package: STATegRa > > # g_legend (not exported by STATegRa any more) > ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs > g_legend<-function(a.gplot){ + tmp <- ggplot_gtable(ggplot_build(a.gplot)) + leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box") + legend <- tmp$grobs[[leg]] + return(legend)} > > ######################### > ## PART 1. Load data > > ## Load data > data(STATegRa_S3) > > ls() [1] "Block1.PCA" "Block2.PCA" "ed.PCA" "g_legend" > > ## Create ExpressionSets > # Block1 - Expression data > B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname")) > # Block2 - miRNA expression data > B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname")) > > ######################### > ## PART 2. Model Selection > > require(grid) Loading required package: grid > require(gridExtra) Loading required package: gridExtra > require(ggplot2) Loading required package: ggplot2 > > ## Select the optimal components > ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE) Common components [1] 2 Distinctive components [[1]] [1] 2 [[2]] [1] 2 > > > ######################### > ## PART 3. Component Analysis > > ## 3.1 Component analysis of the three methods > discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > > ## 3.2 Exploring scores structures > > # Exploring DISCO-SCA scores structure > discoRes@scores$common ## Common scores 1 2 sample1 -0.0781575678 0.0431548193 sample2 0.1192221315 -0.0294022709 sample3 0.0531408705 0.0746837807 sample4 -0.0292971859 0.0006033024 sample5 -0.0202090799 -0.0110455254 sample6 -0.1226088470 -0.1053492788 sample7 -0.1078931272 0.0322419835 sample8 -0.1782891223 -0.1449330873 sample9 -0.0468697275 0.0455171627 sample10 0.0036032607 -0.0420078082 sample11 0.0035566391 0.0566285110 sample12 -0.1006129698 -0.0641393815 sample13 0.1174412815 -0.0907475903 sample14 -0.0981203557 -0.0617763221 sample15 -0.0085337216 0.0086956872 sample16 -0.0783146852 -0.1581333055 sample17 0.1483610650 -0.0638580159 sample18 0.0963084425 -0.0556687328 sample19 0.0217243035 0.0720128312 sample20 0.0635634022 0.0779610581 sample21 0.0201843893 -0.1566381997 sample22 -0.0218273770 0.0764056484 sample23 -0.0852039135 0.0032764205 sample24 0.1287181367 -0.1924427924 sample25 0.0430575586 0.0456637896 sample26 0.1453899742 -0.0541459556 sample27 0.0197483720 0.1185593588 sample28 0.1025339393 -0.0650655830 sample29 -0.0706022374 0.0682933471 sample30 0.1295623070 0.0066678727 sample31 -0.1147449331 -0.1232726722 sample32 0.0374308241 -0.0380248681 sample33 -0.0599520722 -0.0136935179 sample34 0.0984199323 -0.0375364097 sample35 0.0543096536 0.0378035707 sample36 -0.1403627895 0.0343639964 sample37 -0.0228947466 0.0732691071 sample38 0.0222073100 0.0962567524 sample39 0.0941739187 -0.0215180701 sample40 -0.0643806880 0.0687721305 sample41 0.0327635022 0.1232187267 sample42 0.0500431600 0.0292513483 sample43 0.0184497169 -0.0233043857 sample44 -0.1487889501 -0.1171211843 sample45 0.1050778688 -0.1123140997 sample46 0.1151191687 0.1093996094 sample47 0.0962591596 0.0288418415 sample48 -0.0004832697 0.0310378253 sample49 -0.1135203952 -0.1213936946 sample50 0.0123549967 0.1740762754 sample51 -0.0550527472 -0.1258930366 sample52 -0.0499118498 -0.0728580709 sample53 -0.1119772697 -0.1588063736 sample54 0.0360055700 -0.0228585449 sample55 -0.0210418840 -0.0006750494 sample56 0.0434171465 -0.0633131250 sample57 -0.0197820707 -0.1150753744 sample58 -0.0030440694 -0.0326127220 sample59 -0.0500256652 -0.0129520598 sample60 -0.0184279933 -0.0136217168 sample61 -0.0150298895 -0.0635096327 sample62 0.0304758840 0.0201237023 sample63 -0.1102250182 -0.1285968467 sample64 -0.1552586851 -0.0971185120 sample65 0.0058503774 -0.0207102783 sample66 0.0025607393 -0.0424284783 sample67 -0.1546638479 0.0661579276 sample68 -0.0536374144 0.0923604897 sample69 -0.0640332995 -0.0082003499 sample70 -0.0163521715 0.0663227395 sample71 0.0102536130 0.1345964541 sample72 0.0654191824 0.0196037142 sample73 0.1048553275 -0.0220999343 sample74 -0.0123800531 -0.0586156284 sample75 -0.0392079729 0.0209726560 sample76 -0.0648954530 0.0524759504 sample77 -0.1172922642 0.0201200280 sample78 0.1463072568 -0.0708400429 sample79 -0.0265208865 0.1603424170 sample80 -0.0279739189 0.0214153887 sample81 -0.0079212168 0.0738495152 sample82 0.1544234667 0.0361450661 sample83 0.0494205497 0.0049940155 sample84 0.0259039678 0.0346591259 sample85 -0.1116487342 0.0031405037 sample86 0.1306479141 0.0377156552 sample87 0.0554777895 0.0459739683 sample88 0.0301626540 -0.0382206790 sample89 0.1016866191 -0.0694077745 sample90 -0.0086821643 0.0201323917 sample91 -0.1578629627 0.2097792227 sample92 -0.0170933524 0.1655934885 sample93 0.0979805115 0.0121500621 sample94 -0.0131486224 0.0114929616 sample95 -0.0315682484 0.0758916580 sample96 -0.0024125881 0.0470184812 sample97 -0.0634545871 -0.0270303768 sample98 0.0359372569 0.0135466799 sample99 0.1009167521 -0.1124713349 sample100 -0.0551754084 -0.0246501975 sample101 0.0080116032 0.1627406819 sample102 0.0046451029 -0.0095474625 sample103 0.0472520915 0.0940383612 sample104 -0.0198157485 0.0591146546 sample105 0.0400238943 0.0160948825 sample106 0.0923810126 -0.0369004079 sample107 0.1019372357 -0.0224967030 sample108 0.0877091506 0.0128849575 sample109 -0.0864820351 0.0901079328 sample110 0.1223116477 0.0096108195 sample111 -0.0257352515 0.0936279977 sample112 0.0765285936 -0.0270378988 sample113 -0.0258799937 -0.0377439016 sample114 -0.0021141096 0.0882040004 sample115 -0.0303455382 0.0723733422 sample116 -0.0780504471 0.0685160974 sample117 -0.0536894127 0.0912023977 sample118 -0.0666649880 0.0236260585 sample119 -0.1021872495 0.2325002679 sample120 -0.0750216378 -0.0243345918 sample121 0.0756937871 -0.0942970301 sample122 0.0259631952 -0.0731921855 sample123 0.1037844721 0.0369178968 sample124 -0.0611205260 -0.0421647882 sample125 0.0738472593 -0.0066944197 sample126 -0.0972919125 -0.0762698049 sample127 -0.0824699449 0.0096644716 sample128 0.1249411447 -0.0929254559 sample129 0.0734063754 0.0434314269 sample130 0.0003500251 0.0309857289 sample131 -0.0930184021 -0.0155969718 sample132 -0.0736220706 -0.0732972659 sample133 0.0498398350 0.0462455742 sample134 -0.1644872605 -0.0720046591 sample135 0.0752295091 -0.0003869004 sample136 -0.0227149935 0.0495470007 sample137 -0.0564721654 0.0288861386 sample138 -0.0255986528 0.0610929706 sample139 -0.0621218725 -0.0235857230 sample140 0.0604149005 0.0435533101 sample141 -0.0246743110 -0.0532630367 sample142 0.0409563808 -0.0316234835 sample143 0.0077356402 0.0476908596 sample144 -0.0173241026 0.0156785855 sample145 -0.0485467775 -0.1202738536 sample146 -0.0419649914 0.0811241462 sample147 0.0977304731 0.0274772144 sample148 -0.0368253345 -0.0803969585 sample149 0.0072864928 0.1533016523 sample150 -0.1020825487 -0.0624822021 sample151 -0.0305397215 0.0289336363 sample152 0.0533595237 0.0638334540 sample153 0.0891639316 -0.1799455172 sample154 0.0727554470 0.0834129766 sample155 0.0880665856 0.0220771050 sample156 0.0276558851 0.0326602214 sample157 0.1155031582 -0.0183635317 sample158 0.0281506712 0.0104912296 sample159 -0.0663233817 -0.0443810032 sample160 0.0302643995 -0.0404300831 sample161 -0.0114712971 0.0591082306 sample162 0.1337090975 -0.1398131674 sample163 -0.1330120821 -0.1688769502 sample164 0.0150338085 -0.0028375807 sample165 -0.0076518870 0.0164145650 sample166 -0.0367791560 -0.0630614784 sample167 -0.1111989820 -0.0030066280 sample168 0.0672982954 -0.0446266866 sample169 0.0413003675 -0.0224446448 > discoRes@scores$dist[[1]] ## Distinctive scores for Block 1 1 2 sample1 0.0420464203 0.0867866051 sample2 0.0820849002 -0.0410969124 sample3 -0.0155964082 -0.0195186185 sample4 0.1001342562 -0.0410776708 sample5 0.0153479195 -0.0253257790 sample6 -0.0340242017 -0.0408223382 sample7 -0.0722601657 0.0002324198 sample8 0.0457615511 -0.0370007266 sample9 0.0086217835 0.0820184498 sample10 0.0423630055 -0.0083917825 sample11 -0.0022591910 0.0787764176 sample12 -0.0322077143 0.1479823436 sample13 0.0293967710 -0.0306743131 sample14 -0.0337432640 -0.0367508321 sample15 -0.0815559492 0.1275614134 sample16 -0.0508335975 0.0540604321 sample17 -0.0062556592 0.0041024823 sample18 -0.0705602179 -0.0351053175 sample19 0.0476785516 -0.0509595488 sample20 -0.0523024929 0.0715514322 sample21 0.0119246836 -0.0376087308 sample22 -0.0724455901 -0.0095634564 sample23 0.0992529585 0.0134298645 sample24 0.1595260821 0.0728683426 sample25 0.0920662094 -0.0749749499 sample26 0.0595566202 0.0848973405 sample27 -0.0826574023 -0.0086747143 sample28 0.0384832200 0.0440972518 sample29 -0.0777738537 0.1735298835 sample30 -0.1229474270 -0.0819018064 sample31 -0.0579753770 -0.0238646808 sample32 -0.0970366711 -0.0111434859 sample33 -0.1017580484 -0.0630452256 sample34 -0.0637903341 0.0377936382 sample35 -0.0790002640 -0.0229732220 sample36 -0.1224933181 -0.1274967969 sample37 -0.1798846489 -0.1673447422 sample38 -0.0466390886 0.0888153442 sample39 0.0168694470 0.0421535975 sample40 -0.1756417032 -0.1526661762 sample41 -0.0042466077 0.0004924728 sample42 0.0447826247 -0.0651501475 sample43 -0.0482292648 -0.0253533394 sample44 0.1986815990 -0.0545754550 sample45 0.0741915348 0.0054713859 sample46 -0.0478859081 -0.0007080105 sample47 -0.0608215605 0.0481615658 sample48 0.1381465611 0.0578300610 sample49 0.0530627170 -0.1405523900 sample50 0.0173651701 0.1602386271 sample51 -0.0462460106 0.0303473022 sample52 -0.0279998271 0.0280387845 sample53 -0.0667502830 0.0237700173 sample54 -0.0121812473 -0.0521354886 sample55 -0.0182392350 0.0221326687 sample56 0.0001307129 0.0030909215 sample57 -0.0316578046 0.0530190585 sample58 -0.0393891949 -0.0297801702 sample59 -0.1278272047 -0.0546540224 sample60 -0.1486965075 0.1069142242 sample61 -0.0793069312 0.0569790562 sample62 -0.1172821202 -0.0149210781 sample63 0.0028809779 0.1300523984 sample64 -0.0237298533 0.1073288350 sample65 0.0126543314 0.0589810306 sample66 0.0468232467 -0.0771066788 sample67 -0.1494285093 -0.0769876914 sample68 -0.0978021387 -0.0577363432 sample69 -0.0403090450 0.0156038385 sample70 -0.0221595795 0.0315436787 sample71 0.0546333567 -0.0272394978 sample72 -0.1107500622 -0.0537331014 sample73 -0.0906756853 0.0579958148 sample74 -0.0586514915 0.0121417589 sample75 -0.0390512029 0.0349278361 sample76 0.0022940265 -0.1676560057 sample77 0.0232101218 -0.2067300994 sample78 0.0929808002 -0.0434928317 sample79 0.1619384802 -0.0378102820 sample80 -0.0680391830 0.1424656151 sample81 0.0530727487 -0.0358347746 sample82 -0.0266849426 -0.0577448981 sample83 -0.1517241881 -0.0448569620 sample84 0.0570943971 -0.0273808591 sample85 -0.1086272121 -0.1228130114 sample86 -0.0833890551 -0.0442924515 sample87 -0.0022039994 -0.0943908460 sample88 0.0078275121 -0.1140504633 sample89 -0.0611007655 -0.0094589275 sample90 -0.0022941243 -0.0936254825 sample91 -0.0433766780 0.3205972466 sample92 0.1815221825 -0.0334667090 sample93 -0.0267653273 0.0614425907 sample94 -0.0181900727 0.0605088252 sample95 0.0720316375 -0.0013040704 sample96 0.0559674037 -0.0118787245 sample97 0.0217420196 0.0195417136 sample98 -0.0379198557 0.0588352899 sample99 0.0792505472 -0.0151262730 sample100 -0.0222100894 -0.0023322887 sample101 0.0387089126 0.1224225261 sample102 0.2094625573 -0.0516421517 sample103 -0.0138555366 0.0301047775 sample104 0.0807949350 -0.0162712588 sample105 0.0520491839 -0.1229660491 sample106 0.0192642005 -0.0185235270 sample107 -0.0319014512 0.0405120671 sample108 0.0140674737 0.0163422315 sample109 0.1831859429 0.0613023200 sample110 0.0292782921 -0.0199846566 sample111 0.1423176349 0.0327351752 sample112 -0.0426313917 -0.0029086951 sample113 