Contents

Preface to the Second Edition

Foreword by Bruce Schneier

Preface

Acknowledgments

Part |
Chapter 1

Chapter 2

What Is Security Engineering?
Introduction

A Framework

Example 1-A Bank

Example 2—A Military Base
Example 3—A Hospital
Example 4-The Home
Definitions

Summary

Usability and Psychology

Introduction

Attacks Based on Psychology
Pretexting
Phishing

Insights from Psychology Research
What the Brain Does Worse Than the Computer
Perceptual Bias and Behavioural Economics
Different Aspects of Mental Processing
Differences Between People
Social Psychology
What the Brain Does Better Than Computer

XXV
XXvii
XXix

XXXV

X Contents

Chapter 3

Passwords
Difficulties with Reliable Password Entry
Difficulties with Remembering the Password
Naive Password Choice
User Abilities and Training
Design Errors
Operational Issues
Social-Engineering Attacks
Trusted Path
Phishing Countermeasures
Password Manglers
Client Certs or Specialist Apps
Using the Browser’s Password Database
Soft Keyboards
Customer Education
Microsoft Passport
Phishing Alert Toolbars
Two-Factor Authentication
Trusted Computing
Fortified Password Protocols
Two-Channel Authentication
The Future of Phishing
System Issues
Can You Deny Service?
Protecting Oneself or Others?
Attacks on Password Entry
Interface Design
Eavesdropping
Technical Defeats of Password Retry Counters
Attacks on Password Storage
One-Way Encryption
Password Cracking
Absolute Limits
CAPTCHAs
Summary
Research Problems
Further Reading

Protocols

Introduction

Password Eavesdropping Risks

Who Goes There? — Simple Authentication
Challenge and Response
The MIG-in-the-Middle Attack
Reflection Attacks

Manipulating the Message

Changing the Environment

31
32
33
34
35
37
39
40
42
43
43
44
44
45
45
46
47
47
48
49
49
50
52
53
53
54
54
55
55
56
56
57
57
59
60
61
61

63
63
65
66
70
73
76
78
79

Contents

Chapter 4

Chosen Protocol Attacks
Managing Encryption Keys
Basic Key Management
The Needham-Schroeder Protocol
Kerberos
Practical Key Management
Getting Formal
A Typical Smartcard Banking Protocol
The BAN Logic
Verifying the Payment Protocol
Limitations of Formal Verification
Summary
Research Problems
Further Reading

Access Control
Introduction
Operating System Access Controls
Groups and Roles
Access Control Lists
Unix Operating System Security
Apple’s OS/X
Windows — Basic Architecture
Capabilities
Windows — Added Features
Middleware
Database Access Controls
General Middleware Issues
ORBs and Policy Languages
Sandboxing and Proof-Carrying Code
Virtualization
Trusted Computing
Hardware Protection

Intel Processors, and ‘Trusted Computing’

ARM Processors
Security Processors
What Goes Wrong
Smashing the Stack
Other Technical Attacks
User Interface Failures
Why So Many Things Go Wrong
Remedies
Environmental Creep
Summary
Research Problems
Further Reading

80
82
83
84
85
86
87
87
88
89
90
91
92
92

93

93

96

98

99
100
101
102
103
104
107
107
108
109
110
111
111
113
114
116
116
117
118
119
121
122
124
125
126
127
127

xii Contents
Chapter 5 Cryptography 129
Introduction 129
Historical Background 130
An Early Stream Cipher — The Vigeneére 131
The One-Time Pad 132
An Early Block Cipher — Playfair 134
One-Way Functions 136
Asymmetric Primitives 138
The Random Oracle Model 138
Random Functions — Hash Functions 140
Properties 141
The Birthday Theorem 142
Random Generators — Stream Ciphers 143
Random Permutations — Block Ciphers 144
Public Key Encryption and Trapdoor One-Way Permutations 146
Digital Signatures 147
Symmetric Crypto Primitives 149
SP-Networks 149
Block Size 150
Number of Rounds 150
Choice of S-Boxes 151
Linear Cryptanalysis 151
Differential Cryptanalysis 152
Serpent 153
The Advanced Encryption Standard (AES) 153
Feistel Ciphers 155
The Luby-Rackoff Result 157
DES 157
Modes of Operation 160
Electronic Code Book 160
Cipher Block Chaining 161
Output Feedback 161
Counter Encryption 162
Cipher Feedback 163
Message Authentication Code 163
Composite Modes of Operation 164
Hash Functions 165
Extra Requirements on the Underlying Cipher 166
Common Hash Functions and Applications 167
Asymmetric Crypto Primitives 170
Cryptography Based on Factoring 170
Cryptography Based on Discrete Logarithms 173
Public Key Encryption — Diffie Hellman and ElGamal 174
Key Establishment 175
Digital Signature 176
Special Purpose Primitives 178

Contents

Chapter 6

Chapter 7

Elliptic Curve Cryptography

Certification

The Strength of Asymmetric Cryptographic Primitives
Summary
Research Problems
Further Reading

Distributed Systems
Introduction
Concurrency
Using Old Data Versus Paying to Propagate State
Locking to Prevent Inconsistent Updates
The Order of Updates
Deadlock
Non-Convergent State
Secure Time
Fault Tolerance and Failure Recovery
Failure Models
Byzantine Failure
Interaction with Fault Tolerance
What Is Resilience For?
At What Level Is the Redundancy?
Service-Denial Attacks
Naming
The Distributed Systems View of Naming
What Else Goes Wrong
Naming and Identity
Cultural Assumptions
Semantic Content of Names
Uniqueness of Names
Stability of Names and Addresses
Adding Social Context to Naming
Restrictions on the Use of Names
Types of Name
Summary
Research Problems
Further Reading

Economics

Introduction

Classical Economics
Monopoly
Public Goods

Information Economics
The Price of Information
The Value of Lock-In
Asymmetric Information

179
179
181
182
183
183

185
185
186
186
188
188
189
190
191
192
193
193
194
195
197
198
200
200
204
204
206
207
207
208
209
210
211
211
212
213

215
215
216
217
219
220
220
221
223

xiv Contents
Game Theory 223
The Prisoners’ Dilemma 225
Evolutionary Games 226
The Economics of Security and Dependability 228
Weakest Link, or Sum of Efforts? 229
Managing the Patching Cycle 229
Why Is Windows So Insecure? 230
Economics of Privacy 232
Economics of DRM 233
Summary 234
Research Problems 235
Further Reading 235
Part i

Chapter 8 Multilevel Security 239
Introduction 239
What Is a Security Policy Model? 240
The Bell-LaPadula Security Policy Model 242
Classifications and Clearances 243
Information Flow Control 245
The Standard Criticisms of Bell-LaPadula 246
Alternative Formulations 248
The Biba Model and Vista 250
Historical Examples of MLS Systems 252
SCOMP 252
Blacker 253
MLS Unix and Compartmented Mode Workstations 253
The NRL Pump 254
Logistics Systems 255
Sybard Suite 256
Wiretap Systems 256
Future MLS Systems 257
Vista 257
Linux 258
Virtualization 260
Embedded Systems 261
What Goes Wrong 261
Composability 261
The Cascade Problem 262
Covert Channels 263
The Threat from Viruses 265
Polyinstantiation 266
Other Practical Problems 267
Broader Implications of MLS 269

Contents

XV

Chapter 9

Chapter 10

Summary 272
Research Problems 272
Further Reading 272
Multilateral Security 275
Introduction 275
Compartmentation, the Chinese Wall and the BMA Model 277
Compartmentation and the Lattice Model 277
The Chinese Wall 281
The BMA Model 282
The Threat Model 284

The Security Policy 287

Pilot Implementations 289
Current Privacy Issues 290
Inference Control 293
Basic Problems of Inference Control in Medicine 293
Other Applications of Inference Control 296
The Theory of Inference Control 297
Query Set Size Control 298
Trackers 298
More Sophisticated Query Controls 298

Cell Suppression 299
Maximum Order Control and the Lattice Model 300
Audit Based Control 300
Randomization 301
Limitations of Generic Approaches 302
Active Attacks 304

The Value of Imperfect Protection 305
The Residual Problem 306
Summary 309
Research Problems 310
Further Reading 310
Banking and Bookkeeping 313
Introduction 313
The Origins of Bookkeeping 315
Double-Entry Bookkeeping 316

A Telegraphic History of E-commerce 316
How Bank Computer Systems Work 317
The Clark-Wilson Security Policy Model 319
Designing Internal Controls 320
What Goes Wrong 324
Wholesale Payment Systems 328
SWIFT 329
What Goes Wrong 331
Automatic Teller Machines 333

ATM Basics 334

xvi Contents
What Goes Wrong 337
Incentives and Injustices 341
Credit Cards 343
Fraud 344
Forgery 345
Automatic Fraud Detection 346
The Economics of Fraud 347
Online Credit Card Fraud — the Hype and the Reality 348
Smartcard-Based Banking 350
EMV 351
Static Data Authentication 352
Dynamic Data Authentication 356
Combined Data Authentication 356
RFID 357
Home Banking and Money Laundering 358
Summary 361
Research Problems 362
Further Reading 363
Chapter 11 Physical Protection 365
Introduction 365
Threats and Barriers 366
Threat Model 367
Deterrence 368
Walls and Barriers 370
Mechanical Locks 372
Electronic Locks 376
Alarms 378
How not to Protect a Painting 379
Sensor Defeats 380
Feature Interactions 382
Attacks on Communications 383
Lessons Learned 386
Summary 387
Research Problems 388
Further Reading 388
Chapter 12 Monitoring and Metering 389
Introduction 389
Prepayment Meters 390
Utility Metering 392
How the System Works 393
What Goes Wrong 395
Taxi Meters, Tachographs and Truck Speed Limiters 397
The Tachograph 398
What Goes Wrong 399
How Most Tachograph Manipulation Is Done 400

Contents xvii
Tampering with the Supply 401
Tampering with the Instrument 401
High-Tech Attacks 402
The Digital Tachograph Project 403
System Level Problems 404
Other Problems 405
The Resurrecting Duckling 407
Postage Meters 408
Summary 412
Research Problems 413
Further Reading 414
Chapter 13 Nuclear Command and Control 415
Introduction 415
The Evolution of Command and Control 417
The Kennedy Memorandum 418
Authorization, Environment, Intent 419
Unconditionally Secure Authentication 420
Shared Control Schemes 422
Tamper Resistance and PALs 424
Treaty Verification 426
What Goes Wrong 427
Secrecy or Openness? 429
Summary 430
Research Problems 430
Further Reading 430
Chapter 14 Security Printing and Seals 433
Introduction 433
History 434
Security Printing 435
Threat Model 436
Security Printing Techniques 437
Packaging and Seals 443
Substrate Properties 443
The Problems of Glue 444
PIN Mailers 445
Systemic Vulnerabilities 446
Peculiarities of the Threat Model 447
Anti-Gundecking Measures 448
The Effect of Random Failure 449
Materials Control 450
Not Protecting the Right Things 451
The Cost and Nature of Inspection 451
Evaluation Methodology 453
Summary 454
Research Problems 454
Further Reading 455

xviii Contents
Chapter 15 Biometrics 457
Introduction 457
Handwritten Signatures 458
Face Recognition 461
Bertillonage 464
Fingerprints 464
Verifying Positive or Negative Identity Claims 466
Crime Scene Forensics 469
Iris Codes 472
Voice Recognition 475
Other Systems 476
What Goes Wrong 477
Summary 481
Research Problems 482
Further Reading 482
Chapter 16 Physical Tamper Resistance 483
Introduction 483
History 485
High-End Physically Secure Processors 486
Evaluation 492
Medium Security Processors 494
The iButton 494
The Dallas 5000 Series 495
FPGA Security, and the Clipper Chip 496
Smartcards and Microcontrollers 499
History 500
Architecture 501
Security Evolution 501
The State of the Art 512
Defense in Depth 513
Stop Loss 513
What Goes Wrong 514
The Trusted Interface Problem 514
Conlflicts 515
The Lemons Market, Risk Dumping and Evaluation 516
Security-By-Obscurity 517
Interaction with Policy 517
Function Creep 518
So What Should One Protect? 518
Summary 520
Research Problems 520
Further Reading 520
Chapter 17 Emission Security 523
Introduction 523
History 524

Contents xix
Technical Surveillance and Countermeasures 526
Passive Attacks 530
Leakage Through Power and Signal Cables 530
Red/Black Separation 530
Timing Analysis 531
Power Analysis 531
Leakage Through RF Signals 534
Active Attacks 538
Tempest Viruses 538
Nonstop 539
Glitching 540
Differential Fault Analysis 540
Combination Attacks 540
Commercial Exploitation 541
Defenses 541
Optical, Acoustic and Thermal Side Channels 542
How Serious are Emsec Attacks? 544
Governments 544
Businesses 545
Summary 546
Research Problems 546
Further Reading 546
Chapter 18 API Attacks 547
Introduction 547
API Attacks on Security Modules 548
The XOR-To-Null-Key Attack 549
The Attack on the 4758 551
Multiparty Computation, and Differential Protocol Attacks 552
The EMV Attack 553
API Attacks on Operating Systems 554
Summary 555
Research Problems 557
Further Reading 557
Chapter 19 Electronic and Information Warfare 559
Introduction 559
Basics 560
Communications Systems 561
Signals Intelligence Techniques 563
Attacks on Communications 565
Protection Techniques 567
Frequency Hopping 568
DSSS 569
Burst Communications 570
Combining Covertness and Jam Resistance 571
Interaction Between Civil and Military Uses 572

XX

Contents

Chapter 20

Chapter 21

Surveillance and Target Acquisition
Types of Radar
Jamming Techniques
Advanced Radars and Countermeasures
Other Sensors and Multisensor Issues
IFF Systems
Improvised Explosive Devices
Directed Energy Weapons
Information Warfare
Definitions
Doctrine
Potentially Useful Lessons from Electronic Warfare
Differences Between E-war and I-war
Summary
Research Problems
Further Reading

Telecom System Security
Introduction
Phone Phreaking
Attacks on Metering
Attacks on Signaling
Attacks on Switching and Configuration
Insecure End Systems
Feature Interaction
Mobile Phones
Mobile Phone Cloning
GSM Security Mechanisms
Third Generation Mobiles — 3gpp
Platform Security
So Was Mobile Security a Success or a Failure?
VOIP
Security Economics of Telecomms
Frauds by Phone Companies
Billing Mechanisms
Summary
Research Problems
Further Reading

Network Attack and Defense
Introduction
Vulnerabilities in Network Protocols
Attacks on Local Networks
Attacks Using Internet Protocols and Mechanisms
SYN Flooding
Smurfing
Distributed Denial of Service Attacks

574
574
575
577
578
579
582
584
586
587
588
589
591
592
592
593

595
595
596
596
599
601
603
605
606
607
608
617
619
621
623
624
625
627
630
631
632

633
633
635
636
638
638
639
640

Contents

Chapter 22

Spam 642

DNS Security and Pharming 643
Trojans, Viruses, Worms and Rootkits 644
Early History of Malicious Code 644
The Internet Worm 645
How Viruses and Worms Work 646
The History of Malware 647
Countermeasures 650
Defense Against Network Attack 652
Configuration Management and Operational Security 652
Filtering: Firewalls, Spam Filters, Censorware and Wiretaps 654
Packet Filtering 654
Circuit Gateways 655
Application Relays 655
Ingress Versus Egress Filtering 657
Architecture 657
Intrusion Detection 660
Types of Intrusion Detection 661
General Limitations of Intrusion Detection 662
Specific Problems Detecting Network Attacks 664
Encryption 665
SSH 665

WiFi 666
Bluetooth 668
HomePlug 668
IPsec 669

TLS 670

PKI 672
Topology 675
Summary 676
Research Problems 677
Further Reading 678
Copyright and DRM 679
Introduction 679
Copyright 680
Software 681
Books 688
Audio 689
Video and Pay-TV 690
Typical System Architecture 690
Video Scrambling Techniques 691
Attacks on Hybrid Scrambling Systems 693

DVB 697
DVD 698
HD-DVD and Blu-ray 701
AACS — Broadcast Encryption and Traitor Tracing 701

Contents

Chapter 23

Part 111
Chapter 24

Blu-ray and SPDC
General Platforms
Windows Media Rights Management
Other Online Rights-Management Systems
Peer-to-Peer Systems
Rights Management of Semiconductor IP
Information Hiding
Watermarks and Copy Generation Management
General Information Hiding Techniques
Attacks on Copyright Marking Schemes
Applications of Copyright Marking Schemes
Policy
The IP Lobby
Who Benefits?
Accessory Control
Summary
Research Problems
Further Reading

The Bleeding Edge

Introduction

Computer Games
Types of Cheating
Aimbots and Other Unauthorized Software
Virtual Worlds, Virtual Economies

Web Applications
eBay
Google
Social Networking Sites

Privacy Technology
Anonymous Email — The Dining Cryptographers and Mixes
Anonymous Web Browsing — Tor
Confidential and Anonymous Phone Calls
Email Encryption
Steganography and Forensics Countermeasures
Putting It All Together

Elections

Summary

Research Problems

Further Reading

Terror, Justice and Freedom
Introduction
Terrorism

Causes of Political Violence

703
704
705
706
707
709
710
711
712
714
718
718
720
722
723
725
725
726

727
727
728
730
732
733
734
735
736
739
745
747
749
751
753
755
757
759
764
764
765

769
769
771
772

Contents

XX

Chapter 25

The Psychology of Political Violence
The Role of Political Institutions
The Role of the Press
The Democratic Response
Surveillance
The History of Government Wiretapping
The Growing Controversy about Traffic Analysis
Unlawful Surveillance
Access to Search Terms and Location Data
Data Mining
Surveillance via ISPs — Carnivore and its Offspring
Communications Intelligence on Foreign Targets
Intelligence Strengths and Weaknesses
The Crypto Wars
The Back Story to Crypto Policy
DES and Crypto Research
The Clipper Chip
Did the Crypto Wars Matter?
Export Control
Censorship
Censorship by Authoritarian Regimes
Network Neutrality
Peer-to-Peer, Hate Speech and Child Porn
Forensics and Rules of Evidence
Forensics
Admissibility of Evidence
Privacy and Data Protection
European Data Protection
Differences between Europe and the USA
Summary
Research Problems
Further Reading

Managing the Development of Secure Systems
Introduction
Managing a Security Project
A Tale of Three Supermarkets
Risk Management
Organizational Issues
The Complacency Cycle and the Risk Thermostat
Interaction with Reliability
Solving the Wrong Problem

Incompetent and Inexperienced Security Managers

Moral Hazard
Methodology
Top-Down Design
Iterative Design

772
774
775
775
776
776
779
781
782
783
784
785
787
789
790
792
793
794
796
797
798
800
801
803
803
806
808
809
810
812
813
813

815
815
816
816
818
819
820
821
822
823
823
824
826
827

xxiv Contents

Chapter 26

Chapter 27

Bibliography

Index

Lessons from Safety-Critical Systems
Security Requirements Engineering
Managing Requirements Evolution
Bug Fixing
Control Tuning and Corporate Governance
Evolving Environments and the Tragedy of the Commons
Organizational Change
Managing Project Requirements
Parallelizing the Process
Risk Management
Managing the Team
Summary
Research Problems
Further Reading

System Evaluation and Assurance
Introduction
Assurance
Perverse Economic Incentives
Project Assurance
Security Testing
Formal Methods
Quis Custodiet?
Process Assurance
Assurance Growth
Evolution and Security Assurance
Evaluation
Evaluations by the Relying Party
The Common Criteria
What the Common Criteria Don’t Do
Corruption, Manipulation and Inertia
Ways Forward
Hostile Review
Free and Open-Source Software
Semi-Open Design
Penetrate-and-Patch, CERTs, and Bugtraq
Education
Summary
Research Problems
Further Reading

Conclusions

829
834
835
836
838
839
841
842
844
846
848
852
853
854

857
857
858
858
860
861
862
862
863
866
868
869
870
873
876
878
881
882
882
884
885
886
887
887
887

889
893
997

Preface to the Second Edition

The first edition of Security Engineering was published in May 2001. Since then
the world has changed.

System security was one of Microsoft’s lowest priorities then; it's now one
of the highest. The volume of malware continues to increase along with the
nuisance that it causes. Although a lot of effort has gone into defence — we
have seen Windows NT replaced by XP and then Vista, and occasional service
packs replaced by monthly security patches — the effort put into attacks has
increased far more. People who write viruses no longer do so for fun, but for
profit; the last few years have seen the emergence of a criminal economy that
supports diverse specialists. Spammers, virus writers, phishermen, money
launderers and spies trade busily with each other.

Cryptography has also moved on. The Advanced Encryption Standard is
being embedded into more and more products, and we have some interesting
developments on the public-key side of things too. But just as our algorithm
problems get solved, so we face a host of implementation issues. Side channels,
poorly designed APIs and protocol failures continue to break systems. Applied
cryptography is harder than ever to do well.

Pervasive computing also opens up new challenges. As computers and
communications become embedded invisibly everywhere, so problems that
used to only afflict “proper computers’ crop up in all sorts of other devices too.
What does it mean for a thermometer to be secure, or an air-conditioner?

The great diversity of intelligent devices brings with it a great diversity
of interests and actors. Security is not just about keeping the bad guys out,
but increasingly concerned with tussles for power and control. DRM pits the
content and platform industries against consumers, and against each other;
accessory control is used to tie printers to their vendors’ cartridges, but leads

XXVi

Preface to the Second Edition

to antitrust lawsuits and government intervention. Security also interacts with
safety in applications from cars through utilities to electronic healthcare. The
security engineer needs to understand not just crypto and operating systems,
but economics and human factors as well.

And the ubiquity of digital devices means that ‘computer security’ is no
longer just a problem for a few systems specialists. Almost all white-collar
crime (and much crime of the serious violent sort) now involves computers
or mobile phones, so a detective needs to understand computer forensics just
as she needs to know how to drive. More and more lawyers, accountants,
managers and other people with no formal engineering training are going to
have to understand system security in order to do their jobs well.

The rapid growth of online services, from Google and Facebook to massively
multiplayer games, has also changed the world. Bugs in online applications
can be fixed rapidly once they’re noticed, but the applications get ever more
complex and their side-effects harder to predict. We may have a reasonably
good idea what it means for an operating system or even a banking service to
be secure, but we can’t make any such claims for online lifestyles that evolve
all the time. We're entering a novel world of evolving socio-technical systems,
and that raises profound questions about how the evolution is driven and who
is in control.

The largest changes, however, may be those driven by the tragic events of
September 2001 and by our reaction to them. These have altered perceptions
and priorities in many ways, and changed the shape of the security industry.
Terrorism is not just about risk, but about the perception of risk, and about
the manipulation of perception. This adds psychology and politics to the mix.
Security engineers also have a duty to contribute to the political debate. Where
inappropriate reactions to terrorist crimes have led to major waste of resources
and unforced policy errors, we have to keep on educating people to ask a
few simple questions: what are we seeking to prevent, and will the proposed
mechanisms actually work?

Ross Anderson
Cambridge, January 2008

Foreword

In a paper he wrote with Roger Needham, Ross Anderson coined the phrase
“programming Satan’s computer’’ to describe the problems faced by computer-
security engineers. It’s the sort of evocative image I've come to expect from
Ross, and a phrase I've used ever since.

Programming a computer is straightforward: keep hammering away at the
problem until the computer does what it’s supposed to do. Large application
programs and operating systems are a lot more complicated, but the method-
ology is basically the same. Writing a reliable computer program is much
harder, because the program needs to work even in the face of random errors
and mistakes: Murphy’s computer, if you will. Significant research has gone
into reliable software design, and there are many mission-critical software
applications that are designed to withstand Murphy’s Law.

Writing a secure computer program is another matter entirely. Security
involves making sure things work, not in the presence of random faults, but in
the face of an intelligent and malicious adversary trying to ensure that things
fail in the worst possible way at the worst possible time . .. again and again. It
truly is programming Satan’s computer.

Security engineering is different from any other kind of programming. It’s
a point I made over and over again: in my own book, Secrets and Lies, in
my monthly newsletter Crypto-Gram, and in my other writings. And it’s a
point Ross makes in every chapter of this book. This is why, if you're doing
any security engineering ... if you're even thinking of doing any security
engineering, you need to read this book. It’s the first, and only, end-to-end
modern security design and engineering book ever written.

And it comes just in time. You can divide the history of the Internet
into three waves. The first wave centered around mainframes and terminals.

xxviii Foreword

Computers were expensive and rare. The second wave, from about 1992 until
now, centered around personal computers, browsers, and large application
programs. And the third, starting now, will see the connection of all sorts
of devices that are currently in proprietary networks, standalone, and non-
computerized. By 2003, there will be more mobile phones connected to the
Internet than computers. Within a few years we’ll see many of the world’s
refrigerators, heart monitors, bus and train ticket dispensers, burglar alarms,
and electricity meters talking IP. Personal computers will be a minority player
on the Internet.

Security engineering, especially in this third wave, requires you to think
differently. You need to figure out not how something works, but how
something can be made to not work. You have to imagine an intelligent
and malicious adversary inside your system (remember Satan’s computer),
constantly trying new ways to subvert it. You have to consider all the ways
your system can fail, most of them having nothing to do with the design itself.
You have to look at everything backwards, upside down, and sideways. You
have to think like an alien.

As the late great science fiction editor John W. Campbell, said: ““An alien
thinks as well as a human, but not like a human.” Computer security is a lot
like that. Ross is one of those rare people who can think like an alien, and then
explain that thinking to humans. Have fun reading.

Bruce Schneier
January 2001

Preface

For generations, people have defined and protected their property and their
privacy using locks, fences, signatures, seals, account books, and meters. These
have been supported by a host of social constructs ranging from international
treaties through national laws to manners and customs.

This is changing, and quickly. Most records are now electronic, from
bank accounts to registers of real property; and transactions are increasingly
electronic, as shopping moves to the Internet. Just as important, but less
obvious, are the many everyday systems that have been quietly automated.
Burglar alarms no longer wake up the neighborhood, but send silent messages
to the police; students no longer fill their dormitory washers and dryers with
coins, but credit them using a smartcard they recharge at the college bookstore;
locks are no longer simple mechanical affairs, but are operated by electronic
remote controls or swipe cards; and instead of renting videocassettes, millions
of people get their movies from satellite or cable channels. Even the humble
banknote is no longer just ink on paper, but may contain digital watermarks
that enable many forgeries to be detected by machine.

How good is all this new security technology? Unfortunately, the honest
answer is ‘nowhere near as good as it should be’. New systems are often rapidly
broken, and the same elementary mistakes are repeated in one application after
another. It often takes four or five attempts to get a security design right, and
that is far too many.

The media regularly report security breaches on the Internet; banks fight
their customers over ‘phantom withdrawals’ from cash machines; VISA reports
huge increases in the number of disputed Internet credit card transactions;
satellite TV companies hound pirates who copy their smartcards; and law

Preface

enforcement agencies try to stake out territory in cyberspace with laws con-
trolling the use of encryption. Worse still, features interact. A mobile phone
that calls the last number again if one of the keys is pressed by accident may
be just a minor nuisance — until someone invents a machine that dispenses
a can of soft drink every time its phone number is called. When all of a
sudden you find 50 cans of Coke on your phone bill, who is responsible, the
phone company, the handset manufacturer, or the vending machine operator?
Once almost every electronic device that affects your life is connected to the
Internet — which Microsoft expects to happen by 2010 — what does ‘Internet
security” mean to you, and how do you cope with it?

As well as the systems that fail, many systems just don’t work well enough.
Medical record systems don’t let doctors share personal health information
as they would like, but still don’t protect it against inquisitive private eyes.
Zillion-dollar military systems prevent anyone without a “top secret’ clearance
from getting at intelligence data, but are often designed so that almost everyone
needs this clearance to do any work. Passenger ticket systems are designed to
prevent customers cheating, but when trustbusters break up the railroad, they
cannot stop the new rail companies cheating each other. Many of these failures
could have been foreseen if designers had just a little bit more knowledge of
what had been tried, and had failed, elsewhere.

Security engineering is the new discipline that is starting to emerge out of
all this chaos.

Although most of the underlying technologies (cryptology, software relia-
bility, tamper resistance, security printing, auditing, etc.) are relatively well
understood, the knowledge and experience of how to apply them effectively
is much scarcer. And since the move from mechanical to digital mechanisms
is happening everywhere at once, there just has not been time for the lessons
learned to percolate through the engineering community. Time and again, we
see the same old square wheels being reinvented.

The industries that have managed the transition most capably are often
those that have been able to borrow an appropriate technology from another
discipline. Examples include the reuse of technology designed for military
identify-friend-or-foe equipment in bank cash machines and even prepayment
gas meters. So even if a security designer has serious expertise in some par-
ticular speciality — whether as a mathematician working with ciphers or a
chemist developing banknote inks — it is still prudent to have an overview
of the whole subject. The essence of good security engineering is under-
standing the potential threats to a system, then applying an appropriate mix
of protective measures — both technological and organizational — to control
them. Knowing what has worked, and more importantly what has failed, in
other applications is a great help in developing judgment. It can also save a lot
of money.

Preface xxxi

The purpose of this book is to give a solid introduction to security engineer-
ing, as we understand it at the beginning of the twenty-first century. My goal
is that it works at four different levels:

1. As a textbook that you can read from one end to the other over a few days as an
introduction to the subject. The book is to be used mainly by the working
IT professional who needs to learn about the subject, but it can also be
used in a one-semester course in a university.

2. As a reference book to which you can come for an overview of the workings of
some particular type of system. These systems include cash machines, taxi
meters, radar jammers, anonymous medical record databases, and so on.

3. As an introduction to the underlying technologies, such as crypto, access con-
trol, inference control, tamper resistance, and seals. Space prevents me from
going into great depth; but I provide a basic road map for each subject,
plus a reading list for the curious (and a list of open research problems
for the prospective graduate student).

4. As an original scientific contribution in which I have tried to draw out the com-
mon principles that underlie security engineering, and the lessons that people
building one kind of system should have learned from others. In the many
years I have been working in security, I keep coming across these. For
example, a simple attack on stream ciphers wasn’t known to the people
who designed a common antiaircraft fire control radar so it was easy
to jam; while a trick well known to the radar community wasn’t under-
stood by banknote printers and people who design copyright marking
schemes, which led to a quite general attack on most digital watermarks.

I have tried to keep this book resolutely mid-Atlantic; a security engineering
book has to be, as many of the fundamental technologies are American, while
many of the interesting applications are European. (This isn’t surprising given
the better funding of U.S. universities and research labs, and the greater
diversity of nations and markets in Europe.) What’s more, many of the
successful European innovations — from the smart-card to the GSM mobile
phone to the pay-per-view TV service — have crossed the Atlantic and now
thrive in the Americas. Both the science, and the case studies, are necessary.

This book grew out of the security engineering courses I teach at Cambridge
University, but I have rewritten my notes to make them self-contained and
added at least as much material again. It should be useful to the established
professional security manager or consultant as a first-line reference; to the
computer science professor doing research in cryptology; to the working
police detective trying to figure out the latest computer scam; and to policy
wonks struggling with the conflicts involved in regulating cryptography and
anonymity. Above all, it is aimed at Dilbert. My main audience is the working

xxxii Preface

programmer or engineer who is trying to design real systems that will keep on
working despite the best efforts of customers, managers, and everybody else.
This book is divided into three parts.

m The first looks at basic concepts, starting with the central concept of a
security protocol, and going on to human-computer interface issues,
access controls, cryptology, and distributed system issues. It does not
assume any particular technical background other than basic computer
literacy. It is based on an Introduction to Security course that I teach to
second-year undergraduates.

m The second part looks in much more detail at a number of important
applications, such as military communications, medical record systems,
cash machines, mobile phones, and pay-TV. These are used to intro-
duce more of the advanced technologies and concepts. It also considers
information security from the viewpoint of a number of different inter-
est groups, such as companies, consumers, criminals, police, and spies.
This material is drawn from my senior course on security, from research
work, and from experience consulting.

m The third part looks at the organizational and policy issues: how com-
puter security interacts with law, with evidence, and with corporate pol-
itics; how we can gain confidence that a system will perform as intended;
and how the whole business of security engineering can best be
managed.

I believe that building systems that continue to perform robustly in the face
of malice is one of the most important, interesting, and difficult tasks facing
engineers in the twenty-first century.

Ross Anderson
Cambridge, January 2001

About the Author

Why should I have been the person to write this book? Well, I seem to
have accumulated the right mix of experience and qualifications over the last
25 years. I graduated in mathematics and natural science from Cambridge
(England) in the 1970s, and got a qualification in computer engineering; my
first proper job was in avionics; and I became interested in cryptology and
computer security in the mid-1980s. After working in the banking industry for
several years, I started doing consultancy for companies that designed equip-
ment for banks, and then working on other applications of this technology,
such as prepayment electricity meters.

Imoved to academia in 1992, but continued to consult to industry on security
technology. During the 1990s, the number of applications that employed
cryptology rose rapidly: burglar alarms, car door locks, road toll tags, and
satellite TV encryption systems all made their appearance. As the first legal
disputes about these systems came along, I was lucky enough to be an expert
witness in some of the important cases. The research team I lead had the
good fortune to be in the right place at the right time when several crucial
technologies, such as tamper resistance and digital watermarking, became hot
topics.

By about 1996, it started to become clear to me that the existing textbooks
were too specialized. The security textbooks focused on the access control
mechanisms in operating systems, while the cryptology books gave very
detailed expositions of the design of cryptographic algorithms and protocols.
These topics are interesting, and important. However they are only part of
the story. Most system designers are not overly concerned with crypto or
operating system internals, but with how to use these tools effectively. They
are quite right in this, as the inappropriate use of mechanisms is one of the
main causes of security failure. I was encouraged by the success of a number

xxxiv About the Author

of articles I wrote on security engineering (starting with “‘Why Cryptosystems
Fail” in 1993); and the need to teach an undergraduate class in security led to
the development of a set of lecture notes that made up about half of this book.
Finally, in 1999, I got round to rewriting them for a general technical audience.

I have learned a lot in the process; writing down what you think you know
is a good way of finding out what you don’t. I have also had a lot of fun. I
hope you have as much fun reading it!

Acknowledgments

A great many people have helped in various ways with this book. I probably
owe the greatest thanks to those who read the manuscript (or a large part of
it) looking for errors and obscurities. They were Anne Anderson, Ian Brown,
Nick Bohm, Richard Bondi, Caspar Bowden, Richard Clayton, Steve Early,
Rich Graveman, Markus Kuhn, Dan Lough, David MacKay, John McHugh,
Bob Morris, Roger Needham, Jerry Saltzer, Marv Schaefer, Karen Sparck Jones
and Frank Stajano. Much credit also goes to my editor, Carol Long, who
(among many other things) went through the first six chapters and coached
me on the style appropriate for a professional (as opposed to academic) book.
At the proofreading stage, I got quite invaluable help from Carola Bohm, Mike
Bond, Richard Clayton, George Danezis, and Bruce Godfrey.

A large number of subject experts also helped me with particular chapters
or sections. Richard Bondi helped me refine the definitions in Chapter 1;
Jianxin Yan, Alan Blackwell and Alasdair Grant helped me investigate the
applied psychology aspects of passwords; John Gordon and Sergei Sko-
robogatov were my main sources on remote key entry devices; Whit Diffie
and Mike Brown on IFF; Steve Early on Unix security (although some of my
material is based on lectures given by Ian Jackson); Mike Roe, Ian Kelly, Paul
Leyland, and Fabien Petitcolas on the security of Windows NT4 and Win2K;
Virgil Gligor on the history of memory overwriting attacks, and on mandatory
integrity policies; and Jean Bacon on distributed systems. Gary Graunke told
me the history of protection in Intel processors; Orr Dunkelman found many
bugs in a draft of the crypto chapter and John Brazier pointed me to the
Humpty Dumpty quote.

Moving to the second part of the book, the chapter on multilevel security was
much improved by input from Jeremy Epstein, Virgil Gligor, Jong-Hyeon Lee,
Ira Moskowitz, Paul Karger, Rick Smith, Frank Stajano, and Simon Wiseman,

XXXVi

Acknowledgments

while Frank also helped with the following two chapters. The material on
medical systems was originally developed with a number of people at the
British Medical Association, most notably Fleur Fisher, Simon Jenkins, and
Grant Kelly. Denise Schmandt-Besserat taught the world about bullae, which
provided the background for the chapter on banking systems; that chapter
was also strengthened by input from Fay Hider and Willie List. The chapter
on alarms contains much that I was taught by Roger Needham, Peter Dean,
John Martin, Frank Clish, and Gary Geldart. Nuclear command and control
systems are much the brainchild of Gus Simmons; he and Bob Morris taught
me much of what’s in that chapter.

Sijprand Spannenburg reviewed the chapter on security printing; and Roger
Johnston has taught us all an enormous amount about seals. John Daugman
helped polish the chapter on biometrics, as well as inventing iris scan-
ning which I describe there. My tutors on tamper resistance were Oliver
Kommerling and Markus Kuhn; Markus also worked with me on emission
security. I had substantial input on electronic warfare from Mike Brown and
Owen Lewis. The chapter on phone fraud owes a lot to Duncan Campbell,
Richard Cox, Rich Graveman, Udi Manber, Andrew Odlyzko and Roy Pater-
son. Ian Jackson contributed some ideas on network security. Fabien Petitcolas
‘wrote the book” on copyright marking, and helped polish my chapter on it.
Johann Bezuidenhoudt made perceptive comments on both phone fraud and
electronic commerce, while Peter Landrock gave valuable input on bookkeep-
ing and electronic commerce systems. Alistair Kelman was a fount of knowl-
edge on the legal aspects of copyright; and Hal Varian kept me straight on mat-
ters of economics, and particularly the chapters on e-commerce and assurance.

As for the third part of the book, the chapter on e-policy was heavily influ-
enced by colleagues at the Foundation for Information Policy Research, notably
Caspar Bowden, Nick Bohm, Fleur Fisher, Brian Gladman, Ian Brown, Richard
Clayton — and by the many others involved in the fight, including Whit Diffie,
John Gilmore, Susan Landau, Brian Omotani and Mark Rotenberg. The chapter
on management benefited from input from Robert Brady, Jack Lang, and Willie
List. Finally, my thinking on assurance has been influenced by many people,
including Robin Ball, Robert Brady, Willie List, and Robert Morris.

There were also many people over the years who taught me my trade. The
foremost of them is Roger Needham, who was my thesis advisor; but I also
learned a lot from hundreds of engineers, programmers, auditors, lawyers,
and policemen with whom I worked on various consultancy jobs over the last
15 years. Of course, I take the rap for all the remaining errors and omissions.

Finally, I owe a huge debt to my family, especially to my wife Shireen for
putting up with over a year in which I neglected household duties and was
generally preoccupied. Daughter Bavani and dogs Jimmy, Bess, Belle, Hobbes,
Bigfoot, Cat, and Dogmatix also had to compete for a diminished quantum of
attention, and I thank them for their forbearance.

Further Acknowledgments for
the Second Edition

Many of the folks who helped me with the first edition have also helped
update the same material this time. In addition, I've had useful input, feedback
or debugging assistance from Edmond Alyanakian, Johann Bezuidenhoudt,
Richard Clayton, Jolyon Clulow, Dan Cvrcek, Roger Dingledine, Saar Drimer,
Mike Ellims, Dan Geer, Gary Geldart, Wendy Grossman, Dan Hagon, Feng
Hao, Roger Johnston, Markus Kuhn, Susan Landau, Stephen Lewis, Nick
Mathewson, Tyler Moore, Steven Murdoch, Shishir Nagaraja, Roger Nebel,
Andy Ozment, Mike Roe, Frank Stajano, Mark Staples, Don Taylor, Marc
Tobias, Robert Watson and Jeff Yan. The members of our security group
in Cambridge, and the Advisory Council of the Foundation for Information
Policy Research, have been an invaluable sounding-board for many ideas. And
I am also grateful to the many readers of the first edition who pointed out
typos and other improvements: Piotr Carlson, Peter Chambers, Nick Drage,
Austin Donnelly, Ben Dougall, Shawn Fitzgerald, Paul Gillingwater, Pieter
Hartel, David Haséather, Konstantin Hypponen, Oliver Jorns, Markus Kuhn,
Garry McKay, Joe Osborne, Avi Rubin, Sam Simpson, M Taylor, Peter Taylor,
Paul Thomas, Nick Volenec, Randall Walker, Keith Willis, Stuart Wray and
Stefek Zaba.

XXxvii

Legal Notice

I cannot emphasize too strongly that the tricks taught in this book are intended
only to enable you to build better systems. They are not in any way given as
a means of helping you to break into systems, subvert copyright protection
mechanisms, or do anything else unethical or illegal.

Where possible I have tried to give case histories at a level of detail that
illustrates the underlying principles without giving a “hacker’s cookbook’.

Should This Book Be Published at All?

There are people who believe that the knowledge contained in this book
should not be published. This is an old debate; in previous centuries, people
objected to the publication of books on locksmithing, on the grounds that they
were likely to help the bad guys more than the good guys.

I think that these fears are answered in the first book in English that
discussed cryptology. This was a treatise on optical and acoustic telegraphy
written by Bishop John Wilkins in 1641 [805]. He traced scientific censorship
back to the Egyptian priests who forbade the use of alphabetic writing on the
grounds that it would spread literacy among the common people and thus
foster dissent. As he said:

It will not follow that everything must be suppresst which may be abused. . .
If all those useful inventions that are liable to abuse should therefore be
concealed there is not any Art or Science which may be lawfully profest.

The question was raised again in the nineteenth century, when some well-
meaning people wanted to ban books on locksmithing. A contemporary writer
on the subject replied [750]:

XXXIX

x1

Legal Notice

Many well-meaning persons suppose that the discussion respecting the
means for baffling the supposed safety of locks offers a premium for
dishonesty, by showing others how to be dishonest. This is a fallacy.
Rogues are very keen in their profession, and already know much more
than we can teach them respecting their several kinds of roguery. Rogues
knew a good deal about lockpicking long before locksmiths discussed
it among themselves ... if there be harm, it will be much more than
counterbalanced by good.

These views have been borne out by long experience since. As for me, I
worked for two separate banks for three and a half years on cash machine
security, but I learned significant new tricks from a document written by
a convicted card fraudster that circulated in the U.K. prison system. Many
government agencies are now coming round to this point of view. It is
encouraging to see, for example, that the U.S. National Security Agency has
published the specifications of the encryption algorithm (Skipjack) and the key
management protocol (KEA) used to protect secret U.S. government traffic.
Their judgment is clearly that the potential harm done by letting the Iraqis
use a decent encryption algorithm is less than the good that will be done by
having commercial off-the-shelf software compatible with Federal encryption
standards.

In short, while some bad guys will benefit from a book such as this, they
mostly know the tricks already, and the good guys will benefit much more.

What Is Security Engineering?

Out of the crooked timber of humanity, no straight
thing was ever made.

— Immanuel Kant

The world is never going to be perfect, either on- or offline; so
let’s not set impossibly high standards for online.

— Esther Dyson

1.1 Introduction

Security engineering is about building systems to remain dependable in the
face of malice, error, or mischance. As a discipline, it focuses on the tools,
processes, and methods needed to design, implement, and test complete
systems, and to adapt existing systems as their environment evolves.

Security engineering requires cross-disciplinary expertise, ranging from
cryptography and computer security through hardware tamper-resistance and
formal methods to a knowledge of economics, applied psychology, organiza-
tions and the law. System engineering skills, from business process analysis
through software engineering to evaluation and testing, are also important;
but they are not sufficient, as they deal only with error and mischance rather
than malice.

Many security systems have critical assurance requirements. Their failure
may endanger human life and the environment (as with nuclear safety and
control systems), do serious damage to major economic infrastructure (cash
machines and other bank systems), endanger personal privacy (medical record

Chapter 1 = What Is Security Engineering?

systems), undermine the viability of whole business sectors (pay-TV), and
facilitate crime (burglar and car alarms). Even the perception that a system is
more vulnerable than it really is (paying with a credit card over the Internet)
can significantly hold up economic development.

The conventional view is that while software engineering is about ensur-
ing that certain things happen (‘John can read this file’), security is about
ensuring that they don’t (‘The Chinese government can’t read this file”). Real-
ity is much more complex. Security requirements differ greatly from one
system to another. One typically needs some combination of user authentica-
tion, transaction integrity and accountability, fault-tolerance, message secrecy,
and covertness. But many systems fail because their designers protect the
wrong things, or protect the right things but in the wrong way.

Getting protection right thus depends on several different types of process.
You have to figure out what needs protecting, and how to do it. You also
need to ensure that the people who will guard the system and maintain it are
properly motivated. In the next section, I'll set out a framework for thinking
about this. Then, in order to illustrate the range of different things that security
systems have to do, I will take a quick look at four application areas: a bank,
an air force base, a hospital, and the home. Once we have given some concrete
examples of the stuff that security engineers have to understand and build, we
will be in a position to attempt some definitions.

1.2 A Framework

Good security engineering requires four things to come together. There’s
policy: what you're supposed to achieve. There’s mechanism: the ciphers,
access controls, hardware tamper-resistance and other machinery that you
assemble in order to implement the policy. There’s assurance: the amount of
reliance you can place on each particular mechanism. Finally, there’s incentive:
the motive that the people guarding and maintaining the system have to do
their job properly, and also the motive that the attackers have to try to defeat
your policy. All of these interact (see Fig. 1.1).

As an example, let’s think of the 9/11 terrorist attacks. The hijackers’ success
in getting knives through airport security was not a mechanism failure but a
policy one; at that time, knives with blades up to three inches were permitted,
and the screeners did their task of keeping guns and explosives off as far as
we know. Policy has changed since then: first to prohibit all knives, then most
weapons (baseball bats are now forbidden but whiskey bottles are OK); it’s
flip-flopped on many details (butane lighters forbidden then allowed again).
Mechanism is weak, because of things like composite knives and explosives
that don’t contain nitrogen. Assurance is always poor; many tons of harmless
passengers’ possessions are consigned to the trash each month, while well

1.2 A Framework

5

Policy

Incentives

y

Y

Mechanism Assurance

Figure 1.1: Security Engineering Analysis Framework

below half of all the weapons taken through screening (whether accidentially
or for test purposes) are picked up.

Serious analysts point out major problems with priorities. For example, the
TSA has spent $14.7 billion on aggressive passenger screening, which is fairly
ineffective, while $100 m spent on reinforcing cockpit doors would remove
most of the risk [1024]. The President of the Airline Pilots Security Alliance
notes that most ground staff aren’t screened, and almost no care is taken to
guard aircraft parked on the ground overnight. As most airliners don’t have
locks, there’s not much to stop a bad guy wheeling steps up to a plane and
placing a bomb on board; if he had piloting skills and a bit of chutzpah, he
could file a flight plan and make off with it [820]. Yet screening staff and
guarding planes are just not a priority.

Why are such poor policy choices made? Quite simply, the incentives on
the decision makers favour visible controls over effective ones. The result is
what Bruce Schneier calls ‘security theatre’ — measures designed to produce a
feeling of security rather than the reality. Most players also have an incentive to
exaggerate the threat from terrorism: politicians to scare up the vote, journalists
to sell more papers, companies to sell more equipment, government officials to
build their empires, and security academics to get grants. The upshot of all this
is that most of the damage done by terrorists to democractic countries comes
from the overreaction. Fortunately, electorates figure this out over time. In
Britain, where the IRA bombed us intermittently for a generation, the public
reaction to the 7/7 bombings was mostly a shrug.

Security engineers have to understand all this; we need to be able to put risks
and threats in content, make realistic assessments of what might go wrong, and
give our clients good advice. That depends on a wide understanding of what
has gone wrong over time with various systems; what sort of attacks have
worked, what their consequences were, and how they were stopped (if it was
worthwhile to do so). This book is full of case histories. I'll talk about terrorism

Chapter 1 = What Is Security Engineering?

specifically in Part II. For now, in order to set the scene, I'll give a few brief
examples here of interesting security systems and what they are designed to
prevent.

1.3 Example 1 — A Bank

Banks operate a surprisingly large range of security-critical computer systems.

1. The core of a bank’s operations is usually a branch bookkeeping system.
This keeps customer account master files plus a number of journals that
record the day’s transactions. The main threat to this system is the bank’s
own staff; about one percent of bankers are fired each year, mostly for
petty dishonesty (the average theft is only a few thousand dollars). The
main defense comes from bookkeeping procedures that have evolved
over centuries. For example, each debit against one account must be
matched by an equal and opposite credit against another; so money can
only be moved within a bank, never created or destroyed. In addition,
large transfers of money might need two or three people to authorize
them. There are also alarm systems that look for unusual volumes or
patterns of transactions, and staff are required to take regular vacations
during which they have no access to the bank’s premises or systems.

2. One public face of the bank is its automatic teller machines. Authenticat-
ing transactions based on a customer’s card and personal identification
number — in such a way as to defend against both outside and inside
attack — is harder than it looks! There have been many epidemics of
‘phantom withdrawals’ in various countries when local villains (or bank
staff) have found and exploited loopholes in the system. Automatic teller
machines are also interesting as they were the first large scale commer-
cial use of cryptography, and they helped establish a number of crypto
standards.

3. Another public face is the bank’s website. Many customers now do more
of their routine business, such as bill payments and transfers between
savings and checking accounts, online rather than at a branch. Bank
websites have come under heavy attack recently from phishing — from
bogus websites into which customers are invited to enter their pass-
words. The ‘standard” internet security mechanisms designed in the
1990s, such as SSL/TLS, turned out to be ineffective once capable moti-
vated opponents started attacking the customers rather than the bank.
Phishing is a fascinating security engineering problem mixing elements
from authentication, usability, psychology, operations and economics.
I'll discuss it in detail in the next chapter.

1.4 Example 2 — A Military Base

4. Behind the scenes are a number of high-value messaging systems. These
are used to move large sums of money (whether between local banks
or between banks internationally); to trade in securities; to issue letters
of credit and guarantees; and so on. An attack on such a system is the
dream of the sophisticated white-collar criminal. The defense is a mix-
ture of bookkeeping procedures, access controls, and cryptography.

5. The bank’s branches will often appear to be large, solid and prosperous,
giving customers the psychological message that their money is safe.
This is theatre rather than reality: the stone facade gives no real pro-
tection. If you walk in with a gun, the tellers will give you all the cash
you can see; and if you break in at night, you can cut into the safe or
strongroom in a couple of minutes with an abrasive wheel. The effective
controls these days center on the alarm systems — which are in constant
communication with a security company’s control center. Cryptography
is used to prevent a robber or burglar manipulating the communica-
tions and making the alarm appear to say ‘all’s well” when it isn’t.

I'll look at these applications in later chapters. Banking computer security is
important: until quite recently, banks were the main non-military market for
many computer security products, so they had a disproportionate influence
on security standards. Secondly, even where their technology isn’t blessed by
an international standard, it is often widely used in other sectors anyway.

1.4 Example 2 — A Military Base

Military systems have also been an important technology driver. They have
motivated much of the academic research that governments have funded into
computer security in the last 20 years. As with banking, there is not one single
application but many.

