
U s e r’ s G u i d e

S I E S T A 5.0.1

June 25, 2024

https://siesta-project.org

SIESTA Steering Committee:

Emilio Artacho CIC-Nanogune and University of Cambridge
José María Cela Barcelona Supercomputing Center
Julian D. Gale Curtin University of Technology, Perth
Alberto García Institut de Ciència de Materials, CSIC, Barcelona
Javier Junquera Universidad de Cantabria, Santander
Richard M. Martin University of Illinois at Urbana-Champaign
Pablo Ordejón Centre de Investigació en Nanociència

i Nanotecnologia, (CSIC-ICN), Barcelona
Nick Rübner Papior Technical University of Denmark
Daniel Sánchez-Portal Unidad de Física de Materiales,

Centro Mixto CSIC-UPV/EHU, San Sebastián
José M. Soler Universidad Autónoma de Madrid

SIESTA is Copyright © 1996-2024 by The Siesta Group

https://siesta-project.org

Contributors to SIESTA

The SIESTA project was initiated by Pablo Ordejon (then at the Univ. de Oviedo), and Jose M.
Soler and Emilio Artacho (Univ. Autonoma de Madrid, UAM). The development team was then
joined by Alberto Garcia (then at Univ. del Pais Vasco, Bilbao), Daniel Sanchez-Portal (UAM),
and Javier Junquera (Univ. de Oviedo and later UAM), and sometime later by Julian Gale (then at
Imperial College, London). In 2007 Jose M. Cela (Barcelona Supercomputing Center, BSC) became
a core developer and member of the Steering Committee.
The original TranSIESTA module was developed by Pablo Ordejon and Jose L. Mozos (then
at ICMAB-CSIC), and Mads Brandbyge, Kurt Stokbro, and Jeremy Taylor (Technical Univ. of
Denmark).
The current TranSIESTA module within SIESTA is developed by Nick R. Papior and Mads Brand-
byge. Nick R. Papior became a core developer and member of the Steering Committee in 2015.
Other contributors (we apologize for any omissions):
Eduardo Anglada, Thomas Archer, Luis C. Balbas, Xavier Blase, Jorge I. Cerdá, Ramón Cuadrado,
Michele Ceriotti, Fabiano Corsetti, Raul de la Cruz, Gabriel Fabricius, Marivi Fernandez-Serra,
Jaime Ferrer, Chu-Chun Fu, Sandra Garcia, Victor M. Garcia-Suarez, Rogeli Grima, Rainer Hoft,
Georg Huhs, Jorge Kohanoff, Richard Korytar, In-Ho Lee, Lin Lin, Nicolas Lorente, Miquel Llunell,
Eduardo Machado, Maider Machado, Jose Luis Martins, Volodymyr Maslyuk, Juana Moreno, Fred-
erico Dutilh Novaes, Micael Oliveira, Magnus Paulsson, Oscar Paz, Federico Pedron, Andrei Post-
nikov, Roberto Robles, Tristana Sondon, Rafi Ullah, Andrew Walker, Andrew Walkingshaw, Toby
White, Francois Willaime, Chao Yang.
O.F. Sankey, D.J. Niklewski and D.A. Drabold made the FIREBALL code available to P. Ordejon.
Although we no longer use the routines in that code, it was essential in the initial development of
SIESTA, which still uses many of the algorithms developed by them.

2

Contents

Contributors to SIESTA 2

1 INTRODUCTION 9

2 COMPILATION 11
2.1 Notes on compiler flags . 12

2.1.1 Debug options . 12
2.2 Parallel operation . 12

2.2.1 MPI . 12
2.2.2 OpenMP . 13

2.3 Library dependencies . 14
2.4 Known Issues . 16
2.5 Installing git-enabled versions . 17

3 EXECUTION OF THE PROGRAM 17
3.1 Specific execution options . 18

4 THE FLEXIBLE DATA FORMAT (FDF) 19

5 PROGRAM OUTPUT 20
5.1 Standard output . 20
5.2 Output to dedicated files . 21

6 DETAILED DESCRIPTION OF PROGRAM OPTIONS 21
6.1 General system descriptors . 21
6.2 Pseudopotentials . 24
6.3 Basis set and KB projectors . 26

6.3.1 Overview of atomic-orbital bases implemented in SIESTA 26
6.3.2 Type of basis sets . 30
6.3.3 Size of the basis set . 31
6.3.4 Range of the orbitals . 31
6.3.5 Generation of multiple-zeta orbitals . 32
6.3.6 Polarization-orbital options . 33
6.3.7 Soft-confinement options . 35
6.3.8 Kleinman-Bylander projectors . 35

3

6.3.9 The PAO.Basis block . 37
6.3.10 Filtering . 40
6.3.11 Saving and reading basis-set information . 41
6.3.12 Tools to inspect the orbitals and KB projectors 41
6.3.13 Basis optimization . 41
6.3.14 Low-level options regarding the radial grid 42
6.3.15 Summary of options and defaults enabling automatic basis-set generation . . 42
6.3.16 Notes on backward compatibility in regard to new program defaults 43

6.4 Structural information . 44
6.4.1 Traditional structure input in the fdf file . 44
6.4.2 Z-matrix format and constraints . 46
6.4.3 Output of structural information . 50
6.4.4 Input of structural information from external files 51
6.4.5 Input from a FIFO file . 52
6.4.6 Precedence issues in structural input . 52
6.4.7 Interatomic distances . 52

6.5 k-point sampling . 53
6.5.1 Output of k-point information . 54

6.6 Exchange-correlation functionals . 54
6.7 Spin polarization . 57
6.8 Spin-Orbit coupling . 58

6.8.1 On-site approximation . 60
6.9 The self-consistent-field loop . 60

6.9.1 Harris functional . 61
6.9.2 Mixing options . 61
6.9.3 Mixing of the Charge Density . 68
6.9.4 Initialization of the density-matrix . 70
6.9.5 Initialization of the SCF cycle with charge densities 73
6.9.6 Output of density matrix and Hamiltonian 73
6.9.7 Convergence criteria . 75

6.10 The real-space grid and the eggbox-effect . 77
6.11 Matrix elements of the Hamiltonian and overlap . 80

6.11.1 The auxiliary supercell . 81
6.12 Calculation of the electronic structure . 81

4

6.12.1 Diagonalization options . 82
6.12.2 Output of eigenvalues and wavefunctions . 86
6.12.3 Occupation of electronic states and Fermi level 87
6.12.4 Orbital minimization method (OMM) . 88
6.12.5 Order(N) calculations . 90

6.13 The CheSS solver . 92
6.13.1 Input parameters . 92

6.14 The PEXSI solver . 93
6.14.1 Pole handling . 93
6.14.2 Parallel environment and control options . 94
6.14.3 Electron tolerance and the PEXSI solver . 95
6.14.4 Inertia-counting . 96
6.14.5 Re-use of µ information accross iterations . 97
6.14.6 Calculation of the density of states by inertia-counting 98
6.14.7 Calculation of the LDOS by selected-inversion 98

6.15 Band-structure analysis . 99
6.15.1 Format of the .bands file . 100
6.15.2 Output of wavefunctions associated to bands 101

6.16 Output of selected wavefunctions . 101
6.17 Density of states . 102

6.17.1 Total density of states . 102
6.17.2 Partial (projected) density of states . 103
6.17.3 Local density of states . 104

6.18 Options for chemical analysis . 105
6.18.1 Mulliken charges and overlap populations . 105
6.18.2 Voronoi and Hirshfeld atomic population analysis 106
6.18.3 Crystal-Orbital overlap and hamilton populations (COOP/COHP) 107

6.19 Optical properties . 107
6.20 Macroscopic polarization . 109
6.21 Maximally Localized Wannier Functions . 111

6.21.1 wannier90 as a postprocessing tool . 111
6.21.2 wannier90 called on-the-fly within siesta 113

6.22 Systems with net charge or dipole, and electric fields 116
6.22.1 Bulk current . 121

5

6.23 Output of charge densities and potentials on the grid 122
6.24 Auxiliary Force field . 125
6.25 Grimme’s DFT-D3 dispersion model . 126

6.25.1 A note on LIBXC functionals . 127
6.26 Parallel options . 127

6.26.1 Parallel decompositions for O(N) . 128
6.27 Efficiency options . 129
6.28 Memory, CPU-time, and Wall time accounting options 129
6.29 The catch-all option UseSaveData . 130
6.30 Output of information for Denchar . 130
6.31 NetCDF (CDF4) output file . 130

7 STRUCTURAL RELAXATION, PHONONS, AND MOLECULAR DYNAM-
ICS 131
7.1 Compatibility with pre-v4 versions . 133
7.2 Structural relaxation . 134

7.2.1 Conjugate-gradients optimization . 135
7.2.2 Broyden optimization . 135
7.2.3 FIRE relaxation . 136

7.3 Target stress options . 136
7.4 Molecular dynamics . 137
7.5 Output options for dynamics . 138
7.6 Restarting geometry optimizations and MD runs . 140
7.7 Use of general constraints . 140
7.8 Phonon calculations . 143

8 DFT+U 144

9 RT-TDDFT 146
9.1 Brief description . 146
9.2 Partial Occupations . 147
9.3 Input options for RT-TDDFT . 147

10 External control of SIESTA 148
10.1 Examples of Lua programs . 151
10.2 External MD/relaxation methods . 151

6

11 TRANSIESTA 151
11.1 Source code structure . 152
11.2 Compilation . 152
11.3 Brief description . 152
11.4 Electrodes . 154

11.4.1 Matching coordinates . 155
11.4.2 Principal layer interactions . 156

11.5 Convergence of electrodes and scattering regions . 157
11.6 NEGF equations . 158
11.7 TranSIESTA Options . 158

11.7.1 Quick and dirty . 159
11.7.2 General options . 159

11.8 k-point sampling . 166
11.8.1 Algorithm specific options . 166
11.8.2 Poisson solution for fixed boundary conditions 168
11.8.3 Electrode description options . 169
11.8.4 Chemical potentials . 173
11.8.5 Complex contour integration options . 175
11.8.6 Bias contour integration options . 177

11.9 Output . 177
11.10Utilities for analysis: TBtrans . 178

12 ANALYSIS TOOLS 178

13 SCRIPTING 178

14 PROBLEM HANDLING 179
14.1 Error and warning messages . 179

15 REPORTING BUGS 179

16 ACKNOWLEDGMENTS 179

17 APPENDIX: Physical unit names recognized by FDF 180

18 APPENDIX: XML Output 181
18.1 Controlling XML output . 181

7

18.2 Converting XML to XHTML . 181

19 APPENDIX: Selection of precision for storage 182

20 APPENDIX: Data structures and reference counting 183

Bibliography 184

Index 186

8

1 INTRODUCTION

This Reference Manual contains descriptions of all the input, output and execution features of
SIESTA, but is not really a tutorial introduction to the program. Interested users can find
tutorial material prepared for SIESTA schools and workshops at the web page https://docs.
siesta-project.org

SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms) is both a method
and its computer program implementation, to perform electronic structure calculations and ab initio
molecular dynamics simulations of molecules and solids. Its main characteristics are:

• It uses the standard Kohn-Sham selfconsistent density functional method in the local den-
sity (LDA-LSD) and generalized gradient (GGA) approximations, as well as in a non local
functional that includes van der Waals interactions (VDW-DF).

• It uses norm-conserving pseudopotentials in their fully nonlocal (Kleinman-Bylander) form.

• It uses atomic orbitals as a basis set, allowing unlimited multiple-zeta and angular momenta,
polarization and off-site orbitals. The radial shape of every orbital is numerical and any shape
can be used and provided by the user, with the only condition that it has to be of finite support,
i.e., it has to be strictly zero beyond a user-provided distance from the corresponding nucleus.
Finite-support basis sets are the key for calculating the Hamiltonian and overlap matrices in
O(N) operations.

• Projects the electron wavefunctions and density onto a real-space grid in order to calculate the
Hartree and exchange-correlation potentials and their matrix elements.

• Besides the standard Rayleigh-Ritz eigenstate method, it allows the use of localized linear
combinations of the occupied orbitals (valence-bond or Wannier-like functions), making the
computer time and memory scale linearly with the number of atoms. Simulations with several
hundred atoms are feasible with modest workstations.

• It is written in Fortran 2003 and memory is allocated dynamically.

• It may be compiled for serial or parallel execution (under MPI).

It routinely provides:

• Total and partial energies.

• Atomic forces.

• Stress tensor.

• Electric dipole moment.

• Atomic, orbital and bond populations (Mulliken).

• Electron density.

And also (though not all options are compatible):

9

https://docs.siesta-project.org
https://docs.siesta-project.org

• Geometry relaxation, fixed or variable cell.

• Constant-temperature molecular dynamics (Nose thermostat).

• Variable cell dynamics (Parrinello-Rahman).

• Spin polarized calculations (colinear or not).

• k-sampling of the Brillouin zone.

• Local and orbital-projected density of states.

• COOP and COHP curves for chemical bonding analysis.

• Dielectric polarization.

• Vibrations (phonons).

• Band structure.

• Ballistic electron transport under non-equilibrium (through TranSIESTA)

Starting from version 3.0, SIESTA includes the TranSIESTA module. TranSIESTA provides
the ability to model open-boundary systems where ballistic electron transport is taking place. Using
TranSIESTA one can compute electronic transport properties, such as the zero bias conductance
and the I-V characteristic, of a nanoscale system in contact with two electrodes at different elec-
trochemical potentials. The method is based on using non equilibrium Greens functions (NEGF),
that are constructed using the density functional theory Hamiltonian obtained from a given electron
density. A new density is computed using the NEGF formalism, which closes the DFT-NEGF self
consistent cycle.
Starting from version 4.1, TranSIESTA is an intrinsic part of the SIESTA code. I.e. a separate
executable is not necessary anymore. See Sec. 11 for details.
For more details on the formalism, see the main TranSIESTA reference cited below. A section
has been added to this User’s Guide, that describes the necessary steps involved in doing transport
calculations, together with the currently implemented input options.

References:

• “Unconstrained minimization approach for electronic computations that scales linearly with
system size” P. Ordejón, D. A. Drabold, M. P. Grumbach and R. M. Martin, Phys. Rev. B 48,
14646 (1993); “Linear system-size methods for electronic-structure calculations” Phys. Rev.
B 51 1456 (1995), and references therein.
Description of the order-N eigensolvers implemented in this code.

• “Self-consistent order-N density-functional calculations for very large systems” P. Ordejón, E.
Artacho and J. M. Soler, Phys. Rev. B 53, 10441, (1996).
Description of a previous version of this methodology.

10

• “Density functional method for very large systems with LCAO basis sets” D. Sánchez-Portal,
P. Ordejón, E. Artacho and J. M. Soler, Int. J. Quantum Chem., 65, 453 (1997).
Description of the present method and code.

• “Linear-scaling ab-initio calculations for large and complex systems” E. Artacho, D. Sánchez-
Portal, P. Ordejón, A. García and J. M. Soler, Phys. Stat. Sol. (b) 215, 809 (1999).
Description of the numerical atomic orbitals (NAOs) most commonly used in the code, and
brief review of applications as of March 1999.

• “Numerical atomic orbitals for linear-scaling calculations” J. Junquera, O. Paz, D. Sánchez-
Portal, and E. Artacho, Phys. Rev. B 64, 235111, (2001).
Improved, soft-confined NAOs.

• “The SIESTA method for ab initio order-N materials simulation” J. M. Soler, E. Artacho,
J.D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens.
Matter 14, 2745-2779 (2002)
Extensive description of the SIESTA method.

• “Computing the properties of materials from first principles with SIESTA”, D. Sánchez-Portal,
P. Ordejón, and E. Canadell, Structure and Bonding 113, 103-170 (2004).
Extensive review of applications as of summer 2003.

• “Improvements on non-equilibrium and transport Green function techniques: The next-
generation TranSIESTA”, Nick Papior, Nicolas Lorente, Thomas Frederiksen, Alberto García
and Mads Brandbyge, Computer Physics Communications, 212, 8–24 (2017).
Description of the TranSIESTA method.

• “Density-functional method for nonequilibrium electron transport”, Mads Brandbyge, Jose-
Luis Mozos, Pablo Ordejón, Jeremy Taylor, and Kurt Stokbro, Phys. Rev. B 65, 165401
(2002).
Description of the original TranSIESTA method (prior to 4.1).

• “Siesta: Recent developments and applications”, Alberto García, et al., J. Chem. Phys. 152,
204108 (2020).
Extensive review of applications and developments as of 2020.

For more information you can visit the web page https://siesta-project.org.

2 COMPILATION

Please see the file INSTALL.md in the top directory of the SIESTA distribution for basic instructions
on how to use CMake (≥3.20) to build SIESTA and the utility programs.
A set of Spack recipes is also available to handle some dependencies and multiple build configurations
automatically.

11

https://siesta-project.org

2.1 Notes on compiler flags

NOTE: Intel compilers default to high optimizations which tend to break SIESTA. We advice to
use -fp-model source flag and to avoid optimizations higher than -O2.

NOTE: Since gfortran version 10.x the interfaces are strictly checked. Currently one has to add
-fallow-argument-mismatch to the compiler flags to turn errors into warnings. These warnings
are safe to ignore and will look something like:

.../siesta/Src/fsiesta_mpi.F90:441:18:

440 | call MPI_Bcast(n, 1, MPI_Integer, 0, MPI_Comm_Siesta, error)
| 2

441 | call MPI_Bcast(x, 3*na, MPI_Double_Precision, 0, MPI_Comm_Siesta, error)
| 1

Warning: Type mismatch between actual argument at (1) and actual argument at (2) (REAL(8)/INTEGER(4)).

The CMake system takes care of adding the extra flag automatically. Note that compilations with
-pedantic flag are no longer possible.

2.1.1 Debug options

Being able to build SIESTA in debug mode is crucial for finding bugs and debugging builds.
For GFortran, use the following flags:

FFLAGS = -Og -g -Wall -fcheck=all -fbacktrace -Warray-bounds -Wunused -Wuninitialized

For Intel, use the following flags:

FFLAGS = -Og -g -check bounds -traceback -fp-model strict

This will make SIESTA run significantly slower. Please report any crashes to the developer team
at https://gitlab.com/siesta-project/siesta/-/issues.

2.2 Parallel operation

To achieve a parallel build of SIESTA one should first determine which type of parallelism one
requires. It is advised to use MPI for calculations with moderate number of cores. If one requires
extra parallelism SIESTA provides hybrid parallelism using both MPI and OpenMP.

2.2.1 MPI

MPI is a message-passing interface which enables communication between equivalently executed
binaries. This library will thus duplicate all non-distributed data such as local variables etc.
MPI is compiled-in by default in SIESTA , as long as the appropriate libraries can be found. If
MPI is not desired, simply set

12

https://gitlab.com/siesta-project/siesta/-/issues

-DWITH_MPI=OFF

in the CMake invocation.
Subsequently one may run SIESTA using the mpirun/mpiexec commands:

mpirun -np <> siesta RUN.fdf

where <> is the number of cores used. Note that the actual commands and syntax are system-
dependent.

2.2.2 OpenMP

OpenMP is shared memory parallelism. It typically does not incur any memory overhead and may
be used if memory is scarce and the regular MPI compilation is crashing due to insufficient memory,
or is not efficient due to the communication overhead.
To enable OpenMP, simply add this to your CMake invocation

-DWITH_OPENMP=ON

The above will yield the most basic parallelism using OpenMP. However, the BLAS/LAPACK
libraries, which are the most time-consuming part of SIESTA are also required to be threaded,
please see Sec. 2.3 for correct linking.
The minimum required version of OpenMP is 3.0 (internally identified by the YYYYMM date string
200805).
Subsequently one may run SIESTA using OpenMP through the environment variable
OMP_NUM_THREADS which determine the number of threads/cores used in the execution.

OMP_NUM_THREADS=<> siesta RUN.fdf
or (bash)
export OMP_NUM_THREADS=<>
siesta RUN.fdf
or (csh)
setenv OMP_NUM_THREADS <>
siesta RUN.fdf

where <> is the number of threads/cores used.
If SIESTA is also compiled using MPI it is more difficult to obtain a good performance. Please
refer to your local cluster documentation for how to correctly call MPI with hybrid parallelism. An
example for running SIESTA with good performance using OpenMPI > 1.8.2 and OpenMP on a
machine with 2 sockets and 8 cores per socket, one may do:

MPI = 2 cores, OpenMP = 8 threads per core (total=16)
mpirun --map-by ppr:1:socket:pe=8 \

-x OMP_NUM_THREADS=8 \
-x OMP_PROC_BIND=true siesta RUN.fdf

13

MPI = 4 cores, OpenMP = 4 threads per core (total=16)
mpirun --map-by ppr:2:socket:pe=4 \

-x OMP_NUM_THREADS=4 \
-x OMP_PROC_BIND=true siesta RUN.fdf

MPI = 8 cores, OpenMP = 2 threads per core (total=16)
mpirun --map-by ppr:4:socket:pe=2 \

-x OMP_NUM_THREADS=2 \
-x OMP_PROC_BIND=true siesta RUN.fdf

If using only 1 thread per MPI core it is advised to compile SIESTA without OpenMP. As such it
may be advantageous to compile SIESTA in 3 variants; OpenMP-only (small systems), MPI-only
(medium to large systems) and MPI+OpenMP (large> systems).
The variable OMP_PROC_BIND may heavily influence the performance of the executable! Please per-
form tests for the architecture used.

2.3 Library dependencies

NOTE: The required libraries: xmlf90, libPSML, libfdf, and libGridXC, can be installed auto-
matically on-the-fly during the SIESTA compilation process.
They can also be pre-installed, using their own CMake-based building systems. In that case their
installation paths can be added to CMAKE_PREFIX_PATH for the SIESTA compilation.

XMLF90 is required as a prerequisite for libPSML, and to produce XML and CML output. (https:
//gitlab.com/siesta-project/libraries/xmlf90).

libPSML is required to use pseudopotentials in PSML format (https://gitlab.com/
siesta-project/libraries/libpsml)

libfdf is required to parse fdf files and handle the options in them. (https://gitlab.com/
siesta-project/libraries/libfdf)

libGridXC is required. (https://gitlab.com/siesta-project/libraries/libgridxc)

libXC is optional. libGridXC can use it if present. (https://gitlab.com/libxc/libxc)

BLAS it is recommended to use a high-performance library (OpenBLAS or MKL library from Intel,
or BLIS)

LAPACK it is recommended to use a high-performance library (OpenBLAS1 or MKL library from
Intel)
NOTE: If you use your *nix distribution package manager to install BLAS/LAPACK you
are bound to have a poor performance. Please try and use performance libraries, whenever
possible!
The CMake building system will search for the BLAS/LAPACK libraries (maybe with help,
by setting the BLAS_LIBRARY or LAPACK_LIBRARY CMake variables) and set the ap-
propriate linking options.

1OpenBLAS enables the inclusion of the LAPACK routines. This is advised.

14

https://gitlab.com/siesta-project/libraries/xmlf90
https://gitlab.com/siesta-project/libraries/xmlf90
https://gitlab.com/siesta-project/libraries/libpsml
https://gitlab.com/siesta-project/libraries/libpsml
https://gitlab.com/siesta-project/libraries/libfdf
https://gitlab.com/siesta-project/libraries/libfdf
https://gitlab.com/siesta-project/libraries/libgridxc
https://gitlab.com/libxc/libxc
https://github.com/xianyi/OpenBLAS
https://github.com/xianyi/OpenBLAS

ScaLAPACK Only required for MPI compilation.
Here one may rely on the NetLIB2 version of ScaLAPACK.

Additionally SIESTA may be compiled with support for several other libraries

fdict This library is shipped with SIESTA and compiled automatically when needed.

NetCDF It is advised to compile NetCDF in CDF4 compliant mode (thus also linking with HDF5)
as this enables more advanced IO. If you only link against a CDF3 compliant library you will
not get the complete feature set of SIESTA.
NetCDF (both the C and Fortran interfaces) are typically already installed in supercomputer
centers and can be installed in most systems using package managers. As a temporary conve-
nience, SIESTA is shipped with the installation script Docs/install_netcdf4.bash, which
installs NetCDF with full CDF4 support. Thus it installs zlib, hdf5 and NetCDF C and
Fortran.

ncdf This library is shipped with SIESTA and is compiled automatically if NetCDF (v4) is enabled,
unless the user sets -DWITH_NCDF=OFF.
If the NetCDF library is compiled with parallel support one may take advantage of parallel IO
by -DWITH_NCDF_PARALLEL=ON

ELPA The ELPA [1;10] library provides faster diagonalization routines.
The version of ELPA must be 2017.05.003 or later, since the new ELPA API is used.
ELPA is used by default if found during the configuration phase of the CMake run.
NOTE: ELPA can only be used in the parallel version of SIESTA.

Metis The Metis library may be used with TranSIESTA.
Currently there is no full support in CMake to build the Metis library. It has to be pre-
compiled, and the options passed to CMake in the form:

cmake [.....] -DFortran_FLAGS="-DSIESTA__METIS -L/opt/metis/lib -lmetis"

MUMPS The MUMPS library may currently be used with TranSIESTA.
Currently there is no full support in CMake to build the MUMPS library. It has to be pre-
compiled, and the options passed to CMake in the form:

cmake [.....] \
-DFortran_FLAGS="-DSIESTA__MUMPS -L/opt/mumps/lib -lzmumps -lmumps_common <>"

where <> are any libraries that MUMPS depends on.

PEXSI The PEXSI library may be used with this version of SIESTA for massively-parallel calcu-
lations, see Sec. 6.14.
The PEXSI interface in this version is the original native one, using the heuristics developed
for SIESTA in collaboration with the PEXSI developers, with the following features and
limitations:

2ScaLAPACK’s performance is mainly governed by BLAS and LAPACK.

15

https://github.com/zerothi/fdict
https://www.unidata.ucar.edu/software/netcdf
https://github.com/zerothi/ncdf
http://elpa.mpcdf.mpg.de
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://mumps.enseeiht.fr
http://pexsi.org

• It works only for the Gamma point (i.e. real matrices H and S). This is not really a major
limitation, since the PEXSI method is typically used for large systems.

• It works for (collinear) spin-polarized systems.
• It can compute the DOS through inertia counting, and the local DOS using selected

inversion.
• It determines the Fermi level using a Newton algorithm.
• It offers two levels of parallelization: over poles, and over orbitals.

Newer versions of SIESTA (in the Gitlab development site) can use the PEXSI library through
the ELSI library interface, which offers

• Arbitrary sampling of the Brillouin Zone (both real and complex H,S)
• It works for (collinear) spin-polarized systems.
• It determines the Fermi level using a parallel interpolation procedure.
• It offers three levels of parallelization: over poles, over orbitals, and over interpolation

points.

It turns out that the PEXSI library routines used by the native interface in SIESTA are
offered both by the PEXSI library itself (versions 2.0 and higher), and by the ELSI library
(if compiled with PEXSI support). A special fortran interface file has been used to allow the
compilation of SIESTA with any one of these libraries.

CheSS SIESTA allows calculation of the electronic structure through the use of the Order-N
method CheSS3. To enable this solver (see SolutionMethod) one needs to first compile the
CheSS-suite and subsequently use:

cmake [.....] -DWITH_CHESS=ON

NOTE: The developers are working on streamlining the integration of this library into the
CMake build system.

flook SIESTA allows external control via the LUA scripting language. Using this library one may
do advanced MD simulations and much more without changing any code in SIESTA.
This library is compiled automatically if found during the configuration process.
See Tests/Dependency_Tests/h2o_lua for an example on the LUA interface.

DFT-D3 This library is required in order to add Grimme’s D3 dispersion corrections to SIESTA.
It is compiled on the fly (controlled by -DWITH_DFTD3=ON/OFF) if the directories under
External/DFTD3 are populated (through the use of git submodules or otherwise).

2.4 Known Issues

Cray There are few known issues when compiling SIESTA with Cray compilers.

• Compilation with debug information "-g" fails for Cray Compiler versions lower than
14.0.3.

3See https://launchpad.net/chess.

16

https://github.com/electronicstructurelibrary/flook
https://github.com/awvwgk/simple-dftd3
https://launchpad.net/chess

• For Cray versions 15.0 or higher available on certain systems, it might be mandatory to
manually add a compiler flag for OpenMP compilations. For example:

cmake -B _build ...[Your Options Here]... -DFortran_FLAGS="-fopenmp"

ScalaPACK In some Linux-native versions of the ScaLAPACK distribution, CMake detection
might fail with the following message:

CMake Warning at CMakeLists.txt:63 (message):
MPI is found, but ScaLAPACK library cannot be found (or compiled against).

If parallel support is required please supply the ScaLAPACK library with
appropriate flags:

-DSCALAPACK_LIBRARY=<lib>

In order to fix this, the cmake variable -DSCALAPACK_LIBRARY must be explicitly set to
-DSCALAPACK_LIBRARY=-lscalapack-openmpi (or the appropriate ScaLAPACK version in
your system).

2.5 Installing git-enabled versions

When installing versions of SIESTA via git clone or similar approaches, one can take advantage
of git to automatically setup all of SIESTAś internal dependencies, using:

git submodule update --init --recursive

NOTE: Note that this requires git versions of 2.13 and above.

3 EXECUTION OF THE PROGRAM

A fast way to test your installation of SIESTA and get a feeling for the workings of the program is
implemented in directory Tests. Assuming that you have built SIESTA in _build, you can do

cd _build
ctest -L simple

to test the execution of an assortment of tests. Executing ctest with no other options will run all
possible tests. Output verification is also available via the VERIFY_TESTS environment variable:

VERIFY_TESTS=1 ctest -L simple

Other examples are provided in the Examples directory.
Further information about the running of SIESTA with tutorials and how-to’s on various topics,
including the generation of pseudopotentials with the ATOM code, can be found in the documentation
site https://docs.siesta-project.org.

17

https://docs.siesta-project.org

3.1 Specific execution options

SIESTA may be executed in different forms. The basic execution form is

siesta < RUN.fdf > RUN.out

which uses a pipe statement. SIESTA 4.1 and later does not require one to pipe in the input file
and the input file may instead be specified on the command line:

siesta RUN.fdf > RUN.out

SIESTA 4.1 and later also accepts special flags and options described in what follows:

• All flags must start by one or more dashes (-). The number of leading dashes is irrelevant, as
long as there is at least one of them.

• Some flags (e.g., [-L]) must be followed by a properly formed option string. Other flags (e.g.,
[-elec]) are logical toggles and they are not followed by option strings.

• Flags and option strings must all be separated by spaces (and only spaces are valid separators
for this).

• Option strings may be quoted. Option strings that contain spaces need to either be quoted or
have the spaces replaced by a colon (:) or by an equal sign (=).

• If the input file is not piped in, it can be given as an argument:

siesta -L Hello -V 0.25:eV RUN.fdf > RUN.out
siesta -L Hello RUN.fdf -V 0.25:eV > RUN.out

The list of available flags and options is:

-help|-h Print a help instruction and quit.

-version|-v Print version information and quit.

-out|-o Specify the output file (instead of printing to the terminal). Example:

siesta --out RUN.out

-L Override, temporarily, the SystemLabel flag. Example:

siesta -L Hello

-electrode|-elec overwrites: TS.HS.Save, TS.DE.Save

Denote this as an electrode calculation which forces the SystemLabel.TSHS and
SystemLabel.TSDE files to be saved.
NOTE: This is equivalent to specifying TS.HS.Save true and TS.DE.Save true in the input
file.

-V overwrites: TS.Voltage

Specify the bias for the current TranSIESTA run. If no units are specified, eV are assumed.
Example: any of the following three commands set the applied bias to 0.25 eV:

18

siesta -V 0.25:eV
siesta -V "0.25 eV"
siesta -V 0.25

NOTE: This is equivalent to specifying TS.Voltage in the input file.

-fdf Specify any FDF option string. For example, another way to specify the bias of the example of
the previous option would be:

siesta --fdf TS.Voltage=0.25:eV

4 THE FLEXIBLE DATA FORMAT (FDF)

The main input file, typically with extension .fdf, contains the physical data of the system and the
parameters of the simulation to be performed. This file is written in a special format called FDF,
developed by Alberto García and José M. Soler. This format allows data to be given in any order,
or to be omitted in favor of default values. Refer to documentation of libfdf for details. Here we
offer a glimpse of it through the following rules:

• The fdf syntax is a “data label” followed by its value. Values that are not specified in the
datafile are assigned a default value.

• fdf labels are case insensitive, and characters - _ . in a data label are ignored. Thus,
LatticeConstant and lattice_constant represent the same label.

• All text following the # character is taken as comment.

• Logical values can be specified as T, true, .true., yes, F, false, .false., no. Blank is also equivalent
to true.

• Character strings should not be in apostrophes.

• Real values which represent a physical magnitude must be followed by its units. Look at
function fdf_convfac in file ∼/siesta/Src/fdf/fdf.f for the units that are currently supported.
It is important to include a decimal point in a real number to distinguish it from an integer,
in order to prevent ambiguities when mixing the types on the same input line.

• Complex data structures are called blocks and are placed between “%block label” and a “%end-
block label” (without the quotes).

• You may “include” other fdf files and redirect the search for a particular data label to another
file. If a data label appears more than once, its first appearance is used.

• If the same label is specified twice, the first one takes precedence.

• If a label is misspelled it will not be recognized (there is no internal list of “accepted” tags in
the program). You can check the actual value used by SIESTA by looking for the label in the
output fdf.log file.

These are some examples:

19

SystemName Water molecule # This is a comment
SystemLabel h2o
Spin polarized
SaveRho
NumberOfAtoms 64
LatticeConstant 5.42 Ang
%block LatticeVectors

1.000 0.000 0.000
0.000 1.000 0.000
0.000 0.000 1.000

%endblock LatticeVectors
KgridCutoff < BZ_sampling.fdf

Reading the coordinates from a file
%block AtomicCoordinatesAndAtomicSpecies < coordinates.data

Even reading more FDF information from somewhere else
%include mydefaults.fdf

The file fdf-XXXXX.log contains all the parameters used by SIESTA in a given run, both those
specified in the input fdf file and those taken by default. They are written in fdf format, so that
you may reuse them as input directly. Input data blocks are copied to the fdf.log file only if you
specify the dump option for them. In practice, the name of a FDF log file contains a sequence of
digits (e.g., fdf-12345.log) chosen on-the-fly in order to have a reduced chance of overwriting other
FDF log files that may be present in the same directory.

5 PROGRAM OUTPUT

5.1 Standard output

SIESTA writes a log of its workings to standard output (unit 6), which is usually redirected to an
“output file”.
A brief description follows. See the example cases in the siesta/Tests directory for illustration.
The program starts writing the version of the code which is used. Then, the input fdf file is
dumped into the output file as is (except for empty lines). The program does part of the reading
and digesting of the data at the beginning within the redata subroutine. It prints some of the
information it digests. It is important to note that it is only part of it, some other information being
accessed by the different subroutines when they need it during the run (in the spirit of fdf input).
A complete list of the input used by the code can be found at the end in the file fdf.log, including
defaults used by the code in the run.
After that, the program reads the pseudopotentials, factorizes them into Kleinman-Bylander form,
and generates (or reads) the atomic basis set to be used in the simulation. These stages are docu-
mented in the output file.
The simulation begins after that, the output showing information of the MD (or CG) steps and the
SCF cycles within. Basic descriptions of the process and results are presented. The user has the

20

option to customize it, however, by defining different options that control the printing of informations
like coordinates, forces, k⃗ points, etc. The options are discussed in the appropriate sections, but
take into account the behavior of the legacy LongOutput option, as in the current implementation
might silently activate output to the main .out file at the expense of auxiliary files.

LongOutput false (logical)
SIESTA can write to standard output different data sets depending on the values for output
options described below. By default SIESTA will not write most of them. They can be large
for large systems (coordinates, eigenvalues, forces, etc.) and, if written to standard output, they
accumulate for all the steps of the dynamics. SIESTA writes the information in other files (see
Output Files) in addition to the standard output, and these can be cumulative or not.
Setting LongOutput to true changes the default of some options, obtaining more information
in the output (verbose). In particular, it redefines the defaults for the following:

• WriteKpoints
• WriteKbands
• WriteCoorStep
• WriteForces
• WriteEigenvalues
• WriteWaveFunctions
• WriteMullikenPop(it sets it to 1)

The specific changing of any of these options has precedence.

5.2 Output to dedicated files

SIESTA can produce a wealth of information in dedicated files, with specific formats, that can be
used for further analysis. See the appropriate sections, and the appendix on file formats. Please take
into account the behavior of LongOutput, as in the current implementation might silently activate
output to the main .out file at the expense of auxiliary files.

6 DETAILED DESCRIPTION OF PROGRAM OPTIONS

Here follows a description of the variables that you can define in your SIESTA input file, with their
data types and default values. For historical reasons the names of the tags do not have an uniform
structure, and can be confusing at times.
Almost all of the tags are optional: SIESTA will assign a default if a given tag is not found when
needed (see fdf.log).

