Back to Multiple platform build/check report for BioC 3.14 |
|
This page was generated on 2022-04-13 12:08:09 -0400 (Wed, 13 Apr 2022).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 20.04.4 LTS) | x86_64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4324 |
tokay2 | Windows Server 2012 R2 Standard | x64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4077 |
machv2 | macOS 10.14.6 Mojave | x86_64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4137 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
To the developers/maintainers of the HPiP package: - Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information. - Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
Package 886/2083 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.0.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 20.04.4 LTS) / x86_64 | OK | OK | OK | |||||||||
tokay2 | Windows Server 2012 R2 Standard / x64 | OK | OK | OK | OK | |||||||||
machv2 | macOS 10.14.6 Mojave / x86_64 | OK | OK | OK | OK | |||||||||
Package: HPiP |
Version: 1.0.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.0.0.tar.gz |
StartedAt: 2022-04-12 14:19:44 -0400 (Tue, 12 Apr 2022) |
EndedAt: 2022-04-12 14:26:25 -0400 (Tue, 12 Apr 2022) |
EllapsedTime: 400.5 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.0.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.14-bioc/meat/HPiP.Rcheck’ * using R version 4.1.3 (2022-03-10) * using platform: x86_64-apple-darwin17.0 (64-bit) * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.0.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed corr_plot 49.134 1.012 50.264 var_imp 46.925 1.109 48.096 FSmethod 45.306 1.153 46.627 pred_ensembel 20.676 0.356 16.014 calculateTC 6.796 0.398 7.202 enrichfindP 0.577 0.044 8.846 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in ‘inst/doc’ ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 1 NOTE See ‘/Users/biocbuild/bbs-3.14-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.1/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 98.049695 final value 93.394928 converged Fitting Repeat 2 # weights: 103 initial value 95.317614 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 108.721031 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 99.349170 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 94.643573 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 94.639386 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 112.239534 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 129.645738 iter 10 value 94.484211 iter 10 value 94.484211 iter 10 value 94.484211 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 95.734991 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 97.586611 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 100.952028 iter 10 value 93.394097 iter 20 value 93.340415 final value 93.340410 converged Fitting Repeat 2 # weights: 507 initial value 109.921345 iter 10 value 93.394948 final value 93.394928 converged Fitting Repeat 3 # weights: 507 initial value 96.553710 iter 10 value 88.044279 iter 20 value 84.885081 iter 30 value 82.544520 iter 40 value 81.966833 final value 81.966832 converged Fitting Repeat 4 # weights: 507 initial value 94.292088 iter 10 value 93.701958 iter 20 value 93.386286 iter 30 value 93.371548 final value 93.371545 converged Fitting Repeat 5 # weights: 507 initial value 104.848591 iter 10 value 93.561431 iter 20 value 93.371978 final value 93.371545 converged Fitting Repeat 1 # weights: 103 initial value 104.098807 iter 10 value 94.488541 iter 20 value 92.761881 iter 30 value 89.877038 iter 40 value 85.827254 iter 50 value 83.461148 iter 60 value 83.130300 iter 70 value 82.639649 iter 80 value 82.513374 final value 82.512766 converged Fitting Repeat 2 # weights: 103 initial value 99.659663 iter 10 value 94.489805 iter 20 value 94.486731 iter 30 value 93.695854 iter 40 value 93.677741 iter 50 value 93.321915 iter 60 value 88.308007 iter 70 value 85.065134 iter 80 value 83.742609 iter 90 value 83.078770 iter 100 value 82.895674 final value 82.895674 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 110.323291 iter 10 value 94.482377 iter 20 value 92.139423 iter 30 value 91.099625 iter 40 value 90.066909 iter 50 value 81.404932 iter 60 value 80.516888 iter 70 value 80.285173 final value 80.254187 converged Fitting Repeat 4 # weights: 103 initial value 120.033804 iter 10 value 93.235911 iter 20 value 87.083809 iter 30 value 85.886478 iter 40 value 84.667742 iter 50 value 83.819501 iter 60 value 83.718953 iter 70 value 82.914582 final value 82.894665 converged Fitting Repeat 5 # weights: 103 initial value 98.474992 iter 10 value 94.485852 iter 20 value 92.342153 iter 30 value 87.479881 iter 40 value 82.850250 iter 50 value 81.630624 iter 60 value 81.423835 iter 70 value 80.467981 iter 80 value 80.254233 final value 80.254187 converged Fitting Repeat 1 # weights: 305 initial value 112.777986 iter 10 value 92.972170 iter 20 value 83.037466 iter 30 value 80.175515 iter 40 value 79.004106 iter 50 value 78.064348 iter 60 value 77.292715 iter 70 value 77.209603 iter 80 value 77.134484 iter 90 value 77.117922 iter 100 value 77.116500 final value 77.116500 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.400456 iter 10 value 93.628240 iter 20 value 85.564532 iter 30 value 85.271053 iter 40 value 84.013686 iter 50 value 79.223174 iter 60 value 78.972566 iter 70 value 78.907330 iter 80 value 78.295525 iter 90 value 77.997758 iter 100 value 77.891934 final value 77.891934 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 114.124297 iter 10 value 94.050547 iter 20 value 91.870993 iter 30 value 88.402289 iter 40 value 85.772488 iter 50 value 80.831880 iter 60 value 78.738442 iter 70 value 78.591583 iter 80 value 78.550849 iter 90 value 78.529891 iter 100 value 78.527176 final value 78.527176 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.907737 iter 10 value 95.247113 iter 20 value 94.252737 iter 30 value 92.128955 iter 40 value 87.209841 iter 50 value 87.107312 iter 60 value 86.306910 iter 70 value 82.363746 iter 80 value 80.871616 iter 90 value 79.234371 iter 100 value 78.690638 final value 78.690638 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 126.352736 iter 10 value 94.555405 iter 20 value 93.919849 iter 30 value 93.609767 iter 40 value 92.710846 iter 50 value 82.712012 iter 60 value 82.277514 iter 70 value 81.824679 iter 80 value 81.145538 iter 90 value 81.078003 iter 100 value 80.963480 