1. Some of the most sophisticated installations are the electronic warfare
systems whose goals include trying to jam enemy radars while prevent-
ing the enemy from jamming yours. This area of information warfare
is particularly instructive because for decades, well-funded research
labs have been developing sophisticated countermeasures, counter-
countermeasures and so on — with a depth, subtlety and range of decep-
tion strategies that are still not found elsewhere. As I write, in 2007, a lot
of work is being done on adapting jammers to disable improvised explo-
sive devices that make life hazardous for allied troops in Iraq. Electronic
warfare has given many valuable insights: issues such as spoofing and
service-denial attacks were live there long before bankers and bookmak-
ers started having problems with bad guys targeting their websites.

8 Chapter 1 = What Is Security Engineering?

2. Military communication systems have some interesting requirements.
It is often not sufficient to just encipher messages: the enemy, on see-
ing traffic encrypted with somebody else’s keys, may simply locate the
transmitter and attack it. Low-probability-of-intercept (LPI) radio links are
one answer; they use a number of tricks that are now being adopted in
applications such as copyright marking. Covert communications are also
important in some privacy applications, such as in defeating the Internet
censorship imposed by repressive regimes.

3. Military organizations have some of the biggest systems for logistics and
inventory management, which differ from commercial systems in having
a number of special assurance requirements. For example, one may have
a separate stores management system at each different security level: a
general system for things like jet fuel and boot polish, plus a second
secret system for stores and equipment whose location might give away
tactical intentions. (This is very like the businessman who keeps separate
sets of books for his partners and for the tax man, and can cause similar
problems for the poor auditor.) There may also be intelligence systems
and command systems with even higher protection requirements. The
general rule is that sensitive information may not flow down to less
restrictive classifications. So you can copy a file from a Secret stores
system to a Top Secret command system, but not vice versa. The same
rule applies to intelligence systems which collect data using wiretaps:
information must flow up to the intelligence analyst from the target of
investigation, but the target must not know which of his communications
have been intercepted. Managing multiple systems with information
flow restrictions is a hard problem and has inspired a lot of research.
Since 9/11, for example, the drive to link up intelligence systems has
led people to invent search engines that can index material at multiple
levels and show users only the answers they are cleared to know.

4. The particular problems of protecting nuclear weapons have given rise
over the last two generations to a lot of interesting security technology,
ranging from electronic authentication systems that prevent weapons
being used without the permission of the national command author-
ity, through seals and alarm systems, to methods of identifying people
with a high degree of certainty using biometrics such as iris patterns.

The civilian security engineer can learn a lot from all this. For example, many
early systems for inserting copyright marks into digital audio and video, which
used ideas from spread-spectrum radio, were vulnerable to desynchronisation
attacks that are also a problem for some spread-spectrum systems. Another
example comes from munitions management. There, a typical system enforces
rules such as ‘Don’t put explosives and detonators in the same truck’. Such

1.5 Example 3 — A Hospital

techniques can be recycled in food logistics — where hygiene rules forbid raw
and cooked meats being handled together.

1.5 Example 3 — A Hospital

From soldiers and food hygiene we move on to healthcare. Hospitals have a
number of interesting protection requirements — mostly to do with patient
safety and privacy.

1. Patient record systems should not let all the staff see every patient’s
record, or privacy violations can be expected. They need to implement
rules such as ‘nurses can see the records of any patient who has been
cared for in their department at any time during the previous 90 days’.
This can be hard to do with traditional computer security mechanisms
as roles can change (nurses move from one department to another) and
there are cross-system dependencies (if the patient records system ends
up relying on the personnel system for access control decisions, then the
personnel system may just have become critical for safety, for privacy or
for both).

2. Patient records are often anonymized for use in research, but this is
hard to do well. Simply encrypting patient names is usually not enough
as an enquiry such as ‘show me all records of 59 year old males who
were treated for a broken collarbone on September 15th 1966” would
usually be enough to find the record of a politician who was known
to have sustained such an injury at college. But if records cannot be
anonymized properly, then much stricter rules have to be followed
when handling the data, and this increases the cost of medical research.

3. Web-based technologies present interesting new assurance problems
in healthcare. For example, as reference books — such as directories
of drugs — move online, doctors need assurance that life-critical data,
such as the figures for dosage per body weight, are exactly as published
by the relevant authority, and have not been mangled in some way.
Another example is that as doctors start to access patients’ records from
home or from laptops or even PDAs during house calls, suitable elec-
tronic authentication and encryption tools are starting to be required.

4. New technology can introduce risks that are just not understood. Hos-
pital administrators understand the need for backup procedures to deal
with outages of power, telephone service and so on; but medical prac-
tice is rapidly coming to depend on the net in ways that are often not
documented. For example, hospitals in Britain are starting to use online
radiology systems: X-rays no longer travel from the X-ray machine to the

Chapter 1 = What Is Security Engineering?

operating theatre in an envelope, but via a server in a distant town. So a
network failure can stop doctors operating just as much as a power fail-
ure. All of a sudden, the Internet turns into a safety-critical system, and
denial-of-service attacks might kill people.

We will look at medical system security too in more detail later. This is a
much younger field than banking IT or military systems, but as healthcare
accounts for a larger proportion of GNP than either of them in all developed
countries, and as hospitals are adopting IT at an increasing rate, it looks set to
become important. In the USA in particular, the HIPAA legislation — which
sets minimum standards for privacy — has made the sector a major client of
the information security industry.

1.6 Example 4 — The Home

You might not think that the typical family operates any secure systems. But
consider the following.

1. Many families use some of the systems we’ve already described. You
may use a web-based electronic banking system to pay bills, and in a few
years you may have encrypted online access to your medical records.
Your burglar alarm may send an encrypted ‘all’s well” signal to the secu-
rity company every few minutes, rather than waking up the neighbor-
hood when something happens.

2. Your car probably has an electronic immobilizer that sends an encrypted
challenge to a radio transponder in the key fob; the transponder has to
respond correctly before the car will start. This makes theft harder and
cuts your insurance premiums. But it also increases the number of car
thefts from homes, where the house is burgled to get the car keys. The
really hard edge is a surge in car-jackings: criminals who want a getaway
car may just take one at gunpoint.

3. Early mobile phones were easy for villains to ‘clone”: users could
suddenly find their bills inflated by hundreds or even thousands of
dollars. The current GSM digital mobile phones authenticate them-
selves to the network by a cryptographic challenge-response protocol
similar to the ones used in car door locks and immobilizers.

4. Satellite TV set-top boxes decipher movies so long as you keep paying
your subscription. DVD players use copy control mechanisms based on
cryptography and copyright marking to make it harder to copy disks (or
to play them outside a certain geographic area). Authentication proto-
cols can now also be used to set up secure communications on home net-
works (including WiFi, Bluetooth and HomePlug).

1.7 Definitions

5. In many countries, households who can’t get credit can get prepayment
meters for electricity and gas, which they top up using a smartcard or
other electronic key which they refill at a local store. Many universi-
ties use similar technologies to get students to pay for photocopier use,
washing machines and even soft drinks.

6. Above all, the home provides a haven of physical security and seclu-
sion. Technological progress will impact this in many ways. Advances
in locksmithing mean that most common house locks can be defeated
easily; does this matter? Research suggests that burglars aren’t wor-
ried by locks as much as by occupants, so perhaps it doesn’t matter
much — but then maybe alarms will become more important for keep-
ing intruders at bay when no-one’s at home. Electronic intrusion might
over time become a bigger issue, as more and more devices start to com-
municate with central services. The security of your home may come
to depend on remote systems over which you have little control.

So you probably already use many systems that are designed to enforce
some protection policy or other using largely electronic mechanisms. Over the
next few decades, the number of such systems is going to increase rapidly. On
past experience, many of them will be badly designed. The necessary skills are
just not spread widely enough.

The aim of this book is to enable you to design such systems better. To do
this, an engineer or programmer needs to learn about what systems there are,
how they work, and — at least as important — how they have failed in the
past. Civil engineers learn far more from the one bridge that falls down than
from the hundred that stay up; exactly the same holds in security engineering.

1.7 Definitions

Many of the terms used in security engineering are straightforward, but some
are misleading or even controversial. There are more detailed definitions of
technical terms in the relevant chapters, which you can find using the index.
In this section, I'll try to point out where the main problems lie.

The first thing we need to clarify is what we mean by system. In practice,
this can denote:

1. a product or component, such as a cryptographic protocol, a smartcard
or the hardware of a PC;

2. a collection of the above plus an operating system, communications and
other things that go to make up an organization’s infrastructure;

3. the above plus one or more applications (media player, browser, word
processor, accounts / payroll package, and so on);

12

Chapter 1 = What Is Security Engineering?

4. any or all of the above plus IT staff;
5. any or all of the above plus internal users and management;

6. any or all of the above plus customers and other external users.

Confusion between the above definitions is a fertile source of errors and
vulnerabilities. Broadly speaking, the vendor and evaluator communities focus
on the first (and occasionally) the second of them, while a business will focus on
the sixth (and occasionally the fifth). We will come across many examples of
systems that were advertised or even certified as secure because the hardware
was, but that broke badly when a particular application was run, or when
the equipment was used in a way the designers didn’t anticipate. Ignoring the
human components, and thus neglecting usability issues, is one of the largest
causes of security failure. So we will generally use definition 6; when we take
a more restrictive view, it should be clear from the context.

The next set of problems comes from lack of clarity about who the players are
and what they are trying to prove. In the literature on security and cryptology,
it’s a convention that principals in security protocols are identified by names
chosen with (usually) successive initial letters — much like hurricanes — and
so we see lots of statements such as “Alice authenticates herself to Bob’. This
makes things much more readable, but often at the expense of precision. Do we
mean that Alice proves to Bob that her name actually is Alice, or that she proves
she’s got a particular credential? Do we mean that the authentication is done
by Alice the human being, or by a smartcard or software tool acting as Alice’s
agent? In that case, are we sure it’s Alice, and not perhaps Cherie to whom
Alice lent her card, or David who stole her card, or Eve who hacked her PC?

By a subject I will mean a physical person (human, ET, ...), in any role
including that of an operator, principal or victim. By a person, I will mean
either a physical person or a legal person such as a company or government'.

A principal is an entity that participates in a security system. This entity can
be a subject, a person, arole, or a piece of equipment such as a PC, smartcard, or
card reader terminal. A principal can also be a communications channel (which
might be a port number, or a crypto key, depending on the circumstance). A
principal can also be a compound of other principals; examples are a group
(Alice or Bob), a conjunction (Alice and Bob acting together), a compound
role (Alice acting as Bob’s manager) and a delegation (Bob acting for Alice in
her absence). Beware that groups and roles are not the same. By a group I will
mean a set of principals, while a role is a set of functions assumed by different
persons in succession (such as ‘the officer of the watch on the USS Nimitz’
or ‘the president for the time being of the Icelandic Medical Association’). A
principal may considered at more than one level of abstraction: e.g. ‘Bob acting

IThat some persons are not people may seem slightly confusing but it’s well established: blame
the lawyers.

1.7 Definitions

13

for Alice in her absence” might mean ‘Bob’s smartcard representing Bob who
is acting for Alice in her absence’ or even ‘Bob operating Alice’s smartcard in
her absence’. When we have to consider more detail, I'll be more specific.

The meaning of the word identity is controversial. When we have to be care-
ful, I will use it to mean a correspondence between the names of two principals
signifying that they refer to the same person or equipment. For example, it
may be important to know that the Bob in ‘Alice acting as Bob’s manager” is
the same as the Bob in “Bob acting as Charlie’s manager” and in ‘Bob as branch
manager signing a bank draft jointly with David’. Often, identity is abused to
mean simply ‘name’, an abuse entrenched by such phrases as “user identity’
and ‘citizen’s identity card’. Where there is no possibility of being ambiguous,
I'll sometimes lapse into this vernacular usage in order to avoid pomposity.

The definitions of trust and trustworthy are often confused. The following
example illustrates the difference: if an NSA employee is observed in a toilet
stall at Baltimore Washington International airport selling key material to a
Chinese diplomat, then (assuming his operation was not authorized) we can
describe him as ‘trusted but not trustworthy’. Hereafter, we’ll use the NSA
definition that a trusted system or component is one whose failure can break the
security policy, while a trustworthy system or component is one that won't fail.

Beware, though, that there are many alternative definitions of trust. A UK
military view stresses auditability and fail-secure properties: a trusted systems
element is one ‘whose integrity cannot be assured by external observation of
its behaviour whilst in operation’. Other definitions often have to do with
whether a particular system is approved by authority: a trusted system might
be ‘a system which won’t get me fired if it gets hacked on my watch’ or even
‘a system which we can insure’. I won't use either of these definitions. When
we mean a system which isn’t failure-evident, or an approved system, or an
insured system, I'll say so.

The definition of confidentiality versus privacy versus secrecy opens another
can of worms. These terms clearly overlap, but equally clearly are not exactly
the same. If my neighbor cuts down some ivy at our common fence with the
result that his kids can look into my garden and tease my dogs, it’s not my
confidentiality that has been invaded. And the duty to keep quiet about the
affairs of a former employer is a duty of confidence, not of privacy.

The way I'll use these words is as follows.

m Secrecy is a technical term which refers to the effect of the mechanisms
used to limit the number of principals who can access information, such
as cryptography or computer access controls.

m Confidentiality involves an obligation to protect some other person’s or
organization’s secrets if you know them.

m Privacy is the ability and/or right to protect your personal information
and extends to the ability and/or right to prevent invasions of your

14

Chapter 1 = What Is Security Engineering?

personal space (the exact definition of which varies quite sharply from
one country to another). Privacy can extend to families but not to legal
persons such as corporations.

For example, hospital patients have a right to privacy, and in order to
uphold this right the doctors, nurses and other staff have a duty of confidence
towards their patients. The hospital has no right of privacy in respect of its
business dealings but those employees who are privy to them may have a
duty of confidence. In short, privacy is secrecy for the benefit of the individual
while confidentiality is secrecy for the benefit of the organization.

There is a further complexity in that it’s often not sufficient to protect data,
such as the contents of messages; we also have to protect metadata, such as
logs of who spoke to whom. For example, many countries have laws making
the treatment of sexually transmitted diseases secret, and yet if a private eye
could find out that you were exchanging encrypted messages with an STD
clinic, he might well draw the conclusion that you were being treated there.
(A famous model in Britain recently won a privacy lawsuit against a tabloid
newspaper which printed a photograph of her leaving a meeting of Narcotics
Anonymous.) So anonymity can be just as important a factor in privacy (or
confidentiality) as secrecy. To make things even more complex, some writers
refer to what we’ve called secrecy as message content confidentiality and to
what we’ve called anonymity as message source (or destination) confidentiality.
In general, anonymity is hard. It’s difficult to be anonymous on your own;
you usually need a crowd to hide in. Also, our legal codes are not designed
to support anonymity: it’s much easier for the police to get itemized billing
information from the phone company, which tells them who called whom,
than it is to get an actual wiretap. (And it’s often very useful.)

The meanings of authenticity and integrity can also vary subtly. In the
academic literature on security protocols, authenticity means integrity plus
freshness: you have established that you are speaking to a genuine principal,
not a replay of previous messages. We have a similar idea in banking protocols.
In a country whose banking laws state that checks are no longer valid after
six months, a seven month old uncashed check has integrity (assuming it’s
not been altered) but is no longer valid. The military usage tends to be that
authenticity applies to the identity of principals and orders they give, while
integrity applies to stored data. Thus we can talk about the integrity of a
database of electronic warfare threats (it’s not been corrupted, whether by the
other side or by Murphy) but the authenticity of a general’s orders (which has
an overlap with the academic usage). However, there are some strange usages.
For example, one can talk about an authentic copy of a deceptive order given by
the other side’s electronic warfare people; here the authenticity refers to the act
of copying and storage. Similarly, a police crime scene officer will talk about
preserving the integrity of a forged check, by placing it in an evidence bag.

1.8 Summary

15

The last matter I'll clarify here is the terminology which describes what we're
trying to achieve. A vulnerability is a property of a system or its environment
which, in conjunction with an internal or external threat, can lead to a security
failure, which is a breach of the system’s security policy. By security policy I will
mean a succinct statement of a system’s protection strategy (for example, ‘each
credit must be matched by an equal and opposite debit, and all transactions
over $1,000 must be authorized by two managers’). A security target is a more
detailed specification which sets out the means by which a security policy will
be implemented in a particular product — encryption and digital signature
mechanisms, access controls, audit logs and so on — and which will be used as
the yardstick to evaluate whether the designers and implementers have done
a proper job. Between these two levels you may find a protection profile which
is like a security target except written in a sufficiently device-independent
way to allow comparative evaluations among different products and different
versions of the same product. I'll elaborate on security policies, security targets
and protection profiles in later chapters. In general, the word protection will
mean a property such as confidentiality or integrity, defined in a sufficiently
abstract way for us to reason about it in the context of general systems rather
than specific implementations.

1.8 Summary

There is a lot of terminological confusion in security engineering, much
of which is due to the element of conflict. ‘Security” is a terribly overloaded
word, which often means quite incompatible things to different people.

To a corporation, it might mean the ability to monitor all employees’ email
and web browsing; to the employees, it might mean being able to use email and
the web without being monitored. As time goes on, and security mechanisms
are used more and more by the people who control a system’s design to gain
some commercial advantage over the other people who use it, we can expect
conflicts, confusion and the deceptive use of language to increase.

One is reminded of a passage from Lewis Carroll:

“When I use a word,” Humpty Dumpty said, in a rather scornful tone, it
means just what I choose it to mean — neither more nor less.”” ““The question is,”
said Alice, "‘whether you can make words mean so many different things.”” “"The
question is,”” said Humpty Dumpty, “which is to be master — that’s all.”

7

The security engineer should develop sensitivity to the different nuances of
meaning that common words acquire in different applications, and to be able to
formalize what the security policy and target actually are. That may sometimes
be inconvenient for clients who wish to get away with something, but, in gen-
eral, robust security design requires that the protection goals are made explicit.

Usability and Psychology

Humans are incapable of securely storing high-quality
cryptographic keys, and they have unacceptable speed and accuracy
when performing cryptographic operations. (They are also large,
expensive to maintain, difficult to manage, and they pollute the
environment. It is astonishing that these devices continue to be
manufactured and deployed. But they are sufficiently pervasive that
we must design our protocols around their limitations.)

— Kaufmann, Perlman and Speciner [698]

Only amateurs attack machines; professionals target people.
— Bruce Schneier

2.1 Introduction

Many real attacks exploit psychology at least as much as technology. The
fastest-growing online crime is phishing, in which victims are lured by an email
to log on to a website that appears genuine but that’s actually designed to
steal their passwords. Online frauds like phishing are often easier to do, and
harder to stop, than similar real-world frauds because most online protection
mechanisms are not anything like as intuitively usable or as difficult to forge
convincingly as their real-world equivalents; it is much easier for crooks to
build a bogus bank website that passes casual inspection than it is for them
to create a bogus bank in a shopping mall.

We've evolved social and psychological tools over millions of years to help
us deal with deception in face-to-face contexts, but these are little use to us
when we’re presented with an email that asks us to do something. It seems to be
harder to create useful asymmetry in usability, by which I mean that good use is

17

Chapter 2 » Usability and Psychology

easier than bad use. We have some examples of asymmetry in physical objects:
a potato peeler is easier to use for peeling potatoes than a knife is, but a lot
harder to use for murder. However, much of the asymmetry on which we rely
in our daily business doesn’t just depend on formal exchanges — which can
be automated easily — but on some combination of physical objects, judgment
of people, and the supporting social protocols. (I'll discuss this further in the
Introduction to Chapter 3.) So, as our relationships with employers, banks
and government become more formalised via online communication, and we
lose both physical and human context, the forgery of these communications
becomes more of a risk.

Deception, of various kinds, is now the greatest threat to online security. It
can be used to get passwords, or to compromise confidential information or
manipulate financial transactions directly. The most common way for private
investigators to steal personal information is pretexting — phoning someone
who has the information under a false pretext, usually by pretending to be
someone authorised to be told it. Such attacks are sometimes known collec-
tively as social engineering. There are many other flavours. The quote from
Bruce Schneier at the head of this chapter appeared in a report of a stock
scam, where a bogus press release said that a company’s CEO had resigned
and its earnings would be restated. Several wire services passed this on, and
the stock dropped 61% until the hoax was exposed [1128]. Hoaxes and frauds
have always happened, but the Internet makes some of them easier, and lets
others be repackaged in ways that may bypass our existing controls (be they
personal intuitions, company procedures or even laws). We will be playing
catch-up for some time.

Another driver for the surge in attacks based on social engineering is
that people are getting better at technology. As designers learn how to
forestall the easier techie attacks, psychological manipulation of system users
or operators becomes ever more attractive. So the security engineer simply
must understand basic psychology and ‘security usability’, and one of the
biggest opportunities facing the research community is to learn more about
what works and why.

2.2 Attacks Based on Psychology

Hacking systems through the people who operate them may be growing
rapidly but is not new. Military and intelligence organisations have always
targeted each other’s staff; most of the intelligence successes of the old Soviet
Union were of this kind [77]. Private investigation agencies have not been far
behind. The classic attack of this type is pretexting.

2.2 Attacks Based on Psychology

19

2.2.1 Pretexting

Colleagues of mine did an experiment in England in 1996 to determine the
threat posed by pretexting to medical privacy. We trained the staff at a
health authority (a government-owned health insurer that purchased medical
services for a district of maybe 250,000 people) to identify and report false-
pretext calls. A typical private eye would pretend to be a doctor involved in
the emergency care of a patient, and he could be detected because the phone
number he gave wasn’t that of the hospital at which he claimed to work. (The
story is told in detail later in the chapter on Multilateral Security.) We detected
about 30 false-pretext calls a week. Unfortunately, we were unable to persuade
the UK government to make this training mandatory for health authority staff.
Thirty attacks per week times 52 weeks in a year times 200 health authorities
in England is a lot of privacy compromise! Many countries have laws against
pretexting, including both the UK and the USA, yet there are people in both
countries who earn their living from it [411]. A typical case is reported in [449],
where a private eye collecting debts for General Motors was fined for conning
civil servants into giving out 250 people’s home addresses over the phone.

The year 2002 saw the publication of perhaps the most disturbing security
book ever, Kevin Mitnick’s “Art of Deception’. Mitnick, who got extensive
press coverage when he was arrested and convicted after breaking into phone
systems, related after his release from prison how almost all of his exploits
had involved social engineering. His typical hack was to pretend to a phone
company employee that he was a colleague, and solicit ‘help” such as a
password. Ways of getting past a company’s switchboard and winning its
people’s trust have been taught for years in sales-training courses; Mitnick
became an expert at using them to defeat company security procedures, and
his book recounts a fascinating range of tricks [896].

Pretexting became world headline news in September 2006 when it emerged
that Hewlett-Packard chairwoman Patricia Dunn had hired private investi-
gators who had used pretexting to obtain the phone records of other board
members of whom she was suspicious, and of journalists she considered hos-
tile. She was forced to resign. The following month, the California Attorney
General filed felony charges and arrest warrants against her and three private
eyes. The charges were online crime, wire fraud, taking computer data and
using personal identifying information without authorization. In March 2007,
charges against her were dropped; a factor was that she was suffering from
cancer. Her codefendants pleaded no contest to lesser counts of fraudulent
wire communications, a misdemeanor, and got community service [93].

But fixing the problem is hard. Despite continuing publicity about pretexting,
there was an audit of the IRS in 2007 by the Treasury Inspector General for
Tax Administration, whose staff called 102 IRS employees at all levels, asked
for their user ids, and told them to change their passwords to a known value.

20

Chapter 2 = Usability and Psychology

62 did so. Now nearly 100,000 IRS employees have access to tax return data,
so if you're a US taxpayer there might be 60,000 people who might be fooled
into letting an intruder breach your financial privacy. What’s worse, this
happened despite similar audit tests in 2001 and 2004 [1131]. Now a number
of government departments, including Homeland Security, are planning to
launch phishing attacks on their own staff in order to gauge the effectiveness of
security education. In the UK, the privacy authorities announced a crackdown
and prosecuted a private detective agency that did blagging for top law
firms [779].

Resisting attempts by outsiders to inveigle your staff into revealing secrets
is known in military circles as operational security. Protecting really valu-
able secrets, such as unpublished financial data, not-yet-patented industrial
research or military plans, depends on limiting the number of people with
access, and also having strict doctrines about with whom they may be dis-
cussed and how. It’s not enough for rules to exist; you have to train all the staff
who have access to the confidential material, and explain to them the reasons
behind the rules. In our medical privacy example, we educated staff about
pretexting and trained them not to discuss medical records on the phone
unless they had initiated the call, and made it to a number they had got from
the phone book rather than from a caller. And once the staff have encountered,
detected and defeated a few pretexting attempts, they talk about it and the
message gets across loud and clear. Often the hardest people to educate are
the most senior; a consultancy sent the finance directors of 500 publicly-quoted
companies a USB memory stick as part of an anonymous invitation saying
‘For Your Chance to Attend the Party of a Lifetime’, and 46% of them put it
into their computers [701].

Intelligence-agency rules are very much tougher. Most of the operational
security effort goes into training staff in what not to do, instilling a culture
of discretion that shades well over into anonymity. And since foreign intel-
ligence agencies make many fewer approaches to spooks than private eyes
make to medical-record clerks, a spymaster can’t rely on a robust detection
culture to spring up of its own accord. He has to have his own red team
constantly testing his staff to ensure that they take the paranoia business
seriously.

Some operational security measures are common sense, such as not tossing
out sensitive stuff in the trash. Less obvious is the need to train the people
you trust, even if they’re old friends. A leak of embarrassing emails that
appeared to come from the office of the UK Prime Minister and was initially
blamed on ‘hackers” turned out to have been fished out of the trash at his
personal pollster’s home by a private detective called ‘Benji the Binman” who
achieved instant celebrity status [828]. Governments have mostly adopted a
set of procedures whereby sensitive information is ‘classified” and can only be
passed to people with an appropriate ‘clearance’, that is, background checks

2.2 Attacks Based on Psychology

21

and training. While this can become monstrously bureaucratic and wasteful,
it does still give a useful baseline for thinking about operational security, and
has led to the development of some protection technologies which I'll discuss
later in the chapter on Multilevel Security. The disciplines used by banks to
prevent a rogue from talking a manager into sending him money are similar
in spirit but differ in detail; I discuss them in the chapter on Banking and
Bookkeeping.

Pretexting is mostly used for attacks on companies, but it’s starting to be
used more against individuals. Here’s the scam du jour in the USA, as I
write this in 2007: the bad guy phones you pretending to be a court official,
tells you you've been selected for jury duty, and demands your SSN and
date of birth. If you tell him, he applies for a credit card in your name. If
you tell him to get lost, he threatens you with arrest and imprisonment. Not
everyone has the self-confidence and legal knowledge to resist this kind of
sting.

2.2.2 Phishing

Phishing is in many ways a harder problem for a company to deal with
than pretexting, since (as with the last scam I mentioned) the targets are
not your staff but your customers. It is difficult enough to train the average
customer — and you can’t design simply for the average. If your security
systems are unusable by people who don’t speak English well, or who are
dyslexic, or who have learning difficulties, you are asking for serious legal
trouble, at least if you do business in civilised countries.

Phishing attacks against banks started in 2003, with half-a-dozen attempts
reported [299]. The early attacks imitated bank websites, but were both crude
and greedy; the attackers asked for all sorts of information such as ATM
PINs, and were also written in poor English. Most customers smelt a rat. The
attackers now use better psychology; they often reuse genuine bank emails,
with just the URLs changed, or send an email saying something like “Thank
you for adding a new email address to your PayPal account” to provoke the
customer to log on to complain that they hadn’t. Of course, customers who use
the provided link rather than typing in www.paypal.com or using an existing
bookmark are likely to get their accounts emptied.

Losses are growing extremely rapidly (maybe $200 m in the USA in 2006,
£35m / $70 m in the UK) although they are hard to tie down exactly as some
banks try to hold the customer liable and/or manipulate the accounting rules
to avoid reporting frauds. The phishing business has plenty room for growth.
Most UK losses in 2006 were sustained by one bank, while in the USA there are
perhaps half-a-dozen principal victims. We are only just starting to see large-
scale attacks on firms like eBay and Amazon, but I'm sure we will see many
more; when compromising a password lets you change the target’s email and

22

Chapter 2 » Usability and Psychology

street addresses to your own, and then use their credit card to order a wide-
screen TV, the temptation is clear.

If you are a bank or an online retail business, then a number of factors
influence whether you get targeted. Some have to do with whether you're
thought to be a wimp; banks that pursue fraudsters viciously and relentlessly
in the courts, well past the point of economic rationality, seem able to deter
attacks. The phishermen also prefer banks whose poor internal controls allow
large amounts of money to be moved abroad quickly, which lack effective
intrusion alarms, which take several days to check whether suspicious pay-
ments were authorised, and which don’t try too hard to retrieve those that
weren’t. (I will discuss internal controls later — see the chapter on Banking
and Bookkeeping.)

In the rest of this chapter, I'll first visit some relevant basic psychology
and then apply it to the study of passwords —how you get users to choose
good passwords and enter them accurately, and what you can do to stop
users disclosing them to third parties. Finally there will be a brief section on
CAPTCHAS, the tests websites use to check that a user is a human rather than
a robot; these provide another angle on the differences between human minds
and software.

2.3 Insights from Psychology Research

I expect the interaction between security and psychology to be a big research
area over the next five years, just as security economics has been over the
last five. This is not just because of the growing number of attacks that target
users instead of (or as well as) technology. For example, terrorism is largely
about manipulating perceptions of risk; and even outside the national-security
context, many protection mechanisms are sold using scaremongering. (I'll
return to the broader policy issues in Part III.)

Psychology is a huge subject, ranging from neuroscience through to clinical
topics, and spilling over into cognate disciplines from philosophy through
artificial intelligence to sociology. Although it has been studied for much
longer than computer science, our understanding of the mind is much less
complete: the brain is so much more complex. We still do not understand one
central problem — the nature of consciousness. We know that ‘the mind is
what the brain does’, yet the mechanisms that underlie our sense of self and
of personal history remain quite obscure.

Nonetheless a huge amount is known about the functioning of the mind
and the brain, and I expect we’ll get many valuable insights once we get
psychologists working together with security researchers on real problems.
In what follows I can only offer a helicopter tour of some ideas that appear
relevant to our trade.

2.3 Insights from Psychology Research

23

2.3.1 What the Brain Does Worse Than the Computer

Cognitive psychology deals with how we think, remember, make decisions
and even daydream. There are many well-known results; for example, it is
easier to memorise things that are repeated frequently, and it is easier to store
things in context. However, many of these insights are poorly understood by
systems developers. For example, most people have heard of George Miller’s
result that human short-term memory can cope with about seven (plus or
minus two) simultaneous choices [891] and, as a result, many designers limit
menu choices to about five. But this is not the right conclusion to draw. People
search for information first by recalling where to look, and then by scanning;
once you have found the relevant menu, scanning ten items is only twice as
hard as scanning five. The real limit on menu size is with spoken menus,
where the average user has difficulty dealing with more than three or four
choices [1039].

Our knowledge in this field has been significantly enhanced by the empir-
ical know-how gained not just from lab experiments, but from the iterative
improvement of fielded systems. As a result, the centre of gravity has been
shifting from applied psychology to the human-computer interaction (HCI)
research community. HCI researchers not only model and measure human per-
formance, including perception, motor control, memory and problem-solving;
they have also developed an understanding of how people’s mental models
of systems work, and of the techniques (such as task analysis and cognitive
walkthrough) that we can use to explore how people learn to use systems and
understand them.

Security researchers need to find ways of turning these ploughshares into
swords (the bad guys are already working on it). There are some obvious
low-hanging fruit; for example, the safety research community has done
a lot of work on characterising the errors people make when operating
equipment [1060]. It’s said that “to err is human’ and error research confirms
this: the predictable varieties of human error are rooted in the very nature
of cognition. The schemata, or mental models, that enable us to recognise
people, sounds and concepts so much better than computers do, also make us
vulnerable when the wrong model gets activated.

Human errors made while operating equipment fall into broadly three
categories, depending on where they occur in the ‘stack’: slips and lapses at
the level of skill, mistakes at the level of rules, and mistakes at the cognitive
level.

m Actions performed often become a matter of skill, but this comes with
a downside: inattention can cause a practised action to be performed
instead of an intended one. We are all familiar with such capture errors;
an example is when you intend to go to the supermarket on the way

24 Chapter 2 = Usability and Psychology

home from work but take the road home by mistake — as that’s what
you do most days. In computer systems, people are trained to click ‘OK’
to pop-up boxes as that’s often the only way to get the work done; some
attacks have used the fact that enough people will do this even when
they know they shouldn’t. (Thus Apple, unlike Microsoft, makes you
enter your password when installing software — as this is something
you do less often, you might just pause for thought.) Errors also com-
monly follow interruptions and perceptual confusion. One example

is the post-completion error: once they’ve accomplished their immediate
goal, people are easily distracted from tidying-up actions. More people
leave cards behind in ATMs that give them the money first and the card
back second.

m Actions that people take by following rules are open to errors when they
follow the wrong rule. Various circumstances — such as information
overload — can cause people to follow the strongest rule they know, or
the most general rule, rather than the best one. Examples of phishermen
getting people to follow the wrong rule include using https (because
‘it’s secure’) and starting URLs with the impersonated bank’s name,
as www.citibank.secureauthentication.com— looking for the name
being for many people a stronger rule than parsing its position.

m The third category of mistakes are those made by people for cognitive
reasons — they simply don’t understand the problem. For example,
Microsoft’s latest (IE7) anti-phishing toolbar is easily defeated by a
picture-in-picture attack, which I'll describe later.

What makes security harder than safety is that we have a sentient attacker
who will try to provoke exploitable errors.

What can the defender do? Well, we expect the attacker to use errors whose
effect is predictable, such as capture errors. We also expect him to look for,
or subtly create, exploitable dissonances between users’ mental models of a
system and its actual logic. Given a better understanding of this, we might
try to engineer countermeasures — perhaps a form of cognitive walkthrough
aimed at identifying attack points, just as a code walkthough can be used to
search for software vulnerabilities.

2.3.2 Perceptual Bias and Behavioural Economics

Perhaps the most promising field of psychology for security folks to mine in
the short term is that which studies the heuristics that people use, and the
biases that influence them, when making decisions. This discipline, known
as behavioural economics or decision science, sits at the boundary of psychology
and economics. It examines the ways in which people’s decision processes
depart from the rational behaviour modeled by economists; Daniel Kahneman

2.3 Insights from Psychology Research

25

won the Nobel Prize in economics in 2002 for launching this field (along with
the late Amos Tversky). One of his insights was that the heuristics we use
in everyday judgement and decision making lie somewhere between rational
thought and the unmediated input from the senses [679].

Kahneman and Tversky did extensive experimental work on how people
made decisions faced with uncertainty. They developed prospect theory which
models risk aversion, among other things: in many circumstances, people
dislike losing $100 they already have more than they value winning $100.
That’s why marketers talk in terms of ‘discount” and ‘saving” — by framing an
action as a gain rather than as a loss makes people more likely to take it. We're
also bad at calculating probabilities, and use all sorts of heuristics to help us
make decisions: we base inferences on familiar or easily-imagined analogies
(the availability heuristic whereby easily-remembered data have more weight in
mental processing), and by comparison with recent experiences (the anchoring
effect whereby we base a judgement on an initial guess or comparison and then
adjust it if need be). We also worry too much about unlikely events.

The channels through which we experience things also matter (we're more
likely to be sceptical about things we’ve heard than about things we’ve seen).
Another factor is that we evolved in small social groups, and the behaviour
appropriate here isn’t the same as in markets; indeed, many frauds work by
appealing to our atavistic instincts to trust people more in certain situations
or over certain types of decision. Other traditional vices now studied by
behavioural economists range from our tendency to procrastinate to our
imperfect self-control.

This tradition is not just relevant to working out how likely people are to
click on links in phishing emails, but to the much deeper problem of the public
perception of risk. Many people perceive terrorism to be a much worse threat
than food poisoning or road traffic accidents: this is irrational, but hardly
surprising to a behavioural economist, as we overestimate the small risk of
dying in a terrorist attack not just because it’s small but because of the visual
effect of the 9/11 TV coverage and the ease of remembering the event. (There
are further factors, which I'll discuss in Chapter 24 when we discuss terrorism.)

The misperception of risk underlies many other public-policy problems.
The psychologist Daniel Gilbert, in an article provocatively entitled ‘If only
gay sex caused global warming’, discusses why we are much more afraid of
terrorism than of climate change. First, we evolved to be much more wary of
hostile intent than of nature; 100,000 years ago, a man with a club (or a hungry
lion) was a much worse threat than a thunderstorm. Second, global warming
doesn’t violate anyone’s moral sensibilities; third, it's a long-term threat rather
than a clear and present danger; and fourth, we’re sensitive to rapid changes
in the environment rather than slow ones [526].

Bruce Schneier lists more biases: we are less afraid when we’re in control,
such as when driving a car, as opposed to being a passenger in a car or

26

Chapter 2 = Usability and Psychology

airplane; we are more afraid of risks to which we’ve been sensitised, for
example by gruesome news coverage; and we are more afraid of uncertainty,
that is, when the magnitude of the risk is unknown (even when it’s small). And
a lot is known on the specific mistakes we’re likely to make when working out
probabilities and doing mental accounting [1129, 1133].

Most of us are not just more afraid of losing something we have, than of
not making a gain of equivalent value, as prospect theory models. We're also
risk-averse in that most people opt for a bird in the hand rather than two in
the bush. This is thought to be an aspect of satisficing — as situations are often
too hard to assess accurately, we have a tendency to plump for the alternative
that’s ‘good enough’ rather than face the cognitive strain of trying to work out
the odds perfectly, especially when faced with a small transaction. Another
aspect of this is that many people just plump for the standard configuration
of a system, as they assume it will be good enough. This is one reason why
secure defaults matter’.

There is a vast amount of material here that can be exploited by the
fraudster and the terrorist, as well as by politicians and other marketers. And
as behavioural psychology gets better understood, the practice of marketing
gets sharper too, and the fraudsters are never far behind. And the costs to
business come not just from crime directly, but even more from the fear of
crime. For example, many people don’t use electronic banking because of a
fear of fraud that is exaggerated (at least in the USA with its tough consumer-
protection laws): so banks pay a fortune for the time of branch and call-center
staff. So it’s not enough for the security engineer to stop bad things happening;
you also have to reassure people. The appearance of protection can matter just
as much as the reality.

2.3.3 Different Aspects of Mental Processing

Many psychologists see the mind as composed of interacting rational and
emotional components — ‘heart” and ‘head’, or ‘affective’ and ‘cognitive” sys-
tems. Studies of developmental biology have shown that, from an early age,
we have different mental processing systems for social phenomena (such as
recognising parents and siblings) and physical phenomena. Paul Bloom has
written a provocative book arguing that the tension between them explains
why many people are natural dualists — that is, they believe that mind and
body are basically different [194]. Children try to explain what they see using
their understanding of physics, but when this falls short, they explain phe-
nomena in terms of deliberate action. This tendency to look for affective

!In fact, behavioral economics has fostered a streak of libertarian paternalism in the policy world
that aims at setting good defaults in many spheres. An example is the attempt to reduce poverty
in old age by making pension plans opt-out rather than opt-in.

2.3 Insights from Psychology Research

27

explanations in the absence of material ones has survival value to the young,
as it disposes them to get advice from parents or other adults about novel
natural phenomena. According to Bloom, it has a significant side-effect: it
predisposes humans to believe that body and soul are different, and thus lays
the ground for religious belief. This argument may not overwhelm the faithful
(who can retort that Bloom simply stumbled across a mechanism created by
the Intelligent Designer to cause us to have faith in Him). But it may have
relevance for the security engineer.

First, it goes some way to explaining the fundamental attribution error —
people often err by trying to explain things by intentionality rather than by
situation. Second, attempts to curb phishing by teaching users about the gory
design details of the Internet — for example, by telling them to parse URLs
in emails that seem to come from a bank — will be of limited value if users
get bewildered. If the emotional is programmed take over whenever the ratio-
nal runs out, then engaging in a war of technical measures and countermea-
sures with the phishermen is fundamentally unsound. Safe defaults would be
better — such as ‘Our bank will never, ever send you email. Any email that
purports to come from us is fraudulent.”

It has spilled over recently into behavioural economics via the affect heuristic,
explored by Paul Slovic and colleagues [1189]. The idea is that by asking an
emotional question (such as ‘How many dates did you have last month?’)
you can get people to answer subsequent questions using their hearts more
than their minds, which can make people insensitive to probability. This
work starts to give us a handle on issues from people’s risky behaviour with
porn websites to the use of celebrities in marketing (and indeed in malware).
Cognitive overload also increases reliance on affect: so a bank that builds a
busy website may be able to sell more life insurance, but it’s also likely to
make its customers more vulnerable to phishing. In the other direction, events
that evoke a feeling of dread — from cancer to terrorism — scare people more
than the naked probabilities justify.

Our tendency to explain things by intent rather than by situation is reinforced
by a tendency to frame decisions in social contexts; for example, we’re more
likely to trust people against whom we can take vengeance. (I'll discuss
evolutionary game theory, which underlies this, in the chapter on Economics.)

2.3.4 Differences Between People

Most information systems are designed by men, and yet over half their
users may be women. Recently people have realised that software can create
barriers to females, and this has led to research work on ‘gender HCI’ — on
how software should be designed so that women as well as men can use
it effectively. For example, it’s known that women navigate differently from
men in the real world, using peripheral vision more, and it duly turns

28

Chapter 2 = Usability and Psychology

out that larger displays reduce gender bias. Other work has focused on
female programmers, especially end-user programmers working with tools
like spreadsheets. It turns out that women tinker less than males, but more
effectively [139]. They appear to be more thoughtful, but lower self-esteem and
higher risk-aversion leads them to use fewer features. Given that many of the
world’s spreadsheet users are women, this work has significant implications
for product design.

No-one seems to have done any work on gender and security usability, yet
reviews of work on gender psychology (such as [1012]) suggest many points
of leverage. One formulation, by Simon Baron-Cohen, classifies human brains
into type S (systematizers) and type E (empathizers) [120]. Type S people
are better at geometry and some kinds of symbolic reasoning, while type
Es are better at language and multiprocessing. Most men are type S, while
most women are type E, a relationship that Baron-Cohen believes is due to
fetal testosterone levels. Of course, innate abilities can be modulated by many
developmental and social factors. Yet, even at a casual reading, this material
makes me suspect that many security mechanisms are far from gender-neutral.
Is it unlawful sex discrimination for a bank to expect its customers to detect
phishing attacks by parsing URLs?

2.3.5 Social Psychology

This discipline attempts to explain how the thoughts, feelings, and behaviour
of individuals are influenced by the actual, imagined, or implied presence of
others. It has many aspects, from the identity that people derive from belonging
to groups, through the self-esteem we get by comparing ourselves with others.
It may be particularly useful in understanding persuasion; after all, deception
is the twin brother of marketing. The growth of social-networking systems will
lead to peer pressure being used as a tool for deception, just as it is currently
used as a tool for marketing fashions.

Social psychology has been entangled with the security world longer than
many other parts of psychology through its relevance to propaganda, inter-
rogation and aggression. Three particularly famous experiments in the 20th
century illuminated this. In 1951, Solomon Asch showed that people could
be induced to deny the evidence of their own eyes in order to conform to
a group. Subjects judged the lengths of lines after hearing wrong opinions
from other group members, who were actually the experimenter’s associates.
Most subjects gave in and conformed, with only 29% resisting the bogus
majority [90].

Stanley Milgram was inspired by the 1961 trial of Adolf Eichmann to
investigate how many experimental subjects were prepared to administer
severe electric shocks to an actor playing the role of a ‘learner” at the behest
of an experimenter playing the role of the ‘teacher’ — even when the ‘learner’

2.3 Insights from Psychology Research

29

appeared to be in severe pain and begged the subject to stop. This experiment
was designed to measure what proportion of people will obey an authority
rather than their conscience. Most will — consistently over 60% of people will
do downright immoral things if they are told to [888].

The third of these was the Stanford Prisoner Experiment which showed that
normal people can behave wickedly even in the absence of orders. In 1971,
experimenter Philip Zimbardo set up a “prison” at Stanford where 24 students
were assigned at random to the roles of 12 warders and 12 inmates. The aim
of the experiment was to discover whether prison abuses occurred because
warders (and possibly prisoners) were self-selecting. However, the students
playing the role of warders rapidly became sadistic authoritarians, and the
experiment was halted after six days on ethical grounds [1377].

Abuse of authority, whether real or ostensible, is a major issue for people
designing operational security measures. During the period 1995-2005, a
hoaxer calling himself ‘Officer Scott” ordered the managers of over 68 US
stores and restaurants in 32 US states (including at least 17 McDonalds’ stores)
to detain some young employee on suspicion of theft and strip-search her or
him. Various other degradations were ordered, including beatings and sexual
assaults [1351]. A former prison guard was tried for impersonating a police
officer but acquitted. At least 13 people who obeyed the caller and did searches
were charged with crimes, and seven were convicted. MacDonald’s got sued
for not training its store managers properly, even years after the pattern of
hoax calls was established; and in October 2007, a jury ordered McDonalds
to pay $6.1 million dollars to Louise Ogborn, one of the victims, who had
been strip-searched when an 18-year-old employee. It was an unusually nasty
case, as the victim was then left by the store manager in the custody of
her boyfriend, who forced her to perform oral sex on him. The boyfriend
got five years, and the manager pleaded guilty to unlawfully detaining
Ogborn. When it came to the matter of damages, McDonalds argued that
Ogborn was responsible for whatever damages she suffered for not realizing
it was a hoax, and that the store manager had failed to apply common
sense. A Kentucky jury didn’t buy this and ordered McDonalds to pay up.
The store manager also sued, saying she too was the victim of McDonalds’
negligence to warn her of the hoax, and got $1.1 million [740]. So as of
2007, US employers seem to have a legal duty to train their staff to resist
pretexting.

But what about a firm’s customers? There is a lot of scope for phishermen
to simply order bank customers to reveal their security data. Bank staff
routinely tell their customers to do this, even when making unsolicited calls.
I've personally received an unsolicited call from my bank saying ‘Hello, this
is Lloyds TSB, can you tell me your mother’s maiden name?” and caused the
caller much annoyance by telling her to get lost. Most people don’t, though.
ATM card thieves already called their victims in the 1980s and, impersonating

30

Chapter 2 » Usability and Psychology

bank or police officers, have ordered them to reveal PINs ‘so that your card can
be deactivated’. The current scam — as of December 2007 — is that callers who
pretend to be from Visa say they are conducting a fraud investigation. After
some rigmarole they say that some transactions to your card were fraudulent,
so they’ll be issuing a credit. But they need to satisfy themselves that you are
still in possession of your card: so can you please read out the three security
digits on the signature strip? A prudent system designer will expect a lot more
of this, and will expect the courts to side with the customers eventually. If you
train your customers to do something that causes them to come to harm, you
can expect no other outcome.

Another interesting offshoot of social psychology is cognitive dissonance
theory. People are uncomfortable when they hold conflicting views; they
seek out information that confirms their existing views of the world and
of themselves, and try to reject information that conflicts with their views
or might undermine their self-esteem. One practical consequence is that
people are remarkably able to persist in wrong courses of action in the
face of mounting evidence that things have gone wrong [1241]. Admitting
to yourself or to others that you were duped can be painful; hustlers know
this and exploit it. A security professional should ‘feel the hustle’ — that
is, be alert for a situation in which recently established social cues and
expectations place you under pressure to ‘just do” something about which
you’d normally have reservations, so that you can step back and ask yourself
whether you're being had. But training people to perceive this is hard enough,
and getting the average person to break the social flow and say ‘stop!” is
really hard.

2.3.6 What the Brain Does Better Than the Computer

Psychology isn’t all doom and gloom for our trade, though. There are tasks
that the human brain performs much better than a computer. We are extremely
good at recognising other humans visually, an ability shared by many primates.
We are good at image recognition generally; a task such as ‘pick out all scenes
in this movie where a girl rides a horse next to water’ is trivial for a human
child yet a hard research problem in image processing. We're also better than
machines at understanding speech, particularly in noisy environments, and at
identifying speakers.

These abilities mean that it’s possible to devise tests that are easy for humans
to pass but hard for machines — the so-called ‘'CAPTCHA' tests that you often
come across when trying to set up an online account or posting to a bulletin
board. I will describe CAPTCHAS in more detail later in this chapter. They are
a useful first step towards introducing some asymmetry into the interactions
between people and machines, so as to make the bad guy’s job harder than the
legitimate user’s.

2.4 Passwords

31

2.4 Passwords

In this section, I will focus on the management of passwords as a simple,
important and instructive context in which usability, applied psychology and
security meet. Passwords are one of the biggest practical problems facing
security engineers today. In fact, as the usability researcher Angela Sasse puts
it, it’s hard to think of a worse authentication mechanism than passwords, given
what we know about human memory: people can’t remember infrequently-
used, frequently-changed, or many similar items; we can’t forget on demand;
recall is harder than recognition; and non-meaningful words are more difficult.
The use of passwords imposes real costs on business: the UK phone company
BT has a hundred people in its password-reset centre.

There are system and policy issues too: as people become principals in more
and more electronic systems, the same passwords get used over and over
again. Not only may attacks be carried out by outsiders guessing passwords,
but by insiders in other systems. People are now asked to choose passwords
for a large number of websites that they visit rarely. Does this impose an
unreasonable burden?

Passwords are not, of course, the only way of authenticating users to
systems. There are basically three options. The person may retain physical
control of the device —as with a remote car door key. The second is that
she presents something she knows, such as a password. The third is to use
something like a fingerprint or iris pattern, which I'll discuss in the chapter
on Biometrics. (These options are commonly summed up as ‘something you
have, something you know, or something you are” — or, as Simson Garfinkel
engagingly puts it, ‘something you had once, something you’ve forgotten, or
something you once were’.) But for reasons of cost, most systems take the
second option; and even where we use a physical token such as a one-time
password generator, it is common to use another password as well (whether
to lock it, or as an additional logon check) in case it gets stolen. Biometrics are
also commonly used in conjunction with passwords, as you can’t change your
fingerprint once the Mafia gets to know it. So, like it or not, passwords are the
(often shaky) foundation on which much of information security is built.

Some passwords have to be ‘harder” than others, the principal reason being
that sometimes we can limit the number of guesses an opponent can make
and sometimes we cannot. With an ATM PIN, the bank can freeze the account
after three wrong guesses, so a four-digit number will do. But there are many
applications where it isn’t feasible to put a hard limit on the number of guesses,
such as where you encrypt a document with a password; someone who gets
hold of the ciphertext can try passwords till the cows come home. In such
applications, we have to try to get people to use longer passwords that are
really hard to guess.