6.1 General system descriptors

SystemLabel siesta (string)
A single word (max. 20 characters without blanks) containing a nickname of the system, used
to name output files.

21

SystemName 〈None〉 (string)
A string of one or several words containing a descriptive name of the system (max. 150 charac-
ters).

NumberOfSpecies 〈lines in ChemicalSpeciesLabel〉 (integer)
Number of different atomic species in the simulation. Atoms of the same species, but with a
different pseudopotential or basis set are counted as different species.
NOTE: This is not required to be set.

NumberOfAtoms 〈lines in AtomicCoordinatesAndAtomicSpecies〉 (integer)
Number of atoms in the simulation.
NOTE: This is not required to be set.

%block ChemicalSpeciesLabel 〈None〉 (block)
It specifies the different chemical species that are present, assigning them a number for further
identification. SIESTA recognizes the different atoms by the given atomic number.

%block ChemicalSpecieslabel
1 6 C pbe/C.psml
2 14 Si
3 14 Si_surface Si.psf

%endblock ChemicalSpecieslabel

The first number in a line is the species number, it is followed by the atomic number, and then
by the desired unique label. This label will be used to identify each species. For example the
label is the equivalent label name that should be found in the PAO.Basis block.
This construction allows you to have atoms of the same species but with different basis or
pseudopotential, for example.
Optionally, a string ps-file-spec after the species name determines the pseudopotential file to be
used. In the example above, the C atoms will use the pseudopotential file pbe/C.psml (with
reference to the current directory), and both the Si and the Si_surface species will use a
pseudopotential file named Si.psf. See section 6.2 for a full discussion of options.
Negative atomic numbers are used for ghost atoms (see PAO.Basis).
For atomic numbers over 200 or below −200 you should read SyntheticAtoms.
NOTE: This block is mandatory.

%block SyntheticAtoms 〈None〉 (block)
This block provides information about the ground-state valence configuration of a species. Its
main use is to complement the information in ChemicalSpeciesLabel for synthetic (alchem-
ical) species, which are represented by atomic numbers over 200 in ChemicalSpeciesLabel.
These species are created for example as a “mixture” of two real ones for a “virtual crystal”
(VCA) calculation. In this special case a new SyntheticAtoms block must be present to give
SIESTA information about the “ground state” of the synthetic atom.

%block ChemicalSpeciesLabel
1 201 ON-0.50000

%endblock ChemicalSpeciesLabel
%block SyntheticAtoms

1 # Species index

22

2 2 3 4 # n numbers for valence states with l=0,1,2,3
2.0 3.5 0.0 0.0 # occupations of valence states with l=0,1,2,3

%endblock SyntheticAtoms

Pseudopotentials for synthetic atoms can be created using the mixps and fractional programs
in the Util/VCA directory.

Atomic numbers below −200 represent ghost synthetic atoms.
Note that the procedure used in the automatic handling of semicore states does not work for
synthetic atoms. If semicore states are present, the species must be put in the PAO.Basis
block. Otherwise the program will assume that there are no semicore states.
This block can also be used to provide an alternate ground state valence configuration for real
atoms in some special cases. For example, the nominal valence configuration for Pd in the Siesta
internal tables is 5s1 5p0 4d9 4f0, but in some tables it appears as 5s0 5p0 4d10 4f0. In this
case, the alternate configuration can be specified by the block:

%block ChemicalSpeciesLabel
1 46 Pd

%endblock ChemicalSpeciesLabel
%block synthetic-atoms
1

5 5 4 4
0.0 0.0 10.0 0.0

%endblock synthetic-atoms

As another example, the nominal valence for Cu in Siesta is 4s1 4p0 3d10 4f0, but in some cases
a pseudopotential might be generated by considering the 3d shell as frozen in the core. In this
case the proper valence configuration is:

%block ChemicalSpeciesLabel
1 29 Cu_3d_in_core

%endblock ChemicalSpeciesLabel
%block synthetic-atoms
1

4 4 4 4
1.0 0.0 0.0 0.0

%endblock synthetic-atoms

As a final example, the nominal valence configuration for Ce in Siesta is 6s2 6p0 5d0 4f2, but
on some tables it appears as [Xe] 6s2 4f1 5d1. In addition, the pseudo-dojo pseudopotential (in
the NC SR+3 table) has the 4f shell frozen in the core. This case can be handled by the block:

%block ChemicalSpeciesLabel
1 58 Ce_4f_in_core

%endblock ChemicalSpeciesLabel
%block synthetic-atoms
1

6 6 5 5
2.0 0.0 1.0 0.0

%endblock synthetic-atoms

Note that the change in the atomic ground-state configuration might change the choice of
polarization orbitals, and possibly other Siesta heuristic decisions, so the results should be
checked carefully.

23

%block AtomicMass 〈None〉 (block)
It allows the user to introduce the atomic masses of the different species used in the calculation,
useful for the dynamics with isotopes, for example. If a species index is not found within the
block, the natural mass for the corresponding atomic number is assumed. If the block is absent
all masses are the natural ones. One line per species with the species index (integer) and the
desired mass (real). The order is not important. If there is no integer and/or no real numbers
within the line, the line is disregarded.

%block AtomicMass
3 21.5
1 3.2

%endblock AtomicMass

The default atomic mass are the natural masses. For ghost atoms (i.e. floating orbitals) the
mass is 1030 a.u.

6.2 Pseudopotentials

SIESTA uses pseudopotentials to represent the electron-ion interaction (as do most plane-wave
codes and in contrast to so-called “all-electron” programs). In particular, the pseudopotentials are
of the “norm-conserving” kind.
The pseudopotentials will be read by SIESTA from different files, according to the species informa-
tion in the block ChemicalSpeciesLabel). Recall that an optional ps-file-spec can be present for
each species. If absent, ps-file-spec defaults to the species’ label (Chemical_label).
The name of the files can be:

• ps-file-spec.vps (unformatted) or

• ps-file-spec.psf (ASCII) or

• ps-file-spec.psml (PSML format)

Files are searched by default in the current directory. In addition, the environment variable
SIESTA_PS_PATH can be used to provide a set of alternate paths in which to search for files.
The rules for pseudopotential file discovery, given ps-file-spec, are:

• If ps-file-spec does not have an extension, the following rules are applied in turn adding each
of .vps,.psf,.psml to ps-file-spec, in that order of preference. The search ends with the first
finding.

• If ps-file-spec is not an absolute path, (e.g. Si or C.psf, or pbe/C.psml), the search is done
on the implied path (i.e. with reference to the current directory), and in each of the sections
in SIESTA_PS_PATH with ps-file-spec (and possibly an extension) appended.

• If ps-file-spec is an absolute path, (e.g. /home/user/Si or /data/ps/C.psml, the search is
done only in the path, possibly with an extension appended.

24

Pseudopotential files in the .psf format can be generated by the ATOM program, (see
Pseudo/README.ATOM) and by a number of other codes such as APE. The .vps format is a binary
version of the .psf format, and is deprecated.
Pseudopotential files in the PSML format (see García et al. [6]) can be produced by the combi-
nation of ATOM and psop (see directory Pseudo/vnl-operator) in a form fully compatible with
the SIESTA procedures to generate the non-local pseudopotential operator. Notably, they can
also be produced by suitably patched versions of D.R. Hamann’s oncvpsp program (see directory
Pseudo/Third-Party-Tools/ONCVPSP).. The oncvpsp code can generate several projectors per l
channel, leading to pseudopotentials that are more transferable.
For more information on the format itself and the PSML ecosystem of generators and client ab-initio
codes, please see http://esl.cecam.org/PSML.
Note that curated databases of high-quality PSML files are available. In particular, the Pseudo-
Dojo project https://www.pseudo-dojo.org offers PSML files for almost the whole periodic table,
together with a report of the tests carried out during the generation procedure.
In this connection, it should be stressed that all pseudopotentials should be thoroughly tested
before using them. We refer you to the standard literature on pseudopotentials, to the ATOM manual,
and to the Pseudo-Dojo site for more information.
Please take into account the following when using PSML files:

• If present in the execution directory, .psf files take precedence over .psml files. That is,
if both Chemical_label.psf and Chemical_label.psml are present, SIESTA will process the
former.

• PSML files typically contain semilocal potentials, a local potential, and non-local projectors.
By default, SIESTA will use the local potential and non-local projectors from the PSML file,
unless the respective options PSML.Vlocal and PSML.KB.projectors are set to false.
These options are true by default. Several combinations are possible with these options:

– The recommended (and default) is to use the local potential and projectors from the
PSML file.

– One could use only the semilocal potentials from the PSML file, and proceed to generate
a local potential and KB projectors with the traditional SIESTA algorithm.

– One could use the semilocal potentials and the local potential from the PSML file, and
generate a set of KB projectors from them.

• In order to generate its basis set of pseudo-atomic orbitals (PAOs), SIESTA still needs the
semilocal parts of the pseudopotential. Currently all available PSML files (generated by
ATOM+psop or ONCVPSP) contain semilocal potentials, but this might change in the future (for
example, when a PSML file is obtained from a projectors-only UPF file). This restriction will
be lifted in a later version: SIESTA will then be able to use the full pseudopotential operator
to generate the PAOs.

• For the full (default) version of spin-orbit-coupling (SOC), SIESTA uses fully relativistic (lj)
projectors. These are available in PSML files generated by ONCVPSP in fully-relativistic mode,
if the psfile option upf or both is used in the appropriate place in the input file. To obtain
appropriate PSML files with the ATOM+psop chain (see the directory Pseudo/vnl-operator),

25

http://esl.cecam.org/PSML
https://www.pseudo-dojo.org

the projector generation with psop must use the -r option. Note that lj projectors can still
be directly generated by SIESTA from relativistic semilocal potentials.

• Fully-relativistic PSML files with only lj non-local projectors cannot be used directly in calcu-
lations not involving “full” SOC. For this, SIESTA needs the “scalar-relativistic” projectors.
An algorithm for direct generation of SR projectors from an lj set already exists as part of
the oncvpsp code, and it will be integrated in a forthcoming version. In the meantime, while
in principle it is possible to read only the semilocal potentials from the file and proceed to
generate the appropriate projectors, it is better to use PSML files which contain both (actually
three) sets of non-local projectors: “sr”, “so”, and lj. These can be obtained with ONCVPSP
with the both option. (For the ATOM+psop chain, it is currently necessary to run psop twice
(once with the -r option) and generate two different PSML files, and then “graft” the “sr” set
into the file containing the lj set.)

• A large number of PSML files obtained from the Pseudo-Dojo database are generated with
(several) semicore shells. Dealing with them has uncovered a few weaknesses in the standard
heuristics used traditionally in SIESTA to generate basis sets:

– Sometimes it was not possible to execute successfully the legacy split-norm algorithm.
Now, the default is to use PAO.SplitTailNorm true, with a simpler, more robust
algorithm. See the section on split-norm for full details.

– The default perturbative scheme for polarization orbitals can fail in very specific
cases. When the polarization orbital has to have a node due to the presence
of a lower-lying orbital with the same l, the program can (if enabled by the
PAO.Polarization.NonPerturbative.Fallback option, which is trueby default) auto-
matically switch to using a non-perturbative scheme. In other cases, include the Chemi-
cal_label in the PAO.Polarization.Scheme block to request a non-perturbative scheme:

%block PAO.Polarization.Scheme
Mg non-perturbative

%endblock PAO.Polarization.Scheme

Please see the relevant section for a fuller explanation.
– A number of improvements to the PAO generation code have been made while implement-

ing support for PSML pseudopotentials. In particular, SIESTA can now automatically
detect and generate basis sets for atoms with semicore shells without the explicit use of
a PAO.Basis block.

6.3 Basis set and KB projectors

6.3.1 Overview of atomic-orbital bases implemented in SIESTA

The main advantage of atomic orbitals is their efficiency (fewer orbitals needed per electron for
similar precision) and their main disadvantage is the lack of systematics for optimal convergence, an
issue that quantum chemists have been working on for many years. They have also clearly shown
that there is no limitation on precision intrinsic to LCAO. This section provides some information
about how basis sets can be generated for SIESTA.
It is important to stress at this point that neither the SIESTA method nor the program are bound
to the use of any particular kind of atomic orbitals. The user can feed into SIESTA the atomic basis

26

set he/she choses by means of radial tables (see User.Basis below), the only limitations being: (i)
the functions have to be atomic-like (radial functions mutiplied by spherical harmonics), and (ii)
they have to be of finite support, i.e., each orbital becomes strictly zero beyond some cutoff radius
chosen by the user.
Most users, however, do not have their own basis sets. For these users we have devised some schemes
to generate basis sets within the program with a minimum input from the user. If nothing is specified
in the input file, SIESTA generates a default basis set of a reasonable quality that might constitute
a good starting point. Of course, depending on the accuracy required in the particular problem,
the user has the degree of freedom to tune several parameters that can be important for quality
and efficiency. A description of these basis sets and some performance tests can be found in the
references quoted below.
“Numerical atomic orbitals for linear-scaling calculations”, J. Junquera, O. Paz, D. Sánchez-Portal,
and E. Artacho, Phys. Rev. B 64, 235111, (2001)
An important point here is that the basis set selection is a variational problem and, therefore,
minimizing the energy with respect to any parameters defining the basis is an “ab initio” way to
define them.
We have also devised a quite simple and systematic way of generating basis sets based on specifying
only one main parameter (the energy shift) besides the basis size. It does not offer the best NAO
results one can get for a given basis size but it has the important advantages mentioned above. More
about it in:
“Linear-scaling ab-initio calculations for large and complex systems”, E. Artacho, D. Sánchez-Portal,
P. Ordejón, A. García and J. M. Soler, Phys. Stat. Sol. (b) 215, 809 (1999).
In addition to SIESTA we provide the program Gen-basis , which reads SIESTA’s input and
generates basis files for later use. Gen-basis can be found in Util/Gen-basis. It should be run
from the Tutorials/Bases directory, using the gen-basis.sh script. It is limited to a single species.
Of course, as it happens for the pseudopotential, it is the responsibility of the user to check that
the physical results obtained are converged with respect to the basis set used before starting any
production run.
In the following we give some clues on the basics of the basis sets that SIESTA generates. The
starting point is always the solution of Kohn-Sham’s Hamiltonian for the isolated pseudo-atoms,
solved in a radial grid, with the same approximations as for the solid or molecule (the same exchange-
correlation functional and pseudopotential), plus some way of confinement (see below). We describe
in the following three main features of a basis set of atomic orbitals: size, range, and radial shape.
Size: number of orbitals per atom
Following the nomenclature of Quantum Chemistry, we establish a hierarchy of basis sets, from
single-ζ to multiple-ζ with polarization and diffuse orbitals, covering from quick calculations of low
quality to high precision, as high as the finest obtained in Quantum Chemistry. A single-ζ (also
called minimal) basis set (SZ in the following) has one single radial function per angular momentum
channel, and only for those angular momenta with substantial electronic population in the valence
of the free atom. It offers quick calculations and some insight on qualitative trends in the chemical
bonding and other properties. It remains too rigid, however, for more quantitative calculations
requiring both radial and angular flexibilization.
Starting by the radial flexibilization of SZ, a better basis is obtained by adding a second function per

27

channel: double-ζ (DZ). In Quantum Chemistry, the split valence scheme is widely used: starting
from the expansion in Gaussians of one atomic orbital, the most contracted Gaussians are used
to define the first orbital of the double-ζ and the most extended ones for the second. For strictly
localized functions there was a first proposal of using the excited states of the confined atoms, but it
would work only for tight confinement (see PAO.BasisType nodes below). This construction was
proposed and tested in D. Sánchez-Portal et al., J. Phys.: Condens. Matter 8, 3859-3880 (1996).
We found that the basis set convergence is slow, requiring high levels of multiple-ζ to achieve what
other schemes do at the double-ζ level. This scheme is related with the basis sets used in the
OpenMX project [see T. Ozaki, Phys. Rev. B 67, 155108 (2003); T. Ozaki and H. Kino, Phys. Rev.
B 69, 195113 (2004)].
We then proposed an extension of the split valence idea of Quantum Chemistry to strictly localized
NAO which has become the standard and has been used quite successfully in many systems (see
PAO.BasisType split below). It is based on the idea of suplementing the first ζ with, instead of a
gaussian, a numerical orbital that reproduces the tail of the original PAO outside a matching radius
rm, and continues smoothly towards the origin as rl(a− br2), with a and b ensuring continuity and
differentiability at rm. Within exactly the same Hilbert space, the second orbital can be chosen to
be the difference between the smooth one and the original PAO, which gives a basis orbital strictly
confined within the matching radius rm (smaller than the original PAO!) continuously differentiable
throughout.
Extra parameters have thus appeared: one rm per orbital to be doubled. The user can again
introduce them by hand (see PAO.Basis below). Alternatively, all the rm’s can be defined at
once by specifying the value of the tail of the original PAO beyond rm, the so-called split norm.
Variational optimization of this split norm performed on different systems shows a very general and
stable performance for values around 15% (except for the ∼ 50% for hydrogen). It generalizes to
multiple-ζ trivially by adding an additional matching radius per new zeta.
Note: In previous versions of the program what was actually used as split-valence reference was the
norm of the tail plus the norm of the parabola-like inner function.
Angular flexibility is obtained by adding shells of higher angular momentum. Ways to generate these
so-called polarization orbitals have been described in the literature for Gaussians. For NAOs there
are two ways for SIESTA and Gen-basis to generate them: (i) Use atomic PAO’s of higher angular
momentum with suitable confinement, and (ii) solve the pseudoatom in the presence of an electric
field and obtain the l + 1 orbitals from the perturbation of the l orbitals by the field. Experience
shows that method (i) tends to give better results.
So-called diffuse orbitals, that might be important in the description of open systems such as surfaces,
can be simply added by specifying extra “n” shells. [See S. Garcia-Gil, A. Garcia, N. Lorente, P.
Ordejon, Phys. Rev. B 79, 075441 (2009)]
Finally, the method allows the inclusion of off-site (ghost) orbitals (not centered around any specific
atom), useful for example in the calculation of the counterpoise correction for basis-set superposition
errors. Bessel functions for any radius and any excitation level can also be added anywhere to the
basis set.
Range: cutoff radii of orbitals.
Strictly localized orbitals (zero beyond a cutoff radius) are used in order to obtain sparse Hamiltonian
and overlap matrices for linear scaling. One cutoff radius per angular momentum channel has to be

28

given for each species.
A balanced and systematic starting point for defining all the different radii is achieved by giving one
single parameter, the energy shift, i.e., the energy increase experienced by the orbital when confined.
Allowing for system and physical-quantity variablity, as a rule of thumb ∆EPAO ≈ 100 meV gives
typical precisions within the accuracy of current GGA functionals. The user can, nevertheless,
change the cutoff radii at will.
Shape
Within the pseudopotential framework it is important to keep the consistency between the pseu-
dopotential and the form of the pseudoatomic orbitals in the core region. The shape of the orbitals
at larger radii depends on the cutoff radius (see above) and on the way the localization is enforced.
The first proposal (and quite a standard among SIESTA users) uses an infinite square-well potential.
It was originally proposed and has been widely and successfully used by Otto Sankey and collabora-
tors, for minimal bases within the ab initio tight-binding scheme, using the Fireball program, but
also for more flexible bases using the methodology of SIESTA. This scheme has the disadavantage,
however, of generating orbitals with a discontinuous derivative at rc. This discontinuity is more
pronounced for smaller rc’s and tends to disappear for long enough values of this cutoff. It does
remain, however, appreciable for sensible values of rc for those orbitals that would be very wide
in the free atom. It is surprising how small an effect such a kink produces in the total energy of
condensed systems. It is, on the other hand, a problem for forces and stresses, especially if they are
calculated using a (coarse) finite three-dimensional grid.
Another problem of this scheme is related to its defining the basis starting from the free atoms.
Free atoms can present extremely extended orbitals, their extension being, besides problematic, of
no practical use for the calculation in condensed systems: the electrons far away from the atom can
be described by the basis functions of other atoms.
A traditional scheme to deal with this is one based on the radial scaling of the orbitals by suitable
scale factors. In addition to very basic bonding arguments, it is soundly based on restoring the
virial’s theorem for finite bases, in the case of Coulombic potentials (all-electron calculations). The
use of pseudopotentials limits its applicability, allowing only for extremely small deviations from
unity (∼ 1%) in the scale factors obtained variationally (with the exception of hydrogen that can
contract up to 25%). This possiblity is available to the user.
Another way of dealing with the above problem and that of the kink at the same time is adding a soft
confinement potential to the atomic Hamiltonian used to generate the basis orbitals: it smoothens
the kink and contracts the orbital as suited. Two additional parameters are introduced for the
purpose, which can be defined again variationally. The confining potential is flat (zero) in the core
region, starts off at some internal radius ri with all derivatives continuous and diverges at rc ensuring
the strict localization there. It is

V (r) = Vo
e

− rc−ri
r−ri

rc − r
(1)

and both ri and Vo can be given to SIESTA together with rc in the input (see PAO.Basis be-
low). The kink is normally well smoothened with the default values for soft confinement by default
(PAO.SoftDefault true), which are ri = 0.9rc and Vo = 40 Ry.
When explicitly introducing orbitals in the basis that would be empty in the atom (e.g. polarisation
orbitals) these tend to be extremely extended if not completely unbound. The above procedure
produces orbitals that bulge as far away from the nucleus as possible, to plunge abruptly at rc. Soft

29

confinement can be used to try to force a more reasonable shape, but it is not ideal (for orbitals
peaking in the right region the tails tend to be far too short). Charge confinement produces very
good shapes for empty orbitals. Essentially a Z/r potential is added to the soft confined potential
above. For flexibility the charge confinement option in SIESTA is defined as

VQ(r) = Ze−λr

√
r2 + δ2

(2)

where δ is there to avoid the singularity (default δ = 0.01 Bohr), and λ allows to screen the potential
if longer tails are needed. The description on how to introduce this option can be found in the
PAO.Basis entry below.
Finally, the shape of an orbital is also changed by the ionic character of the atom. Orbitals in
cations tend to shrink, and they swell in anions. Introducing a δQ in the basis-generating free-atom
calculations gives orbitals better adapted to ionic situations in the condensed systems.
More information about basis sets can be found in the proposed literature.

There are quite a number of options for the input of the basis-set and KB projector specification, and
they are all optional! By default, SIESTA will use a DZP basis set with appropriate choices for the
determination of the range, etc. Of course, the more you experiment with the different options, the
better your basis set can get. To aid in this process we offer an auxiliary program for optimization
which can be used in particular to obtain variationally optimal basis sets (within a chosen basis
size). See Util/Optimizer for general information, and Util/Optimizer/Examples/Basis_Optim
for an example. The directory Tutorials/Bases in the main SIESTA distribution contains some
tutorial material for the generation of basis sets and KB projectors.
Finally, some optimized basis sets for particular elements are available at the SIESTA web page.
Again, it is the responsability of the users to test the transferability of the basis set to their problem
under consideration.

6.3.2 Type of basis sets

PAO.BasisType split (string)
The kind of basis to be generated is chosen. All are based on finite-range pseudo-atomic orbitals
[PAO’s of Sankey and Niklewsky, PRB 40, 3979 (1989)]. The original PAO’s were described
only for minimal bases. SIESTA generates extended bases (multiple-ζ, polarization, and diffuse
orbitals) applying different schemes of choice:

- Generalization of the PAO’s: uses the excited orbitals of the finite-range pseudo-atomic
problem, both for multiple-ζ and for polarization [see Sánchez-Portal, Artacho, and Soler,
JPCM 8, 3859 (1996)]. Adequate for short-range orbitals.

- Multiple-ζ in the spirit of split valence, decomposing the original PAO in several pieces of
different range, either defining more (and smaller) confining radii, or introducing Gaussians
from known bases (Huzinaga’s book).

All the remaining options give the same minimal basis. The different options and their fdf
descriptors are the following:

split Split-valence scheme for multiple-zeta. The split is based on different radii.

30

splitgauss Same as split but using gaussian functions e−(x/αi)2 . The gaussian widths αi are
read instead of the scale factors (see below). There is no cutting algorithm, so that a large
enough rc should be defined for the gaussian to have decayed sufficiently.

nodes Generalized PAO’s.

nonodes The original PAO’s are used, multiple-zeta is generated by changing the scale-factors,
instead of using the excited orbitals.

filteret Use the filterets as a systematic basis set. The size of the basis set is controlled by the
filter cut-off for the orbitals.

Note that, for the split and nodes cases the whole basis can be generated by SIESTA with
no further information required. SIESTA will use default values as defined in the following
(PAO.BasisSize, PAO.EnergyShift, and PAO.SplitNorm, see below).

6.3.3 Size of the basis set

PAO.BasisSize DZP (string)
It defines usual basis sizes. It has effect only if there is no block PAO.Basis present.

SZ|minimal Use single-ζ basis.

DZ Double zeta basis, in the scheme defined by PAO.BasisType.

SZP Single-zeta basis plus polarization orbitals.

DZP|standard Like DZ plus polarization orbitals.
NOTE: The ground-state atomic configuration used internally by SIESTA is defined in the
source file Src/periodic_table.f. For some elements (e.g., Pd), the configuration might
not be the standard one.
NOTE: By default, polarization orbitals are constructed from perturbation theory, and they
are defined so they have the minimum angular momentum l such that there are no occupied
orbitals with the same l in the valence shell of the ground-state atomic configuration. They
polarize the corresponding l − 1 shell.
See PAO.Polarization.NonPerturbative and PAO.Polarization.Scheme in Sec. 6.3.6
for options to generate polarization orbitals non-perturbatively.

%block PAO.BasisSizes 〈None〉 (block)
Block which allows to specify a different value of the variable PAO.BasisSize for each species.
For example,

%block PAO.BasisSizes
Si DZ
H DZP
O SZP

%endblock PAO.BasisSizes

6.3.4 Range of the orbitals

PAO.EnergyShift 0.01 Ry (energy)

31

A standard for orbital-confining cutoff radii. It is the excitation energy of the PAO’s due to
the confinement to a finite-range. It offers a general procedure for defining the confining radii
of the original (first-zeta) PAO’s for all the species guaranteeing the compensation of the basis.
It only has an effect when the block PAO.Basis is not present or when the radii specified in
that block are zero for the first zeta.

Write.Graphviz none|atom|orbital|atom+orbital (string)
Write out the sparsity pattern after having determined the basis size overlaps. This will generate
SystemLabel.ATOM.gv or SystemLabel.ORB.gv which both may be converted to a graph using
Graphviz’s program neato:

neato -x -Tpng siesta.ATOM.gv -o siesta_ATOM.png

The resulting graph will list each atom as i(j) where i is the atomic index and j is the number
of other atoms it is connected to.

6.3.5 Generation of multiple-zeta orbitals

PAO.SplitNorm 0.15 (real)
depends on: PAO.SplitTailNorm

A standard to define sensible default radii for the split-valence type of basis. It gives the amount
of norm that the second-ζ split-off piece has to carry. The split radius is defined accordingly.
If multiple-ζ is used, the corresponding radii are obtained by imposing smaller fractions of the
SplitNorm (1/2, 1/4, 1/6 ...) value as norm carried by the higher zetas. It only has an effect
when the block PAO.Basis is not present or when the radii specified in that block are zero for
zetas higher than one.
NOTE: When using PAO.SplitTailNorm true (the default as of SIESTA V5) the mapping
of split-norm parameters to radial matching points changes. Legacy values might have to be
revised. See the longer note under PAO.SplitTailNorm.

PAO.SplitNormH 〈PAO.SplitNorm〉 (real)
This option is as per PAO.SplitNorm but allows a separate default to be specified for hydrogen
which typically needs larger values than those for other elements.

PAO.SplitTailNorm true (logical)
Use the norm of the tail instead of the “tail+parabola” norm to compute the “split” contribution.
This is the behavior described in the JPC paper, but for numerical reasons the square root of
the tail norm is used in the algorithm. This approach guarantees a match for any value of the
PAO.SplitNorm parameter, and is the preferred mode of operation.
NOTE: For a given value of PAO.SplitNorm one can find these two cases, depending on the
setting of this option:

true the cutoff lengths of the higher ζ orbitals will be shorter
The split-norm curve (square root of the tail norm) approaches 0 faster in this case, hence
the matching radius is found at a shorter distance.

false the cutoff lengths of the higher ζ orbitals will be longer
The (tail+parabola) norm is used as the split-norm reference. This curve likely approaches
0 more slowly (or not at all), hence the matching radius is found at a longer distance.

32

PAO.SplitValence.Legacy false (logical)
Recovers the behavior and default settings of the legacy split-valence options. In addi-
tion to PAO!SplitTailNorm, which would be false by default, users can set the option
PAO!FixSplitTable (see below).

PAO.FixSplitTable false (logical)
After the scan of the (tail+parabola) norm table (curve), apply a damping function to the tail to
make sure that the table goes to zero at the radius of the first-zeta orbital. PAO.FixSplitTable
true guarantees that the program finds a solution, even when using the tail+parabola split-
norm heuristic. The result might not be optimal (in the sense of producing a second-ζ rc very
close to the first-ζ one).
This option is not accessible with PAO!SplitValence!Legacy:false.

PAO.EnergyCutoff 20 Ry (energy)
If the multiple zetas are generated using filterets then only the filterets with an energy lower
than this cutoff are included. Increasing this value leads to a richer basis set (provided the
cutoff is raised above the energy of any filteret that was previously not included) but a more
expensive calculation. It only has an effect when the option PAO.BasisType is set to filteret.

PAO.EnergyPolCutoff 20 Ry (energy)
If the multiple zetas are generated using filterets then only the filterets with an energy lower
than this cutoff are included for the polarisation functions. Increasing this value leads to a
richer basis set (provided the cutoff is raised above the energy of any filteret that was previ-
ously not included) but a more expensive calculation. It only has an effect when the option
PAO.BasisType is set to filteret.

PAO.ContractionCutoff 0|0− 1 (real)
If the multiple zetas are generated using filterets then any filterets that have a coefficient less
than this threshold within the original PAO will be contracted together to form a single filteret.
Increasing this value leads to a smaller basis set but allows the underlying basis to have a higher
kinetic energy cut-off for filtering. It only has an effect when the option PAO.BasisType is
set to filteret.

6.3.6 Polarization-orbital options

Polarization orbitals can be requested through an automatic basis-size specification such as DZP, or
TZP, etc, or through the use of the ’P’ shell option in the PAO.Basis block.
In these cases, by default, polarization orbitals are generated perturbatively, by formally applying
an electric field to the orbital being polarized.
Polarization shells can also be put explicitly in the PAO.Basis block. In this case, the orbitals are
generated in the standard way, using the appropriate confinement and split-norm options.
If the perturbative method is not wanted, even when using the standard basis specifications, the
following global option can be used:

PAO.Polarization.NonPerturbative false (logical)
If enabled, it will promote any polarization shells to the status of explicit shells, thus using the

33

standard generation options.

Also, this setting can be controlled species by species, by using a block

%block PAO.Polarization.Scheme 〈None〉 (block)
Block which allows to specify a different polarization scheme for each species. For example,

%block PAO.Polarization.Scheme
Si non-perturbative [optional Q options]
H perturbative

%endblock PAO.Polarization.Scheme

The presence of ’perturbative’ for a species in the block has the effect of forcing the use of the
perturbative option.
If a species does not appear in the block, the setting of PAO.Polarization.NonPerturbative
applies. The default scheme is perturbative.
An optional charge-confinement specification can follow, starting with a ’Q’, in exactly the same
way as in the PAO.Basis block.

The perturbative method does not require any extra information regarding confinement, since the
rc value for the polarization shell is the same as the one for the polarized shell. If the perturbative
method is turned off, the new explicit shell created for the polarization orbital will be assigned an rc

equal to the one actually used for the shell to be polarized (for the 1st zeta). The only extra control
offered at this point is a possible expansion of this value through the (global) option:

PAO.Polarization.Rc-Expansion-Factor 1.0 (real)
When turning off the perturbative method for the generation of polarization orbitals, assign
to the 1st zeta of the explicit polarization shell the rc of the polarized shell multiplied by this
factor.

Note that, empirically, the perturbative method seems to give better results (in the variational sense),
so the alternative should only be used when the default fails for some reason, for full basis-set opti-
mization, or for experimentation purposes. In particular, non-perturbatively generated polarization
orbitals tend to bulge outwards. To correct this, the charge-confinement options in the PAO.Basis
block (or in the PAO.Polarization.Scheme block) might be helpful.
There is one case, however, which tends to exhibit problems in the perturbative algorithm: when
a polarization orbital has to have a node due to the presence of a lower-lying orbital of the same l
(this will happen, for example, for Ge if the 3d orbital is considered part of the valence). In this
case, the program can automatically switch to using the non-perturbative scheme. To enable this
automatic switch, the option PAO.Polarization.NonPerturbative.Fallback must be enabled (it
is by default). Note that if the ’perturbative’ option is explicitly set in the block above, the fallback
is overriden.
A proper basis-set optimization should be carried out using a PAO.Basis block, which allows a full
set of options.

34

6.3.7 Soft-confinement options

A brief description of the soft-confinement options is given below. This is the default way of gener-
ating basis orbitals, and disabling it is not recommended unless going for backwards compatibility.
The default potential and inner radius options should not be changed either, except when needed
for an specific application.

PAO.SoftDefault true (logical)
This option causes soft confinement to be the default form of potential during orbital generation.
Disabling this will cause a fallback to the original hard-confined orbitals.

PAO.SoftInnerRadius 0.9 (real)
For default soft confinement, the inner radius is set at a fraction of the outer confinement radius
determined by the energy shift. This option controls the fraction of the confinement radius to
be used.

PAO.SoftPotential 40 Ry (energy)
For default soft confinement, this option controls the value of the potential used for all orbitals.
NOTE: Soft-confinement options (inner radius, prefactor) have been traditionally used to op-
timize the basis set, even though formally they are just a technical necessity to soften the decay
of the orbitals at rc. To achieve this, it might be enough to use the above global options.

6.3.8 Kleinman-Bylander projectors

NOTE: SIESTA is now able to read directly the non-local projectors from a PSML file. For this,
the options PSML.Vlocal and PSML.KB.projectors must be set to true(they are by default),
and a Chemical_label.psml file must be present. The rest of the options discussed in this section
will have no effect in that case.

%block PS.lmax 〈None〉 (block)
Block with the maximum angular momentum of the Kleinman-Bylander projectors, lmxkb. This
information is optional. If the block is absent, or for a species which is not mentioned inside
it, SIESTA will take lmxkb(is) = lmxo(is) + 1, where lmxo(is) is the maximum angular
momentum of the basis orbitals of species is. However, the value of lmxkb is actually limited
by the highest-l channel in the pseudopotential file.

%block Ps.lmax
Al_adatom 3
H 1
O 2

%endblock Ps.lmax

By default lmax is the maximum angular momentum plus one, limited by the highest-l channel
in the pseudopotential file.

%block PS.KBprojectors 〈None〉 (block)
This block provides information about the number of Kleinman-Bylander projectors per angular
momentum that will used in the calculation. This block is optional. If it is absent, or for species
not mentioned in it, only one projector will be used for each angular momentum (except for

35

l-shells with semicore states, for which two projectors will be constructed). The projectors will
be constructed using the eigenfunctions of the respective pseudopotentials.
This block allows to specify also the reference energies of the wavefunctions used to build them.
The specification of the reference energies is optional. If these energies are not given, the
program will use the eigenfunctions with an increasing number of nodes (if there is not bound
state with the corresponding number of nodes, the “eigenstates” are taken to be just functions
which are made zero at very long distance of the nucleus). The units for the energy can be
optionally specified; if not, the program will assumed that they are given in Rydbergs. The
data provided in this block must be consistent with those read from the block PS.lmax. For
example,

%block PS.KBprojectors
Si 3
2 1

-0.9 eV
0 2

-0.5 -1.0d4 Hartree
1 2

Ga 1
1 3

-1.0 1.0d5 -6.0
%endblock PS.KBprojectors

The reading is done this way (those variables in brackets are optional, therefore they are only
read if present):

From is = 1 to nspecies
read: label(is), l_shells(is)
From lsh=1 to l_shells(is)

read: l, nkbl(l,is)
read: {erefKB(izeta,il,is)}, from ikb = 1 to nkbl(l,is), {units}

All angular momentum shells should be specified. Default values are assigned to missing shells
with l below lmax, where lmax is the highest angular momentum present in the block for that
particular species. High-l shells (beyond lmax) not specified in the block will also be assigned
default values.
Care should be taken for l-shells with semicore states. For them, two KB projectors should be
generated. This is not checked while processing this block.
When a very high energy, higher that 1000 Ry, is specified, the default is taken instead. On
the other hand, very low (negative) energies, lower than -1000 Ry, are used to indicate that
the energy derivative of the last state must be used. For example, in the block given above,
two projectors will be used for the s pseudopotential of Si. One generated using a reference
energy of -0.5 Hartree, and the second one using the energy derivative of this state. For the p
pseudopotential of Ga, three projectors will be used. The second one will be constructed from
an automatically generated wavefunction with one node, and the other projectors from states
at -1.0 and -6.0 Rydberg.
The analysis looking for possible ghost states is only performed when a single projector is used.
Using several projectors some attention should be paid to the “KB cosine” (kbcos), given in the

36

output of the program. The KB cosine gives the value of the overlap between the reference state
and the projector generated from it. If these numbers are very small (< 0.01, for example) for
all the projectors of some angular momentum, one can have problems related with the presence
of ghost states.
The default is one KB projector from each angular momentum, constructed from the nodeless
eigenfunction, used for each angular momentum, except for l-shells with semicore states, for
which two projectors will be constructed. Note that the value of lmxkb is actually limited by
the highest-l channel in the pseudopotential file.
For full spin-orbit calculations, the program generates lj projectors using the l+1/2 and l−1/2
components of the (relativistic) pseudopotentials. In this case the specification of the reference
energies for projectors is not changed: only l is relevant. Fully relativistic projectors can also
be read from a suitably generated PSML file.