final value 80.963480 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.654523 iter 10 value 93.990099 iter 20 value 86.327504 iter 30 value 83.154390 iter 40 value 81.104407 iter 50 value 79.406719 iter 60 value 79.005120 iter 70 value 78.365506 iter 80 value 78.346038 iter 90 value 78.284687 iter 100 value 78.272854 final value 78.272854 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 112.774006 iter 10 value 93.739890 iter 20 value 93.599466 iter 30 value 89.547640 iter 40 value 85.105327 iter 50 value 84.487973 iter 60 value 83.088089 iter 70 value 81.513570 iter 80 value 80.262605 iter 90 value 80.069606 iter 100 value 79.902308 final value 79.902308 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.024498 iter 10 value 94.396195 iter 20 value 87.961087 iter 30 value 85.621390 iter 40 value 81.097906 iter 50 value 79.685643 iter 60 value 78.716476 iter 70 value 78.600446 iter 80 value 78.516096 iter 90 value 78.442499 iter 100 value 78.101963 final value 78.101963 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.878009 iter 10 value 94.894299 iter 20 value 94.276020 iter 30 value 86.486845 iter 40 value 85.276105 iter 50 value 83.208172 iter 60 value 79.282890 iter 70 value 78.006179 iter 80 value 77.895360 iter 90 value 77.866017 iter 100 value 77.848599 final value 77.848599 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 127.970931 iter 10 value 96.646295 iter 20 value 96.485511 iter 30 value 88.042870 iter 40 value 82.741382 iter 50 value 81.849448 iter 60 value 79.802745 iter 70 value 79.149102 iter 80 value 78.922748 iter 90 value 78.748352 iter 100 value 78.324115 final value 78.324115 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.131243 final value 94.485881 converged Fitting Repeat 2 # weights: 103 initial value 101.446445 final value 94.485939 converged Fitting Repeat 3 # weights: 103 initial value 103.755221 final value 94.485769 converged Fitting Repeat 4 # weights: 103 initial value 106.482897 final value 94.485656 converged Fitting Repeat 5 # weights: 103 initial value 96.883415 iter 10 value 94.485720 final value 94.484281 converged Fitting Repeat 1 # weights: 305 initial value 94.991349 iter 10 value 87.429647 iter 20 value 81.986222 iter 30 value 81.881617 iter 40 value 81.880705 iter 50 value 81.880059 iter 60 value 81.515546 iter 70 value 78.381550 iter 80 value 78.095863 iter 90 value 78.079919 iter 100 value 78.078978 final value 78.078978 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 108.889211 iter 10 value 94.489155 iter 20 value 94.484280 iter 30 value 93.932523 iter 40 value 85.187556 iter 50 value 84.597900 iter 60 value 83.424400 iter 70 value 82.514432 iter 80 value 80.686354 iter 90 value 80.651315 iter 100 value 80.598244 final value 80.598244 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 95.048630 iter 10 value 94.488568 final value 94.484228 converged Fitting Repeat 4 # weights: 305 initial value 95.884443 iter 10 value 93.400593 iter 20 value 93.397421 iter 30 value 93.394401 final value 93.394225 converged Fitting Repeat 5 # weights: 305 initial value 100.805112 iter 10 value 93.400178 iter 20 value 93.345633 iter 30 value 93.343047 iter 40 value 92.097543 iter 50 value 91.364741 iter 60 value 91.354929 iter 70 value 91.354110 iter 80 value 91.351946 final value 91.351944 converged Fitting Repeat 1 # weights: 507 initial value 112.048480 iter 10 value 94.492667 iter 20 value 94.444104 iter 30 value 93.395660 final value 93.395653 converged Fitting Repeat 2 # weights: 507 initial value 104.472317 iter 10 value 93.543035 iter 20 value 93.539732 iter 30 value 93.341217 final value 93.341095 converged Fitting Repeat 3 # weights: 507 initial value 99.117647 iter 10 value 93.755549 iter 20 value 85.054029 iter 30 value 83.496520 iter 40 value 83.474025 final value 83.473906 converged Fitting Repeat 4 # weights: 507 initial value 102.301248 iter 10 value 94.492288 iter 20 value 94.485309 iter 30 value 93.472545 iter 40 value 93.397181 iter 40 value 93.397180 iter 40 value 93.397180 final value 93.397180 converged Fitting Repeat 5 # weights: 507 initial value 115.221883 iter 10 value 94.451225 iter 20 value 94.129305 iter 30 value 93.311735 iter 40 value 93.129588 final value 93.010154 converged Fitting Repeat 1 # weights: 103 initial value 108.361147 iter 10 value 92.088953 final value 92.088889 converged Fitting Repeat 2 # weights: 103 initial value 101.940629 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.152506 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 96.513312 final value 93.701657 converged Fitting Repeat 5 # weights: 103 initial value 95.144295 final value 94.275362 converged Fitting Repeat 1 # weights: 305 initial value 100.029001 iter 10 value 94.252911 iter 20 value 94.026501 iter 30 value 89.964372 iter 40 value 89.795818 iter 50 value 89.787551 iter 60 value 89.671407 iter 60 value 89.671407 iter 60 value 89.671407 final value 89.671407 converged Fitting Repeat 2 # weights: 305 initial value 97.114731 final value 93.701657 converged Fitting Repeat 3 # weights: 305 initial value 97.363159 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 121.014891 iter 10 value 94.275363 iter 10 value 94.275362 iter 10 value 94.275362 final value 94.275362 converged Fitting Repeat 5 # weights: 305 initial value 112.677169 final value 94.275362 converged Fitting Repeat 1 # weights: 507 initial value 119.975784 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 103.449574 iter 10 value 94.121210 iter 20 value 91.509222 iter 30 value 87.201207 iter 40 value 83.437065 iter 50 value 83.364811 iter 60 value 81.485704 iter 70 value 80.752673 iter 80 value 80.535817 iter 90 value 80.532233 final value 80.532215 converged Fitting Repeat 3 # weights: 507 initial value 95.122723 iter 10 value 93.288347 iter 20 value 93.264624 final value 93.264615 converged Fitting Repeat 4 # weights: 507 initial value 102.043326 iter 10 value 93.554163 iter 20 value 93.550659 iter 30 value 93.544404 final value 93.544373 converged Fitting Repeat 5 # weights: 507 initial value 99.228939 iter 10 value 94.275367 final value 94.275362 converged Fitting Repeat 1 # weights: 103 initial value 115.047118 iter 10 value 94.466516 iter 20 value 87.646943 iter 30 value 86.219870 iter 40 value 83.834682 iter 50 value 83.333399 iter 60 value 82.488148 iter 70 value 82.223299 iter 80 value 81.872628 iter 90 value 81.839632 iter 100 value 81.832709 final value 81.832709 