32

Chapter 2 = Usability and Psychology

In addition to things that are ‘obviously” passwords, such as your computer
password and your bank card PIN, many other things (and combinations of
things) are used for the same purpose. The most notorious are social security
numbers, and your mother’s maiden name, which many organisations use to
recognize you. The ease with which such data can be guessed, or found out
from more or less public sources, has given rise to a huge industry of so-called
‘identity theft’ [458]. Criminals obtain credit cards, mobile phones and other
assets in your name, loot them, and leave you to sort out the mess. In the USA,
about half a million people are the ‘victims’ of this kind of fraud each year®.

So passwords matter, and managing them is a serious real world problem
that mixes issues of psychology with technical issues. There are basically three
broad concerns, in ascending order of importance and difficulty:

1. Will the user enter the password correctly with a high enough
probability?

2. Will the user remember the password, or will they have to either write it
down or choose one that’s easy for the attacker to guess?

3. Will the user break the system security by disclosing the password
to a third party, whether accidentally, on purpose, or as a result of
deception?

2.4.1 Difficulties with Reliable Password Entry

Our first human-factors issue is that if a password is too long or complex,
users might have difficulty entering it correctly. If the operation they are
trying to perform is urgent, this might have safety implications. If customers
have difficulty entering software product activation codes, this can generate
expensive calls to your support desk.

One application in which this is important is encrypted access codes. By
quoting a reservation number, we get access to a hotel room, a rental car
or an airline ticket. Activation codes for software and other products are
often alphanumeric representations of encrypted data, which can be a 64-bit
or 128-bit string with symmetric ciphers and hundreds of bits when public-
key cryptography is used. As the numbers get longer, what happens to the
error rate?

2] write ‘identity theft’ in quotes as it's a propaganda term for the old-fashioned offence of
impersonation. In the old days, if someone went to a bank, pretended to be me, borrowed money
from them and vanished, then that was the bank’s problem, not mine. In the USA and the UK,
banks have recently taken to claiming that it’s my identity that’s been stolen rather than their
money, and that this somehow makes me liable. So I also parenthesise ‘victims” — the banks are
the real victims, except insofar as they commit secondary fraud against the customer. There’s an
excellent discussion of this by Adam Shostack and Paul Syverson in [1166].

2.4 Passwords

33

An interesting study was done in South Africa in the context of prepaid
electricity meters used to sell electricity in areas where the customers have no
credit rating and often not even an address. With the most common make of
meter, the customer hands some money to a sales agent, and in return gets
one or more 20-digit numbers printed out on a receipt. He takes this receipt
home and enters the numbers at a keypad in his meter. These numbers are
encrypted commands, whether to dispense electricity, to change the tariff or
whatever; the meter decrypts them and acts on them.

When this meter was introduced, its designers worried that since a third
of the population was illiterate, and since people might get lost halfway
through entering the number, the system might be unusable. But it turned
out that illiteracy was not a problem: even people who could not read had
no difficulty with numbers (‘everybody can use a phone’, as one of the
engineers said). Entry errors were a greater problem, but were solved by
printing the twenty digits in two rows, with three and two groups of four
digits respectively [59].

A quite different application is the firing codes for U.S. nuclear weapons.
These consist of only 12 decimal digits. If they are ever used, the operators
may be under extreme stress, and possibly using improvised or obsolete
communications channels. Experiments suggested that 12 digits was the
maximum that could be conveyed reliably in such circumstances.

2.4.2 Difficulties with Remembering the Password

Our second psychological issue with passwords is that people often find them
hard to remember [245, 1379]. Twelve to twenty digits may be fine when they
are simply copied from a telegram or a meter ticket, but when customers are
expected to memorize passwords, they either choose values which are easy for
attackers to guess, or write them down, or both. In fact, the password problem
has been neatly summed up as: “Choose a password you can’t remember, and
don’t write it down.”

The problems are not limited to computer access. For example, one chain of
hotels in France introduced completely unattended service. You would turn
up at the hotel, swipe your credit card in the reception machine, and get a
receipt with a numerical access code which would unlock your room door. To
keep costs down, the rooms did not have en-suite bathrooms, so guests had to
use communal facilities. The usual failure mode was that a guest, having gone
to the bathroom, would forget his access code. Unless he had taken the receipt
with him, he’d end up having to sleep on the bathroom floor until the staff
arrived the following morning.

Problems related to password memorability can be discussed under four
main headings: naive password choice, user abilities and training, design
errors, and operational failures.

34

Chapter 2 » Usability and Psychology

2.4.3 Naive Password Choice

Since at least the mid-1980s, people have studied what sort of passwords are
chosen by users who are left to their own devices. The results are depressing.
People will use spouses” names, single letters, or even just hit carriage return
giving an empty string as their password. So some systems started to require
minimum password lengths, or even check user entered passwords against a
dictionary of bad choices. However, password quality enforcement is harder
than you might think. Fred Grampp and Robert Morris’s classic paper on
Unix security [550] reports that after software became available which forced
passwords to be at least six characters long and have at least one nonletter,
they made a file of the 20 most common female names, each followed by a
single digit. Of these 200 passwords, at least one was in use on each of several
dozen machines they examined.

A well-known study was conducted by Daniel Klein who gathered 25,000
Unix passwords in the form of encrypted password files and ran cracking
software to guess them [720]. He found that 21-25% of passwords could be
guessed depending on the amount of effort put in. Dictionary words accounted
for 7.4%, common names for 4%, combinations of user and account name 2.7%,
and so on down a list of less probable choices such as words from science
fiction (0.4%) and sports terms (0.2%). Some of these were straighforward
dictionary searches; others used patterns. For example, the algorithm for
constructing combinations of user and account names would take an account
‘klone’ belonging to the user ‘Daniel V. Klein” and try passwords such as klone,
klonel, klone 123, dvk, dvkdvk, leinad, neilk, DvkkvD, and so on.

Many firms require users to change passwords regularly, but this tends
to backfire. According to one report, when users were compelled to change
their passwords and prevented from using the previous few choices, they
changed passwords rapidly to exhaust the history list and get back to their
favorite password. A response, of forbidding password changes until after
15 days, meant that users couldn’t change compromised passwords without
help from an administrator [1008]. A large healthcare organisation in England
is only now moving away from a monthly change policy; the predictable result
was a large number of password resets at month end (to cope with which,
sysadmins reset passwords to a well-known value). In my own experience,
insisting on alphanumeric passwords and also forcing a password change once
a month led people to choose passwords such as “julia03” for March, ‘julia04’
for April, and so on.

So when our university’s auditors write in their annual report each year that
we should have a policy of monthly enforced password change, my response
is to ask the chair of our Audit Committee when we’ll get a new lot of auditors.

Even among the general population, there is some evidence that many peo-
ple now choose slightly better passwords; passwords retrieved from phishing

2.4 Passwords

35

sites typically contain numbers as well as letters, while the average password
length has gone up from six to eight characters and the most common pass-
word is not ‘password” but ‘password1l’ [1130]. One possible explanation is that
many people try to use the same password everywhere, and the deployment
of password checking programs on some websites trains them to use longer
passwords with numbers as well as letters [302].

2.4.4 User Abilities and Training

Sometimes you really can train users. In a corporate or military environment
you can try to teach them to choose good passwords, or issue them with
random passwords, and insist that passwords are treated the same way as the
data they protect. So bank master passwords go in the vault overnight, while
military “Top Secret’ passwords must be sealed in an envelope, in a safe, in a
room that’s locked when not occupied, in a building patrolled by guards. You
can run background checks on everyone with access to any terminals where
the passwords can be used. You can encrypt passwords along with data in
transit between secure sites. You can send guards round at night to check
that no-one’s left a note of a password lying around. You can operate a clean
desk policy so that a password can’t be overlooked in a pile of papers on
a desk. You can send your guards round the building every night to clean all
desks every night.

Even if you're running an e-commerce website, you are not completely
helpless: you can give your users negative feedback if they choose bad
passwords. For example, you might require that passwords be at least eight
characters long and contain at least one nonletter. But you will not want
to drive your customers away. And even in the Army, you do not want to
order your soldiers to do things they can’t; then reality and regulations will
drift apart, you won't really know what’s going on, and discipline will be
undermined. So what can you realistically expect from users when it comes to
choosing and remembering passwords?

Colleagues and I studied the benefits that can be obtained by training
users [1365]. While writing the first edition of this book, I could not find any
account of experiments on this that would hold water by the standards of
applied psychology (i.e., randomized controlled trials with big enough groups
for the results to be statistically significant). The closest I found was a study
of the recall rates, forgetting rates, and guessing rates of various types of
password [245]; this didn’t tell us the actual (as opposed to likely) effects
of giving users various kinds of advice. We therefore selected three groups of
about a hundred volunteers from our first year science students.

m The red (control) group was given the usual advice (password at least six
characters long, including one nonletter).

36

Chapter 2 = Usability and Psychology

m The green group was told to think of a passphrase and select letters from
it to build a password. So ‘It’s 12 noon and I am hungry” would give
'I'S12&IAH'.

m The yellow group was told to select eight characters (alpha or numeric)
at random from a table we gave them, write them down, and destroy
this note after a week or two once they’d memorized the password.

What we expected to find was that the red group’s passwords would be
easier to guess than the green group’s which would in turn be easier than
the yellow group’s; and that the yellow group would have the most difficulty
remembering their passwords (or would be forced to reset them more often),
followed by green and then red. But that’s not what we found.

About 30% of the control group chose passwords that could be guessed
using cracking software (which I discuss later), versus about 10 percent for
the other two groups. So passphrases and random passwords seemed to be
about equally effective. When we looked at password reset rates, there was no
significant difference between the three groups. When we asked the students
whether they’d found their passwords hard to remember (or had written them
down), the yellow group had significantly more problems than the other two;
but there was no significant difference between red and green.

The conclusions we drew were as follows.

m For users who follow instructions, passwords based on mnemonic
phrases offer the best of both worlds. They are as easy to remember as
naively selected passwords, and as hard to guess as random passwords.

m The problem then becomes one of user compliance. A significant number
of users (perhaps a third of them) just don’t do what they’re told.

So, while a policy of centrally-assigned, randomly selected passwords may
work for the military, its value comes from the fact that the passwords are
centrally assigned (thus compelling user compliance) rather than from the fact
that they’re random (as mnemonic phrases would do just as well).

But centrally-assigned passwords are often inappropriate. When you are
offering a service to the public, your customers expect you to present broadly
the same interfaces as your competitors. So you must let users choose their own
website passwords, subject to some lightweight algorithm to reject passwords
that are too short or otherwise ‘clearly bad’. In the case of bank cards, users
expect a bank-issued initial PIN plus the ability to change the PIN afterwards
to one of their choosing (though again you may block a “clearly bad” PIN such
as 0000 or 1234). There can also be policy reasons not to issue passwords:
for example, in Europe you can’t issue passwords for devices that generate
electronic signatures, as this could enable the system administrator to get at
the signing key and forge messages, which would destroy the evidential value
of the signature. By law, users must choose their own passwords.

2.4 Passwords

37

So the best compromise will often be a password checking program that
rejects ‘clearly bad” user choices, plus a training program to get your compliant
users to choose mnemonic passwords. Password checking can be done using a
program like crack to filter user choices; other programs understand language
statistics and reject passwords that are too likely to be chosen by others at
random [353, 163]; another option is to mix the two ideas using a suitable
coding scheme [1207].

2.4.4.1 Design Errors

Attempts to make passwords memorable are a frequent source of severe design
errors — especially with the many systems built rapidly by unskilled people
in the dotcom rush by businesses to get online.

An important example of how not to do it is to ask for ‘your mother’s
maiden name’. A surprising number of banks, government departments and
other organisations authenticate their customers in this way. But there are two
rather obvious problems. First, your mother’s maiden name is easy for a thief
to find out, whether by asking around or using online genealogical databases.
Second, asking for a maiden name makes assumptions which don’t hold for
all cultures, so you can end up accused of discrimination: Icelanders have no
surnames, and women from many other countries don’t change their names
on marriage. Third, there is often no provision for changing ‘your mother’s
maiden name’, so if it ever becomes known to a thief your customer would
have to close bank accounts (and presumably reopen them elsewhere). And
even if changes are possible, and a cautious customer decides that from now on
her mother’s maiden name is going to be Yngstrom (or even ‘yGt5r4ad’) rather
than Smith, there are further problems. She might be worried about breaking
her credit card agreement, and perhaps invalidating her insurance cover, by
giving false data. So smart customers will avoid your business; famous ones,
whose mothers” maiden names are in Who’s Who, should certainly shun you.
Finally, people are asked to give their mother’s maiden name to a lot of
organisations, any one of which might have a crooked employee. (You could
always try to tell “Yngstrom’ to your bank, ‘Jones’ to the phone company,
‘Geraghty’ to the travel agent, and so on; but data are shared extensively
between companies, so you could easily end up confusing their systems — not
to mention yourself).

Some organisations use contextual security information. My bank asks its
business customers the value of the last check from their account that was
cleared. In theory, this could be helpful: even if someone compromises my pass-
word — such as by overhearing me doing a transaction on the telephone — the
security of the system usually recovers more or less automatically. The details
bear some attention though. When this system was first introduced, I won-
dered about the risk that a supplier, to whom I'd just written a check, had

38

Chapter 2 = Usability and Psychology

a chance of impersonating me, and concluded that asking for the last three
checks’ values would be safer. But the problem I actually had was unexpected.
Having given the checkbook to our accountant for the annual audit, I couldn’t
authenticate myself to get a balance over the phone. There is also a further
liability shift: banks with such systems may expect customers to either keep all
statements securely, or shred them. If someone who steals my physical post
can also steal my money, I'd rather bank elsewhere.

Many e-commerce sites ask for a password explicitly rather than (or as
well as) ‘security questions’” like a maiden name. But the sheer number of
applications demanding a password nowadays exceeds the powers of human
memory. Even though web browsers cache passwords, many customers will
write passwords down (despite being told not to), or use the same password
for many different purposes; relying on your browser cache makes life difficult
when you're travelling and have to use an Internet café. The upshot is that
the password you use to authenticate the customer of the electronic banking
system you've just designed, may be known to a Mafia-operated porn site
as well.

Twenty years ago, when I was working in the banking industry, we security
folks opposed letting customers choose their own PINs for just this sort of
reason. But the marketing folks were in favour, and they won the argument.
Most banks allow the customer to choose their own PIN. It is believed that
about a third of customers use a birthdate, in which case the odds against the
thief are no longer over 3000 to 1 (getting four digits right in three guesses) but
a bit over a hundred to one (and much shorter if he knows the victim). Even if
this risk is thought acceptable, the PIN might still be set to the same value as
the PIN used with a mobile phone that’s shared with family members.

The risk you face as a consumer is not just a direct loss through “identity
theft’” or fraud. Badly-designed password mechanisms that lead to password
reuse can cause you to lose a genuine legal claim. For example, if a thief
forges your cash machine card and loots your bank account, the bank will ask
whether you have ever shared your PIN with any other person or company.
If you admit to using the same PIN for your mobile phone, then the bank
can say you were grossly negligent by allowing someone to see you using the
phone, or maybe somebody at the phone company did it — so it’s up to you
to find them and sue them. Eventually, courts may find such contract terms
unreasonable — especially as banks give different and conflicting advice. For
example, the UK bankers” association has advised customers to change all
their PINs to the same value, then more recently that this is acceptable but
discouraged; their most recent leaflet also suggests using a keyboard pattern
such as ‘C’ (3179) or ‘U’ (1793) [84].

Many attempts to find alternative solutions have hit the rocks. One bank
sent its customers a letter warning them against writing down their PIN, and
instead supplied a distinctive piece of cardboard on which they were supposed

2.4 Passwords 39

to conceal their PIN in the following way. Suppose your PIN is 2256. Choose
a four-letter word, say ‘blue’. Write these four letters down in the second,
second, fifth and sixth columns of the card respectively, as shown in Figure 2.1.
Then fill up the empty boxes with random letters.

1172134 ,5|6|7|8]9]0
b

|
|
. |
|
|

e

Figure 2.1: A bad mnemonic system for bank PINs

This is clearly a bad idea. Even if the random letters aren’t written in
a slightly different way, a quick check shows that a four by ten matrix of
random letters may yield about two dozen words (unless there’s an ‘s” on
the bottom row, when you can get 40-50). So the odds that the thief can
guess the PIN, given three attempts, have just shortened from 1 in 3000-odd
tolin8.

2.4.4.2 Operational Issues

It’s not just the customer end where things go wrong. One important case in
Britain in the late 1980’s was R v Gold and Schifreen. The defendants saw a
phone number for the development system for Prestel (an early public email
service run by British Telecom) in a note stuck on a terminal at an exhibition.
They dialed in later, and found that the welcome screen had an all-powerful
maintenance password displayed on it. They tried this on the live system
too, and it worked! They proceeded to hack into the Duke of Edinburgh’s
electronic mail account, and sent mail “from” him to someone they didn’t like,
announcing the award of a knighthood. This heinous crime so shocked the
establishment that when prosecutors failed to convict the defendants under
the laws then in force, parliament passed Britain’s first specific computer
crime law.

A similar and very general error is failing to reset the default passwords
supplied with certain system services. For example, one top-selling dial access
system in the 1980’s had a default software support user name of 999999 and
a password of 9999. It also had a default supervisor name of 777777 with a
password of 7777. Most sites didn’t change these passwords, and many of
them were hacked once the practice became widely known. Failure to change
default passwords as supplied by the equipment vendor has affected a wide
range of systems. To this day there are web applications running on databases
that use well-known default master passwords — and websites listing the
defaults for everything in sight.

40

Chapter 2 » Usability and Psychology

2.4.5 Social-Engineering Attacks

The biggest practical threat to passwords nowadays is that the user will
break system security by disclosing the password to a third party, whether
accidentally or as a result of deception. This is the core of the ‘phishing’
problem.

Although the first phishing attacks happened in 2003, the word ‘phishing’
itself is older, having appeared in 1996 in the context of the theft of AOL
passwords. Even by 1995, attempts to harvest these to send spam had become
sufficiently common for AOL to have a ‘report password solicitation” button
on its web page; and the first reference to ‘password fishing’ is in 1990,
in the context of people altering terminal firmware to collect Unix logon
passwords [301]°.

Phishing brings together several threads of attack technology. The first is
pretexting, which has long been a practical way of getting passwords and
PINs. An old thieves’ trick, having stolen a bank card, is to ring up the victim
and say ‘This is the security department of your bank. We see that your card
has been used fraudulently to buy gold coins. I wonder if you can tell me the
PIN, so I can get into the computer and cancel it?’

There are many variants. A harassed system administrator is called once or
twice on trivial matters by someone who claims to be a very senior manager’s
personal assistant; once he has accepted her as an employee, she calls and
demands a new password for her boss. (See Mitnick’s book [896] for dozens
more examples.) It even works by email. In a systematic experimental study,
336 computer science students at the University of Sydney were sent an email
message asking them to supply their password on the pretext that it was
required to ‘validate’ the password database after a suspected breakin. 138 of
them returned a valid password. Some were suspicious: 30 returned a plausible
looking but invalid password, while over 200 changed their passwords without
official prompting. But very few of them reported the email to authority [556].

Within a tightly-run company, such risks can just about be controlled. We’ve
a policy at our lab that initial passwords are always handed by the sysadmin
to the user on paper. Sun Microsystems had a policy that the root password
for each machine is a 16-character random alphanumeric string, kept in an
envelope with the machine, and which may never be divulged over the phone
or sent over the network. If a rule like this is rigidly enforced throughout an
organization, it will make any pretext attack on a root password conspicuous.
The people who can get at it must be only those who can physically access the
machine anyway. (The problem is of course that you have to teach staff not

3The first recorded spam is much earlier: in 1865, a London dentist annoyed polite society by
sending out telegrams advertising his practice [415]. Manners and other social mechanisms have
long lagged behind technological progress!

2.4 Passwords

41

just a rule, but the reasoning behind the rule. Otherwise you end up with the
password stuck to the terminal, as in the Prestel case.)

Another approach, used at the NSA, is to have different colored internal
and external telephones which are not connected to each other, and a policy
that when the external phone in a room is off-hook, classified material can’t
even be discussed in the room — let alone on the phone. A somewhat less
extreme approach (used at our laboratory) is to have different ring tones for
internal and external phones. This works so long as you have alert system
administrators.

Outside of controlled environments, things are harder. A huge problem
is that many banks and other businesses train their customers to act in
unsafe ways. It's not prudent to click on links in emails, so if you want to
contact your bank you should type in the URL or use a bookmark — yet bank
marketing departments continue to send out emails containing clickable links.
Many email clients — including Apple’s, Microsoft’s, and Google’s — make
plaintext URLs clickable, and indeed their users may never see a URL that
isn’t. This makes it harder for banks to do the right thing.

A prudent customer ought to be cautious if a web service directs him
somewhere else — yet bank systems can use all sorts of strange URLSs for their
services. It's not prudent to give out security information over the phone to
unidentified callers — yet we all get phoned by bank staff who aggressively
demand security information without having any well-thought-out means of
identifying themselves. YetI've had this experience now from two of the banks
with which I've done business — once from the fraud department that had got
suspicious about a transaction my wife had made. If even the fraud department
doesn’t understand that banks ought to be able to identify themselves, and
that customers should not be trained to give out security information on the
phone, what hope is there?

You might expect that a dotcom such as eBay would know better, yet its
banking subsidiary PayPal sent its UK customers an email in late 2006 directing
them to a competition at www.paypalchristmas.co.uk, a domain belonging to
a small marketing company I'd never heard of; and despite the fact that they're
the most heavily phished site on the web, and boast of the technical prowess of
their anti-fraud team when speaking at conferences, the marketing folks seem
to have retained the upper hand over the security folks. In November 2007
they sent an email to a colleague of mine which had a sidebar warning him to
always type in the URL when logging in to his account — and a text body that
asked him to click on a link! (My colleague closed his account in disgust.)

Citibank reassures its customers that it will never send emails to cus-
tomers to verify personal information, and asks them to disregard and
report emails that ask for such information, including PIN and account
details. So what happened? You guessed it—it sent its Australian cus-
tomers an email in October 2006 asking customers ‘as part of a security

42

Chapter 2 = Usability and Psychology

upgrade” to log on to the bank’s website and authenticate themselves
using a card number and an ATM PIN [739]. Meanwhile a marketing spam
from the Bank of America directed UK customers to mynewcard.com. Not
only is spam illegal in Britain, and the domain name inconsistent, and
clickable links a bad idea; but BoA got the certificate wrong (it was for
mynewcard.bankofamerica.com). The ‘mynewcard” problem had been pointed
out in 2003 and not fixed. Such bad practices are rife among major banks, who
thereby train their customers to practice unsafe computing — by disregarding
domain names, ignoring certificate warnings, and merrily clicking links [399].
As a result, even security experts have difficulty telling bank spam from
phish [301].

But perhaps the worst example of all came from Halifax Share Dealing
Services, part of a large well-known bank in the UK, which sent out a spam
with a URL not registered to the bank. The Halifax’s web page at the time
sensibly advised its customers not to reply to emails, click on links or disclose
details — and the spam itself had a similar warning at the end. The mother of
a student of ours received this spam and contacted the bank’s security depart-
ment, which told her it was a phish. The student then contacted the ISP to
report abuse, and found that the URL and the service were genuine — although
provided to the Halifax by a third party [842]. When even a bank’s security
department can’t tell spam from phish, how are their customers supposed to?

2.4.6 Trusted Path

The second thread in the background of phishing is trusted path, which refers
to some means of being sure that you're logging into a genuine machine
through a channel that isn’t open to eavesdropping. Here the deception is
more technical than psychological; rather than inveigling a bank customer into
revealing her PIN to you by claiming to be a policeman, you steal her PIN
directly by putting a false ATM in a shopping mall.

Such attacks go back to the dawn of time-shared computing. A public
terminal would be left running an attack program that looks just like the usual
logon screen — asking for a user name and password. When an unsuspecting
user does this, it will save the password somewhere in the system, reply
‘sorry, wrong password” and then vanish, invoking the genuine password
program. The user will assume that he made a typing error first time and
think no more of it. This is why Windows has a secure attention sequence,
namely ctrl-alt-del, which is guaranteed to take you to a genuine password
prompt.

If the whole terminal is bogus, then of course all bets are off. We once
caught a student installing modified keyboards in our public terminal room to
capture passwords. When the attacker is prepared to take this much trouble,

2.4 Passwords

43

then all the ctrl-alt-del sequence achieves is to make his software design
task simpler.

Crooked cash machines and point-of-sale terminals are now a big deal. In
one early case in Connecticut in 1993 the bad guys even bought genuine cash
machines (on credit), installed them in a shopping mall, and proceeded to
collect PINs and card details from unsuspecting bank customers who tried to
use them [33]. Within a year, crooks in London had copied the idea, and scaled
it up to a whole bogus bank branch [635]. Since about 2003, there has been
a spate of skimmers — devices fitted over the front of genuine cash machines
which copy the card data as it’s inserted and use a pinhole camera to record
the customer PIN. Since about 2005, we have also seen skimmers that clip on
to the wires linking point-of-sale terminals in stores to their PIN pads, and
which contain mobile phones to send captured card and PIN data to the crooks
by SMS. (I'll discuss such devices in much more detail later in the chapter on
Banking and Bookkeeping.)

2.4.7 Phishing Countermeasures

What makes phishing hard to deal with is the combination of psychology and
technology. On the one hand, users have been trained to act insecurely by
their bankers and service providers, and there are many ways in which people
can be conned into clicking on a web link. Indeed much of the marketing
industry is devoted to getting people to click on links. In April 2007 there
was the first reported case of attackers buying Google AdWords in an attempt
to install keyloggers on PCs. This cost them maybe a couple of dollars per
click but enabled them to target the PCs of users thinking of setting up a new
business [1248].

On the other hand, so long as online service providers want to save money
by using the open systems platform provided by web servers and browsers,
the technology does not provide any really effective way for users to identify
the website into which they are about to enter a password.

Anyway, a large number of phishing countermeasures have been tried or
proposed.

2.4.7.1 Password Manglers

A number of people have designed browser plug-ins that take the user-entered
password and transparently turn it into a strong, domain-specific password.
A typical mechanism is to hash it using a secret key and the domain name of
the web site into which it’s being entered [1085]. Even if the user always uses
the same password (even if he uses ‘password” as his password), each web
site he visits will be provided with a different and hard-to-guess password
that is unique to him. Thus if he mistakenly enters his Citibank password into

44

Chapter 2 » Usability and Psychology

a phishing site, the phisherman gets a different password and cannot use it to
impersonate him.

This works fine in theory but can be tricky to implement in practice. Banks
and shops that use multiple domain names are one headache; another comes
from the different rules that websites use for password syntax (some insist on
alphanumeric, others alpha; some are case sensitive and others not; and so
on). There is also a cost to the user in terms of convenience: roaming becomes
difficult. If only your home machine knows the secret key, then how do you
log on to eBay from a cyber-café when you're on holiday?

2.4.7.2 Client Certs or Specialist Apps

One of the earliest electronic banking systems I used was one from Bank of
America in the 1980s. This came as a bootable floppy disk; you putitin your PC,
hitctri-alt-del, and your PC was suddenly transformed into a bank terminal.
As the disk contained its own copy of the operating system, this terminal was
fairly secure. There are still some online banking systems (particularly at the
corporate end of the market) using such bespoke software. Of course, if a bank
were to give enough customers a special banking application for them to be
a worthwhile target, the phishermen will just tell them to ‘please apply the
attached upgrade’.

A lower-cost equivalent is the client certificate. The SSL protocol supports
certificates for the client as well as the server. I'll discuss the technical details
later, but for now a certificate is supposed to identify its holder to the other
principals in a transaction and to enable the traffic between them to be securely
encrypted. Server certificates identify web sites to your browser, causing the
lock icon to appear when the name on the certificate corresponds to the name in
the toolbar. Client certificates can be used to make the authentication mutual,
and some UK stockbrokers started using them in about 2006. As of 2007,
the mechanism is still not bulletproof, as certification systems are a pain to
manage, and Javascript can be used to fool common browsers into performing
cryptographic operations they shouldn’t [1163]. Even once that’s fixed, the
risk is that malware could steal them, or that the phisherman will just tell the
customer “Your certificates have expired, so please send them back to us for
secure destruction’.

2.4.7.3 Using the Browser’s Password Database

Choosing random passwords and letting your browser cache remember them
can be a pragmatic way of operating. It gets much of the benefit of a password
mangler, as the browser will only enter the password into a web page with the
right URL (IE) or the same hostname and field name (Firefox). It suffers from
some of the same drawbacks (dealing with amazon.com versus amazon.co.uk,

2.4 Passwords

45

and with roaming). As passwords are stored unencrypted, they are at some
small risk of compromise from malware. Whether you use this strategy may
depend on whether you reckon the greater risk comes from phishing or from
keyloggers. (Firefox lets you encrypt the password database but this is not the
default so many users won’t invoke it.) I personally use this approach with
many low-to-medium-grade web passwords.

Many banks try to disable this feature by setting autocomplete="off" in
their web pages. This stops Firefox and Internet Explorer storing the password.
Banks seem to think this improves security, but I doubt it. There may be a small
benefit in that a virus can’t steal the password from the browser database, but
the phishing defence provided by the browser is disabled — which probably
exposes the customer to much greater risk [913].

2.4.7.4 Soft Keyboards

This was a favorite of banks in Latin America for a while. Rather than using
the keyboard, they would flash up a keyboard on the screen on which the
customer had to type out their password using mouse clicks. The bankers
thought the bad guys would not be able to capture this, as the keyboard could
appear differently to different customers and in different sessions.

However the phishing suppliers managed to write software to defeat it.
At present, they simply capture the screen for 40 pixels around each mouse
click and send these images back to the phisherman for him to inspect and
decipher. As computers get faster, more complex image processing becomes
possible.

2.4.7.5 Customer Education

Banks have put some effort into trying to train their customers to look for
certain features in websites. This has partly been due diligence — seeing to it
that customers who don’t understand or can’t follow instructions can be held
liable — and partly a bona fide attempt at risk reduction. However, the general
pattern is that as soon as customers are trained to follow some particular rule,
the phisherman exploit this, as the reasons for the rule are not adequately
explained.

At the beginning, the advice was ‘Check the English’, so the bad guys either
got someone who could write English, or simply started using the banks” own
emails but with the URLs changed. Then it was ‘Look for the lock symbol’,
so the phishing sites started to use SSL (or just forging it by putting graphics
of lock symbols on their web pages). Some banks started putting the last four
digits of the customer account number into emails; the phishermen responded
by putting in the first four (which are constant for a given bank and card
product). Next the advice was that it was OK to click on images, but not on

46

Chapter 2 = Usability and Psychology

URLs; the phishermen promptly put in links that appeared to be images but
actually pointed at executables. The advice then was to check where a link
would really go by hovering your mouse over it; the bad guys then either
inserted a non-printing character into the URL to stop Internet Explorer from
displaying the rest, or used an unmanageably long URL (as many banks
also did).

As I remarked earlier, this sort of arms race is most likely to benefit the
attackers. The countermeasures become so complex and counterintuitive that
they confuse more and more users — exactly what the phishermen need. The
safety and usability communities have known for years that ‘blame and train’
is not the way to deal with unusable systems—the only remedy is to make the
systems properly usable in the first place [972].

2.4.7.6 Microsoft Passport

Microsoft Passport was on the face of it a neat idea —a system for using
Microsoft’s logon facilities to authenticate the users of any merchant website.
Anyone with an account on a Microsoft service, such as Hotmail, could log on
automatically to a participating website using a proprietary protocol adapted
from Kerberos to send tickets back and forth in cookies.

One downside was that putting all your eggs in one basket gives people an
incentive to try to kick the basket over. There were many juicy security flaws.
At one time, if you logged in to Passport using your own ID and password,
and then as soon as you’d entered that you backtracked and changed the ID to
somebody else’s, then when the system had checked your password against
the file entry for the first ID, it would authenticate you as the owner of the
second. This is a classic example of a race condition or time-of-check-to-time-of-
use (TOCTTOU) vulnerability, and a spectacular one it was too: anyone in the
world could masquerade as anyone else to any system that relied on Passport
for authentication. Other flaws included cookie-stealing attacks, password
reset attacks and logout failures. On a number of occasions, Microsoft had to
change the logic of Passport rapidly when such flaws came to light. (At least,
being centralised, it could be fixed quickly.)

Another downside came from the business model. Participating sites had
to use Microsoft web servers rather than free products such as Apache,
and it was feared that Microsoft’s access to a mass of data about who
was doing what business with which website would enable it to extend its
dominant position in browser software into a dominant position in the market
for consumer profiling data. Extending a monopoly from one market to
another is against European law. There was an industry outcry that led to the
establishment of the Liberty Alliance, a consortium of Microsoft’s competitors,
which developed open protocols for the same purpose. (These are now used

2.4 Passwords

47

in some application areas, such as the car industry, but have not caught on for
general consumer use.)

2.4.7.7 Phishing Alert Toolbars

Some companies have produced browser toolbars that use a number of
heuristics to parse URLs and look for wicked ones. Microsoft offers such a
toolbar in Internet Explorer version 7. The idea is that if the user visits a known
phishing site, the browser toolbar turns red; if she visits a suspect site, it turns
yellow; a normal site leaves it white; while a site with an ‘extended validation’
certificate — a new, expensive type of certificate that’s only sold to websites
after their credentials have been checked slightly more diligently than used to
be the case — then it will turn green.

The initial offering has already been broken, according to a paper jointly
authored by researchers from Stanford and from Microsoft itself [650]. Attack-
ers can present users with a “picture-in-picture’ website which simply displays
a picture of a browser with a nice green toolbar in the frame of the normal
browser. (No doubt the banks will say ‘maximise the browser before enter-
ing your password” but this won’t work for the reasons discussed above.)
The new scheme can also be attacked using similar URLs: for example,
www . bankofthewest.com can be impersonated as www.bankofthevvest.com.
Even if the interface problem can be fixed, there are problems with using
heuristics to spot dodgy sites. The testing cannot be static; if it were, the phish-
ermen would just tinker with their URLs until they passed the current tests.
Thus the toolbar has to call a server at least some of the time, and check in real
time whether a URL is good or bad. The privacy aspects bear thinking about,
and it’s not entirely clear that the competition-policy issues with Passport have
been solved either.

2.4.7.8 Two-Factor Authentication

Various firms sell security tokens that produce a one-time password. This
can be in response to a challenge sent by the machine to which you want
to log on, or more simply a function of time; you can get a keyfob device
that displays a new eight-digit password every few seconds. I'll describe the
technology in more detail in the next chapter. These devices were invented in
the early 1980s and are widely used to log on to corporate systems. They are
often referred to as two-factor authentication, as the system typically asks for
a memorised password as well; thus your logon consists of ‘something you
have’ and also ‘something you know’. Password calculators are now used by
some exclusive London private banks, such as the Queen’s bankers, Coutts, to
authenticate their online customers, and we’re now seeing them at a handful
of big money-centre banks too.

48

Chapter 2 » Usability and Psychology

There is some pressure* for banks to move to two-factor authentication
and issue all their customers with password calculators. But small banks are
chronically short of development resources, and even big banks’ security staff
resist the move on grounds of cost; everyone also knows that the phishermen
will simply switch to real-time man-in-the-middle attacks. I'll discuss these in
detail in the next chapter, but the basic idea is that the phisherman pretends
to the customer to be the bank and pretends to the bank to be the customer at
the same time, simply taking over the session once it’s established. As of early
2007, only one or two such phishing attacks have been detected, but the attack
technology could be upgraded easily enough.

The favoured two-factor technology in Europe is the chip authentication
program (CAP) device which I'll also describe in the next chapter. This can
be used either to calculate a logon password, or (once man-in-the-middle
attacks become widespread) to compute a message authentication code on the
actual transaction contents. This means that to pay money to someone you’'ll
probably have to type in their account number and the amount twice — once
into the bank’s website and once into your CAP calculator. This will clearly be
a nuisance: tedious, fiddly and error-prone.

2.4.7.9 Trusted Computing

The ‘Trusted Computing’ initiative, which has led to TPM security chips in PC
motherboards, may make it possible to tie down a transaction to a particular
PC motherboard. The TPM chip can support functions equivalent to those
of the CAP device. Having hardware bank transaction support integrated
into the PC will be less fiddly than retyping data at the CAP as well as the PC;
on the other hand, roaming will be a problem, as it is with password manglers
or with relying on the browser cache.

Vista was supposed to ship with a mechanism (remote attestation) that
would have made it easy for bank software developers to identify customer
PCs with high confidence and to stop the bad guys from easily tinkering
with the PC software. However, as I'll describe later in the chapter on access
control, Microsoft appears to have been unable to make this work yet, so bank
programmers will have to roll their own. As Vista has just been released into
consumer markets in 2007, it may be 2011 before most customers could have
this option available, and it remains to be seen how the banks would cope
with Apple or Linux users. It might be fair to say that this technology has not
so far lived up to the initial hype.

4In the USA, from the Federal Financial Institutions Examination Council — which, as of
September 2007, 98% of banks were still resisting [1003].

2.4 Passwords

49

2.4.7.10 Fortified Password Protocols

In 1992, Steve Bellovin and Michael Merritt looked at the problem of how a
guessable password could be used in an authentication protocol between two
machines [158]. They came up with a series of protocols for encrypted key
exchange, whereby a key exchange is combined with a shared password in
such a way that a man-in-the-middle could not guess the password. Various
other researchers came up with other protocols to do the same job.

Some people believe that these protocols could make a significant dent in
the phishing industry in a few years’ time, once the patents run out and the
technology gets incorporated as a standard feature into browsers.

2.4.7.11 Two-Channel Authentication

Perhaps the most hopeful technical innovation is two-channel authentication.
This involves sending an access code to the user via a separate channel, such as
their mobile phone. The Bank of America has recently introduced a version of
this called SafePass in which a user who tried to log on is sent a six-digit code to
their mobile phone; they use this as an additional password [868]. The problem
with this is the same as with the two-factor authentication already tried in
Europe: the bad guys will just use a real-time man-in-the-middle attack.

However, two-channel comes into its own when you authenticate transac-
tion data as well. If your customer tries to do a suspicious transaction, you
can send him the details and ask for confirmation: ‘If you really wanted to
send $7500 to Russia, please enter 4716 now in your browser.” Implemented
like this, it has the potential to give the level of authentication aimed at by the
CAP designers but with a much more usable interface. Banks have held back
from using two-channel in this way because of worries that usability problems
might drive up their call-centre costs; however the first banks to implement it
report that it hasn’t pushed up support call volumes, and a number of sites
have been implementing it through 2007, with South African banks being in
the forefront. We have already seen the first serious fraud — some Johannes-
burg crooks social-engineered the phone company to send them a new SIM for
the phone number of the CFO of Ubuntu, a charity that looks after orphaned
and vulnerable children, and emptied its bank account [1017]. The bank and
the phone company are arguing about liability, although the phone company
says it’s fixing its procedures.

Even once the phone-company end of things gets sorted, there are still limits.
Two-channel authentication relies for its security on the independence of the
channels: although the phishermen may be able to infect both PCs and mobile
phones with viruses, so long as both processes are statistically independent,

50

Chapter 2 » Usability and Psychology

only a very small number of people will have both platforms compromised
at the same time. However, if everyone starts using an iPhone, or doing VoIP
telephony over wireless access points, then the assumption of independence
breaks down.

Nonetheless, if I were working for a bank and looking for a front-end
authentication solution today, two-channel would be the first thing I would
look at. I'd be cautious about high-value clients, because of possible attacks
on the phone company, but for normal electronic banking it seems to give the
most bang for the buck.

2.4.8 The Future of Phishing

It’s always dangerous to predict the future, but it's maybe worth the risk of
wondering where phishing might go over the next seven years. What might I
be writing about in the next edition of this book?

I'd expect to see the phishing trade grow substantially, with attacks on many
non-banks. In November 2007, there was a phishing attack on Salesforce.com
in which the phisherman got a password from a staff member, following which
customers started receiving bogus invoices [614]. If it gets hard to phish the
banks, the next obvious step is to phish their suppliers (such as Salesforce).
In a world of increasing specialisation and outsourcing, how can you track
dependencies and identify vulnerabilities?

Second, research has shown that the bad guys can greatly improve their
yields if they match the context of their phish to the targets [658]; so phish will
get smarter and harder to tell from real emails, just as spam has. Authority
can be impersonated: 80% of West Point cadets bit a phish sent from a
bogus colonel, and a phisherman who uses a social network can do almost
as well: while emails from a random university address got 16% of students
to visit an off-campus website and enter their university password to access
it, this shot up to 72% if the email appeared to come from one of the
target’s friends — with the friendship data collected by spidering open-access
social-networking websites [653]. Future phishermen won't ask you for your
mother’s maiden name: they’ll forge emails from your mother.

On the technical side, more man-in-the-middle attacks seem likely, as do
more compromises of endpoints such as PCs and mobile phones. If a banking
application running on Vista can only do business on the genuine motherboard,
then the attacker will look for ways to run his software on that motherboard.
If “trusted computing’ features in later releases of Vista can stop malware
actually pressing keys and overwriting the screen while a banking application
is running, this might bring real benefits (but I'm not holding my breath).

Starting from the top end of the market, I would not be surprised to see exclu-
sive private banks issuing their customers with dedicated payment devices —
‘Keep your account $50,000 in credit and get a Free Gold Blackberry!” Such

2.4 Passwords

51

a device could do wireless payments securely and perhaps even double as a
credit card. (I expect it would fail when the marketing department also decided
it should handle ordinary email, and the crooks figured out ways of pretexting
the rich accountholders into doing things they didn’t really mean to.)

At the middle of the market, I'd expect to see phishing become less dis-
tinguishable from more conventional confidence tricks. I mentioned earlier
that the marketing industry nowadays was largely about getting people to
click on links. Now Google has built a twelve-figure business out of this,
so if you're a crook, why not just advertise there for victims? It’s already
started. And indeed, research by Ben Edelman has found that while 2.73% of
companies ranked top in a web search were bad, 4.44% of companies who
had bought ads from the search engine were bad [416]. (Edelman’s conclu-
sion — ‘Don’t click on ads” — could be bad news in the medium term for the
search industry.)

On the regulatory side of things, I expect more attempts to interfere in the
identity market, as governments such as America’s and Britain’s look for ways
to issue citizens with identity cards, and as international bodies try to muscle
in. The International Telecommunications Union tried this in 2006 [131]; it
won’t be the last. We will see more pressures to use two-factor authentication,
and to use biometrics. Those parts of the security-industrial complex have
been well fed since 9/11 and will lobby hard for corporate welfare.

However, I don’t believe it will be effective to rely entirely on front-end
controls, whether passwords or fancy widgets. Tricksters will still be able to
con people (especially the old and the less educated), and systems will continue
to get more and more complex, limited only by the security, usability and other
failures inflicted by feature interaction. I believe that the back-end controls will
be at least as important. The very first home banking system — introduced by
the Bank of Scotland in 1984 — allowed payments only to accounts that you
had previously ‘nominated” in writing. The idea was that you’d write to the
bank to nominate your landlord, your gas company, your phone company
and so on, and then you could pay your bills by email. You set a monthly limit
on how much could be paid to each of them. These early systems suffered
almost no fraud; there was no easy way for a bad man to extract cash. But
the recipient controls were dismantled during the dotcom boom and then
phishing took off.

Some banks are now starting to reintroduce controls — for example, by
imposing a delay and requiring extra authentication the first time a customer
makes a payment to someone they haven’t paid before. Were I designing an
online banking system now, I would invest most of the security budget in
the back end. The phishermen target banks that are slow at recovering stolen
funds [55]. If your asset-recovery team is really on the ball, checks up quickly
on attempts to send money to known cash-extraction channels, claws it back
vigorously, and is ruthless about using the law against miscreants, then the

52

Chapter 2 » Usability and Psychology

phishermen will go after your competitors instead. (I'll discuss what makes
controls effective later, in the chapter on Banking and Bookkeeping, especially
section 10.3.2.)

2.5 System Issues

Although the fastest-growing public concern surrounding passwords is phish-
ing, and the biggest research topic is psychology, there are a number of other
circumstances in which attackers try to steal or guess passwords, or com-
promise systems in other ways. There are also technical issues to do with
password entry and storage that I'll also cover briefly here for the sake of
completeness.

I already noted that the biggest system issue was whether it is possible to
restrict the number of password guesses. Security engineers sometimes refer
to password systems as ‘online’ if guessing is limited (as with ATM PINs) and
‘offline’ if it is not (this originally meant systems where a user could fetch the
password file and take it away to try to guess the passwords of other users,
including more privileged users). The terms are no longer really accurate.
Some offline systems restrict password guesses, such as the smartcards used
in more and more countries for ATMs and retail transactions; these check the
PIN in the smartcard chip and rely on its tamper-resistance to limit guessing.
Many online systems cannot restrict guesses; for example, if you log on using
Kerberos, an opponent who taps the line can observe your key encrypted with
your password flowing from the server to your client, and then data encrypted
with that key flowing on the line; so she can take her time to try out all possible
passwords.

Password guessability is not the only system-level design question, though;
there are others (and they interact). In this section I'll describe a number of
issues concerning threat models and technical protection, which you might
care to consider next time you design a password system.

Just as we can only talk about the soundness of a security protocol in the
context of a specific threat model, so we can only judge whether a given
password scheme is sound by considering the type of attacks we are trying to
defend against. Broadly speaking, these are:

Targeted attack on one account: an intruder tries to guess a particular
user’s password. He might try to guess the PIN for Bill Gates’s bank
account, or a rival’s logon password at the office, in order to do mischief
directly. When this involves sending emails, it is known as spear phishing.

Attempt to penetrate any account on a system: the intruder tries to get a
logon as any user of the system. This is the classic case of the phisherman
trying to get a password for any user of a target bank’s online service.

2.5 System Issues

53

Attempt to penetrate any account on any system: the intruder merely
wants an account at any system in a given domain but doesn’t care
which one. Examples are bad guys trying to guess passwords on an
online service so they can send spam from the compromised account,

or use its web space to host a phishing site for a few hours. The modus
operandi is often to try one or two common passwords (such as ‘pass-
word1’) on large numbers of randomly-selected accounts. Other possible
attackers might be teens looking for somewhere to hide pornography, or
a private eye tasked to get access to a company’s intranet who is looking
for a beachhead in the form of a logon to some random machine in their
domain.

Service denial attack: the attacker may wish to prevent the legitimate
user from using the system. This might be targeted on a particular acc-
ount or system-wide.

This taxonomy helps us ask relevant questions when evaluating a password
system.

2.5.1 Can You Deny Service?

Banks often have a rule that a terminal and user account are frozen after three
bad password attempts; after that, an administrator has to reactivate them.
This could be rather dangerous in a military system, as an enemy who got
access to the network could use a flood of false logon attempts to mount a
service denial attack; if he had a list of all the user names on a machine he might
well take it out of service completely. Many commercial websites nowadays
don’t limit guessing because of the possibility of such an attack.

When deciding whether this might be a problem, you have to consider not
just the case in which someone attacks one of your customers, but also the
case in which someone attacks your whole system. Can a flood of false logon
attempts bring down your service? Could it be used to blackmail you? Or
can you turn off account blocking quickly in the event that such an attack
materialises? And if you do turn it off, what sort of attacks might follow?

2.5.2 Protecting Oneself or Others?

Next, to what extent does the system need to protect users from each other?
In some systems — such as mobile phone systems and cash machine sys-
tems — no-one should be able to use the service at someone else’s expense.
It is assumed that the attackers are already legitimate users of the system. So
systems are (or at least should be) carefully designed so that knowledge of
one user’s password will not allow another identifiable user’s account to be
compromised.

54

Chapter 2 » Usability and Psychology

Where a user who chooses a password that is easy to guess harms only
himself, a wide variation in password strength can more easily be tolerated.
(Bear in mind that the passwords people choose are very often easy for their
spouses or partners to guess [245]: so some thought needs to be given to issues
such as what happens when a cheated partner seeks vengeance.)

But many systems do not provide strong separation between users. Oper-
ating systems such as Unix and Windows may have been designed to protect
one user against accidental interference by another, but they are not hard-
ened to protect against capable malicious actions by other users. They have
many well-publicized vulnerabilities, with more being published constantly
on the web. A competent opponent who can get a single account on a shared
computer system that is not professionally managed can usually become the
system administrator fairly quickly, and from there he can do whatever he
likes.

2.5.3 Attacks on Password Entry

Password entry is often poorly protected.

2.5.3.1 Interface Design

Sometimes the problem is thoughtless interface design. Some common makes
of cash machine had a vertical keyboard at head height, making it simple for
a pickpocket to watch a customer enter her PIN before lifting her purse from
her shopping bag. The keyboards were at a reasonable height for the men who
designed them, but women — and men in many countries — are a few inches
shorter and were highly exposed. One of these machines “protected client
privacy’ by forcing the customer to gaze at the screen through a narrow slot.
Your balance was private, but your PIN was not! Many pay-telephones have
a similar problem, and shoulder surfing of calling card details (as it’s known
in the industry) has been endemic at some locations such as major US train
stations and airports.

I usually cover my dialling hand with my body or my other hand when
entering a card number or PIN in a public place — but you shouldn’t design
systems on the assumption that all your customers will do this. Many people
are uncomfortable shielding a PIN from others as it’s a visible signal of distrust;
the discomfort can be particularly acute if someone’s in a supermarket queue
and a friend is standing nearby. In the UK, for example, the banks say that 20%
of users never shield their PIN when entering it, as if to blame any customer
whose PIN is compromised by an overhead CCTV camera [84]; yet in court
cases where I've acted as an expert witness, only a few percent of customers
shield their PIN well enough to protect it from an overhead camera. (And just
wait till the bad guys start using infrared imaging.)

2.5 System Issues

55

2.5.3.2 Eavesdropping

Taking care with password entry may stop the bad guys looking over your
shoulder as you use your calling card at an airport telephone. But it won’t
stop other eavesdropping attacks. The latest modus operandi is for bad people
to offer free WiFi access in public places, and harvest the passwords that
users enter into websites. It is trivial to grab passwords entered into the many
websites that don’t use encryption, and with a bit more work you can get
passwords entered into most of them that do, by using a middleperson attack.

Such attacks have been around for ages. In the old days, a hotel manager
might abuse his switchboard facilities to log the keystrokes you enter at
the phone in your room. That way, he might get a credit card number you
used — and if this wasn’t the card number you used to pay your hotel bill, he
could plunder your account with much less risk. And in the corporate world,
many networked computer systems still send passwords in clear over local
area networks; anyone who can program a machine on the network, or attach
his own sniffer equipment, can harvest them. (I'll describe in the next chapter
how Windows uses the Kerberos authentication protocol to stop this, and ssh
is also widely used — but there are still many unprotected systems.)