0.0771931190 0.0268742464 sample114 0.0241570296 -0.0184080616 sample115 0.1958958089 0.0460148054 sample116 0.1394438750 -0.0530793887 sample117 0.1672313369 -0.1386522393 sample118 0.0448332061 -0.0117618116 sample119 0.0910199195 0.2217435696 sample120 0.0331404478 -0.0057270443 sample121 -0.0307518200 0.1392506191 sample122 0.0839836084 -0.0291983939 sample123 -0.0239674619 -0.0642167288 sample124 0.0909175600 0.0130429815 sample125 0.0065361988 -0.1092631033 sample126 -0.0935274375 0.1368277053 sample127 -0.0035405281 0.0292755048 sample128 0.0660348812 0.1018575495 sample129 -0.0693670317 -0.0695429990 sample130 -0.0008516576 -0.0669705339 sample131 -0.0431012255 0.0174061118 sample132 0.0637087682 0.0029383258 sample133 0.0289465368 -0.0390817342 sample134 -0.0446143504 0.0456332341 sample135 -0.0712343582 0.0521627816 sample136 -0.0596317365 0.0197291939 sample137 -0.0793174998 -0.0380637010 sample138 0.0973506612 -0.0454210355 sample139 -0.0539867033 -0.1534331983 sample140 -0.0850871003 0.0955804741 sample141 0.0192722760 -0.0554446567 sample142 0.0672293628 -0.0461313318 sample143 0.0303707729 -0.0519258602 sample144 0.0089350867 0.0145815365 sample145 0.0638874450 0.0122268380 sample146 -0.0585921051 0.0063075162 sample147 -0.0894146502 -0.1124625497 sample148 0.0216437881 -0.0615962558 sample149 0.0515318961 -0.0839902871 sample150 -0.0568230042 -0.0124472643 sample151 0.0789514074 -0.0261824150 sample152 0.0330694855 0.1306444952 sample153 0.1752062383 0.1497754750 sample154 -0.0421488207 -0.0037016906 sample155 -0.0680198338 0.0095703743 sample156 -0.0388949339 0.1057558114 sample157 -0.0314765159 0.0561364723 sample158 -0.0329630026 0.0353943728 sample159 0.0398460535 -0.1007368451 sample160 -0.0424906563 0.0108493137 sample161 0.0888341009 -0.0679693045 sample162 0.0027568768 0.1237848123 sample163 0.0126226569 0.0725440672 sample164 0.0566786980 -0.0458318459 sample165 0.0315331654 -0.0236359661 sample166 0.0612108061 -0.0425225072 sample167 -0.0142729594 0.0179307037 sample168 0.0169542084 -0.0769614964 sample169 -0.0675063758 0.0131499245 > discoRes@scores$dist[[2]] ## Distinctive scores for Block 2 1 2 sample1 0.001233159 1.635716e-01 sample2 0.072435313 6.022133e-03 sample3 0.018845994 1.080029e-01 sample4 -0.039014317 -3.106613e-04 sample5 -0.177481066 2.996428e-02 sample6 0.045144639 3.455899e-02 sample7 0.022646356 7.019213e-03 sample8 0.103368444 9.857950e-03 sample9 -0.135001413 -8.979115e-02 sample10 -0.125988450 5.097936e-02 sample11 -0.097979084 -7.086568e-02 sample12 0.086302092 8.620322e-02 sample13 0.138140183 -1.827998e-01 sample14 0.061507470 2.642808e-02 sample15 -0.038160056 3.101601e-02 sample16 0.004877930 -1.271021e-03 sample17 0.078848315 1.547607e-02 sample18 0.088418945 3.795478e-02 sample19 -0.070304355 1.084003e-01 sample20 0.002558148 -7.975970e-02 sample21 -0.094159679 4.126893e-02 sample22 0.055027092 7.806618e-02 sample23 -0.067949288 4.102076e-02 sample24 0.131096929 -1.649282e-01 sample25 -0.011358361 4.426900e-02 sample26 0.140294883 -2.016458e-02 sample27 -0.026156591 -1.589957e-03 sample28 0.072420073 -5.850510e-02 sample29 0.033005487 -2.062078e-03 sample30 0.022875037 2.015346e-02 sample31 0.063507032 6.670369e-02 sample32 -0.068510002 4.955246e-02 sample33 0.077776490 1.272070e-01 sample34 -0.015784211 3.024311e-02 sample35 0.052962808 -1.500981e-01 sample36 -0.007090776 -2.025321e-01 sample37 0.044241205 -1.802109e-01 sample38 0.078150845 3.676299e-02 sample39 -0.012033013 3.388884e-02 sample40 0.047328407 -1.471581e-01 sample41 -0.022819211 2.673458e-02 sample42 0.024536181 7.960878e-02 sample43 -0.103636206 8.229577e-02 sample44 0.101223465 -7.049242e-02 sample45 -0.001372685 2.451069e-02 sample46 0.055850655 -2.948574e-03 sample47 0.038047878 -4.554236e-02 sample48 -0.078434048 -4.888893e-02 sample49 0.060516796 1.162471e-02 sample50 -0.053008280 2.737813e-02 sample51 -0.151464539 -5.678261e-02 sample52 -0.186093598 -1.246711e-01 sample53 0.006417961 2.701060e-02 sample54 -0.069703759 2.308412e-02 sample55 -0.163357769 -1.366434e-02 sample56 -0.101148403 -4.682134e-02 sample57 -0.173037438 -1.609594e-01 sample58 0.007138487 1.666951e-02 sample59 0.003045855 -3.005375e-02 sample60 -0.021584197 -2.665887e-01 sample61 -0.151058529 -1.002384e-01 sample62 0.092553163 4.845730e-02 sample63 0.059631533 4.137108e-02 sample64 0.044922724 2.600958e-03 sample65 -0.093938230 4.406949e-02 sample66 -0.106339783 5.710077e-02 sample67 0.020158109 -2.361746e-01 sample68 -0.003720825 -2.418542e-02 sample69 0.064516195 1.155618e-01 sample70 0.101343973 1.351780e-01 sample71 0.001646616 2.976773e-02 sample72 -0.032889536 2.835772e-02 sample73 -0.027508041 5.148153e-02 sample74 -0.134171843 7.895302e-02 sample75 -0.095157663 3.943147e-02 sample76 0.086472001 -3.035053e-02 sample77 0.103574951 2.545326e-02 sample78 0.157564778 -4.939474e-02 sample79 -0.018913830 -4.874691e-02 sample80 -0.138414272 -4.315805e-05 sample81 0.011884666 6.357908e-02 sample82 0.167530668 -3.533967e-02 sample83 0.006567118 7.812499e-02 sample84 -0.148689068 3.109095e-02 sample85 0.053272046 -7.417987e-02 sample86 0.113847497 1.822078e-05 sample87 -0.043286589 -6.080499e-02 sample88 -0.043345115 -1.402486e-01 sample89 -0.033120485 1.395429e-02 sample90 0.060741344 8.610386e-02 sample91 0.056626404 -1.303770e-01 sample92 0.035958080 -1.061605e-01 sample93 0.043364644 4.443610e-02 sample94 0.047729209 1.059571e-01 sample95 0.024959593 3.980509e-02 sample96 -0.003521763 9.293931e-02 sample97 0.006605189 1.527234e-01 sample98 -0.002036707 5.579516e-02 sample99 0.088662156 3.728374e-02 sample100 0.109125958 3.560402e-02 sample101 0.073972392 4.317885e-02 sample102 -0.057445584 2.784084e-02 sample103 -0.014273367 -9.706351e-03 sample104 -0.071039555 -4.068332e-02 sample105 -0.098082998 3.452996e-02 