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 99.367330 iter 10 value 94.501468 iter 20 value 94.147609 iter 30 value 90.970685 iter 40 value 90.670082 iter 50 value 90.660658 final value 90.660629 converged Fitting Repeat 3 # weights: 103 initial value 98.508745 iter 10 value 94.489554 iter 20 value 93.892551 iter 30 value 93.814576 iter 40 value 93.696536 iter 50 value 90.517261 iter 60 value 85.099942 iter 70 value 85.006584 iter 80 value 83.491725 iter 90 value 83.102891 iter 100 value 81.913874 final value 81.913874 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 102.057257 iter 10 value 94.283128 iter 20 value 93.751648 iter 30 value 93.698267 iter 40 value 90.435579 iter 50 value 87.215716 iter 60 value 87.060168 iter 70 value 85.996896 iter 80 value 84.014807 iter 90 value 83.696799 iter 100 value 83.692041 final value 83.692041 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 99.452939 iter 10 value 88.935618 iter 20 value 84.687425 iter 30 value 83.726542 iter 40 value 83.385786 iter 50 value 83.274311 final value 83.272555 converged Fitting Repeat 1 # weights: 305 initial value 108.256646 iter 10 value 94.491426 iter 20 value 93.120091 iter 30 value 85.345941 iter 40 value 83.688851 iter 50 value 83.290454 iter 60 value 81.997108 iter 70 value 81.432185 iter 80 value 81.073442 iter 90 value 80.683539 iter 100 value 80.335529 final value 80.335529 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 121.216769 iter 10 value 94.466000 iter 20 value 90.631952 iter 30 value 86.407834 iter 40 value 84.565610 iter 50 value 83.938091 iter 60 value 83.689582 iter 70 value 83.314446 iter 80 value 82.341896 iter 90 value 81.626212 iter 100 value 80.955418 final value 80.955418 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 136.118886 iter 10 value 94.267107 iter 20 value 89.045794 iter 30 value 84.070683 iter 40 value 83.750842 iter 50 value 83.323017 iter 60 value 83.258694 iter 70 value 83.240738 iter 80 value 83.193594 iter 90 value 83.059150 iter 100 value 82.269381 final value 82.269381 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 113.320426 iter 10 value 94.469111 iter 20 value 88.013170 iter 30 value 86.357613 iter 40 value 84.554922 iter 50 value 83.788511 iter 60 value 83.748018 iter 70 value 83.505418 iter 80 value 82.284062 iter 90 value 81.894945 iter 100 value 81.422635 final value 81.422635 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.457978 iter 10 value 94.455604 iter 20 value 91.968309 iter 30 value 91.280186 iter 40 value 90.533833 iter 50 value 88.823317 iter 60 value 85.866854 iter 70 value 84.645297 iter 80 value 83.995915 iter 90 value 82.198076 iter 100 value 81.657720 final value 81.657720 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.393301 iter 10 value 94.524214 iter 20 value 86.454884 iter 30 value 84.631799 iter 40 value 83.589487 iter 50 value 83.284485 iter 60 value 82.742211 iter 70 value 82.196571 iter 80 value 81.792694 iter 90 value 81.425508 iter 100 value 80.857960 final value 80.857960 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 108.060805 iter 10 value 94.631824 iter 20 value 87.031286 iter 30 value 86.414317 iter 40 value 85.942855 iter 50 value 82.489922 iter 60 value 81.493866 iter 70 value 80.626216 iter 80 value 80.254803 iter 90 value 80.173501 iter 100 value 80.049406 final value 80.049406 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 117.992690 iter 10 value 94.578736 iter 20 value 93.906586 iter 30 value 93.306002 iter 40 value 87.571696 iter 50 value 87.312564 iter 60 value 86.983561 iter 70 value 85.887354 iter 80 value 83.981165 iter 90 value 83.040980 iter 100 value 82.415583 final value 82.415583 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.619381 iter 10 value 94.491099 iter 20 value 90.344002 iter 30 value 85.526546 iter 40 value 84.720157 iter 50 value 82.245922 iter 60 value 81.789366 iter 70 value 81.525485 iter 80 value 81.192717 iter 90 value 80.795229 iter 100 value 80.665167 final value 80.665167 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 123.204423 iter 10 value 94.466163 iter 20 value 92.140036 iter 30 value 84.146851 iter 40 value 83.252737 iter 50 value 82.861497 iter 60 value 82.188321 iter 70 value 81.850092 iter 80 value 81.145318 iter 90 value 80.500091 iter 100 value 80.177498 final value 80.177498 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.841486 final value 94.485774 converged Fitting Repeat 2 # weights: 103 initial value 96.831229 final value 94.486105 converged Fitting Repeat 3 # weights: 103 initial value 95.131790 iter 10 value 87.702698 iter 20 value 87.622384 iter 30 value 87.017018 iter 40 value 86.959339 iter 50 value 86.897617 iter 60 value 86.334161 iter 70 value 86.322262 final value 86.309475 converged Fitting Repeat 4 # weights: 103 initial value 108.332710 final value 94.485711 converged Fitting Repeat 5 # weights: 103 initial value 96.978328 final value 94.485967 converged Fitting Repeat 1 # weights: 305 initial value 106.716310 iter 10 value 93.706989 iter 20 value 85.746163 iter 30 value 83.028610 final value 83.028598 converged Fitting Repeat 2 # weights: 305 initial value 99.518009 iter 10 value 93.706428 iter 20 value 88.097221 iter 30 value 86.321367 iter 40 value 86.310174 iter 50 value 86.309859 final value 86.309775 converged Fitting Repeat 3 # weights: 305 initial value 100.945388 iter 10 value 94.489375 iter 20 value 94.484408 iter 30 value 93.691280 final value 93.691279 converged Fitting Repeat 4 # weights: 305 initial value 95.116034 iter 10 value 94.489055 iter 20 value 87.835417 iter 30 value 86.920731 iter 40 value 86.374275 iter 50 value 86.345376 iter 60 value 86.271208 iter 70 value 85.573598 iter 80 value 85.502026 iter 90 value 85.437340 iter 100 value 85.147975 final value 85.147975 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 131.603614 iter 10 value 94.489982 iter 20 value 94.485448 final value 94.485441 converged Fitting Repeat 1 # weights: 507 initial value 97.084575 iter 10 value 93.639517 iter 20 value 93.499049 iter 30 value 93.498459 iter 40 value 93.485803 iter 50 value 91.311280 iter 60 value 90.070621 iter 70 value 89.923332 iter 80 value 86.936269 iter 90 value 84.114879 iter 100 value 81.762397 final value 81.762397 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 101.011025 iter 10 value 86.272162 iter 20 value 86.251831 iter 30 value 86.250258 iter 40 value 86.148137 iter 50 value 86.142987 iter 60 value 85.456728 iter 70 value 