KB.New.Reference.Orbitals false (logical)
If true, the routine to generate KB projectors will use slightly different parameters for the
construction of the reference orbitals involved (Rmax=60 Bohr both for integration and normal-
ization).

6.3.9 The PAO.Basis block

%block PAO.Basis 〈None〉 (block)
Block with data to define explicitly the basis to be used. It allows the definition by hand
of all the parameters that are used to construct the atomic basis. There is no need to enter
information for all the species present in the calculation. The basis for the species not men-
tioned in this block will be generated automatically using the parameters PAO.BasisSize,
PAO.BasisType, PAO.EnergyShift, PAO.SplitNorm (or PAO.SplitNormH), and the
soft-confinement defaults (see PAO.SoftDefault).
NOTE: This block gives full control to the user, and with that comes the user’s responsibility
of making sure that the contents of the block are appropriate. This is particularly important
for the specification of the PAO shells to be included in the basis set. Some pseudopotentials
are generated with semicore states, which should be included in the basis set. Conversely,
a PAO.Basis block prepared for a species with semicore states will not work for the same
chemical element if employing a pseudopotential without them. As a suggestion, users might
want to try first a run in “automatic mode” (i.e. without using a PAO.Basis block) just to
check which basis-set shells are identified by the built-in heuristics in the program. Then the
skeleton PAO.Basis produced might be fully fleshed out according to the user’s needs.
Some parameters can be set to zero, or left out completely. In these cases the values will
be generated from the magnitudes defined above, or from the appropriate default values. For
example, the radii will be obtained from PAO.EnergyShift or from PAO.SplitNorm if they
are zero; the scale factors will be put to 1 if they are zero or not given in the input. An example
block for a two-species calculation (H and O) is the following (opt means optional):

%block PAO.Basis # Define Basis set
O 2 nodes 1.0 # Label, l_shells, type (opt), ionic_charge (opt)
n=2 0 2 E 50.0 2.5 # n (opt if not using semicore levels),l,Nzeta,Softconf(opt)

3.50 3.50 # rc(izeta=1,Nzeta)(Bohr)
0.95 1.00 # scaleFactor(izeta=1,Nzeta) (opt)
1 1 P 2 # l, Nzeta, PolOrb (opt), NzetaPol (opt)

37

3.50 # rc(izeta=1,Nzeta)(Bohr)
H 2 # Label, l_shells, type (opt), ionic_charge (opt)

0 2 S 0.2 # l, Nzeta, Per-shell split norm parameter
5.00 0.00 # rc(izeta=1,Nzeta)(Bohr)
1 1 Q 3. 0.2 # l, Nzeta, Charge conf (opt): Z and screening
5.00 # rc(izeta=1,Nzeta)(Bohr)

%endblock PAO.Basis

The reading is done this way (those variables in brackets are optional, therefore they are only
read if present) (See the routines in Src/basis_specs.f for detailed information):

From js = 1 to nspecies
read: label(is), l_shells(is), { type(is) }, { ionic_charge(is) }
From lsh=1 to l_shells(is)
read:
{ n }, l(lsh), nzls(lsh,is), { PolOrb(l+1) }, { NzetaPol(l+1) },
{SplitNormfFlag(lsh,is)}, {SplitNormValue(lsh,is)}
{SoftConfFlag(lsh,is)}, {PrefactorSoft(lsh,is)}, {InnerRadSoft(lsh,is)},
{FilteretFlag(lsh,is)}, {FilteretCutoff(lsh,is)}
{ChargeConfFlag(lsh,is)}, {Z(lsh,is)}, {Screen(lsh,is)}, {delta(lsh,is}

read: rcls(izeta,lsh,is), from izeta = 1 to nzls(l,is)
read: { contrf(izeta,il,is) }, from izeta = 1 to nzls(l,is)

And here is the variable description:

- Label: Species label, this label determines the species index is according to the block
ChemicalSpeciesLabel

- l_shells(is): Number of shells of orbitals with different angular momentum for species
is

- type(is): Optional input. Kind of basis set generation procedure for species is. Same
options as PAO.BasisType

- ionic_charge(is): Optional input. Net charge of species is. This is only used for basis set
generation purposes. Default value: 0.0 (neutral atom). Note that if the pseudopotential
was generated in an ionic configuration, and no charge is specified in PAO.Basis, the ionic
charge setting will be that of pseudopotential generation.

- n: Principal quantum number of the shell. This is an optional input for normal atoms,
however it must be specified when there are semicore states (i.e. when states that usually
are not considered to belong to the valence shell have been included in the calculation)

- l: Angular momentum of basis orbitals of this shell
- nzls(lsh,is): Number of “zetas” for this shell. For a filteret basis this number is ignored

since the number is controlled by the cutoff. For bessel-floating orbitals, the different ’zetas’
map to increasingly excited states with the same angular momentum (with increasing
number of nodes).

- PolOrb(l+1): Optional input. If set equal to P, a shell of polarization functions (with an-
gular momentum l+1) will be constructed from the first-zeta orbital of angular momentum
l. Default value: ’ ’ (blank = No polarization orbitals).

- NzetaPol(l+1): Optional input. Number of “zetas” for the polarization shell (generated
automatically in a split-valence fashion). For a filteret basis this number is ignored since
the number is controlled by the cutoff. Only active if PolOrb = P. Default value: 1

38

- SplitNormFlag(lsh,is): Optional input. If set equal to S, the following number sets the
split-norm parameter for that shell.

- SoftConfFlag(l,is): Optional input. If set equal to E, the soft confinement potential
proposed in equation (1) of the paper by J. Junquera et al., Phys. Rev. B 64, 235111
(2001), is used instead of the Sankey hard-well potential.

- PrefactorSoft(l,is): Optional input. Prefactor of the soft confinement potential (V0 in
the formula). Units in Ry. Default value: 0 Ry.

- InnerRadSoft(l,is): Optional input. Inner radius where the soft confinement potential
starts off (ri in the formula). If negative, the inner radius will be computed as the given
fraction of the PAO cutoff radius. Units in bohrs. Default value: 0 bohrs.

- FilteretFlag(l,is): Optional input. If set equal to F, then an individual filter cut-off
can be specified for the shell.

- FilteretCutoff(l,is): Optional input. Shell-specific value for the filteret basis cutoff.
Units in Ry. Default value: The same as the value given by FilterCutoff .

- ChargeConfFlag(lsh,is): Optional input. If set equal to Q, the charge confinement po-
tential in equation (2) above is added to the confining potential. If present it requires at
least one number after it (Z), but it can be followed by two or three numbers.

- Z(lhs,is): Optional input, needed if Q is set. Z charge in equation (2) above for charge
confinement (units of e).

- Screen(lhs,is): Optional input. Yukawa screening parameter λ in equation (2) above
for charge confinement (in Bohr−1).

- delta(lhs,is): Optional input. Singularity regularisation parameter δ in equation (2)
above for charge confinement (in Bohr).

- rcls(izeta,l,is): Cutoff radius (Bohr) of each ’zeta’ for this shell. For the second zeta
onwards, if this value is negative, the actual rc used will be the given fraction of the first
zeta’s rc. If the number of rc’s for a given shell is less than the number of ’zetas’, the
program will assign the last rc value to the remaining zetas, rather than stopping with an
error. This is particularly useful for Bessel suites of orbitals.

- contrf(izeta,l,is): Optional input. Contraction factor of each “zeta” for this shell.
If the number of entries for a given shell is less than the number of ’zetas’, the program
will assign the last contraction value to the remaining zetas, rather than stopping with an
error. Default value: 1.0

Polarization orbitals are generated by solving the atomic problem in the presence of a polarizing
electric field. The orbitals are generated applying perturbation theory to the first-zeta orbital
of lower angular momentum. They have the same cutoff radius as the orbitals from which they
are constructed.
Note: The perturbative method has traditionally used the ’l’ component of the pseu-
dopotential, but it can be argued that it should use the ’l+1’ component. The variable
PAO.OldStylePolOrbs can be set to true in order to enable the former method, but this is
discouraged unless testing for backwards compatibility.
There is a different possibility for generating polarization orbitals: by introducing them explic-
itly in the PAO.Basis block (see Sec. 6.3.6 for full details). It has to be remembered, however,
that they sometimes correspond to unbound states of the atom, their shape depending very

39

much on the cutoff radius, not converging by increasing it, similarly to the multiple-zeta or-
bitals generated with the nodes option. Using PAO.EnergyShift makes no sense, and a cut
off radius different from zero must be explicitly given (the same cutoff radius as the orbitals
they polarize is usually a sensible choice).
A species with atomic number = -100 will be considered by SIESTA as a constant-
pseudopotential atom, i.e., the basis functions generated will be spherical Bessel functions with
the specified rc. In this case, rc has to be given, as PAO.EnergyShift will not calculate it.
Other negative atomic numbers will be interpreted by SIESTA as ghosts of the corresponding
positive value: the orbitals are generated and put in position as determined by the coordinates,
but neither pseudopotential nor electrons are considered for that ghost atom. Useful for BSSE
correction.
Use: This block is optional, except when Bessel functions are present.
Default: Basis characteristics defined by global definitions given above.

6.3.10 Filtering

FilterCutoff 0 eV (energy)
Kinetic energy cutoff of plane waves used to filter all the atomic basis functions, the pseudo-
core densities for partial core corrections, and the neutral-atom potentials. The basis functions
(which must be squared to obtain the valence density) are really filtered with a cutoff reduced
by an empirical factor 0.72 ≃ 0.5. The FilterCutoff should be similar or lower than the
Mesh.Cutoff to avoid the eggbox effect on the atomic forces. However, one should not try to
converge Mesh.Cutoff while simultaneously changing FilterCutoff , since the latter in fact
changes the used basis functions. Rather, fix a sufficiently large FilterCutoff and converge
only Mesh.Cutoff . If FilterCutoff is not explicitly set, its value is calculated from FilterTol.

FilterTol 0 eV (energy)
Residual kinetic-energy leaked by filtering each basis function. While FilterCutoff sets a
common reciprocal-space cutoff for all the basis functions, FilterTol sets a specific cutoff for
each basis function, much as the PAO.EnergyShift sets their real-space cutoff. Therefore,
it is reasonable to use similar values for both parameters. The maximum cutoff required to
meet the FilterTol, among all the basis functions, is used (multiplied by the empirical factor
1/0.72 ≃ 2) to filter the pseudo-core densities and the neutral-atom potentials. FilterTol is
ignored if FilterCutoff is present in the input file. If neither FilterCutoff nor FilterTol
are present, no filtering is performed. See Soler and Anglada [17], for details of the filtering
procedure.
Warning: If the value of FilterCutoff is made too small (or FilterTol too large) some of the
filtered basis orbitals may be meaningless, leading to incorrect results or even a program crash.
To be implemented: If Mesh.Cutoff is not present in the input file, it can be set using
the maximum filtering cutoff used for the given FilterTol (for the time being, you can use
AtomSetupOnly true to stop the program after basis generation, look at the maximum
filtering cutoff used, and set the mesh-cutoff manually in a later run.)

40

6.3.11 Saving and reading basis-set information

SIESTA (and the standalone program Gen-basis) always generate the files Atomlabel.ion, where
Atomlabel is the atomic label specified in block ChemicalSpeciesLabel. Optionally, if NetCDF
support is compiled in, the programs generate NetCDF files Atomlabel.ion.nc (except for ghost
atoms). See an Appendix for information on the optional NetCDF package.
These files can be used to read back information into SIESTA.

User.Basis false (logical)
If true, the basis, KB projector, and other information is read from files Atomlabel.ion, where
Atomlabel is the atomic species label specified in block ChemicalSpeciesLabel. These files can
be generated by a previous SIESTA run or (one by one) by the standalone program Gen-basis.
No pseudopotential files are necessary.

User.Basis.NetCDF false (logical)
If true, the basis, KB projector, and other information is read from NetCDF files Atom-
label.ion.nc, where Atomlabel is the atomic label specified in block ChemicalSpeciesLa-
bel. These files can be generated by a previous SIESTA run or by the standalone program
Gen-basis. No pseudopotential files are necessary. NetCDF support is needed. Note that ghost
atoms cannot yet be adequately treated with this option.

6.3.12 Tools to inspect the orbitals and KB projectors

The program ioncat in Util/Gen-basis can be used to extract orbital, KB projector, and other
information contained in the .ion files. The output can be easily plotted with a graphics program.
If the option WriteIonPlotFiles is enabled, SIESTA will generate and extra set of files that can
be plotted with the gnuplot scripts in Tutorials/Bases. The stand-alone program gen-basis sets
that option by default, and the script Tutorials/Bases/gen-basis.sh can be used to automate
the process. See also the NetCDF-based utilities in Util/PyAtom.

6.3.13 Basis optimization

There are quite a number of options for the input of the basis-set and KB projector specification, and
they are all optional! By default, SIESTA will use a DZP basis set with appropriate choices for the
determination of the range, etc. Of course, the more you experiment with the different options, the
better your basis set can get. To aid in this process we offer an auxiliary program for optimization
which can be used in particular to obtain variationally optimal basis sets (within a chosen basis
size). See Util/Optimizer for general information, and Util/Optimizer/Examples/Basis_Optim
for an example.

BasisPressure 0.2 GPa (pressure)
SIESTA will compute and print the value of the “effective basis enthalpy” constructed by
adding a term of the form pbasisVorbs to the total energy. Here pbasis is a fictitious basis pressure
and Vorbs is the volume of the system’s orbitals. This is a useful quantity for basis optimization
(See Anglada et al.). The total basis enthalpy is also written to the ASCII file BASIS_ENTHALPY.

41

6.3.14 Low-level options regarding the radial grid

For historical reasons, the basis-set and KB projector code in SIESTA uses a logarithmic radial
grid, which is taken from the pseudopotential file. Any “interesting” radii have to fall on a grid
point, which introduces a certain degree of coarseness that can limit the accuracy of the results and
the faithfulness of the mapping of input parameters to actual operating parameters. For example,
the same orbital will be produced by a finite range of PAO.EnergyShift values, and any user-
defined cutoffs will not be exactly reflected in the actual cutoffs. This is particularly troublesome for
automatic optimization procedures (such as those implemented in Util/Optimizer), as the engine
might be confused by the extra level of indirection. The following options can be used to fine-tune
the mapping. Note that grid reparametrization is now (at version 5) enabled by default, and it
might change the numerical results appreciably (in effect, it leads to slightly different basis orbitals
and projectors).

Reparametrize.Pseudos true (logical)
By changing the a and b parameters of the logarithmic grid, a new one with a more adequate
grid-point separation can be used for the generation of basis sets and projectors. For example,
by using a = 0.001 and b = 0.01, the grid point separations at r = 0 and 10 bohrs are 0.00001
and 0.01 bohrs, respectively. More points are needed to reach r’s of the order of a hundred
bohrs, but the extra computational effort is negligible. The net effect of this option (notably
when coupled to Restricted.Radial.Grid) is a closer mapping of any user-specified cutoff
radii and of the radii implicitly resulting from other input parameters to the actual values used
by the program. (The small grid-point separation near r=0 is still needed to avoid instabilities
for s channels that occurred with the previous -reparametrized- default spacing of 0.005 bohr.
This effect is not yet completely understood.)

New.A.Parameter 0.001 (real)
New setting for the pseudopotential grid’s a parameter

New.B.Parameter 0.01 (real)
New setting for the pseudopotential grid’s b parameter

Rmax.Radial.Grid 50.0 (real)
New setting for the maximum value of the radial coordinate for integration of the atomic
Schrodinger equation.
If Reparametrize.Pseudos is false this will be the maximum radius in the pseudopotential
file.

Restricted.Radial.Grid true (logical)
In normal operation of the basis-set and projector generation code the various cutoff radii are
restricted to falling on an odd-numbered grid point, shifting then accordingly. This restriction
can be lifted by setting this parameter to false.

6.3.15 Summary of options and defaults enabling automatic basis-set generation

In this section we review settings that can allow a fully automatic basis-set generation, with minimal
user input. Philosophically this goes against the SIESTA mindset of careful basis-set optimization,

42

but we must acknowledge the need for fully automatic, unattended, operation for high-throughput
computing.
Partly in response to this, some program defaults have changed in version 5 of SIESTA.

• Multiple-zeta orbitals are generated with a new algorithm with better convergence properties.

• The generation of polarization orbitals can fall back to a non-perturbative scheme in some
known problematic cases.

• Orbitals that would be unbound in the atom are now given a default rc (equal to the range of
the largest orbital). This value that can be controlled by the option

PAO.rc.unbound.state 0.0 Bohr (length)
A value of 0.0 will recover the old behavior (stopping if the orbital is unbound in the
atom).

• The radial grid used in PAO and KB construction, which is inherited from that of the pseu-
dopotential tables, is re-parametrized by default, to make it finer in the range where most
relevant cutoffs are located. This is important for basis-optimization runs, since there is a
more faithful mapping of the rc’s requested by the optimization algorithm and those actually
used.

In addition, some defaults have been changed to provide a better overall quality for the automatic
basis sets. Note that full optimization is still preferred for most work:

• The default energy-shift has been lowered to 0.01 Ry.

• The soft-confinement potential is enabled by default.

• The default split-norm parameter for Hydrogen has been increased to 0.45.

• A change in the way perturbative polarization orbitals are generated: the l+1 pseudopotential
channel is used, instead of the l channel.

6.3.16 Notes on backward compatibility in regard to new program defaults

If users want to reuse basis sets generated with previous versions of SIESTA, it is useful to keep in
mind the old values of the defaults. In most cases, setting them back as in the following fdf stanza
will recover the old behavior, except if any of the global options were given a different value in the
original input. Recall also that options in the PAO.Basis block take precedence over any global
options, but only if they are explicitly given.

PAO.EnergyShift 0.02 Ry
PAO.SoftDefault F
PAO.SplitNormH -1.0
PAO.OldStylePolOrbs T
PAO.SplitValence.Legacy T
ReparametrizePseudos F
PAO.Polarization.NonPerturbative.Fallback F
PAO.rc.unbound.state 0.0 Bohr

43

If users keep the .ion or .ion.nc files from a run with a previous version of SIESTA, they can be
reused with the User.Basis or User.Basis.Netcdf options. In this case there is no need to change
any flags. This is the most convenient option to maintain compatibility with older results.

6.4 Structural information

There are many ways to give SIESTA structural information.

• Directly from the fdf file in traditional format.

• Directly from the fdf file in the newer Z-Matrix format, using a Zmatrix block.

• From an external data file

Note that, regardless of the way in which the structure is described, the ChemicalSpeciesLabel
block is mandatory.
In the following sections we document the different structure input methods, and provide a guide to
their precedence.

6.4.1 Traditional structure input in the fdf file

Firstly, the size of the cell itself should be specified, using some combination of the options Lat-
ticeConstant, LatticeParameters, and LatticeVectors, and SuperCell. If nothing is specified,
SIESTA will construct a cubic cell in which the atoms will reside as a cluster (a molecule).
Secondly, the positions of the atoms within the cells must be specified, using either the traditional
SIESTA input format (a modified xyz format) which must be described within a AtomicCoordi-
natesAndAtomicSpecies block.

LatticeConstant 〈None〉 (length)
depends on: LatticeParameters, LatticeVectors

Lattice constant. This is just to define the scale of the lattice vectors.
NOTE: This defaults to 1 Ang when used in combination with LatticeParameters or Lat-
ticeVectors. Otherwise it is not used.

%block LatticeParameters 〈None〉 (block)
depends on: LatticeConstant

Crystallographic way of specifying the lattice vectors, by giving six real numbers: the three
vector modules, a, b, and c, and the three angles α (angle between b⃗ and c⃗), β, and γ. The
three modules are in units of LatticeConstant, the three angles are in degrees.
For example a square cell with side-lengths equal to LatticeConstant.

1.0 1.0 1.0 90. 90. 90.

%block LatticeVectors 〈None〉 (block)
depends on: LatticeConstant

The cell vectors are read in units of the lattice constant, LatticeConstant which defaults to
1 Ang.

44

They are read as a matrix with each vector being one line.
For example a square cell with side-lengths equal to LatticeConstant.

1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

%block SuperCell 〈None〉 (block)
Integer 3x3 matrix defining a supercell in terms of the unit cell. Any values larger than 1 will
expand the unitcell (plus atoms) along that lattice vector direction (if possible).

%block SuperCell
M(1,1) M(2,1) M(3,1)
M(1,2) M(2,2) M(3,2)
M(1,3) M(2,3) M(3,3)

%endblock SuperCell

and the supercell is defined as SuperCell(ix, i) =
∑

j CELL(ix, j) ∗M(j, i). Notice that the
matrix indexes are inverted: each input line specifies one supercell vector.
Warning: SuperCell is disregarded if the geometry is read from the XV file, which can happen
inadvertently.
Use: The atomic positions must be given only for the unit cell, and they are ’cloned’ automat-
ically in the rest of the supercell. The NumberOfAtoms given must also be that in a single
unit cell. However, all values in the output are given for the entire supercell. In fact, CELL is
immediately redefined as the whole supercell and the program no longer knows the existence of
an underlying unit cell. All other input (apart from NumberOfAtoms and atomic positions),
including kgrid.MonkhorstPack must refer to the supercell (this is a change over previous
versions). Therefore, to avoid confusions, we recommend to use SuperCell only to generate
atomic positions, and then to copy them from the output to a new input file with all the atoms
specified explicitly and with the supercell given as a normal unit cell.

AtomicCoordinatesFormat Bohr (string)
Character string to specify the format of the atomic positions in input. These can be expressed
in four forms:

Bohr|NotScaledCartesianBohr atomic positions are given directly in Bohr, in Cartesian co-
ordinates

Ang|NotScaledCartesianAng atomic positions are given directly in Ångström, in Cartesian
coordinates

LatticeConstant|ScaledCartesian atomic positions are given in Cartesian coordinates, in
units of the lattice constant

Fractional|ScaledByLatticeVectors atomic positions are given referred to the lattice vectors

AtomCoorFormatOut 〈AtomicCoordinatesFormat〉 (string)
Character string to specify the format of the atomic positions in output.
Same possibilities as for input AtomicCoordinatesFormat.

AtomicCoordinatesOrigin 〈None〉 (block/string)
The user can request a rigid shift of the coordinates, for example to place a molecule near the

45

center of the cell. This shift can be specified in two ways:

• By an explicit vector, given in the same format and units as the coordinates. Notice that
the atomic positions (shifted or not) need not be within the cell formed by LatticeVectors,
since periodic boundary conditions are always assumed.
This defaults to the origin:

0.0 0.0 0.0

• By a string that indicates an automatic shift that places the “center” of the system at the
center of the unit cell, or that places the system near the borders of the cell. In this case,
the contents of the block, or the values associated directly to the label (see below) can be:

COP Place the center of coordinates in the middle of the unit-cell.

COM Place the center of mass in the middle of the unit-cell.

MIN Shift the coordinates so that the minimum value along each cartesian axis is 0.
NOTE: Ghost atoms are not taken into account for the above “centering” calculations
(but their coordinates are indeed shifted).
All string options may be given an optional value. For instance, COP-XZ which limits
the COP option to only affect x and z Cartesian coordinates.
The accepted suffixes are: -X, -Y, -Z, -XY/-YX, -YZ/-YZ, -XZ/-ZX and anything
else will be regarded as all directions.

AtomicCoordinatesOrigin COP-X ! COP only for x-direction
AtomicCoordinatesOrigin COM-ZY ! COM only for y- and z-directions
AtomicCoordinatesOrigin MIN-Z ! MIN only for z-direction
AtomicCoordinatesOrigin MIN-XYZ ! MIN for all directions
AtomicCoordinatesOrigin MIN ! MIN for all directions

%block AtomicCoordinatesAndAtomicSpecies 〈None〉 (block)
Block specifying the position and species of each atom. One line per atom, the reading is done
this way:

From ia = 1 to natoms
read: xa(ix,ia), isa(ia)

where xa(ix,ia) is the ix coordinate of atom iai in the format (units) specified by Atomic-
CoordinatesFormat, and isa(ia) is the species index of atom ia.
NOTE: This block must be present in the fdf file. If NumberOfAtoms is not specified,
NumberOfAtoms will be defaulted to the number of atoms in this block.
NOTE: Zmatrix has precedence if specified.

6.4.2 Z-matrix format and constraints

The advantage of the traditional format is that it is much easier to set up a system. However, when
working on systems with constraints, there are only a limited number of (very simple) constraints
that may be expressed within this format, and recompilation is needed for each new constraint.
For any more involved set of constraints, a full Zmatrix formulation should be used - this offers
much more control, and may be specified fully at run time (thus not requiring recompilation) - but
it is more work to generate the input files for this form.

46

%block Zmatrix 〈None〉 (block)
This block provides a means for inputting the system geometry using a Z-matrix format, as
well as controlling the optimization variables. This is particularly useful when working with
molecular systems or restricted optimizations (such as locating transition states or rigid unit
movements). The format also allows for hybrid use of Z-matrices and Cartesian or fractional
blocks, as is convenient for the study of a molecule on a surface. As is always the case for a Z-
matrix, the responsibility falls to the user to chose a sensible relationship between the variables
to avoid triads of atoms that become linear.
Below is an example of a Z-matrix input for a water molecule:

%block Zmatrix
molecule fractional

1 0 0 0 0.0 0.0 0.0 0 0 0
2 1 0 0 HO1 90.0 37.743919 1 0 0
2 1 2 0 HO2 HOH 90.0 1 1 0

variables
HO1 0.956997
HO2 0.956997
HOH 104.4

%endblock Zmatrix

The sections that can be used within the Zmatrix block are as follows:
Firstly, all atomic positions must be specified within either a “molecule” block or a “cartesian”
block. Any atoms subject to constraints more complicated than “do not change this coordinate
of this atom” must be specified within a “molecule” block.

molecule There must be one of these blocks for each independent set of constrained atoms
within the simulation.
This specifies the atoms that make up each molecule and their geometry. In addition, an
option of “fractional” or “scaled” may be passed, which indicates that distances are spec-
ified in scaled or fractional units. In the absence of such an option, the distance units are
taken to be the value of “ZM.UnitsLength”.
A line is needed for each atom in the molecule; the format of each line should be:

Nspecies i j k r a t ifr ifa ift

Here the values Nspecies, i, j, k, ifr, ifa, and ift are integers and r, a, and t are double
precision reals.
For most atoms, Nspecies is the species number of the atom, r is distance to atom number
i, a is the angle made by the present atom with atoms j and i, while t is the torsional
angle made by the present atom with atoms k, j, and i. The values ifr, ifa and ift are
integer flags that indicate whether r, a, and t, respectively, should be varied; 0 for fixed, 1
for varying.
The first three atoms in a molecule are a special case. Because there are insufficient atoms
defined to specify a distance/angle/torsion, the values are set differently. For atom 1, r, a,
and t, are the Cartesian coordinates of the atom. For the second atom, r, a, and t are the
coordinates in spherical form of the second atom relative to the first: first the radius, then the
polar angle (angle between the z-axis and the displacement vector) and then the azimuthal
angle (angle between the x-axis and the projection of the displacement vector on the x-y
plane). Finally, for the third atom, the numbers take their normal form, but the torsional

47

angle is defined relative to a notional atom 1 unit in the z-direction above the atom j.
Secondly. blocks of atoms all of which are subject to the simplest of constraints may be
specified in one of the following three ways, according to the units used to specify their
coordinates:

cartesian This section specifies a block of atoms whose coordinates are to be specified in Carte-
sian coordinates. Again, an option of “fractional” or “scaled” may be added, to specify
the units used; and again, in their absence, the value of “ZM.UnitsLength” is taken.
The format of each atom in the block will look like:

Nspecies x y z ix iy iz

Here Nspecies, ix, iy, and iz are integers and x, y, z are reals. Nspecies is the species
number of the atom being specified, while x, y, and z are the Cartesian coordinates of the
atom in whichever units are being used. The values ix, iy and iz are integer flags that
indicate whether the x, y, and z coordinates, respectively, should be varied or not. A value of
0 implies that the coordinate is fixed, while 1 implies that it should be varied. NOTE: When
performing “variable cell” optimization while using a Zmatrix format for input, the algorithm
will not work if some of the coordinates of an atom in a cartesian block are variables and
others are not (i.e., ix iy iz above must all be 0 or 1). This will be fixed in future versions
of the program.
A Zmatrix block may also contain the following, additional, sections, which are designed to
make it easier to read.

constants Instead of specifying a numerical value, it is possible to specify a symbol within the
above geometry definitions. This section allows the user to define the value of the symbol as
a constant. The format is just a symbol followed by the value:

HOH 104.4

variables Instead of specifying a numerical value, it is possible to specify a symbol within the
above geometry definitions. This section allows the user to define the value of the symbol as
a variable. The format is just a symbol followed by the value:

HO1 0.956997

Finally, constraints must be specified in a constraints block.

constraint This sub-section allows the user to create constraints between symbols used in a
Z-matrix:

constraint
var1 var2 A B

Here var1 and var2 are text symbols for two quantities in the Z-matrix definition, and AandB
are real numbers. The variables are related by var1 = A ∗ var2 + B.

An example of a Z-matrix input for a benzene molecule over a metal surface is:
%block Zmatrix

molecule
2 0 0 0 xm1 ym1 zm1 0 0 0
2 1 0 0 CC 90.0 60.0 0 0 0
2 2 1 0 CC CCC 90.0 0 0 0
2 3 2 1 CC CCC 0.0 0 0 0
2 4 3 2 CC CCC 0.0 0 0 0

48

2 5 4 3 CC CCC 0.0 0 0 0
1 1 2 3 CH CCH 180.0 0 0 0
1 2 1 7 CH CCH 0.0 0 0 0
1 3 2 8 CH CCH 0.0 0 0 0
1 4 3 9 CH CCH 0.0 0 0 0
1 5 4 10 CH CCH 0.0 0 0 0
1 6 5 11 CH CCH 0.0 0 0 0

fractional
3 0.000000 0.000000 0.000000 0 0 0
3 0.333333 0.000000 0.000000 0 0 0
3 0.666666 0.000000 0.000000 0 0 0
3 0.000000 0.500000 0.000000 0 0 0
3 0.333333 0.500000 0.000000 0 0 0
3 0.666666 0.500000 0.000000 0 0 0
3 0.166667 0.250000 0.050000 0 0 0
3 0.500000 0.250000 0.050000 0 0 0
3 0.833333 0.250000 0.050000 0 0 0
3 0.166667 0.750000 0.050000 0 0 0
3 0.500000 0.750000 0.050000 0 0 0
3 0.833333 0.750000 0.050000 0 0 0
3 0.000000 0.000000 0.100000 0 0 0
3 0.333333 0.000000 0.100000 0 0 0
3 0.666666 0.000000 0.100000 0 0 0
3 0.000000 0.500000 0.100000 0 0 0
3 0.333333 0.500000 0.100000 0 0 0
3 0.666666 0.500000 0.100000 0 0 0
3 0.166667 0.250000 0.150000 0 0 0
3 0.500000 0.250000 0.150000 0 0 0
3 0.833333 0.250000 0.150000 0 0 0
3 0.166667 0.750000 0.150000 0 0 0
3 0.500000 0.750000 0.150000 0 0 0
3 0.833333 0.750000 0.150000 0 0 0

constants
ym1 3.68

variables
zm1 6.9032294
CC 1.417
CH 1.112
CCH 120.0
CCC 120.0

constraints
xm1 CC -1.0 3.903229

%endblock Zmatrix

Here the species 1, 2 and 3 represent H, C, and the metal of the surface, respectively.
(Note: the above example shows the usefulness of symbolic names for the relevant coordinates,
in particular for those which are allowed to vary. The current output options for Zmatrix
information work best when this approach is taken. By using a “fixed” symbolic Zmatrix block
and specifying the actual coordinates in a “variables” section, one can monitor the progress
of the optimization and easily reconstruct the coordinates of intermediate steps in the original
format.)

49

ZM.UnitsLength Bohr (string)
Parameter that specifies the units of length used during Z-matrix input.
Specify Bohr or Ang for the corresponding unit of length.

ZM.UnitsAngle rad (string)
Parameter that specifies the units of angles used during Z-matrix input.
Specify rad or deg for the corresponding unit of angle.

6.4.3 Output of structural information

SIESTA is able to generate several kinds of files containing structural information (maybe too
many).

• SystemLabel.STRUCT_OUT:SIESTA always produces a .STRUCT_OUT file with cell vectors in Å
and atomic positions in fractional coordinates. This file, renamed to .STRUCT_IN can be used
for crystal-structure input. Note that the geometry reported is the last one for which forces
and stresses were computed. See UseStructFile

• SystemLabel.STRUCT_NEXT_ITER:This file is always written, in the same format as
.STRUCT_OUT file. The only difference is that it contains the structural information after
it has been updated by the relaxation or the molecular-dynamics algorithms, and thus it could
be used as input (renamed as .STRUCT_IN) for a continuation run, in the same way as the .XV
file.
See UseStructFile

• SystemLabel.XV:The coordinates are always written in the .XV file, and overriden at every
step.

• OUT.UCELL.ZMATRIX:This file is produced if the Zmatrix format is being used for input. (Please
note that SystemLabel is not used as a prefix.) It contains the structural information in fdf
form, with blocks for unit-cell vectors and for Zmatrix coordinates. The Zmatrix block is in a
“canonical” form with the following characteristics:

1. No symbolic variables or constants are used.
2. The position coordinates of the first atom in each molecule

are absolute Cartesian coordinates.
3. Any coordinates in ‘‘cartesian’’ blocks are also absolute Cartesians.
4. There is no provision for output of constraints.
5. The units used are those initially specified by the user, and are

noted also in fdf form.

Note that the geometry reported is the last one for which forces and stresses were computed.

• NEXT_ITER.UCELL.ZMATRIX:A file with the same format as OUT.UCELL.ZMATRIX but with a
possibly updated geometry.

• The coordinates can be also accumulated in the SystemLabel.MD or SystemLabel.MDX files
depending on WriteMDHistory.

50

• Additionally, several optional formats are supported:

WriteCoorXmol false (logical)
If true it originates the writing of an extra file named SystemLabel.xyz containing the
final atomic coordinates in a format directly readable by XMol.4 Coordinates come
out in Ångström independently of what specified in AtomicCoordinatesFormat and
in AtomCoorFormatOut. There is a present Java implementation of XMol called
JMol.

WriteCoorCerius false (logical)
If trueit originates the writing of an extra file named SystemLabel.xtl containing the
final atomic coordinates in a format directly readable by Cerius.5 Coordinates come out
in Fractional format (the same as ScaledByLatticeVectors) independently of what
specified in AtomicCoordinatesFormat and in AtomCoorFormatOut. If negative
coordinates are to be avoided, it has to be done from the start by shifting all the co-
ordinates rigidly to have them positive, by using AtomicCoordinatesOrigin. See the
Sies2arc utility in the Util/ directory for generating .arc files for CERIUS animation.

WriteMDXmol false (logical)
If true it causes the writing of an extra file named SystemLabel.ANI containing all
the atomic coordinates of the simulation in a format directly readable by XMol for
animation. Coordinates come out in Ångström independently of what is specified in
AtomicCoordinatesFormat and in AtomCoorFormatOut. This file is accumulative
even for different runs.
There is an alternative for animation by generating a .arc file for CERIUS. It is through
the Sies2arc postprocessing utility in the Util/ directory, and it requires the coordinates
to be accumulated in the output file, i.e., WriteCoorStep true.

6.4.4 Input of structural information from external files

The structural information can be also read from external files. Note that ChemicalSpeciesLabel
is mandatory in the fdf file.

MD.UseSaveXV false (logical)
Logical variable which instructs SIESTA to read the atomic positions and velocities stored in
file SystemLabel.XV by a previous run.
If the file does not exist, a warning is printed but the program does not stop. Overrides
UseSaveData, but can be implicitly set by it.

UseStructFile false (logical)
Controls whether the structural information is read from an external file of name
SystemLabel.STRUCT_IN. If true, all other structural information in the fdf file will be ig-
nored.
The format of the file is implied by the following code:

4XMol is under © copyright of Research Equipment Inc., dba Minnesota Supercomputer Center Inc.
5Cerius is under © copyright of Molecular Simulations Inc.