2.5.3.3 Technical Defeats of Password Retry Counters

Many kids find out that a bicycle combination lock can usually be broken
in a few minutes by solving each ring in order of looseness. The same idea
worked against a number of computer systems. The PDP-10 TENEX operating
system checked passwords one character at a time, and stopped as soon as
one of them was wrong. This opened up a timing attack: the attacker would
repeatedly place a guessed password in memory at a suitable location, have it
verified as part of a file access request, and wait to see how long it took to be
rejected [774]. An error in the first character would be reported almost at once,
an error in the second character would take a little longer to report, and in the
third character a little longer still, and so on. So you could guess the characters
once after another, and instead of a password of N characters drawn from an
alphabet of A characters taking AN /2 guesses on average, it took AN/2. (Bear
in mind that in thirty years” time, all that might remain of the system you're
building today is the memory of its more newsworthy security failures.)
These same mistakes are being made all over again in the world of embedded
systems. With one remote car locking device: as soon as a wrong byte was
transmitted from the key fob, the red telltale light on the receiver came on. With
some smartcards, it has been possible to determine the customer PIN by trying
each possible input value and looking at the card’s power consumption, then
issuing a reset if the input was wrong. The reason was that a wrong PIN caused
a PIN retry counter to be decremented, and writing to the EEPROM memory

56

Chapter 2 » Usability and Psychology

which held this counter caused a current surge of several milliamps — which
could be detected in time to reset the card before the write was complete [753].
These implementation details matter.

2.5.4 Attacks on Password Storage

Passwords have often been vulnerable where they are stored. There was
a horrendous bug in one operating system update in the 1980s: a user who
entered a wrong password, and was told ““sorry, wrong password” merely had
to hit carriage return to get into the system anyway. This was spotted quickly,
and a patch was shipped, but almost a hundred U.S. government systems
in Germany were using unlicensed copies of the software and didn’t get the
patch, with the result that hackers were able to get in and steal information,
which they are rumored to have sold to the KGB.

Another horrible programming error struck a U.K. bank, which issued
all its customers the same PIN by mistake. It happened because the standard
equipment in use at the time for PIN generation required the bank programmer
to first create and store an encrypted PIN, and then use another command to
print out a clear version on a PIN mailer. A bug meant that all customers got
the same encrypted PIN. As the procedures for handling PINs were carefully
controlled, no one in the bank got access to anyone’s PIN other than his or her
own, so the mistake wasn’t spotted until after thousands of customer cards
had been shipped.

Auditing provides another hazard. In systems that log failed password
attempts, the log usually contains a large number of passwords, as users
get the “username, password’ sequence out of phase. If the logs are not well
protected then attacks become easy. Someone who sees an audit record of a
failed login with a non-existent user name of e5gv, 8yp can be fairly sure that
this string is a password for one of the valid user names on the system.

2.5.4.1 One-Way Encryption

Password storage has also been a problem for some systems. Keeping a
plaintext file of passwords can be dangerous. In MIT’s ‘Compatible Time
Sharing System’, ctss (a predecessor of Multics), it once happened that one
person was editing the message of the day, while another was editing the
password file. Because of a software bug, the two editor temporary files got
swapped, with the result that everyone who logged on was greeted with a
copy of the password file!

As a result of such incidents, passwords are often protected by encrypting
them using a one-way algorithm, an innovation due to Roger Needham and
Mike Guy. The password, when entered, is passed through a one-way function
and the user islogged on only if it matches a previously stored value. However,

2.5 System Issues

57

it’s often implemented wrong. The right way to do it is to generate a random
salt, hash the password with the salt, and store both the salt and the hash in the
file. The popular blog software Wordpress, as of October 2007, simply stores a
hash of the password — so if the attacker can download the password file for a
Wordpress blog, he can look for weak passwords by comparing the file against
a precomputed file of hashes of words in the dictionary. What’s even worse
is that Wordpress then uses a hash of this hash as the cookie that it sets on
your browser once you've logged on. As a result, someone who can look at
the password file can also get in by computing cookies from password hashes,
so he can attack even an adminstrator account with a strong password. In this
case, the one-way algorithm went the wrong way. They should have chosen a
random cookie, and stored a hash of that too.

2.5.4.2 Password Cracking

However, some systems that do use an encrypted password file make it
widely readable (Unix used to be the prime example — the password file was
by default readable by all users). So a user who can fetch this file can then
try to break passwords offline using a dictionary; he encrypts the values in
his dictionary and compares them with those in the file (an activity called
a dictionary attack, or more colloquially, password cracking). The upshot was
that he could impersonate other users, perhaps including a privileged user.
Windows NT was slightly better, but the password file could still be accessed
by users who knew what they were doing.

Most modern operating systems have fixed this problem, but the attack
is still implemented in commercially available password recovery tools. If
you've encrypted an Office document with a password you've forgotten, there
are programs that will try 350,000 passwords a second [1132]. Such tools can
just as easily be used by a bad man who has got a copy of your data, and
in older systems of your password file. So password cracking is still worth
some attention. Well-designed password protection routines slow down the
guessing by using a complicated function to derive the crypto key from
the password and from a locally-stored salt that changes with each file; the
latest WinZip, for example, allows less than 1000 guesses a second. You can
also complicate a guessing attack by using an odd form of password; most
password guessers try common words first, then passwords consisting of a
root followed by an appendage, such as ‘Kevin06’. Users who avoid such
patterns can slow down the attacker.

2.5.5 Absolute Limits

Regardless of how well passwords are managed, there can be absolute limits
imposed by the design of the platform. For example, Unix systems used to

58

Chapter 2 = Usability and Psychology

limit the length of the password to eight characters (you could often enter more
than this, but the ninth and subsequent characters were ignored). The effort
required to try all possible passwords — the total exhaust time, in cryptanalytic
jargon — is 96° or about 2°?, and the average effort for a search is half of this.
A well-financed government agency (or a well-organised hacker group) can
now break any encrypted password in a standard Unix password file.

This motivates more technical defenses against password cracking, includ-
ing ‘shadow passwords’, that is, encrypted passwords hidden in a private
file (most modern Unices), using an obscure mechanism to do the encryption
(Novell), or using a secret key with the encryption (MVS). The strength of
these mechanisms may vary.

For the above reasons, military system administrators often prefer to issue
random passwords. This also lets the probability of password guessing attacks
be estimated and managed. For example, if L is the maximum password
lifetime, R is login attempt rate, S is the size of the password space, then the
probability that a password can be guessed inits lifetimeis P = LR/S, according
to the US Department of Defense password management guideline [377].

There are various problems with this doctrine, of which the worst may be
that the attacker’s goal is often not to guess some particular user’s password
but to get access to any account. If a large defense network has a million
possible passwords and a million users, and the alarm goes off after three
bad password attempts on any account, then the attack is to try one password
for every single account. Thus the quantity of real interest is the probability
that the password space can be exhausted in the lifetime of the system at the
maximum feasible password guess rate.

To take a concrete example, UK government systems tend to issue pass-
words randomly selected with a fixed template of consonants, vowels and
numbers designed to make them easier to remember, such as CVCNCVCN
(eg fursxEDbS). If passwords are not case sensitive, the guess probability is
only 21%.52.10%, or about 2%. So if an attacker could guess 100 passwords a sec-
ond — perhaps distributed across 10,000 accounts on hundreds of machines
on a network, so as not to raise the alarm — then he’d need about 5 million
seconds, or two months, to get in. With a million-machine botnet, he could
obviously try to speed this up. So if you're responsible for such a system,
you might find it prudent to do rate control: prevent more than one pass-
word guess every few seconds per user account, or (if you can) by source
IP address. You might also keep a count of all the failed logon attempts
and analyse them: is there a constant series of guesses that could indicate an
attempted intrusion? (And what would you do if you noticed one?) With a
commercial website, 100 passwords per second may translate to one compro-
mised user account per second. That may not be a big deal for a web service
with 100 million accounts — but it may still be worth trying to identify the
source of any industrial-scale password-guessing attacks. If they’re from a

2.6 CAPTCHAs

59

small number of IP addresses, you can block them, but this won’t work so
well if the attacker has a botnet. But if an automated-guessing attack does
emerge, then another way of dealing with it is the CAPTCHA, which I'll
describe next.

2.6 CAPTCHAs

Recently people have tried to design protection mechanisms that use the
brain’s strengths rather than its weaknesses. One early attempt was Passfaces:
this is an authentication system that presents users with nine faces, only one
of which is of a person they know; they have to pick the right face several
times in a row to log on [356]. The rationale is that people are very good
at recognising other people’s faces, but very bad at describing them: so you
could build a system where it was all but impossible for people to give away
their passwords, whether by accident or on purpose. Other proposals of this
general type have people selecting a series of points on an image — again,
easy to remember but hard to disclose. Both types of system make shoulder
surfing harder, as well as deliberate disclosure offline.

The most successful innovation in this field, however, is the CAPTCHA —
which stands for ‘Completely Automated Public Turing Test to Tell Computers
and Humans Apart.” You will probably have seen these: they are the little
visual puzzles that you often have to solve to post to a blog, or register for a
free email account. The idea is that a program generates some random text,
and produces a distorted version of it that the user must decipher. Humans
are good at reading distorted text, while programs are less good. CAPTCHAs
first came into use in a big way in 2003 to stop spammers using scripts to open
thousands of accounts on free email services, and their judicious use can make
it a lot harder for attackers to try a few simple passwords with each of a large
number of existing accounts.

The CAPTCHA was devised by Luis von Ahn and colleagues [1304]. It is
inspired by the test famously posed by Alan Turing as to whether a computer
was intelligent, where you put a computer in one room and a human in
another, and invite a human to try to tell them apart. The innovation is that
the test is designed so that a computer can tell the difference between human
and machine, using a known ‘hard problem” in AI such as the recognition
of distorted text against a noisy background. The idea is that breaking the
CAPTCHA is equivalent to solving the Al problem.

Aswith all new security technologies, the CAPTCHA is undergoing a period
of rapid coevolution of attack and defence. Many of the image recognition
problems posed by early systems turned out not to be too hard at all. There are
also possible protocol-level attacks; von Ahn mentioned in 2001 that in theory a

60

Chapter 2 » Usability and Psychology

spammer could use a porn site to solve them, by getting people to solve them as
the price of access to free porn [1303]. This has since become a folk legend, and
finally, in October 2007, it actually started to happen: spammers created a game
in which you undress a woman by solving one CAPTCHA after another [134].
Also in that month, we saw the first commercial CAPTCHA-breaking tools
arrive on the market [571].

Finally, the technology can be integrated with authentication and authori-
sation controls in potentially useful new ways. An interesting example comes
from the banks in Germany, who are introducing an anti-phishing measure
whereby if you authorise a payment online the bank sends you the payee, the
amount and your date of birth, integrated into a CAPTCHA that also contains
a challenge, such as ‘if you want to authorize this payment please enter the
thirteenth password from your list’. This lets them use a static list of one-time
passwords to authenticate actual amounts and beneficiaries, by ensuring that
a real-time man-in-the-middle attack would require a human in the loop. It
may be a better technology than the CAP calculator; it will certainly be less
fiddly than entering transaction details twice. Time will tell if it works.

2.7 Summary

Usability is one of the most important and yet hardest design problems in
many secure systems. It was long neglected as having less techie glamour
then operating systems or cryptographic algorithms; yet most real attacks
nowadays target the user. Phishing is the most rapidly growing threat to
online banking systems, and is starting to be a problem for other sites too.
Other forms of deception are also likely to increase; as technical protection
improves, the bad guys will target the users.

Much of the early work on security usability focused on passwords. Critical
questions to ask when designing a password system include not just whether
people might re-use passwords, but also whether they need to be protected
from each other, whether they can be trained and disciplined, and whether
accounts can be frozen after a fixed number of bad guesses. You also have to
consider whether attackers will target a particular account, or be happy with
breaking any account on a machine or a network; and technical protection
issues such as whether passwords can be snooped by malicious software, false
terminals or network eavesdropping.

However, there is no ‘magic bullet” in sight. As minor improvements in
protection are devised and fielded, so the phishermen adapt their tactics. At
present, the practical advice is that you should not be a soft touch — harden
your system enough for the phishermen to hit your competitors instead. This
involves not just security usability issues but also your internal controls, which

Further Reading

61

we will discuss in later chapters. You should assume that some user accounts
will be compromised, and work out how to spot this and limit the damage
when it does happen.

Research Problems

There is a lot of work being done on phishing, but (as we discussed here) none
of it is no far a really convincing solution to the problem. We could do with
some fresh thinking. Are there any neat ways to combine things like passwords,
CAPTCHAs, images and games so as to provide sufficiently dependable two-
way authentication between humans and computers? In general, are there any
ways of making middleperson attacks sufficiently harder that it doesn’t matter
if the Mafia owns your ISP?

We also need more fundamental thinking about the relationship between
psychology and security. Between the first edition of this book in 2001 and
the second in 2007, the whole field of security economics sprang into life;
now there are two regular conferences and numerous other relevant events.
So far, security usability is in a fairly embryonic state. Will it also grow big
and prosperous? If so, which parts of existing psychology research will be the
interesting areas to mine?

Further Reading

When I wrote the first edition of this book, there was only a small handful
of notable papers on passwords, including classic papers by Morris and
Thompson [906], Grampp and Morris [550], and Klein [720], and some DoD
guidelines [377]. Since then there has arisen a large research literature on
phishing, with a compendium of papers published as [659]. Perhaps the
greatest gains will come when security engineers start paying attention to
standard HCI texts such as [1039], and researchers start reading widely in the
psychology literature.

A text I've found helpful is James Reason’s ‘Human Error’, which essentially
tells us what the safety-critical systems community has learned from many
years studying the cognate problems in their field [1060]. Recently, we’ve
seen the first book on security usability — a collection of the early research
papers [333]. There is also an annual workshop, the Symposium On Usable
Privacy and Security (SOUPS) [1240].

I'm loth to provide much of a guide to the psychology literature, as I don’t
know it as well as I ought to, and we’ve only just started on the project of
building ‘security psychology” as a discipline. It will take some years for us
to find which psychological theories and experimental results provide us with

62

Chapter 2 = Usability and Psychology

useful insights. But here are some pointers. Tom Gilovich, Dale Griffin and
Danny Kahneman put together a volume of papers summarising the state of
play in the heuristics and biases tradition in 2002 [529]; while a more gentle
introduction might be a book chapter by Richard Samuels, Steven Stich and Luc
Faucher discussing the tensions between that tradition and the evolutionary
psychologists [1106]. It may also be of interest that a number of psychologists
and primatologists (such as Nicholas Humphrey, Richard Byrne and Andy
Whiten) have argued that we evolved intelligence because people who were
better at deception, or at detecting deception in others, had more surviving
offspring — the so-called ‘Machiavellian Brain” hypothesis [250]. This might
lead us to wonder whether security engineering is the culmination of millions
of years of evolution! (Other psychologists, such as Simon Baron-Cohen,
would deflate any such hubris by arguing that nurturing the young was at
least as important.) Further fascinating analogies with evolutionary biology
have been collected by Raphael Sagarin and Terence Taylor in their book
‘Natural Security’.

Finally, if you're interested in the dark side, “The Manipulation of Human
Behavior” by Albert Biderman and Herb Zimmer reports experiments on inter-
rogation carried out after the Korean War with US Government funding [162].
It’s also known as the Torturer’s Bible, and describes the relative effective-
ness of sensory deprivation, drugs, hypnosis, social pressure and so on when
interrogating and brainwashing prisoners.

Protocols

It is impossible to foresee the consequences of being clever.
— Christopher Strachey

Every thing secret degenerates, even the administration of justice; nothing is safe
that does not show how it can bear discussion and publicity.

— Lord Acton

3.1 Introduction

If security engineering has a deep unifying theme, it is the study of security
protocols. We’ve come across a few protocols informally already — I've men-
tioned challenge-response authentication and Kerberos. In this chapter, I'll
dig down into the details. Rather than starting off with a formal definition of
a security protocol, I will give a rough indication and then refine it using a
number of examples. As this is an engineering book, I will also give many
examples of how protocols fail.

A typical security system consists of a number of principals such as people,
companies, computers and magnetic card readers, which communicate using
a variety of channels including phones, email, radio, infrared, and by carrying
data on physical devices such as bank cards and transport tickets. The security
protocols are the rules that govern these communications. They are typically
designed so that the system will survive malicious acts such as people telling
lies on the phone, hostile governments jamming radio, or forgers altering
the data on train tickets. Protection against all possible attacks is often too
expensive, so protocols are typically designed under certain assumptions
about the threats. For example, the logon protocol that consists of a user

63

64

Chapter 3 = Protocols

entering a password into a machine assumes that she can enter it into the right
machine. In the old days of hard-wired terminals in the workplace, this was
reasonable; now that people log on to websites over the Internet, it is much
less so. Evaluating a protocol thus involves answering two questions: first, is
the threat model realistic? Second, does the protocol deal with it?

Protocols may be extremely simple, such as swiping a badge through a
reader in order to enter a building. They often involve interaction, and do
not necessarily involve technical measures like cryptography. For example,
when we order a bottle of fine wine in a restaurant, the standard wine-waiter
protocol provides some privacy (the other diners at our table don’t learn the
price), some integrity (we can be sure we got the right bottle and that it wasn’t
switched for, or refilled with, cheap plonk) and non-repudiation (it’s hard for
the diner to complain afterwards that the wine was off). Blaze gives other
examples from applications as diverse as ticket inspection, aviation security
and voting in [185].

At the technical end of things, protocols can be much more complex. The
world’s bank card payment system has dozens of protocols specifying how
customers interact with cash machines and retail terminals, how a cash machine
or terminal talks to the bank that operates it, how the bank communicates with
the network operator, how money gets settled between banks, how encryption
keys are set up between the various cards and machines, and what sort of
alarm messages may be transmitted (such as instructions to capture a card).
All these protocols have to work together in a large and complex system.

Often a seemingly innocuous design feature opens up a serious flaw. For
example, a number of banks encrypted the customer’s PIN using a key known
only to their central computers and cash machines, and wrote it to the card
magnetic strip. The idea was to let the cash machine verify PINs locally, which
saved on communications and even allowed a limited service to be provided
when the cash machine was offline. After this system had been used for many
years without incident, a programmer (who was playing around with a card
reader used in a building access control system) discovered that he could
alter the magnetic strip of his own bank card by substituting his wife’s bank
account number for his own. He could then take money out of her account
using the modified card and his own PIN. He realised that this enabled him
to loot any other customer’s account too, and went on to steal hundreds of
thousands over a period of years. The affected banks had to spend millions
on changing their systems. And some security upgrades can take years; at
the time of writing, much of Europe has moved from magnetic-strip cards to
smartcards, while America has not. Old and new systems have to work side
by side so that European cardholders can buy from American stores and vice
versa. This also opens up opportunities for the crooks; clones of European
cards are often used in magnetic-strip cash machines in other countries, as the
two systems’ protection mechanisms don’t quite mesh.

3.2 Password Eavesdropping Risks

65

So we need to look systematically at security protocols and how they fail. As
they are widely deployed and often very badly designed, I will give a number
of examples from different applications.

3.2 Password Eavesdropping Risks

Passwords and PINs are still the foundation on which much of computer
security rests, as they are the main mechanism used to authenticate humans
to machines. I discussed their usability and ‘human interface” problems of
passwords in the last chapter. Now let us consider some more technical
attacks, of the kind that we have to consider when designing more general
protocols that operate between one machine and another. A good case study
comes from simple embedded systems, such as the remote control used to open
your garage or to unlock the doors of cars manufactured up to the mid-1990’s.
These primitive remote controls just broadcast their serial number, which also
acts as the password.

An attack that became common was to use a ‘grabber’, a device that would
record a code broadcast locally and replay it later. These devices, seemingly
from Taiwan, arrived on the market in about 1995; they enabled thieves lurking
in parking lots to record the signal used to lock a car door and then replay it
to unlock the car once the owner had left'.

One countermeasure was to use separate codes for lock and unlock. But
this is still not ideal. First, the thief can lurk outside your house and record
the unlock code before you drive away in the morning; he can then come
back at night and help himself. Second, sixteen-bit passwords are too short.
It occasionally happened that people found they could unlock the wrong car
by mistake (or even set the alarm on a car whose owner didn’t know he
had one [217]). And by the mid-1990’s, devices appeared which could try all
possible codes one after the other. A code will be found on average after about
2" tries, which at ten per second takes under an hour. A thief operating in a
parking lot with a hundred vehicles within range would be rewarded in less
than a minute with a car helpfully flashing its lights.

So another countermeasure was to double the length of the password from
16 to 32 bits. The manufacturers proudly advertised ‘over 4 billion codes’. But
this only showed they hadn’t really understood the problem. There was still

!With garage doors it's even worse. A common chip is the Princeton PT2262, which uses 12
tri-state pins to encode 312 or 531,441 address codes. However implementers often don’t read
the data sheet carefully enough to understand tri-state inputs and treat them as binary instead,
getting 2!2. Many of them only use eight inputs, as the other four are on the other side of the
chip. And as the chip has no retry-lockout logic, an attacker can cycle through the combinations
quickly and open your garage door after 27 attempts on average.

66

Chapter 3 = Protocols

only one code (or two codes) for each car, and although guessing was now
impractical, grabbers still worked fine.

Using a serial number as a password has a further vulnerability: there may
be many people with access to it. In the case of a car, this might mean all the
dealer staff, and perhaps the state motor vehicle registration agency. Some
burglar alarms have also used serial numbers as master passwords, and here
it’s even worse: the serial number may appear on the order, the delivery note,
the invoice and all the other standard commercial paperwork.

Simple passwords are sometimes the appropriate technology, even when
they double as serial numbers. For example, my monthly season ticket for
the swimming pool simply has a barcode. I'm sure I could make a passable
forgery with our photocopier and laminating machine, but as the turnstile is
attended and the attendants get to know the ‘regulars’, there is no need for
anything more expensive. My card keys for getting into the laboratory where
I work are slightly harder to forge: the one for student areas uses an infrared
barcode, while the card for staff areas has an RFID chip that states its serial
number when interrogated over short-range radio. Again, these are probably
quite adequate — our more expensive equipment is in rooms with fairly good
mechanical door locks. But for things that lots of people want to steal, like cars,
a better technology is needed. This brings us to cryptographic authentication
protocols.

3.3 Who Goes There? — Simple Authentication

A simple example of an authentication device is an infrared token used in some
multistorey parking garages to enable subscribers to raise the barrier. This first
transmits its serial number and then sends an authentication block consisting
of the same serial number, followed by a random number, all encrypted using
a key which is unique to the device. We will postpone discussion of how to
encrypt data and what properties the cipher should have; we will simply use
the notation {X}x for the message X encrypted under the key K.

Then the protocol between the access token in the car and the parking garage
can be written as:

T— G: T,{T,N}KT

This is the standard protocol engineering notation, and can be a bit confusing
at first, so we'll take it slowly.

The in-car token sends its name T followed by the encrypted value of
T concatenated with N, where N stands for ‘number used once’, or nonce.
Everything within the braces is encrypted, and the encryption binds T and
N together as well as obscuring their values. The purpose of the nonce is
to assure the recipient that the message is fresh, that is, it is not a replay of

3.3 Who Goes There? — Simple Authentication

67

an old message that an attacker observed. Verification is simple: the parking
garage server reads T, gets the corresponding key KT, deciphers the rest of the
message, checks that the nonce N has not been seen before, and finally that
the plaintext contains T (which stops a thief in a car park from attacking all
the cars in parallel with successive guessed ciphertexts).

One reason many people get confused is that to the left of the colon, T
identifies one of the principals (the token which represents the subscriber)
whereas to the right it means the name (that is, the serial number) of the token.
Another is that once we start discussing attacks on protocols, we can suddenly
start finding that the token T’s message intended for the parking garage G was
actually intercepted by the freeloader F and played back at some later time. So
the notation is unfortunate, but it’s too well entrenched now to change easily.
Professionals often think of the T — G to the left of the colon is simply a hint
as to what the protocol designer had in mind.

The term nonce can mean anything that guarantees the freshness of a
message. A nonce can, according to the context, be a random number, a serial
number, a random challenge received from a third party, or even a timestamp.
There are subtle differences between these approaches, such as in the level
of resistance they offer to various kinds of replay attack, and they increase
system complexity in different ways. But in very low-cost systems, the first
two predominate as it tends to be cheaper to have a communication channel
in one direction only, and cheap devices usually don’t have clocks.

Key management in such devices can be very simple. In a typical garage
token product, each token’s key is simply its serial number encrypted under a
global master key KM known to the central server:

KT = {T}xm

This is known as key diversification. It's a common way of implementing
access tokens, and is very widely used in smartcard-based systems as well.
But there is still plenty of room for error. One old failure mode that seems
to have returned is for the serial numbers not to be long enough, so that
someone occasionally finds that their remote control works for another car in
the car park as well. Having 128-bit keys doesn’t help if the key is derived by
encrypting a 16-bit serial number.

Weak ciphers also turn up. One token technology used by a number of car
makers in their door locks and immobilisers employs a block cipher known as
Keeloq, which was designed in the late 1980s to use the minimum number of
gates; it consists of a large number of iterations of a simple round function.
However in recent years an attack has been found on ciphers of this type, and
it works against Keelogq; it takes about an hour’s access to your key to collect
enough data for the attack, and then about a day on a PC to process it and
recover the embedded cryptographic key [172]. You might not think this a
practical attack, as someone who gets access to your key can just drive off with

68

Chapter 3 = Protocols

your car. However, in some implementations, there is also a terrible protocol
vulnerability, in that the key diversification is not done using the block cipher
itself, but using exclusive-or: KT = T @& KM. So once you have broken a single
vehicle key for that type of car, you can immediately work out the key for any
other car of that type. The researchers who found this attack suggested ‘Soon,
cryptographers will drive expensive cars.’

Indeed protocol vulnerabilities usually give rise to more, and simpler,
attacks than cryptographic weaknesses do. At least two manufacturers have
made the mistake of only checking that the nonce is different from last time,
so that given two valid codes A and B, the series ABABAB... was interpreted
as a series of independently valid codes. A thief could open a car by replaying
the last-but-one code. A further example comes from the world of prepayment
utility meters. Over a million households in the UK, plus many millions in
developing countries, have an electricity or gas meter that accepts encrypted
tokens; the householder buys a token, takes it home and inserts it into the
meter, which then dispenses the purchased quantity of energy. One electricity
meter widely used in South Africa checked only that the nonce in the decrypted
command was different from last time. So the customer could charge the meter
up to the limit by buying two low-value power tickets and then repeatedly
feeding them in one after the other [59].

So the question of whether to use a random number or a counter is not as easy
as it might seem [316]. If you use random numbers, the lock has to remember
a reasonable number of past codes. You might want to remember enough of
them to defeat the valet attack. Here, someone who has temporary access to the
token — such as a valet parking attendant — can record a number of access
codes and replay them later to steal your car. Providing enough nonvolatile
memory to remember hundreds or even thousands of old codes might push
you to a more expensive microcontroller, and add a few cents to the cost of
your lock.

If you opt for counters, the problem is synchronization. The key may be
used for more than one lock; it may also be activated repeatedly by jostling
against something in your pocket (I once took an experimental token home
where it was gnawed by my dogs). So there has to be a way to recover after the
counter has been incremented hundreds or possibly even thousands of times.
This can be turned to advantage by allowing the lock to ‘learn’, or synchronise
on, a key under certain conditions; but the details are not always designed
thoughtfully. One common product uses a sixteen bit counter, and allows
access when the deciphered counter value is the last valid code incremented
by no more than sixteen. To cope with cases where the token has been used
more than sixteen times elsewhere (or gnawed by a family pet), the lock will
open on a second press provided that the counter value has been incremented

3.3 Who Goes There? — Simple Authentication

69

between 17 and 32,767 times since a valid code was entered (the counter rolls
over so that 0 is the successor of 65,535). This is fine in many applications, but
a thief who can get six well-chosen access codes — say for values 0, 1, 20,000,
20,001, 40,000 and 40,001 — can break the system completely. So you would
have to think hard about whether your threat model includes a valet able to
get access codes corresponding to chosen counter values, either by patience or
by hardware hacking.

A recent example of design failure comes from TinyOS, an operating system
used in sensor networks based on the IEEE 802.15.4 ad-hoc networking
standard. The TinySec library commonly used for security protocols contains
not one, but three counters. The first is lost as the radio chip driver overwrites
it, the second isn’t remembered by the receiver, and although the third is
functional, it’s used for reliability rather than security. So if someone monkeys
with the traffic, the outcome is ‘error’ rather than ‘alarm’, and the network will
resynchronise itself on a bad counter [340].

So designing even a simple token authentication mechanism is not at all
straightforward. There are many attacks that do not involve ‘breaking’ the
encryption. Such attacks are likely to become more common as cryptographic
authentication mechanisms proliferate, many of them designed by program-
mers who thought the problem was easy and never bothered to read a book
like this one. And there are capable agencies trying to find ways to defeat
these remote key entry systems; in Thailand, for example, Muslim insurgents
use them to detonate bombs, and the army has responded by deploying
jammers [1000].

Another important example of authentication, and one that’s politically con-
tentious for different reasons, is ‘accessory control’. Many printer companies
embed authentication mechanisms in printers to ensure that genuine toner
cartridges are used. If a competitor’s product is loaded instead, the printer
may quietly downgrade from 1200 dpi to 300 dpi, or simply refuse to work at
all. Mobile phone vendors make a lot of money from replacement batteries,
and now use authentication protocols to spot competitors” products so they
can be blocked or even drained more quickly. All sorts of other industries are
getting in on the act; there’s talk in the motor trade of cars that authenticate
their major spare parts. I'll discuss this in more detail in Chapter 22 along
with copyright and rights management generally. Suffice it to say here that
security mechanisms are used more and more to support business models,
by accessory control, rights management, product tying and bundling. It is
wrong to assume blindly that security protocols exist to keep ‘bad” guys ‘out’.
They are increasingly used to constrain the lawful owner of the equipment in
which they are built; their purpose may be of questionable legality or contrary
to public policy.

70

Chapter 3 = Protocols

3.3.1 Challenge and Response

Most cars nowadays have remote-controlled door unlocking, though most
also have a fallback metal key to ensure that you can still get into your car
even if the RF environment is noisy. Many also use a more sophisticated two-
pass protocol, called challenge-response, to actually authorise engine start. As
the car key is inserted into the steering lock, the engine controller sends a
challenge consisting of a random n-bit number to the key using short-range
radio. The car key computes a response by encrypting the challenge. So,
writing E for the engine controller, T for the transponder in the car key, K
for the cryptographic key shared between the transponder and the engine
controller, and N for the random challenge, the protocol may look something
like:

E—T: N
T—E: {T,Nx

This is still not bulletproof.

In one system, the random numbers generated by the engine management
unit turned out to be predictable, so it was possible for a thief to interrogate the
key in the car owner’s pocket, as he passed, with the anticipated next challenge.
In fact, many products that incorporate encryption have been broken at some
time or another because their random number generators weren’t random
enough [533, 395]. The fix varies from one application to another. It’s possible
to build hardware random number generators using radioactive decay, but
this isn’t common because of health and safety concerns. There are various
sources of usable randomness in large systems such as PCs, such as the small
variations in the rotation speed of the hard disk caused by air turbulence [358].
PC software products often mix together the randomness from a number of
environmental sources such as network traffic and keystroke timing and from
internal system sources [567]; and the way these sources are combined is often
critical [703]. But in a typical embedded system such as a car lock, the random
challenge is generated by encrypting a counter using a special key which is
kept inside the device and not used for any other purpose.

Locks are not the only application of challenge-response protocols. In HTTP
Digest Authentication, a web server challenges a client or proxy, with whom
it shares a password, by sending it a nonce. The response consists of the
hash of the nonce, the password, and the requested URI [493]. This provides a
mechanism that’s not vulnerable to password snooping. It’s used, for example,
to authenticate clients and servers in SIP, the protocol for Voice-Over-IP
(VOIP) telephony. It is much better than sending a password in the clear,
but suffers from various weaknesses — the most serious being middleperson
attacks, which I'll discuss shortly.

3.3 Who Goes There? — Simple Authentication

71

A much more visible use of challenge-response is in two-factor authentication.
Many organizations issue their staff with password generators to let them
log on to corporate computer systems [1354]. These may look like calculators
(and some even function as calculators) but their main function is as follows.
When you want to log in to a machine on the network, you call up a logon
screen and are presented with a random challenge of maybe seven digits. You
key this into your password generator, together with a PIN of maybe four
digits. The device encrypts these eleven digits using a secret key shared with
the corporate security server, and displays the first seven digits of the result.
You enter these seven digits as your password. This protocol is illustrated in
Figure 3.1. If you had a password generator with the right secret key, and you
entered the PIN right, and you typed in the result correctly, then the corporate
computer system lets you in. But if you do not have a genuine password
generator for which you know the PIN, your chance of logging on is small.

Formally, with S for the server, P for the password generator, PIN for the
user’s Personal Identification Number that bootstraps the password generator,
U for the user and N for the random nonce:

S—UuU: N

U— P: N,PIN
P— U: {N,PIN}x
U— S: {N,PIN}x

{N, PIN}¢

Figure 3.1: Password generator use

72

Chapter 3 = Protocols

These devices appeared from the early 1980s and caught on first with phone
companies, then in the 1990s with banks for use by staff. There are simplified
versions that don’t have a keyboard, but just generate a new access code every
minute or so by encrypting a counter: the RSA SecurlD is the best known.
One sector after another has been adopting authentication tokens of one kind
or another to replace or supplement passwords; the US Defense Department
announced in 2007 that the introduction of an authentication system based
on the DoD Common Access Card had cut network intrusions by 46% in the
previous year [225].

The technology is now starting to spread to the customer side of things. By
2001, password generators were used by some exclusive private banks, such
as Coutts, to authenticate their online customers. These banks never suffered
any phishing fraud. By 2006, some banks in the Netherlands and Scandinavia
had rolled out the technology to all their millions of customers; then the frauds
started. The phishermen typically use real-time man-in-the-middle attacks
(which TI'll describe in the next section) to take over a session once the user
has authenticated herself to the bank. As of late 2007, some banks in the
UK and elsewhere in Europe have been introducing the Chip Authentication
Program (CAP), which is implemented by giving bank customers a calculator
that uses their bank card to do crypto?. This calculator, when loaded with a
bank card, will ask for the customer’s PIN and, if it’s entered correctly, will
compute a response code based on either a counter (as a one-off authentication
code for a card transaction, or a one-step logon to a banking website) or a
challenge (for a two-step logon). There is also a third mode of operation: if
session takeover becomes a problem, the CAP calculator can also be used to
authenticate transaction data. In this case, it’s planned to have the customer
enter the amount and the last eight digits of the payee account number into
her CAP calculator.

But the result might not be as good in banking as it has been in the armed
forces. First, when your wallet is stolen the thief might be able to read your
PIN digits from the calculator — they will be the dirty and worn keys. If you
just use one bank card, then the thief’s chance of guessing your PIN in 3 tries
has just come down from about 1 in 3000 to about 1 in 10. Second, when you
use your card in a Mafia-owned shop (or in a shop whose terminals have been
quietly reprogrammed without the owner’s knowledge), the bad guys have
everything they need to loot your account. Not only that — they can compute
a series of CAP codes to give them access in the future, and use your account
for wicked purposes such as money laundering. Third, someone who takes
your bank card from you at knifepoint can now verify that you’'ve told them

2Bank cards in many European countries have an EMV smartcard chip on them, and new UK
bank cards have software to compute authentication codes as well as to operate ATMs and shop
terminals.

3.3 Who Goes There? — Simple Authentication

73

the right PIN. A further problem is that the mechanisms can be used in a
range of protocols; if you have to give a one-off authentication code over the
phone to buy a book with your bank card, and the bookseller can then use
that code to log on to your bank, it’s clearly a bad thing. A deeper problem
is that once lots of banks use one-time passwords, the phishermen will just
rewrite their scripts to do real-time man-in-the-middle attacks. These have
already been used against the early adopter banks in the Netherlands and
Scandinavia. To see how they work, we will now look at a military example.

3.3.2 The MIG-in-the-Middle Attack

The ever-increasing speeds of warplanes in the 1930s and 1940s, together
with the invention of the jet engine, radar and rocketry, made it ever more
difficult for air defence forces to tell their own craft apart from the enemy’s. This
led to a serious risk of ‘fratricide’ — people shooting down their colleagues
by mistake — and drove the development of systems to ‘identify-friend-or-
foe” (IFF). These were first fielded in World War II, and in their early form
enabled an airplane illuminated by radar to broadcast an identifying number
to signal friendly intent. In 1952, this system was adopted to identify civil
aircraft to air traffic controllers and, worried about the loss of security once
it became widely used, the U.S. Air Force started a research programme to
incorporate cryptographic protection in the system. Nowadays, the typical air
defense system sends random challenges with its radar signals, and friendly
aircraft have equipment and keys that enable them to identify themselves
with correct responses. The chapter on electronic warfare has more details on
modern systems.

It’s tricky to design a good IFF system. One of the problems is illustrated
by the following story, which I heard from an officer in the South African
Air Force (SAAF). After it was published in the first edition of this book,
the story was disputed —as I'll discuss below. Be that as it may, similar
games have been played with other electronic warfare systems since World
War 2. The ‘Mig-in-the-middle” story has in any event become part of the
folklore, and it nicely illustrates how attacks can be carried out in real time on
challenge-response authentication protocols.

In the late 1980’s, South African troops were fighting a war in northern
Namibia and southern Angola. The goals were to keep Namibia under white
rule, and impose a client government (UNITA) on Angola. Because the South
African Defence Force consisted largely of conscripts from a small white
population, it was important to limit casualties, so most South African soldiers
remained in Namibia on policing duties while the fighting to the north was
done by UNITA troops. The role of the SAAF was twofold: to provide tactical
support to UNITA by bombing targets in Angola, and to ensure that the
Angolans and their Cuban allies did not return the compliment in Namibia.

74

Chapter 3 = Protocols

Suddenly, the Cubans broke through the South African air defenses and
carried out a bombing raid on a South African camp in northern Namibia,
killing a number of white conscripts. This proof that their air supremacy had
been lost helped the Pretoria government decide to hand over Namibia to the
insurgents — itself a huge step on the road to majority rule in South Africa
several years later. The raid may also have been the last successful military
operation ever carried out by Soviet bloc forces.

Some years afterwards, a SAAF officer told me how the Cubans had pulled
it off. Several MIGs had loitered in southern Angola, just north of the South
African air defense belt, until a flight of SAAF Impala bombers raided a target
in Angola. Then the MIGs turned sharply and flew openly through the SAAF’s
air defenses, which sent IFF challenges. The MIGs relayed them to the Angolan
air defense batteries, which transmitted them at a SAAF bomber; the responses
were relayed back in real time to the MIGs, who retransmitted them and were
allowed through — as in Figure 3.2. According to my informant, this had a
significant effect on the general staff in Pretoria. Being not only outfought by
black opponents, but actually outsmarted, was not consistent with the world
view they had held up till then.

After this tale was published in the first edition of my book, I was contacted
by a former officer in SA Communications Security Agency who disputed the
story’s details. He said that their IFF equipment did not use cryptography
yet at the time of the Angolan war, and was always switched off over enemy
territory. Thus, he said, any electronic trickery must have been of a more
primitive kind. However, others tell me that "‘Mig-in-the-middle” tricks were
significant in Korea, Vietnam and various Middle Eastern conflicts.

In any case, the tale illustrates the basic idea behind an attack known
to the cryptographic community as the man-in-the-middle or (more recently)
the middleperson attack. It applies in a straightforward way to the challenge-
response authentication performed by password calculators: the phishing site
invites the mark to log on and simultaneously opens a logon session with his
bank. The bank sends a challenge; the phisherman relays this to the mark,
who uses his device to respond to it; the phisherman relays it to the bank,
and is now authenticated to the bank as the mark. This is why, as I discussed
above, European banks are introducing not just a simple response to a single
challenge, but an authentication code based on input fields such as the amount,
the payee account number and a transaction sequence number.

However, once the protocol-level vulnerabilities are fixed by including all
the transaction data, the big problem will be usability. If it takes two minutes
and the entry of dozens of digits to make a payment, then a lot of customers
will get digits wrong, give up, and then either call the call center or send paper
checks — undermining the cost savings of online banking. Also, the bad guys
will be able to exploit the fallback mechanisms, perhaps by spoofing customers

3.3 Who Goes There? — Simple Authentication

75

N?

ANGOLA

MIG

SAAF

NAMIBIA

Figure 3.2: The MIG-in-the middle attack

into calling voice phishing phone numbers that run a middleperson attack
between the customer and the call center.

We will come across the man-in-the-middle attack again and again in
applications ranging from pay-TV to Internet security protocols. It even
applies in online gaming. As the mathematician John Conway once remarked,
it’s easy to get at least a draw against a grandmaster at postal chess: just play
two grandmasters at once, one as white and the other as black, and relay the
moves between them!

In many cases, middleperson attacks are possible but not economic. In the
case of car keys, it should certainly be possible to steal a car by having an
accomplice follow the driver and electronically relay the radio challenge to
you as you work the lock. (One of our students has actually demonstrated

76

Chapter 3 = Protocols

this for our RFID door locks.) But, for the average car thief, it would be a lot
simpler to just pick the target’s pocket or mug him.

In early 2007, it became clear that there is a practical middleperson attack on
the protocols used by the EMV smartcards issued to bank customers in Europe.
A bad man could build a wicked terminal that masqueraded, for example, as
a parking meter; when you entered your card and PIN to pay a £2.50 parking
fee, the transaction could be relayed to a crook loitering near a self-service
terminal in a hardware store, who would use a card emulator to order goods.
When you get your statement, you might find you’ve been debited £2,500 for
a wide-screen TV [915]. The basic problem here is the lack of a trustworthy
user interface on the card; the cardholder doesn’t really know which terminal
his card is doing business with. I'll discuss such attacks further in the chapter
on Banking and Bookkeeping.

3.3.3 Reflection Attacks

Further interesting problems arise with mutual authentication, that is, when
two principals have to identify each other. Suppose, for example, that a sim-
ple challenge-response IFF system designed to prevent anti-aircraft gunners
attacking friendly aircraft had to be deployed in a fighter-bomber too. Now
suppose that the air force simply installed one of their air gunners’ challenge
units in each aircraft and connected it to the fire-control radar. But now an
enemy bomber might reflect a challenge back at our fighter, get a correct
response, and then reflect that back as its own response:

F—B:N
B— F:N
F — B:{N}k

B — F:{N)

So we will want to integrate the challenge system with the response gener-
ator. It is still not enough just for the two units to be connected and share a list
of outstanding challenges, as an enemy attacked by two of our aircraft might
reflect a challenge from one of them to be answered by the other. It might also
not be acceptable to switch manually from “attack” to ‘defense” during combat.

There are a number of ways of stopping this ‘reflection attack’: in many cases,
it is sufficient to include the names of the two parties in the authentication
exchange. In the above example, we might require a friendly bomber to reply
to the challenge:

F—B:N

3.3 Who Goes There? — Simple Authentication

77

with a response such as:
B — F:{B,N}x

Thus a reflected response {F,N} (or even {F/,N} from the fighter pilot’s
wingman) could be detected.

This is a much simplified account of IFF, but it serves to illustrate the
subtelty of the trust assumptions that underlie an authentication protocol. If
you send out a challenge N and receive, within 20 milliseconds, a response
{N}, then — since light can travel a bit under 3,730 miles in 20 ms — you
know that there is someone with the key K within 2000 miles. But that’s all you
know. If you can be sure that the response was not computed using your own
equipment, you now know that there is someone else with the key K within two
thousand miles. If you make the further assumption that all copies of the key
K are securely held in equipment which may be trusted to operate properly,
and you see {B, N}k, you might be justified in deducing that the aircraft with
callsign B is within 2000 miles. A clear understanding of trust assumptions
and their consequences is at the heart of security protocol design.

By now you might think that the protocol design aspects of IFF have been
exhaustively discussed. But we’ve omitted one of the most important prob-
lems — and one which the designers of early IFF systems did not anticipate. As
radar returns are weak, the signal from the IFF transmitter on board an aircraft
will often be audible at a much greater range than the return. The Allies learned
this the hard way; in January 1944, decrypts of Enigma messages revealed that
the Germans were plotting British and American bombers at twice the normal
radar range by interrogating their IFF. So many modern systems authenticate
the challenge as well as the response. The NATO mode XII, for example, has
a 32 bit encrypted challenge, and a different valid challenge is generated for
every interrogation signal, of which there are typically 250 per second. Theo-
retically there is no need to switch off over enemy territory, but in practice an
enemy who can record valid challenges can replay them as part of an attack.
Relays are also possible, as with the Mig in the middle.

Many other IFF design problems are less protocol-related, such as the
difficulties posed by neutrals, error rates in dense operational environments,
how to deal with equipment failure, how to manage keys, and how to cope
with multinational coalitions such as that put together for Operation Desert
Storm. I'll return to IFF in Chapter 19. For now, the spurious-challenge problem
serves to reinforce an important point: that the correctness of a security protocol
depends on the assumptions made about the requirements. A protocol that
can protect against one kind of attack (being shot down by your own side) but
which increases the exposure to an even more likely attack (being shot down
by the other side) does more harm than good. In fact, the spurious-challenge
problem became so serious in World War II that some experts advocated
abandoning IFF altogether, rather than taking the risk that one bomber pilot

78

Chapter 3 = Protocols

in a formation of hundreds would ignore orders and leave his IFF switched on
while over enemy territory.

3.4 Manipulating the Message

We've now seen a number of middleperson attacks that reflect or spoof the
information used to authenticate a participant’s identity — from ATM cards
that could be reprogrammed to ‘identify” the wrong customer, to attacks on
IFF. However, there are more complex attacks where the attacker does not just
obtain false identification, but manipulates the message content in some way.

An example is when dishonest cabbies insert pulse generators in the cable
that connects their taximeter to a sensor in their taxi’s gearbox. The sensor
sends pulses as the prop shaft turns, which lets the meter work out how far
the taxi has gone. A pirate device, which inserts extra pulses, makes the taxi
appear to have gone further. We'll discuss such attacks at much greater length
in the chapter on ‘Monitoring Systems’, in section 12.3.

Another example is a key log attack which defeated many pay-TV systems
in Europe in the 1990s and still appears to work in China. The attack is also
known as delayed data transfer, or DDT. First-generation pay-TV equipment
has a decoder, which deciphers the video signal, and a customer smartcard
which generates the deciphering keys. These keys are recomputed every few
hundred milliseconds by using a one-way encryption function applied to
various ‘entitlement control messages’ that appear in the signal. Such systems
can be very elaborate (and we’ll discuss some more complex attacks on them
later) but there is a very simple attack which works against a lot of them. If the
messages that pass between the smartcard and the decoder are the same for
all decoders (which is usually the case) then a subscriber can log all the keys
sent by his card to his decoder and post it online somewhere. People without a
subscription, but who have video-recorded the enciphered program, can then
download the key log and use it to decipher the tape.

Changing pay-TV protocols to prevent DDT attacks can be difficult. The
base of installed equipment is huge, and many of the obvious countermeasures
have an adverse effect on legitimate customers (such as by preventing them
videotaping movies). Pay-TV companies generally ignore this attack, since
connecting a PC up to a satellite TV decoder through a special hardware
adaptor is something only hobbyists do; it is too inconvenient to be a real
threat to their revenue stream. In the rare cases where it becomes a nuisance,
the strategy is usually to identify the troublesome subscribers and send
entitlement control messages that deactivate their cards.

Message-manipulation attacks aren’t limited to ‘consumer” grade systems.
The Intelsat satellites used for international telephone and data traffic have
robust mechanisms to prevent a command being accepted twice — otherwise

3.5 Changing the Environment

79

an attacker could repeatedly order the same manoever to be carried out until
the satellite ran out of fuel [1027].

3.5 Changing the Environment

A very common cause of protocol failure is that the environment changes, so
that assumptions which were originally true no longer hold and the security
protocols cannot cope with the new threats.

One nice example comes from the ticketing systems used by the urban
transport authority in London. In the early 1980’s, passengers devised a
number of scams to cut the cost of commuting. For example, a passenger
who commuted a long distance from a suburban station to downtown might
buy two cheaper, short distance season tickets — one between his suburban
station and a nearby one, and the other between his destination and another
downtown station. These would let him get through the barriers, and on the
rare occasions he was challenged by an inspector in between, he would claim
that he’d boarded at a rural station which had a broken ticket machine.

A large investment later, the system had all the features necessary to stop
such scams: all barriers were automatic, tickets could retain state, and the laws
had been changed so that people caught without tickets got fined on the spot.

But suddenly the whole environment changed, as the national transport
system was privatized to create dozens of rail and bus companies. Some of the
new operating companies started cheating each other, and there was nothing
the system could do about it! For example, when a one-day travel pass was
sold, the revenue was distributed between the various bus, train and subway
operators using a formula that depended on where it was sold. Suddenly,
the train companies had a motive to book all their ticket sales through the
outlet that let them keep the largest percentage. As well as bad outsiders
(passengers), we now had bad insiders (rail companies), and the design just
hadn’t allowed for them. Chaos and litigation ensued.

The transport system’s problem was not new; it had been observed in the
Italian ski resort of Val di Fassa in the mid-1970’s. There, one could buy a
monthly pass for all the ski lifts in the valley. An attendant at one of the lifts
was observed with a deck of cards, one of which he swiped through the reader
between each of the guests. It turned out that the revenue was divided up
between the various lift operators according to the number of people who had
passed their turnstiles. So each operator sought to inflate its own figures as
much as it could [1217].

Another nice example comes from the world of cash machine fraud. In 1993
and 1994, Holland suffered an epidemic of ‘phantom withdrawals’; there was
much controversy in the press, with the banks claiming that their systems
were secure while many people wrote in to the papers claiming to have been

Chapter 3 = Protocols

cheated. Eventually the banks were shamed into actively investigating the
claims, and noticed that many of the victims had used their bank cards at a
certain filling station near Utrecht. This was staked out and one of the staff
was arrested. It turned out that he had tapped the line from the card reader
to the PC that controlled it; his tap recorded the magnetic stripe details from
their cards while he used his eyeballs to capture their PINs [33].

Why had the system been designed so badly? Well, when the standards
for managing magnetic stripe cards and PINs were developed in the early
1980’s by organizations such as IBM and VISA, the engineers had made two
assumptions. The first was that the contents of the magnetic strip — the card
number, version number and expiration date — were not secret, while the
PIN was [880]. (The analogy used was that the magnetic strip was your name
and the PIN your password. I will have more to say on the difficulties of
naming below.) The second assumption was that bank card equipment would
only be operated in trustworthy environments, such as in a physically robust
automatic teller machine, or by a bank clerk at a teller station. So it was “clearly”
only necessary to encrypt the PIN, on its way from the PIN pad to the server;
the magnetic strip data could be sent in clear from the card reader.

Both of these assumptions had changed by 1993. An epidemic of card
forgery, mostly in the Far East in the late 1980’s, drove banks to introduce
authentication codes on the magnetic strips. Also, the commercial success of
the bank card industry led banks in many countries to extend the use of debit
cards from ATMs to terminals in all manner of shops. The combination of these
two environmental changes undermined the original system design: instead of
putting a card whose magnetic strip contained no security data into a trusted
machine, people were putting a card with security data in clear on the strip
into an untrusted machine. These changes had come about so gradually, and
over such a long period, that the industry didn’t see the problem coming.