sample106 0.025426046 -3.628933e-02 sample107 0.016065497 9.173399e-02 sample108 0.020098829 2.379699e-02 sample109 0.038978194 -1.692313e-02 sample110 0.032630524 -2.988087e-02 sample111 -0.067693597 6.038247e-02 sample112 -0.016788352 -5.336920e-03 sample113 -0.096921404 2.757702e-02 sample114 0.002639798 9.209102e-02 sample115 0.030804954 -1.603746e-02 sample116 0.124030646 -1.272998e-01 sample117 -0.033472863 -5.392664e-02 sample118 0.103715220 -6.252439e-02 sample119 0.106417081 -1.196217e-01 sample120 0.077135762 1.004935e-01 sample121 0.012935226 -3.181914e-02 sample122 -0.084748770 5.568462e-02 sample123 0.004133555 -7.693545e-03 sample124 0.058346208 8.396475e-02 sample125 -0.063484330 5.232567e-02 sample126 0.066258204 1.091730e-01 sample127 0.086502557 1.094172e-01 sample128 0.062782189 1.471093e-02 sample129 0.033627463 4.007776e-02 sample130 0.029351809 8.046087e-02 sample131 0.046919682 2.209389e-03 sample132 0.024174548 1.248608e-01 sample133 -0.090730378 -1.466698e-02 sample134 0.035084127 -7.539660e-02 sample135 -0.000133485 -9.185811e-03 sample136 0.033587482 9.860182e-02 sample137 0.064014730 7.554373e-02 sample138 -0.006096406 1.742782e-02 sample139 0.059208281 -5.615005e-02 sample140 -0.042798854 1.099466e-02 sample141 -0.061879338 9.301101e-02 sample142 -0.089855256 -3.573325e-02 sample143 -0.081739099 -8.880528e-02 sample144 -0.078775449 3.821395e-02 sample145 -0.108581954 -1.569461e-01 sample146 0.058955508 4.373238e-02 sample147 0.049532797 -7.278042e-03 sample148 -0.116159055 -9.078147e-03 sample149 0.012157565 -7.788462e-02 sample150 0.031451199 -3.520219e-02 sample151 -0.057538097 1.945391e-02 sample152 0.049454043 -7.025566e-02 sample153 0.094133841 -2.153270e-01 sample154 0.033592892 -2.078824e-02 sample155 -0.069045902 2.780362e-02 sample156 -0.103990230 6.292488e-02 sample157 0.040864583 -8.065523e-03 sample158 -0.101810632 -7.817025e-03 sample159 0.028173247 1.207260e-02 sample160 -0.164305288 -2.977818e-03 sample161 -0.037433003 -8.524589e-02 sample162 0.080453818 -8.349635e-02 sample163 0.074323226 1.406346e-02 sample164 -0.120880433 2.139523e-02 sample165 -0.160811594 -2.025160e-02 sample166 0.042594784 2.660800e-02 sample167 0.022684950 4.464258e-02 sample168 0.018073731 7.471564e-04 sample169 -0.019078018 -2.645426e-02 > # Exploring O2PLS scores structure > o2plsRes@scores$common[[1]] ## Common scores for Block 1 [,1] [,2] sample1 -0.0572060227 -1.729087e-02 sample2 0.0875245208 1.112588e-02 sample3 0.0403482602 -3.168994e-02 sample4 -0.0218345996 4.052760e-06 sample5 -0.0150905011 4.795041e-03 sample6 -0.0924362933 4.511003e-02 sample7 -0.0793066751 -1.243823e-02 sample8 -0.1342997187 6.215220e-02 sample9 -0.0338886944 -1.854401e-02 sample10 0.0020547173 1.749421e-02 sample11 0.0037275602 -2.364116e-02 sample12 -0.0753094533 2.772698e-02 sample13 0.0856160091 3.679963e-02 sample14 -0.0737457307 2.668452e-02 sample15 -0.0062111746 -3.554864e-03 sample16 -0.0602355268 6.675115e-02 sample17 0.1086768843 2.524534e-02 sample18 0.0702999472 2.231671e-02 sample19 0.0173785882 -3.024846e-02 sample20 0.0484173812 -3.310904e-02 sample21 0.0124657042 6.517144e-02 sample22 -0.0140989936 -3.159137e-02 sample23 -0.0627028403 -5.393710e-04 sample24 0.0919972100 7.909297e-02 sample25 0.0326998483 -1.945206e-02 sample26 0.1064741246 2.120849e-02 sample27 0.0166058995 -4.964993e-02 sample28 0.0743504770 2.614211e-02 sample29 -0.0511008491 -2.782647e-02 sample30 0.0962250842 -3.974893e-03 sample31 -0.0869563008 5.250819e-02 sample32 0.0271858919 1.552005e-02 sample33 -0.0448364581 6.243160e-03 sample34 0.0718415218 1.469396e-02 sample35 0.0403086451 -1.632629e-02 sample36 -0.1036402827 -1.304320e-02 sample37 -0.0159385744 -3.036525e-02 sample38 0.0182198369 -4.034805e-02 sample39 0.0690363619 8.058350e-03 sample40 -0.0467312750 -2.810325e-02 sample41 0.0263674438 -5.171216e-02 sample42 0.0374578960 -1.268634e-02 sample43 0.0132336869 9.536642e-03 sample44 -0.1119154428 5.028683e-02 sample45 0.0759639367 4.587903e-02 sample46 0.0871885519 -4.670385e-02 sample47 0.0721490571 -1.288540e-02 sample48 0.0005086144 -1.290565e-02 sample49 -0.0858177028 5.173760e-02 sample50 0.0118992665 -7.276215e-02 sample51 -0.0426446855 5.306205e-02 sample52 -0.0381605826 3.086785e-02 sample53 -0.0855757630 6.730043e-02 sample54 0.0261723092 9.184260e-03 sample55 -0.0156418304 4.682404e-04 sample56 0.0307831193 2.597550e-02 sample57 -0.0157242103 4.829381e-02 sample58 -0.0031174404 1.359898e-02 sample59 -0.0373001859 5.868397e-03 sample60 -0.0142609099 5.831654e-03 sample61 -0.0122255144 2.663579e-02 sample62 0.0228002942 -8.692265e-03 sample63 -0.0833127581 5.473229e-02 sample64 -0.1166548159 4.196500e-02 sample65 0.0038808902 8.568590e-03 sample66 0.0011561811 1.766612e-02 sample67 -0.1129311062 -2.608702e-02 sample68 -0.0382526429 -3.804045e-02 sample69 -0.0476502440 4.003241e-03 sample70 -0.0110329882 -2.752719e-02 sample71 0.0096850282 -5.627056e-02 sample72 0.0487124704 -8.800131e-03 sample73 0.0773058132 8.239864e-03 sample74 -0.0102488176 2.454957e-02 sample75 -0.0286613976 -8.387293e-03 sample76 -0.0472655595 -2.129315e-02 sample77 -0.0865043074 -7.296820e-03 sample78 0.1070293698 2.818346e-02 sample79 -0.0165060681 -6.659721e-02 sample80 -0.0206765949 -8.712112e-03 sample81 -0.0050943615 -3.079175e-02 sample82 0.1153622361 -1.647054e-02 sample83 0.0367979217 -2.538114e-03 sample84 0.0199463070 -1.468961e-02 sample85 -0.0827122185 -2.709824e-04 sample86 0.0969487314 -1.699897e-02 sample87 0.0421957457 -1.965953e-02 sample88 0.0215934743 1.566050e-02 sample89 0.0751559502 2.811652e-02 sample90 -0.0057328000 -8.283795e-03 sample91 -0.1134005268 -8.603522e-02 sample92 -0.0101689918 -6.894992e-02 sample93 0.0725967502 -6.003176e-03 sample94 -0.0096878852 -4.693081e-03 sample95 -0.0223502239 -3.139636e-02 