51

read(*,*) ((cell(ixyz,ivec),ixyz=1,3),ivec=1,3) ! Cell vectors, in Angstroms
read(*,*) na
do ia = 1,na

read(iu,*) isa(ia), dummy, xfrac(1:3,ia) ! Species number
! Dummy numerical column
! Fractional coordinates

enddo

Warning: Note that the resulting geometry could be clobbered if an .XV file is read after this
file. It is up to the user to remove any .XV files.

MD.UseSaveZM false (logical)
Instructs to read the Zmatrix information stored in file .ZM by a previous run.
If the required file does not exist, a warning is printed but the program does not stop. Overrides
UseSaveData, but can be implicitly set by it.
Warning: Note that the resulting geometry could be clobbered if an .XV file is read after this
file. It is up to the user to remove any .XV files.

6.4.5 Input from a FIFO file

See the “Forces” option in MD.TypeOfRun. Note that ChemicalSpeciesLabel is still mandatory
in the fdf file.

6.4.6 Precedence issues in structural input

• If the “Forces” option is active, it takes precedence over everything (it will overwrite all other
input with the information it gets from the FIFO file).

• If MD.UseSaveXV is active, it takes precedence over the options below.

• If MD.UseStructFile (or UseStructFile) is active, it takes precedence over the options
below.

• For atomic coordinates, the traditional and Zmatrix formats in the fdf file are mutually exclu-
sive. If MD.UseSaveZM is active, the contents of the ZM file, if found, take precedence over
the Zmatrix information in the fdf file.

6.4.7 Interatomic distances

WarningMinimumAtomicDistance 1 Bohr (length)
Fixes a threshold interatomic distance below which a warning message is printed.

MaxBondDistance 6 Bohr (length)
SIESTA prints the interatomic distances, up to a range of MaxBondDistance,
to file SystemLabel.BONDS upon first reading the structural information, and to file
SystemLabel.BONDS_FINAL after the last geometry iteration. The reference atoms are all the
atoms in the unit cell. The routine now prints the real location of the neighbor atoms in space,
and not, as in earlier versions, the location of the equivalent representative in the unit cell.

52

6.5 k-point sampling

These are options for the k-point grid used in the SCF cycle. For other specialized grids, see Secs. 6.20
and 6.17. The order of the following keywords is equivalent to their precedence.

kgrid.MonkhorstPack Γ-point (block/list)
Real-space supercell, whose reciprocal unit cell is that of the k-sampling grid, and grid displace-
ment for each grid coordinate. Specified as an integer matrix and a real vector:

%block kgrid.MonkhorstPack
Mk(1,1) Mk(2,1) Mk(3,1) dk(1)
Mk(1,2) Mk(2,2) Mk(3,2) dk(2)
Mk(1,3) Mk(2,3) Mk(3,3) dk(3)

%endblock
kgrid.MonkhorstPack [Mk(1,1) Mk(2,2) Mk(3,3)]

where Mk(j,i) are integers and dk(i) are usually either 0.0 or 0.5 (the program will warn the
user if the displacements chosen are not optimal). The k-grid supercell is defined from Mk as in
block SuperCell above, i.e.: KgridSuperCell(ix, i) =

∑
j CELL(ix, j) ∗Mk(j, i). Note again

that the matrix indexes are inverted: each input line gives the decomposition of a supercell
vector in terms of the unit cell vectors.
Use: Used only if SolutionMethod diagon. The k-grid supercell is compatible and unrelated
(except for the default value, see below) with the SuperCell specifier. Both supercells are
given in terms of the CELL specified by the LatticeVectors block. If Mk is the identity matrix
and dk is zero, only the Γ point of the unit cell is used. Overrides kgrid.Cutoff .
One may also use the list input (last line in above example), in that case the block input must
not be present and in this case the displacement vector cannot be selected.

kgrid.Cutoff 0. Bohr (length)
Parameter which determines the fineness of the k-grid used for Brillouin zone sampling. It is half
the length of the smallest lattice vector of the supercell required to obtain the same sampling
precision with a single k point. Ref: Moreno and Soler, PRB 45, 13891 (1992).
Use: If it is zero, only the gamma point is used. The resulting k-grid is chosen in an optimal way,
according to the method of Moreno and Soler (using an effective supercell which is as spherical as
possible, thus minimizing the number of k-points for a given precision). The grid is displaced for
even numbers of effective mesh divisions. This parameter is not used if kgrid.MonkhorstPack
is specified. If the unit cell changes during the calculation (for example, in a cell-optimization
run, the k-point grid will change accordingly (see ChangeKgridInMD for the case of variable-
cell molecular-dynamics runs, such as Parrinello-Rahman). This is analogous to the changes in
the real-space grid, whose fineness is specified by an energy cutoff. If sudden changes in the
number of k-points are not desired, then the Monkhorst-Pack data block should be used instead.
In this case there will be an implicit change in the quality of the sampling as the cell changes.
Both methods should be equivalent for a well-converged sampling.

kgrid.File none (string)
Specify a file from where the k-points are read in. The format of the file is identical to the
SystemLabel.KP file with the exception that the k-points are given in units of the reciprocal
lattice vectors. I.e. the range of the k-points are]− 1/2; 1/2].
An example input may be (not physically justified in any sense):

53

4
1 0.0 0.0 0.0 0.25
2 0.5 0.5 0.5 0.25
3 0.2 0.2 0.2 0.25
4 0.3 0.3 0.3 0.25

The first integer specifies the total number of k-points in the file. The first column is an index;
the next 3 columns are the k-point specification for each of the reciprocal lattice vectors while
the fifth column is the weight for the k-point.
SIESTA checks whether the sum of weights equals 1. If not, SIESTA will die.

ChangeKgridInMD true (logical)
If true, the k-point grid is recomputed at every iteration during MD runs that potentially
change the unit cell: Parrinello-Rahman, Nose-Parrinello-Rahman, and Anneal. Regardless of
the setting of this flag, the k-point grid is always updated at every iteration of a variable-cell
optimization and after each step in a “siesta-as-server” run.
The only reason to set it to false would be to avoid sudden jumps in some properties when the
sampling changes; but if the calculation is well-converged there should be no problems when
the update is enabled.

TimeReversalSymmetryForKpoints true (logical)
depends on: Spin, Spin.Spiral

If true, the k-points in the BZ generated by the methods above are paired as (k, −k) and only
one member of the pair is retained. This symmetry is valid in the absence of external magnetic
fields or non-colinear/spin-orbit interaction.
This flag is only honored for spinless or collinear-spin calculations, as the code will produce
wrong results if there is no support for the appropriate symmetrization.
The default value is true unless: a) the option Spin.Spiral is used. In this case time-reversal-
symmetry is broken explicitly. b) non-colinear/spin-orbit calculations. This case is less clear
cut, but the time-reversal symmetry is not used to avoid possible breakings due to subtle
implementation details, and to make the set of wavefunctions compatible with spin-orbit case
in analysis tools.

6.5.1 Output of k-point information

The coordinates of the k⃗ points used in the sampling are always stored in the file SystemLabel.KP.

WriteKpoints false (logical)
If true it writes the coordinates of the k⃗ vectors used in the grid for k-sampling, into the main
output file.
Default depends on LongOutput.

6.6 Exchange-correlation functionals

(Apart from the built-in functionals, SIESTA can use the functionals provided by the LibXC library,
if support for it is compiled-in in the libGridXC library. See the description of the XC.mix block
below for the appropriate syntax.)

54

XC.Functional LDA (string)
Exchange-correlation functional type. May be LDA (local density approximation, equivalent
to LSD), GGA (Generalized Gradient Approximation), or VDW (van der Waals).

XC.Authors PZ (string)
Particular parametrization of the exchange-correlation functional. Options are:

• CA (equivalent to PZ): (Spin) local density approximation (LDA/LSD). Quantum Monte
Carlo calculation of the homogeneous electron gas by D. M. Ceperley and B. J. Alder, Phys.
Rev. Lett. 45,566 (1980), as parametrized by J. P. Perdew and A. Zunger, Phys. Rev B
23, 5075 (1981)

• PW92: LDA/LSD, as parametrized by J. P. Perdew and Y. Wang, Phys. Rev B, 45,
13244 (1992)

• PW91: Generalized gradients approximation (GGA) of Perdew and Wang. Ref: P&W,
J. Chem. Phys., 100, 1290 (1994)

• PBE: GGA of J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865
(1996)

• revPBE: Modified GGA-PBE functional of Y. Zhang and W. Yang, Phys. Rev. Lett. 80,
890 (1998)

• RPBE: Modified GGA-PBE functional of B. Hammer, L. B. Hansen and J. K. Norskov
Phys. Rev. B 59, 7413 (1999)

• WC: Modified GGA-PBE functional of Z. Wu and R. E. Cohen, Phys. Rev. B 73, 235116
(2006)

• AM05: Modified GGA-PBE functional of R. Armiento and A. E. Mattsson, Phys. Rev.
B 72, 085108 (2005)

• PBEsol: Modified GGA-PBE functional of J. P. Perdew et al, Phys. Rev. Lett. 100,
136406 (2008)

• PBEJsJrLO: GGA-PBE functional with parameters β, µ, and κ fixed by the jellium
surface (Js), jellium response (Jr), and Lieb-Oxford bound (LO) criteria, respectively, as
described by L. S. Pedroza, A. J. R. da Silva, and K. Capelle, Phys. Rev. B 79, 201106(R)
(2009), and by M. M. Odashima, K. Capelle, and S. B. Trickey, J. Chem. Theory Comput.
5, 798 (2009)

• PBEJsJrHEG: Same as PBEJsJrLO, with parameter κ fixed by the Lieb-Oxford bound
for the low density limit of the homogeneous electron gas (HEG)

• PBEGcGxLO: Same as PBEJsJrLO, with parameters β and µ fixed by the gradient
expansion of correlation (Gc) and exchange (Gx), respectively

• PBEGcGxHEG: Same as previous ones, with parameters β, µ, and κ fixed by the Gc,
Gx, and HEG criteria, respectively.

• BLYP (equivalent to LYP): GGA with Becke exchange (A. D. Becke, Phys. Rev. A 38,
3098 (1988)) and Lee-Yang-Parr correlation (C. Lee, W. Yang, R. G. Parr, Phys. Rev.
B 37, 785 (1988)), as modified by B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem.
Phys. Lett. 157, 200 (1989). See also B. G. Johnson, P. M. W. Gill and J. A. Pople, J.
Chem. Phys. 98, 5612 (1993). (Some errors were detected in this last paper, so not all of
their expressions correspond exactly to those implemented in SIESTA)

55

• DRSLL (equivalent to DF1): van der Waals density functional (vdW-DF) of M. Dion, H.
Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401
(2004), with the efficient implementation of G. Román-Pérez and J. M. Soler, Phys. Rev.
Lett. 103, 096102 (2009)

• LMKLL (equivalent to DF2): vdW-DF functional of Dion et al (same as DRSLL)
reparametrized by K. Lee, E. Murray, L. Kong, B. I. Lundqvist and D. C. Langreth,
Phys. Rev. B 82, 081101 (2010)

• KBM: vdW-DF functional of Dion et al (same as DRSLL) with exchange modified by J.
Klimes, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 022201 (2010)
(optB88-vdW version)

• C09: vdW-DF functional of Dion et al (same as DRSLL) with exchange modified by V.
R. Cooper, Phys. Rev. B 81, 161104 (2010)

• BH: vdW-DF functional of Dion et al (same as DRSLL) with exchange modified by K.
Berland and P. Hyldgaard, Phys. Rev. B 89, 035412 (2014)

• VV: vdW-DF functional of O. A. Vydrov and T. Van Voorhis, J. Chem. Phys. 133,
244103 (2010)

%block XC.Mix 〈None〉 (block)
This data block allows the user to create a “cocktail” functional by mixing the desired amounts
of exchange and correlation from each of the functionals described under XC.authors.
The first line of the block must contain the number of functionals to be mixed. On the subse-
quent lines the values of XC.functl and XC.authors must be given and then the weights for the
exchange and correlation, in that order. If only one number is given then the same weight is
applied to both exchange and correlation.
The following is an example in which a 75:25 mixture of Ceperley-Alder and PBE correlation
is made, with an equal split of the exchange energy:

%block XC.mix
2
LDA CA 0.5 0.75
GGA PBE 0.5 0.25

%endblock XC.mix

These blocks can also be used to request the use of LibXC functionals (if the version of libGridXC
in use is 0.7 or later and was compiled with LibXC support). For example:

%block XC.mix
2
GGA LIBXC-00-GGA_X_PBE 1.0 0.0
GGA LIBXC-00-GGA_C_PBE 0.0 1.0
%endblock XC.mix

The weights reflect the “exchange” or “correlation” character of each individual functional.
In the above example we use mnemonic symbols for the functionals and leave the numerical
functional id field as zero. It is also possible to use only the numerical id:

%block XC.mix
2
GGA LIBXC-101 1.0 0.0
GGA LIBXC-130 0.0 1.0
%endblock XC.mix

56

If both fields are used the information must be compatible. Also, the “family” field (GGA,
LDA) must be compatible with the functional specified.
NOTE: In previous versions of the program this block was named, confusingly, XC.Hybrid,
and in some other versions, XC.Cocktail. Those names are still allowed, but are deprecated.
Default value: If the block is not present, the XC information is read from the fdf variables
above.

XC.Use.BSC.CellXC false (logical)
If true, the version of cellXC from the BSC’s mesh suite is used instead of the default SiestaXC
version. BSC’s version might be slightly better for GGA operations. SiestaXC’s version is
mandatory when dealing with van der Waals functionals.

6.7 Spin polarization

Spin non-polarized (string)
deprecates: SpinPolarized, NonCollinearSpin, SpinOrbit

Choose the spin-components in the simulation.
NOTE: This flag has precedence over SpinOrbit, NonCollinearSpin and SpinPolarized
while these deprecated flags may still be used.

non-polarized Perform a calculation with spin-degeneracy (only one component).

polarized Perform a calculation with colinear spin (two spin components).

non-colinear Perform a calculation with non-colinear spin (4 spin components), up-down and
angles.
Refs: T. Oda et al, PRL, 80, 3622 (1998); V. M. García-Suárez et al, Eur. Phys. Jour. B
40, 371 (2004); V. M. García-Suárez et al, Journal of Phys: Cond. Matt 16, 5453 (2004).

spin-orbit Performs calculations including the spin-orbit coupling. By default the full SO op-
tion is set. To perform an on-site SO calculation (see 6.8.1) this option has to be spin-
orbit+onsite. This requires the pseudopotentials to be relativistic.
See Sect. 6.8 for further specific spin-orbit options.

SIESTA can read a .DM with different spin structure by adapting the information to the cur-
rently selected spin multiplicity, averaging or splitting the spin components equally, as needed.
This may be used to greatly increase convergence.
Certain options may not be used together with specific parallelization routines.

Spin.Fix false (logical)
If true, the calculation is done with a fixed value of the spin of the system, defined by variable
Spin.Total. This option can only be used for colinear spin polarized calculations.

Spin.Total 0 (real)
Value of the imposed total spin polarization of the system (in units of the electron spin, 1/2).
It is only used if Spin.Fix true.

%block Spin.Spiral 〈None〉 (block)
depends on: Spin

Specify the spiral q vector for the non-collinear spin.

57

Spin.Spiral.Scale ReciprocalLatticeVectors
%block Spin.Spiral

0. 0. 0.5
%endblock

NOTE: this option only applies for non-collinear spin (not for spin-orbit).
NOTE: this part of the code has not been tested, we would welcome any person who could
assert its correctness and provide tests. Use with extreme care.

Spin.Spiral.Scale 〈None〉 (string)
depends on: Spin.Spiral

Specifies the scale of the spiral vector q vectors given in Spin.Spiral. The options are:

pi/a vector is given in Cartesian coordinates, in units of π/a, where a is the lattice constant
(LatticeConstant)

ReciprocalLatticeVectors vector is given in reciprocal-lattice-vector coordinates

SingleExcitation false (logical)
If true, SIESTA calculates a very rough approximation to the lowest excited state by swapping
the populations of the HOMO and the LUMO. If there is no spin polarisation, it is half swap
only. It is done for the first spin component (up) and first k vector.

6.8 Spin-Orbit coupling

SIESTA includes the option of including in the total Hamiltonian not only the Darwin and velocity
correction terms (Scalar–Relativistic calculations), but also the spin-orbit (SO) contribution. See
Spin on how to enable spin-orbit coupling.
The SO functionality has been implemented by Dr. Ramón Cuadrado and Dr. Jorge I. Cerdá based
on their initial work (R. Cuadrado and J. I. Cerdá “Fully relativistic pseudopotential formalism
under an atomic orbital basis: spin-orbit splittings and magnetic anisotropies”, J. Phys.: Condens.
Matter 24, 086005 (2012); “In-plane/out-of-plane disorder influence on the magnetic anisotropy of
Fe1−yMnyPt-L1(0) bulk alloy”, R. Cuadrado, Kai Liu, Timothy J. Klemmer and R. W. Chantrell,
Applied Physics Letters, 108, 123102 (2016)).
The inclusion of the SO term in the Hamiltonian (and in the Density Matrix) causes an increase in
the number of non-zero elements in their off-diagonal parts, i.e., for some (µ, ν) pair of basis orbitals,
Hσσ′

µν (DMσσ′
µν) [σ, σ′ =↑, ↓] will be ̸= 0. This is mainly due to the fact that the L · S operator will

promote the mixing between different spin-up/down components. In addition, these Hσσ′
µν (and

DMσσ′
µν) elements will be complex, in contrast with typical polarized/non-polarized calculations

where these matrices are purely real. Since the spin-up and spin-down manifolds are essentially
mixed, the solver has to deal with matrices whose dimensions are twice as large as for the collinear
(unmixed) spin problem. Due to this, we advise to take special attention to the memory needed to
perform a spin-orbit calculation.
Apart from the study of effects of the spin–orbit interaction in the band structure, a feature enabled
by a SO formalism is the computation of the Magnetic Anisotropy Energy (MAE): it can be obtained
as the difference in the total selfconsistent energy in two different spin orientations, usually along
the easy axis and the hard axis. In SIESTA it is possible to perform calculations for different

58

magnetization orientations using the block DM.InitSpin in the fdf file. In doing so one will be
able to include the initial orientation angles of the magnetization for each atom, as well as an initial
value of their net magnetic moments. See also the recent review [7].
Note: Due to the small contribution of the spin–orbit interaction to the total energy, the level of
precision required is quite high. The following parameters should be carefully checked for each
specific system to assure that the results are converged and accurate enough: SCF.H.Tolerance
during the selfconsistency (typically <10−4eV), ElectronicTemperature, k-point sampling, and
Mesh.Cutoff (specifically for extended solids). In general, one can say that a good calculation will
have a high number of k–points, low ElectronicTemperature, very small SCF.H.Tolerance and
high values of Mesh.Cutoff . We encourage the user to test carefully these options for each system.
An additional point to take into account when the spin–orbit contribution is included is the mixing
scheme to use. You are encouraged to use the option to mix the Hamiltonian (SCF.Mix hamilto-
nian) instead of the density matrix to speed up convergence. In addition, the pseudopotentials have
to be well tested for each specific system. They have to be generated in their fully relativistic form,
and should use non-linear core corrections. Finally it is worth to mention that the selfconsistent
convergence for some non-highly symmetric magnetizations directions with respect to the physical
symmetry axis could still be difficult.

Spin.OrbitStrength 1.0 (real)
It allows to vary the strength of the spin-orbit interaction from zero to any positive value. It
should be used only for debugging and testing purposes, as the only physical value is 1.0. Note
that this feature is currently implemented by modifying the SO parts of the semilocal potentials
read from a .psf file. It will not work when reading the lj projectors directly from a PSML file
(or from a previous run’s .ion file). Care must be taken when re-using any .ion files produced.

WriteOrbMom false (logical)
If true, a table is provided in the output file that includes an estimation of the vector orbital
magnetic moments, in units of the Bohr magneton, projected onto each orbital and also onto
each atom. The estimation for the orbital moments is based on a two-center approximation,
and makes use of the Mulliken population analysis.
If MullikenInScf is true, this information is printed at every scf step.

SOC.Split.SR.SO true (logical)
In calculations with spin-orbit-coupling (SOC) the program carries out a splitting of the contri-
butions to the Hamiltonian and energies into scalar-relativistic (SR) and spin-orbit (SO) parts.
The splitting procedure when lj projectors are involved can sometimes be ill-defined, and in
those cases the program relies on a heuristic to compute the two contributions. A warning is
printed.
If this option is set to false, it will prevent the program from attempting the splitting (but it
still will be able to detect a possible problem and report an informational message).
When the SO contribution is not split, the relevant energy contributions in the output file are
tagged Enl(+so) and Eso(nil).
The CML file is not thus changed (but there is a new parameter Split-SR-SO).
Note that this is only a cosmetic change affecting the reporting of some components of the
energy. All the other results should be unchanged.

59

6.8.1 On-site approximation

Within the so-called “on-site” approximation only the intra-atomic SO contribution is taken into
account, neglecting three-center SO matrix elements.
The on-site spin-orbit scheme in this version of SIESTA has been implemented by Dr. Ramón
Cuadrado based on the original formalism and implementation developed by Prof. Jaime Ferrer and
his collaborators (L Fernández–Seivane, M Oliveira, S Sanvito, and J Ferrer, Journal of Physics:
Condensed Matter, 18, 7999 (2006); L Fernández–Seivane and Jaime Ferrer, Phys. Rev. Lett. 99,
183401 (2007)). 183401).
It should be noted that this approximation, while based on the physically reasonable idea of the
short-range of the SO interaction, is susceptible to some inaccuracies [5]. Since the construction of
the full SOC Hamiltonian represents a small fraction of the computational effort, the performance
gains in using the on-site approximation are negligible and do not justify its use. Hence, the full SO
formalism is used by default, being necessary to change the Spin flag in the input file if the on-site
approximation is desired.

6.9 The self-consistent-field loop

IMPORTANT NOTE: Convergence of the Kohn-Sham energy and forces
In versions prior to 4.0 of the program, the Kohn-Sham energy was computed using the “in” DM.
The typical DM used as input for the calculation of H was not directly computed from a set of
wave-functions (it was either the product of mixing or of the initialization from atomic values). In
this case, the “kinetic energy” term in the total energy computed in the way stated in the SIESTA
paper had an error which decreased with the approach to self-consistency, but was non-zero. The
net result was that the Kohn-Sham energy converged more slowly than the “Harris” energy (which
is correctly computed).
When mixing H (see below under “Mixing Options”), the KS energy is in effect computed from
DM(out), so this error vanishes.
As a related issue, the forces and stress computed after SCF convergence were calculated using the
DM coming out of the cycle, which by default was the product of a final mixing. This also introduced
errors which grew with the degree of non-selfconsistency.
The current version introduces several changes:

• When mixing the DM, the Kohn-Sham energy may be corrected to make it variational. This
involves an extra call to dhscf (although with neither forces nor matrix elements being cal-
culated, i.e. only calls to rhoofd, poison, and cellxc), and is turned on by the option
SCF.Want.Variational.EKS.

• The program now prints a new column labeled “dHmax” for the self-consistent cycle. The
value represents the maximum absolute value of the changes in the entries of H, but its actual
meaning depends on whether DM or H mixing is in effect: if mixing the DM, dHmax refers to
the change in H(in) with respect to the previous step; if mixing H, dHmax refers to H(out)-
H(in) in the current step.

• When achieving convergence, the loop might be exited without a further mixing of the DM,

60

thus preserving DM(out) for further processing (including the calculation of forces and the
analysis of the electronic structure) (see the SCF.Mix.AfterConvergence option).

• It remains to be seen whether the forces, being computed “right” on the basis of DM(out),
exhibit somehow better convergence as a function of the scf step. In order to gain some
more data and heuristics on this we have implemented a force-monitoring option, activated by
setting to true the variable SCF.MonitorForces. The program will then print the maximum
absolute value of the change in forces from one step to the next. Other statistics could be
implemented.

• While the (mixed) DM is saved at every SCF step, as was standard practice, the final DM(out)
overwrites the SystemLabel.DM file at the end of the SCF cycle. Thus it is still possible to use
a “mixed” DM for restarting an interrupted loop, but a “good” DM will be used for any other
post-processing.

MinSCFIterations 0 (integer)
Minimum number of SCF iterations per time step. In MD simulations this can with benefit be
set to 3.

MaxSCFIterations 1000 (integer)
Maximum number of SCF iterations per time step.

SCF.MustConverge true (logical)
Defines the behaviour if convergence is not reached in the maximum number of SCF iterations.
The default is to stop on the first SCF convergence failure. Increasing MaxSCFIterations to
a large number may be advantageous when this is true.

6.9.1 Harris functional

Harris.Functional false (logical)
Logical variable to choose between self-consistent Kohn-Sham functional or non self-consistent
Harris functional to calculate energies and forces.

• false: Fully self-consistent Kohn-Sham functional.
• true: Non self consistent Harris functional. Cheap but pretty crude for some systems. The

forces are computed within the Harris functional in the first SCF step. Only implemented
for LDA in the Perdew-Zunger parametrization. It really only applies to starting densities
which are superpositions of atomic charge densities.
When this option is choosen, the values of DM.UseSaveDM, SCF.MustConverge and
SCF.Mix.First are automatically set falseand MaxSCFIterations is set to 1, no matter
whatever other specification are in the INPUT file.

6.9.2 Mixing options

Whether a calculation reaches self-consistency in a moderate number of steps depends strongly on
the mixing parameters used. The available mixing options should be carefully tested for a given
calculation type. This search for optimal parameters can repay itself handsomely by potentially
saving many self-consistency steps in production runs.

61

SCF.Mix Hamiltonian|density|charge (string)
Control what physical quantity to mix in the self-consistent cycle.
The default is mixing the Hamiltonian, which may typically perform better than density matrix
mixing.

Hamiltonian Mix the Hamiltonian matrix (default).

density Mix the density matrix.

charge Mix the real-space charge density. Note this is an experimental feature.

NOTE: Real-space charge density does not follow the regular options that adhere to density-
matrix or Hamiltonian mixing. Also it is not recommended to use real-space charge density
mixing with TranSIESTA.

SCF.Mix.Spin all|spinor|sum|sum+diff (string)
Controls how the mixing is performed when carrying out spin-polarized calculations.

all Use all spin-components in the mixing

spinor Estimate mixing coefficients using the spinor components

sum Estimate mixing coefficients using the sum of the spinor components

sum+diff Estimate mixing coefficients using the sum and the difference between the spinor
components

NOTE: This option only influences density-matrix (ρ) or Hamiltonian (H) mixing when using
anything but the linear mixing scheme. And it does not influence not charge (ρ) mixing.

SCF.Mix.First true (logical)
deprecates: DM.MixSCF1

depends on: SCF.Mix.First.Force

This flag is used to decide whether mixing (of the DM or H) should be done in the first SCF
step. If mixing is not performed the output DM or H generated in the first SCF step is used
as input in the next SCF step. When mixing the DM, this “reset” has the effect of avoiding
potentially undesirable memory effects: for example, a DM read from file which corresponds to
a different structure might not satisfy the correct symmetry, and mixing will not fix it. On the
other hand, when reusing a DM for a restart of an interrupted calculation, a full reset might
not be advised.
The value of this flag is one of the ingredients used by SIESTA to decide what to do. If true
(the default), mixing will be performed in all cases, except when a DM has been read from file
and the sparsity pattern of the DM on file is different from the current one. To ensure that a
first-step mixing is done even in this case, SCF.Mix.First.Force should be set to true.
If the flag is false, no mixing in the first step will be performed, except if overridden by
SCF.Mix.First.Force.
NOTE: that the default value for this flag has changed from the old (pre-version 4) setting in
SIESTA. The new setting is most appropriate for the case of restarting calculations. On the
other hand, it means that mixing in the first SCF step will also be performed for the standard
case in which the initial DM is built as a (diagonal) superposition of atomic orbital occupation
values. In some cases (e.g. spin-orbit calculations) better results might be obtained by avoiding
this mixing.

62

SCF.Mix.First.Force false (logical)
Force the mixing (of DM or H) in the first SCF step, regardless of what SIESTA may heuris-
tically decide.
This overrules SCF.Mix.First.

In the following the density matrix (ρ) will be used in the equations, while for Hamiltonian mixing,
ρ, should be replaced by the Hamiltonian matrix. Also we define R[i] = ρi

out − ρi
in and ∆R[i] =

R[i]− R[i− 1].

SCF.Mixer.Method Pulay|Broyden|Linear (string)
Choose the mixing algorithm between different methods. Each method may have different
variants, see SCF.Mixer.Variant.

Linear A simple linear extrapolation of the input matrix as

ρn+1
in = ρn

in + w R[n]. (3)

Pulay Using the Pulay mixing method corresponds using the Kresse and Furthmüller [8] variant.
It relies on the previous N steps and uses those for estimating an optimal input ρn+1

in for the
following iteration. The equation can be written as

ρn+1
in = ρn

in + G R[n] +
N−1∑

i=n−N+1
αi(R[i] + G ∆R[i]), (4)

where G is the damping factor of the Pulay mixing (also known as the mixing weight). The
values αi are calculated using this formula

αi = −
N−1∑
j=1

A−1
ji ⟨∆R[j]|R[N]⟩, (5)

with Aji = ⟨∆R[j]|∆R[i]⟩.
In SIESTA G is a constant, and not a matrix.
NOTE: Pulay mixing is a special case of Broyden mixing, see the Broyden method.

Broyden The Broyden mixing is mixing method relying on the previous N steps in the history
for calculating an optimum input ρn+1

in for the following iteration. The equation can be
written as

ρn+1
in = ρn

in + G R[n]−
N−1∑

i=n−N+1

N−1∑
j=n−N+1

wiwjcjβij(R[i] + G ∆R[i]), (6)

where G is the damping factor (also known as the mixing weight). The values weights may
be expressed by

wi = 1 , for i > 0 (7)
ci = ⟨∆R[i]|R[n]⟩, (8)

βij =
[(

w2
0I + A

)−1]
ij

(9)

Aij = wiwj⟨∆R[i]|∆R[j]⟩. (10)

63

It should be noted that wi for i > 0 may be chosen arbitrarily. Comparing with the Pulay
mixing scheme it is obvious that Broyden and Pulay are equivalent for a suitable set of
parameters.

SCF.Mixer.Variant original (string)
Choose the variant of the mixing method.

Pulay This is implemented in two variants:
original|kresse The original6 Pulay mixing scheme, as implemented in Kresse and Furth-

müller [8].

GR The “guaranteed-reduction” variant of Pulay [3]. This variant has a special convergence
path. It interchanges between linear and Pulay mixing thus using the exact gradient at
each ρn

in. For relatively simple systems this may be advantageous to use. However, for
complex systems it may be worse until it reaches a convergence basin.
To obtain the
original guaranteed-reduction variant one should set SCF.Mixer.<>.weight.linear to
1.

SCF.Mixer.Weight 0.25 (real)
deprecates: DM.MixingWeight

The mixing weight used to mix the quantity. In the linear mixing case this refers to

ρn+1
in = ρn

in + w R[n]. (11)

For details regarding the other methods please see SCF.Mixer.Method.
Convergence of a system heavily depends on:

SCF.Mixer.Weight A high value retains much of the output solution, which may result in
leaving the convergence basin. However, when close to the solution a high value might
decrease needed SCF steps.
A low value only uses very little of the output solution. This may result in high number of
SCF steps but is more likely to converge since it becomes harder for the solution to leave
the convergence basin.
This value is heavily system dependent.

SCF.Mixer.Method The linear mixing is the only method that does not make use of prior
steps, for hard to converge systems it should only be tried with very low mixing weights.
The choice of method may result in some reduction of SCF steps, but experimentation
with the mixing weight is preferred as a first resort.

SCF.Mixer.History Number of previous steps to use for the mixing. A too low value (say 2
– 6) might change the convergence properties a lot. While two different high values might
not change the convergence properties significantly, if at all.

NOTE: the older keyword DM.MixingWeight is used if this key is not found in the input.

SCF.Mixer.History 2 (integer)
deprecates: DM.NumberPulay, DM.NumberBroyden

6As such the “original” version is a variant it-self. But this is more stable in the far majority of cases.

64

Number of previous SCF steps used in estimating the following input. Increasing this number,
typically, increases stability and a number of around 6 or above may be advised.
NOTE: the older keyword DM.NumberPulay/DM.NumberBroyden is used if this key is
not found in the input.

SCF.Mixer.Kick 0 (integer)
After every N SCF steps a linear mix is inserted to kick the SCF cycle out of a possible local
minimum.
The mixing weight for this linear kick is determined by SCF.Mixer.Kick.Weight.

SCF.Mixer.Kick.Weight 〈SCF.Mixer.Weight〉 (real)
The mixing weight for the linear kick (if used).

SCF.Mixer.Restart 0 (integer)
When using advanced mixers (Pulay/Broyden) the mixing scheme may periodically restart the
history. This may greatly improve the convergence path as local constraints in the minimiza-
tion process are periodically removed. This method has similarity to the method proposed in
Banerjee et al. [2] and is a special case of the SCF.Mixer.Kick method.
Please see SCF.Mixer.Restart.Save which is advised to be set simultaneously.

SCF.Mixer.Restart.Save 1 (integer)
When restarting the history of saved SCF steps one may choose to save a subset of the latest
history steps. When using SCF.Mixer.Restart it is encouraged to also save a couple of
previous history steps.

SCF.Mixer.Linear.After -1 (integer)
After reaching convergence one may run additional SCF cycles using a linear mixing scheme. If
this has a value ≥ 0 SIESTA will perform linear mixing after it has converged using the regular
mixing method (SCF.Mixer.Method).
The mixing weight for this linear mixing is controlled by SCF.Mixer.Linear.After.Weight.

SCF.Mixer.Linear.After.Weight 〈SCF.Mixer.Weight〉 (real)
After reaching convergence one may run additional SCF cycles using a linear mixing scheme. If
this has a value ≥ 0 SIESTA will perform linear mixing after it has converged using the regular
mixing method (SCF.Mixer.Method).
The mixing weight for this linear mixing is controlled by SCF.Mixer.Linear.After.Weight.

In conjunction with the above simple settings controlling the SCF cycle SIESTA employs a very
configurable mixing scheme. In essence one may switch mixing methods, arbitrarily, during the SCF
cycle via control commands. This can greatly speed up convergence.

%block SCF.Mixers 〈None〉 (block)
Each line in this block defines a separate mixer that is defined in a subsequent SCF.Mixer.<>
block.
The first line is the initial mixer used.
See the following options for controlling individual mixing methods.
NOTE: If this block is defined you must define all mixing parameters individually.

65

%block SCF.Mixer.<> 〈None〉 (block)
This block controls the mixer named <>.

method Define the method for the mixer, see SCF.Mixer.Method for possible values.

variant Define the variant of the method, see SCF.Mixer.Variant for possible values.

weight|w Define the mixing weight for the mixing scheme, see SCF.Mixer.Weight.

history Define number of previous history steps used in the minimization process, see
SCF.Mixer.History.

weight.linear|w.linear Define the linear mixing weight for the mixing scheme. This only has
meaning for Pulay or Broyden mixing. It defines the initial linear mixing weight.
To obtain the original Pulay Guarenteed-Reduction variant one should set this to 1.

restart Define the periodic restart of the saved history, see SCF.Mixer.Restart.

restart.save Define number of latest history steps retained when restarting the history, see
SCF.Mixer.Restart.Save.

iterations Define the maximum number of iterations this mixer should run before changing to
another mixing method.
NOTE: This must be used in conjunction with the next setting.

next <> Specify the name of the next mixing scheme after having conducted iterations SCF
cycles using this mixing method.

next.conv <> If SCF convergence is reached using this mixer, switch to the mixing scheme
via <>. Then proceed with the SCF cycle.

next.p If the relative difference between the latest two residuals is below this quantity, the mixer
will switch to the method given in next. Thus if

⟨R[i]|R[i]⟩ − ⟨R[i− 1]|R[i− 1]⟩
⟨R[i− 1]|R[i− 1]⟩ < next.p (12)

is fulfilled it will skip to the next mixer.

restart.p If the relative difference between the latest two residuals is below this quantity, the
mixer will restart the history. Thus if

⟨R[i]|R[i]⟩ − ⟨R[i− 1]|R[i− 1]⟩
⟨R[i− 1]|R[i− 1]⟩ < restart.p (13)

is fulfilled it will reset the history.