3.6 Chosen Protocol Attacks

Some firms are trying to sell the idea of a ‘multifunction smartcard” — an
authentication device that could be used in a wide range of transactions
to save you having to carry around dozens of different cards and keys.
Governments keen to push ID cards in the wake of 9/11 have tried to get them
used for many other transactions; some want a single card to be used for ID,
banking and even transport ticketing. Singapore went so far as to experiment
with a bank card that doubled as military ID. This introduced some interesting
new risks: if a Navy captain tries to withdraw some cash from an ATM after a
good dinner and forgets his PIN, will he be unable to take his ship to sea until
Monday morning when they open the bank and give him his card back?

3.6 Chosen Protocol Attacks

Picture 143! Buy 10 gold coins é
> >

Ll

< Prove your age < Sign ‘X’
by signing ‘X’
N N
sige OG- sige ¢ |_BANK
Customer 8K Mafia porn 8K

site

Figure 3.3: The Mafia-in-the-middle attack

Suppose that the banks in Europe were to introduce the CAP protocol to get
their customers to authenticate themselves to electronic banking websites, but
rather than forcing their customers to fiddle about with a calculator device they
just issued all customers with smartcard readers that could be attached to their
PC. This would certainly improve convenience and usability. You might think
it would improve security too; the EMV protocol enables the card to calculate
a message authentication code (MAC) on transaction data such as the amount,
merchant number, date and transaction serial number. Message manipulation
attacks against electronic banking payments would be prevented.

Or would they? The idea behind the ‘“Chosen Protocol Attack’ is that given a
target protocol, you design a new protocol that will attack it if the users can be
inveigled into reusing the same token or crypto key. So how might the Mafia
design a protocol to attack CAP?

Here’s one approach. It used to be common for people visiting a porn
website to be asked for ‘proof of age,” which usually involves giving a
credit card number, whether to the site itself or to an age checking service.
If credit and debit cards become usable in PCs, it would be natural for
the porn site to ask the customer to authenticate a random challenge as
proof of age. A porn site can then mount a ‘Mafia-in-the-middle” attack as
shown in Figure 3.3. They wait until an unsuspecting customer visits their site,
then order something resellable (such as gold coins) from a dealer, playing
the role of the coin dealer’s customer. When the coin dealer sends them the
transaction data for authentication, they relay it through their porn site to
the waiting customer. The poor man OKs it, the Mafia gets the gold coins, and
when thousands of people suddenly complain about the huge charges to their
cards at the end of the month, the porn site has vanished — along with the
gold [702].

This is a more extreme variant on the Utrecht scam, and in the 1990s
a vulnerability of this kind found its way into international standards: the
standards for digital signature and authentication could be run back-to-back
in this way. It has since been shown that many protocols, though secure in
themselves, can be broken if their users can be inveigled into reusing the same
keys in other applications [702]. This is why, for CAP to be secure, it may

82

Chapter 3 = Protocols

well have to be implemented in a stand-alone device into which the customer
enters all the transaction parameters directly. Even so, some way has to be
found to make it hard for the phishermen to trick the customer into computing
an authentication code on data that they supply to the victim. The use of the
customer’s bank card in the CAP calculator may at least help to bring home
that a banking transaction is being done.

In general, using crypto keys (or other authentication mechanisms) in
more than one application is dangerous, while letting other people bootstrap
their own application security off yours can be downright foolish. If a bank
lets its smartcards also be used to load credit into prepayment electricity
meters, it would have to worry very hard about whether bad software could
be used in electricity vending stations (or even electricity meters) to steal
money. Even if those risks could be controlled somehow, liability issues can
arise from unplanned or emergent dependencies. A bank that changed its card
specification might break the metering system — leaving its customers literally
in the dark and risking a lawsuit from the power company. If the bank heeds
these risks and tests system changes properly with all the dependant systems,
then changes will be much more expensive. Crooks who hack the bank could
black out the neighbourhood. The bank might still want to take this risk,
though, reckoning that power company customers would be locked in more
tightly to the bank, enabling it to charge them more. Security dependencies
can have all sorts of strange effects, and we will return to this subject again
and again later.

3.7 Managing Encryption Keys

The examples of security protocols that we have discussed so far are mostly
about authenticating a principal’s name, or application data such as the
impulses driving a taximeter. There is one further class of authentication
protocols that is very important — the protocols used to manage cryptographic
keys. Until recently, such protocols were largely used in the background to
support other operations; much of the technology was developed to manage
the keys used by cash machines and banks to communicate with each other.
But now, systems such as pay-TV use key management to control access to the
system directly.

Authentication protocols are now also used in distributed computer systems
for general key management purposes, and are therefore becoming ever more
important. Kerberos was the first such system to come into widespread use,
and a variant of it is used in Windows. I'll now lay the foundations for an
understanding of Kerberos.

3.7 Managing Encryption Keys

83

3.7.1 Basic Key Management

The basic idea behind key distribution protocols is that where two princi-
pals want to communicate, they may use a trusted third party to effect an
introduction.

When discussing authentication protocols, it is conventional to give the
principals human names in order to avoid getting lost in too much algebraic
notation. So we will call the two communicating principals ‘Alice” and ‘Bob’,
and the trusted third party ‘Sam’. But please don’t assume that we are
talking about human principals. Alice and Bob are likely to be programs
while Sam is a server; for example, Alice might be a program in a taximeter,
Bob the program in a gearbox sensor and Sam the computer at the taxi
inspection station.

Anyway, a simple authentication protocol could run as follows.

1. Alice first calls Sam and asks for a key for communicating with Bob.

2. Sam responds by sending Alice a pair of certificates. Each contains a copy
of a key, the first encrypted so only Alice can read it, and the second
encrypted so only Bob can read it.

3. Alice then calls Bob and presents the second certificate as her introduction.
Each of them decrypts the appropriate certificate under the key they share
with Sam and thereby gets access to the new key. Alice can now use the
key to send encrypted messages to Bob, and to receive messages from him
in return.

Replay attacks are a known problem with authentication protocols, so in
order that both Bob and Alice can check that the certificates are fresh, Sam may
include a timestamp in each of them. If certificates never expire, there might
be serious problems dealing with users whose privileges have been revoked.

Using our protocol notation, we could describe this as

A—S: A,B
S—A: {A/ B/ KAB/ T}KAsr {Ar Br KAB/ T}KBS
A—B: {A/ B/ KAB/ T}KBSI {M}KAB

Expanding the notation, Alice calls Sam and says she’d like to talk to
Bob. Sam makes up a session key message consisting of Alice’s name, Bob’s
name, a key for them to use, and a timestamp. He encrypts all this under
the key he shares with Alice, and he encrypts another copy of it under the
key he shares with Bob. He gives both ciphertexts to Alice. Alice retrieves
the key from the ciphertext that was encrypted to her, and passes on to
Bob the ciphertext encrypted for him. She now sends him whatever message
she wanted to send, encrypted using this key.

84

Chapter 3 = Protocols

3.7.2 The Needham-Schroeder Protocol

Many things can go wrong, and here is a famous historical example. Many
existing key distribution protocols are derived from the Needham-Schroeder
protocol, which appeared in 1978 [960]. It is somewhat similar to the above,
but uses nonces rather than timestamps. It runs as follows:

Message 1 A—S: A,B,N,

Message 2 S—A: {Na, B, Kap, {Kap, A}kys Jkas
Message 3 A—B: {Kap, A}kps

Message 4 B—A: {NB}x,s

Message 5 A— B: {Np — 1}k,

Here Alice takes the initiative, and tells Sam: ‘I'm Alice, I want to talk to Bob,
and my random nonce is N,.” Sam provides her with a session key, encrypted
using the key she shares with him. This ciphertext also contains her nonce so
she can confirm it’s not a replay. He also gives her a certificate to convey this
key to Bob. She passes it to Bob, who then does a challenge-response to check
that she is present and alert.

There is a subtle problem with this protocol — Bob has to assume that the
key Kap he receives from Sam (via Alice) is fresh. This is not necessarily so:
Alice could have waited a year between steps 2 and 3. In many applications
this may not be important; it might even help Alice to cache keys against
possible server failures. But if an opponent — say Charlie — ever got hold of
Alice’s key, he could use it to set up session keys with many other principals.

Suppose, for example, that Alice had also asked for and received a key to
communicate with Dave, and after Charlie stole her key he sent messages to
Sam pretending to be Alice and got keys for Freddie and Ginger. He might
also have observed message 2 in her protocol exchanges with Dave. So now
Charlie could impersonate Alice to Dave, Freddie and Ginger. So when Alice
finds out that her key has been stolen, perhaps by comparing message logs
with Dave, she’d have to get Sam to contact everyone for whom she’d ever
been issued a key, and tell them that her old key was no longer valid. She could
not do this herself as she doesn’t know anything about Freddie and Ginger. In
other words, revocation is a problem: Sam may have to keep complete logs of
everything he’s ever done, and these logs would grow in size forever unless
the principals’ names expired at some fixed time in the future.

Almost 30 years later, this example still generates controversy in the security
protocols community. The simplistic view is that Needham and Schroeder just
got it wrong; the view argued by Susan Pancho and Dieter Gollmann (for
which I have much sympathy) is that this is one more example of a protocol
failure brought on by shifting assumptions [538, 1002]. 1978 was a kinder,
gentler world; computer security then concerned itself with keeping ‘bad
guys’ out, while nowadays we expect the ‘enemy” to be the users of the

3.7 Managing Encryption Keys

85

system. The Needham-Schroeder paper explicitly assumes that all principals
behave themselves, and that all attacks come from outsiders [960]. With these
assumptions, the protocol remains sound.

3.7.3 Kerberos

An important practical derivative of the Needham-Schroeder protocol may be
found in Kerberos, a distributed access control system that originated at MIT
and is now one of the standard authentication tools in Windows [1224]. Instead
of a single trusted third party, Kerberos has two kinds: an authentication server
to which users log on, and a ticket granting server which gives them tickets
allowing access to various resources such as files. This enables more scalable
access management. In a university, for example, one might manage students
through their halls of residence but manage file servers by departments; in
a company, the personnel people might register users to the payroll system
while departmental administrators manage resources such as servers and
printers.

First, Alice logs on to the authentication server using a password. The client
software in her PC fetches a ticket from this server that is encrypted under her
password and that contains a session key K,s. Assuming she gets the password
right, she now controls K45 and to get access to a resource B controlled by the
ticket granting server S, the following protocol takes place. Its outcome is a
key K45 with timestamp Ts and lifetime L, which will be used to authenticate
Alice’s subsequent traffic with that resource:

A—S: A,B

S—A: {Ts, L, Kag, B, {Ts, L, KAB/A}KBS}KAS
A— B: {Ts, L, Kap, A}kps, {A, Tat

B— A: {TA+1}KAB

Translating this into English: Alice asks the ticket granting server for access
to B. If this is permissible, the ticket {Ts, L, K4, A}, is created containing a
suitable key K45 and given to Alice to use. She also gets a copy of the key
in a form readable by her, namely encrypted under K,s. She now verifies the
ticket by sending a timestamp T4 to the resource, which confirms it’s alive by
sending back the timestamp incremented by one (this shows it was able to
decrypt the ticket correctly and extract the key Kyp).

The vulnerability of Needham-Schroeder has been fixed by introducing
timestamps rather than random nonces. But, as in most of life, we get little
in security for free. There is now a new vulnerability, namely that the clocks
on our various clients and servers might get out of synch; they might even be
desynchronized deliberately as part of a more complex attack.

86

Chapter 3 = Protocols

3.7.4 Practical Key Management

So we can use a protocol like Kerberos to set up and manage working keys
between users given that each user shares one or more long-term keys with
a server that acts as a key distribution centre. I'll describe a number of
other similar protocols later; for example, in the chapter on ‘Banking and
Bookkeeping’ I'll discuss how a bank can set up a long-term key with each of
its ATMs and with each of the interbank networks with which it’s associated.
The bank then uses protocols not too unlike Kerberos to establish a ‘key of
the day” with each ATM and with each network switch; so when you turn up
at the ATM belonging to a foreign bank and ask for money from your own
bank via the Cirrus network, the ATM will encrypt the transaction using the
working key it shares with the bank that owns it, and the bank will then pass
on the transaction to Cirrus encrypted with the key of the day for that network.

So far so good. But a moment’s thought will reveal that the bank has to
maintain several keys for each of the several hundred ATMs that it owns — a
long-term master key, plus perhaps an encryption key and an authentication
key; several keys for each of the several dozen bank networks of which it’s a
member; passwords and other security information for each of several million
electronic banking customers, and perhaps keys for them as well if they're
given client software that uses cryptography. Oh, and there may be encrypted
passwords for each of several thousand employees, which might also take the
form of Kerberos keys encrypted under user passwords. That’s a lot of key
material. How is it to be managed?

Key management is a complex and difficult business and is often got
wrong because it’s left as an afterthought. A good engineer will sit down
and think about how many keys are needed, how they’re to be generated,
how long they need to remain in service and how they’ll eventually be
destroyed. There is a much longer list of concerns — many of them articulated
in the Federal Information Processing Standard for key management [948]. In
addition, things go wrong as applications evolve; it'simportant to provide extra
keys to support next year’s functionality, so that you don’t compromise your
existing ones by reusing them in protocols that turn out to be incompatible.
It’s also important to support recovery from security failure. Yet there are no
standard ways of doing either.

As for practical strategies, there are a number — none of them straightfor-
ward. Public-key crypto, which I'll discuss in Chapter 5, can slightly simplify
the key management task. Long-term keys can be split into a private part and a
public part; you don’t have to keep the public part secret (as its name implies)
but you do have to guarantee its integrity. In banking the usual answer is
to use dedicated cryptographic processors called security modules, which I'll
describe in detail in the chapter on “Tamper Resistance’. These do all the cryp-
tography and contain internal keys with which application keys are protected.

3.8 Getting Formal

87

Thus you get your security module to generate master keys for each of your
ATMs; you store their encrypted values in your ATM master file. Whenever
a transaction comes in from that ATM, you retrieve the encrypted key from
the file and pass it to the security module along with the encrypted data. The
module then does what'’s necessary: it decrypts the PIN and verifies it, perhaps
against an encrypted value kept locally. Unfortunately, the protocols used to
set all this up are also liable to failure. Many attacks have been found that
exploit the application programming interface, or API, of the security module,
where these protocols are exposed. I will describe these attacks in detail in
the chapter on API Security. For now, it’s enough to note that getting security
protocols right is hard. You should not design them at home, any more than
you design your own explosives.

3.8 Getting Formal

Subtle difficulties of the kind we have seen with the above protocols, and the
many ways in which protection properties depend on quite subtle starting
assumptions that protocol designers may get wrong (or that may be misunder-
stood later), have led researchers to apply formal methods to key distribution
protocols. The goal of this exercise was originally to decide whether a protocol
was right or wrong: it should either be proved correct, or an attack should be
exhibited. More recently this has expanded to clarifying the assumptions that
underlie a given protocol.

There are a number of different approaches to verifying the correctness
of protocols. The best known is the logic of belief, or BAN logic, named after
its inventors Burrows, Abadi and Needham [249]. It reasons about what a
principal might reasonably believe having seen of certain messages, time-
stamps and so on. A second is the random oracle model, which I touch on in the
chapter on cryptology and which is favored by people working on the theory
of cryptography; this appears less expressive than logics of belief, but can tie
protocol properties to the properties of the underlying encryption algorithms.
Finally, a number of researchers have applied mainstream formal methods
such as CSP and verification tools such as Isabelle.

Some history exists of flaws being found in protocols that had been
proved correct using formal methods; the following subsection offers a
typical example.

3.8.1 A Typical Smartcard Banking Protocol

The COPAC system is an electronic purse used by VISA in countries with poor
telecommunications [48]. It was the first live financial system whose underly-
ing protocol suite was designed and verified using such formal techniques, and

Chapter 3 = Protocols

in particular a variant of the BAN logic. A similar protocol is now used in the
‘Geldkarte,” an electronic purse issued by banks in Germany, and adopted also
by French banks as ‘Moneo’. There’s also a system in Belgium called ‘Proton’.
The European applications focus on low-value transactions with devices such
as parking meters and vending machines for which it may not be economical
to provide a network connection.

Transactions take place from a customer smartcard to a merchant smartcard
(which in the case of a vending machine is kept in the machine and changed
when it’s replenished). The customer gives the merchant an electronic check
with two authentication codes on it; one that can be checked by the network,
and one that can be checked by the customer’s bank. A simplified version of
the protocol is as follows.

C—R: {C, Nclk
R — C: {R/NR/ C/NC}K
C—R: {C,N¢, R, Ng, X}k

In English: the customer and the retailer share a key K. Using this key, the
customer encrypts a message containing its account number C and a customer
transaction serial number N¢. The retailer confirms its own account number
R and his own transaction serial number Ny, as well as the information it’s
just received from the customer. The customer now sends the electronic check
X, along with all the data exchanged so far in the protocol. One can think of
the electronic check as being stapled to a payment advice with the customer’s
and retailer’s account numbers and their respective reference numbers. (The
reason for repeating all previous data in each message is to prevent message
manipulation attacks using cut-and-paste.)

3.8.2 The BAN Logic

The BAN logic provides a formal method for reasoning about the beliefs
of principals in cryptographic protocols. Its underlying idea is that we will
believe that a message is authentic if it is encrypted with a relevant key and it
is also fresh (that is, generated during the current run of the protocol). Further
assumptions include that principals will only assert statements they believe
in, and that some principals are authorities for certain kinds of statement. This
is formalized using a notation which includes:

A |= X A believes X, or, more accurately, that A is entitled to believe X;
A |~ X A once said X (without implying that this utterance was recent or not);

A |= X A has jurisdiction over X, in other words A is the authority on X and is
to be trusted on it;

3.8 Getting Formal

89

A <X A sees X, that is, someone sent a message to A containing X in such a
way that he can read and repeat it;

gX X is fresh, that is, contains a current timestamp or some information
showing that it was uttered by the relevant principal during the current
run of the protocol;

{X}x X encrypted under the key K, as in the rest of this chapter;

A <K B A and B share the key K, in other words it is an appropriate key for
them to use to communicate.

There are further symbols dealing, for example, with public key operations
and with passwords, that need not concern us here.
These symbols are manipulated using a set of postulates which include:

the message meaning rule states that if A sees a message encrypted under K,
and Kis a good key for communicating with B, then he will believe that the
message was once said by B. (We assume that each principal can recognize

Al=A <KX B,A<{X}k
A|l=B|~X

and ignore his or her own messages.) Formally,

the nonce-verification rule states that if a principal once said a message,
and the message is fresh, then that principal still believes it. Formally,
Al=dX,A|l=B |~ X
Al=B|=X

the jurisdiction rule states that if a principal believes something, and is an
authority on the matter, then he or she should be believed. Formally, we
Al=B|= X, A|l=B|=X

write that A= X

In this notation, the statements on the top are the conditions, and the one on
the bottom is the result. There are a number of further rules to cover the more
mechanical aspects of manipulation; for example, if A sees a statement then
he sees its components provided he knows the necessary keys, and if part of a
formula is known to be fresh, then the whole formula must be.

3.8.3 Verifying the Payment Protocol

Assuming that the key K is only available to principals who can be trusted to
execute the protocol faithfully, formal verification is now straightforward. The
trick is to start from the desired result and work backwards. In this case, we
wish to prove that the retailer should trust the check, i.e., R |= X (the syntax
of checks and cryptographic keys is similar for our purposes here; a check is
good if and only if it is genuine and the date on it is sufficiently recent).

90

Chapter 3 = Protocols

Now R |= X will follow under the jurisdiction rule from R |=C |= X (R
believes C has jurisdiction over X) and R |= C |= X (R believes C believes X).

The former condition follows from the hardware constraint, that no-one
except C could have uttered a text of the form {C, .. }k.

The latter, that R |= C |= X, must be deduced using the nonce verification
rule from £X (X is fresh) and R |= C |~ X (R believes C uttered X).

X follows from its occurrence in {C,N¢, R, Nk, X}x which contains the
sequence number Ng, while R |= C |~ X follows from the hardware constraint.

The above summary of the proof is, of necessity, telegraphic. If you want to
understand logics of authentication in detail, you should consult the original
papers [48] and see the recommendations for further reading at the end of this
chapter.

3.8.4 Limitations of Formal Verification

Formal methods can be an excellent way of finding bugs in security protocol
designs as they force the designer to make everything explicit and thus
confront difficult design choices that might otherwise be fudged. However,
they have their limitations, too.

One problem is in the external assumptions we make. For example, we
assumed that the key wasn’t available to anyone who might use it in an
unauthorized manner. In practice, this is not always true. Although our purse
protocol is executed in tamper-resistant smartcards, their software can have
bugs, and in any case the tamper-resistance they offer is never complete. (I'll
discuss this in the chapter on Tamper Resistance.) So the system has various
fallback mechanisms to detect and react to card forgery, such as shadow
accounts which track the amount of money that should be on each card and
which are updated as transactions are cleared. It also has lists of hot cards that
are distributed to terminals; these are needed anyway for stolen cards, and
can be used for forged cards too.

Second, there are often problems with the idealisation of the protocol. An
interesting flaw was found in an early version of this system. The key K actually
consisted of two keys — the encryption was done first with a ‘transaction key”
which was diversified (that is, each card had its own variant) and then again
with a ‘bank key’, which was not diversified. The former was done by the
network operator, and the latter by the bank which issued the card. The
reasons for this included dual control, and to ensure that even if an attacker
managed to drill the keys out of a single card, he would only be able to forge
that card, not make forgeries which would pass as other cards (and thus defeat
the hot card mechanism). But since the bank key was not diversified, it must
be assumed to be known to any attacker who has broken a card. This means
that he can undo the outer wrapping of encryption, and in some circumstances
message replay was possible. (The bank key was diversified in a later version
before any villains discovered and exploited the flaw.)

3.9 Summary

91

In this case there was no failure of the formal method, as no attempt was ever
made to verify the diversification mechanism. But it does illustrate a common
problem in security engineering — that vulnerabilities arise at the boundary
between two protection technologies. In this case, there were three technolo-
gies: the hardware tamper resistance, the authentication protocol and the
shadow account / hot card list mechanisms. Different protection technologies
are often the domain of different experts who don’t completely understand the
assumptions made by the others. (In fact, that’s one reason security engineers
need a book such as this one: to help subject specialists understand each others’
tools and communicate with each other more effectively.)

For these reasons, people have explored alternative ways of assuring the
design of authentication protocols, including the idea of protocol robustness. Just
as structured programming techniques aim to ensure that software is designed
methodically and nothing of importance is left out, so robust protocol design is
largely about explicitness. Robustness principles include that the interpretation
of a protocol should depend only on its content, not its context; so everything
of importance (such as principals’ names) should be stated explicitly in the
messages. There are other issues concerning the freshness provided by serial
numbers, timestamps and random challenges, and on the way encryption
is used. If the protocol uses public key cryptography or digital signature
mechanisms, there are further more technical robustness issues.

3.9 Summary

Passwords are just one (simple) example of a more general concept, the
security protocol. Protocols specify the series of steps that principals use
to establish trust relationships in a system, such as authenticating a claim
to identity, demonstrating ownership of a credential, or granting a claim
on a resource. Cryptographic authentication protocols, whether one-pass
(e.g., using random nonces) or two-pass (challenge-response) are used for
a wide range of such purposes, from basic entity authentication to provide
infrastructure for distributed systems that allows trust to be taken from where it
exists to where it is needed. Security protocols are fielded in all sorts of systems
from remote car door locks through military IFF systems to authentication in
distributed computer systems.

It is difficult to design effective security protocols. They suffer from a
number of potential problems, including middleperson attacks, modification
attacks, reflection attacks, and replay attacks. These threats can interact with
implementation vulnerabilities such as poor random number generators. Using
mathematical techniques to verify the correctness of protocols can help, but it
won't catch all the bugs. Some of the most pernicious failures are caused by
creeping changes in the environment for which a protocol was designed, so
that the protection it gives is no longer adequate.

92

Chapter 3 = Protocols

Research Problems

At several times during the past 20 years, some people have thought that
protocols had been ‘done” and that we should turn to new research topics.
They have been repeatedly proved wrong by the emergence of new protocol
applications with a new crop of errors and attacks to be explored. Formal
methods blossomed in the early 1990s, then key management protocols; during
the mid-1990’s the flood of proposals for electronic commerce mechanisms
kept us busy; and in the later 1990’s a whole series of mechanisms proposed
for protecting copyright on the Internet provided us with targets. Since
2000, one strand of protocol research has acquired an economic flavour as
security mechanisms are used more and more to support business models; the
designer’s ‘enemy’ is often a commercial competitor, or even the customer.
Another has applied protocol analysis tools to look at the security of application
programming interfaces (APIs), a topic to which I'll return later.

Will people continue to develop faulty protocols which other people attack,
or will we manage to develop a methodology for designing them right first
time? What are the exact uses and limitations of formal methods, and other
mathematical approaches such as the random oracle model?

At the system level, how do we manage the tension between the principle
that robust protocols are generally those in which everything is completely
specified and checked (principals” names, roles, security policy statement,
protocol version, time, date, sequence number, security context, maker of
grandmother’s kitchen sink) and the system engineering principle that a good
specification should not overconstrain the implementer?

Further Reading

Research papers on security protocols are scattered fairly widely throughout
the literature. The main introductory papers to read are probably the original
Needham-Schroeder paper [960]; the Burrows-Abadi-Needham authentica-
tion logic [249]; papers by Abadi and Needham, and Anderson and Needham,
on protocol robustness [2, 73]; and there is a survey paper by Anderson and
Needham [74]. In [707] there is an analysis of a defective security protocol, car-
ried out using three different formal methods. Beyond that, the proceedings of
the security protocols workshops [290, 291] provide leads to current research,
and there are many papers scattered around a wide range of conferences.

Access Control

Going all the way back to early time-sharing systems we systems
people regarded the users, and any code they wrote, as the mortal
enemies of us and each other. We were like the police force

in a violent slum.

— Roger Needham

Microsoft could have incorporated effective security measures as
standard, but good sense prevailed. Security systems have a nasty
habit of backfiring and there is no doubt they would cause
enormous problems.

— Rick Maybury

4.1 Introduction

Access control is the traditional center of gravity of computer security. It is
where security engineering meets computer science. Its function is to control
which principals (persons, processes, machines, ...) have access to which
resources in the system — which files they can read, which programs they can
execute, how they share data with other principals, and so on.

Access control works at a number of levels (Figure 4.1).

\ Application /

Middleware

Operating system

Figure 4.1: Access controls at different levels in a system

93

94

Chapter 4 = Access Control

1. The access control mechanisms the user sees at the application level may
express a very rich and complex security policy. A modern online busi-
ness could assign staff to one of dozens of different roles, each of which
could initiate some subset of several hundred possible transactions in
the system. Some of these (such as refunds) might require dual control or
approval from a supervisor. And that’s nothing compared with the com-
plexity of the access controls on a modern social networking site, which
will have a thicket of rules and options about who can see, copy, and
search what data from whom.

2. The applications may be written on top of middleware, such as a
database management system or bookkeeping package, which enforces
a number of protection properties. For example, bookkeeping soft-
ware may ensure that a transaction which debits one ledger for a
certain amount must credit another ledger for the same amount, while
database software typically has access controls specifying which dictio-
naries a given user can select, and which procedures they can run.

3. The middleware will use facilities provided by the underlying operating
system. As this constructs resources such as files and communications
ports from lower level components, it acquires the responsibility for pro-
viding ways to control access to them.

4. Finally, the operating system access controls will usually rely on hard-
ware features provided by the processor or by associated memory
management hardware. These control which memory addresses a given
process can access.

As we work up from the hardware through the operating system and
middleware to the application layer, the controls become progressively more
complex and less reliable. Most actual computer frauds involve staff acciden-
tally discovering features of the application code that they can exploit in an
opportunistic way, or just abusing features of the application that they were
trusted not to. However, loopholes in access-control mechanisms — such as in
database software used in a large number of web servers — can expose many
systems simultaneously and compel large numbers of companies to patch or
rewrite their products. So in this chapter, we will focus on the fundamentals:
access control at the hardware, operating system and database levels. You
have to understand the basic principles to design serviceable application-level
controls too (I give many examples in Part II of how to combine access controls
with the needs of specific applications).

As with the other building blocks discussed so far, access control makes
sense only in the context of a protection goal, typically expressed as a security
policy. PCs carry an unfortunate legacy, in that the old single-user operating

4.1 Introduction

95

systems such as DOS and Win95/98 let any process modify any data; as a
result many applications won’t run unless they are run with administrator
privileges and thus given access to the whole machine. Insisting that your
software run as administrator is also more convenient for the programmer.
But people do have implicit protection goals; you don’t expect a shrink-
wrap program to trash your hard disk. So an explicit security policy is a
good idea.

Now one of the biggest challenges in computer security is preventing one
program from interfering with another. You don’t want a virus to be able to
steal the passwords from your browser, or to patch a banking application so
as to steal your money. In addition, many everyday reliability problems stem
from applications interacting with each other or with the system configuration.
However, it’s difficult to separate applications when the customer wants to
share data. It would make phishing much harder if people were simply unable
to paste URLs from emails into a browser, but that would make everyday
life much harder too. The single-user history of personal computing has got
people used to all sorts of ways of working that are not really consistent
with separating applications and their data in useful ways. Indeed, one senior
manager at Microsoft took the view in 2000 that there was really nothing for
operating-system access controls to do, as client PCs were single-user and
server PCs were single-application.

The pendulum is now swinging back. Hosting centres make increasing
use of virtualization; having machines exclusively for your own use costs
several times what you pay for the same resource on shared machines. The
Trusted Computing initiative, and Microsoft Vista, place more emphasis on
separating applications from each other; even if you don’t care about security,
preventing your programs from overwriting each others” configuration files
should make your PC much more reliable. More secure operating systems
have led to ever more technical attacks on software other than the operating
system; you don’t want your brokerage account hacked via a computer game
you downloaded that later truns out to be insecure. And employers would like
ways of ensuring that employees’ laptops don’t pick up malware at home, so
it makes sense to have one partition (or virtual machine) for work and another
for play. Undoing the damage done by many years of information-sharing
promiscuity will be hard, but in the medium term we might reasonably hope
for a framework that enables interactions between applications to be restricted
to controllable interfaces.

Many access control systems build on the mechanisms provided by the
operating system. I will start off by discussing operating-system protection
mechanisms that support the isolation of multiple processes. These came first
historically — being invented along with the first time-sharing systems in the

96

Chapter 4 = Access Control

1960s — and they remain the foundation on which many higher-layer mecha-
nisms are built. I will then go on to discuss database systems, which provide
broadly similar access control mechanisms that may or may not be tied to the
operating-systems mechanisms. Finally I'll discuss three advanced protection
techniques — sandboxing, virtualization and ‘Trusted Computing’. Sandboxing
is an application-level control, run for example in a browser to restrict what
mobile code can do; virtualization runs underneath the operating system,
creating two or more independent virtual machines between which infor-
mation flows can be controlled or prevented; and Trusted Computing is a
project to create two virtual machines side-by-side, one being the ‘old, inse-
cure’ version of an operating system and the second being a more restricted
environment in which security-critical operations such as cryptography can
be carried out.

The latest Microsoft system, Vista, is trying to move away from running
all code with administrator privilege, and these three modern techniques are
each, independently, trying to achieve the same thing — to get us back where
we’d be if all applications had to run with user privileges rather than as the
administrator. That is more or less where computing was in the 1970s, when
people ran their code as unprivileged processes on time-shared minicomputers
and mainframes. Only time will tell whether we can recapture the lost Eden
of order and control alluded to in the quote from Roger Needham at the
start of this chapter, and to escape the messy reality of today to which Rick
Maybury’s quote refers; but certainly the attempt is worth making.

4.2 Operating System Access Controls

The access controls provided with an operating system typically authenticate
principals using a mechanism such as passwords or Kerberos, then mediate
their access to files, communications ports and other system resources.

Their effect can often be modelled by a matrix of access permissions, with
columns for files and rows for users. We’ll write r for permission to read, w
for permission to write, x for permission to execute a program, and - for no
access at all, as shown in Figure 4.2.

Operating | Accounts | Accounting | Audit
System | Program Data Trail

Sam IwXx WX 'w r
Alice X X ™w -
Bob rx r r r

Figure 4.2: Naive access control matrix

4.2 Operating System Access Controls

97

In this simplified example, Sam is the system administrator and has universal
access (except to the audit trail, which even he should only be able to read).
Alice, the manager, needs to execute the operating system and application,
but only through the approved interfaces — she mustn’t have the ability to
tamper with them. She also needs to read and write the data. Bob, the auditor,
can read everything.

This is often enough, but in the specific case of a bookkeeping system
it’s not quite what we need. We want to ensure that transactions are well-
formed — that each debit is matched by a credit somewhere else —so we
would not want Alice to have uninhibited write access to the account file.
We would also rather that Sam didn’t have this access. So we would prefer
that write access to the accounting data file be possible only via the accounting
program. The access permissions might now look like in Figure 4.3:

User Operating | Accounts | Accounting | Audit
System | Program Data Trail
Sam rwx WX r r
Alice rx X - -
Accounts program rx r ™w w
Bob rx r r r

Figure 4.3: Access control matrix for bookkeeping

Another way of expressing a policy of this type would be with access triples
of (user, program, file). In the general case, our concern isn’t with a program
so much as a protection domain which is a set of processes or threads which
share access to the same resources (though at any given time they might have
different files open or different scheduling priorities).

Access control matrices (whether in two or three dimensions) can be used to
implement protection mechanisms as well as just model them. But they do not
scale well. For instance, a bank with 50,000 staff and 300 applications would
have an access control matrix of 15,000,000 entries. This is inconveniently
large. It might not only impose a performance problem but also be vulnerable
to administrators’ mistakes. We will usually need a more compact way of
storing and managing this information. The two main ways of doing this are
to compress the users and to compress the rights. As for the first of these, the
simplest is to use groups or roles to manage the privileges of large sets of users
simultaneously, while in the second we may store the access control matrix
either by columns (access control lists) or rows (capabilities, sometimes known
as ‘tickets’) [1102, 1344]. (There are more complex approaches involving policy
engines, but let’s learn to walk before we try to run.)

98

Chapter 4 = Access Control

4.2.1 Groups and Roles

When we look at large organisations, we usually find that most staff fit into
one or other of a small number of categories. A bank might have 40 or 50:
teller, chief teller, branch accountant, branch manager, and so on. Only a few
dozen people (security manager, chief foreign exchange dealer, . ..) will need
to have their access rights defined individually.

So we want a small number of pre-defined groups, or functional roles,
to which staff can be assigned. Some people use the words group and role
interchangeably, and with many systems they are; but the more careful
definition is that a group is a list of principals, while a role is a fixed set of
access permissions that one or more principals may assume for a period of time
using some defined procedure. The classic example of a role is the officer of the
watch on a ship. There is exactly one watchkeeper at any one time, and there
is a formal procedure whereby one officer relieves another when the watch
changes. In fact, in most government and business applications, it’s the role
that matters rather than the individual.

Groups and roles can be combined. The officers of the watch of all ships currently
at sea is a group of roles. In banking, the manager of the Cambridge branch
might have his or her privileges expressed by membership of the group
manager and assumption of the role acting manager of Cambridge branch. The
group manager might express a rank in the organisation (and perhaps even a
salary band) while the role acting manager might include an assistant accountant
standing in while the manager, deputy manager, and branch accountant are
all off sick.

Whether we need to be careful about this distinction is a matter for the
application. In a warship, we want even an ordinary seaman to be allowed to
stand watch if everyone more senior has been killed. In a bank, we might have
a policy that ‘transfers over $10m must be approved by two staff, one with
rank at least manager and one with rank at least assistant accountant’. If the
branch manager is sick, then the assistant accountant acting as manager might
have to get the regional head office to provide the second signature on a large
transfer.

Operating-system level support is available for groups and roles, but its
appearance has been fairly recent and its uptake is still slow. Developers
used to implement this kind of functionality in application code, or as custom
middleware (in the 1980s I worked on two bank projects where group support
was hand-coded as extensions to the mainframe operating system). Windows
2000 introduced extensive support for groups, while academic researchers
have done quite a lot of work since the mid-90s on role-based access control
(RBAC), which I'll discuss further in Part II, and which is starting to be rolled
out in some large applications.

4.2 Operating System Access Controls

99

4.2.2 Access Control Lists

Another way of simplifying the management of access rights is to store the
access control matrix a column at a time, along with the resource to which
the column refers. This is called an access control list or ACL (pronounced
‘ackle’). In the first of our above examples, the ACL for file 3 (the account file)
might look as shown here in Figure 4.4.

ACLs have a number of advantages and disadvantages as a means of
managing security state. These can be divided into general properties of ACLs,
and specific properties of particular implementations.

ACLs are a natural choice in environments where users manage their
own file security, and became widespread in the Unix systems common in
universities and science labs from the 1970s. They are the basic access control
mechanism in Unix-based systems such as GNU/Linux and Apple’s OS/X;
the access controls in Windows are also based on ACLs, but have become
more complex over time. Where access control policy is set centrally, ACLs
are suited to environments where protection is data-oriented; they are less
suited where the user population is large and constantly changing, or where
users want to be able to delegate their authority to run a particular program
to another user for some set period of time. ACLs are simple to implement,
but are not efficient as a means of doing security checking at runtime, as the
typical operating system knows which user is running a particular program,
rather than what files it has been authorized to access since it was invoked.
The operating system must either check the ACL at each file access, or keep
track of the active access rights in some other way.

Finally, distributing the access rules into ACLs means that it can be tedious
to find all the files to which a user has access. Revoking the access of an
employee who has just been fired will usually have to be done by cancelling
their password or other authentication mechanism. It may also be tedious to
run system-wide checks; for example, verifying that no files have been left
world-writable could involve checking ACLs on millions of user files.

Let’s look at two important examples of ACLs — their implementation in
Unix and Windows.

User | Accounting
Data

Sam ™w

Alice ™w

Bob r

Figure 4.4: Access control list (ACL)

Chapter 4 = Access Control

4.2.3 Unix Operating System Security

In Unix (including its popular variant Linux), files are not allowed to have
arbitrary access control lists, but simply rwx attributes for the resource owner,
the group, and the world. These attributes allow the file to be read, written
and executed. The access control list as normally displayed has a flag to show
whether the file is a directory, then flags r, w and x for world, group and owner
respectively; it then has the owner’s name and the group name. A directory
with all flags set would have the ACL:

drwxrwxrwx Alice Accounts

In our first example in Figure 4.3, the ACL of file 3 would be:

-rw-r----- Alice Accounts

This records that the file is not a directory; the file owner can read and write
it; group members can read it but not write it; non-group members have no
access at all; the file owner is Alice; and the group is Accounts.

In Unix, the program that gets control when the machine is booted (the
operating system kernel) runs as the supervisor, and has unrestricted access
to the whole machine. All other programs run as users and have their access
mediated by the supervisor. Access decisions are made on the basis of the
userid associated with the program. However if this is zero (root), then
the access control decision is ‘yes’. So root can do what it likes — access any
file, become any user, or whatever. What’s more, there are certain things that
only root can do, such as starting certain communication processes. The root
userid is typically made available to the system administrator.

This means that (with most flavours of Unix) the system administrator can
do anything, so we have difficulty implementing an audit trail as a file that
he cannot modify. This not only means that, in our example, Sam could tinker
with the accounts, and have difficulty defending himself if he were falsely
accused of tinkering, but that a hacker who managed to become the system
administrator could remove all evidence of his intrusion.

The Berkeley distributions, including FreeBSD and OS/X, go some way
towards fixing the problem. Files can be set to be append-only, immutable or
undeletable for user, system or both. When set by a user at a sufficient security
level during the boot process, they cannot be overridden or removed later, even
by root. Various military variants go to even greater trouble to allow separation
of duty. However the simplest and most common way to protect logs against
root compromise is to keep them separate. In the old days that meant sending
the system log to a printer in a locked room; nowadays, given the volumes of
data, it means sending it to another machine, administered by somebody else.

Second, ACLs only contain the names of users, not of programs; so there
is no straightforward way to implement access triples of (user, program, file).

4.2 Operating System Access Controls

101

Instead, Unix provides an indirect method: the set-user-id (suid) file attribute.
The owner of a program can mark it as suid, which enables it to run with the
privilege of its owner rather than the privilege of the user who has invoked
it. So in order to achieve the functionality needed by our second example
above, we could create a user ‘account-package’ to own file 2 (the accounts
package), make the file suid and place it in a directory to which Alice has
access. This special user can then be given the access control attributes the
accounts program needs.

One way of looking at this is that an access control problem that is naturally
modelled in three dimensions — by triples (user, program, data) — is being
implemented using two-dimensional mechanisms. These mechanisms are
much less intuitive than triples and people make many mistakes implementing
them. Programmers are often lazy or facing tight deadlines; so they just make
the application suid root, so it can do anything. This practice leads to
some rather shocking security holes. The responsibility for making access
control decisions is moved from the operating system environment to the
program, and most programmers are insufficiently experienced and careful
to check everything they should. (It’s hard to know what to check, as the
person invoking a suid root program controls its environment and can often
manipulate this to cause protection failures.)

Third, ACLs are not very good at expressing mutable state. Suppose we
want a transaction to be authorised by a manager and an accountant before
it’s acted on; we can either do this at the application level (say, by having
queues of transactions awaiting a second signature) or by doing something
fancy with suid. In general, managing stateful access rules is difficult; this can
even complicate the revocation of users who have just been fired, as it can be
hard to track down the files they might have open.

Fourth, the Unix ACL only names one user. Older versions allow a process
to hold only one group id at a time and force it to use a privileged program
to access other groups; newer Unix systems put a process in all groups
that the user is in. This is still much less expressive than one might like. In
theory, the ACL and suid mechanisms can often be used to achieve the desired
effect. In practice, programmers often can’t be bothered to figure out how to
do this, and design their code to require much more privilege than it really
ought to have.

4.2.4 Apple’s 0S/X

Apple’s OS/X operating system is based on the FreeBSD version of Unix run-
ning on top of the Mach kernel. The BSD layer provides memory protection;
applications cannot access system memory (or each others’) unless running
with advanced permissions. This means, for example, that you can kill a
wedged application using the “Force Quit’ command; you usually do not have

102

Chapter 4 = Access Control

to reboot the system. On top of this Unix core are a number of graphics compo-
nents, including OpenGL, Quartz, Quicktime and Carbon, while at the surface
the Aqua user interface provides an elegant and coherent view to the user.

At the file system level, OS/X is almost a standard Unix. The default
installation has the root account disabled, but users who may administer the
system are in a group ‘wheel” that allows them to su to root. The most visible
implication is that if you are such a user, you can install programs (you are
asked for the root password when you do so). This may be a slightly better
approach than Windows (up till XP) or Linux, which in practice let only
administrators install software but do not insist on an authentication step
when they do so; the many Windows users who run as administrator for
convenience do dreadful things by mistake (and malware they download does
dreadful things deliberately). Although Microsoft is struggling to catch up
with Vista, as I'll discuss below, Apple’s advantage may be increased further
by OS/X version 10.5 (Leopard), which is based on TrustedBSD, a variant of
BSD developed for government systems that incorporates mandatory access
control. (I'll discuss this in Chapter 8.)

4.2.5 Windows - Basic Architecture

The most widespread PC operating system is Windows, whose protection
has been largely based on access control lists since Windows NT. The current
version of Windows (Vista) is fairly complex, so it’s helpful to trace its
antecedents. The protection in Windows NT (Windows v4) was very much
like Unix, and was inspired by it, and has since followed the Microsoft
philosophy of ‘embrace and extend’.

First, rather than just read, write and execute there are separate attributes for
take ownership, change permissions and delete, which means that more flexible
delegation can be supported. These attributes apply to groups as well as users,
and group permissions allow you to achieve much the same effect as suid
programs in Unix. Attributes are not simply on or off, as in Unix, but have
multiple values: you can set AccessDenied, AccessAllowed or SystemAudit. These
are parsed in that order. If an Accessbenied is encountered in an ACL for the
relevant user or group, then no access is permitted regardless of any conflicting
Accessallowed flags. A benefit of the richer syntax is that you can arrange
matters so that everyday configuration tasks, such as installing printers, don’t
require full administrator privileges. (This is rarely done, though.)

Second, users and resources can be partitioned into domains with distinct
administrators, and trust can be inherited between domains in one direction
or both. In a typical large company, you might put all the users into a
personnel domain administered by Human Resources, while resources such
as servers and printers could be in resource domains under departmental
control; individual workstations may even be administered by their users.

4.2 Operating System Access Controls

103

Things would be arranged so that the departmental resource domains trust
the user domain, but not vice versa — so a corrupt or careless departmental
administrator can’t do much damage outside his own domain. The individual
workstations would in turn trust the department (but not vice versa) so that
users can perform tasks that require local privilege (installing many software
packages requires this). Administrators are still all-powerful (so you can’t
create truly tamper-resistant audit trails without using write-once storage
devices or writing to machines controlled by others) but the damage they can
do can be limited by suitable organisation. The data structure used to manage
all this, and hide the ACL details from the user interface, is called the Registry.

Problems with designing a Windows security architecture in very large
organisations include naming issues (which I'll explore in Chapter 6), the way
domains scale as the number of principals increases (badly), and the restriction
that a user in another domain can’t be an administrator (which can cause
complex interactions between local and global groups).

One peculiarity of Windows is that everyone is a principal, not a default or an
absence of control, so ‘remove everyone’ means just stop a file being generally
accessible. A resource can be locked quickly by setting everyone to have no
access. This brings us naturally to the subject of capabilities.

4.2.6 Capabilities

The next way to manage the access control matrix is to store it by rows. These
are called capabilities, and in our example in Figure 4.2 above, Bob’s capabilities
would be as in Figure 4.5 here:

User | Operating | Accounts | Accounting | Audit
System | Program Data Trail
Bob rx r T r

Figure 4.5: A capability

The strengths and weaknesses of capabilities are more or less the opposite
of ACLs. Runtime security checking is more efficient, and we can delegate a
right without much difficulty: Bob could create a certificate saying ‘Here is my
capability and I hereby delegate to David the right to read file 4 from 9am to
1pm, signed Bob’. On the other hand, changing a file’s status can suddenly
become more tricky as it can be difficult to find out which users have access.
This can be tiresome when we have to investigate an incident or prepare
evidence of a crime.

There were a number of experimental implementations in the 1970s, which
were rather like file passwords; users would get hard-to-guess bitstrings for
the various read, write and other capabilities to which they were entitled. It

104

Chapter 4 = Access Control

was found that such an arrangement could give very comprehensive protec-
tion [1344]. It was not untypical to find that almost all of an operating system
could run in user mode rather than as supervisor, so operating system bugs
were not security critical. (In fact, many operating system bugs caused security
violations, which made debugging the operating system much easier.)

The IBM AS/400 series systems employed capability-based protection, and
enjoyed some commercial success. Now capabilities have made a limited
comeback in the form of public key certificates. I'll discuss the mechanisms
of public key cryptography in Chapter 5, and give more concrete details of
certificate-based systems, such as SSL/TLS, in Part II. For now, think of a
public key certificate as a credential, signed by some authority, which declares
that the holder of a certain cryptographic key is a certain person, or a member
of some group, or the holder of some privilege.

As an example of where certificate-based capabilities can be useful, consider
a hospital. If we implemented a rule like “a nurse shall have access to all the
patients who are on her ward, or who have been there in the last 90 days’
naively, each access control decision in the patient record system will require
several references to administrative systems, to find out which nurses and
which patients were on which ward, when. So a failure of the administrative
systems can now affect patient safety much more directly than before, and
this is clearly a bad thing. Matters can be much simplified by giving nurses
certificates which entitle them to access the files associated with their current
ward. Such a system has been used for several years at our university hospital.

Public key certificates are often considered to be ‘crypto’ rather than ‘access
control’, with the result that their implications for access control policies
and architectures are not thought through. The lessons that could have been
learned from the capability systems of the 1970s are generally having to be
rediscovered (the hard way). In general, the boundary between crypto and
access control is a fault line where things can easily go wrong. The experts often
come from different backgrounds, and the products from different suppliers.

4.2.7 Windows - Added Features

A number of systems, from mainframe access control products to research
systems, have combined ACLs and capabilities in an attempt to get the best of
both worlds. But the most important application of capabilities is in Windows.

Windows 2000 added capabilities in two ways which can override or
complement the ACLs of Windows NT. First, users or groups can be either
whitelisted or blacklisted by means of profiles. (Some limited blacklisting was
also possible in NT4.) Security policy is set by groups rather than for the
system as a whole. Groups are intended to be the primary method for
centralized configuration management and control (group policy overrides
individual profiles). Group policy can be associated with sites, domains or

4.2 Operating System Access Controls

105

organizational units, so it can start to tackle some of the real complexity
problems with naming. Policies can be created using standard tools or custom
coded. Groups are defined in the Active Directory, an object-oriented database
that organises users, groups, machines, and organisational units within a
domain in a hierarchical namespace, indexing them so they can be searched
for on any attribute. There are also finer grained access control lists on
individual resources.

As already mentioned, Windows adopted Kerberos from Windows 2000
as its main means of authenticating users across networks'. This is encap-
sulated behind the Security Support Provider Interface (SSPI) which enables
administrators to plug in other authentication services.

This brings us to the second way in which capabilities insinuate their way
into Windows: in many applications, people use the public key protocol TLS,
which is widely used on the web, and which is based on public key certificates.
The management of these certificates can provide another, capability-oriented,
layer of access control outside the purview of the Active Directory.

The latest version of Windows, Vista, introduces a further set of protection
mechanisms. Probably the most important is a package of measures aimed at
getting away from the previous default situation of all software running as root.
First, the kernel is closed off to developers; second, the graphics subsystem
is removed from the kernel, as are most drivers; and third, User Account
Control (UAC) replaces the default administrator privilege with user defaults
instead. This involved extensive changes; in XP, many routine tasks required
administrative privilege and this meant that enterprises usually made all their
users administrators, which made it difficult to contain the effects of malware.
Also, developers wrote their software on the assumption that it woulod have
access to all system resources.

In Vista, when an administrator logs on, she is given two access tokens: a
standard one and an admin one. The standard token is used to start the desktop,
explorer.exe, Which acts as the parent process for later user processes. This
means, for example, that even administrators browse the web as normal users,
and malware they download can’t overwrite system files unless given later
authorisation. When a task is started that requires admin privilege, then a user
who has it gets an elevation prompt asking her to authorise it by entering an
admin password. (This brings Windows into line with Apple’s OS/X although
the details under the hood differ somewhat.)

!t was in fact a proprietary variant, with changes to the ticket format which prevent Windows
clients from working with existing Unix Kerberos infrastructures. The documentation for the
changes was released on condition that it was not used to make compatible implementations.
Microsoft’s goal was to get everyone to install Win2K Kerberos servers. This caused an outcry in
the open systems community [121]. Since then, the European Union prosecuted an antitrust case
against Microsoft that resulted in interface specifications being made available in late 2006.