85.298565 iter 80 value 85.298188 iter 90 value 85.016128 iter 100 value 83.105948 final value 83.105948 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 137.004644 iter 10 value 94.286308 iter 20 value 91.313137 iter 30 value 82.399088 iter 40 value 82.260458 iter 50 value 82.165869 iter 60 value 82.054643 iter 70 value 81.986885 iter 80 value 81.971760 iter 90 value 81.953746 iter 100 value 81.953103 final value 81.953103 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 99.157738 iter 10 value 88.727558 iter 20 value 88.718910 iter 30 value 86.187518 iter 40 value 84.693078 iter 50 value 82.915702 iter 60 value 81.710464 iter 70 value 81.535283 iter 80 value 81.478777 iter 90 value 80.972173 iter 100 value 80.650751 final value 80.650751 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.270918 iter 10 value 94.492422 iter 20 value 94.445500 iter 30 value 86.136496 iter 40 value 82.933488 iter 50 value 82.826575 iter 60 value 82.822523 iter 70 value 82.802519 final value 82.801706 converged Fitting Repeat 1 # weights: 103 initial value 100.842163 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 102.035769 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 94.586710 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 99.504982 final value 94.038251 converged Fitting Repeat 5 # weights: 103 initial value 94.424600 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 103.107745 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 112.459454 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 96.789866 iter 10 value 93.592761 iter 20 value 93.165079 final value 93.164741 converged Fitting Repeat 4 # weights: 305 initial value 101.515847 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 100.180276 iter 10 value 93.366128 iter 20 value 92.794746 iter 30 value 92.757627 final value 92.757313 converged Fitting Repeat 1 # weights: 507 initial value 104.168810 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 100.084404 iter 10 value 92.893511 final value 92.892737 converged Fitting Repeat 3 # weights: 507 initial value 109.912741 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 97.736728 final value 92.864740 converged Fitting Repeat 5 # weights: 507 initial value 114.846265 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 98.568274 iter 10 value 94.056506 iter 20 value 93.802776 iter 30 value 88.091905 iter 40 value 85.675629 iter 50 value 80.918305 iter 60 value 80.400694 iter 70 value 80.204752 final value 80.202200 converged Fitting Repeat 2 # weights: 103 initial value 96.966194 iter 10 value 92.681037 iter 20 value 85.672313 iter 30 value 84.977821 iter 40 value 82.541734 iter 50 value 80.247522 iter 60 value 80.211315 iter 70 value 80.203819 iter 80 value 80.202709 final value 80.202200 converged Fitting Repeat 3 # weights: 103 initial value 99.281770 iter 10 value 94.027704 iter 20 value 91.408812 iter 30 value 87.075316 iter 40 value 84.572264 iter 50 value 83.565967 iter 60 value 82.968756 iter 70 value 82.167538 iter 80 value 82.081818 final value 82.081786 converged Fitting Repeat 4 # weights: 103 initial value 102.527526 iter 10 value 94.056760 iter 20 value 93.615675 iter 30 value 88.521745 iter 40 value 84.345944 iter 50 value 83.314121 iter 60 value 81.589814 iter 70 value 80.293072 iter 80 value 80.126104 iter 90 value 80.073440 iter 100 value 79.888775 final value 79.888775 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 95.844476 iter 10 value 94.059248 iter 20 value 93.897110 iter 30 value 89.464186 iter 40 value 88.877630 iter 50 value 84.915588 iter 60 value 82.628214 iter 70 value 82.072969 iter 80 value 81.895986 iter 90 value 81.745919 iter 100 value 81.741296 final value 81.741296 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 102.018908 iter 10 value 94.253653 iter 20 value 92.557405 iter 30 value 88.456088 iter 40 value 83.755150 iter 50 value 81.445801 iter 60 value 80.761509 iter 70 value 79.548076 iter 80 value 79.393950 iter 90 value 79.306184 iter 100 value 78.991756 final value 78.991756 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 98.636781 iter 10 value 84.822624 iter 20 value 82.328173 iter 30 value 81.405131 iter 40 value 80.504652 iter 50 value 79.961257 iter 60 value 79.856249 iter 70 value 79.243425 iter 80 value 78.714722 iter 90 value 78.472882 iter 100 value 78.199874 final value 78.199874 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 106.790909 iter 10 value 94.110953 iter 20 value 83.972862 iter 30 value 82.518689 iter 40 value 81.897916 iter 50 value 81.312301 iter 60 value 80.129789 iter 70 value 80.066735 iter 80 value 79.460161 iter 90 value 78.505576 iter 100 value 78.082408 final value 78.082408 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 108.786752 iter 10 value 94.098515 iter 20 value 84.634898 iter 30 value 82.834803 iter 40 value 82.042651 iter 50 value 81.208888 iter 60 value 80.746427 iter 70 value 79.688795 iter 80 value 79.130014 iter 90 value 78.379092 iter 100 value 78.138312 final value 78.138312 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 117.346691 iter 10 value 94.084183 iter 20 value 93.798212 iter 30 value 86.717584 iter 40 value 86.276023 iter 50 value 85.481182 iter 60 value 85.042465 iter 70 value 83.903092 iter 80 value 81.119723 iter 90 value 80.743805 iter 100 value 80.475449 final value 80.475449 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 108.566902 iter 10 value 92.704861 iter 20 value 88.689561 iter 30 value 85.381582 iter 40 value 84.814958 iter 50 value 80.919166 iter 60 value 80.476458 iter 70 value 79.976850 iter 80 value 79.821061 iter 90 value 79.779187 iter 100 value 79.767087 final value 79.767087 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.738910 iter 10 value 94.568944 iter 20 value 89.964442 iter 30 value 82.478175 iter 40 value 81.644695 iter 50 value 80.977948 iter 60 value 80.496925 iter 70 value 80.418872 iter 80 value 80.343323 iter 90 value 79.114847 iter 100 value 78.579662 final value 78.579662 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 111.657242 iter 10 value 94.270311 iter 20 value 91.339989 iter 30 value 83.733880 iter 40 value 81.198800 iter 50 value 78.380731 iter 60 value 77.892291 iter 70 value 77.694472 iter 80 value 77.608133 iter 90 value 77.531871 iter 100 value 77.480504 final value 77.480504 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 110.422027 iter 10 value 94.162623 iter 20 value 92.020385 iter 30 value 82.469331 