The options covered now may be exemplified in these examples. If the input file contains:

SCF.Mixer.Method pulay
SCF.Mixer.Weight 0.05
SCF.Mixer.History 10
SCF.Mixer.Restart 25
SCF.Mixer.Restart.Save 4
SCF.Mixer.Linear.After 0
SCF.Mixer.Linear.After.Weight 0.1

66

This may be equivalently setup using the more advanced input blocks:

%block SCF.Mixers
init
final

%endblock

%block SCF.Mixer.init
method pulay
weight 0.05
history 10
restart 25
restart.save 4
next.conv final

%endblock

%block SCF.Mixer.final
method linear
weight 0.1

%endblock

This advanced setup may be used to change mixers during the SCF to change certain parameters
of the mixing method, or fully change the method for mixing. For instance it may be advantageous
to increase the mixing weight once a certain degree of self-consistency has been reached. In the
following example we change the mixing method to a different scheme by increasing the weight and
decreasing the history steps:

%block SCF.Mixers
init
final

%endblock

%block SCF.Mixer.init
method pulay
weight 0.05
history 10
next final
Switch when the relative residual goes below 5%
next.p 0.05

%endblock

%block SCF.Mixer.final
method pulay
weight 0.1
history 6

%endblock

In essence, very complicated schemes of convergence may be created using the block’s input.
The following options refer to the global treatment of how/when mixing should be performed.

Compat.Pre-v4-DM-H false (logical)

67

This
controls the default values of SCF.Mix.AfterConvergence, SCF.RecomputeHAfterScf
and SCF.Mix.First.
In versions prior to v4 the two former options where defaulted to true while the latter option
was defaulted to false.

SCF.Mix.AfterConvergence false (logical)
Indicate whether mixing is done in the last SCF cycle (after convergence has been achieved) or
not. Not mixing after convergence improves the quality of the final Kohn-Sham energy and of
the forces when mixing the DM.
NOTE: See Compat.Pre-v4-DM-H.

SCF.RecomputeHAfterSCF false (logical)
Indicate whether the Hamiltonian is updated after the scf cycle, while computing the final
energy, forces, and stresses. Not recomputing H makes further analysis tasks (such as the
computation of band structures) more consistent, as they will be able to use the same H used
to generate the last density matrix.
NOTE: See Compat.Pre-v4-DM-H.

6.9.3 Mixing of the Charge Density

See SCF.Mix on how to enable charge density mixing. If charge density mixing is enabled the
fourier components of the charge density are mixed, as done in some plane-wave codes. (See for
example Kresse and Furthmüller, Comp. Mat. Sci. 6, 15-50 (1996), KF in what follows.)
The charge mixing is implemented roughly as follows:

• The charge density computed in dhscf is fourier-transformed and stored in a new module. This
is done both for “ρ(G)(in)” and “ρ(G)(out)” (the “out” charge is computed during the extra
call to dhscf for correction of the variational character of the Kohn-Sham energy)

• The “in” and “out” charges are mixed (see below), and the resulting “in” fourier components
are used by dhscf in successive iterations to reconstruct the charge density.

• The new arrays needed and the processing of most new options is done in the new module
m_rhog.F90. The fourier-transforms are carried out by code in rhofft.F.

• Following standard practice, two options for mixing are offered:

– A simple Kerker mixing, with an optional Thomas-Fermi wavevector to damp the contri-
butions for small G’s. The overall mixing weight is the same as for other kinds of mixing,
read from DM.MixingWeight.

– A DIIS (Pulay) procedure that takes into account a sub-set of the G vectors (those within
a smaller cutoff). Optionally, the scalar product used for the construction of the DIIS
matrix from the residuals uses a weight factor.
The DIIS extrapolation is followed by a Kerker mixing step.
The code is m_diis.F90. The DIIS history is kept in a circular stack, implemented using
the new framework for reference-counted types. This might be overkill for this particular
use, and there are a few rough edges, but it works well.

68

The default convergence criteria remains based on the differences in the density matrix, but in this
case the differences are from step to step, not the more fundamental DM_out-DM_in. Perhaps some
other criterion should be made the default (max |∆rho(G)|, convergence of the free-energy...)
Note that with charge mixing the Harris energy as it is currently computed in SIESTA loses its
meaning, since there is no DM_in. The program prints zeroes in the Harris energy field.
Note that the KS energy is correctly computed throughout the scf cycle, as there is an extra step for
the calculation of the charge stemming from DM_out, which also updates the energies. Forces and
final energies are correctly computed with the final DM_out, regardless of the setting of the option
for mixing after scf convergence.
Initial tests suggest that charge mixing has some desirable properties and could be a drop-in re-
placement for density-matrix mixing, but many more tests are needed to calibrate its efficiency for
different kinds of systems, and the heuristics for the (perhaps too many) parameters:

SCF.Kerker.q0sq 0 Ry (energy)
Determines the parameter q2

0 featuring in the Kerker preconditioning, which is always performed
on all components of ρ(G), even those treated with the DIIS scheme.

SCF.RhoGMixingCutoff 9 Ry (energy)
Determines the sub-set of G vectors which will undergo the DIIS procedure. Only those with
kinetic energies below this cutoff will be considered. The optimal extrapolation of the ρ(G)
elements will be replaced in the fourier series before performing the Kerker mixing.

SCF.RhoG.DIIS.Depth 0 (integer)
Determines the maximum number of previous steps considered in the DIIS procedure.

NOTE: The information from the first scf step is not included in the DIIS history. There is no
provision yet for any other kind of “kick-starting” procedure. The logic is in m_rhog (rhog_mixing
routine).

SCF.RhoG.Metric.Preconditioner.Cutoff 〈None〉 (energy)
Determines the value of q2

1 in the weighing of the different G components in the scalar products
among residuals in the DIIS procedure. Following the KF ansatz, this parameter is chosen so
that the smallest (non-zero) G has a weight 20 times larger than that of the smallest G vector
in the DIIS set.
The default is the result of the KF prescription.

SCF.DebugRhoGMixing false (logical)
Controls the level of debugging output in the mixing procedure (basically whether the first few
stars worth of Fourier components are printed). Note that this feature will only display the
components in the master node.

Debug.DIIS false (logical)
Controls the level of debugging output in the DIIS procedure. If set, the program prints the
DIIS matrix and the extrapolation coefficients.

SCF.MixCharge.SCF1 false (logical)
Logical variable to indicate whether or not the charge is mixed in the first SCF cycle. Anecdotal

69

evidence indicates that it might be advantageous, at least for calculations started from scratch,
to avoid that first mixing, and retain the “out” charge density as “in” for the next step.

6.9.4 Initialization of the density-matrix

NOTE: The conditions and options for density-matrix re-use are quite varied and not completely
orthogonal at this point. For further information, see routine Src/m_new_dm.F. What follows is a
summary.
The Density matrix can be:

1. Synthesized directly from atomic occupations.
(See the options below for spin considerations)

2. Read from a .DM file (if the appropriate options are set)
3. Extrapolated from previous geometry steps

(this includes as a special case the re-use of the DM
of the previous geometry iteration)

In cases 2 and 3, the structure of the read or extrapolated DM
is automatically adjusted to the current sparsity pattern.

In what follows, "Initialization" of the DM means that the DM is
either read from file (if available) or synthesized from atomic
data. This is confusing, and better terminology should be used.

Special cases:

Harris functional: The matrix is always initialized

Force calculation: The DM should be written to disk
at the time of the "no displacement"
calculation and read from file at
every subsequent step.

Variable-cell calculation:

If the auxiliary cell changes, the DM is forced to be
synthesized (conceivably one could rescue some important
information from an old DM, but it is too much trouble
for now). NOTE that this is a change in policy with respect
to previous versions of the program, in which a (blind?)
re-use was allowed, except if ’ReInitialiseDM’ was ’true’.
Now ’ReInitialiseDM’ is ’true’ by default. Setting it to
’false’ is not recommended.

In all other cases (including "server operation"), the

70

default is to allow DM re-use (with possible extrapolation)
from previous geometry steps.

For "CG" calculations, the default is not to extrapolate the
DM (unless requested by setting ’DM.AllowExtrapolation’ to
"true"). The previous step’s DM is reused.

The fdf variables ’DM.AllowReuse’ and ’DM.AllowExtrapolation’
can be used to turn off DM re-use and extrapolation.

DM.UseSaveDM true (logical)
Instructs to read the density matrix stored in file SystemLabel.DM by a previous run.
SIESTA will continue even if .DM is not found.
NOTE: That if the spin settings has changed SIESTA allows reading a .DM from a similar cal-
culation with different Spin option. This may be advantageous when going from non-polarized
calculations to polarized, and beyond, see Spin for details.

DM.Init.Unfold true (logical)
depends on: DM.UseSaveDM

When reading the DM from a previous calculation there may be inconsistencies in the auxiliary
supercell. E.g. if the previous calculation did not use an auxiliary supercell and the current
calculation does (adding k-point sampling). SIESTA will automatically unfold the Γ-only DM
to the auxiliary supercell elements (if true).
For false the DM elements are assumed to originate from an auxiliary supercell calculation and
the sparse elements are not unfolded but directly copied.
NOTE: Generally this shouldn’t not be touched, however, if the initial DM is generated using
sisl [15] and only on-site DM elements are set, this should be set to false.

DM.FormattedFiles false (logical)
Setting this alters the default for DM.FormattedInput and DM.FormattedOutput. In-
structs to use formatted files for reading and writing the density matrix. In this case, the files
are labelled SystemLabel.DMF.
Only usable if one has problems transferring files from one computer to another.

DM.FormattedInput false (logical)
Instructs to use formatted files for reading the density matrix.

DM.FormattedOutput false (logical)
Instructs to use formatted files for writing the density matrix.

DM.Init atomic
Specify the initial density matrix composition. Methods are compatible with a possible speci-
fication of DM.InitSpin.AF. Only a single option is available now, but more could be imple-
mented. See also DM.Init.RandomStates.

atomic Only initialize the diagonal (on-site) elements of the density matrix according to the
atomic ground-state populations of the atomic orbitals.

71

DM.InitSpin.AF false (logical)
It defines the initial spin density for a spin polarized calculation. The spin density is initially
constructed with the maximum possible spin polarization for each atom in its atomic configu-
ration. This variable defines the relative orientation of the atomic spins:
If false the initial spin-configuration is a ferromagnetic order (all spins up). If true all odd
atoms are initialized to spin-up, all even atoms are initialized to spin-down.

%block DM.InitSpin 〈None〉 (block)
Define the initial spin density for a spin polarized calculation atom by atom. In the block
there is one line per atom to be spin-polarized, containing the atom index (integer, ordinal in
the block AtomicCoordinatesAndAtomicSpecies) and the desired initial spin-polarization
(real, positive for spin up, negative for spin down). The spin polarization is actually meant to
be the net spin magnetic moment, in units of the Bohr magneton, and thus numerically equal
to the charge inbalance (in electrons) between spin up and spin down channels (as the g-factor
for the electron spin is very close to 2, and the spin angular momentum is 1/2). A value larger
than possible will be reduced to the maximum possible polarization, keeping its sign. Maximum
polarization can also be given by introducing the symbol + or - instead of the polarization value.
There is no need to include a line for every atom, only for those to be polarized. The atoms
not contemplated in the block will be given non-polarized initialization.
For non-collinear spin, the spin direction may be specified for each atom by the polar angle θ and
the azimuthal angle ϕ (using the physics ISO convention), given as the last two arguments in
degrees. If not specified, θ = 0 is assumed (z-polarized). Spin must be set to use non-collinear
or spin-orbit for the directions to have effect.
Example:

%block DM.InitSpin
5 -1. 90. 0. # Atom index, spin, theta, phi (deg)
3 + 45. -90.
7 -

%endblock DM.InitSpin

In the above example, atom 5 is polarized in the x-direction.
If this block is defined, but empty, all atoms are not polarized. This block has precedence over
DM.InitSpin.AF.

DM.Init.RandomStates 0 (integer)
The program will ’remove’ N electrons from the initial density matrix and add N electrons in
randomized ’states’ (i.e., N random vectors which are normalized according to the S metric are
used as “synthetic states”). These extra states are not orthogonal to the occupied manifold.
The orbital coefficients of these states are scaled with the atomic charges, to avoid populating
high-lying shells.
This procedure is wholly experimental and meant to provide a kick to the DM. It is inspired
by the “random-wavefunction” initialization used in some plane-wave codes. It is turned off by
default.
This option only has an effect if the density matrix is initialized from an atomic density and/or
when using DM.InitSpin.
In case it is used together with DM.InitSpin it also randomizes the spin-configuration, which
may be undesirable.

72

NOTE: This option is currently experimental since the randomized states are not ensured to
be orthogonal. This flag may be removed in later revisions or superseded by other options. If
testing this, start with a value of 1 to see if it has an effect; any higher numbers will probably
be worse.

DM.AllowReuse true (logical)
Controls whether density matrix information from previous geometry iterations is re-used to
start the new geometry’s SCF cycle.

DM.AllowExtrapolation true (logical)
Controls whether the density matrix information from several previous geometry iterations
is extrapolated to start the new geometry’s SCF cycle. This feature is useful for molecular
dynamics simulations and possibly also for geometry relaxations. The number of geometry
steps saved is controlled by the variable DM.History.Depth.
This is default true for molecular-dynamics simulations, but false, for now, for geometry-
relaxations (pending further tests which users are kindly requested to perform).

DM.History.Depth 1 (integer)
Sets the number of geometry steps for which density-matrix information is saved for extrapola-
tion.

6.9.5 Initialization of the SCF cycle with charge densities

SCF.Read.Charge.NetCDF false (logical)
Instructs SIESTA to read the charge density stored in the netCDF file Rho.IN.grid.nc. This
feature allows the easier re-use of electronic-structure information from a previous run. It is not
necessary that the basis sets are “similar” (a requirement if density-matrices are to be read in).
NOTE: This is an experimental feature. Until robust checks are implemented, care must be
taken to make sure that the FFT grids in the .grid.nc file and in SIESTA are the same.

SCF.Read.Deformation.Charge.NetCDF false (logical)
Instructs SIESTA to read the deformation charge density stored in the netCDF file
DeltaRho.IN.grid.nc. This feature allows the easier re-use of electronic-structure informa-
tion from a previous run. It is not necessary that the basis sets are “similar” (a requirement
if density-matrices are to be read in). The deformation charge is particularly useful to give a
good starting point for slightly different geometries.
NOTE: This is an experimental feature. Until robust checks are implemented, care must be
taken to make sure that the FFT grids in the .grid.nc file and in SIESTA are the same.

6.9.6 Output of density matrix and Hamiltonian

Performance Note: For large-scale calculations, writing the DM at every scf step can have a severe
impact on performance. The sparse-matrix I/O is undergoing a re-design, to facilitate the analysis
of data and to increase the efficiency.

Use.Blocked.WriteMat false (logical)
By using blocks of orbitals (according to the underlying default block-cyclic distribution), the

73

sparse-matrix I/O can be speeded-up significantly, both by saving MPI communication and by
reducing the number of file accesses. This is essential for large systems, for which the I/O could
take a significant fraction of the total computation time.
To enable this “blocked format” (recommended for large-scale calculations) use the option
Use.Blocked.WriteMat true. Note that it is off by default.
The new format is not backwards compatible. A
converter program (Util/DensityMatrix/dmUnblock.F90) has been written to post-process
those files intended for further analysis or re-use in SIESTA. This is the best option for now,
since it allows liberal checkpointing with a much smaller time consumption, and only incurs
costs when re-using or analyzing files.
Note that TranSIESTA will continue to produce SystemLabel.DM files, in the old format (See
save_density_matrix.F)
To test the new features, the option S.Only true can be used. It will produce three files: a
standard one, another one with optimized MPI communications, and a third, blocked one.

Write.DM true (logical)
Control the creation of the current iterations density matrix to a file for restart purposes and
post-processing. If false nothing will be written.
If Use.Blocked.WriteMat is false the SystemLabel.DM file will be written. Otherwise these
density matrix files will be created; DM_MIXED.blocked and DM_OUT.blocked which are the
mixed and the diagonalization output, respectively.

Write.DM.end.of.cycle 〈Write.DM〉 (logical)
Equivalent to Write.DM, but will only write at the end of each SCF loop.
NOTE: The file generated depends on SCF.Mix.AfterConvergence.

Write.H false (logical)
Whether restart Hamiltonians should be written (not intrinsically supported in 4.1).
If true these files will be created; H_MIXED or H_DMGEN which is the mixed or the generated
Hamiltonian from the current density matrix, respectively. If Use.Blocked.WriteMat the
just mentioned files will have the additional suffix .blocked.

Write.H.end.of.cycle 〈Write.H〉 (logical)
Equivalent to Write.H, but will only write at the end of each SCF loop.
NOTE: The file generated depends on SCF.Mix.AfterConvergence.

The following options control the creation of netCDF files. The relevant routines have not been
optimized yet for large-scale calculations, so in this case the options should not be turned on (they
are off by default).

Write.DM.NetCDF true (logical)
It determines whether the density matrix (after the mixing step) is output as a DM.nc netCDF
file or not.
The file is overwritten at every SCF step. Use the Write.DM.History.NetCDF option if a
complete history is desired.
The DM.nc and standard DM file formats can be converted at will with the programs in
Util/DensityMatrix directory. Note that the DM values in the DM.nc file are in single preci-

74

sion.

Write.DMHS.NetCDF true (logical)
If true, the input density matrix, Hamiltonian, and output density matrix, are stored in a
netCDF file named DMHS.nc. The file also contains the overlap matrix S.
The file is overwritten at every SCF step. Use the Write.DMHS.History.NetCDF option if
a complete history is desired.

Write.DM.History.NetCDF false (logical)
If true, a series of netCDF files with names of the form DM-NNNN.nc is created to hold the
complete history of the density matrix (after mixing). (See also Write.DM.NetCDF). Each
file corresponds to a geometry step.

Write.DMHS.History.NetCDF false (logical)
If true, a series of netCDF files with names of the form DMHS-NNNN.nc is created to hold
the complete history of the input and output density matrix, and the Hamiltonian. (See also
Write.DMHS.NetCDF). Each file corresponds to a geometry step. The overlap matrix is
stored only once per SCF cycle.

Write.TSHS.History false (logical)
If true, a series of TSHS files with names of the form SystemLabel.N.TSHS is created to hold the
complete history of the Hamiltonian and overlap matrix. Each file corresponds to a geometry
step. The overlap matrix is stored only once per SCF cycle. This option only works with
TranSIESTA.

6.9.7 Convergence criteria

NOTE: The older options with a DM prefix is still working for backwards compatibility. However,
the following flags has precedence.
Note that all convergence criteria are additive and may thus be used simultaneously for complete
control.

SCF.DM.Converge true (logical)
Logical variable to use the density matrix elements as monitor of self-consistency.

SCF.DM.Tolerance 10−4 (real)
depends on: SCF.DM.Converge

Tolerance of Density Matrix. When the maximum difference between the output and the input
on each element of the DM in a SCF cycle is smaller than SCF.DM.Tolerance, the self-
consistency has been achieved.
NOTE: DM.Tolerance is the actual default for this flag.

DM.Normalization.Tolerance 10−5 (real)
Tolerance for unnormalized density matrices (typically the product of solvers such as PEXSI
which have a built-in electron-count tolerance). If this tolerance is exceeded, the program stops.
It is understood as a fractional tolerance. For example, the default will allow an excess or shorfall
of 0.01 electrons in a 1000-electron system.

75

SCF.H.Converge true (logical)
Logical variable to use the Hamiltonian matrix elements as monitor of self-consistency: this is
considered achieved when the maximum absolute change (dHmax) in the H matrix elements is
below SCF.H.Tolerance. The actual meaning of dHmax depends on whether DM or H mixing
is in effect: if mixing the DM, dHmax refers to the change in H(in) with respect to the previous
step; if mixing H, dHmax refers to H(out)-H(in) in the previous(?) step.

SCF.H.Tolerance 10−3 eV (energy)
depends on: SCF.H.Converge

If SCF.H.Converge is true, then self-consistency is achieved when the maximum absolute
change in the Hamiltonian matrix elements is below this value.

SCF.EDM.Converge true (logical)
Logical variable to use the energy density matrix elements as monitor of self-consistency: this is
considered achieved when the maximum absolute change (dEmax) in the energy density matrix
elements is below SCF.EDM.Tolerance. The meaning of dEmax is equivalent to that of
SCF.DM.Tolerance.

SCF.EDM.Tolerance 10−3 eV (energy)
depends on: SCF.EDM.Converge

If SCF.EDM.Converge is true, then self-consistency is achieved when the maximum absolute
change in the energy density matrix elements is below this value.

SCF.FreeE.Converge false (logical)
Logical variable to request an additional requirement for self-consistency: it is considered
achieved when the change in the total (free) energy between cycles of the SCF procedure is
below SCF.FreeE.Tolerance and the density matrix change criterion is also satisfied.

SCF.FreeE.Tolerance 10−4 eV (energy)
depends on: SCF.FreeE.Converge

If SCF.FreeE.Converge is true, then self-consistency is achieved when the change in the total
(free) energy between cycles of the SCF procedure is below this value and the density matrix
change criterion is also satisfied.

SCF.Harris.Converge false (logical)
Logical variable to use the Harris energy as monitor of self-consistency: this is considered
achieved when the change in the Harris energy between cycles of the SCF procedure is below
SCF.Harris.Tolerance. This is useful if only energies are needed, as the Harris energy tends
to converge faster than the Kohn-Sham energy. The user is responsible for using the correct
energies in further processing, e.g., the Harris energy if the Harris criterion is used.
To help in basis-optimization tasks, a new file BASIS_HARRIS_ENTHALPY is provided, holding the
same information as BASIS_ENTHALPY but using the Harris energy instead of the Kohn-Sham
energy.
NOTE: Setting this to true makes SCF.DM.Converge SCF.H.Converge default to false.

SCF.Harris.Tolerance 10−4 eV (energy)
depends on: SCF.Harris.Converge

If SCF.Harris.Converge is true, then self-consistency is achieved when the change in the

76

Harris energy between cycles of the SCF procedure is below this value. This is useful if only
energies are needed, as the Harris energy tends to converge faster than the Kohn-Sham energy.

6.10 The real-space grid and the eggbox-effect

SIESTA uses a finite 3D grid for the calculation of some integrals and the representation of
charge densities and potentials. Its fineness is determined by its plane-wave cutoff, as given by
the Mesh.Cutoffoption. It means that all periodic plane waves with kinetic energy lower than this
cutoff can be represented in the grid without aliasing. In turn, this implies that if a function (e.g.
the density or the effective potential) is an expansion of only these plane waves, it can be Fourier
transformed back and forth without any approximation.
The existence of the grid causes the breaking of translational symmetry (the egg-box effect, due to
the fact that the density and potential do have plane wave components above the mesh cutoff). This
symmetry breaking is clear when moving one single atom in an otherwise empty simulation cell.
The total energy and the forces oscillate with the grid periodicity when the atom is moved, as if the
atom were moving on an eggbox. In the limit of infinitely fine grid (infinite mesh cutoff) this effect
disappears.
For reasonable values of the mesh cutoff, the effect of the eggbox on the total energy or on the relaxed
structure is normally unimportant. However, it can affect substantially the process of relaxation, by
increasing the number of steps considerably, and can also spoil the calculation of vibrations, usually
much more demanding than relaxations.
The Util/Scripting/eggbox_checker.py script can be used to diagnose the eggbox effect to be
expected for a particular pseudopotential/basis-set combination.
Apart from increasing the mesh cutoff (see the Mesh.Cutoff option), the following options might
help in lessening a given eggbox problem. But note also that a filtering of the orbitals and the
relevant parts of the pseudopotential and the pseudocore charge might be enough to solve the issue
(see Sec. 6.3.10).

Mesh.Cutoff 300 Ry (energy)
Defines the plane wave cutoff for the grid.

Mesh.Sizes 〈Mesh.Cutoff〉 (list)
Manual definition of grid size along each lattice vector. The value must be divisible by
Mesh.SubDivisions, otherwise the program will die. The numbers should also be divisible
with 2, 3 and 5 due to the FFT algorithms.
This option may be specified as a block, or a list:

%block Mesh.Sizes
100 202 210

%endblock
Or equivalently:
Mesh.Sizes [100 202 210]

By default the grid size is determined via Mesh.Cutoff . This option has precedence if both
are specified.

Mesh.SubDivisions 2 (integer)

77

Defines the number of sub-mesh points in each direction used to save index storage on the mesh.
It affects the memory requirements and the CPU time, but not the results.
NOTE: The default value might be a bit conservative. Users might experiment with higher
values, 4 or 6, to lower the memory and cputime usage.

%block Grid.CellSampling 〈None〉 (block)
It specifies points within the grid cell for a symmetrization sampling.
For a given grid the grid-cutoff convergence can be improved (and the eggbox lessened) by
recovering the lost symmetry: by symmetrizing the sensitive quantities. The full symmetrization
implies an integration (averaging) over the grid cell. Instead, a finite sampling can be performed.
It is a sampling of rigid displacements of the system with respect to the grid. The original
grid-system setup (one point of the grid at the origin) is always calculated. It is the (0,0,0)
displacement. The block Grid.CellSampling gives the additional displacements wanted for
the sampling. They are given relative to the grid-cell vectors, i.e., (1,1,1) would displace to the
next grid point across the body diagonal, giving an equivalent grid-system situation (a useless
displacement for a sampling).
Examples: Assume a cubic cell, and therefore a (smaller) cubic grid cell. If there is no block or
the block is empty, then the original (0,0,0) will be used only. The block:

%block Grid.CellSampling
0.5 0.5 0.5

%endblock Grid.CellSampling

would use the body center as a second point in the sampling. Or:
%block Grid.CellSampling

0.5 0.5 0.0
0.5 0.0 0.5
0.0 0.5 0.5

%endblock Grid.CellSampling

gives an fcc kind of sampling, and
%block Grid.CellSampling

0.5 0.0 0.0
0.0 0.5 0.0
0.0 0.0 0.5
0.0 0.5 0.5
0.5 0.0 0.5
0.5 0.5 0.0
0.5 0.5 0.5

%endblock Grid.CellSampling

gives again a cubic sampling with half the original side length. It is not trivial to choose a
right set of displacements so as to maximize the new ’effective’ cutoff. It depends on the kind
of cell. It may be automatized in the future, but it is now left to the user, who introduces the
displacements manually through this block.
The quantities which are symmetrized are: (i) energy terms that depend on the grid, (ii) forces,
(iii) stress tensor, and (iv) electric dipole.
The symmetrization is performed at the end of every SCF cycle. The whole cycle is done for the
(0,0,0) displacement, and, when the density matrix is converged, the same (now fixed) density
matrix is used to obtain the desired quantities at the other displacements (the density matrix

78

itself is not symmetrized as it gives a much smaller egg-box effect). The CPU time needed for
each displacement in the Grid.CellSampling block is of the order of one extra SCF iteration.
This may be required in systems where very precise forces are needed, and/or if partial cores
are used. It is advantageous to test whether the forces are sampled sufficiently by sampling one
point.
Additionally this may be given as a list of 3 integers which corresponds to a “Monkhorst-Pack”
like grid sampling. I.e.

Grid.CellSampling [2 2 2]

is equivalent to
%block Grid.CellSampling

0.5 0.0 0.0
0.0 0.5 0.0
0.5 0.5 0.0
0.0 0.0 0.5
0.5 0.0 0.5
0.0 0.5 0.5
0.5 0.5 0.5

%endblock Grid.CellSampling

This is an easy method to see if the flag is important for your system or not.

%block EggboxRemove 〈None〉 (block)
For recovering translational invariance in an approximate way.
It works by substracting from Kohn-Sham’s total energy (and forces) an approximation to
the eggbox energy, sum of atomic contributions. Each atom has a predefined eggbox energy
depending on where it sits on the cell. This atomic contribution is species dependent and is
obviously invariant under grid-cell translations. Each species contribution is thus expanded in
the appropriate Fourier series. It is important to have a smooth eggbox, for it to be represented
by a few Fourier components. A jagged egg-box (unless very small, which is then unimportant)
is often an indication of a problem with the pseudo.
In the block there is one line per Fourier component. The first integer is for the atomic species
it is associated with. The other three represent the reciprocal lattice vector of the grid cell (in
units of the basis vectors of the reciprocal cell). The real number is the Fourier coefficient in
units of the energy scale given in EggboxScale (see below), normally 1 eV.
The number and choice of Fourier components is free, as well as their order in the block. One
can choose to correct only some species and not others if, for instance, there is a substantial
difference in hardness of the cores. The 0 0 0 components will add a species-dependent constant
energy per atom. It is thus irrelevant except if comparing total energies of different calculations,
in which case they have to be considered with care (for instance by putting them all to zero,
i.e. by not introducing them in the list). The other components average to zero representing
no bias in the total energy comparisons.
If the total energies of the free atoms are put as 0 0 0 coefficients (with spin polarisation if
adequate etc.) the corrected total energy will be the cohesive energy of the system (per unit
cell).
Example: For a two species system, this example would give a quite sufficent set in many
instances (the actual values of the Fourier coefficients are not realistic).

79

%block EggBoxRemove
1 0 0 0 -143.86904
1 0 0 1 0.00031
1 0 1 0 0.00016
1 0 1 1 -0.00015
1 1 0 0 0.00035
1 1 0 1 -0.00017
2 0 0 0 -270.81903
2 0 0 1 0.00015
2 0 1 0 0.00024
2 1 0 0 0.00035
2 1 0 1 -0.00077
2 1 1 0 -0.00075
2 1 1 1 -0.00002

%endblock EggBoxRemove

It represents an alternative to grid-cell sampling (above). It is only approximate, but once the
Fourier components for each species are given, it does not represent any computational effort
(neither memory nor time), while the grid-cell sampling requires CPU time (roughly one extra
SCF step per point every MD step).
It will be particularly helpful in atoms with substantial partial core or semicore electrons.
NOTE: This should only be used for fixed cell calculations, i.e. not with MD.VariableCell.
For the time being, it is up to the user to obtain the Fourier components to be intro-
duced. They can be obtained by moving one isolated atom through the cell to be used
in the calculation (for a give cell size, shape and mesh), once for each species. The
Util/Scripting/eggbox_checker.py script can be used as a starting point for this.

EggboxScale 1 eV (energy)
Defines the scale in which the Fourier components of the egg-box energy are given in the
EggboxRemove block.

6.11 Matrix elements of the Hamiltonian and overlap

NeglNonOverlapInt false (logical)
Logical variable to neglect or compute interactions between orbitals which do not overlap. These
come from the KB projectors. Neglecting them makes the Hamiltonian more sparse, and the
calculation faster.
NOTE: Use with care!

SCF.Write.Extra false (logical)
Instructs SIESTA to write out a variety of files with the Hamiltonian and density matrix.
The output depends on whether a Hamiltonian mixing or density matrix mixing is performed
(see SCF.Mixing).
These files are created

• H_MIXED; the Hamiltonian after mixing
• DM_OUT; the density matrix as calculated by the current iteration
• H_DMGEN; the Hamiltonian used to calculate the density matrix

80

• DM_MIXED; the density matrix after mixing

SaveHS true (logical)
Instructs to write the Hamiltonian and overlap matrices, as well as other data required to
generate bands and density of states, in file SystemLabel.HSX. The .HSX format is more compact
than the traditional .HS, and the Hamiltonian, overlap matrix, and relative-positions array
(which is always output, even for gamma-point only calculations) are in single precision.
The program hsx2hs in Util/HSX can be used to generate an old-style .HS file if needed.
SIESTA produces also an .HSX file if the COOP.Write option is active.
NOTE: Since 5.0 the SystemLabel.HSX file format has changed to reduce disk-space and store
data in double precision. This means that the file is not backward compatible and any external
utilities should adapt their SystemLabel.HSX file reading. See e.g. Util/HSX for details on the
new implementation.
See also the Write.DMHS.NetCDF and Write.DMHS.History.NetCDF options.

6.11.1 The auxiliary supercell

When using k-points, this auxiliary supercell is needed to compute properly the matrix elements
involving orbitals in different unit cells. It is computed automatically by the program at every
geometry step.
Note that for gamma-point-only calculations there is an implicit “folding” of matrix elements corre-
sponding to the images of orbitals outside the unit cell. If information about the specific values of
these matrix elements is needed (as for COOP/COHP analysis), one has to make sure that the unit
cell is large enough, or force the use of an aunxiliary supercell.

ForceAuxCell false (logical)
If true, the program uses an auxiliary cell even for gamma-point-only calculations. This might
be needed for COOP/COHP calculations, as noted above, or in degenerate cases, such as
when the cell is so small that a given orbital “self-interacts” with its own images (via direct
overlap or through a KB projector). In this case, the diagonal value of the overlap matrix
S for this orbital is different from 1, and an initialization of the DM via atomic data would
be faulty. The program corrects the problem to zeroth-order by dividing the DM value by the
corresponding overlap matrix entry, but the initial charge density would exhibit distortions from
a true atomic superposition (See routine m_new_dm.F). The distortion of the charge density is
a serious problem for Harris functional calculations, so this option must be enabled for them if
self-folding is present. (Note that this should not happen in any serious calculation...)

6.12 Calculation of the electronic structure

SIESTA can use three qualitatively different methods to determine the electronic structure of the
system. The first is standard diagonalization, which works for all systems and has a cubic scaling
with the size. The second is based on the direct minimization of a special functional over a set of
trial orbitals. These orbitals can either extend over the entire system, resulting in a cubic scaling
algorithm, or be constrained within a localization radius, resulting in a linear scaling algorithm. The
former is a recent implementation (described in 6.12.4), that can be viewed as an equivalent approach
to diagonalization in terms of the accuracy of the solution; the latter is the historical O(N) method

81

used by SIESTA (described in 6.12.5); it scales in principle linearly with the size of the system (only
if the size is larger than the radial cutoff for the local solution wave-functions), but is quite fragile
and substantially more difficult to use, and only works for systems with clearly separated occupied
and empty states. The default is to use diagonalization. The third method (PEXSI) is based on the
pole expansion of the Fermi-Dirac function and the direct computation of the density matrix via an
efficient scheme of selected inversion (see Sec 6.14).
The calculation of the H and S matrix elements is always done with an O(N) method. The actual
scaling is not linear for small systems, but it becomes O(N) when the system dimensions are larger
than the scale of orbital rc’s.
The relative importance of both parts of the computation (matrix elements and solution) depends on
the size and quality of the calculation. The mesh cutoff affects only the matrix-element calculation;
orbital cutoff radii affect the matrix elements and all solvers except diagonalization; the need for
k-point sampling affects the solvers only, and the number of basis orbitals affects them all.
In practice, the vast majority of users employ diagonalization (or the OMM method) for the cal-
culation of the electronic structure. This is so because the vast majority of calculations (done for
intermediate system sizes) would not benefit from the O(N) or PEXSI solvers.

SolutionMethod diagon (string)
Character string to choose among diagonalization (diagon), cubic-scaling minimization
(OMM), Order-N (OrderN) solution of the Kohn-Sham Hamiltonian, transiesta, the PEXSI
method (PEXSI) or the CheSS solver. In addition, the Dummy solver will just return a
slightly perturbed density-matrix without actually solving for the electronic structure. This is
useful for timing other routines.

6.12.1 Diagonalization options

NumberOfEigenStates 〈all orbitals〉 (integer)
depends on: Diag.Algorithm

This parameter allows the user to reduce the number of eigenstates that are calculated from
the maximum possible. The benefit is that, for any calculation, the cost of the diagonalization
is reduced by finding fewer eigenvalues/eigenvectors. For example, during a geometry optimisa-
tion, only the occupied states are required rather than the full set of virtual orbitals. Note, that
if the electronic temperature is greater than zero then the number of partially occupied states
increases, depending on the band gap. The value specified must be greater than the number of
occupied states and less than the number of basis functions.
If a negative number is passed it corresponds to the number of orbitals above the total charge
of the system. In effect it corresponds to the number of orbitals above the Fermi level for zero
temperature. I.e. if −2 is specified for a system with 20 orbitals and 10 electrons it is equivalent
to 12.
Using this option can greatly speed up your calculations if used correctly.
NOTE: If experiencing PDORMTR errors in Γ calculations with MRRR algorithm, it is because
of a buggy ScaLAPACK implementation, simply use another algorithm.
NOTE: This only affects the MRRR, ELPA and Expert diagonalization routines.

Diag.WFS.Cache none|cdf (string)
deprecates: UseNewDiagk

82

Specify whether SIESTA should cache wavefunctions in the diagonalization routine. Without
a cache, a standard two-pass procedure is used. First eigenvalues are obtained to determine the
Fermi level, and then the wavefunctions are computed to build the density matrix.
Using a cache one can do everything in one go. However, this requires substantial IO and
performance may vary.

none The wavefunctions will not be cached and the standard two-pass diagonalization method
is used.

cdf The wavefunctions are stored in WFS.nc (NetCDF format) and created from a single root
node. This requires NetCDF support, see Sec. 2.3.
NOTE: This is an experimental feature.
NOTE: It is not compatible with the Diag.ParallelOverK option.

Diag.Use2D true (logical)
Determine whether a 1D or 2D data decomposition should be used when calling ScaLAPACK.
The use of 2D leads to superior scaling on large numbers of processors and is therefore the
default. This option only influences the parallel performance.
If Diag.BlockSize is different from BlockSize this flag defaults to true, else if
Diag.ProcessorY is 1 or the total number of processors, then this flag will default to false.