106

Chapter 4 = Access Control

Of course, admin users are often tricked into installing malicious software,
and so Vista provides further controls in the form of file integrity levels. I'll
discuss these along with other mandatory access controls in Chapter 8 but
the basic idea is that low-integrity processes (such as code you download
from the Internet) should not be able to modify high-integrity data (such
as system files). It remains to be seen how effective these measures will be;
home users will probably want to bypass them to get stuff to work, while
Microsoft is providing ever-more sophisticated tools to enable IT managers to
lock down corporate networks — to the point, for example, of preventing most
users from installing anything from removable media. UAC and mandatory
integrity controls can certainly play a role in this ecology, but we’ll have to
wait and see how things develop.

The final problem with which the Vista developers grappled is the fact that
large numbers of existing applications expect to run as root, so that they can
fool about with registry settings (for a hall of shame, see [579]). According to
the Microsoft folks, this is a major reason for Windows’ lack of robustness:
applications monkey with system resources in incompatible ways. So there is
an Application Information Service that launches applications which require
elevated privileges to run. Vista uses virtualization technology for legacy
applications: if they modify the registry, for example, they don’t modify the
‘real” registry but simply the version of it that they can see. This is seen as a
‘short-term fix’ [885]. I expect it will be around for a long time, and I'm curious
to see whether the added complexity will be worth the reduced malware risk.

Despite virtualisation, the bugbear with Vista is compatibility. As this book
went to press in early January 2008, sales of Vista were still sluggish, with
personal users complaining that games and other applications just didn’t
work, while business users were waiting for service pack 1 and postponing
large-scale roll-out to late 2008 or even early 2009. It has clearly been expensive
for Microsoft to move away from running everything as root, but it’s clearly a
necessary move and they deserve full credit for biting the bullet.

To sum up, Windows provides a richer and more flexible set of access
control tools than any system previously sold in mass markets. It does still
have design limitations. Implementing roles whose requirements differ from
those of groups could be tricky in some applications; SSL certificates are the
obvious way to do this but require an external management infrastructure.
Second, Windows is still (in its consumer incarnations) a single-user operating
system in the sense that only one person can operate a PC at a time. Thus
if I want to run an unprivileged, sacrificial user on my PC for accessing
untrustworthy web sites that might contain malicious code, I have to log off
and log on again, or use other techniques which are so inconvenient that
few users will bother. (On my Mac, I can run two users simultaneously and
switch between them quickly.) So Vista should be seen as the latest step
on a journey, rather than a destination. The initial version also has some

4.2 Operating System Access Controls

107

undesirable implementation quirks. For example, it uses some odd heuristics
to try to maintain backwards compatibility with programs that assume they’ll
run as administrator: if I compile a C+4 program called Fred Installer.exe
then Vista will ask for elevated privilege to run it, and tell it that it’s running
on Windows XP, while if I call the program simply Fred.exe it will run as
user and be told that it’s running on Vista [797]. Determining a program’s
privileges on the basis of its filename is just bizarre.

And finally, there are serious usability issues. For example, most users will
run still run administrator accounts all the time, and will be tempted to disable
UAG; if they don't, they’ll become habituated to clicking away the UAC dialog
box that forever asks them if they really meant to do what they just tried to.
For these reasons, UAC may be much less effective in practice than it might be
in theory [555]. We will no doubt see in due course.

It’s interesting to think about what future access controls could support,
for example, an electronic banking application that would be protected from
malware running on the same machine. Microsoft did come up with some
ideas in the context of its “Trusted Computing” project, which I'll describe
below in section 4.2.11, but they didn’t make it into Vista.

4.2.8 Middleware

Doing access control at the level of files and programs was all very well in the
early days of computing, when these were the resources that mattered. Since
about the 1980s, growing scale and complexity has meant led to access control
being done at other levels instead of (sometimes as well as) at the operating
system level. For example, a bank’s branch bookkeeping system will typically
run on top of a database product, and the database looks to the operating
system as one large file. This means that the access control has to be done in
the database; all the operating system supplies it may be an authenticated ID
for each user who logs on.

4.2.8.1 Database Access Controls

Until the dotcom boom, database security was largely a back-room concern.
But it is now common for enterprises to have critical databases, that handle
inventory, dispatch and e-commerce, fronted by web servers that pass trans-
actions to the databases directly. These databases now contain much of the
data of greatest relevance to our lives — such as bank accounts, vehicle regis-
trations and employment records — and front-end failures sometimes expose
the database itself to random online users.

Database products, such as Oracle, DB2 and MySQL, have their own access
control mechanisms. As the database looks to the operating system as a single
large file, the most the operating system can do is to identify users and to

Chapter 4 = Access Control

separate the database from other applications running on the same machine.
The database access controls are in general modelled on operating-system
mechanisms, with privileges typically available for both users and objects
(so the mechanisms are a mixture of access control lists and capabilities).
However, the typical database access control architecture is more complex
even than Windows: Oracle 10g has 173 system privileges of which at least six
can be used to take over the system completely [804]. There are more privileges
because a modern database product is very complex and some of the things
one wants to control involve much higher levels of abstraction than files or
processes. The flip side is that unless developers know what they’re doing,
they are likely to leave a back door open.

Some products let developers bypass operating-system controls. For
example, Oracle has both operating system accounts (whose users must be
authenticated externally by the platform) and database accounts (whose users
are authenticated directly by the Oracle software). It is often more convenient
to use database accounts as it saves the developer from synchronising his work
with the details of what other departments are doing. In many installations,
the database is accessible directly from the outside; this raises all sorts of
issues from default passwords to flaws in network protocols. Even where the
database is shielded from the outside by a web service front-end, this often
contains loopholes that let SQL code be inserted into the database.

Database security failures can also cause problems directly. The Slammer
worm in January 2003 propagated itself using a stack-overflow in Microsoft
SQL Server 2000 and created large amounts of traffic and compromised
machines sent large numbers of attack packets to random IP addresses.

Just as Windows is trickier to configure securely, because it’s more complex,
so the typical database system is trickier still, and it takes specialist knowledge
that’s beyond the scope of this book. Database security is now a discipline
in its own right; if you have to lock down a database system — or even just
review one as part of a broader assignment —I'd strongly recommend that
you read a specialist text, such as David Litchfield’s [804].

4.2.8.2 General Middleware Issues

There are anumber of aspects common to middleware security and application-
level controls. The first is granularity: as the operating system works with files,
these are usually the smallest objects with which its access control mechanisms
can deal. The second is state. An access rule such as ‘a nurse can see the records
of any patient on her ward’ or ‘a transaction over $100,000 must be authorised
by a manager and an accountant’ both involve managing state: in the first
case the duty roster, and in the second the list of transactions that have so
far been authorised by only one principal. The third is level: we may end up
with separate access control systems at the machine, network and application

4.2 Operating System Access Controls

levels, and as these typically come from different vendors it may be difficult
to keep them consistent.

Ease of administration is often a critical bottleneck. In companies I've
advised, the administration of the operating system and the database system
have been done by different departments, which do not talk to each other;
and often user pressure drives IT departments to put in crude hacks which
make the various access control systems seem to work as one, but which open
up serious holes. An example is ‘single sign-on’. Despite the best efforts
of computer managers, most large companies accumulate systems of many
different architectures, so users get more and more logons to different systems
and the cost of administering them escalates. Many organisations want to give
each employee a single logon to all the machines on the network. Commercial
solutions may involve a single security server through which all logons must
pass, and the use of a smartcard to do multiple authentication protocols
for different systems. Such solutions are hard to engineer properly, and the
security of the best system can very easily be reduced to that of the worst.

4.2.8.3 ORBs and Policy Languages

These problems led researchers to look for ways in which access control for a
number of applications might be handled by standard middleware. Research
in the 1990s focussed on object request brokers (ORBs). An ORB is a software
component that mediates communications between objects (an object consists
of code and data bundled together, an abstraction used in object-oriented
languages such as C++). An ORB typically provides a means of controlling
calls that are made across protection domains. The Common Object Request
Broker Architecture (CORBA) is an attempt at an industry standard for object-
oriented systems; a book on CORBA security is [182]. This technology is
starting to be adopted in some industries, such as telecomms.

Research since 2000 has included work on languages to express security pol-
icy, with projects such as XACML (Sun), XrML (ISO) and SecPAL (Microsoft).
They followed early work on ‘Policymaker” by Matt Blaze and others [188],
and vary in their expressiveness. XrML deals with subjects and objects but
not relationships, so cannot easily express a concept such as ‘Alice is Bob’s
manager’. XACML does relationships but does not support universally quan-
tified variables, so it cannot easily express ‘a child’s guardian may sign its
report card” (which we might want to program as ‘if x is a child and y is x’s
guardian and z is x’s report card, then y may sign z). The initial interest in
these languages appears to come from the military and the rights-management
industry, both of which have relatively simple state in their access control poli-
cies. Indeed, DRM engineers have already developed a number of specialised
rights-management languages that are built into products such as Windows
Media Player and can express concepts such as ‘User X can play this file as

Chapter 4 = Access Control

audio until the end of September and can burn it to a CD only once.” The push
for interoperable DRM may create a demand for more general mechanisms
that can embrace and extend the products already in the field.

If a suitably expressive policy language emerges, and is adopted as a
standard scripting language on top of the access-control interfaces that major
applications provide to their administrators, it might provide some value by
enabling people to link up access controls when new services are constructed
on top of multiple existing services. There are perhaps two caveats. First,
people who implement access control when customizing a package are not
likely to do so as a full-time job, and so it may be better to let them use a
language with which they are familiar, in which they will be less likely to make
mistakes. Second, security composition is a hard problem; it’s easy to come up
with examples of systems that are secure in isolation but that break horribly
when joined up together. We'll see many examples in Part II.

Finally, the higher in a system we build the protection mechanisms, the
more complex they’ll be, the more other software they’ll rely on, and the closer
they’ll be to the error-prone mark 1 human being — so the less dependable
they are likely to prove. Platform vendors such as Microsoft have more security
PhDs, and more experience in security design, than almost any application
vendor; and a customer who customises an application package usually has
less experience still. Code written by users is most likely to have glaring flaws.
For example, the fatal accidents that happened in healthcare as a result of the
Y2K bug were not platform failures, but errors in spreadsheets developed by
individual doctors, to do things like processing lab test results and calculating
radiology dosages. Letting random users write security-critical code carries
the same risks as letting them write safety-critical code.

4.2.9 Sandboxing and Proof-Carrying Code

The late 1990s saw the emergence of yet another way of implementing access
control: the software sandbox. This was introduced by Sun with its Java
programming language. The model is that a user wants to run some code
that she has downloaded from the web as an applet, but is concerned that
the applet might do something nasty, such as taking a list of all her files and
mailing it off to a software marketing company.

The designers of Java tackled this problem by providing a ‘sandbox’ for such
code — a restricted environment in which it has no access to the local hard
disk (or at most only temporary access to a restricted directory), and is only
allowed to communicate with the host it came from. These security objectives
are met by having the code executed by an interpreter — the Java Virtual
Machine (JVM) — which has only limited access rights [539]. Java is also used
on smartcards but (in current implementations at least) the JVM is in effect a
compiler external to the card, which raises the issue of how the code it outputs

4.2 Operating System Access Controls

111

can be got to the card in a trustworthy manner. Another application is in the
new Blu-ray format for high-definition DVDs; players have virtual machines
that execute rights-management code bundled with the disk. (I describe the
mechanisms in detail in section 22.2.6.2.)

An alternative is proof-carrying code. Here, code to be executed must carry
with it a proof that it doesn’t do anything that contravenes the local security
policy. This way, rather than using an interpreter with the resulting speed
penalty, one merely has to trust a short program that checks the proofs
supplied by downloaded programs before allowing them to be executed. The
overhead of a JVM is not necessary [956].

Both of these are less general alternatives to an architecture supporting
proper supervisor-level confinement.

4.2.10 Virtualization

This refers to systems that enable a single machine to emulate a number
of machines independently. It was invented in the 1960s by IBM [336]; back
when CPUs were very expensive, a single machine could be partitioned using
VM/370 into multiple virtual machines, so that a company that bought two
mainframes could use one for its production environment and the other as
a series of logically separate machines for development, testing, and minor
applications.

The move to PCs saw the emergence of virtual machine software for this
platform, with offerings from various vendors, notably VMware and (in open-
source form) the Xen project. Virtualization is very attractive to the hosting
industry, as clients can be sold a share of a machine in a hosting centre for
much less than a whole machine. In the few years that robust products have
been available, their use has become extremely widespread.

At the client end, virtualization allows people to run a host operating system
on top of a guest (for example, Windows on top of Linux or OS/X) and this
offers not just flexibility but the prospect of better containment. For example,
an employee might have two copies of Windows running on his laptop — a
locked-down version with her office environment, and another for use at
home. The separation can be high-grade from the technical viewpoint; the
usual problem is operational. People may feel the need to share data between
the two virtual machines and resort to ad-hoc mechanisms, from USB sticks to
webmail accounts, that undermine the separation. Military system designers
are nonetheless very interested in virtualization; I discuss their uses of it in
section 8.5.3.

4.2.11 Trusted Computing

The ‘Trusted Computing’ initiative was launched by Microsoft, Intel, IBM, HP
and Compagq to provide a more secure PC. Their stated aim was to provide

112

Chapter 4 = Access Control

software and hardware add-ons to the PC architecture that would enable
people to be sure that a given program was running on a machine with a
given specification; that is, that software had not been patched (whether by
the user or by other software) and was running on a identifiable type and
configuration of PC rather than on an emulator. The initial motivation was
to support digital rights management. The problem there was this: if Disney
was going to download a copy of a high-definition movie to Windows Media
Player on your PC, how could they be sure it wasn’t a hacked version, or
running on a copy of Windows that was itself running on top of Xen? In either
case, the movie might be ripped and end up on file-sharing systems.

The hardware proposal was to add a chip, the Trusted Platform Module
or TPM, which could monitor the PC at boot time and report its state to the
operating system; cryptographic keys would be made available depending on
this state. Thus if a platform were modified — for example, by changing the
boot ROM or the hard disk controller — different keys would be derived and
previously encrypted material would not be available. A PC would also be able
to use its TPM to certify to other PCs that it was in an “approved’ configuration,
a process called remote attestation. Of course, individual PCs might be hacked in
less detectable ways, such as by installing dual-ported memory or interfering
with the bus from the TPM to the CPU — but the idea was to exclude low-cost
break-once-run-anywhere attacks. Then again, the operating system will break
from time to time, and the media player; so the idea was to make the content
protection depend on as little as possible, and have revocation mechanisms
that would compel people to upgrade away from broken software.

Thus a vendor of digital content might only serve premium products to a
machine in an approved configuration. Furthermore, data-based access control
policies could be enforced. An example of these is found in the ‘Information
Rights Management’ mechanisms introduced with Office 2003; here, a file
can be marked with access controls in a rights expression language which can
state, for example, that it may only be read by certain named users and only
for a certain period of time. Word-processing documents (as well as movies)
could be marked ‘view three times only’; a drug dealer could arrange for
the spreadsheet with November’s cocaine shipments to be unreadable after
December, and so on.

There are objections to data-based access controls based on competition
policy, to which I'll return in Part III. For now, my concern is the mechanisms.
The problem facing Microsoft was to maintain backwards compatibility with
the bad old world where thousands of buggy and insecure applications run as
administrator, while creating the possibility of new access domains to which
the old buggy code has no access. One proposed architecture, Palladium, was
unveiled in 2002; this envisaged running the old, insecure, software in parallel
with new, more secure components.

4.3 Hardware Protection

113

In addition to the normal operating system, Windows would have a ‘Nexus’,
a security kernel small enough to be verified, that would talk directly to the
TPM hardware and monitor what went on in the rest of the machine; and each
application would have a Nexus Control Program (NCP) that would run on
top of the Nexus in the secure virtual machine and manage critical things like
cryptographic keys. NCPs would have direct access to hardware. In this way,
a DRM program such as a media player could keep its crypto keys in its NCP
and use them to output content to the screen and speakers directly — so that
the plaintext content could not be stolen by spyware.

At the time of writing, the curtained memory features are not used in Vista;
presentations at Microsoft research workshops indicated that getting fine-
grained access control and virtualization to work at the middle layers of such
a complex operating system has turned out to be a massive task. Meanwhile
the TPM is available for secure storage of root keys for utilities such as hard
disk encryption; this is available as ‘BitLocker” in the more expensive versions
of Vista. It remains to be seen whether the more comprehensive vision of
Trusted Computing can be made to work; there’s a growing feeling in the
industry that it was too hard and, as it’s also politically toxic, it’s likely to be
quietly abandoned. Anyway, TPMs bring us to the more general problem of
the hardware protection mechanisms on which access controls are based.

4.3 Hardware Protection

Most access control systems set out not just to control what users can do, but
to limit what programs can do as well. In most systems, users can either write
programs, or download and install them. So programs may be buggy or even
malicious.

Preventing one process from interfering with another is the protection prob-
lem. The confinement problem is usually defined as that of preventing programs
communicating outward other than through authorized channels. There are
several flavours of each. The goal may be to prevent active interference, such
as memory overwriting, or to stop one process reading another’s memory
directly. This is what commercial operating systems set out to do. Military
systems may also try to protect metadata — data about other data, or subjects,
or processes — so that, for example, a user can’t find out what other users are
logged on to the system or what processes they’re running. In some applica-
tions, such as processing census data, confinement means allowing a program
to read data but not release anything about it other than the results of certain
constrained queries.

Unless one uses sandboxing techniques (which are too restrictive for general
programming environments), solving the confinement problem on a single
processor means, at the very least, having a mechanism that will stop one

114

Chapter 4 = Access Control

program from overwriting another’s code or data. There may be areas of
memory that are shared in order to allow interprocess communication; but
programs must be protected from accidental or deliberate modification, and
they must have access to memory that is similarly protected.

This usually means that hardware access control must be integrated with the
processor’s memory management functions. A typical mechanism is segment
addressing. Memory is addressed by two registers, a segment register which
points to a segment of memory, and another address register which points to
a location within that segment. The segment registers are controlled by the
operating system, and often by a special component of it called the reference
monitor which links the access control mechanisms with the hardware.

The actual implementation has become more complex as the processors
themselves have. Early IBM mainframes had a two state CPU: the machine was
either in authorized state or it was not. In the latter case, the program was
restricted to a memory segment allocated by the operating system. In the
former, it could alter the segment registers at will. An authorized program
was one that was loaded from an authorized library.

Any desired access control policy can be implemented on top of this,
given suitable authorized libraries, but this is not always efficient; and system
security depends on keeping bad code (whether malicious or buggy) out of
the authorized libraries. So later processors offered more complex hardware
mechanisms. Multics, an operating system developed at MIT in the 1960’s and
which inspired the development of Unix, introduced rings of protection which
express differing levels of privilege: ring 0 programs had complete access to
disk, supervisor states ran in ring 2, and user code at various less privileged
levels [1139]. Its features have to some extent been adopted in more recent
processors, such as the Intel main processor line from the 80286 onwards.

There are a number of general problems with interfacing hardware and
software security mechanisms. For example, it often happens that a less
privileged process such as application code needs to invoke a more privileged
process such as a device driver. The mechanisms for doing this need to
be designed with some care, or security bugs can be expected. The IBM
mainframe operating system MVS, for example, had a bug in which a program
which executed a normal and an authorized task concurrently could make the
former authorized too [774]. Also, performance may depend quite drastically
on whether routines at different privilege levels are called by reference or by
value [1139].

4.3.1 Intel Processors, and ‘Trusted Computing’

Early Intel processors, such as the 8088/8086 used in early PCs, had no
distinction between system and user mode, and thus no protection at all — any
running program controlled the whole machine. The 80286 added protected

4.3 Hardware Protection

115

segment addressing and rings, so for the first time it could run proper operating
systems. The 80386 had built in virtual memory, and large enough memory
segments (4 Gb) that they could be ignored and the machine treated as a
32-bit flat address machine. The 486 and Pentium series chips added more
performance (caches, out of order execution and MMX).

The rings of protection are supported by a number of mechanisms. The
current privilege level can only be changed by a process in ring 0 (the kernel).
Procedures cannot access objects in lower level rings directly but there are
gates which allow execution of code at a different privilege level and which
manage the supporting infrastructure, such as multiple stack segments for
different privilege levels and exception handling. For more details, see [646].

The Pentium 3 finally added a new security feature — a processor serial
number. This caused a storm of protest because privacy advocates feared it
could be used for all sorts of ‘big brother” purposes, which may have been
irrational as computers have all sorts of unique numbers in them that software
can use to tell which machine it’s running on (examples range from MAC
addresses to the serial numbers of hard disk controllers). At the time the serial
number was launched, Intel had planned to introduce cryptographic support
into the Pentium by 2000 in order to support DRM. Their thinking was that
as they earned 90% of their profits from PC microprocessors, where they had
90% of the market, they could only grow their business by expanding the
market for PCs; and since the business market was saturated, that meant sales
to homes where, it was thought, DRM would be a requirement.

Anyway, the outcry against the Pentium serial number led Intel to set up
an industry alliance, now called the Trusted Computing Group, to introduce
cryptography into the PC platform by means of a separate processor, the
Trusted Platform Module (TPM), which is a smartcard chip mounted on
the PC motherboard. The TPM works together with curtained memory features
introduced in the Pentium to enable operating system vendors to create
memory spaces isolated from each other, and even against a process in
one memory space running with administrator privileges. The mechanisms
proposed by Microsoft are described above, and have not been made available
in commercial releases of Windows at the time of writing.

One Intel hardware feature that has been implemented and used is the
x86 virtualization support, known as Intel VT (or its development name,
Vanderpool). AMD has an equivalent offering. Processor architectures such
as S/370 and M68000 are easy to virtualize, and the theoretical requirements
for this have been known for many years [1033]. The native Intel instruction
set, however, had instructions that were hard to virtualize, requiring messy
workarounds, such as patches to hosted operating systems. Processors with
these extensions can use products such as Xen to run unmodified copies of
guest operating systems. (It does appear, though, that if the Trusted Computing

116

Chapter 4 = Access Control

mechanisms are ever implemented, it will be complex to make them work
alongside virtualization.)

4.3.2 ARM Processors

The ARM is the 32-bit processor core most commonly licensed to third party
vendors of embedded systems; hundreds of millions are used in mobile phones
and other consumer electronic devices. The original ARM (which stood for
Acorn Risc Machine) was the first commercial RISC design. ARM chips are
also used in many security products, from the Capstone chips used by the
US government to protect secret data, to the crypto accelerator boards from
firms like nCipher that do cryptography for large web sites. A fast multiply-
and-accumulate instruction and low power consumption made the ARM very
attractive for embedded applications doing crypto and/or signal processing.
The standard reference is [508].

The ARM is licensed as a processor core, which chip designers can include
in their products, plus a number of optional add-ons. The basic core contains
separate banks of registers for user and system processes, plus a software
interrupt mechanism that puts the processor in supervisor mode and transfers
control to a process at a fixed address. The core contains no memory manage-
ment, so ARM-based designs can have their hardware protection extensively
customized. A system control coprocessor is available to help with this. It can
support domains of processes that have similar access rights (and thus share
the same translation tables) but that retain some protection from each other.
This gives fast context switching. Standard product ARM CPU chips, from the
model 600 onwards, have this memory support built in.

There is a version, the Amulet, which uses self-timed logic. Eliminating
the clock saved power and reduces RF interference, but made it necessary to
introduce hardware protection features, such as register locking, into the main
processor itself so that contention between different hardware processes could
be managed. This is an interesting example of protection techniques typical of
an operating system being recycled in main-line processor design.

4.3.3 Security Processors

Specialist security processors range from the chips in smartcards, through the
TPM chips now fixed to most PC motherboards (which are basically smartcard
chips with parallel interfaces) and crypto accelerator boards, to specialist
crypto devices.

Many of the lower-cost smartcards still have 8-bit processors. Some of them
have memory management routines that let certain addresses be read only
when passwords are entered into a register in the preceding few instructions.
The goal was that the various principals with a stake in the card — perhaps

4.4 What Goes Wrong

117

a card manufacturer, an OEM, a network and a bank — can all have their
secrets on the card and yet be protected from each other. This may be a matter
of software; but some cards have small, hardwired access control matrices to
enforce this protection.

Many of the encryption devices used in banking to handle ATM PINs have
a further layer of application-level access control in the form of an “authorized
state” which must be set (by two console passwords, or a physical key) when
PINs are to be printed. This is reminiscent of the old IBM mainframes, but is
used for manual rather than programmatic control: it enables a shift supervisor
to ensure that he is present when this job is run. Similar devices are used by
the military to distribute keys. I'll discuss cryptoprocessors in more detail in
Chapter 16.

4.4 What Goes Wrong

Popular operating systems such as Unix / Linux and Windows are very large
and complex, so they have many bugs. They are used in a huge range of
systems, so their features are tested daily by millions of users under very
diverse circumstances. Consequently, many bugs are found and reported.
Thanks to the net, knowledge spreads widely and rapidly. Thus at any one
time, there may be dozens of security flaws that are known, and for which
attack scripts are circulating on the net. A vulnerability has a typical lifecycle
whereby it is discovered; reported to CERT or to the vendor; a patch is
shipped; the patch is reverse-engineered, and an exploit is produced for the
vulnerability; and people who did not apply the patch in time find that their
machines have been recruited to a botnet when their ISP cuts them off for
sending spam. There is a variant in which the vulnerability is exploited at
once rather than reported — often called a zero-day exploit as attacks happen
from day zero of the vulnerability’s known existence. The economics, and
the ecology, of the vulnerability lifecycle are the subject of intensive study by
security economists; I'll discuss their findings in Part III.

The traditional goal of an attacker was to get a normal account on the system
and then become the system administrator, so he could take over the system
completely. The first step might have involved guessing, or social-engineering,
a password, and then using one of the many known operating-system bugs
that allow the transition from user to root. A taxonomy of such technical
flaws was compiled in 1993 by Carl Landwehr [774]. These involved failures
in the technical implementation, of which I will give examples in the next two
sections, and also in the higher level design; for example, the user interface
might induce people to mismanage access rights or do other stupid things
which cause the access control to be bypassed. I will give some examples in
section 4.4.3 below.

Chapter 4 = Access Control

The user/root distinction has become less important in the last few years for
two reasons. First, Windows PCs have predominated, running applications
that insist on being run as administrator, so any application that can be
compromised gives administrator access. Second, attackers have come to
focus on compromising large numbers of PCs, which they can organise into
a botnet in order to send spam or phish and thus make money. Even if your
mail client were not running as administrator, it would still be useful to a
spammer who could control it. However, botnet herders tend to install rootkits
which, as their name suggests, run as root; and the user/root distinction does
still matter in business environments, where you do not want a compromised
web server or database application to expose your other applications as well.
Perhaps if large numbers of ordinary users start running Vista with User
Account Control enabled, it will make the botnet herders’ lives a bit harder.
We may at least hope.

In any case, the basic types of technical attack have not changed hugely
since the early 1990s and I'll now consider them briefly.

4.4.1 Smashing the Stack

About half of the technical attacks on operating systems that are reported in
Computer Emergency Response Team (CERT) bulletins and security mailing lists
involve memory overwriting attacks, colloquially known as ‘smashing the
stack’. The proportion was even higher in the late 1990s and early 2000s but is
now dropping slowly.

The basic idea behind the stack-smashing attack is that programmers are
often careless about checking the size of arguments, so an attacker who passes
a long argument to a program may find that some of it gets treated as code
rather than data. A classic example was a vulnerability in the Unix finger
command. A widespread implementation of this would accept an argument
of any length, although only 256 bytes had been allocated for this argument
by the program. When an attacker used the command with a longer argument,
the trailing bytes of the argument ended up being executed by the system.

The usual technique is to arrange for the trailing bytes of the argument to
have a landing pad — a long space of no-operation (NOP) commands, or other
register commands that don’t change the control flow, and whose task is to
catch the processor if it executes any of them. The landing pad delivers the
processor to the attack code which will do something like creating a root
account with no password, or starting a shell with administrative privilege
directly (see Figure 4.6).

Many of the vulnerabilities reported routinely by CERT and bugtraq are
variants on this theme. I wrote in the first edition of this book, in 2001, “There
is really no excuse for the problem to continue, as it’s been well known for a
generation’. Yet it remains a problem.

4.4 What Goes Wrong

Malicious code

Malicious
argument

Over-long

Landing pad input

Target machine
memory map

Arf;a allocated for Executable
input buffer code

Figure 4.6: Stack smashing attack

Most of the early 1960’s time sharing systems suffered from it, and fixed
it [549]. Penetration analysis efforts at the System Development Corporation
in the early '70s showed that the problem of ‘unexpected parameters’ was still
one of the most frequently used attack strategies [799]. Intel’s 80286 proces-
sor introduced explicit parameter checking instructions — verify read, verify
write, and verify length — in 1982, but they were avoided by most software
designers to prevent architecture dependencies. In 1988, large numbers of
Unix computers were brought down simultaneously by the ‘Internet worm’,
which used the finger vulnerability described above, and thus brought mem-
ory overwriting attacks to the notice of the mass media [1206]. A 1998 survey
paper described memory overwriting attacks as the ‘attack of the decade’ [329].

Yet programmers still don’t check the size of arguments, and holes keep on
being found. The attack isn’t even limited to networked computer systems: at
least one smartcard could be defeated by passing it a message longer than its
programmer had anticipated.

4.4.2 Other Technical Attacks

In 2002, Microsoft announced a security initiative that involved every pro-
grammer being trained in how to write secure code. (The book they produced
for this, “Writing Secure Code’ by Michael Howard and David LeBlanc, is good;
I recommend it to my students [627].) Other tech companies have launched
similar training programmes. Despite the training and the tools, memory
overwriting attacks are still appearing, to the great frustration of software
company managers. However, they are perhaps half of all new vulnerabilities
now rather than the 90% they were in 2001.

The other new vulnerabilities are mostly variations on the same general
theme, in that they occur when data in grammar A is interpreted as being in
grammar B. A stack overflow is when data are accepted as input (e.g. a URL)

120

Chapter 4 = Access Control

and end up being executed as machine code. They are essentially failures of
type safety.

A format string vulnerability arises when a machine accepts input data
as a formatting instruction (e.g. %n in the C command printf()). These
commonly arise when a programmer tries to print user-supplied data and
carelessly allows the print command to interpret any formatting instructions
in the string; this may allow the string’s author to write to the stack. There
are many other variants on the theme; buffer overflows can be induced by
improper string termination, passing an inadequately sized buffer to a path
manipulation function, and many other subtle errors. See Gary McGraw’s
book ‘Software Security’ [858] for a taxonomy.

SQL insertion attacks commonly arise when a careless web developer
passes user input to a back-end database without checking to see whether it
contains SQL code. The game is often given away by error messages, from
which a capable and motivated user may infer enough to mount an attack.
(Indeed, a survey of business websites in 2006 showed that over 10% were
potentialy vulnerable [1234].) There are similar command-injection problems
afflicting other languages used by web developers, such as PHP and perl. The
remedy in general is to treat all user input as suspicious and validate it.

Checking data sizes is all very well when you get the buffer size calculation
correct, but when you make a mistake — for example, if you fail to consider
all the edge cases — you can end up with another type of attack called an
integer manipulation attack. Here, an overflow, underflow, wrap-around or
truncation can result in the ‘security’ code writing an inappropriate number
of bytes to the stack.

Once such type-safety attacks are dealt with, race conditions are probably
next. These occur when a transaction is carried out in two or more stages, and
it is possible for someone to alter it after the stage which involves verifying
access rights. I mentioned in Chapter 2 how a race condition can allow users
to log in as other users if the userid can be overwritten while the password
validation is in progress. Another classic example arose in the Unix command
to create a directory, ‘mkdir’, which used to work in two steps: the storage
was allocated, and then ownership was transferred to the user. Since these
steps were separate, a user could initiate a ‘mkdir’ in background, and if this
completed only the first step before being suspended, a second process could
be used to replace the newly created directory with a link to the password
file. Then the original process would resume, and change ownership of the
password file to the user. The /tmp directory, used for temporary files, can
often be abused in this way; the trick is to wait until an application run by a
privileged user writes a file here, then change it to a symbolic link to another
file somewhere else — which will be removed when the privileged user’s
application tries to delete the temporary file.

4.4 What Goes Wrong

121

A wide variety of other bugs have enabled users to assume root status
and take over the system. For example, the PDP-10 TENEX operating system
had the bug that the program address could overflow into the next bit of
the process state word which was the privilege-mode bit; this meant that a
program overflow could put a program in supervisor state. In another example,
some Unix implementations had the feature that if a user tried to execute the
command su when the maximum number of files were open, then su was
unable to open the password file and responded by giving the user root status.
In more modern systems, the most intractable user-to-root problems tend to be
feature interactions. For example, we've struggled with backup and recovery
systems. It’s convenient if you can let users recover their own files, rather than
having to call a sysadmin — but how do you protect information assets from
a time traveller, especially if the recovery system allows him to compose parts
of pathnames to get access to directories that were always closed to him? And
what if the reovery functionality is buried in an application to which he needs
access in order to do his job, and can be manipulated to give root access?

There have also been many bugs that allowed service denial attacks. For
example, Multics had a global limit on the number of files that could be open at
once, but no local limits. So a user could exhaust this limit and lock the system
so that not even the administrator could log on [774]. And until the late 1990’s,
most implementations of the Internet protocols allocated a fixed amount of
buffer space to process the SYN packets with which TCP/IP connections are
initiated. The result was SYN flooding attacks: by sending a large number of
SYN packets, an attacker could exhaust the available buffer space and prevent
the machine accepting any new connections. This is now fixed using syncookies,
which I'll discuss in Part II

The most recently discovered family of attacks of this kind are on system
call wrappers. These are software products that modify software behaviour
by intercepting the system calls it makes and performing some filtering or
manipulation. Some wrapper products do virtualization; others provide secu-
rity extensions to operating systems. However Robert Watson has discovered
that such products may have synchronization bugs and race conditions that
allow an attacker to become root [1325]. (I'll describe these in more detail in
section 18.3.) The proliferation of concurrency mechanisms everywhere, with
multiprocessor machines suddenly becoming the norm after many years in
which they were a research curiosity, may lead to race conditions being the
next big family of attacks.

4.4.3 User Interface Failures

One of the earliest attacks to be devised was the Trojan Horse, a program that
the administrator is invited to run and which will do some harm if he does
so. People would write games which checked occasionally whether the player

122

Chapter 4 = Access Control

was the system administrator, and if so would create another administrator
account with a known password.

Another trick is to write a program that has the same name as a commonly
used system utility, such as the 1s command which lists all the files in a Unix
directory, and design it to abuse the administrator privilege (if any) before
invoking the genuine utility. The next step is to complain to the administrator
that something is wrong with this directory. When the administrator enters
the directory and types 1s to see what'’s there, the damage is done. The fix
is simple: an administrator’s ‘'PATH" variable (the list of directories which
will be searched for a suitably named program when a command is invoked)
should not contain *.” (the symbol for the current directory). Recent Unix
versions are shipped with this as a default; but it’s still an unnecessary trap
for the unwary.

Perhaps the most serious example of user interface failure, in terms of
the number of systems at risk, is in Windows. I refer to the fact that, until
Vista came along, a user needed to be the system administrator to install
anything?. In theory this might have helped a bank preventing its branch
staff from running games on their PCs at lunchtime and picking up viruses.
But most environments are much less controlled, and many people need
to be able to install software to get their work done. So millions of people
have administrator privileges who shouldn’t need them, and are vulnerable
to attacks in which malicious code simply pops up a box telling them to
do something. Thank goodness Vista is moving away from this, but UAC
provides no protection where applications such as web servers must run as
root, are visible to the outside world, and contain software bugs that enable
them to be taken over.

Another example, which might be argued is an interface failure, comes
from the use of active content of various kinds. These can be a menace
because users have no intuitively clear way of controlling them. Javascript and
ActiveX in web pages, macros in Office documents and executables in email
attachments have all been used to launch serious attacks. Even Java, for all
its supposed security, has suffered a number of attacks that exploited careless
implementations [360]. However, many people (and many companies) are
unwilling to forego the bells and whistles which active content can provide,
and we saw in Chapter 2 how the marketing folks usually beat the security
folks (even in applications like banking).

4.4.4 Why So Many Things Go Wrong

We've already mentioned the basic problem faced by operating system security
designers: their products are huge and therefore buggy, and are tested by large

2In theory a member of the Power Users Group in XP could but that made little difference.

4.4 What Goes Wrong

123

numbers of users in parallel, some of whom will publicize their discoveries
rather than reporting them to the vendor. Even if all bugs were reported
responsibly, this wouldn’t make much difference; almost all of the widely
exploited vulnerabilities over the last few years had already been patched.
(Indeed, Microsoft’s ‘Patch Tuesday’ each month is followed by ‘Exploit
Wednesday’ as the malware writers reverse the new vulnerabilities and attack
them before everyone’s patched them.)

There are other structural problems too. One of the more serious causes of
failure is kernel bloat. Under Unix, all device drivers, filesystems etc. must be
in the kernel. Until Vista, the Windows kernel used to contain drivers for a
large number of smartcards, card readers and the like, many of which were
written by the equipment vendors. So large quantities of code were trusted,
in that they are put inside the security perimeter. Some other systems, such as
MVS, introduced mechanisms that decrease the level of trust needed by many
utilities. However the means to do this in the most common operating systems
are few and relatively nonstandard.

Even more seriously, most application developers make their programs
run as root. The reasons for this are economic rather than technical, and are
easy enough to understand. A company trying to build market share for a
platform, such as an operating system, must appeal to its complementers — its
application developers —as well as to its users. It is easier for developers
if programs can run as root, so early Windows products allowed just that.
Once the vendor has a dominant position, the business logic is to increase the
security, and also to customise it so as to lock in both application developers
and users more tightly. This is now happening with Windows Vista as the
access control mechanisms become ever more complex, and different from
Linux and OS/X. A similar pattern, or too little security in the early stages of a
platform lifecycle and too much (of the wrong kind) later, has been observed
in other platforms from mainframes to mobile phones.

Making many applications and utilities run as root has repeatedly intro-
duced horrible vulnerabilities where more limited privilege could have been
used with only a modicum of thought and a minor redesign. There are many
systems such as 1pr/1pd — the Unix lineprinter subsystem — which does not
need to run as root but does anyway on most systems. This has also been a
source of security failures in the past (e.g., getting the printer to spool to the
password file).

Some applications need a certain amount of privilege. For example, mail
delivery agents must be able to deal with user mailboxes. But while a prudent
designer would restrict this privilege to a small part of the application, most
agents are written so that the whole program needs to run as root. The classic
example is sendmail, which has a long history of serious security holes; but
many other MTAs also have problems. The general effect is that a bug which

124

Chapter 4 = Access Control

ought to compromise only one person’s mail may end up giving root privilege
to an outside attacker.

So we're going to have some interesting times as developers come to grips
with UAC. The precedents are not all encouraging. Some programmers histori-
cally avoided the difficulty of getting non-root software installed and working
securely by simply leaving important shared data structures and resources
accessible to all users. Many old systems stored mail in a file per user in
a world-writeable directory, which makes mail forgery easy. The Unix file
utmp — the list of users logged in — was frequently used for security checking
of various kinds, but is also frequently world-writeable! This should have
been built as a service rather than a file — but fixing problems like these once
the initial design decisions have been made can be hard. I expect to see all
the old problems of 1970s multiuser systems come back again, as the complex-
ity of using the Vista mechanisms properly just defeats many programmers
who aren’t security specialists and are just desparate to get something sort of
working so they can end the assignment, collect their bonus and move on.

4.4.5 Remedies

Some classes of vulnerability can be fixed using automatic tools. Stack over-
writing attacks, for example, are largely due to the lack of proper bounds
checking in C (the language most operating systems are written in). There
are various tools (including free tools) available for checking C programs for
potential problems, and there is even a compiler patch called StackGuard
which puts a canary next to the return address on the stack. This can be a
random 32-bit value chosen when the program is started, and checked when a
function is torn down. If the stack has been overwritten meanwhile, then with
high probability the canary will change [329]. The availability of these tools,
and training initiatives such as Microsoft’s, have slowly reduced the number
of stack overflow errors. However, attack tools also improve, and attackers are
now finding bugs such as format string vulnerabilities and integer overflows
to which no-one paid much attention in the 1990s.

In general, much more effort needs to be put into design, coding and testing.
Architecture matters; having clean interfaces that evolve in a controlled way,
under the eagle eye of someone experienced who has a long-term stake in the
security of the product, can make a huge difference. (I'll discuss this at greater
length in Part III.) Programs should only have as much privilege as they need:
the principle of least privilege [1102]. Software should also be designed so that
the default configuration, and in general, the easiest way of doing something,
should be safe. Sound architecture is critical in achieving safe defaults and
using least privilege. However, many systems are shipped with dangerous
defaults and messy code that potentially exposes all sorts of interfaces to
attacks like SQL injection that just shouldn’t happen.

4.4 What Goes Wrong

125

4.4.6 Environmental Creep

I'have pointed out repeatedly that many security failures result from environ-
mental change undermining a security model. Mechanisms that were adequate
in a restricted environment often fail in a more general one.

Access control mechanisms are no exception. Unix, for example, was origi-
nally designed as a ‘single user Multics” (hence the name). It then became an
operating system to be used by a number of skilled and trustworthy people
in a laboratory who were sharing a single machine. In this environment the
function of the security mechanisms is mostly to contain mistakes; to prevent
one user’s typing errors or program crashes from deleting or overwriting
another user’s files. The original security mechanisms were quite adequate for
this purpose.

But Unix security became a classic ‘success disaster’. Unix was repeatedly
extended without proper consideration being given to how the protection
mechanisms also needed to be extended. The Berkeley versions assumed an
extension from a single machine to a network of machines that were all on
one LAN and all under one management. Mechanisms such as rhosts were
based on a tuple (username,hostname) rather than just a username, and saw the
beginning of the transfer of trust.

The Internet mechanisms (telnet, ftp, DNS, SMTP), which grew out of
Arpanet in the 1970’s, were written for mainframes on what was originally
a secure WAN. Mainframes were autonomous, the network was outside the
security protocols, and there was no transfer of authorization. Thus remote
authentication, which the Berkeley model was starting to make prudent, was
simply not supported. The Sun contributions (NFS, NIS, RPC etc.) were based
on a workstation model of the universe, with a multiple LAN environment
with distributed management but still usually in a single organisation. (A
proper tutorial on topics such as DNS and NFS is beyond the scope of this
book, but there is some more detailed background material in the section on
Vulnerabilities in Network Protocols in Chapter 21.)

Mixing all these different models of computation together has resulted in
chaos. Some of their initial assumptions still apply partially, but none of them
apply globally any more. The Internet now has hundreds of millions of PCs,
millions of LANSs, thousands of interconnected WANSs, and managements
which are not just independent but may be in conflict (including nation
states and substate groups that are at war with each other). Many PCs have
no management at all, and there’s a growing number of network-connected
Windows and Linux boxes in the form of fax machines, routers and other
embedded products that don’t ever get patched.

Users, instead of being trustworthy but occasionally incompetent, are now
largely incompetent — but some are both competent and hostile. Code used
to be simply buggy — but now there is a significant amount of malicious

126

Chapter 4 = Access Control

code out there. Attacks on communications networks used to be the purview
of national intelligence agencies —now they can be done by script kiddies,
relatively unskilled people who have downloaded attack tools from the net
and launched them without any real idea of how they work.

So Unix and Internet security gives us yet another example of a system
that started out reasonably well designed but which was undermined by a
changing environment.

Windows Vista and its predecessors in the NT product series have more
extensive protection mechanisms than Unix, but have been around for much
less time. The same goes for database products such as Oracle. Realistically,
all we can say is that the jury is still out.

4.5 Summary

Access control mechanisms operate at a number of levels in a system, from
applications down through middleware to the operating system and the
hardware. Higher level mechanisms can be more expressive, but also tend to
be more vulnerable to attack for a variety of reasons ranging from intrinsic
complexity to implementer skill levels. Most attacks involve the opportunistic
exploitation of bugs, and software products that are very large, very widely
used, or both (as with operating systems and databases) are particularly likely
to have security bugs found and publicized. Systems at all levels are also
vulnerable to environmental changes which undermine the assumptions used
in their design.

The main function of access control is to limit the damage that can be
done by particular groups, users, and programs whether through error or
malice. The most important fielded examples are Unix and Windows, which
are similar in many respects, though Windows is more expressive. Database
products are often more expressive still (and thus even harder to implement
securely.) Access control is also an important part of the design of special
purpose hardware such as smartcards and other encryption devices. New
techniques are being developed to push back on the number of implementation
errors, such as stack overflow attacks; but new attacks are being found
continually, and the overall dependability of large software systems improves
only slowly.

The general concepts of access control from read, write and execute permis-
sions to groups and roles will crop up again and again. In some distributed
systems, they may not be immediately obvious as the underlying mechanisms
can be quite different. An example comes from public key infrastructures,
which are a reimplementation of an old access control concept, the capability.
However, the basic mechanisms (and their problems) are pervasive.

Further Reading

127

Research Problems

Most of the issues in access control were identified by the 1960’s or early 1970’s
and were worked out on experimental systems such as Multics [1139] and the
CAP [1344]. Much of the research in access control systems since has involved
reworking the basic themes in new contexts, such as object oriented systems
and mobile code.

Recent threads of research include how to combine access control with the
admission control mechanisms used to provide quality of service guaranteed
in multimedia operating systems, and how to implement and manage access
control efficiently in large complex systems, using roles and policy languages.
However the largest single topic of research during 2003—6 has been “Trusted
Computing’, and how various trust mechanisms could be layered on top of
the mechanisms proposed by the Trusted Computing Group. The failure of
Windows Vista, as released in January 2007, to support remote attestation has
somewhat taken the wind out of the sails of this effort.

I suspect that a useful research topic for the next few years will be how
to engineer access control mechanisms that are not just robust but also
usable — by both programmers and end users. Separation is easy enough in
principle; one can have different machines, or different virtual machines, for
different tasks. But how happy would people be with an electronic banking
application that was so well walled off from the rest of the digital world that
they could not export figures from their bank statement into a spreadsheet?
I'll discuss this problem at greater length when we come to mandatory access
controls in Chapter 8.

Further Reading

The best textbook to go to for a more detailed introduction to access control
issues is Dieter Gollmann’s ‘Computer Security’ [537]. A technical report from
Carl Landwehr gives a useful reference to many of the flaws found in
operating systems over the last 30 years or so[774]. One of the earliest
reports on the subject (and indeed on computer security in general) is by
Willis Ware [1319]. One of the most influential early papers is by Jerry Saltzer
and Mike Schroeder [1102], while Butler Lampson’s influential paper on the
confinement problem is at [768].

The classic description of Unix security is in the paper by Fred Grampp and
Robert Morris [550]. The most comprehensive textbook on this subject is Sim-
son Garfinkel and Eugene Spafford’s Practical Unix and Internet Security [517],
while the classic on the Internet side of things is Bill Cheswick and Steve

128

Chapter 4 = Access Control

Bellovin’s Firewalls and Internet Security [157], with many examples of network
attacks on Unix systems.

The protection mechanisms of Windows are described briefly in Gollmann.
For more detail, see the Microsoft online documentation; no doubt a number
of textbooks on Vista will appear soon. There is a history of microprocessor
architectures at [128], and a reference book for Java security written by its
architect Li Gong [539].

The field of software security is fast moving; the attacks that are catching
the headlines change significantly (at least in their details) from one year to the
next. The best recent book I've read is Gary McGraw’s [858]. But to keep up,
you should not just read textbooks, but follow the latest notices from CERT and
mailing lists such as bugtraq and books about the dark side such as Markus
Jakobsson and Zulfikar Ramzan’s [660].

Cryptography

ZHQM ZMGM ZMFM
— G Julius Caesar

KXJEY UREBE ZWEHE WRYTU HEYFS KREHE GOYFI WTTTU OLKSY CAJPO BOTEI
ZONTX BYBWT GONEY CUZWR GDSON SXBOU YWRHE BAAHY USEDQ

— John F Kennedy

5.1 Introduction

Cryptography is where security engineering meets mathematics. It provides
us with the tools that underlie most modern security protocols. It is probably
the key enabling technology for protecting distributed systems, yet it is
surprisingly hard to do right. As we’ve already seen in Chapter 3, ‘Protocols’,
cryptography has often been used to protect the wrong things, or used to
protect them in the wrong way. We'll see plenty more examples when we start
looking in detail at real applications.

Unfortunately, the computer security and cryptology communities have
drifted apart over the last 25 years. Security people don’t always understand
the available crypto tools, and crypto people don’t always understand the
real-world problems. There are a number of reasons for this, such as different
professional backgrounds (computer science versus mathematics) and differ-
ent research funding (governments have tried to promote computer security
research while suppressing cryptography). It reminds me of a story told by
a medical friend. While she was young, she worked for a few years in a
country where, for economic reasons, they’d shortened their medical degrees
and concentrated on producing specialists as quickly as possible. One day,

129

130

Chapter 5 = Cryptography

a patient who’d had both kidneys removed and was awaiting a transplant
needed her dialysis shunt redone. The surgeon sent the patient back from the
theater on the grounds that there was no urinalysis on file. It just didn’t occur
to him that a patient with no kidneys couldn’t produce any urine.

Just as a doctor needs to understand physiology as well as surgery, so
a security engineer needs to be familiar with cryptology as well as computer
security (and much else). This chapter is aimed at people without any training
in cryptology; cryptologists will find little in it that they don’t already know.
As I only have a few dozen pages, and a proper exposition of modern cryp-
tography would run into thousands, I won’t go into much of the mathematics
(there are lots of books that do that; see the end of the chapter for further
reading). I'll just explain the basic intuitions and constructions that seem
to cause the most confusion. If you have to use cryptography in anything
resembling a novel way, then I strongly recommend that you read a lot more
about it — and talk to some real experts. The security engineer Paul Kocher
remarked, at a keynote speech at Crypto 2007, that you could expect to break
any crypto product designed by ‘any company that doesn’t employ someone
in this room’. There is a fair bit of truth in that.

Computer security people often ask for non-mathematical definitions of
cryptographic terms. The basic terminology is that cryptography refers to
the science and art of designing ciphers; cryptanalysis to the science and
art of breaking them; while cryptology, often shortened to just crypto, is
the study of both. The input to an encryption process is commonly called the
plaintext, and the output the ciphertext. Thereafter, things get somewhat more
complicated. There are a number of cryptographic primitives — basic building
blocks, such as block ciphers, stream ciphers, and hash functions. Block ciphers
may either have one key for both encryption and decryption, in which case
they’re called shared-key (also secret-key or symmetric), or have separate keys
for encryption and decryption, in which case they’re called public-key or
asymmetric. A digital signature scheme is a special type of asymmetric crypto
primitive.

In the rest of this chapter, I will first give some simple historical examples to
illustrate the basic concepts. I'll then try to fine-tune definitions by introducing
the random oracle model, which many cryptologists use. Finally, I'll show how
some of the more important cryptographic algorithms actually work, and
how they can be used to protect data.