sample96 -0.0013232863 -1.963604e-02 sample97 -0.0476541710 1.183660e-02 sample98 0.0269546160 -5.978398e-03 sample99 0.0728179461 4.597884e-02 sample100 -0.0413398038 1.079347e-02 sample101 0.0087536994 -6.796076e-02 sample102 0.0032509529 3.932612e-03 sample103 0.0360342395 -3.973263e-02 sample104 -0.0141722563 -2.453107e-02 sample105 0.0294940465 -7.140722e-03 sample106 0.0686472054 1.462895e-02 sample107 0.0748635927 8.401339e-03 sample108 0.0650175850 -6.211942e-03 sample109 -0.0628017242 -3.681224e-02 sample110 0.0905513691 -5.169053e-03 sample111 -0.0176679473 -3.884777e-02 sample112 0.0570870472 1.066018e-02 sample113 -0.0200110554 1.596044e-02 sample114 -0.0001474542 -3.679272e-02 sample115 -0.0213333038 -2.991667e-02 sample116 -0.0567675453 -2.785636e-02 sample117 -0.0379865990 -3.752078e-02 sample118 -0.0484878786 -9.173691e-03 sample119 -0.0713511831 -9.598634e-02 sample120 -0.0555093586 1.089843e-02 sample121 0.0542443861 3.861344e-02 sample122 0.0178575357 3.027138e-02 sample123 0.0775020581 -1.636852e-02 sample124 -0.0460701050 1.814758e-02 sample125 0.0543846585 2.075898e-03 sample126 -0.0729417144 3.276659e-02 sample127 -0.0609509157 -3.270814e-03 sample128 0.0908136899 3.758801e-02 sample129 0.0552445878 -1.879062e-02 sample130 0.0007128089 -1.294308e-02 sample131 -0.0693311345 7.357082e-03 sample132 -0.0556565156 3.126995e-02 sample133 0.0375870104 -1.977240e-02 sample134 -0.1229130924 3.159495e-02 sample135 0.0555550315 -5.563250e-04 sample136 -0.0159768414 -2.046339e-02 sample137 -0.0412337694 -1.151652e-02 sample138 -0.0180604476 -2.526505e-02 sample139 -0.0465649201 1.040683e-02 sample140 0.0452288969 -1.876279e-02 sample141 -0.0189142561 2.247042e-02 sample142 0.0297545566 1.280524e-02 sample143 0.0064292003 -1.997706e-02 sample144 -0.0124284903 -6.369733e-03 sample145 -0.0377141491 5.066743e-02 sample146 -0.0296240067 -3.344465e-02 sample147 0.0726083535 -1.239968e-02 sample148 -0.0284795794 3.389732e-02 sample149 0.0082261455 -6.399305e-02 sample150 -0.0765013197 2.704021e-02 sample151 -0.0220567356 -1.178159e-02 sample152 0.0403422737 -2.714879e-02 sample153 0.0629117719 7.425085e-02 sample154 0.0551622927 -3.548984e-02 sample155 0.0654439133 -1.005306e-02 sample156 0.0209310714 -1.390213e-02 sample157 0.0851522597 6.577150e-03 sample158 0.0208354599 -4.663078e-03 sample159 -0.0498794349 1.913257e-02 sample160 0.0216074437 1.656579e-02 sample161 -0.0075742328 -2.455676e-02 sample162 0.0963663017 5.705881e-02 sample163 -0.1009542191 7.174224e-02 sample164 0.0109881996 1.026806e-03 sample165 -0.0053146157 -6.772855e-03 sample166 -0.0275757357 2.673084e-02 sample167 -0.0825048036 2.278863e-03 sample168 0.0486147429 1.793843e-02 sample169 0.0302506727 8.984253e-03 > o2plsRes@scores$common[[2]] ## Common scores for Block 2 [,1] [,2] sample1 -0.0621842115 -1.364509e-02 sample2 0.0944623785 9.720892e-03 sample3 0.0406196267 -2.236338e-02 sample4 -0.0229316496 -3.932487e-04 sample5 -0.0157330047 3.231033e-03 sample6 -0.0945794025 3.120720e-02 sample7 -0.0854427118 -1.052880e-02 sample8 -0.1376625920 4.286608e-02 sample9 -0.0377115311 -1.415134e-02 sample10 0.0035244506 1.280825e-02 sample11 0.0016639987 -1.717895e-02 sample12 -0.0781403168 1.884368e-02 sample13 0.0938400516 2.838858e-02 sample14 -0.0759839772 1.810989e-02 sample15 -0.0068340837 -2.705361e-03 sample16 -0.0590150849 4.757848e-02 sample17 0.1178805097 2.040526e-02 sample18 0.0767858320 1.756604e-02 sample19 0.0157112113 -2.172867e-02 sample20 0.0485318300 -2.327033e-02 sample21 0.0185928176 4.777095e-02 sample22 -0.0191358702 -2.329775e-02 sample23 -0.0672994194 -1.535656e-03 sample24 0.1047476642 5.935707e-02 sample25 0.0329844953 -1.358036e-02 sample26 0.1154952052 1.741529e-02 sample27 0.0133849853 -3.590922e-02 sample28 0.0821554039 2.042376e-02 sample29 -0.0567643690 -2.123848e-02 sample30 0.1016073931 -1.134728e-03 sample31 -0.0880396372 3.670548e-02 sample32 0.0300363338 1.182406e-02 sample33 -0.0467252272 3.739254e-03 sample34 0.0783666394 1.203777e-02 sample35 0.0424227097 -1.118559e-02 sample36 -0.1107646166 -1.143464e-02 sample37 -0.0191667664 -2.246060e-02 sample38 0.0155968095 -2.909621e-02 sample39 0.0746847148 7.148218e-03 sample40 -0.0517028178 -2.137267e-02 sample41 0.0234979494 -3.723018e-02 sample42 0.0388797356 -8.557228e-03 sample43 0.0149555568 7.210002e-03 sample44 -0.1150305613 3.461805e-02 sample45 0.0846146236 3.486020e-02 sample46 0.0884426404 -3.246853e-02 sample47 0.0748644971 -8.083045e-03 sample48 -0.0012033198 -9.403647e-03 sample49 -0.0872662737 3.616245e-02 sample50 0.0066941314 -5.284863e-02 sample51 -0.0411777630 3.791830e-02 sample52 -0.0379355780 2.180834e-02 sample53 -0.0851639886 4.751761e-02 sample54 0.0288006248 7.184424e-03 sample55 -0.0164920835 5.919925e-05 sample56 0.0355115616 1.951043e-02 sample57 -0.0141146068 3.492409e-02 sample58 -0.0015636132 9.862883e-03 sample59 -0.0390656483 3.590929e-03 sample60 -0.0139454780 3.963030e-03 sample61 -0.0106410274 1.919705e-02 sample62 0.0236748439 -5.922677e-03 sample63 -0.0846790877 3.839102e-02 sample64 -0.1202581015 2.846469e-02 sample65 0.0050548584 6.328644e-03 sample66 0.0028013072 1.291807e-02 sample67 -0.1231623009 -2.112565e-02 sample68 -0.0437782161 -2.845072e-02 sample69 -0.0501199692 2.053469e-03 sample70 -0.0140278645 -2.027157e-02 sample71 0.0057489505 -4.085977e-02 sample72 0.0511212704 -5.522408e-03 sample73 0.0828141409 7.431582e-03 sample74 -0.0085959456 1.772951e-02 sample75 -0.0312180394 -6.636869e-03 sample76 -0.0519051781 -1.640191e-02 sample77 -0.0925924762 -6.907800e-03 sample78 0.1163971046 2.251122e-02 sample79 -0.0240906926 -4.887766e-02 sample80 -0.0221327065 -6.730703e-03 sample81 -0.0072114968 -2.254399e-02 sample82 0.1204416674 -9.907422e-03 sample83 0.0386739485 -1.171663e-03 sample84 0.0195988488 -1.033806e-02 