Diag.ProcessorY ∼
√

N (integer)
depends on: Diag.Use2D

Set the number of processors in the 2D distribution along the rows. Its default is equal to the
lowest multiple of N (number of MPI cores) below

√
N such that, ideally, the distribution will

be a square grid.
The input is required to be a multiple of the total number of MPI cores but SIESTA will reduce
the input value such that it coincides with this.
Once the lowest multiple closest to

√
N, or the input, is determined the 2D distribution will be

ProcessorY ×N/ProcessorY, rows × columns.
NOTE: If the automatic correction (lowest multiple of MPI cores) is 1 the default of
Diag.Use2D will be false.

Diag.BlockSize 〈BlockSize〉 (integer)
depends on: Diag.Use2D

The block-size used for the 2D distribution in the ScaLAPACK calls. This number greatly
affects the performance of ScaLAPACK.
If the ScaLAPACK library is threaded this parameter should not be too small. In any case it
may be advantageous to run a few tests to find a suitable value.
NOTE: If Diag.Use2D is set to false this flag is not used.

Diag.Algorithm Divide-and-Conquer|... (string)
deprecates: Diag.DivideAndConquer, Diag.MRRR, Diag.ELPA, Diag.NoExpert

Select the algorithm when calculating the eigenvalues and/or eigenvectors.
The fastest routines are typically MRRR or ELPA which may be significantly faster by specifying
a suitable NumberOfEigenStates value.
Currently the implemented solvers are:

83

divide-and-Conquer Use the divide-and-conquer algorithm.

divide-and-Conquer-2stage Use the divide-and-conquer 2stage algorithm (fall-back to the
divide-and-conquer if not available).

MRRR depends on: NumberOfEigenStates

Use the multiple relatively robust algorithm.
NOTE: The MRRR method is defaulted not to be compiled in, however, if your ScaLAPACK
library does contain the relevant sources one may add this pre-processor flag -DSIESTA__MRRR.

MRRR-2stage depends on: NumberOfEigenStates

Use the 2-stage multiple relatively robust algorithm.
expert depends on: NumberOfEigenStates

Use the expert algorithm which allows calculating a subset of the eigenvalues/eigenvectors.

expert-2stage depends on: NumberOfEigenStates

Use the 2-stage expert algorithm which allows calculating a subset of the eigenval-
ues/eigenvectors.

noexpert|QR Use the QR algorithm.

noexpert-2stage|QR-2stage Use the 2-stage QR algorithm.

ELPA-1stage depends on: NumberOfEigenStates

Use the ELPA [1;10] 1-stage solver. Requires compilation of SIESTA with ELPA, see Sec. 2.3.
This option is not compatible with Diag.ParallelOverK. In addition, when using a GPU-
enabled version of ELPA it is important to verify that Diag.BlockSize is a power of 2; if
not, ELPA will only run on CPU.

ELPA|ELPA-2stage depends on: NumberOfEigenStates

Use the ELPA [1;10] 2-stage solver. Requires compilation of SIESTA with ELPA, see Sec. 2.3.
This option is not compatible with Diag.ParallelOverK. In addition, when using a GPU-
enabled version of ELPA it is important to verify that Diag.BlockSize is a power of 2; if
not, ELPA will only run on CPU.

NOTE: All the 2-stage solvers are (as of July 2017) only implemented in the LAPACK library,
so they will only be usable in serial or when using Diag.ParallelOverK.
If found by CMake in the LAPACK library, 2-stage solvers will be enabled automatically, by
setting the preprocessor variable

-DSIESTA__DIAG_2STAGE

Previous versions of SIESTA shipped a copy of the relevant LAPACK files, including the 2-
stage solvers. That might no longer be the case, and there is no direct support for compiling
those files with CMake.
NOTE: This flag has precedence over the deprecated flags: Diag.DivideAndConquer,
Diag.MRRR, Diag.ELPA and Diag.NoExpert. However, the default is taken from the
deprecated flags.

Diag.ELPA.GPU false (logical)

84

Newer versions of the ELPA library have optional support for GPUs. This flag will request that
GPU-specific code be used by the library.
To use this feature, GPU support has to be explicitly enabled during compilation of the ELPA
library. At present, detection of GPU support in the code is not fool-proof, so this flag should
only be enabled if GPU support is indeed available.

Diag.ELPA.GPU.String nvidia-gpu (string)
Newer versions of the ELPA library have optional support for GPUs. This string will be used
as the key to set the GPU feature in the ELPA interface.
Traditionally it was just “gpu”, but recent versions use “nvidia-gpu”, or “amd-gpu”,
etc. This setting can still be overridden by the value of the environment variable
SIESTA_ELPA_GPU_STRING. Its default value can be set at build time to match the char-
acteristics of the ELPA library and the host architecture, using the CMake variable
SIESTA_ELPA_GPU_STRING.

Diag.ParallelOverK false (logical)
For the diagonalization there is a choice in strategy about whether to parallelise over the k
points (true) or over the orbitals (false). k point diagonalization is close to perfectly parallel
but is only useful where the number of k points is much larger than the number of processors
and therefore orbital parallelisation is generally preferred. The exception is for metals where
the unit cell is small, but the number of k points to be sampled is very large. In this last case
it is recommend that this option be used.
NOTE: This scheme is not used for the diagonalizations involved in the generation of the band-
structure (as specified with BandLines or BandPoints) or in the generation of wave-function
information (as specified with WaveFuncKPoints). In these cases the program falls back to
using parallelization over orbitals.

Diag.AbsTol 10−16 (real)
The absolute tolerance for the orthogonality of the eigenvectors. This tolerance is only applicable
for the solvers:
expert for both the serial and parallel solvers.
mrrr for the serial solver.

Diag.OrFac 10−3 (real)
Re-orthogonalization factor to determine when the eigenvectors should be re-orthogonalized.
Only applicable for the expert serial and parallel solvers.

Diag.Memory 1 (real)
Whether the parallel diagonalization of a matrix is successful or not can depend on how much
workspace is available to the routine when there are clusters of eigenvalues. Diag.Memory
allows the user to increase the memory available, when necessary, to achieve successful diago-
nalization and is a scale factor relative to the minimum amount of memory that ScaLAPACK
might need.

Diag.UpperLower lower|upper (string)
Which part of the symmetric triangular part should be used in the solvers.
NOTE: Do not change this variable unless you are performing benchmarks. It should be fastest

85

with the lower part.

Deprecated diagonalization options

Diag.MRRR false (logical)
depends on: NumberOfEigenStates

Use the MRRR method in ScaLAPACK for diagonalization. Specifying a number of eigenvectors
to store is possible through the symbol NumberOfEigenStates (see above).
NOTE: The MRRR method is defaulted not to be compiled in, however, if your ScaLAPACK
library does contain the relevant sources one may add this pre-processor flag -DSIESTA__MRRR.
NOTE: Use Diag.Algorithm instead.

Diag.DivideAndConquer true (logical)
Logical to select whether the normal or Divide and Conquer algorithms are used within the
ScaLAPACK/LAPACK diagonalization routines.
NOTE: Use Diag.Algorithm instead.

Diag.ELPA false (logical)
depends on: NumberOfEigenStates

See the ELPA articles [1;10] for additional information.
NOTE: It is not compatible with the Diag.ParallelOverK option.
NOTE: Use Diag.Algorithm instead.

Diag.NoExpert false (logical)
Logical to select whether the simple or expert versions of the ScaLAPACK/LAPACK routines
are used. Usually the expert routines are faster, but may require slightly more memory.
NOTE: Use Diag.Algorithm instead.

6.12.2 Output of eigenvalues and wavefunctions

This section focuses on the output of eigenvalues and wavefunctions produced during the (last)
iteration of the self-consistent cycle, and associated to the appropriate k-point sampling.
For band-structure calculations (which typically use a different set of k-points) and specific requests
for wavefunctions, see Secs. 6.15 and 6.16, respectively.
The complete set of wavefunctions obtained during the last iteration of the SCF loop will be written
to a NetCDF file WFS.nc if the Diag.WFS.Cache cdf option is in effect.
The complete set of wavefunctions obtained during the last iteration of the SCF loop will be written
to SystemLabel.fullBZ.WFSX if the COOP.Write option is in effect.

WriteEigenvalues false (logical)
If true it writes the Hamiltonian eigenvalues for the sampling k⃗ points, in the main output
file. If false, it writes them in the file SystemLabel.EIG, which can be used by the Eig2DOS
postprocessing utility (in the Util/Eig2DOS directory) for obtaining the density of states.
NOTE: this option only works for SolutionMethod which calculates the eigenvalues.

86

6.12.3 Occupation of electronic states and Fermi level

OccupationFunction FD (string)
String variable to select the function that determines the occupation of the electronic states.
These options are available:

FD The usual Fermi-Dirac occupation function is used.

MP The occupation function proposed by Methfessel and Paxton (Phys. Rev. B, 40, 3616
(1989)), is used.

Cold The occupation function proposed by Marzari, Vanderbilt et. al (PRL, 82, 16 (1999)), is
used, this is commonly referred to as cold smearing.

The smearing of the electronic occupations is done, in all cases, using an energy width defined
by the ElectronicTemperature variable. Note that, while in the case of Fermi-Dirac, the
occupations correspond to the physical ones if the electronic temperature is set to the physical
temperature of the system, this is not the case in the Methfessel-Paxton function. In this
case, the tempeature is just a mathematical artifact to obtain a more accurate integration of
the physical quantities at a lower cost. In particular, the Methfessel-Paxton scheme has the
advantage that, even for quite large smearing temperatures, the obtained energy is very close
to the physical energy at T = 0. Also, it allows a much faster convergence with respect to
k-points, specially for metals. Finally, the convergence to selfconsistency is very much improved
(allowing the use of larger mixing coefficients).
For the Methfessel-Paxton case, and similarly for cold smearing, one can use relatively large
values for the ElectronicTemperature parameter. How large depends on the specific system.
A guide can be found in the article by J. Kresse and J. Furthmüller, Comp. Mat. Sci. 6, 15
(1996).
If Methfessel-Paxton smearing is used, the order of the corresponding Hermite polynomial ex-
pansion must also be chosen (see description of variable OccupationMPOrder).
We finally note that, in both cases (FD and MP), once a finite temperature has been chosen,
the relevant energy is not the Kohn-Sham energy, but the Free energy. In particular, the atomic
forces are derivatives of the Free energy, not the KS energy. See R. Wentzcovitch et al., Phys.
Rev. B 45, 11372 (1992); S. de Gironcoli, Phys. Rev. B 51, 6773 (1995); J. Kresse and J.
Furthmüller, Comp. Mat. Sci. 6, 15 (1996), for details.

OccupationMPOrder 1 (integer)
Order of the Hermite-Gauss polynomial expansion for the electronic occupation functions in
the Methfessel-Paxton scheme (see Phys. Rev. B 40, 3616 (1989)). Specially for metals,
higher order expansions provide better convergence to the ground state result, even with larger
smearing temperatures, and provide also better convergence with k-points.
NOTE: only used if OccupationFunction is MP.

ElectronicTemperature 300 K (temperature/energy)
Temperature for occupation function. Useful specially for metals, and to accelerate selfconsis-
tency in some cases.

87

6.12.4 Orbital minimization method (OMM)

The OMM is an alternative cubic-scaling solver that uses a minimization algorithm instead of direct
diagonalization to find the occupied subspace. The main advantage over diagonalization is the
possibility of iteratively reusing the solution from each SCF/MD step as the starting guess of the
following one, thus greatly reducing the time to solution. Typically, therefore, the first few SCF
cycles of the first MD step of a simulation will be slower than diagonalization, but the rest will be
faster. The main disadvantages are that individual Kohn-Sham eigenvalues are not computed, and
that only a fixed, integer number of electrons at each k point/spin is allowed. Therefore, only spin-
polarized calculations with Spin.Fix are allowed, and Spin.Total must be chosen appropriately.
For non-Γ point calculations, the number of electrons is set to be equal at all k points. Non-collinear
calculations (see Spin) are not supported at present. The OMM implementation was initially
developed by Fabiano Corsetti.
It is important to note that the OMM requires all occupied Kohn-Sham eigenvalues to be negative;
this can be achieved by applying a shift to the eigenspectrum, controlled by ON.eta (in this case,
ON.eta simply needs to be higher than the HOMO level). If the OMM exhibits a pathologically slow
or unstable convergence, this is almost certainly due to the fact that the default value of ON.eta
(0.0 eV) is too low, and should be raised by a few eV.

OMM.UseCholesky true (logical)
Select whether to perform a Cholesky factorization of the generalized eigenvalue problem; this
removes the overlap matrix from the problem but also destroys the sparsity of the Hamiltonian
matrix.

OMM.Use2D true (logical)
Select whether to use a 2D data decomposition of the matrices for parallel calculations. This
generally leads to superior scaling for large numbers of MPI processes.

OMM.UseSparse false (logical)
Select whether to make use of the sparsity of the Hamiltonian and overlap matrices where
possible when performing matrix-matrix multiplications (these operations are thus reduced from
O(N3) to O(N2) without loss of accuracy).
NOTE: not compatible with OMM.UseCholesky, OMM.Use2D, or non-Γ point calcula-
tions

OMM.Precon -1 (integer)
Number of SCF steps for all MD steps for which to apply a preconditioning scheme based on the
overlap and kinetic energy matrices; for negative values the preconditioning is always applied.
Preconditioning is usually essential for fast and accurate convergence (note, however, that it
is not needed if a Cholesky factorization is performed; in such cases this variable will have no
effect on the calculation).
NOTE: cannot be used with OMM.UseCholesky.

OMM.PreconFirstStep 〈OMM.Precon〉 (integer)
Number of SCF steps in the first MD step for which to apply the preconditioning scheme; if
present, this will overwrite the value given in OMM.Precon for the first MD step only.

OMM.Diagon 0 (integer)

88

Number of SCF steps for all MD steps for which to use a standard diagonalization before
switching to the OMM; for negative values diagonalization is always used, and so the calculation
is effectively equivalent to SolutionMethod diagon. In general, selecting the first few SCF
steps can speed up the calculation by removing the costly initial minimization (at present this
works best for Γ point calculations).

OMM.DiagonFirstStep 〈OMM.Diagon〉 (integer)
Number of SCF steps in the first MD step for which to use a standard diagonalization before
switching to the OMM; if present, this will overwrite the value given in OMM.Diagon for the
first MD step only.

OMM.BlockSize 〈BlockSize〉 (integer)
Blocksize used for distributing the elements of the matrix over MPI processes. Specifically, this
variable controls the dimension relating to the trial orbitals used in the minimization (equal to
the number of occupied states at each k point/spin); the equivalent variable for the dimension
relating to the underlying basis orbitals is controlled by BlockSize.

OMM.TPreconScale 10 Ry (energy)
Scale of the kinetic energy preconditioning (see C. K. Gan et al., Comput. Phys. Commun.
134, 33 (2001)). A smaller value indicates more aggressive kinetic energy preconditioning,
while an infinite value indicates no kinetic energy preconditioning. In general, the kinetic
energy preconditioning is much less important than the tensorial correction brought about by
the overlap matrix, and so this value will have fairly little impact on the overall performace of the
preconditioner; however, too aggressive kinetic energy preconditioning can have a detrimental
effect on performance and accuracy.

OMM.RelTol 10−9 (real)
Relative tolerance in the conjugate gradients minimization of the Kohn-Sham band energy (see
ON.Etol).

OMM.Eigenvalues false (logical)
Select whether to perform a diagonalization at the end of each MD step to obtain the Kohn-
Sham eigenvalues.

OMM.WriteCoeffs false (logical)
Select whether to write the coefficients of the solution orbitals to file at the end of each MD
step.

OMM.ReadCoeffs false (logical)
Select whether to read the coefficients of the solution orbitals from file at the beginning of
a new calculation. Useful for restarting an interrupted calculation, especially when used in
conjuction with DM.UseSaveDM. Note that the same number of MPI processes and values
of OMM.Use2D, OMM.BlockSize, and BlockSize must be used when restarting.

OMM.LongOutput false (logical)
Select whether to output detailed information of the conjugate gradients minimization for each
SCF step.

89

6.12.5 Order(N) calculations

The Ordern(N) subsystem is quite fragile and only works for systems with clearly separated occupied
and empty states. Note also that the option to compute the chemical potential automatically does
not yet work in parallel.
NOTE: Since it is used less often, bugs creeping into the O(N) solver have been more resilient than
in more popular bits of the code. Work is ongoing to clean and automate the O(N) process, to make
the solver more user-friendly and robust.

ON.functional Kim (string)
Choice of order-N minimization functionals:

Kim Functional of Kim, Mauri and Galli, PRB 52, 1640 (1995).

Ordejon-Mauri Functional of Ordejón et al, or Mauri et al, see PRB 51, 1456 (1995). The num-
ber of localized wave functions (LWFs) used must coincide with Nel/2 (unless spin polarized).
For the initial assignment of LWF centers to atoms, atoms with even number of electrons, n,
get n/2 LWFs. Odd atoms get (n + 1)/2 and (n − 1)/2 in an alternating sequence, ir order
of appearance (controlled by the input in the atomic coordinates block).

files Reads localized-function information from a file and chooses automatically the functional
to be used.

ON.MaxNumIter 1000 (integer)
Maximum number of iterations in the conjugate minimization of the electronic energy, in each
SCF cycle.

ON.Etol 10−8 (real)
Relative-energy tolerance in the conjugate minimization of the electronic energy. The mini-
mization finishes if 2(En − En−1)/(En + En−1) ≤ ON.Etol.

ON.eta 0 eV (energy)
Fermi level parameter of Kim et al.. This should be in the energy gap, and tuned to obtain the
correct number of electrons. If the calculation is spin polarised, then separate Fermi levels for
each spin can be specified.

ON.eta.alpha 0 eV (energy)
Fermi level parameter of Kim et al. for alpha spin electrons. This should be in the energy gap,
and tuned to obtain the correct number of electrons. Note that if the Fermi level is not specified
individually for each spin then the same global eta will be used.

ON.eta.beta 0 eV (energy)
Fermi level parameter of Kim et al. for beta spin electrons. This should be in the energy gap,
and tuned to obtain the correct number of electrons. Note that if the Fermi level is not specified
individually for each spin then the same global eta will be used.

ON.RcLWF 9.5 Bohr (length)
Localization redius for the Localized Wave Functions (LWF’s).

ON.ChemicalPotential false (logical)

90

Specifies whether to calculate an order-N estimate of the Chemical Potential, by the projection
method (Goedecker and Teter, PRB 51, 9455 (1995); Stephan, Drabold and Martin, PRB 58,
13472 (1998)). This is done by expanding the Fermi function (or density matrix) at a given
temperature, by means of Chebyshev polynomials, and imposing a real space truncation on
the density matrix. To obtain a realistic estimate, the temperature should be small enough
(typically, smaller than the energy gap), the localization range large enough (of the order of
the one you would use for the Localized Wannier Functions), and the order of the polynomial
expansion sufficiently large (how large depends on the temperature; typically, 50-100).
NOTE: this option does not work in parallel. An alternative is to obtain the approximate value
of the chemical potential using an initial diagonalization.

ON.ChemicalPotential.Use false (logical)
Specifies whether to use the calculated estimate of the Chemical Potential, instead of the pa-
rameter ON.eta for the order-N energy functional minimization. This is useful if you do not
know the position of the Fermi level, typically in the beginning of an order-N run.
NOTE: this overrides the value of ON.eta and ON.ChemicalPotential. Also, this option
does not work in parallel. An alternative is to obtain the approximate value of the chemical
potential using an initial diagonalization.

ON.ChemicalPotential.Rc 9.5 Bohr (length)
Defines the cutoff radius for the density matrix or Fermi operator in the calculation of the
estimate of the Chemical Potential.

ON.ChemicalPotential.Temperature 0.05 Ry (temperature/energy)
Defines the temperature to be used in the Fermi function expansion in the calculation of the
estimate of the Chemical Potential. To have an accurate results, this temperature should be
smaller than the gap of the system.

ON.ChemicalPotential.Order 100 (integer)
Order of the Chebishev expansion to calculate the estimate of the Chemical Potential.

ON.LowerMemory false (logical)
If true, then a slightly reduced memory algorithm is used in the 3-point line search during the
order N minimisation. Only affects parallel runs.

Output of localized wavefunctions At the end of each conjugate gradient minimization of
the energy functional, the LWF’s are stored on disk. These can be used as an input for the same
system in a restart, or in case something goes wrong. The LWF’s are stored in sparse form in file
SystemLabel.LWF
It is important to keep very good care of this file, since the first minimizations can take MANY
steps. Loosing them will mean performing the whole minimization again. It is also a good practice
to save it periodically during the simulation, in case a mid-run restart is necessary.

ON.UseSaveLWF false (logical)
Instructs to read the localized wave functions stored in file SystemLabel.LWF by a previous run.

91

6.13 The CheSS solver

The CheSS solver uses an expansion based on Chebyshev polynomials to calculate the density matrix,
thereby exploiting the sparsity of the overlap and Hamiltonian matrices. It works best for systems
exhibiting a finite HOMO-LUMO gap and a small spectral width.
CheSS exhibits a two level parallelization using MPI and OpenMP and can scale to many thousand
cores. It can be downloaded and installed freely from https://launchpad.net/chess.
See Sec. 2.3 for details on installing SIESTA with CheSS. Note that this is still an experimental
feature. Feedback is welcome.

6.13.1 Input parameters

Usually CheSS only requires little user input, as the default values for the input parameters work
in general quite well. Moreover CheSS has the capability to determine certain optimal values on
its own. The only input parameters which usually require some human action are the values of the
buffers required for the matrix multiplications to calculate the Chebyshev polynomials.

CheSS.Buffer.Kernel 4.0 Bohr (length)
Buffer for the density kernel within the CheSS calculation.

CheSS.Buffer.Mult 6.0 Bohr (length)
Buffer for the matrix vector multiplication within the CheSS calculation.

CheSS.Fscale 10−1 Ry (energy)
Initial guess for the error function decay length (will be adjusted automatically).

CheSS.FscaleLowerbound 10−2 Ry (energy)
Lower bound for the error function decay length.

CheSS.FscaleUpperbound 10−1 Ry (energy)
Upper bound for the error function decay length.

CheSS.evlowH −2.0 Ry (energy)
Initial guess for the lower bound of the eigenvalue spectrum of the Hamiltonian matrix, will be
adjusted automatically if chosen unproperly.

CheSS.evhighH 2.0 Ry (energy)
Initial guess for the upper bound of the eigenvalue spectrum of the Hamiltonian matrix, will be
adjusted automatically if chosen unproperly.

CheSS.evlowS 0.5 (real)
Initial guess for the lower bound of the eigenvalue spectrum of the overlap matrix, will be
adjusted automatically if chosen unproperly.

CheSS.evhighS 1.5 (real)
Initial guess for the upper bound of the eigenvalue spectrum of the overlap matrix, will be
adjusted automatically if chosen unproperly.

92

https://launchpad.net/chess

6.14 The PEXSI solver

The PEXSI solver is based on the combination of the pole expansion of the Fermi-Dirac function
and the computation of only a selected (sparse) subset of the elements of the matrices (H − zlS)−1

at each pole zl.
This solver can efficiently use the sparsity pattern of the Hamiltonian and overlap matrices generated
in SIESTA, and for large systems has a much lower computational complexity than that associated
with the matrix diagonalization procedure. It is also highly scalable.
The PEXSI technique can be used in this version of SIESTA to evaluate the electron density, free
energy, atomic forces, density of states and local density of states without computing any eigenvalue
or eigenvector of the Kohn-Sham Hamiltonian. It can achieve an accuracy fully comparable to that
obtained from a matrix diagonalization procedure for general systems, including metallic systems at
low temperature.
The current implementation of the PEXSI solver in SIESTA makes use of a full fine-grained-level
interface to the PEXSI library (http://pexsi.org), and can deal with (collinear) spin-polarization,
but it is still restricted to Γ-point calculations. Newer versions of SIESTA (in the Gitlab develop-
ment site) can use the current PEXSI library through the ELSI library interface, which offers some
more options, although not currently the density-of-states calculation.
The following is a brief description of the input-file parameters relevant to the workings of the
PEXSI solver. For more background, including a discussion of the conditions under which this
solver is competitive, the user is referred to the paper Lin et al. [9], and references therein.
The technology involved in the PEXSI solver can also be used to compute densities of states and
“local densities of states”. These features are documented in this section and also linked to in the
relevant general sections.

6.14.1 Pole handling

Note that the temperature for the Fermi-Dirac distribution which is pole-expanded is taken directly
from the ElectronicTemperature parameter (see Sec. 6.12.3).

PEXSI.NumPoles 40 (integer)
Effective number of poles used to expand the Fermi-Dirac function.
When using the pole-generation method used in this legacy interface (contour integral), the
allowed values for NumPoles are: 10, 20, 30, ..., 110, and 120. Typically 60 to 100 poles are
needed to get an accuracy comparable to diagonalization.

PEXSI.deltaE 3 Ry (energy)
In principle PEXSI.deltaE should be Emax−µ, where Emax is the largest eigenvalue for (H,S),
and µ is the chemical potential. However, due to the fast decay of the Fermi-Dirac function,
PEXSI.deltaE can often be chosen to be much lower. In practice we set the default to be 3
Ryd. This number should be set to be larger if the difference between Tr[H·DM] and Tr[S∗EDM]
(displayed in the output if PEXSI.Verbosity is at least 2) does not decrease with the increase
of the number of poles.

PEXSI.Gap 0 Ry (energy)

93

http://pexsi.org

Spectral gap. This can be set to be 0 in most cases.

6.14.2 Parallel environment and control options

MPI.Nprocs.SIESTA 〈total processors〉 (integer)
Specifies the number of MPI processes to be used in those parts of the program (such as
Hamiltonian setup and computation of forces) which are outside of the PEXSI solver itself.
This is needed in large-scale calculations, for which the number of processors that can be used
by the PEXSI solver is much higher than those needed by other parts of the code.
Note that when the PEXSI solver is not used, this parameter will simply reduce the number
of processors actually used by all parts of the program, leaving the rest idle for the whole
calculation. This will adversely affect the computing budget, so take care not to use this option
in that case.

PEXSI.NP-per-pole 4 (integer)
Number of MPI processes used to perform the PEXSI computations in one pole. If the total
number of MPI processes is smaller than this number times the number of poles (times the spin
multiplicity), the PEXSI library will compute appropriate groups of poles in sequence. The
minimum time to solution is achieved by increasing this parameter as much as it is reasonable
for parallel efficiency, and using enough MPI processes to allow complete parallelization over
poles. On the other hand, the minimum computational cost (in the sense of computing budget)
is obtained by using the minimum value of this parameter which is compatible with the mem-
ory footprint. The additional parallelization over poles will be irrelevant for cost, but it will
obviously affect the time to solution.
Internally, SIESTA computes the processor grid parameters nprow and npcol for the PEXSI
library, with nprow >= npcol, and as similar as possible. So it is best to choose PEXSI.NP-
per-pole as the product of two similar numbers.
NOTE: The total number of MPI processes must be divisible by PEXSI.NP-per-pole. In
case of spin-polarized calculations, the total number of MPI processes must be divisible by
PEXSI.NP-per-pole times 2.

PEXSI.Ordering 1 (integer)
For large matrices, symbolic factorization should be performed in parallel to reduce the wall
clock time. This can be done using ParMETIS/PT-Scotch by setting PEXSI.Ordering to
0. However, we have been experiencing some instability problem of the symbolic factorization
phase when ParMETIS/PT-Scotch is used. In such case, for relatively small matrices one can
either use the sequential METIS (PEXSI.Ordering = 1) or set PEXSI.NP-symbfact to 1.

PEXSI.NP-symbfact 1 (integer)
Number of MPI processes used to perform the symbolic factorizations needed in the PEXSI
procedure. A default value should be given to reduce the instability problem. From experience
so far setting this to be 1 is most stable, but going beyond 64 does not usually improve much.

PEXSI.Verbosity 1 (integer)
It determines the amount of information logged by the solver in different places. A value of zero
gives minimal information.

• In the files logPEXSI[0-9]+, the verbosity level is interpreted by the PEXSI library itself.

94

In the latest version, when PEXSI is compiled in RELEASE mode, only logPEXSI0 is
given in the output. This is because we have observed that simultaneous output for all
processors can have very significant cost for a large number of processors (>10000).

• In the SIESTA output file, a verbosity level of 1 and above will print lines (prefixed by &o)
indicating the various heuristics used at each scf step. A verbosity level of 2 and above
will print extra information.

The design of the output logging is still in flux.

6.14.3 Electron tolerance and the PEXSI solver

PEXSI.num-electron-tolerance 10−4 (real)
Tolerance in the number of electrons for the PEXSI solver. At each iteration of the solver, the
number of electrons is computed as the trace of the density matrix times the overlap matrix,
and compared with the total number of electrons in the system. This tolerance can be fixed,
or dynamically determined as a function of the degree of convergence of the self-consistent-field
loop.

PEXSI.num-electron-tolerance-lower-bound 10−2 (real)
See PEXSI.num-electron-tolerance-upper-bound.

PEXSI.num-electron-tolerance-upper-bound 0.5 (real)
The upper and lower bounds for the electron tolerance are used to dynamically change the
tolerance in the PEXSI solver, following the simple algorithm:

tolerance = Max(lower_bound,Min(dDmax, upper_bound))

The first scf step uses the upper bound of the tolerance range, and subsequent steps use pro-
gressively lower values, in correspondence with the convergence-monitoring variable dDmax.
NOTE: This simple update schedule tends to work quite well. There is an experimental
algorithm, documented only in the code itself, which allows a finer degree of control of the
tolerance update.

PEXSI.mu-max-iter 10 (integer)
Maximum number of iterations of the PEXSI solver. Note that in this implementation there is no
fallback procedure if the solver fails to converge in this number of iterations to the prescribed
tolerance. In this case, the resulting density matrix might still be re-normalized, and the
calculation able to continue, if the tolerance for non normalized DMs is not set too tight. For
example,

(true_no_electrons/no_electrons) - 1.0
DM.NormalizationTolerance 1.0e-3

will allow a 0.1% error in the number of electrons. For obvious reasons, this feature, which is
also useful in connection with the dynamic tolerance update, should not be abused.
If the parameters of the PEXSI solver are adjusted correctly (including a judicious use of
inertia-counting to refine the µ bracket), we should expect that the maximum number of solver
iterations needed is around 3

95

PEXSI.mu −0.6 Ry (energy)
The starting guess for the chemical potential for the PEXSI solver. Note that this value does not
affect the initial µ bracket for the inertia-count refinement, which is controlled by PEXSI.mu-
min and PEXSI.mu-max. After an inertia-count phase, µ will be reset, and further iterations
inherit this estimate, so this parameter is only relevant if there is no inertia-counting phase.

PEXSI.mu-pexsi-safeguard 0.05 Ry (energy)
NOTE: This feature has been deactivated for now. The condition for starting a new phase of
inertia-counting is that the Newton estimation falls outside the current bracket. The bracket is
expanded accordingly.
The PEXSI solver uses Newton’s method to update the estimate of µ. If the attempted change
in µ is larger than PEXSI.mu-pexsi-safeguard, the solver cycle is stopped and a fresh phase
of inertia-counting is started.

6.14.4 Inertia-counting

PEXSI.Inertia-Counts 3 (integer)
In a given scf step, the PEXSI procedure can optionally employ a µ bracket-refinement proce-
dure based on inertia-counting. Typically, this is used only in the first few scf steps, and this
parameter determines how many. If positive, inertia-counting will be performed for exactly that
number of scf steps. If negative, inertia-counting will be performed for at least that number of
scf steps, and then for as long as the scf cycle is not yet deemed to be near convergence (as
determined by the PEXSI.safe-dDmax-no-inertia parameter).
NOTE: Since it is cheaper to perform an inertia-count phase than to execute one iteration of
the solver, it pays to call the solver only when the µ bracket is sufficiently refined.

PEXSI.mu-min −1 Ry (energy)
The lower bound of the initial range for µ used in the inertia-count refinement. In runs with
multiple geometry iterations, it is used only for the very first scf iteration at the first geometry
step. Further iterations inherit possibly refined values of this parameter.

PEXSI.mu-max 0 Ry (energy)
The upper bound of the initial range for µ used in the inertia-count refinement. In runs with
multiple geometry iterations, it is used only for the very first scf iteration at the first geometry
step. Further iterations inherit possibly refined values of this parameter.

PEXSI.safe-dDmax-no-inertia 0.05 (real)
During the scf cycle, the variable conventionally called dDmax monitors how far the cycle is
from convergence. If PEXSI.Inertia-Counts is negative, an inertia-counting phase will be
performed in a given scf step for as long as dDmax is greater than PEXSI.safe-dDmax-no-
inertia.
NOTE: Even though dDmax represents historically how far from convergence the density-
matrix is, the same mechanism applies to other forms of mixing in which other magnitudes are
monitored for convergence (Hamiltonian, charge density...).

PEXSI.lateral-expansion-inertia 3 eV (energy)
If the correct µ is outside the bracket provided to the inertia-counting phase, the bracket is

96

expanded in the appropriate direction(s) by this amount.

PEXSI.Inertia-mu-tolerance 0.05 Ry (energy)
One of the criteria for early termination of the inertia-counting phase. The value of the estimated
µ (basically the center of the resulting brackets) is monitored, and the cycle stopped if its change
from one iteration to the next is below this parameter.

PEXSI.Inertia-max-iter 5 (integer)
Maximum number of inertia-count iterations per cycle.

PEXSI.Inertia-min-num-shifts 10 (integer)
Minimum number of sampling points for inertia counts.

PEXSI.Inertia-energy-width-tolerance 〈PEXSI.Inertia-mu-tolerance〉 (energy)
One of the criteria for early termination of the inertia-counting phase. The cycle stops if the
width of the resulting bracket is below this parameter.

6.14.5 Re-use of µ information accross iterations

This is an important issue, as the efficiency of the PEXSI procedure depends on how close a guess
of µ we have at our disposal. There are two types of information re-use:

• Bracketing information used in the inertia-counting phase.

• The values of µ itself for the solver.

PEXSI.safe-width-ic-bracket 4 eV (energy)
By default, the µ bracket used for the inertia-counting phase in scf steps other than the first is
taken as an interval of width PEXSI.safe-width-ic-bracket around the latest estimate of µ.

PEXSI.safe-dDmax-ef-inertia 0.1 (real)
The change in µ from one scf iteration to the next can be crudely estimated by assuming that
the change in the band structure energy (estimated as Tr∆HDM) is due to a rigid shift. When
the scf cycle is near convergence, this ∆µ can be used to estimate the new initial bracket for
the inertia-counting phase, rigidly shifting the output bracket from the previous scf step. The
cycle is assumed to be near convergence when the monitoring variable dDmax is smaller than
PEXSI.safe-dDmax-ef-inertia.
NOTE: Even though dDmax represents historically how far from convergence the density-
matrix is, the same mechanism applies to other forms of mixing in which other magnitudes are
monitored for convergence (Hamiltonian, charge density...).
NOTE: This criterion will lead in general to tighter brackets than the previous one, but oscil-
lations in H in the first few iterations might make it more dangerous. More information from
real use cases is needed to refine the heuristics in this area.

PEXSI.safe-dDmax-ef-solver 0.05 (real)
When the scf cycle is near convergence, the ∆µ estimated as above can be used to shift the
initial guess for µ for the PEXSI solver. The cycle is assumed to be near convergence when the
monitoring variable dDmax is smaller than PEXSI.safe-dDmax-ef-solver.

97

NOTE: Even though dDmax represents historically how far from convergence the density-
matrix is, the same mechanism applies to other forms of mixing in which other magnitudes are
monitored for convergence (Hamiltonian, charge density...).

PEXSI.safe-width-solver-bracket 4 eV (energy)
In all cases, a “safe” bracket around µ is provided even in direct calls to the PEXSI solver,
in case a fallback to executing internally a cycle of inertia-counting is needed. The size of the
bracket is given by PEXSI.safe-width-solver-bracket

6.14.6 Calculation of the density of states by inertia-counting

The cumulative or integrated density of states (INTDOS) can be easily obtained by inertia-counting,
which involves a factorization of H − σS for varying σ (see SIESTA-PEXSI paper). Apart from the
DOS-specific options below, the “ordering”, “symbolic factorization”, and “pole group size” (re-
interpreted as the number of MPI processes dealing with a given σ) options are honored.
The current version of the code generates a file with the energy-INTDOS information, PEXSI_INTDOS,
which can be later processed to generate the DOS by direct numerical differentiation, or a SIESTA-
style SystemLabel.EIG file (using the Util/PEXSI/intdos2eig program).

PEXSI.DOS false (logical)
Whether to compute the DOS (actually, the INTDOS — see above) using the PEXSI technology.

PEXSI.DOS.Emin −1 Ry (energy)
Lower bound of energy window to compute the DOS in.
See PEXSI.DOS.Ef.Reference.

PEXSI.DOS.Emax 1 Ry (energy)
Upper bound of energy window to compute the DOS in.
See PEXSI.DOS.Ef.Reference.