iter 40 value 80.836321 iter 50 value 79.761648 iter 60 value 78.904968 iter 70 value 78.705277 iter 80 value 78.561451 iter 90 value 78.497384 iter 100 value 78.200343 final value 78.200343 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.158750 iter 10 value 93.922156 iter 20 value 90.140486 iter 30 value 86.744778 iter 40 value 81.557795 iter 50 value 79.364201 iter 60 value 78.979799 iter 70 value 78.153821 iter 80 value 77.805033 iter 90 value 77.645485 iter 100 value 77.570641 final value 77.570641 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.976132 final value 94.054741 converged Fitting Repeat 2 # weights: 103 initial value 94.332627 final value 94.054619 converged Fitting Repeat 3 # weights: 103 initial value 99.471340 final value 94.054403 converged Fitting Repeat 4 # weights: 103 initial value 102.074912 final value 94.054393 converged Fitting Repeat 5 # weights: 103 initial value 94.662009 final value 94.040037 converged Fitting Repeat 1 # weights: 305 initial value 95.558915 iter 10 value 94.057769 iter 20 value 94.031537 iter 30 value 84.384044 iter 40 value 82.032566 iter 50 value 80.569948 iter 60 value 80.473777 iter 70 value 80.469054 final value 80.469049 converged Fitting Repeat 2 # weights: 305 initial value 126.138011 iter 10 value 94.058002 iter 20 value 94.053311 final value 94.038307 converged Fitting Repeat 3 # weights: 305 initial value 117.733771 iter 10 value 94.058252 iter 20 value 94.027047 iter 30 value 90.665152 iter 40 value 84.249810 iter 50 value 84.214956 iter 60 value 84.212807 iter 70 value 84.210088 iter 80 value 81.599072 iter 90 value 80.850813 iter 100 value 80.847323 final value 80.847323 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 110.609998 iter 10 value 94.057708 final value 94.052928 converged Fitting Repeat 5 # weights: 305 initial value 113.634586 iter 10 value 94.058062 iter 20 value 94.053206 iter 30 value 90.736430 iter 40 value 90.668212 iter 50 value 84.690560 iter 60 value 83.909336 final value 83.909274 converged Fitting Repeat 1 # weights: 507 initial value 111.229108 iter 10 value 93.979408 iter 20 value 93.870417 iter 30 value 93.865786 iter 40 value 90.577382 iter 50 value 84.666002 iter 60 value 84.660906 iter 70 value 84.658389 iter 80 value 84.656730 final value 84.656641 converged Fitting Repeat 2 # weights: 507 initial value 110.693711 iter 10 value 93.173145 iter 20 value 92.873621 iter 30 value 92.869634 iter 40 value 86.201588 iter 50 value 81.341863 iter 60 value 81.232794 final value 81.232674 converged Fitting Repeat 3 # weights: 507 initial value 96.766827 iter 10 value 94.046746 iter 20 value 94.046230 iter 30 value 92.938325 iter 40 value 85.243440 iter 50 value 85.232798 iter 60 value 85.210019 iter 70 value 82.237073 iter 80 value 82.236432 iter 90 value 80.987833 iter 100 value 80.069895 final value 80.069895 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 108.770384 iter 10 value 94.060730 iter 20 value 93.967766 iter 30 value 84.303147 iter 40 value 80.561746 iter 50 value 79.246210 iter 60 value 79.220642 iter 70 value 79.220222 final value 79.218476 converged Fitting Repeat 5 # weights: 507 initial value 102.582070 iter 10 value 94.046046 iter 20 value 82.206847 iter 30 value 82.073504 iter 40 value 82.066890 iter 50 value 81.142172 iter 60 value 79.072915 iter 70 value 78.813886 iter 80 value 78.341312 iter 90 value 77.380387 iter 100 value 76.926245 final value 76.926245 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.216339 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 116.537122 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 96.882809 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 94.953525 iter 10 value 93.474338 final value 93.473918 converged Fitting Repeat 5 # weights: 103 initial value 107.929020 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 96.187863 final value 94.038252 converged Fitting Repeat 2 # weights: 305 initial value 106.276393 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 108.362852 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 97.849219 iter 10 value 93.093560 iter 20 value 92.831473 iter 30 value 92.830052 iter 40 value 92.829819 iter 50 value 92.764553 final value 92.763916 converged Fitting Repeat 5 # weights: 305 initial value 109.684527 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 107.085855 iter 10 value 94.613334 final value 91.944444 converged Fitting Repeat 2 # weights: 507 initial value 96.324104 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 101.963327 iter 10 value 94.038010 iter 10 value 94.038009 iter 10 value 94.038009 final value 94.038009 converged Fitting Repeat 4 # weights: 507 initial value 98.499611 final value 94.038009 converged Fitting Repeat 5 # weights: 507 initial value 105.149816 iter 10 value 94.044348 final value 94.038251 converged Fitting Repeat 1 # weights: 103 initial value 96.954295 iter 10 value 94.056967 iter 20 value 94.056364 iter 30 value 93.912436 iter 40 value 87.578678 iter 50 value 87.236258 iter 60 value 86.752443 iter 70 value 86.006372 iter 80 value 85.405673 final value 85.395052 converged Fitting Repeat 2 # weights: 103 initial value 97.857140 iter 10 value 93.943641 iter 20 value 88.941051 iter 30 value 86.806058 iter 40 value 85.793591 iter 50 value 85.593837 iter 60 value 85.591445 iter 60 value 85.591445 iter 60 value 85.591445 final value 85.591445 converged Fitting Repeat 3 # weights: 103 initial value 98.858506 iter 10 value 94.066856 iter 20 value 94.055899 iter 30 value 90.282417 iter 40 value 89.114506 iter 50 value 87.353457 iter 60 value 85.835002 iter 70 value 85.773674 iter 80 value 85.631318 iter 90 value 84.566423 iter 100 value 83.628530 final value 83.628530 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 97.465388 iter 10 value 92.699526 iter 20 value 87.238678 iter 30 value 86.252824 iter 40 value 85.928344 iter 50 value 85.898035 iter 60 value 85.684791 iter 70 value 85.402572 iter 80 value 85.291692 iter 90 value 85.236075 iter 100 value 85.212018 final value 85.212018 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 105.662352 iter 10 value 93.951026 iter 20 value 88.910551 iter 30 value 87.745226 iter 40 value 86.910998 iter 50 value 86.742469 iter 60 value 86.169998 iter 70 value 85.516120 iter 80 value 84.384552 iter 90 value 83.420137 iter 100 value 83.392947 final value 83.392947 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 105.634387 iter 10 value 93.828231 