5.2 Historical Background

Suetonius tells us that Julius Caesar enciphered his dispatches by writing
‘D’ for ‘A’, ‘E’ for ‘B’ and so on [1232]. When Augustus Caesar ascended the
throne, he changed the imperial cipher system so that ‘C” was now written for

5.2 Historical Background

131

‘A’, D’ for ‘B’ etcetera. In modern terminology, we would say that he changed
the key from ‘D’ to ‘C’. Remarkably, a similar code was used by Bernardo
Provenzano, allegedly the capo di tutti capi of the Sicilian mafia, who wrote ‘4’
for “a, ‘5’ for ‘b’ and so on. This led directly to his capture by the Italian police
in 2006 after they intercepted and deciphered some of his messages [1034].
The Arabs generalised this idea to the monoalphabetic substitution, in which
a keyword is used to permute the cipher alphabet. We will write the plaintext
in lower case letters, and the ciphertext in upper case, as shown in Figure 5.1:

abcdefghijklmnopgrstuvwxyz
SECURITYABDFGHJIJKLMNOPQVWXZ

Figure 5.1: Monoalphabetic substitution cipher

OYAN RWSGKFR AN AH RHTFANY MSOYRM OYSH SMSEAC NCMAKO; but breaking
ciphers of this kind is a straightforward pencil and paper puzzle, which you
may have done in primary school. The trick is that some letters, and combi-
nations of letters, are much more common than others; in English the most
common letters are e,taion,shr,dlu in that order. Artificial intelligence
researchers have shown some interest in writing programs to solve monoal-
phabetic substitutions. Using letter and digram (letter pair) frequencies alone,
they typically succeed with about 600 letters of ciphertext, while smarter
strategies such as guessing probable words can cut this to about 150 letters. A
human cryptanalyst will usually require much less.

There are basically two ways to make a stronger cipher — the stream cipher
and the block cipher. In the former, you make the encryption rule depend on
a plaintext symbol’s position in the stream of plaintext symbols, while in the
latter you encrypt several plaintext symbols at once in a block. Let’s look at
early examples.

5.2.1 An Early Stream Cipher — The Vigenére

This early stream cipher is commonly ascribed to the Frenchman Blaise de
Vigenere, a diplomat who served King Charles IX. It works by adding a key
repeatedly into the plaintext using the convention that ‘A" =0, 'B'=1, ...,
‘Z’ =25, and addition is carried out modulo 26 — that is, if the result is greater
than 25, we subtract as many multiples of 26 as are needed to bring is into the
range [0, ..., 25], thatis, [A, ..., Z]. Mathematicians write this as

C=P+ Kmod 26

So, for example, when we add P (15) to U (20) we get 35, which we reduce to
9 by subtracting 26. 8 corresponds to J, so the encryption of P under the key U
(and of U under the key P) is J. So in this notation, Julius Caesar’s system used a

132

Chapter 5 = Cryptography

fixed key K = D', while Augustus Caesar’s used K = C and Vigenere used a
repeating key, also known as a running key. Various means were developed
to do this addition quickly, including printed tables and, for field use, cipher
wheels. Whatever the implementation technology, the encryption using a
repeated keyword for the key would look as shown in Figure 5.2:

Plain tobeornottobethatisthequestion
Key runrunrunrunrunrunrunrunrunrun
Cipher KIOVIEEIGKIOVNURNVJINUVKHVMGZIA

Figure 5.2: Vigenére (polyalphabetic substitution cipher)

A number of people appear to have worked out how to solve polyalphabetic
ciphers, from the womaniser Giacomo Casanova to the computing pioneer
Charles Babbage. However the first published solution was in 1863 by Friedrich
Kasiski, a Prussian infantry officer [695]. He noticed that given a long enough
piece of ciphertext, repeated patterns will appear at multiples of the keyword
length.

In Figure 5.2, for example, we see ‘k10v’ repeated after nine letters, and ‘nu’
after six. Since three divides both six and nine, we might guess a keyword
of three letters. It follows that ciphertext letters one, four, seven and so on
all enciphered under the same keyletter; so we can use frequency analysis
techniques to guess the most likely values of this letter, and then repeat the
process for the second and third letters of the key.

5.2.2 The One-Time Pad

One way to make a stream cipher of this type proof against attacks is for the
key sequence to be as long as the plaintext, and to never repeat. This was pro-
posed by Gilbert Vernam during World War 1 [676]; its effect is that given any
ciphertext, and any plaintext of the same length, there is a key which decrypts
the ciphertext to the plaintext. Regardless of the amount of computation that
opponents can do, they are none the wiser, as all possible plaintexts are just
as likely. This system is known as the one-time pad. Leo Marks” engaging book
on cryptography in the Special Operations Executive in World War 2 [836]
relates how one-time key material was printed on silk, which agents could
conceal inside their clothing; whenever a key had been used it was torn off
and burnt.

An example should explain all this. Suppose you had intercepted a message
from a wartime German agent which you knew started with ‘Heil Hitler’,
and the first ten letters of ciphertext were pcryr BwpJa. This means that

modulo 23, as the alphabet Caesar used wrote U as V, J as I, and had no W.

5.2 Historical Background

133

the first ten letters of the one-time pad were wclnb tdefj, as shown in
Figure 5.3:

Plain heilhitler
Key wclnbtdef]j
Cipher DGTYIBWPJA

Figure 5.3: A spy’s message

But once he’s burnt the piece of silk with his key material, the spy can claim
that he’s actually a member of the anti-Nazi underground resistance, and the
message actually said ‘Hang Hitler’. This is quite possible, as the key material
could just as easily have been wggsb tdefj, as shown in Figure 5.4:

Cipher DGTYIBWPJA
Key wggsbtdefj
Plain hanghitler

Figure 5.4: What the spy claimed he said

Now we rarely get anything for nothing in cryptology, and the price of the
perfect secrecy of the one-time pad is that it fails completely to protect message
integrity. Suppose for example that you wanted to get this spy into trouble,
you could change the ciphertext to pcyrr swpda (Figure 5.5):

Cipher DCYTIBWPJA
Key wclnbtdef]
Plain hanghitler

Figure 5.5: Manipulating the message to entrap the spy

During the Second World War, Claude Shannon proved that a cipher has
perfect secrecy if and only if there are as many possible keys as possible
plaintexts, and every key is equally likely; so the one-time pad is the only kind
of system which offers perfect secrecy [1157, 1158].

The one-time pad is still used for some diplomatic and intelligence traffic,
but it consumes as much key material as there is traffic and this is too expensive
for most applications. It's more common for stream ciphers to use a suitable
pseudorandom number generator to expand a short key into a long keystream.
The data is then encrypted by exclusive-or’ing the keystream, one bit at a time,
with the data. It’s not enough for the keystream to appear “random” in
the sense of passing the standard statistical randomness tests: it must also
have the property that an opponent who gets his hands on even quite a lot of

134

Chapter 5 = Cryptography

keystream bits should not be able to predict any more of them. I'll formalise
this more tightly in the next section.

Stream ciphers are commonly used nowadays in hardware applications
where the number of gates has to be minimised to save power. We'll look
at some actual designs in later chapters, including the A5 algorithm used
to encipher GSM mobile phone traffic (in the chapter on “Telecom System
Security’), and the shift register systems used in pay-per-view TV and DVD
CSS (in the chapter on ‘Copyright and Privacy Protection’). However, block
ciphers are more suited for many applications where encryption is done in
software, so let’s look at them next.

5.2.3 An Early Block Cipher — Playfair

One of the best-known early block ciphers is the Playfair system. It was
invented in 1854 by Sir Charles Wheatstone, a telegraph pioneer who
also invented the concertina and the Wheatstone bridge. The reason it’s
not called the Wheatstone cipher is that he demonstrated it to Baron Playfair,
a politician; Playfair in turn demonstrated it to Prince Albert and to Viscount
Palmerston (later Prime Minister), on a napkin after dinner.

This cipher uses a 5 by 5 grid, in which we place the alphabet, permuted by
the key word, and omitting the letter ‘]” (see Figure 5.6):

P A L M E
R S T @) N
B C D F G
H I K Q U
\Y% W X Y Z

Figure 5.6: The Playfair enciphering tableau

The plaintext is first conditioned by replacing ‘J” with ‘I’ wherever it occurs,
then dividing it into letter pairs, preventing double letters occurring in a
pair by separating them with an ‘x’, and finally adding a ‘z" if necessary to
complete the last letter pair. The example Playfair wrote on his napkin was
‘Lord Granville’s letter” which becomes ‘1o rd gr an vi 1x le sl et te rz’.

It is then enciphered two letters at a time using the following rules:

m if the two letters are in the same row or column, they are replaced by the
succeeding letters. For example, ‘am” enciphers to ‘Lg’

m otherwise the two letters stand at two of the corners of a rectangle in
the table, and we replace them with the letters at the other two corners of
this rectangle. For example, ‘10" enciphers to ‘MT’.

5.2 Historical Background

135

We can now encipher our specimen text as follows:

Plain lo rd gr an vi 1lx le sl et te rz
Cipher MT TB BN ES WH TL MP TA LN NL NV

Figure 5.7: Example of Playfair enciphering

Variants of this cipher were used by the British army as a field cipher in
World War 1, and by the Americans and Germans in World War 2. It’s a
substantial improvement on Vigenere as the statistics which an analyst can
collect are of digraphs (letter pairs) rather than single letters, so the distribution
is much flatter and more ciphertext is needed for an attack.

Again, it’s not enough for the output of a block cipher to just look intuitively
‘random’. Playfair ciphertexts look random; but they have the property that if
you change a single letter of a plaintext pair, then often only a single letter of
the ciphertext will change. Thus using the key in Figure 5.7, rd enciphers to
TB while rf enciphers to 0B and rg enciphers to NB. One consequence is that
given enough ciphertext, or a few probable words, the table (or an equivalent
one) can be reconstructed [512]. So we will want the effects of small changes
in a block cipher’s input to diffuse completely through its output: changing
one input bit should, on average, cause half of the output bits to change. We'll
tighten these ideas up in the next section.

The security of a block cipher can be greatly improved by choosing a longer
block length than two characters. For example, the Data Encryption Standard
(DES), which is widely used in banking, has a block length of 64 bits, which
equates to eight ascii characters and the Advanced Encryption Standard (AES),
which is replacing it in many applications, has a block length of twice this. I
discuss the internal details of DES and AES below; for the time being, I'll just
remark that an eight byte or sixteen byte block size is not enough of itself.
For example, if a bank account number always appears at the same place
in a transaction, then it’s likely to produce the same ciphertext every time a
transaction involving it is encrypted with the same key.

This might allow an opponent to cut and paste parts of two different cipher-
texts in order to produce a seemingly genuine but unauthorized transaction.
Suppose a bad man worked for a bank’s phone company, and could intercept
their traffic. If he monitored an enciphered transaction that he knew said ““Pay
IBM $10,000,000"” he might wire $1,000 to his brother causing the bank com-
puter to insert another transaction saying “Pay John Smith $1,000”, intercept
this instruction, and make up a false instruction from the two ciphertexts that
decrypted as “Pay John Smith $10,000,000”. So unless the cipher block is as
large as the message, the ciphertext will contain more than one block and we
will usually need some way of binding the blocks together.

136

Chapter 5 = Cryptography

5.2.4 One-Way Functions

The third classical type of cipher is the one-way function. This evolved to
protect the integrity and authenticity of messages, which as we’ve seen
is not protected at all by many simple ciphers where it is often easy to
manipulate the ciphertext in such a way as to cause a predictable change in the
plaintext.

After the invention of the telegraph in the mid-19th century, banks rapidly
became its main users and developed systems for transferring money elec-
tronically. Of course, it isn’t the money itself which is ‘wired” but a payment
instruction, such as:

“To Lombard Bank, London. Please pay from our account with you no. 1234567890
the sum of £1000 to John Smith of 456 Chesterton Road, who has an account with
HSBC Bank Cambridge no. 301234 4567890123, and notify him that this was
for “wedding present from Doreen Smith”’. From First Cowboy Bank of Santa
Barbara, CA, USA. Charges to be paid by us.”

Since telegraph messages were relayed from one office to another by human
operators, it was possible for an operator to manipulate a payment message.

In the nineteenth century, banks, telegraph companies and shipping com-
panies developed code books that could not only protect transactions but also
shorten them — which was very important given the costs of international
telegrams at the time. A code book was essentially a block cipher which
mapped words or phrases to fixed-length groups of letters or numbers. So
‘Please pay from our account with you no.” might become “AFVCT’. A compet-
ing technology from the 1920s was rotor machines, mechanical cipher devices
which produce a very long sequence of pseudorandom numbers and combine
them with plaintext to get ciphertext; these were independently invented by
a number of people, many of whom dreamed of making a fortune selling
them to the banking industry. Banks weren’t in general interested, but rotor
machines became the main high-level ciphers used by the combatants in
World War 2.

The banks realised that neither mechanical stream ciphers nor code books
protect message authenticity. If, for example, the codeword for “1000” is
‘mauve’ and for “1,000,000" is ‘magenta’, then the crooked telegraph clerk who
can compare the coded traffic with known transactions should be able to figure
this out and substitute one for the other.

The critical innovation, for the banks” purposes, was to use a code book
but to make the coding one-way by adding the code groups together into
a number called a test key. (Modern cryptographers would describe it as a
hash value or message authentication code, terms I'll define more carefully
later.)

5.2 Historical Background 137

Here is a simple example. Suppose the bank has a code book with a table of
numbers corresponding to payment amounts as in Figure 5.8:

0 1 2 3 4 5 6 7 8 9
x 1000 14 | 22 | 40 | 87 | 69 | 93 | 71 | 35 | 06 | 58
x 10,000 73 1 38 | 15| 46 | 91 | 82 | 00 | 29 | 64 | 57
x 100,000 95 | 70 | 09 | 54 | 82 | 63 | 21 | 47 | 36 | 18
x 1,000,000 | 53 | 77 | 66 | 29 | 40 | 12 | 31 | 05 | 87 | 94

Figure 5.8: A simple test key system

Now in order to authenticate a transaction for £376,514 we add together 53
(no millions), 54 (300,000), 29 (70,000) and 71 (6,000). (It's common to ignore
the less significant digits of the amount.) This gives us a test key of 207.

Most real systems were more complex than this; they usually had tables
for currency codes, dates and even recipient account numbers. In the better
systems, the code groups were four digits long rather than two, and in order
to make it harder for an attacker to reconstruct the tables, the test keys were
compressed: a key of ‘7549" might become ‘23’ by adding the first and second
digits, and the third and fourth digits, and ignoring the carry.

This made such test key systems into one-way functions in that although given
knowledge of the key it was possible to compute a test from a message, it was
not possible to reverse the process and recover a message from a test — the
test just did not contain enough information. Indeed, one-way functions had
been around since at least the seventeenth century. The scientist Robert Hooke
published in 1678 the sorted anagram ‘ceiiinosssttuu” and revealed two years
later that it was derived from ‘Ut tensio sic uis’ — ‘the force varies as the
tension’, or what we now call Hooke’s law for a spring. (The goal was to
establish priority for the idea while giving him time to continue developing it.)

Test keys are not strong by the standards of modern cryptography. Given
somewhere between a few dozen and a few hundred tested messages, depend-
ing on the design details, a patient analyst could reconstruct enough of the
tables to forge a transaction. With a few carefully chosen messages inserted
into the banking system by an accomplice, it’s even easier still. But the banks
got away with it: test keys worked fine from the late nineteenth century
through the 1980’s. In several years working as a bank security consultant, and
listening to elderly bank auditors’ tales over lunch, I only ever heard of two
cases of fraud that exploited it: one external attempt involving cryptanalysis,
which failed because the attacker didn’t understand bank procedures, and one
successful but small fraud involving a crooked staff member. I'll discuss the
systems which replaced test keys, and the whole issue of how to tie cryp-
tographic authentication mechanisms to procedural protection such as dual

138

Chapter 5 = Cryptography

control, in the chapter on ‘Banking and Bookkeeping’. For the meantime, test
keys are the classic example of a one-way function used for authentication.
Later examples included functions for applications discussed in the previous
chapters, such as storing passwords in a one-way encrypted password file,
and computing a response from a challenge in an authentication protocol.

5.2.5 Asymmetric Primitives

Finally, some modern cryptosystems are asymmetric, in that different keys
are used for encryption and decryption. So, for example, many people publish
on their web page a public key with which people can encrypt messages to
send to them; the owner of the web page can then decrypt them using the
corresponding private key.

There are some pre-computer examples of this too; perhaps the best is the
postal service. You can send me a private message just as simply by addressing
it to me and dropping it into a post box. Once that’s done, I'm the only person
who'll be able to read it. There are of course many things that can go wrong.
You might get the wrong address for me (whether by error or as a result of
deception); the police might get a warrant to open my mail; the letter might be
stolen by a dishonest postman; a fraudster might redirect my mail without my
knowledge; or a thief might steal the letter from my mailbox. There are similar
things that can go wrong with public key cryptography. False public keys can
be inserted into the system, computers can be hacked, people can be coerced
and so on. We'll look at these problems in more detail in later chapters.

Another asymmetric application of cryptography is the digital signature. The
idea here is that I can sign a message using a private signature key and then
anybody can check this using my public signature verification key. Again, there
are pre-computer analogues in the form of manuscript signatures and seals;
and again, there is a remarkably similar litany of things that can go wrong,
both with the old way of doing things and with the new.

5.3 The Random Oracle Model

Before delving into the detailed design of modern ciphers, I want to take a few
pages to refine the definitions of the various types of cipher. (Readers who
are phobic about theoretical computer science should skip this section at a
first pass; I've included it because a basic grasp of the terminology of random
oracles is needed to decipher many recent research papers on cryptography.)
The random oracle model seeks to formalize the idea that a cipher is ‘good” if,
when viewed in a suitable way, it is indistinguishable from a random function
of a certain type. I will call a cryptographic primitive pseudorandom if it passes
all the statistical and other tests which a random function of the appropriate

5.3 The Random Oracle Model

139

type would pass, in whatever model of computation we are using. Of course,
the cryptographic primitive will actually be an algorithm, implemented as an
array of gates in hardware or a program in software; but the outputs should
‘look random’” in that they’re indistinguishable from a suitable random oracle
given the type and the number of tests that our computation model permits.

In this way, we can hope to separate the problem of designing ciphers from
the problem of using them correctly. Mathematicians who design ciphers can
provide evidence that their cipher is pseudorandom. Quite separately, a
computer scientist who has designed a cryptographic protocol can try to
prove that it is secure on the assumption that the crypto primitives used
to implement it are pseudorandom. The process isn’t infallible, as we saw
with proofs of protocol correctness. Theorems can have bugs, just like pro-
grams; the problem could be idealized wrongly; and the mathematicians
might be using a different model of computation from the computer scien-
tists. In fact, there is a live debate among crypto researchers about whether
formal models and proofs are valuable [724]. But crypto theory can help us
sharpen our understanding of how ciphers behave and how they can safely
be used.

We can visualize a random oracle as an elf sitting in a black box with a
source of physical randomness and some means of storage (see Figure 5.9) —
represented in our picture by the dice and the scroll. The elf will accept inputs
of a certain type, then look in the scroll to see whether this query has ever
been answered before. If so, it will give the answer it finds there; if not,
it will generate an answer at random by throwing the dice. We'll further
assume that there is some kind of bandwidth limitation — that the elf will
only answer so many queries every second. This ideal will turn out to be
useful as a way of refining our notions of a stream cipher, a hash function,
a block cipher, a public key encryption algorithm and a digital signature
scheme.

Figure 5.9: The random oracle

140

Chapter 5 = Cryptography

Finally, we can get a useful simplification of our conceptual model by
noting that encryption can be used to protect data across time as well as across
distance. A good example is when we encrypt data before storing it with a
third-party backup service, and may decrypt it later if we have to recover from
a disk crash. In this case, we only need a single encryption/decryption device,
rather than having one at each end of a communications link. For simplicity,
let us assume it is this sort of application we are modelling here. The user takes
a diskette to the cipher machine, types in a key, issues an instruction, and the
data get transformed in the appropriate way. A year later, she comes back to
get the data decrypted and verified.

We shall now look at this model in more detail for various different
cryptographic primitives.

5.3.1 Random Functions — Hash Functions

The first type of random oracle is the random function. A random function
accepts an input string of any length and outputs a random string of fixed
length, say n bits long. So the elf just has a simple list of inputs and outputs,
which grows steadily as it works. (We'll ignore any effects of the size of the
scroll and assume that all queries are answered in constant time.)

Random functions are our model for one-way functions, also known as
cryptographic hash functions, which have many practical uses. They were first
used in computer systems for one-way encryption of passwords in the 1960s
and, as I mentioned in the chapter on security protocols, are used today in
a number of authentication systems. They are used to compute checksums
on files in forensic applications: presented with a computer seized from a
suspect, you can compute hash values of the files to identify which files are
already known (such as system files) and which are novel (such as user data).
Hash values are also used as a means of checking the integrity of files, as
they will change if a file is corrupted. In messaging applications, hashes are
often known as message digests; given a message M we can pass it through a
pseudorandom function to get a digest, say h(M), which can stand in for the
message in various applications. One example is digital signature: signature
algorithms tend to be slow if the message is long, so it’s usually convenient to
sign a message digest rather than the message itself.

Another application is timestamping. If we want evidence that we possessed
a given electronic document by a certain date, we might submit it to an online
time-stamping service. However, if the document is still secret — for example
an invention which we plan to patent, and for which we merely want to
establish a priority date — then we might not send the timestamping service
the whole document, but just the message digest.

5.3 The Random Oracle Model

141

5.3.1.1 Properties

The first main property of a random function is one-wayness. Given knowledge
of an input x we can easily compute the hash value h(x), but it is very difficult
given the hash value h(x) to find a corresponding preimage x if one is not
already known. (The elf will only pick outputs for given inputs, not the other
way round.) As the output is random, the best an attacker who wants to invert
a random function can do is to keep on feeding in more inputs until he gets
lucky. A pseudorandom function will have the same properties, or they could
be used to distinguish it from a random function, contrary to our definition. It
follows that a pseudorandom function will also be a one-way function, provided
there are enough possible outputs that the opponent can’t find a desired target
output by chance. This means choosing the output to be an n-bit number
where the opponent can’t do anything near 2" computations.

A second property of pseudorandom functions is that the output will not
give any information at all about even part of the input. Thus a one-way
encryption of the value x can be accomplished by concatenating it with a
secret key k and computing h(x, k). If the hash function isn’t random enough,
though, using it for one-way encryption in this manner is asking for trouble.
A topical example comes from the authentication in GSM mobile phones,
where a 16 byte challenge from the base station is concatenated with a 16 byte
secret key known to the phone into a 32 byte number, and passed through
a hash function to give an 11 byte output [226]. The idea is that the phone
company also knows k and can check this computation, while someone who
eavesdrops on the radio link can only get a number of values of the random
challenge x and corresponding output from h(x, k). So the eavesdropper must
not be able to get any information about k, or compute h(y, k) for a new
input y. But the one-way function used by many phone companies isn’t one-
way enough, with the result that an eavesdropper who can pretend to be
a base station and send a phone about 150,000 suitable challenges and get
the responses can compute the key. I'll discuss this failure in more detail in
section 20.3.2.

A third property of pseudorandom functions with sufficiently long outputs
is that it is hard to find collisions, that is, different messages M, # M, with
h(M;) = h(M;). Unless the opponent can find a shortcut attack (which would
mean the function wasn’t really pseudorandom) then the best way of finding a
collision is to collect a large set of messages M; and their corresponding hashes
h(M;), sort the hashes, and look for a match. If the hash function output is an
n-bit number, so that there are 2" possible hash values, then the number of
hashes the enemy will need to compute before he can expect to find a match
will be about the square root of this, namely 2"/? hashes. This fact is of huge
importance in security engineering, so let’s look at it more closely.

142

Chapter 5 = Cryptography

5.3.1.2 The Birthday Theorem

The birthday theorem gets its name from the following problem. A maths
teacher asks a typical class of 30 pupils what they think is the probability that
two of them have the same birthday. Most pupils will intuitively think it’s
unlikely, and the maths teacher then asks the pupils to state their birthdays
one after another. As the result seems unlikely to most people, it’s also known
as the ‘birthday paradox’. The odds of a match exceed 50% once 23 pupils have
been called.

The birthday theorem was first invented in the 1930’s to count fish, which
led to its also being known as capture-recapture statistics [1123]. Suppose there
are N fish in a lake and you catch m of them, ring them and throw them back,
then when you first catch a fish you've ringed already, m should be “about’
the square root of N. The intuitive reason why this holds is that once you have
V/N samples, each could potentially match any of the others, so the number of
possible matches is about +/N x +/N or N, which is what you need.

This theorem has many applications for the security engineer. For example,
if we have a biometric system which can authenticate a person’s claim to
identity with a probability of only one in a million that two randomly selected
subjects will be falsely identified as the same person, this doesn’t mean that
we can use it as a reliable means of identification in a university with a user
population of twenty thousand staff and students. This is because there will
be almost two hundred million possible pairs. In fact, you expect to find the
first collision — the first pair of people who can be mistaken for each other by
the system — once you have somewhat over a thousand people enrolled.

There are some applications where collision-search attacks aren’t a problem,
such as in challenge-response protocols where an attacker would have to be
able to find the answer to the challenge just issued, and where you can prevent
challenges repeating. (For example, the challenge might be generated by
encrypting a counter.) So in identify-friend-or-foe (IFF) systems, for example,
common equipment has a response length of 48 to 80 bits.

However, there are other applications in which collisions are unacceptable.
In a digital signature application, if it were possible to find collisions with
h(M;) = h(M,) but M; # M,, then a Mafia owned bookstore’s web site might
get you to sign a message M, saying something like ‘I hereby order a copy
of Rubber Fetish volume 7 for $32.95” and then present the signature together
with an M, saying something like ‘I hereby mortgage my house for $75,000
and please make the funds payable to Mafia Holdings Inc., Bermuda’.

For this reason, hash functions used with digital signature schemes generally
have n large enough to make them collision-free, that is, that 2"/ computations

2More precisely, the probability that m fish chosen randomly from N fish are different is
B =N(N —1)...(N —m+1)/N" which is asymptotically solved by N =~ m?/2log(1/8) [708].

5.3 The Random Oracle Model

143

are impractical for an opponent. The two most common are MD5, which has
a 128-bit output and will thus require at most 2% computations to break, and
SHA1 with a 160-bit output and a work factor for the cryptanalyst of at most
2% However, collision search gives at best an upper bound on the strength
of a hash function, and both these particular functions have turned out to be
disappointing, with cryptanalytic attacks that I'll describe later in section 5.6.2.
Collisions are easy to find for MD4 and MD5, while for SHA-1 it takes about
2% computations to find a collision — something that a botnet of half a million
machines should be able to do in a few days.

In any case, a pseudorandom function is also often referred to as being
collision free or collision intractable. This doesn’t mean that collisions don’t exist
— they must, as the set of possible inputs is larger than the set of pos-
sible outputs —just that you will never find any of them. The (usually
unstated) assumptions are that the output must be long enough, and that the
cryptographic design of the hash function must be sound.

5.3.2 Random Generators — Stream Ciphers

The second basic cryptographic primitive is the random generator, also known
as a keystream generator or stream cipher. This is also a random function, but
unlike in the hash function case it has a short input and a long output. (If we
had a good pseudorandom function whose input and output were a billion
bits long, and we never wanted to handle any objects larger than this, we could
turn it into a hash function by throwing away all but a few hundred bits of the
output, and turn it into a stream cipher by padding all but a few hundred bits
of the input with a constant.) At the conceptual level, however, it's common to
think of a stream cipher as a random oracle whose input length is fixed while
the output is a very long stream of bits, known as the keystream.

It can be used quite simply to protect the confidentiality of backup data:
we go to the keystream generator, enter a key, get a long file of random bits,
and exclusive-or it with our plaintext data to get ciphertext, which we then
send to our backup contractor. We can think of the elf generating a random
tape of the required length each time he is presented with a new key as input,
giving it to us and keeping a copy of it on his scroll for reference in case he’s
given the same input again. If we need to recover the data, we go back to
the generator, enter the same key, get the same long file of random data, and
exclusive-or it with our ciphertext to get our plaintext data back again. Other
people with access to the keystream generator won't be able to generate the
same keystream unless they know the key.

I mentioned the one-time pad, and Shannon’s result that a cipher has perfect
secrecy if and only if there are as many possible keys as possible plaintexts, and
every key is equally likely. Such security is called unconditional (or statistical)
security as it doesn’t depend either on the computing power available to the

144

Chapter 5 = Cryptography

opponent, or on there being no future advances in mathematics which provide
a shortcut attack on the cipher.

One-time pad systems are a very close fit for our theoretical model, except
in that they are typically used to secure communications across space rather
than time: there are two communicating parties who have shared a copy of
the randomly-generated keystream in advance. Vernam’s original telegraph
cipher machine used punched paper tape; a modern diplomatic system might
use DVDs, shipped in a tamper-evident container in a diplomatic bag. Various
techniques have been used to do the random generation. Marks describes
how SOE agents’ silken keys were manufactured in Oxford by little old ladies
shuffling counters.

One important problem with keystream generators is that we want to pre-
vent the same keystream being used more than once, whether to encrypt more
than one backup tape or to encrypt more than one message sent on a com-
munications channel. During World War 2, the amount of Russian diplomatic
traffic exceeded the quantity of one-time tape they had distributed in advance
to their embassies, so it was reused. This was a serious blunder. If M; + K = C;
and M, + K = C;, then the opponent can combine the two ciphertexts to get
a combination of two messages: C; — C; = M; — M,, and if the messages M,
have enough redundancy then they can be recovered. Text messages do in
fact contain enough redundancy for much to be recovered, and in the case
of the Russian traffic this led to the Venona project in which the US and UK
decrypted large amounts of wartime Russian traffic afterwards and broke up
a number of Russian spy rings. The saying is: “Avoid the two-time tape!’

Exactly the same consideration holds for any stream cipher, and the normal
engineering practice when using an algorithmic keystream generator is to
have a seed as well as a key. Each time the cipher is used, we want it to generate
a different keystream, so the key supplied to the cipher should be different.
So if the long-term key which two users share is K, they may concatenate it
with a seed which is a message number N (or some other nonce) and then
pass it through a hash function to form a working key h(K, N). This working
key is the one actually fed to the cipher machine. The nonce may be a separate
pre-agreed key, or it may be generated at random and sent along with the
ciphertext. However, the details of key management can be quite tricky, and
the designer has to watch out for attacks in which a principal is tricked into
synchronising on the wrong key. In effect, a protocol has to be designed to
ensure that both parties can synchronise on the right working key even in the
presence of an adversary.

5.3.3 Random Permutations — Block Ciphers

The third type of primitive, and the most important in modern commercial
cryptography, is the block cipher, which we model as a random permutation.

5.3 The Random Oracle Model

145

Here, the function is invertible, and the input plaintext and the output
ciphertext are of a fixed size. With Playfair, both input and output are two
characters; with DES, they’re both bit strings of 64 bits. Whatever the number
of symbols and the underlying alphabet, encryption acts on a block of fixed
length. (So if you want to encrypt a shorter input, you have to pad it as with
the final ‘z” in our Playfair example.)

We can visualize block encryption as follows. As before, we have an elf in a
box with dice and a scroll. This has on the left a column of plaintexts and on
the right a column of ciphertexts. When we ask the elf to encrypt a message,
it checks in the left hand column to see if it has a record of it. If not, it uses
the dice to generate a random ciphertext of the appropriate size (and which
doesn’t appear yet in the right hand column of the scroll), and then writes
down the plaintext/ciphertext pair in the scroll. If it does find a record, it gives
us the corresponding ciphertext from the right hand column.

When asked to decrypt, the elf does the same, but with the function of
the columns reversed: he takes the input ciphertext, checks it (this time on the
right hand scroll) and if he finds it he gives the message with which it was
previously associated. If not, he generates a message at random (which does
not already appear in the left column) and notes it down.

A block cipher is a keyed family of pseudorandom permutations. For each
key, we have a single permutation which is independent of all the others. We
can think of each key as corresponding to a different scroll. The intuitive idea
is that a cipher machine should output the ciphertext given the plaintext and
the key, and output the plaintext given the ciphertext and the key, but given
only the plaintext and the ciphertext it should output nothing.

We will write a block cipher using the notation established for encryption
in the chapter on protocols:

C = {Mk

The random permutation model also allows us to define different types of
attack on block ciphers. In a known plaintext attack, the opponent is just given a
number of randomly chosen inputs and outputs from the oracle corresponding
to a target key. In a chosen plaintext attack, the opponent is allowed to put a
certain number of plaintext queries and get the corresponding ciphertexts. In
a chosen ciphertext attack he gets to make a number of ciphertext queries. In a
chosen plaintext/ciphertext attack he is allowed to make queries of either type.
Finally, in a related key attack he can make queries that will be answered using
keys related to the target key K, such as K+ 1 and K + 2.

In each case, the objective of the attacker may be either to deduce the answer
to a query he hasn’t already made (a forgery attack), or to recover the key
(unsurprisingly known as a key recovery attack).

This precision about attacks is important. When someone discovers a vul-
nerability in a cryptographic primitive, it may or may not be relevant to your

146

Chapter 5 = Cryptography

application. Often it won’t be, but will have been hyped by the media — so
you will need to be able to explain clearly to your boss and your customers
why it’s not a problem. So you have to look carefully to find out exactly what
kind of attack has been found, and what the parameters are. For example,
the first major attack announced on the Data Encryption Standard algorithm
requires 2¥ chosen plaintexts to recover the key, while the next major attack
improved this to 2% known plaintexts. While these attacks were of great sci-
entific importance, their practical engineering effect was zero, as no practical
systems make that much known (let alone chosen) text available to an attacker.
Such attacks are often referred to as certificational. They can have a commercial
effect, though: the attacks on DES undermined confidence in it and started
moving people to other ciphers. In some other cases, an attack that started off
as certificational has been developed by later ideas into an exploit.

Which sort of attacks you should be worried about depends on your
application. With a broadcast entertainment system, for example, a bad man
canbuy a decoder, observe a lot of material and compare it with the enciphered
broadcast signal; so a known-plaintext attack is the main threat. But there are
surprisingly many applications where chosen-plaintext attacks are possible.
Obvious ones include IFF, where the enemy can send challenges of his choice
to any aircraft in range of one of his radars; and ATMs, where if you allow
customers to change their PINs, an attacker can change his PIN through a range
of possible values and observe the enciphered equivalents by wiretapping the
line from the ATM to the bank. A more traditional example is diplomatic
messaging systems, where it’s been known for a host government to give an
ambassador a message to transmit to his capital that’s been specially designed
to help the local cryptanalysts fill out the missing gaps in the ambassador’s
code book [676]. In general, if the opponent can insert any kind of message
into your system, it’s chosen-plaintext attacks you should worry about.

The other attacks are more specialized. Chosen plaintext/ciphertext attacks
may be a worry where the threat is a lunchtime attacker: someone who gets
temporary access to some cryptographic equipment while its authorized
user is out. Related-key attacks are a concern where the block cipher is used
as a building block in the construction of a hash function (which we’ll
discuss below).

5.3.4 Public Key Encryption and Trapdoor One-Way
Permutations

A public-key encryption algorithm is a special kind of block cipher in which the
elf will perform the encryption corresponding to a particular key for anyone
who requests it, but will do the decryption operation only for the key’s owner.
To continue with our analogy, the user might give a secret name to the scroll
that only she and the elf know, use the elf’s public one-way function to

5.3 The Random Oracle Model

147

compute a hash of this secret name, publish the hash, and instruct the elf to
perform the encryption operation for anybody who quotes this hash.

This means that a principal, say Alice, can publish a key and if Bob wants
to, he can now encrypt a message and send it to her, even if they have never
met. All that is necessary is that they have access to the oracle. There are some
more details that have to be taken care of, such as how Alice’s name can be
bound to the key, and indeed whether it means anything to Bob; I'll deal with
these later.

A common way of implementing public key encryption is the trapdoor
one-way permutation. This is a computation which anyone can perform, but
which can be reversed only by someone who knows a trapdoor such as a secret
key. This model is like the ‘one-way function” model of a cryptographic hash
function. Let us state it formally nonetheless: a public key encryption primitive
consists of a function which given a random input R will return two keys, KR
(the public encryption key) and KR™! (the private decryption key) with the
properties that

1. Given KR, it is infeasible to compute KR! (so it’s not possible to com-
pute R either);

2. There is an encryption function {. ..} which, applied to a message M
using the encryption key KR, will produce a ciphertext C = {M}xg; and

3. There is a decryption function which, applied to a ciphertext C using the
decryption key KR™!, will produce the original message M = {C}yg-1.

For practical purposes, we will want the oracle to be replicated at both ends
of the communications channel, and this means either using tamper-resistant
hardware or (more commonly) implementing its functions using mathematics
rather than metal. There are several more demanding models than this, for
example to analyze security in the case where the opponent can get ciphertexts
of his choice decrypted, with the exception of the target ciphertext. But this
will do for now.

5.3.5 Digital Signatures

The final cryptographic primitive which we’ll define here is the digital sig-
nature. The basic idea is that a signature on a message can be created by only
one person, but checked by anyone. It can thus perform the sort of function
in the electronic world that ordinary signatures do in the world of paper.
Applications include signing software updates, so that a PC can tell that an
update to Windows was really produced by Microsoft rather than by a villain.

Signature schemes can be deterministic or randomized: in the first, computing
a signature on a message will always give the same result and in the second,
it will give a different result. (The latter is more like handwritten signatures;

148

Chapter 5 = Cryptography

no two are ever alike but the bank has a means of deciding whether a given
specimen is genuine or forged). Also, signature schemes may or may not
support message recovery. If they do, then given the signature, anyone can
recover the message on which it was generated; if they don’t, then the verifier
needs to know or guess the message before he can perform the verification.
(There are further, more specialised, signature schemes such as blind signatures
and threshold signatures but I'll postpone discussion of them for now.)

Formally, a signature scheme, like public key encryption scheme, has a
keypair generation function which given a random input R will return two
keys, oR (the private signing key) and VR (the public signature verification
key) with the properties that

1. Given the public signature verification key VR, it is infeasible to com-
pute the private signing key oR;

2. There is a digital signature function which given a message M and a
private signature key o R, will produce a signature Sig,z(M); and

3. There is a signature verification function which, given the signature
Sig,r(M) and the public signature verification key VR will output TRUE
if the signature was computed correctly with o R and otherwise output
FALSE.

We can model a simple digital signature algorithm as a random function that
reduces any input message to a one-way hash value of fixed length, followed
by a special kind of block cipher in which the elf will perform the operation
in one direction, known as signature, for only one principal, while in the other
direction, it will perform verification for anybody.

Signature verification can take two forms. In the basic scheme, the elf (or the
signature verification algorithm) only outputs TRUE or FALSE depending on
whether the signature is good. But in a scheme with message recovery, anyone
can input a signature and get back the message corresponding to it. In our
elf model, this means that if the elf has seen the signature before, it will give
the message corresponding to it on the scroll, otherwise it will give a random
value (and record the input and the random output as a signature and message
pair). This is sometimes desirable: when sending short messages over a low
bandwidth channel, it can save space if only the signature has to be sent rather
than the signature plus the message. An example is in the machine-printed
postage stamps, or indicia, being brought into use in many countries: the
stamp may consist of a 2-d barcode with a digital signature made by the postal
meter and which contains information such as the value, the date and the
sender’s and recipient’s post codes. We give some more detail about this at
the end of section 14.3.2.

5.4 Symmetric Crypto Primitives

149

However, in the general case we do not need message recovery, as the
message to be signed may be of arbitrary length and so we will first pass it
through a hash function and then sign the hash value. As hash functions are
one-way, the resulting compound signature scheme does not have message
recovery — although if the underlying signature scheme does, then the hash
of the message can be recovered from the signature.

5.4 Symmetric Crypto Primitives

Now that we have defined the basic crypto primitives, we will look under the
hood to see how they can be implemented in practice. While most explanations
are geared towards graduate mathematics students, the presentation I'll give
here is based on one I've developed over several years with computer science
students. So I hope it will let the non-mathematician grasp the essentials. In
fact, even at the research level, most of cryptography is as much computer
science as mathematics. Modern attacks on ciphers are put together from
guessing bits, searching for patterns, sorting possible results, and so on rather
than from anything particularly highbrow.

We'll focus in this section on block ciphers, and then see in the next section
how you can make hash functions and stream ciphers from them, and vice
versa. (In later chapters, we’ll also look at some special-purpose ciphers.)

5.4.1 SP-Networks

Claude Shannon suggested in the 1940’s that strong ciphers could be built
by combining substitution with transposition repeatedly. For example, one
might add some key material to a block of input text, and then shuffle subsets
of the input, and continue in this way a number of times. He described the
properties of a cipher as being confusion and diffusion — adding unknown key
values will confuse an attacker about the value of a plaintext symbol, while
diffusion means spreading the plaintext information through the ciphertext.
Block ciphers need diffusion as well as confusion.

The earliest block ciphers were simple networks which combined sub-
stitution and permutation circuits, and so were called SP-networks [681].
Figure 5.10 shows an SP-network with sixteen inputs, which we can imagine
as the bits of a sixteen-bit number, and two layers of four-bit invertible sub-
stitution boxes (or S-boxes), each of which can be visualized as a lookup table
containing some permutation of the numbers 0 to 15.

The point of this arrangement is that if we were to implement an arbitrary 16
bit to 16 bit function in digital logic, we would need 2% bits of memory — one

150

Chapter 5 = Cryptography

lookup table of 2'° bits for each single output bit. That’s hundreds of thousands
of gates, while a four bit to four bit function takes only 4 x 2* or 64 bits of
memory. One might hope that with suitable choices of parameters, the function
produced by iterating this simple structure would be indistinguishable from a
random 16 bit to 16 bit function to an opponent who didn’t know the value of
the key. The key might consist of some choice of a number of four-bit S-boxes,
or it might be added at each round to provide confusion and the resulting text
fed through the S-boxes to provide diffusion.
Three things need to be done to make such a design secure:

1. the cipher needs to be “wide”” enough
2. it needs to have enough rounds, and

3. the S-boxes need to be suitably chosen.

5.4.1.1 Block Size

First, a block cipher which operated on sixteen bit blocks would have rather
limited applicability, as an opponent could just build a dictionary of plaintext
and ciphertext blocks as he observed them. The birthday theorem tells us that
even if the input plaintexts were random, he’d expect to find a match as soon
as he had seen a little over 2° blocks. So a practical block cipher will usually
deal with plaintexts and ciphertexts of 64 bits, 128 bits or even more. So if we
are using four-bit to four-but S-boxes, we may have 16 of them (for a 64 bit
block size) or 32 of them (for a 128 bit block size).

5.4.1.2 Number of Rounds

Second, we have to have enough rounds. The two rounds in Figure 5.10 are
completely inadequate, as an opponent can deduce the values of the S-boxes
by tweaking input bits in suitable patterns. For example, he could hold the
rightmost 12 bits constant and try tweaking the leftmost four bits, to deduce
the values in the top left S-box. (The attack is slightly more complicated than
this, as sometimes a tweak in an input bit to an S-box won’t produce a change
in any output bit, so we have to change one of its other inputs and tweak
again. But implementing it is still a simple student exercise.)

The number of rounds we require depends on the speed with which data
diffuse through the cipher. In the above simple example, diffusion is very slow
because each output bit from one round of S-boxes is connected to only one
input bit in the next round. Instead of having a simple permutation of the
wires, it is more efficient to have a linear transformation in which each input
bit in one round is the exclusive-or of several output bits in the previous round.
Of course, if the block cipher is to be used for decryption as well as encryption,
this linear transformation will have to be invertible. We’ll see some concrete
examples below in the sections on Serpent and AES.

5.4 Symmetric Crypto Primitives

151

S O o O O S D O O

S-box S-box S-box S-box

S-box S-box S-box S-box

RN

Figure 5.10: A simple 16-bit SP-network block cipher

5.4.1.3 Choice of S-Boxes

The design of the S-boxes also affects the number of rounds required for
security, and studying bad choices gives us our entry into the deeper theory
of block ciphers. Suppose that the S-box were the permutation that maps the
inputs (0,1,2,...,15) to the outputs (5,7,0,2,4,3,1,6,8,10,15,12,9,11,14,13). Then
the most significant bit of the input would come through unchanged as the
most significant bit of the output. If the same S-box were used in both rounds
in the above cipher, then the most significant bit of the input would pass
through to become the most significant bit of the output. This would usually
be a bad thing; we certainly couldn’t claim that our cipher was pseudorandom.

5.4.1.4 Linear Cryptanalysis

Attacks on real block ciphers are usually harder to spot than in this artificial
example, but they use the same ideas. It might turn out that the S-box had
the property that bit one of the input was equal to bit two plus bit four
of the output; more commonly, there will be linear approximations to an S-box
which hold with a certain probability. Linear cryptanalysis [602, 843] proceeds
by collecting a number of relations such as ‘bit 2 plus bit 5 of the input to the
first S-box is equal to bit 1 plus bit 8 of the output, with probability 13/16’
and then searching for ways to glue them together into an algebraic relation
between input bits, output bits and key bits that holds with a probability
different from one half. If we can find a linear relationship that holds over the
whole cipher with probability p = 0.5 + 1/M, then according to probability
theory we can expect to start recovering keybits once we have about M?
known texts. If the value of M? for the best linear relationship is greater than
the total possible number of known texts (namely 2" where the inputs and
outputs are n bits wide), then we consider the cipher to be secure against linear
cryptanalysis.

152

Chapter 5 = Cryptography

5.4.1.5 Differential Cryptanalysis

Differential Cryptanalysis [170, 602] is similar but is based on the probability that
a given change in the input to an S-box will give rise to a certain change in the
output. A typical observation on an 8-bit S-box might be that ‘if we flip input
bits 2, 3, and 7 at once, then with probability 11/16 the only output bits that
will flip are 0 and 1". In fact, with any nonlinear Boolean function, tweaking
some combination of input bits will cause some combination of output bits to
change with a probability different from one half. The analysis procedure is
to look at all possible input difference patterns and look for those values §;,
8, such that an input change of §; will produce an output change of §, with
particularly high (or low) probability.

As in linear cryptanalysis, we then search for ways to join things up so that
an input difference which we can feed into the cipher will produce a known
output difference with a useful probability over a number of rounds. Given
enough chosen inputs, we will see the expected output and be able to make
deductions about the key. As in linear cryptanalysis, it's common to consider
the cipher to be secure if the number of texts required for an attack is greater
than the total possible number of different texts for that key. (We have to be
careful though of pathological cases, such as if you had a cipher with a 32-bit
block and a 128-bit key with a differential attack whose success probability
given a single pair was 27*. Given a lot of text under a number of keys, we’d
eventually solve for the current key.)

There are a quite a few variants on these two themes. For example, instead of
looking for high probability differences, we can look for differences that can’t
happen (or that happen only rarely). This has the charming name of impossible
cryptanalysis, but it is quite definitely possible against many systems [169].
There are also various specialised attacks on particular ciphers.

Block cipher design involves a number of trade-offs. For example, we can
reduce the per-round information leakage, and thus the required number of
rounds, by designing the rounds carefully. However, a complex design might
be slow in software, or need a lot of gates in hardware, so using simple rounds
but more of them might have been better. Simple rounds may also be easier
to analyze. A prudent designer will also use more rounds than are strictly
necessary to block the attacks known today, in order to give some margin of
safety against improved mathematics in the future. We may be able to show
that a cipher resists all the attacks we know of, but this says little about whether
it will resist the attacks we don’t know of yet. (A general security proof for a
block cipher would appear to imply a proof about an attacker’s computational
powers, which might entail a result such as P # NP that would revolutionize
computer science.)

The point that the security engineer should remember is that block cipher
cryptanalysis is a complex subject about which we have a fairly extensive
theory. Use an off-the-shelf design that has been thoroughly scrutinized

5.4 Symmetric Crypto Primitives

153

by experts, rather than rolling your own; and if there’s a compelling reason
to use a proprietary cipher (for example, if you want to use a patented design to
stop other people copying a product) then get it reviewed by experts. Cipher
design is not an amateur sport any more.

5.4.1.6 Serpent

As a concrete example, the encryption algorithm ‘Serpent” is an SP-network
with input and output block sizes of 128 bits. These are processed through 32
rounds, in each of which we first add 128 bits of key material, then pass the text
through 32 S-boxes of 4 bits width, and then perform a linear transformation
that takes each output of one round to the inputs of a number of S-boxes
in the next round. Rather than each input bit in one round coming from a
single output bit in the last, it is the exclusive-or of between two and seven of
them. This means that a change in an input bit propagates rapidly through the
cipher — a so-called avalanche effect which makes both linear and differential
attacks harder. After the final round, a further 128 bits of key material
are added to give the plaintext. The 33 times 128 bits of key material required
are computed from a user supplied key of up to 256 bits.

This is a real cipher using the structure of Figure 5.10, but modified
to be ‘wide” enough and to have enough rounds. The S-boxes are chosen to
make linear and differential analysis hard; they have fairly tight bounds on
the maximum linear correlation between input and output bits, and on the
maximum effect of toggling patterns of input bits. Each of the 32 S-boxes in a
given round is the same; this means that bit-slicing techniques can be used to
give a very efficient software implementation on 32-bit processors.

Its simple structure makes Serpent easy to analyze, and it can be shown that
it withstands all the currently known attacks. A full specification of Serpent
is given in [60] and can be downloaded, together with implementations in a
number of languages, from [61].

5.4.2 The Advanced Encryption Standard (AES)

This discussion has prepared us to describe the Advanced Encryption Stan-
dard, an algorithm also known as Rijndael after its inventors Vincent Rijmen
and Joan Daemen [342]. This algorithm acts on 128-bit blocks and can use a
key of 128, 192 or 256 bits in length. It is an SP-network; in order to specify it,
we need to fix the S-boxes, the linear transformation between the rounds, and
the way in which the key is added into the computation.

AES uses a single S-box which acts on a byte input to give a byte output.
For implementation purposes it can be regarded simply as a lookup table of
256 bytes; it is actually defined by the equation S(x) = M(1/x) 4+ b over the
field GF(2%) where M is a suitably chosen matrix and b is a constant. This
construction gives tight differential and linear bounds.

154

Chapter 5 = Cryptography

The linear transformation is based on arranging the 16 bytes of the value
being enciphered in a square and then doing bytewise shuffling and mixing
operations. (AES is descended from an earlier cipher called Square, which
introduced this technique.)

The first step in the linear transformation is the shuffle in which the top row
of four bytes is left unchanged, while the second row is shifted one place to
the left, the third row by two places and the fourth row by three places. The
second step is a column mixing step in which the four bytes in a column are
mixed using a matrix multiplication. This is illustrated in Figure 5.11 which
shows, as an example, how a change in the value of the third byte in the first
column is propagated. The effect of this combination is that a change in the
input to the cipher can potentially affect all of the output after just two rounds.

The key material is added byte by byte after the linear transformation. This
means that 16 bytes of key material are needed per round; they are derived
from the user supplied key material by means of a recurrence relation.