PEXSI.DOS.Ef.Reference true (logical)
If this flag is true, the bounds of the energy window (PEXSI.DOS.Emin and
PEXSI.DOS.Emax) are with respect to the Fermi level.

PEXSI.DOS.NPoints 200 (integer)
The number of points in the energy interval at which the DOS is computed. It is rounded up
to the nearest multiple of the number of available factorization groups, as the operations are
perfectly parallel and there will be no extra cost involved.

6.14.7 Calculation of the LDOS by selected-inversion

The local-density-of-states (LDOS) around a given reference energy ε, representing the contribution
to the charge density of the states with eigenvalues in the vicinity of ε, can be obtained formally by
a “one-pole expansion” with suitable broadening (see SIESTA-PEXSI paper).
Apart from the LDOS-specific options below, the “ordering”, “verbosity”, and “symbolic factoriza-
tion” options are honored.

98

The current version of the code generates a real-space grid file with extension SystemLabel.LDOS,
and (if netCDF is compiled-in) a file LDOS.grid.nc.
NOTE: The LDOS computed with this procedure is not exactly the same as the vanilla SIESTA
LDOS, which uses an explicit energy interval. Here the broadening acts around a single value of the
energy.

PEXSI.LDOS false (logical)
Whether to compute the LDOS using the PEXSI technology.
NOTE: this flag is not compatible with LocalDensityOfStates.

PEXSI.LDOS.Energy 0 Ry (energy)
The (absolute) energy at which to compute the LDOS.

PEXSI.LDOS.Broadening 0.01 Ry (energy)
The broadening parameter for the LDOS.

PEXSI.LDOS.NP-per-pole 〈PEXSI.NP-per-pole〉 (integer)
The value of this parameter supersedes PEXSI.NP-per-pole for the calculation of the LDOS,
which otherwise would keep idle all but PEXSI.NP-per-pole MPI processes, as it essentially
consists of a “one-pole” procedure.

6.15 Band-structure analysis

This calculation of the band structure is performed optionally after the geometry loop finishes, and
the output information written to the SystemLabel.bands file (see below for the format).

BandLinesScale pi/a (string)
Specifies the scale of the k vectors given in BandLines and BandPoints below. The options
are:

pi/a k-vector coordinates are given in Cartesian coordinates, in units of π/a, where a is the
lattice constant

ReciprocalLatticeVectors k vectors are given in reciprocal-lattice-vector coordinates

NOTE: you might need to define explicitly a LatticeConstant tag in your fdf file if you do not
already have one, and make it consistent with the scale of the k-points and any unit-cell vectors
you might have already defined.

%block BandLines 〈None〉 (block)
Specifies the lines along which band energies are calculated (usually along high-symmetry di-
rections). An example for an FCC lattice is:

%block BandLines
1 1.000 1.000 1.000 L # Begin at L

20 0.000 0.000 0.000 \Gamma # 20 points from L to gamma
25 2.000 0.000 0.000 X # 25 points from gamma to X
30 2.000 2.000 2.000 \Gamma # 30 points from X to gamma

%endblock BandLines

where the last column is an optional LATEX label for use in the band plot. If only given points

99

(not lines) are required, simply specify 1 in the first column of each line. The first column of
the first line must be always 1.
NOTE: this block is not used if BandPoints is present.

%block BandPoints 〈None〉 (block)
Band energies are calculated for the list of arbitrary k points given in the block. Units defined
by BandLinesScale as for BandLines. The generated SystemLabel.bands file will contain
the k point coordinates (in a.u.) and the corresponding band energies (in eV). Example:

%block BandPoints
0.000 0.000 0.000 # This is a comment. eg this is gamma
1.000 0.000 0.000
0.500 0.500 0.500

%endblock BandPoints

See also BandLines.

WriteKbands false (logical)
If true, it writes the coordinates of the k⃗ vectors defined for band plotting, to the main output
file.

WriteBands false (logical)
If true, it writes the Hamiltonian eigenvalues corresponding to the k⃗ vectors defined for band
plotting, in the main output file.

6.15.1 Format of the .bands file

FermiEnergy (all energies in eV) \\
kmin, kmax (along the k-lines path, i.e. range of k in the band plot) \\
Emin, Emax (range of all eigenvalues) \\
NumberOfBands, NumberOfSpins (1 or 2), NumberOfkPoints \\
k1, ((ek(iband,ispin,1),iband=1,NumberOfBands),ispin=1,NumberOfSpins) \\
k2, ek \\
. \\
. \\
. \\

klast, ek \\
NumberOfkLines \\
kAtBegOfLine1, kPointLabel \\
kAtEndOfLine1, kPointLabel \\

. \\

. \\

. \\
kAtEndOfLastLine, kPointLabel \\

The gnubands postprocessing utility program (found in the Util/Bands directory) reads the
SystemLabel.bands for plotting. See the BandLines data descriptor above for more information.

100

6.15.2 Output of wavefunctions associated to bands

The user can optionally request that the wavefunctions corresponding to the computed bands be
written to file. They are written to the SystemLabel.bands.WFSX file. The relevant options are:

WFS.Write.For.Bands false (logical)
Instructs the program to compute and write the wave functions associated to the bands specified
(by a BandLines or a BandPoints block) to the file SystemLabel.WFSX.
The information in this file might be useful, among other things, to generate “fatbands” plots,
in which both band eigenvalues and information about orbital projections is presented. See the
fat program in the Util/COOP directory for details.

WFS.Band.Min 1 (integer)
Specifies the lowest band index of the wave-functions to be written to the file SystemLabel.WFSX
for each k-point (all k-points in the band set are affected).

WFS.Band.Max number of orbitals (integer)
Specifies the highest band index of the wave-functions to be written to the file
SystemLabel.WFSX for each k-point (all k-points in the band set are affected).

6.16 Output of selected wavefunctions

The user can optionally request that specific wavefunctions are written to file. These wavefunctions
are re-computed after the geometry loop (if any) finishes, using the last (presumably converged)
density matrix produced during the last self-consistent field loop (after a final mixing). They are
written to the SystemLabel.selected.WFSX file.
Note that the complete set of wavefunctions obtained during the last iteration of the SCF loop will
be written to SystemLabel.fullBZ.WFSX if the COOP.Write option is in effect.
Note that the complete set of wavefunctions obtained during the last iteration of the SCF loop will
be written to a NetCDF file WFS.nc if the Diag.UseNewDiagk option is in effect.

WaveFuncKPointsScale pi/a (string)
Specifies the scale of the k vectors given in WaveFuncKPoints below. The options are:

pi/a k-vector coordinates are given in Cartesian coordinates, in units of π/a, where a is the
lattice constant

ReciprocalLatticeVectors k vectors are given in reciprocal-lattice-vector coordinates

%block WaveFuncKPoints 〈None〉 (block)
Specifies the k-points at which the electronic wavefunction coefficients are written. An example
for an FCC lattice is:

%block WaveFuncKPoints
0.000 0.000 0.000 from 1 to 10 # Gamma wavefuncs 1 to 10
2.000 0.000 0.000 1 3 5 # X wavefuncs 1,3 and 5
1.500 1.500 1.500 # K wavefuncs, all
%endblock WaveFuncKPoints

The index of a wavefunction is defined by its energy, so that the first one has lowest energy.

101

The user can also narrow the energy-range used with the WFS.Energy.Min and
WFS.Energy.Max options (both take an energy (with units) as extra argument – see sec-
tion 6.18.3). Care should be taken to make sure that the actual values of the options make
sense.
The output of the wavefunctions in described in Section 6.16.

WriteWaveFunctions false (logical)
If true, it writes to the output file a list of the wavefunctions actually written to the
SystemLabel.selected.WFSX file, which is always produced.

The unformatted WFSX file contains the information of the k-points for which wavefunctions coeffi-
cients are written, and the energies and coefficients of each wavefunction which was specified in the
input file (see WaveFuncKPoints descriptor above). It also contains information on the atomic
species and the orbitals for postprocessing purposes.
NOTE: The SystemLabel.WFSX file is in a more compact form than the old WFS, and the wave-
functions are output in single precision. The Util/WFS/wfsx2wfs program can be used to convert
to the old format.
The readwf and readwfsx postprocessing utilities programs (found in the Util/WFS directory) read
the SystemLabel.WFS or SystemLabel.WFSX files, respectively, and generate a readable file.

6.17 Density of states

6.17.1 Total density of states

There are several options to obtain the total density of states:

• The Hamiltonian eigenvalues for the SCF sampling k⃗ points can be dumped into
SystemLabel.EIG in a format analogous to SystemLabel.bands, but without the kmin, kmax,
emin, emax information, and without the abscissa. The Eig2DOS postprocessing utility can be
then used to obtain the density of states. See the WriteEigenvalues descriptor.

• As a side-product of a partial-density-of-states calculation (see below)

• As one of the files produced by the Util/COOP/mprop during the off-line analysis of the elec-
tronic structure. This method allows the flexibility of specifying energy ranges and resolutions
at will, without re-running SIESTA See Sec. 6.18.3.

• Using the inertia-counting routines in the PEXSI solver (see Sec. 6.14.6).

The k-point specification for the partial and local density of states calculations described in the
following two sections may optionally be given by

DOS.kgrid.? kgrid.?
The generic DOS k-grid specification.
See Sec. 6.5 for details. If any of DOS.kgrid.MonkhorstPack, DOS.kgrid.Cutoff or
DOS.kgrid.File is present, they will be used, otherwise fall back to the SCF k-point sam-
pling (kgrid.?).

102

NOTE: DOS.kgrid.? options are the default values for ProjectedDensityOfStates
and LocalDensityOfStates, but they do not affect the sampling used to generate the
SystemLabel.EIG file. This feature might be implemented in a later version.

6.17.2 Partial (projected) density of states

There are two options to obtain the partial density of states

• Using the options below

• Using the Util/COOP/mprop program for the off-line analysis of the electronic structure in
PDOS mode. This method allows the flexibility of specifying energy ranges, orbitals, and
resolutions at will, without re-running SIESTA. See Sec. 6.18.3.

%block ProjectedDensityOfStates 〈None〉 (block)
Instructs to write the Total Density Of States (Total DOS) and the Projected Density Of
States (PDOS) on the basis orbitals, between two given energies, in files SystemLabel.DOS and
SystemLabel.PDOS, respectively. The block must be a single line with the energies of the range
for PDOS projection, (relative to the program’s zero, i.e. the same as the eigenvalues printed by
the program), the peak width (an energy) for broadening the eigenvalues, the number of points
in the energy window, and the energy units. An example is:

%block ProjectedDensityOfStates
-20.00 10.00 0.200 500 eV

%endblock ProjectedDensityOfStates

Optionally one may start the line with EF as this:
%block ProjectedDensityOfStates

EF -20.00 10.00 0.200 500 eV
%endblock ProjectedDensityOfStates

This specifies the energies with respect to the Fermi-level.
The broadening of the states is the Gaussian distribution with the peak width being w:

f(E) = 1
w
√

π
exp

[
−

(
E − ϵ

w

)2
]

, (14)

where ϵ is the eigenvalue of the state. Note that the peak width is equivalent to σ
√

2 = w, with
σ being the standard deviation.
By default the projected density of states is generated for the same grid of points in reciprocal
space as used for the SCF calculation. However, a separate set of K-points, usually on a finer
grid, can be generated by using PDOS.kgrid.? Note that if a gamma point calculation is being
used in the SCF part, especially as part of a geometry optimisation, and this is then to be run
with a grid of K-points for the PDOS calculation it is more efficient to run the SCF phase first
and then restart to perform the PDOS evaluation using the density matrix saved from the SCF
phase.
NOTE: the two energies of the range must be ordered, with lowest first.
The total DOS is stored in a file called SystemLabel.DOS. The format of this file is:

Energy value, Total DOS (spin up), Total DOS (spin down)

103

The Projected Density Of States for all the orbitals in the unit cell is dumped sequentially into
a file called SystemLabel.PDOS. This file is structured using spacing and xml tags. A machine-
readable (but not very human readable) xml file SystemLabel.PDOS.xml is also produced.
Both can be processed by the program in Util/pdosxml. The SystemLabel.PDOS file can be
processed by utilites in Util/Contrib/APostnikov.
In all cases, the units for the DOS are (number of states/eV), and the Total DOS, g(ϵ), is
normalized as follows: ∫ ∞

−∞
g(ϵ)dϵ = number of basis orbitals in unit cell (15)

PDOS.kgrid.? 〈DOS.kgrid.?〉
This is PDOS only specification for the k-points. I.e. if one wishes to use a specific k-point
sampling. These options are equivalent to the kgrid.Cutoff , kgrid.MonkhorstPack and
kgrid.File options. Refer to them for additional details.
If PDOS.kgrid.? does not exist, then DOS.kgrid.? is checked, and if that does not exist
then kgrid.? options are used.

6.17.3 Local density of states

The LDOS is formally the DOS weighted by the amplitude of the corresponding wavefunctions at
different points in space, and is then a function of energy and position. SIESTA can output the
LDOS integrated over a range of energies. This information can be used to obtain simple STM
images in the Tersoff-Hamann approximation (See Util/STM/simple-stm).

%block LocalDensityOfStates 〈None〉 (block)
Instructs to write the LDOS, integrated between two given energies, at the mesh used by
DHSCF, in file SystemLabel.LDOS. This file can be read by routine IORHO, which may be
used by an application program in later versions. The block must be a single line with the
energies of the range for LDOS integration (relative to the program’s zero, i.e. the same as the
eigenvalues printed by the program) and their units. An example is:

%block LocalDensityOfStates
-3.50 0.00 eV

%endblock LocalDensityOfStates

One may optionally write EF as the first word to specify that the energies are with respect to
the Fermi level

%block LocalDensityOfStates
EF -3.50 0.00 eV

%endblock LocalDensityOfStates

would calculate the LDOS from −3.5 eV below the Fermi-level up to the Fermi-level.
One may use LDOS.kgrid.? to fine-tune the k-point sampling in the LDOS calculation.
NOTE: the two energies of the range must be ordered, with lowest first.
NOTE: this flag is not compatible with PEXSI.LDOS.
If netCDF support is compiled in, the file LDOS.grid.nc is produced.

LDOS.kgrid.? 〈DOS.kgrid.?〉

104

This is LDOS only specification for the k-points. I.e. if one wishes to use a specific k-point
sampling. These options are equivalent to the kgrid.Cutoff , kgrid.MonkhorstPack and
kgrid.File options. Refer to them for additional details.
If LDOS.kgrid.? does not exist, then DOS.kgrid.? is checked, if that does not exist then
kgrid.? are used.

6.18 Options for chemical analysis

6.18.1 Mulliken charges and overlap populations

WriteMullikenPop 0 (integer)
It determines the level of Mulliken analysis performed. This uses the density-matrix (which by
definition contains information integrated up to the Fermi level) and the overlap matrix. Values
accepted are:

0 none

1 Prints the atomic and orbital charges.

2 In addition to the Mulliken charges, it prints the Mulliken overlap populations, grouped by
atom.

3 In addition to the Mulliken charges, and the atom-grouped overlaps, it prints the overlaps
orbital by orbital (this can be quite verbose).

The order of the orbitals in the population lists is defined by the order of atoms. For each atom,
populations for PAO orbitals and double-z, triple-z, etc... derived from them are displayed
first for all the angular momenta. Then, populations for perturbative polarization orbitals are
written. Within a l-shell be aware that the order is not conventional, being y, z, x for p orbitals,
and xy, yz, z2, xz, and x2 − y2 for d orbitals.
Mulliken charges are sometimes used to estimate the “net charge” on an atom, which is an
ill-defined concept to begin with. In addition, this method gives results that depend on the
basis set used. For alternative ways to estimate the atomic charges, see 6.18.2 on Voronoi and
Hirshfeld charges.
Atom-based Mulliken overlaps are useful to estimate the level of chemical interaction among
two atoms.
For a finer analysis of the chemical bonding, it is advised to employ the COOP/COHP curves
(see 6.18.3).

MullikenInSCF false (logical)
If true, the Mulliken analysis will be carried out for every SCF step at the level of detail specified
in WriteMullikenPop. Useful when dealing with SCF problems, otherwise too verbose.

SpinInSCF true (logical)
If true, the size and components of the (total) spin polarization will be printed at every SCF
step. This is analogous to the MullikenInSCF feature. Enabled by default for calculations
involving spin.

105

6.18.2 Voronoi and Hirshfeld atomic population analysis

Write.HirshfeldPop false (logical)
If true, the program calculates and prints the Hirshfeld “net” atomic populations on each atom
in the system. For a definition of the Hirshfeld charges, see Hirshfeld, Theo Chem Acta 44,
129 (1977) and Fonseca et al, J. Comp. Chem. 25, 189 (2003). Hirshfeld charges are more
reliable than Mulliken charges, specially for large basis sets. Value (dQatom) is the total net
charge of the atom: the variation from the neutral charge, in units of |e|: positive (negative)
values indicate deficiency (excess) of electrons in the atom.
The output (here shown for a non-collinear calculation) looks like this:

Hirshfeld Atomic Populations:
Atom # dQatom Atom pop S Sx Sy Sz Species

1 0.01003 7.98997 3.04744 0.18550 0.00000 3.04179 fe_nc
2 -0.02008 8.02008 1.41240 1.41240 0.00000 -0.00000 fe_nc
3 0.01003 7.98997 3.04744 0.18550 0.00000 -3.04179 fe_nc

Total 1.78340 1.78340 0.00000 0.00000

Where the column dQatom is the net atomic charge as noted above. Column Atom pop is the
number of electrons on the atom (comparable to Mulliken charges). Columns S, Sx, Sy and Sz
are the accumulated spin components for the atom.

Write.VoronoiPop false (logical)
If true, the program calculates and prints the Voronoi “net” atomic populations on each atom
in the system. For a definition of the Voronoi charges, see Bickelhaupt et al, Organometallics
15, 2923 (1996) and Fonseca et al, J. Comp. Chem. 25, 189 (2003). Voronoi charges are more
reliable than Mulliken charges, specially for large basis sets. Value (dQatom) is the total net
charge of the atom: the variation from the neutral charge, in units of |e|: positive (negative)
values indicate deficiency (excess) of electrons in the atom.
See Write.HirshfeldPop for detailed output explanation.

The Hirshfeld and Voronoi populations (partial charges) are computed by default only at the end of
the program (i.e., for the final geometry, after self-consistency). The following options allow more
control:

PartialChargesAtEveryGeometry false (logical)
The Hirshfeld and Voronoi populations are computed after self-consistency is achieved, for all
the geometry steps.

PartialChargesAtEverySCFStep false (logical)
The Hirshfeld and Voronoi populations are computed for every step of the self-consistency
process.

Performance note: The default behavior (computing at the end of the program) involves an extra
calculation of the charge density.

106

6.18.3 Crystal-Orbital overlap and hamilton populations (COOP/COHP)

These curves are quite useful to analyze the electronic structure to get insight about bonding charac-
teristics. See the Util/COOP directory for more details. The COOP.Write option must be activated
to get the information needed.
References:

• Original COOP reference: Hughbanks, T.; Hoffmann, R., J. Am. Chem. Soc., 1983, 105, 3528.

• Original COHP reference: Dronskowski, R.; Blöchl, P. E., J. Phys. Chem., 1993, 97, 8617.

• A tutorial introduction: Dronskowski, R. Computational Chemistry of Solid State Materials;
Wiley-VCH: Weinheim, 2005.

• Online material maintained by R. Dronskowski’s group: http://www.cohp.de/

COOP.Write false (logical)
Instructs the program to generate SystemLabel.fullBZ.WFSX (packed wavefunction file) and
SystemLabel.HSX (H, S and X_ ij file), to be processed by Util/COOP/mprop to generate
COOP/COHP curves, (projected) densities of states, etc.
The .WFSX file is in a more compact form than the usual .WFS, and the wavefunctions are output
in single precision. The Util/wfsx2wfs program can be used to convert to the old format. The
HSX file is in a more compact form than the usual HS, and the Hamiltonian, overlap matrix,
and relative-positions array (which is always output, even for gamma-point only calculations)
are in single precision.
The user can narrow the energy-range used (and save some file space) by using the
WFS.Energy.Min and WFS.Energy.Max options (both take an energy (with units) as
extra argument), and/or the WFS.Band.Min and WFS.Band.Max options. Care should
be taken to make sure that the actual values of the options make sense.
Note that the band range options could also affect the output of wave-functions associated to
bands (see section 6.15.2), and that the energy range options could also affect the output of
user-selected wave-functions with the WaveFuncKPoints block (see section 6.16).

WFS.Energy.Min −∞ (energy)
Specifies the lowest value of the energy (eigenvalue) of the wave-functions to be written to the
file SystemLabel.fullBZ.WFSX for each k-point (all k-points in the BZ sampling are affected).

WFS.Energy.Max ∞ (energy)
Specifies the highest value of the energy (eigenvalue) of the wave-functions to be written to the
file SystemLabel.fullBZ.WFSX for each k-point (all k-points in the BZ sampling are affected).

6.19 Optical properties

OpticalCalculation false (logical)
If specified, the imaginary part of the dielectric function will be calculated and stored in a file
called SystemLabel.EPSIMG. The calculation is performed using the simplest approach based
on the dipolar transition matrix elements between different eigenfunctions of the self-consistent
Hamiltonian. For molecules the calculation is performed using the position operator matrix

107

http://www.cohp.de/

elements, while for solids the calculation is carried out in the momentum space formulation.
Corrections due to the non-locality of the pseudopotentials are introduced in the usual way.

Optical.Energy.Minimum 0 Ry (energy)
This specifies the minimum of the energy range in which the frequency spectrum will be calcu-
lated.

Optical.Energy.Maximum 10 Ry (energy)
This specifies the maximum of the energy range in which the frequency spectrum will be calcu-
lated.

Optical.Broaden 0 Ry (energy)
If this is value is set then a Gaussian broadening will be applied to the frequency values.

Optical.Scissor 0 Ry (energy)
Because of the tendency of DFT calculations to under estimate the band gap, a rigid shift of the
unoccupied states, known as the scissor operator, can be added to correct the gap and thereby
improve the calculated results. This shift is only applied to the optical calculation and no where
else within the calculation.

Optical.NumberOfBands all bands (integer)
This option controls the number of bands that are included in the optical property calculation.
Clearly this number must be larger than the number of occupied bands and less than or equal
to the number of basis functions (which determines the number of unoccupied bands available).
Note, while including all the bands may be the most accurate choice this will also be the most
expensive!

%block Optical.Mesh 〈None〉 (block)
This block contains 3 numbers that determine the mesh size used for the integration across the
Brillouin zone. For example:

%block Optical.Mesh
5 5 5

%endblock Optical.Mesh

The three values represent the number of mesh points in the direction of each reciprocal lattice
vector.

Optical.OffsetMesh false (logical)
If set to true, then the mesh is offset away from the gamma point for odd numbers of points.

Optical.PolarizationType polycrystal (string)
This option has three possible values that represent the type of polarization to be used in the
calculation. The options are

polarized implies the application of an electric field in a given direction

unpolarized implies the propagation of light in a given direction

polycrystal In the case of the first two options a direction in space must be specified for the
electric field or propagation using the Optical.Vector data block.

108

%block Optical.Vector 〈None〉 (block)
This block contains 3 numbers that specify the vector direction for either the electric field or
light propagation, for a polarized or unpolarized calculation, respectively. A typical block might
look like:

%block Optical.Vector
1.0 0.0 0.5

%endblock Optical.Vector

6.20 Macroscopic polarization

%block PolarizationGrids 〈None〉 (block)
If specified, the macroscopic polarization will be calculated using the geometric Berry phase
approach (R.D. King-Smith, and D. Vanderbilt, PRB 47, 1651 (1993)). In this method the
electronic contribution to the macroscopic polarization, along a given direction, is calculated
using a discretized version of the formula

Pe,∥ = ifqe

8π3

∫
A

dk⊥

M∑
n=1

∫ |G∥|

0
dk∥⟨ukn|

δ

δk∥
|ukn⟩ (16)

where f is the occupation (2 for a non-magnetic system), qe the electron charge, M is the
number of occupied bands (the system must be an insulator), and ukn are the periodic Bloch
functions. G∥ is the shortest reciprocal vector along the chosen direction.
As it can be seen in formula (16), to compute each component of the polarization we must
perform a surface integration of the result of a 1-D integral in the selected direction. The grids
for the calculation along the direction of each of the three lattice vectors are specified in the
block PolarizationGrids.

%block PolarizationGrids
10 3 4 yes
2 20 2 no
4 4 15

%endblock PolarizationGrids

All three grids must be specified, therefore a 3 × 3 matrix of integer numbers must be given:
the first row specifies the grid that will be used to calculate the polarization along the direction
of the first lattice vector, the second row will be used for the calculation along the the direction
of the second lattice vector, and the third row for the third lattice vector. The numbers in
the diagonal of the matrix specifie the number of points to be used in the one dimensional
line integrals along the different directions. The other numbers specifie the mesh used in the
surface integrals. The last column specifies if the bidimensional grids are going to be diplaced
from the origin or not, as in the Monkhorst-Pack algorithm (PRB 13, 5188 (1976)). This last
column is optional. If the number of points in one of the grids is zero, the calculation will not
be performed for this particular direction.
For example, in the given example, for the computation in the direction of the first lattice
vector, 15 points will be used for the line integrals, while a 3 × 4 mesh will be used for the
surface integration. This last grid will be displaced from the origin, so Γ will not be included
in the bidimensional integral. For the directions of the second and third lattice vectors, the
number of points will be 20 and 2× 2, and 15 and 4× 4, respectively.

109

It has to be stressed that the macroscopic polarization can only be meaningfully calculated
using this approach for insulators. Therefore, the presence of an energy gap is necessary, and
no band can cross the Fermi level. The program performs a simple check of this condition, just
by counting the electrons in the unit cell (the number must be even for a non-magnetic system,
and the total spin polarization must have an integer value for spin polarized systems), however
is the responsability of the user to check that the system under study is actually an insulator
(for both spin components if spin polarized).
The total macroscopic polarization, given in the output of the program, is the sum of the
electronic contribution (calculated as the Berry phase of the valence bands), and the ionic con-
tribution, which is simply defined as the sum of the atomic positions within the unit cell multiply
by the ionic charges (

∑Na
i Ziri). In the case of the magnetic systems, the bulk polarization for

each spin component has been defined as

Pσ = Pσ
e + 1

2

Na∑
i

Ziri (17)

Na is the number of atoms in the unit cell, and ri and Zi are the positions and charges of the
ions.
It is also worth noting, that the macroscopic polarization given by formula (16) is only defined
modulo a “quantum” of polarization (the bulk polarization per unit cell is only well defined
modulo fqeR, being R an arbitrary lattice vector). However, the experimentally observable
quantities are associated to changes in the polarization induced by changes on the atomic
positions (dynamical charges), strains (piezoelectric tensor), etc... The calculation of those
changes, between different configurations of the solid, will be well defined as long as they are
smaller than the “quantum”, i.e. the perturbations are small enough to create small changes in
the polarization.

BornCharge false (logical)
If true, the Born effective charge tensor is calculated for each atom by finite differences, by
calculating the change in electric polarization (see PolarizationGrids) induced by the small
displacements generated for the force constants calculation (see MD.TypeOfRun FC):

Z∗
i,α,β = Ω0

e

∂Pα

∂ui,β

∣∣∣∣∣
q=0

(18)

where e is the charge of an electron and Ω0 is the unit cell volume.
To calculate the Born charges it is necessary to specify both the Born charge flag and the mesh
used to calculate the polarization, for example:

%block PolarizationGrids
7 3 3
3 7 3
3 3 7

%endblock PolarizationGrids
BornCharge True

The Born effective charge matrix is then written to the file SystemLabel.BC.
The method by which the polarization is calculated may introduce an arbitrary phase (polar-
ization quantum), which in general is far larger than the change in polarization which results

110

from the atomic displacement. It is removed during the calculation of the Born effective charge
tensor.
The Born effective charges allow the calculation of LO-TO splittings and infrared activities. The
version of the Vibra utility code in which these magnitudes are calculated is not yet distributed
with SIESTA, but can be obtained form Tom Archer (archert@tcd.ie).

6.21 Maximally Localized Wannier Functions.
Interface with the wannier90 code

wannier90 (http://www.wannier.org) is a code to generate maximally localized wannier functions
according to the original Marzari and Vanderbilt recipe.
A wrapper interface between siesta and wannier90 (version 3.1.0) has been implemented, so that
wannier90 can be called from siesta on-the-fly, as well as used as a post-processing tool.
It is strongly recommended to read the original papers on which this method is based and the
documentation of wannier90 code. Here we shall focus only on those internal SIESTA variables
required to produce the files that will be processed by wannier90.

6.21.1 wannier90 as a postprocessing tool

This interface is analogous to that found in other programs. The user first runs wannier90 in pre-
processing mode to get a .nnkp file. Then SIESTA is run with the appropriate options to generate
the files needed by a wannierization run with wannier90.
A complete list of examples and tests (including molecules, metals, semiconductors, insulators,
magnetic systems, plotting of Fermi surfaces or interpolation of bands), can be downloaded from
http://personales.unican.es/junqueraj/Wannier-examples.tar.gz

NOTE: The Bloch functions produced by a first-principles code have arbitrary phases that depend
on the number of processors used and other possibly non-reproducible details of the calculation. In
what follows it is essential to maintain consistency in the handling of the overlap and Bloch-function
files produced and fed to wannier90.

Siesta2Wannier90.WriteMmn false (logical)
This flag determines whether the overlaps between the periodic part of the Bloch states at
neighbour k-points are computed and dumped into a file in the format required by wannier90.
These overlaps are defined in Eq. (27) in the paper by N. Marzari et al., Review of Modern
Physics 84, 1419 (2012), or Eq. (1.7) of the Wannier90 User Guide, Version 2.0.1.
The k-points for which the overlaps will be computed are read from a .nnkp file produced by
wannier90. It is strongly recommended for the user to read the corresponding user guide.
The overlap matrices are written in a file with extension .mmn.

Siesta2Wannier90.WriteAmn false (logical)
This flag determines whether the overlaps between Bloch states and trial localized orbitals are
computed and dumped into a file in the format required by wannier90. These projections are
defined in Eq. (16) in the paper by N. Marzari et al., Review of Modern Physics 84, 1419
(2012), or Eq. (1.8) of the Wannier90 User Guide, Version 2.0.1.

111

http://www.wannier.org
http://personales.unican.es/junqueraj/Wannier-examples.tar.gz

The localized trial functions to use are taken from the .nnkp file produced by wannier90. It is
strongly recommended for the user to read the corresponding user guide.
The overlap matrices are written in a file with extension .amn.

Siesta2Wannier90.WriteEig false (logical)
Flag that determines whether the Kohn-Sham eigenvalues (in eV) at each point in the
Monkhorst-Pack mesh required by wannier90 are written to file. This file is mandatory in
wannier90 if any of disentanglement, plot_bands, plot_fermi_surface or hr_plot options are
set to true in the wannier90 input file.
The eigenvalues are written in a file with extension .eigW. This extension is chosen to avoid
name clashes with SIESTA’s standard eigenvalue file in case-insensitive filesystems.

Siesta2Wannier90.WriteUnk false (logical)
Produces UNKXXXXX.Y files which contain the periodic part of a Bloch function in the unit cell
on a grid given by global unk_nx, unk_ny, unk_nz variables. The name of the output files is
assumed to have the previous form, where the XXXXXX refer to the k-point index (from 00001 to
the total number of k-points considered), and the Y refers to the spin component (1 or 2)
The periodic part of the Bloch functions is defined by

u
nk⃗

(r⃗) =
∑
R⃗ µ

cnµ(k⃗)eik⃗·(r⃗µ+R⃗ −r⃗)ϕµ(r⃗ − r⃗µ − R⃗), (19)

where ϕµ(r⃗ − r⃗µ − R⃗) is a basis set atomic orbital centered on atom µ in the unit cell R⃗, and
cnµ(k⃗) are the coefficients of the wave function. The latter must be identical to the ones used
for wannierization in Mmn. (See the above comment about arbitrary phases.)

Siesta2Wannier90.UnkGrid1 〈mesh points along A〉 (integer)
Number of points along the first lattice vector in the grid where the periodic part of the wave
functions will be plotted.

Siesta2Wannier90.UnkGrid2 〈mesh points along B〉 (integer)
Number of points along the second lattice vector in the grid where the periodic part of the wave
functions will be plotted.

Siesta2Wannier90.UnkGrid3 〈mesh points along C〉 (integer)
Number of points along the third lattice vector in the grid where the periodic part of the wave
functions will be plotted.

Siesta2Wannier90.UnkGridBinary true (logical)
Flag that determines whether the periodic part of the wave function in the real space grid is
written in binary format (default) or in ASCII format.

Siesta2Wannier90.NumberOfBands occupied bands (integer)
In spin unpolarized calculations, number of bands that will be initially considered by SIESTA
to generate the information required by wannier90. Note that it should be at least as large
as the index of the highest-lying band in the wannier90 post-processing. For example, if the
wannierization is going to involve bands 3 to 5, the SIESTA number of bands should be at
least 5. Bands 1 and 2 should appear in a “excluded” list.

112

NOTE: you are highly encouraged to explicitly specify the number of bands.

Siesta2Wannier90.NumberOfBandsUp 〈Siesta2Wannier90.NumberOfBands〉
(integer)
In spin-polarized calculations, number of bands with spin up that will be initially considered
by SIESTA to generate the information required by wannier90.

Siesta2Wannier90.NumberOfBandsDown 〈Siesta2Wannier90.NumberOfBands〉
(integer)
In spin-polarized calculations, number of bands with spin down that will be initially considered
by SIESTA to generate the information required by wannier90.

6.21.2 wannier90 called on-the-fly within siesta

A wrapper interface to wannier90 can be compiled and called directly from siesta. This presents
several advantages:

• No need to prepare two different input files.

• No need to run wannier90 in pre-processing mode.

• We can use the basis set of siesta (numerical atomic orbitals) as the initial guess for the
projections.

• Wannierization of different manifolds can be done in the same run of siesta.

• The unitary matrices connecting the Bloch and the Wannier representations are available
within siesta.

• The coefficients of the Wannier functions in the basis of the atomic orbitals of the supercell in
siesta are written in a file with SystemLabel.WANNX extension. Then, the Wannier functions
can be plotted using denchar, following the same method as for the wave functions.

Further details of the compilation of SIESTA with this functionality can be found
in the file External/Wannier/README.md. Note also the (slightly outdated) presen-
tation https://personales.unican.es/junqueraj/JavierJunquera_files/Metodos/Wannier/
Exercise-Wannier90-within-siesta.pdf

%block Wannier.Manifolds 〈None〉 (block)
Each line denotes the name of a manifold to be processed by Wannier90.
Options for each manifold is specified in the Wannier.Manifold.<>

%block Wannier.Manifold.<> 〈None〉 (block)
Each line represents a setting for the Wannier manifold to be processed.

bands Two integers specifying the initial and final band of the manifold to be wannierized.
NOTE: required input

113

https://personales.unican.es/junqueraj/JavierJunquera_files/Metodos/Wannier/Exercise-Wannier90-within-siesta.pdf
https://personales.unican.es/junqueraj/JavierJunquera_files/Metodos/Wannier/Exercise-Wannier90-within-siesta.pdf

trial-orbitals Indices of the orbitals that will be used as localized trial orbitals in the first step of
the minimization of the spreading. The user has to specify the same number of atomic orbitals
as the number of Wannier functions required. For the sake of readiness, the number of trial
orbitals can be split in several lines, all of them starting with [trial-orbitals]. These indices
can be found by inspection of the SystemLabel.ORB_INDX file. If there are negative integers
in this line, then the projectors will be generated à-la-Wannier90, with the instructions given
in the WannierProjectors block.
If there are negative numbers, it is not strictly required that they must appear after the list
of positive indices.
NOTE: required input

spreading.nitt Number of iterations that wannier90 will carry out to minimize the spreading.
If zero, then the procedure is the same as a Löwdin orthonormalization. In such a case, the
resulting Wannier function will keep the symmetry of the trial projection function, but it will
not be maximally localized.

wannier-plot Instructs wannier90 to produce the files required to plot the Wannier functions (if
w90.in.siesta.compute.unk is set to true). The integer refers to the size of the supercell for
plotting the Wannier functions (see the variable wannier.plot.supercell in the wannier90
User’s Guide). This will produce files with the .xsf extension, that can be directly plotted
with xcrysden.

fermi-surface-plot Is the file required to plot the Fermi surface computed? If true, this will
produce files with the .bxsf extension, that can be directly plotted with xcrysden.

write-hr Is the file with the Hamiltonian in real space in a basis of Wannier functions written?
If true, this will produce files with the _hr.dat extension.

write-tb Is the file with the tight-binding parameters in a basis of Wannier functions written?
(this includes the lattice vectors, Hamiltonian in real space, and position operator in a basis
of Wannier functions. If true, this will produce files with the _tb.dat extension.

write-unk Are the files that contain the periodic part of a Bloch function in the unit cell on
a grid computed? If true, files like those described in Siesta2Wannier90.WriteUnk are
written for this manifold, and then the corresponding .xsf files directly readable by xcrysden
will be produced. The computation of the UNK files might be rather expensive. To plot
the shape of the Wannier functions, the expansion of the Wannier functions in the basis of
Numerical Atomic Orbitals to produce .WFSX files, and the subsequent use of denchar is
recommended.
If a disentanglement procedure is required two extra lines are mandatory:

window It refers to the bottom and top of the outer energy window for band disentanglement.
The units for the energy are introduced as the last character string of the line.

window.frozen It refers to the bottom and top of the inner energy window for band disentan-
glement. The units for the energy are introduced as the last character string of the line. This
is the energy window where some Bloch states are forced to be preserved identically in the
projected manifold.

threshold Specification of the threshold for the real part of the coefficients of a Wannier in a
basis of NAO that will be written in a SystemLabel.WANNX extension file. This file can be

114

used to plot the Wannier functions using denchar, following the same method as for the wave
functions. This threshold is particularized for a particular manifold.