iter 20 value 87.291533 iter 30 value 87.094801 iter 40 value 86.270077 iter 50 value 85.657121 iter 60 value 84.217428 iter 70 value 83.514027 iter 80 value 83.315543 iter 90 value 82.931979 iter 100 value 82.237653 final value 82.237653 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 111.525455 iter 10 value 94.044547 iter 20 value 87.422451 iter 30 value 87.009471 iter 40 value 86.460009 iter 50 value 86.099861 iter 60 value 85.639259 iter 70 value 83.931701 iter 80 value 82.602470 iter 90 value 82.521957 iter 100 value 82.101147 final value 82.101147 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.028518 iter 10 value 94.081669 iter 20 value 93.010390 iter 30 value 89.498429 iter 40 value 85.324799 iter 50 value 84.005885 iter 60 value 83.724868 iter 70 value 83.589128 iter 80 value 83.379379 iter 90 value 83.243936 iter 100 value 82.834053 final value 82.834053 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.051555 iter 10 value 94.002201 iter 20 value 89.149305 iter 30 value 87.753249 iter 40 value 87.152723 iter 50 value 86.720379 iter 60 value 86.033248 iter 70 value 85.357822 iter 80 value 85.091932 iter 90 value 84.036823 iter 100 value 83.676997 final value 83.676997 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.632731 iter 10 value 93.935572 iter 20 value 90.120692 iter 30 value 87.067798 iter 40 value 84.480219 iter 50 value 83.612892 iter 60 value 83.231958 iter 70 value 83.124458 iter 80 value 82.496194 iter 90 value 82.460366 iter 100 value 82.355864 final value 82.355864 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 103.864993 iter 10 value 94.793238 iter 20 value 92.909960 iter 30 value 91.857711 iter 40 value 90.789021 iter 50 value 89.510651 iter 60 value 88.730927 iter 70 value 88.616011 iter 80 value 88.331798 iter 90 value 84.849302 iter 100 value 83.475503 final value 83.475503 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 115.374739 iter 10 value 94.722079 iter 20 value 87.858082 iter 30 value 86.025204 iter 40 value 85.799391 iter 50 value 85.673727 iter 60 value 85.264470 iter 70 value 84.134721 iter 80 value 83.280730 iter 90 value 82.684072 iter 100 value 82.658597 final value 82.658597 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 111.090838 iter 10 value 94.297322 iter 20 value 88.676142 iter 30 value 86.477393 iter 40 value 84.138893 iter 50 value 83.598825 iter 60 value 83.253312 iter 70 value 82.721033 iter 80 value 82.150376 iter 90 value 81.919035 iter 100 value 81.866238 final value 81.866238 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 102.546008 iter 10 value 95.150536 iter 20 value 93.600587 iter 30 value 91.800339 iter 40 value 88.446811 iter 50 value 85.818862 iter 60 value 85.542055 iter 70 value 84.957787 iter 80 value 84.534946 iter 90 value 83.942187 iter 100 value 83.020876 final value 83.020876 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.702801 iter 10 value 95.395471 iter 20 value 94.087147 iter 30 value 94.046020 iter 40 value 92.944719 iter 50 value 86.546967 iter 60 value 85.310246 iter 70 value 85.052607 iter 80 value 84.879483 iter 90 value 84.341517 iter 100 value 84.168342 final value 84.168342 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.762323 final value 94.054533 converged Fitting Repeat 2 # weights: 103 initial value 101.376196 final value 94.054764 converged Fitting Repeat 3 # weights: 103 initial value 98.627329 iter 10 value 94.054669 iter 20 value 89.223969 iter 30 value 88.550040 final value 88.549202 converged Fitting Repeat 4 # weights: 103 initial value 96.466569 iter 10 value 93.674899 iter 20 value 93.674356 iter 30 value 91.151171 iter 40 value 84.750524 iter 50 value 83.541911 iter 60 value 83.093770 iter 70 value 82.977105 final value 82.977080 converged Fitting Repeat 5 # weights: 103 initial value 95.506231 final value 94.054249 converged Fitting Repeat 1 # weights: 305 initial value 101.387133 iter 10 value 94.043001 iter 20 value 94.024740 iter 30 value 89.707782 iter 40 value 85.808124 iter 50 value 83.452504 iter 60 value 82.084960 iter 70 value 81.677939 iter 80 value 81.647729 final value 81.632905 converged Fitting Repeat 2 # weights: 305 initial value 96.017718 iter 10 value 91.332841 iter 20 value 88.654117 iter 30 value 88.128876 iter 40 value 88.002389 iter 50 value 87.794517 iter 60 value 87.792118 iter 70 value 87.779815 iter 80 value 87.138313 iter 90 value 85.467686 iter 100 value 84.853934 final value 84.853934 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 98.321479 iter 10 value 94.057673 iter 20 value 94.043428 iter 30 value 93.690908 iter 40 value 88.191801 iter 50 value 87.411799 iter 60 value 85.594325 iter 70 value 84.649867 iter 80 value 84.647117 iter 90 value 84.464325 iter 100 value 84.340266 final value 84.340266 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 96.347669 iter 10 value 94.057331 iter 20 value 94.015284 iter 30 value 88.752956 iter 40 value 88.490065 iter 50 value 88.487736 iter 60 value 88.452174 iter 70 value 88.378284 iter 80 value 88.378063 iter 80 value 88.378063 iter 80 value 88.378063 final value 88.378063 converged Fitting Repeat 5 # weights: 305 initial value 96.312034 iter 10 value 94.057258 iter 20 value 94.053025 iter 30 value 94.051532 iter 40 value 90.565671 iter 50 value 87.920097 iter 60 value 86.849859 iter 70 value 86.303832 iter 80 value 85.983173 iter 90 value 85.757499 iter 100 value 85.756855 final value 85.756855 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 98.963545 iter 10 value 94.046039 iter 20 value 94.038657 iter 30 value 93.853603 iter 40 value 91.451782 iter 50 value 85.783480 iter 60 value 85.652364 iter 70 value 84.864042 final value 84.820580 converged Fitting Repeat 2 # weights: 507 initial value 95.884842 iter 10 value 94.060296 iter 20 value 94.045381 iter 30 value 91.619021 final value 91.618862 converged Fitting Repeat 3 # weights: 507 initial value 103.363679 iter 10 value 93.891955 iter 20 value 93.598436 iter 30 value 93.591047 iter 40 value 93.523312 iter 50 value 93.480876 iter 60 value 93.479710 iter 70 value 92.219899 iter 80 value 88.258971 iter 90 value 88.075154 iter 100 value 88.074118 final value 88.074118 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 98.656858 iter 10 value 94.060714 iter 20 value 92.263828 iter 30 value 87.017582 iter 40 value 86.998046 iter 50 value 86.981689 final value 86.981461 converged Fitting Repeat 5 # weights: 507 initial value 95.665390 iter 10 value 