sample85 -0.0877680171 -1.725057e-03 sample86 0.1023541048 -1.062501e-02 sample87 0.0425213089 -1.356865e-02 sample88 0.0244788514 1.180820e-02 sample89 0.0804276691 2.188588e-02 sample90 -0.0074639871 -6.140721e-03 sample91 -0.1278832404 -6.485140e-02 sample92 -0.0162199697 -5.048358e-02 sample93 0.0769344893 -3.045135e-03 sample94 -0.0104345587 -3.593172e-03 sample95 -0.0260058453 -2.330475e-02 sample96 -0.0025018700 -1.433516e-02 sample97 -0.0492358305 7.774183e-03 sample98 0.0279220220 -3.862141e-03 sample99 0.0813921923 3.487339e-02 sample100 -0.0428797405 7.112807e-03 sample101 0.0032855240 -4.940743e-02 sample102 0.0038439317 2.938008e-03 sample103 0.0358511139 -2.831881e-02 sample104 -0.0162784000 -1.815061e-02 sample105 0.0314853405 -4.656633e-03 sample106 0.0726456731 1.192390e-02 sample107 0.0807342975 7.508627e-03 sample108 0.0688338003 -3.336161e-03 sample109 -0.0694151950 -2.800146e-02 sample110 0.0961218924 -2.111997e-03 sample111 -0.0217900036 -2.864702e-02 sample112 0.0599954082 8.820317e-03 sample113 -0.0195006577 1.128215e-02 sample114 -0.0032126533 -2.682851e-02 sample115 -0.0251101087 -2.221077e-02 sample116 -0.0625141551 -2.137258e-02 sample117 -0.0440473375 -2.806256e-02 sample118 -0.0532042630 -7.590494e-03 sample119 -0.0848603028 -7.133574e-02 sample120 -0.0588832131 6.937326e-03 sample121 0.0613899126 2.915307e-02 sample122 0.0218424338 2.241775e-02 sample123 0.0809008460 -1.051759e-02 sample124 -0.0472109313 1.239887e-02 sample125 0.0583180947 2.521167e-03 sample126 -0.0753941872 2.256455e-02 sample127 -0.0649774209 -3.496964e-03 sample128 0.1000212216 2.908091e-02 sample129 0.0568033049 -1.269016e-02 sample130 -0.0002370832 -9.419675e-03 sample131 -0.0727030877 4.091672e-03 sample132 -0.0566219024 2.179861e-02 sample133 0.0384172955 -1.372840e-02 sample134 -0.1280862736 2.077912e-02 sample135 0.0592633273 6.106685e-04 sample136 -0.0187635410 -1.521173e-02 sample137 -0.0449958970 -9.152840e-03 sample138 -0.0211348699 -1.875415e-02 sample139 -0.0482882861 6.729304e-03 sample140 0.0468926306 -1.285498e-02 sample141 -0.0186248693 1.605439e-02 sample142 0.0328031246 9.887746e-03 sample143 0.0052919839 -1.445666e-02 sample144 -0.0140067923 -4.867248e-03 sample145 -0.0361804310 3.625323e-02 sample146 -0.0345286735 -2.493652e-02 sample147 0.0765025670 -7.714769e-03 sample148 -0.0276016641 2.420589e-02 sample149 0.0027545308 -4.653007e-02 sample150 -0.0792296010 1.831289e-02 sample151 -0.0245894512 -8.991738e-03 sample152 0.0409796547 -1.907063e-02 sample153 0.0734301757 5.528780e-02 sample154 0.0557740684 -2.487723e-02 sample155 0.0689436560 -6.127635e-03 sample156 0.0212272938 -9.747423e-03 sample157 0.0911931194 6.355708e-03 sample158 0.0220840645 -3.016357e-03 sample159 -0.0513244242 1.304175e-02 sample160 0.0246213576 1.248444e-02 sample161 -0.0100369130 -1.805391e-02 sample162 0.1078802043 4.337260e-02 sample163 -0.1017965082 5.047171e-02 sample164 0.0119430799 9.593002e-04 sample165 -0.0063708014 -5.032148e-03 sample166 -0.0283181180 1.899222e-02 sample167 -0.0872832229 1.516582e-04 sample168 0.0540714512 1.397701e-02 sample169 0.0328432652 7.104347e-03 > o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1 [,1] [,2] sample1 0.0133684846 2.195848e-02 sample2 0.0254157197 -1.058416e-02 sample3 -0.0049551479 -4.840017e-03 sample4 0.0310390570 -1.063929e-02 sample5 0.0046941318 -6.488426e-03 sample6 -0.0107406753 -1.026702e-02 sample7 -0.0225157631 2.624712e-04 sample8 0.0141320952 -9.505821e-03 sample9 0.0029681280 2.078210e-02 sample10 0.0131729174 -2.275042e-03 sample11 -0.0004164298 1.994019e-02 sample12 -0.0095211620 3.759883e-02 sample13 0.0091018604 -7.953956e-03 sample14 -0.0106557524 -9.181659e-03 sample15 -0.0249924121 3.262724e-02 sample16 -0.0156216400 1.375700e-02 sample17 -0.0019382446 1.073994e-03 sample18 -0.0221072481 -8.703592e-03 sample19 0.0146917619 -1.311712e-02 sample20 -0.0160353760 1.826290e-02 sample21 0.0035947899 -9.616341e-03 sample22 -0.0225060762 -2.532589e-03 sample23 0.0310000683 3.033060e-03 sample24 0.0499544372 1.809450e-02 sample25 0.0284442301 -1.932558e-02 sample26 0.0188220043 2.146985e-02 sample27 -0.0257763219 -1.999228e-03 sample28 0.0120888648 1.125834e-02 sample29 -0.0236482520 4.426726e-02 sample30 -0.0385486305 -2.055935e-02 sample31 -0.0181539336 -5.877838e-03 sample32 -0.0302630460 -2.607192e-03 sample33 -0.0319565715 -1.562628e-02 sample34 -0.0197970124 9.906813e-03 sample35 -0.0247412713 -5.434440e-03 sample36 -0.0386259060 -3.190394e-02 sample37 -0.0566199273 -4.192574e-02 sample38 -0.0142060273 2.259644e-02 sample39 0.0053589035 1.076485e-02 sample40 -0.0552546493 -3.819896e-02 sample41 -0.0013089975 9.278818e-05 sample42 0.0137252142 -1.664652e-02 sample43 -0.0151259626 -6.290953e-03 sample44 0.0617391754 -1.442883e-02 sample45 0.0231410886 1.163143e-03 sample46 -0.0148898209 -1.384176e-04 sample47 -0.0187252536 1.221690e-02 sample48 0.0432839432 1.416671e-02 sample49 0.0160818605 -3.588745e-02 sample50 0.0059333545 4.067003e-02 sample51 -0.0142914866 7.776270e-03 sample52 -0.0086339952 7.208917e-03 sample53 -0.0207386980 6.272432e-03 sample54 -0.0039856719 -1.316934e-02 sample55 -0.0056217017 5.692315e-03 sample56 0.0000123292 8.978290e-04 sample57 -0.0095805555 1.324253e-02 sample58 -0.0124160295 -7.326376e-03 sample59 -0.0400195442 -1.349736e-02 sample60 -0.0460063358 2.770091e-02 sample61 -0.0245266456 1.470710e-02 sample62 -0.0366022783 -3.437352e-03 sample63 0.0013742171 3.288796e-02 sample64 -0.0070599859 2.739588e-02 sample65 0.0041201911 1.498268e-02 sample66 0.0143173351 -1.968812e-02 sample67 -0.0467477531 -1.929938e-02 sample68 -0.0306751978 -1.436184e-02 sample69 -0.0125317217 4.130407e-03 sample70 -0.0068071487 8.080857e-03 sample71 0.0169170264 -7.027348e-03 sample72 -0.0346909749 -1.333770e-02 sample73 -0.0280506153 