The algorithm uses 10 rounds with 128-bit keys, 12 rounds with 192-bit keys
and 14 rounds with 256-bit keys. These give a reasonable margin of safety; the
best shortcut attacks known at the time of writing (2007) can tackle 7 rounds
for 128-bit keys, and 9 rounds for 192- and 256-bit keys [16]. The general belief
in the block cipher community is that even if advances in the state of the art
do permit attacks on AES with the full number of rounds, they will be purely
certificational attacks in that they will require infeasibly large numbers of texts.
(AES’s margin of safety against attacks that require only feasible numbers of
texts is about 100%.) Although there is no proof of security — whether in the
sense of pseudorandomness, or in the weaker sense of an absence of shortcut
attacks of known types — there is now a high level of confidence that AES is
secure for all practical purposes. The NSA has since 2005 approved AES with
128-bit keys for protecting information up to SECRET and with 256-bit keys
for TOP SECRET.

1 1 1
2 2 2
3 3 3
4 4 4
e X e X
Shift Mix
row column

Figure 5.11: The AES linear transformation, illustrated by its effect on byte 3 of the input

5.4 Symmetric Crypto Primitives

155

Even although I was an author of Serpent which was an unsuccessful finalist
in the AES competition (the winner Rijndael got 86 votes, Serpent 59 votes,
Twofish 31 votes, RC6 23 votes and MARS 13 votes at the last AES conference),
and although Serpent was designed to have an even larger security margin
than Rijndael, I recommend to my clients that they use AES where a general-
purpose block cipher is required. I recommend the 256-bit-key version, and
not because I think that the 10 rounds of the 128-bit-key variant will be broken
anytime soon. Longer keys are better because some key bits often leak in real
products, as I'll discuss at some length in the chapters on tamper-resistance
and emission security. It does not make sense to implement Serpent as well,
‘just in case AES is broken’: the risk of a fatal error in the algorithm negotiation
protocol is orders of magnitude greater than the risk that anyone will come
up with a production attack on AES. (We'll see a number of examples later
where using multiple algorithms, or using an algorithm like DES multiple
times, caused something to break horribly.)

The definitive specification of AES is Federal Information Processing Stan-
dard 197, and its inventors have written a book describing its design in
detail [342]. Other information, from book errata to links to implementations,
can be found on the AES Lounge web page [16].

One word of warning: the most likely practical attacks on a real imple-
mentation of AES include timing analysis and power analysis, both of which
I discuss in Part II in the chapter on emission security. In timing analysis,
the risk is that an opponent observes cache misses and uses them to work
out the key. The latest versions of this attack can extract a key given the
precise measurements of the time taken to do a few hundred cryptographic
operations. In power analysis, an opponent uses measurements of the current
drawn by the device doing the crypto — think of a bank smartcard that a
customer places in a terminal in a Mafia-owned shop. The two overlap; cache
misses cause a device like a smartcard to draw more power — and can also
be observed on remote machines by an opponent who can measure the time
taken to encrypt. The implementation details matter.

5.4.3 Feistel Ciphers

Many block ciphers use a more complex structure, which was invented by
Feistel and his team while they were developing the Mark XII IFF in the late
1950’s and early 1960’s. Feistel then moved to IBM and founded a research
group which produced the Data Encryption Standard, (DES) algorithm, which
is still the mainstay of financial transaction processing security.

A Feistel cipher has the ladder structure shown in Figure 5.12. The input is
split up into two blocks, the left half and the right half. A round function f; of

156 Chapter 5 = Cryptography

the left half is computed and combined with the right half using exclusive-or
(binary addition without carry), though in some Feistel ciphers addition with
carry is also used. (We use the notation @ for exclusive-or.) Then, a function
f> of the right half is computed and combined with the left half, and so
on. Finally (if the number of rounds is even) the left half and right half are

swapped.
LEFT HALF RicHT HALF
f 1 v
g f 2
a f 2k

Figure 5.12: The Feistel cipher structure

5.4 Symmetric Crypto Primitives

157

A notation which you may see for the Feistel cipher is ¥/(f,g,h,...) where
f, 8 h, ... are the successive round functions. Under this notation, the above
cipheris ¥ (fi, fo, . . . fac—1, far). The basic result that enables us to decrypt a Feistel
cipher — and indeed the whole point of his design — is that:

U for - faen for) = Yk faket, - fo f1)

In other words, to decrypt, we just use the round functions in the reverse
order. Thus the round functions f; do not have to be invertible, and the Feistel
structure lets us turn any one-way function into a block cipher. This means
that we are less constrained in trying to choose a round function with good
diffusion and confusion properties, and which also satisfies any other design
constraints such as code size, table size, software speed, hardware gate count,
and so on.

5.4.3.1 The Luby-Rackoff Result

The key theoretical result on Feistel ciphers was proved by Mike Luby and
Charlie Rackoff in 1988. They showed that if f; were random functions, then
V¥ (f1,f2,f3) was indistinguishable from a random permutation under chosen
plaintext attack, and this result was soon extended to show that ¥ (f1,f2,f3, f1)
was indistinguishable under chosen plaintext/ciphertext attack —in other
words, it was a pseudorandom permutation.

There are a number of technicalities we omit. In engineering terms, the
effect is that given a really good round function, four rounds of Feistel are
enough. So if we have a hash function in which we have confidence, it is
straightforward to construct a block cipher from it: use four rounds of keyed
hash in a Feistel network.

5.4.3.2 DES

The DES algorithm is widely used in banking, government and embedded
applications. For example, it is the standard in automatic teller machine
networks. It is a Feistel cipher, with a 64-bit block and 56-bit key. Its round
function operates on 32-bit half blocks and consists of three operations:

m first, the block is expanded from 32 bits to 48;

m next, 48 bits of round key are mixed in using exclusive-or;

m the result is passed through a row of eight S-boxes, each of which takes a
six-bit input and provides a four-bit output;

m finally, the bits of the output are permuted according to a fixed pattern.

158 Chapter 5 = Cryptography

The effect of the expansion, key mixing and S-boxes is shown in Figure 5.13:

<« Key added
in here

Si+1 soe

TTIT THT T

Figure 5.13: The DES round function

The round keys are derived from the user-supplied key by using each user
key bit in twelve different rounds according to a slightly irregular pattern.
A full specification of DES is given in [936]; code can be found in [1125] or
downloaded from many places on the web.

DES was introduced in 1974 and caused some controversy. The most telling
criticism was that the key is too short. Someone who wants to find a 56 bit
key using brute force, that is by trying all possible keys, will have a total
exhaust time of 2°° encryptions and an average solution time of half that, namely
2% encryptions. Whit Diffie and Martin Hellman argued in 1977 that a DES
keysearch machine could be built with a million chips, each testing a million
keys a second; as a million is about 2%, this would take on average 2'° seconds,
or a bit over 9 hours, to find the key. They argued that such a machine could
be built for $20 million dollars in 1977 [386]. IBM, whose scientists invented
DES, retorted that they would charge the US government $200 million to build
such a machine. (Perhaps both were right.)

During the 1980’s, there were persistent rumors of DES keysearch machines
being built by various intelligence agencies, but the first successful public
keysearch attack took place in 1997. In a distributed effort organised over
the net, 14,000 PCs computers took more than four months to find the key
to a challenge. In 1998, the Electronic Frontier Foundation (EFF) built a DES
keysearch machine called Deep Crack for under $250,000 which broke a
DES challenge in 3 days. It contained 1,536 chips run at 40MHz, each chip
containing 24 search units which each took 16 cycles to do a test decrypt. The
search rate was thus 2.5 million test decryptions per second per search unit, or
60 million keys per second per chip. The design of the cracker is public and can
be found at [423]. By 2006, Sandeep Kumar and colleagues at the universities
of Bochum and Kiel built a machine using 120 FPGAs and costing $10,000,
which could break DES in 7 days on average [755]. A modern botnet with half

5.4 Symmetric Crypto Primitives

159

a million machines would take a few hours. So the key length of DES is now
definitely inadequate, and banks have for some years been upgrading their
payment systems.

Another criticism of DES was that, since IBM kept its design principles secret
at the request of the US government, perhaps there was a ‘trapdoor” which
would give them easy access. However, the design principles were published
in 1992 after differential cryptanalysis was invented and published [326].
Their story was that IBM had discovered these techniques in 1972, and the
US National Security Agency (NSA) even earlier. IBM kept the design details
secret at the NSA’s request. We'll discuss the political aspects of all this
in24.3.9.1.

We now have a fairly thorough analysis of DES. The best known shortcut
attack, thatis, a cryptanalytic attack involving less computation than keysearch,
is a linear attack using 2** known texts. DES would be secure with more than
20 rounds, but for practical purposes its security is limited by its keylength. I
don’t know of any real applications where an attacker might get hold of even
240 known texts. So the known shortcut attacks are not an issue. However, its
growing vulnerability to keysearch makes DES unusable in its original form.
If Moore’s law continues, than by 2020 it might be possible to find a DES key
on a single PC in a few months, so even low-grade systems such as taxi meters
will be vulnerable to brute force-cryptanalysis. As with AES, there are also
attacks based on timing analysis and power analysis, but because of DES’s
structure, the latter are more serious.

The usual way of dealing with the DES keysearch problem is to use
the algorithm multiple times with different keys. Banking networks have
largely moved to triple-DES, a standard since 1999 [936]. Triple-DES does an
encryption, then a decryption, and then a further encryption, all done with
independent keys. Formally:

3DES(ko, k1, k»; M) = DES(k., DES~'(ky, DES(ko; M)))

The reason for this design is that by setting the three keys equal, one gets the
same result as a single DES encryption, thus giving a backwards compatibility
mode with legacy equipment. (Some banking systems use two-key triple-DES
which sets k, = ko; this gives an intermediate step between single and triple
DES). New systems now use AES as of choice, but banking systems are deeply
committed to using block ciphers with an eight-byte block size, because of the
message formats used in the many protocols by which ATMs, point-of-sale
terminals and bank networks talk to each other, and because of the use of block
ciphers to generate and protect customer PINs (which I discuss in Chapter 10).
Triple DES is a perfectly serviceable block cipher for such purposes for the
foreseeable future.

Another way of preventing keysearch (and making power analysis harder) is
whitening. In addition to the 56-bit key, say k), we choose two 64-bit whitening

160 Chapter 5 = Cryptography

keys k; and k,, xor’'ing the first with the plaintext before encryption and the
second with the output of the encryption to get the ciphertext afterwards. This
composite cipher is known as DESX, and is used in the Win2K encrypting file
system. Formally,

DESX(ko, k1, kz; M) = DES(ko; M @ k1) @ ks

It can be shown that, on reasonable assumptions, DESX has the properties
you’d expect; it inherits the differential strength of DES but its resistance to
keysearch is increased by the amount of the whitening [717]. Whitened block
ciphers are used in some applications.

5.5 Modes of Operation

In practice, how you use an encryption algorithm is often more important
than which one you pick. An important factor is the ‘mode of operation’, which
specifies how a block cipher with a fixed block size (8 bytes for DES, 16 for
AES) can be extended to process messages of arbitrary length.

There are several standard modes of operation for using a block cipher on
multiple blocks [944]. Understanding them, and choosing the right one for the
job, is an important factor in using a block cipher securely.

5.5.1 Electronic Code Book

In electronic code book (ECB) we just encrypt each succeeding block of
plaintext with our block cipher to get ciphertext, as with the Playfair cipher
I gave above as an example. This is adequate for many simple operations
such as challenge-response and some key management tasks; it’s also used
to encrypt PINs in cash machine systems. However, if we use it to encrypt
redundant data the patterns will show through, letting an opponent deduce
information about the plaintext. For example, if a word processing format has
lots of strings of nulls, then the ciphertext will have a lot of blocks whose value
is the encryption of null characters under the current key.

In one popular corporate email system from the late 1980’s, the encryption
used was DES ECB with the key derived from an eight character password. If
youlooked at a ciphertext generated by this system, you saw that a certain block
was far more common than the others — the one corresponding to a plaintext
of nulls. This gave one of the simplest attacks on a fielded DES encryption
system: just encrypt a null block with each password in a dictionary and sort
the answers. You can now break at sight any ciphertext whose password was
one of those in your dictionary.

In addition, using ECB mode to encrypt messages of more than one block
length which have an authenticity requirement —such as bank payment

5.5 Modes of Operation

161

messages — would be foolish, as messages could be subject to a cut and splice
attack along the block boundaries. For example, if a bank message said ‘Please
pay account number X the sum Y, and their reference number is Z’ then an
attacker might initiate a payment designed so that some of the digits of X
could be replaced with some of the digits of Z.

5.5.2 Cipher Block Chaining

Most commercial applications which encrypt more than one block use cipher
block chaining, or CBC, mode. In it, we exclusive-or the previous block of
ciphertext to the current block of plaintext before encryption (see Figure 5.14).

This mode is effective at disguising any patterns in the plaintext: the
encryption of each block depends on all the previous blocks. The input IV
is an initialization vector, a random number that performs the same function
as a seed in a stream cipher and ensures that stereotyped plaintext message
headers won't leak information by encrypting to identical ciphertext blocks.

However, an opponent who knows some of the plaintext may be able to
cut and splice a message (or parts of several messages encrypted under the
same key), so the integrity protection is not total. In fact, if an error is inserted
into the ciphertext, it will affect only two blocks of plaintext on decryption,
so if there isn’t any integrity protection on the plaintext, an enemy can insert
two-block garbles of random data at locations of his choice.

5.5.3 Output Feedback

Output feedback (OFB) mode consists of repeatedly encrypting an initial value
and using this as a keystream in a stream cipher of the kind discussed above.

P1 PZ PS
v —6 € ©
E K EK EK
[S
C1 C2 C3

Figure 5.14: Cipher Block Chaining (CBC) mode

162

Chapter 5 = Cryptography

Writing IV for the initialization vector or seed, the i-th block of keystream will
be given by

Ki = {...{{IV}x}k . ..total of i times}

This is one standard way of turning a block cipher into a stream cipher.
The key K is expanded into a long stream of blocks K; of keystream. Keystream
is typically combined with the blocks of a message M; using exclusive-or to
give ciphertext C; = M; @ K;; this arrangement is sometimes called an additive
stream cipher as exclusive-or is just addition module 2 (and some old hand
systems used addition modulo 26).

All additive stream ciphers have an important vulnerability: they fail to
protect message integrity. I mentioned this in the context of the one-time
pad in section 5.2.2 above, but it’s important to realise that this doesn’t just
affect “perfectly secure’ systems but ‘real life” stream ciphers too. Suppose, for
example, that a stream cipher were used to encipher fund transfer messages.
These messages are very highly structured; you might know, for example, that
bytes 37-42 contained the amount of money being transferred. You could then
carry out the following attack. You cause the data traffic from a local bank to
go via your computer, for example by a wiretap. You go into the bank and
send a modest sum (say $500) to an accomplice. The ciphertext C; = M; & K;,
duly arrives in your machine. You know M,; for bytes 37-42, so you know
K; and can easily construct a modified message which instructs the receiving
bank to pay not $500 but $500,000! This is an example of an attack in depth; it is
the price not just of the perfect secrecy we get from the one-time pad, but of
much more humble stream ciphers too.

5.5.4 Counter Encryption

One possible drawback of feedback modes of block cipher encryption is
latency: feedback modes are hard to parallelize. With CBC, a whole block of
the cipher must be computed between each block input and each block output;
with OFB, we can precompute keystream but storing it requires memory. This
can be inconvenient in very high speed applications, such as protecting traffic
on gigabit backbone links. There, as silicon is cheap, we would rather pipeline
our encryption chip, so that it encrypts a new block (or generates a new block
of keystream) in as few clock ticks as possible.

The simplest solution is often is to generate a keystream by just encrypting
a counter: K; = {IV + i}x. As before, this is then added to the plaintext to get
ciphertext (so it’s also vulnerable to attacks in depth).

Another problem this mode solves when using a 64-bit block cipher such
as triple-DES on a very high speed link is cycle length. An n-bit block cipher
in OFB mode will typically have a cycle length of 2"/2 blocks, after which the
birthday theorem will see to it that the keystream starts to repeat. (Once we’ve
a little over 2% 64-bit values, the odds are that two of them will match.) In

5.5 Modes of Operation

163

CBC mode, too, the birthday theorem ensures that after about 2"/ 2 blocks, we
will start to see repeats. Counter mode encryption, however, has a guaranteed
cycle length of 2" rather than 2"/2.

5.5.5 Cipher Feedback

Cipher feedback, or CFB, mode is another kind of stream cipher. It was
designed to be self-synchronizing, in that even if we get a burst error and drop
a few bits, the system will recover synchronization after one block length. This
is achieved by using our block cipher to encrypt the last n bits of ciphertext,
and then adding one of the output bits to the next plaintext bit.

With decryption, the reverse operation is performed, with ciphertext feeding
in from the right in Figure 5.15. Thus even if we get a burst error and drop a
few bits, as soon as we’ve received enough ciphertext bits to fill up the shift
register, the system will resynchronize.

Cipher feedback is not much used any more. It was designed for use in
military HF radio links which are vulnerable to fading, in the days when
digital electronics were relatively expensive. Now that silicon is cheap, people
use dedicated link layer protocols for synchronization and error correction
rather than trying to combine them with the cryptography.

5.5.6 Message Authentication Code

The next official mode of operation of a block cipher is not used to encipher data,
but to protect its integrity and authenticity. This is the message authentication
code, or MAC. To compute a MAC on a message using a block cipher, we
encrypt it using CBC mode and throw away all the output ciphertext blocks
except the last one; this last block is the MAC. (The intermediate results are
kept secret in order to prevent splicing attacks.)

SHIFT REGISTER

Ex

plaintext < ciphertext

Figure 5.15: Ciphertext feedback mode (CFB)

164

Chapter 5 = Cryptography

This construction makes the MAC depend on all the plaintext blocks as
well as on the key. It is secure provided the message length is fixed; Mihir
Bellare, Joe Kilian and Philip Rogaway proved that any attack on a MAC
under these circumstances would give an attack on the underlying block
cipher [147].

If the message length is variable, you have to ensure that a MAC computed
on one string can’t be used as the IV for computing a MAC on a different
string, so that an opponent can’t cheat by getting a MAC on the composition of
the two strings. In order to fix this problem, NIST has standardised CMAC, in
which a variant of the key is xor-ed in before the last encryption [945]. (CMAC
is based on a proposal by Tetsu Iwata and Kaoru Kurosawa [649].)

There are other possible constructions of MACs: a common one is to use a
hash function with a key, which we’ll look at in more detail in section 5.6.2.

5.5.7 Composite Modes of Operation

In applications needing both integrity and privacy, the standard procedure
used to be to first calculate a MAC on the message using one key, and then CBC
encrypt it using a different key. (If the same key is used for both encryption
and authentication, then the security of the latter is no longer guaranteed;
cut-and-splice attacks are still possible.)

Recently two further modes of operation have been tackled by NIST that
combine encryption and authentication. The first is CCM, which combines
counter-mode encryption with CBC-MAC authentication. The danger to watch
for here is that the counter values used in encryption must not coincide with the
initialisation vector used in the MAC; the standard requires that the formatting
function prevent this [946].

The second combined mode is Galois Counter Mode (GCM), which has just
been approved at the time of writing (2007). This interesting and innovative
mode is designed to be parallelisable so that it can give high throughput
on fast data links with low cost and low latency. As the implementation is
moderately complex, and the algorithm was approved as this book was in
its final edit, I don’t include the details here, but refer you instead to the
official specification [947]. The telegraphic summary is that the encryption is
performed in a variant of counter mode; the resulting ciphertexts are also
multiplied together with key material and message length information in a
Galois field of 2'* elements to get an authenticator tag. The output is thus
a ciphertext of the same length as the plaintext, plus a tag of typically 128
bits. The tag computation uses a universal hash function which comes from
the theory of unconditionally-secure authentication codes; I'll describe this in
Chapter 13, ‘Nuclear Command and Control’.

5.6 Hash Functions

165

Both CCM, and old-fashioned CBC plus CBC MAC, need a completely new
MAC to be computed on the whole message if any bit of it is changed. How-
ever, the GCM mode of operation has an interesting incremental property: a
new authenticator and ciphertext can be calculated with an amount of effort
proportional to the number of bits that were changed. GCM is an invention of
David McGrew and John Viega of Cisco; their goal was to create an authenti-
cated encryption mode that is highly parallelisable for use in high-performance
network hardware and that only uses one block cipher operation per block of
plaintext, unlike CCM or the old-fashioned CBC plus CBC-MAC [862]. Now
that GCM has been adopted as a standard, we might expect it to become the
most common mode of operation for the encryption of bulk content.

5.6 Hash Functions

In section 5.4.3.1 I showed how the Luby-Rackoff theorem enables us to
construct a block cipher from a hash function. It’s also possible to construct
a hash function from a block cipher. (In fact, we can also construct hash
functions and block ciphers from stream ciphers — so, subject to some caveats
I'll discuss in the next section, given any one of these three primitives we can
construct the other two.)

The trick is to feed the message blocks one at a time to the key input of
our block cipher, and use it to update a hash value (which starts off at say
Hy = 0). In order to make this operation non-invertible, we add feedforward:
the (i — 1)st hash value is exclusive or’ed with the output of round i. This is
our final mode of operation of a block cipher (Figure 5.16).

hia

a4

Figure 5.16: Feedforward mode (hash function)

166

Chapter 5 = Cryptography

5.6.1 Extra Requirements on the Underlying Cipher

The birthday effect makes another appearance here, in that if a hash function i
is built using an n bit block cipher, it is possible to find two messages M; # M,
with h(M;) = h(M,) with about 2"/ effort (hash slightly more than that many
messages M; and look for a match). So a 64 bit block cipher is not adequate, as
the cost of forging a message would be of the order of 2% messages, which is
quite practical. A 128-bit cipher such as AES may be just about adequate, and
in fact the AACS content protection mechanism used in the next generation of
DVDs uses “AES-H’, the hash function derived from AES in this way.

The birthday limit is not the only way in which the hash function mode of
operation is more demanding on the underlying block cipher than a mode such
as CBC designed for confidentiality. A good illustration comes from a cipher
called Treyfer which was designed to encrypt data using as little memory as
possible in the 8051 microcontrollers commonly found in consumer electronics
and domestic appliances [1371]. (It takes only 30 bytes of ROM.)

Treyfer ‘scavenges’ its S-box by using 256 bytes from the ROM, which may
be code, or even — to make commercial cloning riskier — contain a copyright
message. At each round, it acts on eight bytes of text with eight bytes of key
by adding a byte of text to a byte of key, passing it through the S-box, adding
it to the next byte and then rotating the result by one bit (see Figure 5.17).
This rotation deals with some of the problems that might arise if the S-box has
uneven randomness across its bitplanes (for example, if it contains ascii text

PO ko Pl kl e o0
<
¢ Y
+
S
l Y
+

\ 4 \ 4 Y

Figure 5.17: The basic component of the Treyfer block cipher

5.6 Hash Functions

167

such as a copyright message). Finally, the algorithm makes up for its simple
round structure and probably less than ideal S-box by having a large number
of rounds (32).

No attacks are known on Treyfer which prevent its use for confidentiality
and for computing MACs. However, the algorithm does have a weakness that
prevents its use in hash functions. It suffers from a fixed-point attack. Given
any input, there is a fair chance we can find a key which will leave the input
unchanged. We just have to look to see, for each byte of input, whether the
S-box assumes the output which, when added to the byte on the right, has
the effect of rotating it one bit to the right. If such outputs exist for each
of the input bytes, then it’s easy to choose key values which will leave the data
unchanged after one round, and thus after 32. The probability that we can do
this depends on the S-box®. This means that we can easily find collisions if
Treyfer is used as a hash function. In effect, hash functions have to be based
on block ciphers which withstand chosen-key attacks.

5.6.2 Common Hash Functions and Applications

Algorithms similar to Treyfer have been used in hash functions in key manage-
ment protocols in some pay-TV systems, but typically they have a modification
to prevent fixed-point attacks, such as a procedure to add in the round number
at each round, or to mix up the bits of the key in some way (a key scheduling
algorithm).

The most commonly used hash functions are all cryptographically suspect.
They are based on variants of a block cipher with a 512 bit key and a block size
of either 128 or 160 bits:

m MD4 has three rounds and a 128 bit hash value, and a collision was
found for it in 1998 [394];

m MD?5 has four rounds and a 128 bit hash value, and a collision was found
for it in 2004 [1315, 1317];

m the US Secure Hash Standard has five rounds and a 160 bit hash value,
and it was shown in 2005 that a collision can be found with a computa-

tional effort of 2 steps rather than the 2% that one would hope given its
block size [1316].

The block ciphers underlying these hash functions are similar: their round
function is a complicated mixture of the register operations available on 32 bit
processors [1125].

3Curiously, an S-box which is a permutation is always vulnerable, while a randomly selected
one isn’t quite so bad. In many cipher designs, S-boxes which are permutations are essential or
at least desirable. Treyfer is an exception.

168

Chapter 5 = Cryptography

MD5 was broken by Xiaoyun Wang and her colleagues in 2004 [1315, 1317];
collisions can now be found easily, even between strings containing meaningful
text and adhering to message formats such as those used for digital certificates.
Wang seriously dented SHA the following year, providing an algorithm that
will find collisions in only 2% steps [1316]; and at the Crypto 2007 conference,
the view was that finding a collision should cost about 2°°. Volunteers were
being recruited for the task. So it appears that soon a collision will be found
and SHA-1 will be declared ‘broken’.

At the time of writing, the US National Institute of Standards and Technology
(NIST) recommends that people use extended block-size versions of SHA, such
as SHA-256 or SHA-512. The draft FIPS 180-3 allows, though discourages, the
original SHA; it specifies SHA-256 and SHA-512, and also supports 224-bit and
384-bit hashes derived from SHA-256 and SHA-512 respectively by changing
the initial values and truncating the output. The NSA specifies the use of SHA-
256 or SHA-382 along with AES in its Suite B of cryptographic algorithms for
defense use. NIST is also organising a competition to find a replacement hash
function family [949].

Whether a collision-search algorithm that requires months of work on
hundreds of machines (or a few days on a large botnet) will put any given
application at risk can be a complex question. If bank systems would actually
take a message composed by a customer saying ‘Pay X the sum Y, hash it and
sign it, then a weak hash function could indeed be exploited: a bad man could
find two messages ‘Pay X the sum Y’ and ‘Pay X the sum Z’ that hashed to
the same value, get one signed, and swap it for the other. But bank systems
don’t work like that. They typically use MACs rather than digital signatures
on actual transactions, relying on signatures only in public-key certificates
that bootstrap key-management protocols; and as the public-key certificates
are generated by trusted CAs using fairly constrained algorithms, there isn’t
an opportunity to insert one text of a colliding pair. Instead you’d have to
find a collision with an externally-given target value, which is a much harder
cryptanalytic task.

Hash functions have many uses. One of them is to compute MACs. A naive
method would be to simply hash the message with a key: MAC(M) = h(k, M).
However the accepted way of doing this, called HMAC, uses an extra step
in which the result of this computation is hashed again. The two hashing
operations are done using variants of the key, derived by exclusive-or’ing
them with two different constants. Thus HMAC,(M) = h(k @ A, h(k & B, M)). A
is constructed by repeating the byte 0x36 as often as necessary, and B similarly
from the byte 0x5c. Given a hash function that may be on the weak side, this
is believed to make exploitable collisions harder to find [741]. HMAC is now
FIPS 198, being replaced by FIPS 198-1.

5.6 Hash Functions

169

Another use of hash functions is to make commitments that are to be
revealed later. For example, I might wish to timestamp a digital document
in order to establish intellectual priority, but not reveal the contents yet. In
that case, I can submit a hash of the document to a commercial timestamping
service [572]. Later, when I reveal the document, the fact that its hash was
timestamped at a given time establishes that I had written it by then. Again,
an algorithm that generates colliding pairs doesn’t break this, as you have to
have the pair to hand when you do the timestamp. The moral, I suppose, is
that engineers should be clear about whether a given application needs a hash
function that’s strongly collision-resistant.

But even though there may be few applications where the ability to find
collisions could enable a bad guy to steal real money today, the existence of a
potential vulnerability can still undermine a system’s value. In 2005, a motorist
accused of speeding in Sydney, Australia, was acquitted after the New South
Wales Roads and Traffic Authority failed to find an expert to testify that MD5
was secure. The judge was “not satisfied beyond reasonable doubt that the
photograph [had] not been altered since it was taken” and acquitted the
motorist; this ruling was upheld on appeal the following year [964]. So even if
a vulnerability doesn’t present an engineering threat, it can still present a very
real certificational threat.

Finally, before we go on to discuss asymmetric cryptography, there are
two particular uses of hash functions which need mention: key updating and
autokeying.

Key updating means that two or more principals who share a key pass it
through a one-way hash function at agreed times: K; = h(K;_;). The point is
that if an attacker compromises one of their systems and steals the key, he
only gets the current key and is unable to decrypt back traffic. The chain of
compromise is broken by the hash function’s one-wayness. This property is
also known as backward security.

Autokeying means that two or more principals who share a key hash it
at agreed times with the messages they have exchanged since the last key
change: K.1i = h(K;, Mj1, Mj, . . .). The point is that if an attacker compromises
one of their systems and steals the key, then as soon as they exchange a
message which he doesn’t observe or guess, security will be recovered in
that he can no longer decrypt their traffic. Again, the chain of compromise is
broken. This property is known as forward security. It is used, for example, in
EFT payment terminals in Australia [143, 145]. The use of asymmetric crypto
allows a slightly stronger form of forward security, namely that as soon as
a compromised terminal exchanges a message with an uncompromised one
which the opponent doesn’t control, then security can be recovered even if the
message is in plain sight. I'll describe how this trick works next.

170

Chapter 5 = Cryptography

5.7 Asymmetric Crypto Primitives

The commonly used building blocks in asymmetric cryptography, that is public
key encryption and digital signature, are based on number theory. I'll give only
a brief overview here, and look in more detail at some of the mechanisms used
in Part Il where I discuss applications. (If you find the description assumes too
much mathematics, I'd suggest you skip the following two sections and read
up the material from a cryptography textbook.)

The technique is to make the security of the cipher depend on the difficulty of
solving a certain mathematical problem. The two problems which are used in
almost all fielded systems are factorization (used in most commercial systems)
and discrete logarithm (used in many government systems).

5.7.1 Cryptography Based on Factoring

The prime numbers are the positive whole numbers with no proper divisors; that
is, the only numbers that divide a prime number are 1 and the number itself. By
definition, 1 is not prime; so the primes are {2, 3, 5, 7, 11, .. .}. The fundamental
theorem of arithmetic states that each natural number greater than 1 factors into
prime numbers in a way that is unique up to the order of the factors. It is
easy to find prime numbers and multiply them together to give a composite
number, but much harder to resolve a composite number into its factors. The
largest composite product of two large random primes to have been factorized
to date was RSA-200, a 663-bit number (200 decimal digits), factored in 2005.
This factorization was done on a number of PCs and took the equivalent of 75
years” work on a single 2.2GHz machine. It is possible for factoring to be done
surreptitiously, perhaps using a botnet; in 2001, when the state of the art was
factoring 512-bit numbers, such a challenge was set in Simon Singh’s ‘Code
Book” and solved by five Swedish students using several hundred computers
to which they had access [24]. By 2007, 512-bit factorization had entered into
mainstream commerce. From 2003, Intuit had protected its Quicken files with
strong encryption, but left a back door based on a 512-bit RSA key so that they
could offer a key recovery service. Elcomsoft appears to have factored this key
and now offers a competing recovery product.

It is believed that factoring an RSA modulus of 1024 bits would require a
special-purpose machine costing in the range of $10—-50m and that would take
a year for each factorization [781]; but I've heard of no-one seriously planning
to build such a machine. Many physicists hope that a quantum computer could
be built that would make it easy to factor even large numbers. So, given that
Moore’s law is slowing down and that quantum computers haven’t arrived
yet, we can summarise the state of the art as follows. 1024-bit products of
two random primes are hard to factor and cryptographic systems that rely on

5.7 Asymmetric Crypto Primitives

171

them are at no immediate risk from low-to-medium budget attackers; NIST
expects them to be secure until 2010, while an extrapolation of the history of
factoring records suggests the first factorization will be published in 2018. So
risk-averse organisations that want keys to remain secure for many years are
already using 2048-bit numbers.

The algorithm commonly used to do public-key encryption and digital
signatures based on factoring is RSA, named after its inventors Ron Rivest,
Adi Shamir and Len Adleman. It uses Fermat’s (little) theorem, which states that
for all primes p not dividing a, @' =1 (mod p) (proof: take the set {1, 2, ...,
p — 1} and multiply each of them modulo p by g, then cancel out (p — 1)! each
side). Euler’s function ¢(n) is the number of positive integers less than n with
which it has no divisor in common; so if 7 is the product of two primes pq then
¢(n) = (p — 1)(g — 1) (the proof is similar).

The encryption key is a modulus N which is hard to factor (take N = pq for
two large randomly chosen primes p and g, say of 1024 bits each) plus a public
exponent e that has no common factors with either p — 1 or g4 — 1. The private
key is the factors p and g, which are kept secret. Where M is the message and
C is the ciphertext, encryption is defined by

C=M* (mod N)
Decryption is the reverse operation:
M=+C (mod N)

Whoever knows the private key — the factors p and q of N — can easily cal-
culate~/C (mod N).As¢(N) = (p — 1)(g — 1) and e has no common factors with
#(N), the key’s owner can find a number d such that de =1 (mod ¢(N)) — she
finds the value of d separately modulo p —1 and g4 — 1, and combines the
answers. v/C (mod N) is now computed as C? (mod N), and decryption works
because of Fermat’s theorem:

Cd = {ME}d = Med = M1+k¢(N) = M.Mk¢(N) = Mx1 = M (mod N)

Similarly, the owner of a private key can operate on a message with this to
produce a signature

Sigs(M) = M* (mod N)

and this signature can be verified by raising it to the power e mod N (thus,
using e and N as the public signature verification key) and checking that the
message M is recovered:

M = (Sigs(M))° (mod N)

Neither RSA encryption nor signature is generally safe to use on its own.
The reason is that, as encryption is an algebraic process, it preserves certain
algebraic properties. For example, if we have a relation such as MM, = M;

172

Chapter 5 = Cryptography

that holds among plaintexts, then the same relationship will hold among
ciphertexts C;C, = C; and signatures Sig;5ig, = Sigs. This property is known
as a multiplicative homomorphism; a homomorphism is a function that preserves
some mathematical structure. The homomorphic nature of raw RSA means that
it doesn’t meet the random oracle model definitions of public key encryption
or signature.

Another problem with public-key encryption is that if the plaintexts are
drawn from a small set, such as “attack’ or ‘retreat’, and the encryption process
is known to the opponent, then he can precompute possible ciphertexts and
recognise them when they appear. Specific algorithms also have specific
vulnerabilities: with RSA, it's dangerous to use a small exponent e to encrypt
the same message to multiple recipients, as this can lead to an algebraic
attack. To stop the guessing attack, the low-exponent attack and attacks
based on homomorphism, it’s sensible to add in some randomness, and some
redundancy, into a plaintext block before encrypting it. However, there are
good ways and bad ways of doing this.

In fact, crypto theoreticians have wrestled for decades to analyze all the
things that can go wrong with asymmetric cryptography, and to find ways to
tidy it up. Shafi Goldwasser and Silvio Micali came up with formal models of
probabilistic encryption in which we add randomness to the encryption process,
and semantic security, which means that an attacker cannot get any information
at all about a plaintext M that was encrypted to a ciphertext C, even if he
is allowed to request the decryption of any other ciphertext C' not equal
to C[536]. There are a number of constructions that give provable semantic
security, but they tend to be too ungainly for practical use.

The common real-world solution is optimal asymmetric encryption padding
(OAEP), where we concatenate the message M with a random nonce N, and
use a hash function / to combine them:

Ci =M@ h(N)

C, =N hC)

In effect, this is a two-round Feistel cipher that uses / as its round function.
The result, the combination C;, C;, is then encrypted with RSA and sent. The
recipient then computes N as C, @ h(C;) and recovers M as C; @ h(N) [148].
(This construction came with a security proof, in which a mistake was sub-
sequently found [1167, 234], sparking a vigorous debate on the value of
mathematical proofs in security engineering [724].) RSA Data Security, which
for years licensed the RSA algorithm, developed a number of public-key
cryptography standards; PKCS #1 describes OAEP [672].

With signatures, things are slightly simpler. In general, it’s often enough
to just hash the message before applying the private key: Sig; = [H(M)]"
(mod N); PKCS #7 describes simple mechanisms for signing a message

5.7 Asymmetric Crypto Primitives

173

digest [680]. However, in some applications one might wish to include further
data in the signature block, such as a timestamp, or some randomness in order
to make side-channel attacks harder.

Many of the things that have gone wrong with real implementations have
to do with error handling. Some errors can affect cryptographic mechanisms
directly. The most spectacular example was when Daniel Bleichenbacher found
away to break the RSA implementation in SSL v 3.0 by sending suitably chosen
ciphertexts to the victim and observing any resulting error messages. If he
can learn from the target whether a given ¢, when decrypted as ¢? (mod n),
corresponds to a PKCS #1 message, then he can use this to decrypt or sign
messages [189]. Other attacks have depended on measuring the precise time
taken to decrypt; I'll discuss these in the chapter on emission security. Yet
others have involved stack overflows, whether by sending the attack code in
as keys, or as padding in poorly-implemented standards. Don’t assume that
the only attacks on your crypto code will be doing cryptanalysis.

5.7.2 Cryptography Based on Discrete Logarithms

While RSA is used in most web browsers in the SSL protocol, and in the SSH
protocol commonly used for remote login to computer systems, there are other
products, and many government systems, which base public key operations on
discrete logarithms. These come in a number of flavors, some using ‘normal’
arithmetic while others use mathematical structures called elliptic curves. I'll
explain the normal case. The elliptic variants use essentially the same idea but
the implementation is more complex.

A primitive root modulo p is a number whose powers generate all the nonzero
numbers mod p; for example, when working modulo 7 we find that 5% = 25
which reduces to 4 (modulo 7), then we can compute 5° as 5 x 5 or 4 x 5
which is 20, which reduces to 6 (modulo 7), and so on, as in Figure 5.18:

5! =5 (mod 7)
5% = 25 =4 (mod 7)
5% = 4x5 =6 (mod 7)
5t = 6x5 =2 (mod 7)
5° = 2x5 =3 (mod 7)
56 = 3x5 =1 (mod 7)

Figure 5.18: Example of discrete logarithm calculations

Thus 5 is a primitive root modulo 7. This means that given any y, we can
always solve the equation y = 5 (mod 7); x is then called the discrete logarithm
of y modulo 7. Small examples like this can be solved by inspection, but for a
large random prime number p, we do not know how to do this computation.

174

Chapter 5 = Cryptography

So the mapping f : x — ¢* (mod p) is a one-way function, with the additional
properties that f(x +y) = f(x)f(y) and f(nx) = f(x)". In other words, it is a
one-way homomorphism. As such, it can be used to construct digital signature
and public key encryption algorithms.

5.7.2.1 Public Key Encryption — Diffie Hellman and EIGamal

To understand how discrete logarithms can be used to build a public-key
encryption algorithm, bear in mind that we want a cryptosystem which does
not need the users to start off with a shared secret key. Consider the following
‘classical” scenario.

Imagine that Anthony wants to send a secret to Brutus, and the only
communications channel available is an untrustworthy courier (say, a slave
belonging to Caesar). Anthony can take the message, put it in a box, padlock it,
and get the courier to take it to Brutus. Brutus could then put his own padlock
on it too, and have it taken back to Anthony. He in turn would remove his
padlock, and have it taken back to Brutus, who would now at last open it.

Exactly the same can be done using a suitable encryption function that
commutes, that is, has the property that {{M} KA} KB = {{M} KB} KA. Alice
can take the message M and encrypt it with her key KA to get {M} KA which
she sends to Bob. Bob encrypts it again with his key KB getting {{M} KA} KB.
But the commutativity property means that this is just {{M}_KB}_KA, so Alice
can decrypt it using her key KA getting {M}_KB. She sends this to Bob and he
can decrypt it with KB, finally recovering the message M. The keys KA and KB
might be long-term keys if this mechanism were to be used as a conventional
public-key encryption system, or they might be transient keys if the goal were
to establish a key with forward secrecy.

How can a suitable commutative encryption be implemented? The one-time
pad does commute, but is not suitable here. Suppose Alice chooses a random
key xA and sends Bob M @ xA while Bob returns M @ xB and Alice finally
sends him M @ xA @ xB, then an attacker can simply exclusive-or these three
messages together; as X @ X = 0 for all X, the two values of xA and xB both
cancel our leaving as an answer the plaintext M.

The discrete logarithm problem comes to the rescue. If the discrete log
problem based on a primitive root modulo p is hard, then we can use discrete
exponentiation as our encryption function. For example, Alice encodes her
message as the primitive root g, chooses a random number xA, calculates
¢4 modulo p and sends it, together with p, to Bob. Bob likewise chooses
a random number xB and forms g“** modulo p, which he passes back to
Alice. Alice can now remove her exponentiation: using Fermat’s theorem, she
calculates ¢*f = (¢**F)P=4) (mod p) and sends it to Bob. Bob can now remove
his exponentiation, too, and so finally gets hold of g. The security of this scheme
depends on the difficulty of the discrete logarithm problem. In practice, it is

5.7 Asymmetric Crypto Primitives

175

tricky to encode a message to be a primitive root; but there is a much simpler
means of achieving the same effect. The first public key encryption scheme
to be published, by Whitfield Diffie and Martin Hellman in 1976, has a fixed
primitive root ¢ and uses ¢*** modulo p as the key to a shared-key encryption
system. The values xA and xB can be the private keys of the two parties.

Let’s see how this might provide a public-key encryption system. The prime
p and generator g are common to all users. Alice chooses a secret random
number xA, calculates yA = g and publishes it opposite her name in the
company phone book. Bob does the same, choosing a random number x5 and
publishing yB = ¢*¥. In order to communicate with Bob, Alice fetches yB from
the phone book, forms yB** which is just g%, and uses this to encrypt the
message to Bob. On receiving it, Bob looks up Alice’s public key y, and forms
yA*® which is also equal to g**F, so he can decrypt her message.

Slightly more work is needed to provide a full solution. Some care is needed
when choosing the parameters p and g; and there are several other details
which depend on whether we want properties such as forward security.
Variants on the Diffie-Hellman theme include the US government key exchange
algorithm (KEA) [939], used in network security products such as the Fortezza
card, and the so-called Royal Holloway protocol, which is used by the UK
government [76].

Of course, one of the big problems with public-key systems is how to be
sure that you've got a genuine copy of the phone book, and that the entry
you're interested in isn’t out of date. I'll discuss that in section 5.7.5.

5.7.2.2 Key Establishment

Mechanisms for providing forward security in such protocols are of indepen-
dent interest, As before, let the prime p and generator ¢ be common to all
users. Alice chooses a random number Ry, calculates ¢’ and sends it to Bob;
Bob does the same, choosing a random number Ry and sending ¢* to Alice;
they then both form ¢*4®s, which they use as a session key (Figure 5.19).

A— B: ¢gf1 (mod p)
B— A: ¢gRfe (mod p)
A— B: {M}gRARB

Figure 5.19: The Diffie-Hellman key exchange protocol

Alice and Bob can now use the session key ¢®R¢ to encrypt a conversation.
They have managed to create a shared secret ‘out of nothing’. Even if an
opponent had obtained full access to both their machines before this protocol
was started, and thus knew all their stored private keys, then provided some
basic conditions were met (e.g., that their random number generators were

176

Chapter 5 = Cryptography

not predictable) the opponent could still not eavesdrop on their traffic. This
is the strong version of the forward security property to which I referred in
section 5.6.2. The opponent can’t work forward from knowledge of previous
keys which he might have obtained. Provided that Alice and Bob both destroy
the shared secret after use, they will also have backward security: an opponent
who gets access to their equipment subsequently cannot work backward to
break their old traffic.

But this protocol has a small problem: although Alice and Bob end up with
a session key, neither of them has any idea who they share it with.

Suppose that in our padlock protocol Caesar had just ordered his slave
to bring the box to him instead, and placed his own padlock on it next to
Anthony’s. The slave takes the box back to Anthony, who removes his padlock,
and brings the box back to Caesar who opens it. Caesar can even run two
instances of the protocol, pretending to Anthony that he’s Brutus and to Brutus
that he’s Anthony. One fix is for Anthony and Brutus to apply their seals to
their locks.

With the vanilla Diffie-Hellman protocol, the same idea leads to a mid-
dleperson attack. Charlie intercepts Alice’s message to Bob and replies to it; at
the same time, he initiates a key exchange with Bob, pretending to be Alice.
He ends up with a key g*4*c which he shares with Alice, and another key g*sRc
which he shares with Bob. So long as he continues to sit in the middle of the
network and translate the messages between them, they may have a hard time
detecting that their communications are compromised. The usual solution is
to authenticate transient keys, and there are various possibilities.

In one secure telephone product, the two principals would read out an eight
digit hash of the key they had generated and check that they had the same
value before starting to discuss classified matters. A more general solution is
for Alice and Bob to sign the messages that they send to each other.

A few other details have to be got right, such as a suitable choice of the
values p and g. There’s some non-trivial mathematics behind this, which is best
left to specialists. There are also many things that can go wrong in implemen-
tations — examples being software that will generate or accept very weak keys
and thus give only the appearance of protection; programs that leak the key by
the amount of time they take to decrypt; and software vulnerabilities leading
to stack overflows and other nasties. Nonspecialists implementing public-key
cryptography should consult up-to-date standards documents and/or use
properly accredited toolkits.

5.7.2.3 Digital Signature

Suppose that the base p and the generator ¢ are public values chosen in some
suitable way, and that each user who wishes to sign messages has a private
signing key X and a public signature verification key Y = ¢*. An ElGamal

5.7 Asymmetric Crypto Primitives

177

signature scheme works as follows. Choose a message key k at random, and
form r = ¢g* (mod p). Now form the signature s using a linear equation in k, r,
the message M and the private key X. There are a number of equations that
will do; the particular one that happens to be used in ElGamal signatures is

rX+sk=M

So s is computed as s = (M — rX)/k; this is done modulo ¢(p). When both
sides are passed through our one-way homomorphism f(x) = ¢* mod p we get:

ng sk EgM

or
Y = gM

An ElGamal signature on the message M consists of the values r and s, and
the recipient can verify it using the above equation.

A few more details need to be fixed up to get a functional digital signature
scheme. As before, bad choices of p and g can weaken the algorithm. We will
also want to hash the message M using a hash function so that we can sign
messages of arbitrary length, and so that an opponent can’t use the algorithm’s
algebraic structure to forge signatures on messages that were never signed.
Having attended to these details and applied one or two optimisations, we get
the Digital Signature Algorithm (DSA) which is a US standard and widely used
in government applications.

DSA (also known as DSS, for Digital Signature Standard) assumes a prime
p of typically 1024 bits, a prime g of 160 bits dividing (p — 1), an element g of
order g in the integers modulo p, a secret signing key x and a public verification
key y = g*. The signature on a message M, Sig.(M), is (r,s) where

r= (gk (mod p)) (mod gq)

s = (h(M) — xr)/k (mod q)

The hash function used here is SHA1.

DSA is the classic example of a randomized digital signature scheme without
message recovery. The standard has changed somewhat with faster computers,
as variants of the algorithm used to factor large numbers can also be used to
compute discrete logarithms modulo bases of similar size*. Initially the prime
p could be in the range 512-1024 bits, but this was changed to 1023-1024
bits in 2001 [941]; the proposed third-generation standard will allow primes
p in the range 1024-3072 bits and g in the range 160-256 bits1 [942]. Further
tweaks to the standard are also foreseeable after a new hash function standard
is adopted.

4Discrete log efforts lag slightly behind, with a record set in 2006 of 440 bits.

178

Chapter 5 = Cryptography

5.7.3 Special Purpose Primitives

Researchers have discovered a large number of public-key and signature
primitives with special properties. Two that have so far appeared in real
products are threshold cryptography and blind signatures.

Threshold crypto is a mechanism whereby a signing key, or a decryption key,
can be split up among 7 principals so that any k out of n can sign a message (or
decrypt). For k = n the construction is easy. With RSA, for example, you can
split up the private key d asd = d, +d, + ... 4+ d,. For k < n it’s slightly more
complex (but not much — you use the Lagrange interpolation formula) [382].
Threshold signatures are used in systems where a number of servers process
transactions independently and vote independently on the outcome; they
could also be used to implement business rules such as ‘a check may be signed
by any two of the seven directors’.

Blind signatures are a way of making a signature on a message without
knowing what the message is. For example, if we are using RSA, I can take a
random number R, form R°M (mod 1), and give it to the signer who computes
(R°M)* = R.M* (mod n). When he gives this back to me, I can divide out R
to get the signature M?. Now you might ask why on earth someone would
want to sign a document without knowing its contents, but there are indeed
applications.

The first was in digital cash; a bank might want to be able to issue anonymous
payment tokens to customers, and this has been done by getting it to sign
‘digital coins” without knowing their serial numbers. In such a system, the
bank might agree to honour for $10 any string M with a unique serial number
and a specified form of redundancy, bearing a signature that verified as correct
using the public key (e, n). The blind signature protocol shows how a customer
can get a bank to sign a coin without the banker knowing its serial number. The
effectis that the digital cash can be anonymous for the spender. (There are a few
technical details that need to be sorted out, such as how you detect people who
spend the same coin twice; but these are fixable.) Blind signatures and digital
cash were invented by Chaum [285], along with much other supporting digital
privacy technology which I'll discuss later [284]. They were used briefly in pilot
projects for road tolls in the Netherlands and for electronic purses in Brussels,
but failed to take off on a broader scale because of patent issues and because
neither banks nor governments really want payments to be anonymous: the
anti-money-laundering regulations nowadays restrict anonymous payment
services to rather small amounts. Anonymous digital credentials are now
talked about, for example, in the context of ‘identity management’: the TPM
chip on your PC motherboard might prove something about you (such as your
age) without actually revealing your name.

Researchers continue to suggest new applications for specialist public key
mechanisms. A popular candidate is in online elections, which require a

5.7 Asymmetric Crypto Primitives

179

particular mixture of anonymity and accountability. Voters want to be sure
that their votes have been counted, but it’s also desirable that they should
not be able to prove which way they voted to anybody else; if they can, then
vote-buying and intimidation become easier.

5.7.4 Elliptic Curve Cryptography

Finally, discrete logarithms and their analogues exist in many other mathe-
matical structures; thus for example elliptic curve cryptography uses discrete
logarithms on an elliptic curve —a curve given by an equation like y* =
x> 4+ ax + b. These curves have the property that you can define an addition
operation on them and use it for cryptography; the algebra gets a bit complex
and a general book like this isn’t the place to set it out. However, elliptic curve
cryptosystems are interesting for two reasons.

First, they give versions of the familiar primitives such as Diffie-Hellmann
key exchange and the Digital Signature Algorithm that use less computation,
and also have slightly shorter variables; both can be welcome i