94.058182 iter 20 value 93.804973 iter 30 value 90.098344 iter 40 value 89.875342 iter 50 value 89.875042 iter 60 value 88.996204 iter 70 value 87.531950 iter 80 value 85.249615 final value 85.249348 converged Fitting Repeat 1 # weights: 103 initial value 101.687078 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 108.707574 final value 94.112570 converged Fitting Repeat 3 # weights: 103 initial value 106.740689 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 100.657380 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 98.328295 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 97.155159 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 94.569203 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 107.482049 iter 10 value 94.112775 iter 20 value 93.805428 iter 30 value 93.804881 final value 93.804879 converged Fitting Repeat 4 # weights: 305 initial value 97.661765 iter 10 value 94.328618 iter 20 value 94.308198 final value 94.308193 converged Fitting Repeat 5 # weights: 305 initial value 111.903585 iter 10 value 94.475592 iter 20 value 93.853295 iter 30 value 93.376203 iter 40 value 93.253185 final value 93.244978 converged Fitting Repeat 1 # weights: 507 initial value 102.068995 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 97.642999 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 121.776969 final value 94.354396 converged Fitting Repeat 4 # weights: 507 initial value 117.576612 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 104.117463 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 100.964045 iter 10 value 94.419519 iter 20 value 92.696485 iter 30 value 86.873140 iter 40 value 86.605405 iter 50 value 86.332782 iter 60 value 85.486643 iter 70 value 85.391006 iter 80 value 85.227570 iter 90 value 84.949224 iter 100 value 84.936057 final value 84.936057 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 112.678906 iter 10 value 94.430645 iter 20 value 93.927815 iter 30 value 93.896682 iter 40 value 93.875538 iter 50 value 91.138110 iter 60 value 87.184793 iter 70 value 86.506152 iter 80 value 85.546385 iter 90 value 85.463068 iter 100 value 85.169120 final value 85.169120 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 101.171639 iter 10 value 94.486298 iter 20 value 94.182197 iter 30 value 94.100201 iter 40 value 93.757046 iter 50 value 91.896531 iter 60 value 91.808399 iter 70 value 90.663031 iter 80 value 85.346058 iter 90 value 84.800957 iter 100 value 84.346920 final value 84.346920 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 116.150396 iter 10 value 98.786953 iter 20 value 94.487148 iter 30 value 94.486536 iter 40 value 94.424438 iter 50 value 93.947051 iter 60 value 93.246666 iter 70 value 87.740037 iter 80 value 85.198715 iter 90 value 85.137692 iter 100 value 84.933232 final value 84.933232 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 104.021094 iter 10 value 93.689371 iter 20 value 85.386923 iter 30 value 84.970160 iter 40 value 84.415919 iter 50 value 84.357453 final value 84.357366 converged Fitting Repeat 1 # weights: 305 initial value 106.061122 iter 10 value 94.240948 iter 20 value 87.080337 iter 30 value 86.680026 iter 40 value 85.183009 iter 50 value 83.677319 iter 60 value 83.217154 iter 70 value 82.576203 iter 80 value 82.269655 iter 90 value 81.607622 iter 100 value 81.423262 final value 81.423262 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 123.132039 iter 10 value 95.561045 iter 20 value 92.634303 iter 30 value 86.550114 iter 40 value 82.726533 iter 50 value 82.049957 iter 60 value 81.465513 iter 70 value 81.362391 iter 80 value 81.250932 iter 90 value 80.843208 iter 100 value 80.611391 final value 80.611391 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.429721 iter 10 value 94.457555 iter 20 value 87.324087 iter 30 value 85.434046 iter 40 value 85.100294 iter 50 value 84.321768 iter 60 value 83.267584 iter 70 value 82.155356 iter 80 value 81.418879 iter 90 value 81.203228 iter 100 value 80.561446 final value 80.561446 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 109.712207 iter 10 value 95.266887 iter 20 value 93.465902 iter 30 value 88.936326 iter 40 value 85.421061 iter 50 value 83.879593 iter 60 value 83.300238 iter 70 value 83.136516 iter 80 value 82.982179 iter 90 value 82.863784 iter 100 value 82.620079 final value 82.620079 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.909646 iter 10 value 94.461079 iter 20 value 89.513601 iter 30 value 87.205567 iter 40 value 86.555294 iter 50 value 86.393950 iter 60 value 86.304249 iter 70 value 86.250143 iter 80 value 84.394356 iter 90 value 82.791511 iter 100 value 82.603960 final value 82.603960 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 135.238682 iter 10 value 94.727475 iter 20 value 91.621586 iter 30 value 86.615660 iter 40 value 84.673349 iter 50 value 83.484886 iter 60 value 82.476148 iter 70 value 81.766581 iter 80 value 81.491164 iter 90 value 81.205507 iter 100 value 80.625279 final value 80.625279 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 118.791557 iter 10 value 94.485076 iter 20 value 89.871748 iter 30 value 87.843741 iter 40 value 84.529114 iter 50 value 83.240658 iter 60 value 81.701270 iter 70 value 81.374406 iter 80 value 81.021770 iter 90 value 80.982195 iter 100 value 80.932015 final value 80.932015 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.092086 iter 10 value 91.562785 iter 20 value 85.684444 iter 30 value 85.206401 iter 40 value 84.679505 iter 50 value 82.939684 iter 60 value 81.577384 iter 70 value 81.241292 iter 80 value 81.126596 iter 90 value 81.022595 iter 100 value 80.905926 final value 80.905926 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 112.762544 iter 10 value 94.707225 iter 20 value 92.553163 iter 30 value 87.731154 iter 40 value 85.892901 iter 50 value 83.683174 iter 60 value 83.089112 iter 70 value 82.213200 iter 80 value 81.380628 iter 90 value 81.076320 iter 100 value 80.952259 final value 80.952259 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.829523 iter 10 value 95.559372 iter 20 value 94.294909 iter 30 value 93.724958 iter 40 value 86.965749 iter 50 value 85.713275 iter 60 value 84.937062 iter 70 value 82.689574 iter 80 value 82.193794 iter 90 value 81.609717 iter 100 value 81.112058 final value 81.112058 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 105.586323 final value 94.486032 converged Fitting Repeat 2 # weights: 103 initial value 100.911124 final value 94.485904 