1.493843e-02 sample74 -0.0182611498 3.294697e-03 sample75 -0.0120563964 8.974612e-03 sample76 0.0001437236 -4.253184e-02 sample77 0.0065330299 -5.252886e-02 sample78 0.0288278141 -1.127782e-02 sample79 0.0503961481 -1.023318e-02 sample80 -0.0207693429 3.648391e-02 sample81 0.0163562768 -9.074596e-03 sample82 -0.0084317129 -1.478976e-02 sample83 -0.0474097918 -1.103126e-02 sample84 0.0177181395 -7.191197e-03 sample85 -0.0342718548 -3.082360e-02 sample86 -0.0261671791 -1.089491e-02 sample87 -0.0009486358 -2.411514e-02 sample88 0.0020528931 -2.894615e-02 sample89 -0.0189361111 -2.638639e-03 sample90 -0.0009863658 -2.390075e-02 sample91 -0.0124352695 8.153234e-02 sample92 0.0564264106 -8.909537e-03 sample93 -0.0081461774 1.570851e-02 sample94 -0.0054896581 1.547251e-02 sample95 0.0224073150 -4.374348e-04 sample96 0.0173528924 -3.050441e-03 sample97 0.0067948115 5.008237e-03 sample98 -0.0116030825 1.498764e-02 sample99 0.0246422688 -4.054795e-03 sample100 -0.0069420745 -4.846343e-04 sample101 0.0124923691 3.091503e-02 sample102 0.0650835386 -1.367400e-02 sample103 -0.0042741828 7.855985e-03 sample104 0.0250591040 -4.171938e-03 sample105 0.0157516368 -3.121990e-02 sample106 0.0060593853 -5.101693e-03 sample107 -0.0098329626 1.044506e-02 sample108 0.0044269853 4.142036e-03 sample109 0.0572473486 1.517542e-02 sample110 0.0090474827 -5.119868e-03 sample111 0.0444263015 7.983232e-03 sample112 -0.0131765484 -9.696342e-04 sample113 0.0241047399 6.706740e-03 sample114 0.0074558775 -4.728652e-03 sample115 0.0611851433 1.117210e-02 sample116 0.0432646951 -1.380556e-02 sample117 0.0516750066 -3.575617e-02 sample118 0.0139942100 -3.279138e-03 sample119 0.0291722987 5.587946e-02 sample120 0.0103515853 -1.690016e-03 sample121 -0.0091396331 3.552116e-02 sample122 0.0260431679 -7.583975e-03 sample123 -0.0076666389 -1.628489e-02 sample124 0.0283466326 3.127845e-03 sample125 0.0016472378 -2.770692e-02 sample126 -0.0286529417 3.489336e-02 sample127 -0.0010224500 7.483214e-03 sample128 0.0209049296 2.572016e-02 sample129 -0.0218184878 -1.755347e-02 sample130 -0.0005009620 -1.697978e-02 sample131 -0.0134032968 4.637390e-03 sample132 0.0198526786 5.723983e-04 sample133 0.0088812957 -9.988115e-03 sample134 -0.0137484514 1.172591e-02 sample135 -0.0220314568 1.347465e-02 sample136 -0.0185173353 5.168079e-03 sample137 -0.0248352123 -9.472788e-03 sample138 0.0301635767 -1.175283e-02 sample139 -0.0173576929 -3.872592e-02 sample140 -0.0262157762 2.456863e-02 sample141 0.0058369763 -1.420854e-02 sample142 0.0207886071 -1.188764e-02 sample143 0.0092832598 -1.324238e-02 sample144 0.0028442140 3.627979e-03 sample145 0.0199749569 2.862202e-03 sample146 -0.0182236697 1.726556e-03 sample147 -0.0282519995 -2.825595e-02 sample148 0.0065435868 -1.572917e-02 sample149 0.0158233820 -2.159451e-02 sample150 -0.0177383738 -3.020633e-03 sample151 0.0245166984 -6.888241e-03 sample152 0.0107259913 3.314630e-02 sample153 0.0550963965 3.758760e-02 sample154 -0.0131452472 -8.153903e-04 sample155 -0.0211742574 2.642246e-03 sample156 -0.0117803505 2.698265e-02 sample157 -0.0096167165 1.433840e-02 sample158 -0.0101754772 9.137620e-03 sample159 0.0120662931 -2.565236e-02 sample160 -0.0132238202 2.916023e-03 sample161 0.0274491966 -1.748284e-02 sample162 0.0012482909 3.152261e-02 sample163 0.0042031315 1.830701e-02 sample164 0.0174896157 -1.175915e-02 sample165 0.0097517662 -6.119019e-03 sample166 0.0190134679 -1.121582e-02 sample167 -0.0044140836 4.665585e-03 sample168 0.0049689168 -1.941822e-02 sample169 -0.0209802098 3.498729e-03 > o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2 [,1] [,2] sample1 -0.0515543627 -0.0305856787 sample2 -0.0144993256 0.0236342950 sample3 -0.0371833108 -0.0140263348 sample4 0.0068945388 -0.0132539692 sample5 0.0215035333 -0.0663338101 sample6 -0.0187055152 0.0088773016 sample7 -0.0061521552 0.0064029054 sample8 -0.0210874459 0.0334652901 sample9 0.0516865043 -0.0291142799 sample10 0.0059440366 -0.0527217447 sample11 0.0393010793 -0.0200624712 sample12 -0.0420837100 0.0131331362 sample13 0.0333252565 0.0818552509 sample14 -0.0190062644 0.0160202175 sample15 -0.0030968049 -0.0189230681 sample16 -0.0004452158 0.0018880102 sample17 -0.0185848615 0.0240170131 sample18 -0.0273093598 0.0230213640 sample19 -0.0217761111 -0.0445894441 sample20 0.0245820821 0.0159812738 sample21 0.0034527644 -0.0400016054 sample22 -0.0340789054 0.0039289109 sample23 -0.0010344929 -0.0310161212 sample24 0.0289468503 0.0760962436 sample25 -0.0119098496 -0.0122798760 sample26 -0.0181001057 0.0517892852 sample27 0.0050465417 -0.0086515844 sample28 0.0057491502 0.0358830107 sample29 -0.0051104246 0.0116605117 sample30 -0.0103085904 0.0039678538 sample31 -0.0319929858 0.0090606113 sample32 -0.0036232521 -0.0328202010 sample33 -0.0534742153 0.0024751837 sample34 -0.0067495749 -0.0111000311 sample35 0.0378745721 0.0465929296 sample36 0.0647886800 0.0359987924 sample37 0.0488441236 0.0492906912 sample38 -0.0251514062 0.0197110110 sample39 -0.0085428066 -0.0105117852 sample40 0.0379324087 0.0440810741 sample41 -0.0044199152 -0.0128820644 sample42 -0.0292553573 -0.0067045265 sample43 -0.0077829155 -0.0510178219 sample44 0.0045122248 0.0479660309 sample45 -0.0074444298 -0.0051116726 sample46 -0.0088025512 0.0196186661 sample47 0.0076696301 0.0215947965 sample48 0.0290108585 -0.0175568376 sample49 -0.0141754858 0.0184717099 sample50 0.0006282201 -0.0233054373 sample51 0.0441995177 -0.0410022921 sample52 0.0715329391 -0.0399499475 sample53 -0.0095954087 -0.0029140909 sample54 0.0048933768 -0.0281884386 sample55 0.0327325487 -0.0532290012 sample56 0.0323068984 -0.0256595538 sample57 0.0806603122 -0.0286748097 sample58 -0.0064792049 -0.0006945349 sample59 0.0088958941 0.0067389649 sample60 0.0874124612 0.0431964341 sample61 0.0577604571 -0.0326112099 sample62 -0.0313318464 0.0224391756 sample63 -0.0233625220 0.0125110562 sample64 -0.0086426068 0.0148770341 sample65 0.0025256193 -0.0404466327 sample66 0.0006014071 -0.0471576264 sample67 0.0706087042 0.0516228406 sample68 0.0082301011 0.0033109509 sample69 -0.0475076743 0.0001452708 sample70 -0.0600773716 0.0089986962 sample71 -0.0096321627 -0.0050761187 sample72 -0.0031773546 -0.0166221542 sample73 -0.0113700517 -0.0191726684 sample74 -0.0014179662 -0.0608101325 sample75 0.0041911740 -0.0399981269 sample76 -0.0055326449 0.0353114263 sample77 -0.0260214459 0.0305731380 sample78 -0.0119267436 0.0632236007 sample79 0.0186017239 0.0027402910 sample80 0.0241047889 -0.0472697181 sample81 -0.0220288317 -0.0079577210 sample82 -0.0180751258 0.0639051029 sample83 -0.0256671713 -0.0125898269 sample84 0.0161392598 -0.0567222449 sample85 0.0139988188 0.0322763454 sample86 -0.0198382995 0.0389225776 sample87 0.0266270281 -0.0032979996 sample88 0.0515677078 0.0117902495 sample89 0.0014022125 -0.0140510488 sample90 -0.0375949749 0.0044004551 sample91 0.0310397965 0.0440610926 sample92 0.0270570567 0.0324380452 sample93 -0.0215009202 0.0063993941 sample94 -0.0415702912 -0.0037692077 sample95 -0.0168416047 0.0010019120 sample96 -0.0285582661 -0.0187991000 sample97 -0.0490843868 -0.0266760748 sample98 -0.0171579033 -0.0112897471 sample99 -0.0271316525 0.0232395583 sample100 -0.0301789816 0.0305498693 sample101 -0.0264371151 0.0170723968 sample102 0.0012767734 -0.0248949597 sample103 0.0055214687 -0.0030040587 sample104 0.0251346074 -0.0165212671 sample105 0.0062424215 -0.0400309901 sample106 0.0069768684 0.0154982315 sample107 -0.0315912602 -0.0118883820 sample108 -0.0109690679 0.0023637162 sample109 -0.0014762845 0.0165583675 sample110 0.0036971063 0.0168260726 sample111 -0.0071624739 -0.0345651461 sample112 0.0046098120 -0.0048009350 sample113 0.0082236008 -0.0383233357 sample114 -0.0293642209 -0.0165595240 sample115 -0.0003260453 0.0135805368 sample116 0.0183575759 0.0665377581 sample117 0.0227640036 -0.0012287760 sample118 0.0015695248 0.0472617382 sample119 0.0190084932 0.0590034062 sample120 -0.0449645755 0.0072755697 sample121 0.0077307184 0.0104738937 sample122 -0.0027132063 -0.0394983138 sample123 0.0016959300 0.0028593594 sample124 -0.0365091615 0.0040382925 sample125 -0.0053658663 -0.0316029164 sample126 -0.0458032408 0.0019165544 sample127 -0.0494064872 0.0088209044 sample128 -0.0155454766 0.0186819802 sample129 -0.0184340400 0.0038684312 sample130 -0.0303640987 -0.0052225766 sample131 -0.0088697422 0.0156339713 sample132 -0.0433916471 -0.0154075483 sample133 0.0204029276 -0.0282209049 sample134 0.0175513332 0.0262883962 sample135 0.0029009925 0.0017003151 sample136 -0.0367997573 -0.0072249751 sample137 -0.0348600323 0.0075400273 sample138 -0.0044063824 -0.0053752428 sample139 0.0073103935 0.0308956174 sample140 0.0039925654 -0.0167019605 sample141 -0.0184093462 -0.0387953445 sample142 0.0268670676 -0.0239229634 sample143 0.0421049126 -0.0110888235 sample144 0.0017253664 -0.0341766012 sample145 0.0681741320 -0.0073526377 sample146 -0.0239965222 0.0118396767 sample147 -0.0063453522 0.0183130585 sample148 0.0230825251 -0.0379753037 sample149 0.0223298673 0.0188909118 sample150 0.0055709108 0.0174179009 sample151 0.0039177786 -0.0233533275 sample152 0.0134325667 0.0302344591 sample153 0.0511990309 0.0730230140 sample154 0.0006698324 0.0154177486 sample155 0.0032926626 -0.0288651601 sample156 -0.0016463495 -0.0474657733 sample157 -0.0045857599 0.0154934573 sample158 0.0201775524 -0.0332982124 sample159 -0.0086909001 0.0073496711 sample160 0.0295437331 -0.0555734536 sample161 0.0332754288 0.0033779619 sample162 0.0121954537 0.0433540412 sample163 -0.0173490933 0.0227219128 sample164 0.0143374783 -0.0453542590 sample165 0.0343612593 -0.0511194536 sample166 -0.0157536004 0.0094621170 sample167 -0.0179654624 -0.0006982358 sample168 -0.0033829919 0.0060747155 sample169 0.0116231468 -0.0015112800 > > ## 3.3 Plotting VAF > > # DISCO-SCA plotVAF > plotVAF(discoRes) > > # JIVE plotVAF > plotVAF(jiveRes) > > > ######################### > ## PART 4. Plot Results > > # Scores for common part. DISCO-SCA > plotRes(object=discoRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > > # Scores for common part. JIVE > plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > > # Scores for common part. O2PLS. > p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for common part. O2PLS. > plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common", + combined=TRUE,block=NULL,color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > > # Scores for distinctive part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for distinctive part. DISCO-SCA > plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual", + combined=TRUE,block=NULL,color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block) > p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for common and distinctive part. DISCO (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Loadings for common part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > # Loadings for distinctive part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > # Combined plot for loadings from common and distinctive part (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > > ## Plot scores and loadings togheter: Common components DISCO-SCA > p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > ## Plot scores and loadings togheter: Common components O2PLS > p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > ## Plot scores and loadings togheter: Distintive components DISCO-SCA > p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > > > proc.time() user system elapsed 10.53 0.29 10.79 |
STATegRa.Rcheck/examples_i386/STATegRa-Ex.timings
|
STATegRa.Rcheck/examples_x64/STATegRa-Ex.timings
|