converged Fitting Repeat 3 # weights: 103 initial value 109.740730 final value 94.485573 converged Fitting Repeat 4 # weights: 103 initial value 96.564136 final value 94.485997 converged Fitting Repeat 5 # weights: 103 initial value 101.776085 iter 10 value 86.545837 iter 20 value 86.311846 iter 30 value 86.203212 iter 40 value 85.230610 final value 85.223080 converged Fitting Repeat 1 # weights: 305 initial value 97.680816 iter 10 value 94.486254 iter 20 value 93.934007 iter 30 value 85.508611 iter 40 value 85.461867 iter 50 value 84.429297 iter 60 value 84.381253 iter 70 value 84.352652 final value 84.350373 converged Fitting Repeat 2 # weights: 305 initial value 98.737893 iter 10 value 94.358791 iter 20 value 93.845753 iter 30 value 90.997278 final value 90.993470 converged Fitting Repeat 3 # weights: 305 initial value 107.646056 iter 10 value 94.488910 iter 20 value 93.986923 iter 30 value 88.004766 iter 40 value 84.461766 iter 50 value 84.017988 iter 60 value 83.966014 iter 70 value 83.955577 iter 80 value 83.955470 iter 90 value 83.955332 iter 100 value 83.955220 final value 83.955220 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 107.150587 iter 10 value 94.491689 iter 20 value 94.486694 iter 30 value 94.321881 iter 40 value 93.510710 iter 50 value 93.504526 final value 93.496687 converged Fitting Repeat 5 # weights: 305 initial value 121.855998 iter 10 value 94.489215 iter 20 value 94.484266 iter 30 value 94.354553 final value 94.354443 converged Fitting Repeat 1 # weights: 507 initial value 97.365168 iter 10 value 94.362789 iter 20 value 94.358025 iter 30 value 90.329979 iter 40 value 86.295408 iter 50 value 86.287426 iter 60 value 86.112352 iter 70 value 84.995826 iter 80 value 83.398039 iter 90 value 81.891684 iter 100 value 81.306082 final value 81.306082 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 118.935893 iter 10 value 94.362746 iter 20 value 94.357936 iter 30 value 94.199766 iter 40 value 85.122834 iter 50 value 84.246472 iter 60 value 84.134006 iter 70 value 84.133882 final value 84.133353 converged Fitting Repeat 3 # weights: 507 initial value 104.419125 iter 10 value 94.363596 iter 20 value 94.360509 iter 30 value 94.359874 iter 40 value 91.847588 iter 50 value 87.060380 iter 60 value 86.795081 iter 70 value 86.774590 iter 80 value 86.015747 iter 90 value 85.781688 iter 100 value 85.580306 final value 85.580306 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 97.265800 iter 10 value 94.365917 iter 20 value 94.361121 iter 30 value 94.360028 iter 40 value 94.356988 iter 50 value 94.356333 iter 60 value 94.355621 iter 70 value 94.353902 iter 80 value 93.811258 iter 90 value 93.805400 iter 100 value 93.804047 final value 93.804047 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 96.433897 iter 10 value 94.491099 iter 20 value 94.107768 iter 30 value 83.695796 iter 40 value 82.644152 iter 50 value 82.435846 final value 82.435570 converged Fitting Repeat 1 # weights: 507 initial value 148.096614 iter 10 value 118.448029 iter 20 value 116.588413 iter 30 value 111.605757 iter 40 value 109.291386 iter 50 value 108.262096 iter 60 value 105.160841 iter 70 value 104.924356 iter 80 value 104.758860 iter 90 value 103.495890 iter 100 value 102.242558 final value 102.242558 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 137.212873 iter 10 value 117.994905 iter 20 value 107.216880 iter 30 value 105.974944 iter 40 value 105.789203 iter 50 value 103.637376 iter 60 value 103.143854 iter 70 value 102.701145 iter 80 value 102.131509 iter 90 value 101.451408 iter 100 value 100.916157 final value 100.916157 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 135.570581 iter 10 value 118.996430 iter 20 value 112.292282 iter 30 value 106.594487 iter 40 value 105.823384 iter 50 value 103.281108 iter 60 value 102.746846 iter 70 value 102.423963 iter 80 value 101.799174 iter 90 value 101.132829 iter 100 value 100.651855 final value 100.651855 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 130.267900 iter 10 value 118.430656 iter 20 value 112.286632 iter 30 value 108.627610 iter 40 value 107.957178 iter 50 value 106.899675 iter 60 value 103.992848 iter 70 value 101.534431 iter 80 value 101.350305 iter 90 value 101.043569 iter 100 value 100.831069 final value 100.831069 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 127.785625 iter 10 value 117.870469 iter 20 value 117.241482 iter 30 value 114.040013 iter 40 value 110.322306 iter 50 value 105.761746 iter 60 value 104.387973 iter 70 value 103.706308 iter 80 value 102.186380 iter 90 value 101.250332 iter 100 value 101.070522 final value 101.070522 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Tue Apr 12 14:26:13 2022 *********************************************** Number of test functions: 8 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 8 test functions, 0 errors, 0 failures Number of test functions: 8 Number of errors: 0 Number of failures: 0 Warning messages: 1: The `.data` argument of `add_column()` must have unique names as of tibble 3.0.0. Use `.name_repair = "minimal"`. This warning is displayed once every 8 hours. Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated. 2: `repeats` has no meaning for this resampling method. 3: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 60.466 1.559 57.101
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 45.306 | 1.153 | 46.627 | |
FreqInteractors | 0.337 | 0.006 | 0.345 | |
calculateAAC | 0.106 | 0.011 | 0.117 | |
calculateAutocor | 0.602 | 0.071 | 0.675 | |
calculateBE | 0.160 | 0.030 | 0.191 | |
calculateCTDC | 0.152 | 0.008 | 0.159 | |
calculateCTDD | 1.292 | 0.038 | 1.330 | |
calculateCTDT | 0.402 | 0.014 | 0.416 | |
calculateCTriad | 0.630 | 0.029 | 0.659 | |
calculateDC | 0.166 | 0.018 | 0.185 | |
calculateF | 0.546 | 0.011 | 0.557 | |
calculateKSAAP | 0.228 | 0.017 | 0.245 | |
calculateQD_Sm | 2.944 | 0.139 | 3.085 | |
calculateTC | 6.796 | 0.398 | 7.202 | |
calculateTC_Sm | 0.485 | 0.012 | 0.497 | |
corr_plot | 49.134 | 1.012 | 50.264 | |
enrichfindP | 0.577 | 0.044 | 8.846 | |
enrichplot | 0.376 | 0.006 | 0.383 | |
filter_missing_values | 0.001 | 0.001 | 0.002 | |
getFASTA | 0.082 | 0.007 | 1.895 | |
getHPI | 0.001 | 0.001 | 0.001 | |
get_negativePPI | 0.003 | 0.001 | 0.003 | |
get_positivePPI | 0.000 | 0.000 | 0.001 | |
impute_missing_data | 0.002 | 0.001 | 0.003 | |
plotPPI | 0.116 | 0.001 | 0.118 | |
pred_ensembel | 20.676 | 0.356 | 16.014 | |
var_imp | 46.925 | 1.109 | 48.096 | |