An example of a manifold:
%block Wannier.Manifold.second

bands 21 23
trial-orbitals [24 25 27]
spreading.nitt 0
wannier_plot 3
fermi_surface_plot true
write_hr true
write_tb true

%endblock

%block Wannier.Projectors 〈projection functions as in wannier90〉 (block)
Information on the projection functions à-la-wannier90, used to construct the initial guesses
for the unitary transformations.
These are used when some of the atomic orbitals in the trial-orbitals lines of the block Wan-
nier.Manifold.<> are negative.
For instance, to specify the projectors for the bottom of the conduction band of bulk SrTiO3,
we can write a block Wannier.Manifold.<> as

%block Wannier.Manifold.example
Indices of the initial and final band of the manifold
bands 21 23
Number of bands for Wannier transformation
trial-orbitals -1 -2 -3
spreading.nitt 0 # Number of iterations for the minimization of \Omega
wannier-plot 3 # Plot the Wannier function
fermi-surface-plot # Plot the Fermi surface
write-hr # Write the Hamiltonian in the WF basis
write-tb # Write lattice vectors, Hamiltonian, and position operator in WF basis

%endblock

Then, the three projector functions that will be generated following the recipe of wannier90
will be

%block Wannier.Projectors.example
0.5 0.5 0.5 2 2 1 0.00 0.00 1.00 1.00 0.00 0.00 1.00
0.5 0.5 0.5 2 3 1 0.00 0.00 1.00 1.00 0.00 0.00 1.00
0.5 0.5 0.5 2 5 1 0.00 0.00 1.00 1.00 0.00 0.00 1.00

%endblock

The different lines in this block are written following the wannier90 format provided in the
.nnkp file.
centre: three real numbers; projection function centre in crystallographic co-ordinates relative
to the direct lattice vectors.
l mr r: three integers; l and mr specify the angular part Θlmr (θ, φ), and r specifies the radial
part Rr(r) of the projection function (see Tables 3.1, 3.2 and 3.3 of the wannier90 User’s Guide).
z-axis: three real numbers; default is 0.0 0.0 1.0; defines the axis from which the polar angle θ
in spherical polar coordinates is measured.

115

x-axis: three real numbers; must be orthogonal to z-axis default is 1.0 0.0 0.0 or a vector
perpendicular to z-axis if z-axis is given; defines the axis from with the azimuthal angle φ in
spherical polar coordinates is measured.
zona: real number; the value of Z

a associated with the radial part of the atomic orbital. Units
are in reciprocal Angstrom.

Wannier.Manifolds.Threshold 10−6 (real)
Global specification of the threshold for the real part of the coefficients of a Wannier in a basis
of NAO that will be written in a SystemLabel.WANNX extension file. This file can be used to
plot the Wannier functions using denchar, following the same method as for the wave functions.
Individual manifolds can be controlled via Wannier.Manifold.<>.threshold

Wannier.Manifolds.Unk false (logical)
Global flag that determines whether the periodic part of the wave function in the real space
grid will be computed (as using Siesta2Wannier90.WriteUnk), and whether the files xsf directly
readable by xcrysden will be produced.
Individual manifolds can be controlled via Wannier.Manifold.<>.write-unk.
The computation of the UNK files might be rather expensive. To plot the shape of the Wannier
functions, the expansion of the Wannier functions in the basis of Numerical Atomic Orbitals to
produce SystemLabel.WFSX files, and the subsequent use of denchar is recommended.

Wannier.k Γ-point (list/block)
Dimension of the Monkhorst-Pack grid of k-points that will be used during the wannierization.
The overlap matrices between periodic parts of the wavefunctions at neighbour k-points in this
grid will be computed.

Wannier.k [4 4 4]
Or equivalently
%block Wannier.k

4 4 4
%endblock

6.22 Systems with net charge or dipole, and electric fields

NetCharge 0 (real)
Specify the net charge of the system (in units of |e|). For charged systems, the energy converges
very slowly versus cell size. For molecules or atoms, a Madelung correction term is applied to
the energy to make it converge much faster with cell size (this is done only if the cell is SC, FCC
or BCC). For other cells, or for periodic systems (chains, slabs or bulk), this energy correction
term can not be applied, and the user is warned by the program. It is not advised to do charged
systems other than atoms and molecules in SC, FCC or BCC cells, unless you know what you
are doing.
Use: For example, the F− ion would have NetCharge -1 , and the Na+ ion would have
NetCharge 1. Fractional charges can also be used.
NOTE: Doing non-neutral charge calculations with Slab.DipoleCorrection is discouraged.

SimulateDoping false (logical)
This option instructs the program to add a background charge density to simulate doping.

116

The new “doping” routine calculates the net charge of the system, and adds a compensating
background charge that makes the system neutral. This background charge is constant at points
of the mesh near the atoms, and zero at points far from the atoms. This simulates situations
like doped slabs, where the extra electrons (holes) are compensated by opposite charges at
the material (the ionized dopant impurities), but not at the vacuum. This serves to simulate
properly doped systems in which there are large portions of vacuum, such as doped slabs.
See Tests/sic-slab.

%block ExternalElectricField 〈None〉 (block)
It specifies an external electric field for molecules, chains and slabs. The electric field should be
orthogonal to “bulk directions”, like those parallel to a slab (bulk electric fields, like in dielectrics
or ferroelectrics, are not allowed). If it is not, an error message is issued and the components
of the field in bulk directions are suppressed automatically. The input is a vector in Cartesian
coordinates, in the specified units. Example:

%block ExternalElectricField
0.000 0.000 0.500 V/Ang

%endblock ExternalElectricField

Starting with version 4.0, applying an electric field perpendicular to a slab will by default enable
the slab dipole correction, see Slab.DipoleCorrection. To reproduce older calculations, set
this correction option explicitly to false in the input file.
When examining a variety of electric fields it may be highly advantageous to re-use the
SystemLabel.DM from a previous calculation with an electric field close to the current one.

Slab.DipoleCorrection ?|true|false|charge|vacuum|none (string)
depends on: ExternalElectricField

If not false, SIESTA calculates the electric field required to compensate the dipole of the
system at every iteration of the self-consistent cycle.
The dipole correction only works for Fourier transformed Poisson solutions of the Hartree poten-
tial since that will introduce a compensating field in the vacuum region to counter any inherent
dipole in the system. Do not use this option together with NetCharge (charged systems).
There are two ways of calculating the dipole of the system:

charge|true The dipole of the system is calculated via

D = −e

∫
(r− r0)δρ(r) (20)

where r0 is the dipole origin, see Slab.DipoleCorrection.Origin, and δρ is valence pseu-
docharge density minus the atomic valence pseudocharge densities.

vacuum The electric field of the system is calculated via

E ∝
∫∫

dr⊥DV (r)
∣∣∣∣
rvacuum

(21)

where rvacuum is a point located in the vacuum region, see Slab.DipoleCorrection.Vacuum.
Once the field is determined it is converted to an intrinsic system dipole.
This feature is mainly intended for Geometry.Charge calcula-
tions where Slab.DipoleCorrection charge may fail if the dipole center is determined
incorrectly.

117

For regular systems both this and charge should yield approximately (down to numeric
precision) the same dipole moments.

The dipole correction should exactly compensate the electric field at the vacuum level thus
allowing one to treat asymmetric slabs (including systems with an adsorbate on one surface)
and compute properties such as the work funcion of each of the surfaces.
NOTE: If the program is fed a starting density matrix from an uncorrected calculation (i.e.,
with an exagerated dipole), the first iteration might use a compensating field that is too big,
with the risk of taking the system out of the convergence basin. In that case, it is advisable to
use the SCF.Mix.First option to request a mix of the input and output density matrices after
that first iteration.
NOTE: charge and vacuum will for many systems yield the same result. If in doubt try both
and see which one gives the best result.
See Tests/sic-slab, Tests/h2o_2_dipol_gate.
This will default to true if an external field is applied to a slab calculation, otherwise it will
default to false.

%block Slab.DipoleCorrection.Origin 〈None〉 (block)
depends on: Slab.DipoleCorrection charge

Specify the origin of the dipole in the calculation of the dipole from the charge distribution.
Its format is

%block Slab.DipoleCorrection.Origin
0.000 10.000 0.500 Ang

%endblock

If this block is not specified the origin of the dipole will be the average position of the atoms.
NOTE: this will only be read if Slab.DipoleCorrection charge is used. NOTE: this should
only affect calculations with Geometry.Charge due to the non-trivial dipole origin, see e.g.
Tests/h2o_2_dipol_gate and try and see if you can manually place the dipole origin to achieve
similar results as the vacuum method.

%block Slab.DipoleCorrection.Vacuum 〈None〉 (block)
depends on: Slab.DipoleCorrection vacuum

Options for the vacuum field determination.

direction Mandatory input for chain and molecule calculations.
Specify along which direction we should determine the electric field/dipole.
For slabs this defaults to the non-bulk direction.

position Specify a point in the vacuum region.
Defaults to the vacuum region based on the atomic coordinates.

tolerance Tolerance for determining whether we are in a vacuum region. The premise of the
electric field calculation in the vacuum region is that the derivative of the potential (E) is
flat. When the electric field changes by more than this tolerance the region is not vacuum
anymore and the point is disregarded.
Defaults to 10−4 eV/Ang/e.

Its format is

118

%block Slab.DipoleCorrection.Vacuum
this is optional
default position is the center of system + 0.5 lattice vector
along ’direction’
position 0.000 10.000 0.500 Ang
this is optional
default is 1e-4 eV/Ang/e
tolerance 0.001 eV/Ang/e
this is mandatory
direction 0.000 1.000 0.

%endblock

NOTE: this will only be read if Slab.DipoleCorrection vacuum is used.

%block Geometry.Hartree 〈None〉 (block)
Allows introduction of regions with changed Hartree potential. Introducing a potential can act
as a repulsion (positive value) or attraction (negative value) region.
The regions are defined as geometrical objects and there are no limits to the number of defined
geometries.
Details regarding this implementation may be found in Papior et al. [12].
Currently 4 different kinds of geometries are allowed:

Infinite plane Define a geometry by an infinite plane which cuts the unit-cell.
This geometry is defined by a single point which is in the plane and a vector normal to the
plane.
This geometry has 3 different settings:

delta An infinite plane with δ-height.

gauss An infinite plane with a Gaussian distributed height profile.

exp An infinite plane with an exponentially distributed height profile.

Bounded plane Define a geometric plane which is bounded, i.e. not infinite.
This geometry is defined by an origo of the bounded plane and two vectors which span the
plane, both originating in the respective origo.
This geometry has 3 different settings:

delta A plane with δ-height.

gauss A plane with a Gaussian distributed height profile.

exp A plane with an exponentially distributed height profile.

Box This geometry is defined by an origo of the box and three vectors which span the box, all
originating from the respective origo.
This geometry has 1 setting:

delta No decay-region outside the box.

Spheres This geometry is defined by a list of spheres and a common radii.
This geometry has 2 settings:

gauss All spheres have an gaussian distribution about their centre.

exp All spheres have an exponential decay.

119

Here is a list of all options combined in one block:
%block Geometry.Hartree
plane 1. eV # The lifting potential on the geometry

delta
1.0 1.0 1.0 Ang # An intersection point, in the plane
1.0 0.5 0.2 # The normal vector to the plane

plane -1. eV # The lifting potential on the geometry
gauss 1. 2. Ang # the std. and the cut-off length
1.0 1.0 1.0 Ang # An intersection point, in the plane
1.0 0.5 0.2 # The normal vector to the plane

plane 1. eV # The lifting potential on the geometry
exp 1. 2. Ang # the half-length and the cut-off length
1.0 1.0 1.0 Ang # An intersection point, in the plane
1.0 0.5 0.2 # The normal vector to the plane

square 1. eV # The lifting potential on the geometry
delta
1.0 1.0 1.0 Ang # The starting point of the square
2.0 0.5 0.2 Ang # The first spanning vector
0.0 2.5 0.2 Ang # The second spanning vector

square 1. eV # The lifting potential on the geometry
gauss 1. 2. Ang # the std. and the cut-off length
1.0 1.0 1.0 Ang # The starting point of the square
2.0 0.5 0.2 Ang # The first spanning vector
0.0 2.5 0.2 Ang # The second spanning vector

square 1. eV # The lifting potential on the geometry
exp 1. 2. Ang # the half-length and the cut-off length
1.0 1.0 1.0 Ang # The starting point of the square
2.0 0.5 0.2 Ang # The first spanning vector
0.0 2.5 0.2 Ang # The second spanning vector

box 1. eV # The lifting potential on the geometry
delta
1.0 1.0 1.0 Ang # Origo of the box
2.0 0.5 0.2 Ang # The first spanning vector
0.0 2.5 0.2 Ang # The second spanning vector
0.0 0.5 3.2 Ang # The third spanning vector

coords 1. eV # The lifting potential on the geometry
gauss 2. 4. Ang # First is std. deviation, second is cut-off radii

2 spheres # How many spheres in the following lines
0.0 4. 2. Ang # The centre coordinate of 1. sphere
1.3 4. 2. Ang # The centre coordinate of 2. sphere

coords 1. eV # The lifting potential on the geometry
exp 2. 4. Ang # First is half-length, second is cut-off radii

2 spheres # How many spheres in the following lines
0.0 4. 2. Ang # The centre coordinate of 1. sphere
1.3 4. 2. Ang # The centre coordinate of 2. sphere

%endblock Geometry.Hartree

%block Geometry.Charge 〈None〉 (block)
This is similar to the Geometry.Hartree block. However, instead of specifying a potential,
one defines the total charge that is spread on the geometry.
To see how the input should be formatted, see Geometry.Hartree and remove the unit-
specification. Note that the input value is number of electrons (similar to NetCharge, however

120

this method ensures charge-neutrality).
Details regarding this implementation may be found in Papior et al. [12].

6.22.1 Bulk current

SIESTA enables a crude way of calculating a bulk current. The basic principle may be understood
from basic condensed matter physics by filling all right-moving states up to EF + V/2 and emptying
all left-moving states down to EF − V/2 (for a positively defined V).
When using this method the resulting eigenvalue spectrum in SystemLabel.EIG contains the shifted
eigenvalues corresponding to whether they are left/right movers.
The occupation function for left/right movers uses that provided in OccupationFunction.

BulkBias.Voltage 0. eV (energy)
depends on: BulkBias.Direction, Diag.ParallelOverK, TimeReversalSymmetryForKpoints

The applied bias shift in the band-structure. All right-moving states will be shifted halve this
value down in energy (more filled), while all left-moving states will be shifted halve this value
up in energy (less filled).
Since states are filled differently close to the Fermi level it is imperative that the k-point sampling
is very high to discretize the integration around the Fermi level sufficiently.
NOTE: this requires Diag.ParallelOverK to be set to true, and TimeReversalSymme-
tryForKpoints to be set to false.

%block BulkBias.Direction 〈None〉 (block)
depends on: BulkBias.Tolerance

The direction in which the electrons are moving. All electrons having velocities with a pos-
itive projection onto this direction are considered “right-movers” while all having a negative
projection are considered “left-movers”:

p = v · V̂, (22)

where v is the band velocity and V̂ is the bias unit vector.
An example of a direction pointing along the diagonal xy direction. Internally the direction will
be normalized.

%block BulkBias.Direction
1. 1. 0.

%endblock

BulkBias.Tolerance 10−15 (real)
The tolerance used for determining whether the velocity projection is positive or negative. States
with projections below this tolerance value will not be shifted.
This value may be regarded as the velocity in atomic units and thus having a larger value will
only shift eigenstates with higher velocities projected onto the potential-direction. The current
value corresponds roughly to a velocity of 1 · 10−11 Ang/ps.

BulkBias.Current true (logical)
Calculate and print out the bulk-bias current during each SCF and also correct the total energy

121

with respect to the applied bias. The calculated current is given by the expression:

pk,i = vk,i · V̂ (23)

I(V) = 2e

Ω
∑

i

∫
dk pk,iΘ(pk,i)

[
nF (ϵk,i − V/2)− nF (ϵk,i + V/2)

]
, (24)

where vk,i is the velocity of the ith eigenstate at k, V̂ is the velocity unit vector describing the
direction of the field. Θ(x) is the heaviside step function. Finally Ω is the Brillouin zone volume
which depends on the dimensionality of the system:

1D Ω has unit length, and the resulting current is in A,
2D Ω has unit area, and the resulting current is A/Å,
3D Ω has unit volume, and the resulting current is A/Å2.

The factor 2 comes from spin degeneracy and is neglected in polarized and non-colinear calcu-
lations.
When this is true the free energy will be corrected with the following:

EbV = −V/2(q+ − q−), (25)

where q+/− refer to the charges positively/negatively along the applied bias. If this option is
false SIESTA cannot calculate the energy correction and EbV = 0. Users are encouraged to
have this to true but may for parameter searches turn this off to speed up calculations.
For non-colinear calculations the spin-alignment of the current is also calculated.
NOTE: there is a slight performance penalty of calculating the current in the SCF. It requires
the calculation of the velocities one more time, however, it should be a relatively small overhead.

6.23 Output of charge densities and potentials on the grid

SIESTA represents these magnitudes on the real-space grid. The following options control the gen-
eration of the appropriate files, which can be processed by the programs in the Util/Grid directory,
and also by Andrei Postnikov’s utilities in Util/Contrib/APostnikov. See also Util/Denchar for
an alternative way to plot the charge density (and wavefunctions).

SaveRho false (logical)
Instructs to write the valence pseudocharge density at the mesh used by DHSCF, in file
SystemLabel.RHO.
NOTE: file .RHO is only written, not read, by siesta. This file can be read by routine IORHO,
which may be used by other application programs.
If netCDF support is compiled in, the file Rho.grid.nc is produced.

SaveDeltaRho false (logical)
Instructs to write δρ(r⃗) = ρ(r⃗)− ρatm(r⃗), i.e., the valence pseudocharge density minus the sum
of atomic valence pseudocharge densities. It is done for the mesh points used by DHSCF and it
comes in file SystemLabel.DRHO. This file can be read by routine IORHO, which may be used
by an application program in later versions.
NOTE: file .DRHO is only written, not read, by siesta.
If netCDF support is compiled in, the file DeltaRho.grid.nc is produced.

122

SaveRhoXC false (logical)
Instructs to write the valence pseudocharge density at the mesh, including the nonlocal core
corrections used to calculate the exchange-correlation energy, in file SystemLabel.RHOXC.
Use: File .RHOXC is only written, not read, by siesta.
If netCDF support is compiled in, the file RhoXC.grid.nc is produced.

SaveElectrostaticPotential false (logical)
Instructs to write the total electrostatic potential, defined as the sum of the hartree potential
plus the local pseudopotential, at the mesh used by DHSCF, in file SystemLabel.VH. This file
can be read by routine IORHO, which may be used by an application program in later versions.
Use: File .VH is only written, not read, by siesta.
If netCDF support is compiled in, the file ElectrostaticPotential.grid.nc is produced.

SaveNeutralAtomPotential false (logical)
Instructs to write the neutral-atom potential, defined as the sum of the hartree potential of a
“pseudo atomic valence charge” plus the local pseudopotential, at the mesh used by DHSCF,
in file SystemLabel.VNA. It is written at the start of the self-consistency cycle, as this potential
does not change.
Use: File .VNA is only written, not read, by siesta.
If netCDF support is compiled in, the file Vna.grid.nc is produced.

SaveTotalPotential false (logical)
Instructs to write the valence total effective local potential (local pseudopotential + Hartree +
Vxc), at the mesh used by DHSCF, in file SystemLabel.VT. This file can be read by routine
IORHO, which may be used by an application program in later versions.
Use: File .VT is only written, not read, by siesta.
If netCDF support is compiled in, the file TotalPotential.grid.nc is produced.
NOTE: a side effect; the vacuum level, defined as the effective potential at grid points with
zero density, is printed in the standard output whenever such points exist (molecules, slabs) and
either SaveElectrostaticPotential or SaveTotalPotential are true. In a symetric (nonpo-
lar) slab, the work function can be computed as the difference between the vacuum level and
the Fermi energy.

SaveIonicCharge false (logical)
Instructs to write the soft diffuse ionic charge at the mesh used by DHSCF, in file
SystemLabel.IOCH. This file can be read by routine IORHO, which may be used by an ap-
plication program in later versions. Remember that, within the SIESTA sign convention, the
electron charge density is positive and the ionic charge density is negative.
Use: File .IOCH is only written, not read, by siesta.
If netCDF support is compiled in, the file Chlocal.grid.nc is produced.

SaveTotalCharge false (logical)
Instructs to write the total charge density (ionic+electronic) at the mesh used by DHSCF, in
file SystemLabel.TOCH. This file can be read by routine IORHO, which may be used by an
application program in later versions. Remember that, within the SIESTA sign convention,
the electron charge density is positive and the ionic charge density is negative.

123

Use: File .TOCH is only written, not read, by siesta.
If netCDF support is compiled in, the file TotalCharge.grid.nc is produced.

SaveGridFunc.Format binary (string)
Format of the (requested)
output files SystemLabel.RHO, SystemLabel.DRHO, SystemLabel.RHOXC, SystemLabel.VH,
SystemLabel.VNA, SystemLabel.VT, SystemLabel.IOCH, and SystemLabel.TOCH. The options
are

• ascii : ASCII text format
• binary : unformatted (machine dependent)

NOTE: ASCII files require much more space than binary and NetCDF files. Consider using
the tools in Util/Grid to translate between formats.

SaveBaderCharge false (logical)
Instructs the program to save the charge density for further post-processing by a Bader-analysis
program. This “Bader charge” is the sum of the electronic valence charge density and a set of
“model core charges” placed at the atomic sites. For a given atom, the model core charge is
a generalized Gaussian, but confined to a radius of 1.0 Bohr (by default), and integrating to
the total core charge (Z-Zval). These core charges are needed to provide local maxima for the
charge density at the atomic sites, which are not guaranteed in a pseudopotential calculation.
For hydrogen, an artificial core of 1 electron is added, with a confinement radius of 0.6 Bohr by
default. The Bader charge is projected on the grid points of the mesh used by DHSCF, and saved
in file SystemLabel.BADER. This file can be post-processed by the program Util/grid2cube
to convert it to the “cube” format, accepted by several Bader-analysis programs (for example,
see http://theory.cm.utexas.edu/bader/). Due to the need to represent a localized core
charge, it is advisable to use a moderately high Mesh!Cutoff when invoking this option (300-500
Ry). The size of the “basin of attraction” around each atom in the Bader analysis should be
monitored to check that the model core charge is contained in it.
The radii for the model core charges can be specified in the input fdf file. For example:

bader-core-radius-standard 1.3 Bohr
bader-core-radius-hydrogen 0.4 Bohr

The suggested way to run the Bader analysis with the Univ. of Texas code is to use both the
RHO and BADER files (both in “cube” format), with the BADER file providing the “reference”
and the RHO file the actual significant valence charge data which is important in bonding. (See
the notes for pseudopotential codes in the above web page.) For example, for the h2o-pop
example:

bader h2o-pop.RHO.cube -ref h2o-pop.BADER.cube

If netCDF support is compiled in, the file BaderCharge.grid.nc is produced.

AnalyzeChargeDensityOnly false (logical)
If true, the program optionally generates charge density files and computes partial atomic
charges (Hirshfeld, Voronoi, Bader) from the information in the input density matrix, and
stops. This is useful to analyze the properties of the charge density without a diagonalization
step, and with a user-selectable mesh cutoff. Note that the DM.UseSaveDM option should
be active. Note also that if an initial density matrix (DM file) is used, it is not normalized. All

124

http://theory.cm.utexas.edu/bader/

the relevant fdf options for charge-density file production and partial charge calculation can be
used with this option.

SaveInitialChargeDensity false (logical)
deprecated by: AnalyzeChargeDensityOnly

If true, the program generates a SystemLabel.RHOINIT file (and a RhoInit.grid.nc file if
netCDF support is compiled in) containing the charge density used to start the first self-
consistency step, and it stops. Note that if an initial density matrix (DM file) is used, it is
not normalized. This is useful to generate the charge density associated to “partial” DMs, as
created by progras such as dm_creator and dm_filter.
(This option is to be deprecated in favor of AnalyzeChargeDensityOnly).

6.24 Auxiliary Force field

It is possible to supplement the DFT interactions with a limited set of force-field options, typically
useful to simulate dispersion interactions. It is not yet possible to turn off DFT and base the
dynamics only on the force field. The GULP program should be used for that.

%block MM.Potentials 〈None〉 (block)
This block allows the input of molecular mechanics potentials between species. The following
potentials are currently implemented:

• C6, C8, C10 powers of the Tang-Toennes damped dispersion potential.
• A harmonic interaction.
• A dispersion potential of the Grimme type (similar to the C6 type but with a different

damping function). (See S. Grimme, J. Comput. Chem. Vol 27, 1787-1799 (2006)). See
also MM.Grimme.D and MM.Grimme.S6 below.

The format of the input is the two species numbers that are to interact, the potential name (C6,
C8, C10, harm, or Grimme), followed by the potential parameters. For the damped dispersion
potentials the first number is the coefficient and the second is the exponent of the damping
term (i.e., a reciprocal length). A value of zero for the latter term implies no damping. For the
harmonic potential the force constant is given first, followed by r0. For the Grimme potential
C6 is given first, followed by the (corrected) sum of the van der Waals radii for the interacting
species (a real length). Positive values of the C6, C8, and C10 coefficients imply attractive
potentials.

%block MM.Potentials
1 1 C6 32.0 2.0
1 2 harm 3.0 1.4
2 3 Grimme 6.0 3.2

%endblock MM.Potentials

To automatically create input for Grimme’s method, please see the utility: Util/Grimme which
can read an fdf file and create the correct input for Grimme’s method.

MM.Cutoff 30 Bohr (length)
Specifies the distance out to which molecular mechanics potential will act before being treated
as going to zero.

125

MM.UnitsEnergy eV (unit)
Specifies the units to be used for energy in the molecular mechanics potentials.

MM.UnitsDistance Ang (unit)
Specifies the units to be used for distance in the molecular mechanics potentials.

MM.Grimme.D 20.0 (real)
Specifies the scale factor d for the scaling function in the Grimme dispersion potential (see
above).

MM.Grimme.S6 1.66 (real)
Specifies the overall fitting factor s6 for the Grimme dispersion potential (see above). This
number depends on the quality of the basis set, the exchange-correlation functional, and the
fitting set.

6.25 Grimme’s DFT-D3 dispersion model

The current implementation has the possibility of adding D3 corrections to DFT calculations (See
Grimme, J. Chem. Phys. 132 (2010), 154104. DOI: 10.1063/1.3382344). The following options
provide a great deal of fine-tuning within this model; see in the above reference for insight on the
parameters Sn, rSn and alpha, which correspond to the following equations:

ED3 = E2body + E3body

E2body =
∑

A,B
s6CAB

6
(rAB)6 f6(rAB) +

∑
A,B

s8CAB
8

(rAB)8 f8(rAB) ; fn(rAB) = 1

1+6
(

rAB
SrnRAB

0

)−αn

The 3-body interaction is also calculated but there are no input parameters involved except for
enabling or disabling it entirely. In this case, the value of α is always 16 and the value of Sr is 4/3.

E3body =
∑

A,B,C f3(rABC)EABC

EABC = 1+3cos(θABC)cos(θBCA)cos(θACB)
(rABrBCrAC)3 CABC

9 ; CABC
9 = −

√
CAB

6 CBC
6 CAC

6

DFTD3 false (logical)
If true, D3 corrections are enabled for the current calculation.

DFTD3.UseXCDefaults true (logical)
When doing D3 corrections, SIESTA may use default parameters for the D3 model which where
already available for some functionals. At the moment this covers only PBE, PBESol, RevPBE,
RPBE, LYP, BLYP, but more of them may be added in the future. With LIBXC, HS6 and
PBE0 are also available.

DFTD3.BJdamping true (logical)
If true, uses the Becke-Johnson damping for D3 interaction. If not, uses the zero-damping
variant.

DFTD3.s6 1.0 (real)
Sets the value for the s6 coefficient in the D3 model, with s6 being the factor that multiplies
the C6 interaction terms.

126

DFTD3.rs6 1.0 (real)
Sets the value for the rs6, which is the prefactor present in the C6 damping function.

DFTD3.s8 1.0 (real)
Sets the value for the s8 coefficient in the D3 model, with s8 being the factor that multiplies
the C8 interaction terms.

DFTD3.rs8 1.0 (real)
Sets the value for the rs8, which is the prefactor present in the C8 damping function. This is
usually set to 1.0 and not changed.

DFTD3.alpha 14.0 (real)
Sets the value for the the exponent in the C6 damping function. The C8 damping function
automatically takes the value of alpha + 2.

DFTD3.a1 0.4 (real)
Value of the a1 coefficient for Becke-Johnson damping.

DFTD3.a2 5.0 (real)
Value of the a2 coefficient for Becke-Johnson damping.

DFTD3.2BodyCutOff 60.0bohr (length)
Cut-off distance for 2-body dispersion interactions. Interactions corresponding to atom pairs
farther away than this distance are ignored.

DFTD3.3BodyCutOff 40.0bohr (length)
Cut-off distance for 3-body dispersion interactions. Interactions corresponding to atom pairs
farther away than this distance are ignored.

DFTD3.CoordinationCutoff 10.0bohr (length)
Cut-off distance for coordination number calculation (i.e. first neighbours count). This is
relevant for the correct calculation of the C6 and C8 factors.

6.25.1 A note on LIBXC functionals

SIESTA has now LIBXC functionality enabled via GRIDXC. However, not every single one of the
posibilities provided by that library are present in the standard D3 model. Most of the one that
are already present, are already the standard SIESTA GGA functionals. So in case you want to
try something different, we recommend referring to the following webpage for already existing D3
parameters:
https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3/dft-d3

Don’t forget to set DFTD3.UseXCDefaults to F when adding external parameters.

6.26 Parallel options

BlockSize 〈automatic〉 (integer)
The orbitals are distributed over the processors when running in parallel using a 1-D block-

127

 https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3/dft-d3

cyclic algorithm. BlockSize is the number of consecutive orbitals which are located on a given
processor before moving to the next one. Large values of this parameter lead to poor load
balancing, while small values can lead to inefficient execution. The performance of the parallel
code can be optimised by varying this parameter until a suitable value is found.

ProcessorY 〈automatic〉 (integer)
The mesh points are divided in the Y and Z directions (more precisely, along the second and
third lattice vectors) over the processors in a 2-D grid. ProcessorY specifies the dimension of
the processor grid in the Y-direction and must be a factor of the total number of processors.
Ideally the processors should be divided so that the number of mesh points per processor along
each axis is as similar as possible.
Defaults to a value set automatically by the program. There are two methods. The default
is to set ProcessorY to a factor of the number of processors which takes into account the
relative sizes of the second and third lattice vectors. An older method based only on searching
for factors of the number of processors in the set {2,3,5} can be enabled by the following option.

FFT.ProcessorY.Traditional false (logical)
If true, the program sets the default value for the FFT ProcessorY variable by searching for
factors of the total number of processors in the set {2,3,5}. Note that this default value can
still be overridden by setting ProcessorY explicitly.

6.26.1 Parallel decompositions for O(N)

Apart from the default block-cyclic decomposition of the orbital data, O(N) calculations can use
other schemes which should be more efficient: spatial decomposition (based on atom proximity),
and domain decomposition (based on the most efficient abstract partition of the interaction graph
of the Hamiltonian).

UseDomainDecomposition false (logical)
This option instructs the program to employ a graph-partitioning algorithm (using the METIS
library (See www.cs.umn.edu/~metis) to find an efficient distribution of the orbital data over
processors. To use this option (meaningful only in parallel) the program has to be compiled
with the preprocessor option SIESTA__METIS (or the deprecated ON_DOMAIN_DECOMP) and the
METIS library has to be linked in.

UseSpatialDecomposition false (logical)
When performing a parallel order N calculation, this option instructs the program to execute
a spatial decomposition algorithm in which the system is divided into cells, which are then
assigned, together with the orbitals centered in them, to the different processors. The size
of the cells is, by default, equal to the maximum distance at which there is a non-zero matrix
element in the Hamiltonian between two orbitals, or the radius of the Localized Wannier function
- which ever is the larger. If this is the case, then an orbital will only interact with other orbitals
in the same or neighbouring cells. However, by decreasing the cell size and searching over more
cells it is possible to achieve better load balance in some cases. This is controlled by the variable
RcSpatial.
NOTE: the distribution algorithm is quite fragile and a careful tuning of RcSpatial might be
needed. This option is therefore not enabled by default.

128

www.cs.umn.edu/~metis

RcSpatial 〈maximum orbital range〉 (length)
Controls the cell size during the spatial decomposition.

6.27 Efficiency options

DirectPhi false (logical)
The calculation of the matrix elements on the mesh requires the value of the orbitals on the
mesh points. This array represents one of the largest uses of memory within the code. If set to
true this option allows the code to generate the orbital values when needed rather than storing
the values. This obviously costs more computer time but will make it possible to run larger
jobs where memory is the limiting factor.
This controls whether the values of the orbitals at the mesh points are stored or calculated on
the fly.

6.28 Memory, CPU-time, and Wall time accounting options

AllocReportLevel 0 (integer)
Sets the level of the allocation report, printed in file SystemLabel.alloc. However, not all
the allocated arrays are included in the report (this will be corrected in future versions). The
allowed values are:

• level 0 : no report at all (the default)
• level 1 : only total memory peak and where it occurred
• level 2 : detailed report printed only at normal program termination
• level 3 : detailed report printed at every new memory peak
• level 4 : print every individual (re)allocation or deallocation

NOTE: In MPI runs, only node-0 peak reports are produced.

AllocReportThreshold 0. (real)
Sets the minimum size (in bytes) of the arrays whose memory use is individually printed in the
detailed allocation reports (levels 2 and 3). It does not affect the reported memory sums and
peaks, which always include all arrays.

TimerReportThreshold 0. (real)
Sets the minimum fraction, of total CPU time, of the subroutines or code sections whose CPU
time is individually printed in the detailed timer reports. To obtain the accounting of MPI
communication times in parallel executions, you must compile with option -DMPI_TIMING. In
serial execution, the CPU times are printed at the end of the output file. In parallel execution,
they are reported in a separated file named SystemLabel.times.

UseTreeTimer false (logical)
Enable an experimental timer which is based on wall time on the master node and is aware of
the tree-structure of the timed sections. At the end of the program, a report is generated in
the output file, and a time.json file in JSON format is also written. This file can be used by
third-party scripts to process timing data.
NOTE: , if used with the PEXSI solver (see Sec. 6.14) this defaults to true.

129

UseParallelTimer true (logical)
Determine whether timings are performed in parallel. This may introduce slight overhead.
NOTE: , if used with the PEXSI solver (see Sec. 6.14) this defaults to false.

TimingSplitScfSteps false (logical)
The timings for individual scf steps will be recorded separately.
NOTE: The ’tree’ timer should be used to make meaningful use of this information. It is enabled
by default if this variable is true.

MaxWalltime Infinity (real time)
Set an internal limit to the wall time allotted to the program’s execution. Typically this is related
to the external limit imposed by queuing systems. The code checks its wall time periodically
and will abort if nearing the limit, with some slack left for clean-up operations (proper closing
of files, emergency output...), as determined by MaxWalltime.Slack. See Sec. 17 for available
units of time (s, mins, hours, days).

MaxWalltime.Slack 5 s (real time)
The code checks its wall time Twall periodically and will abort if Twall > Tmax − Tslack, so that
some slack is left for any clean-up operations.

6.29 The catch-all option UseSaveData

This is a dangerous feature, and is deprecated, but retained for historical compatibility. Use the
individual options instead.

UseSaveData false (logical)
Instructs to use as much information as possible stored from previous runs in files
SystemLabel.XV, SystemLabel.DM and SystemLabel.LWF,
NOTE: if the files are not existing it will read the information from the fdf file.

6.30 Output of information for Denchar

The program denchar in Util/Denchar can generate charge-density and wavefunction information
in real space.

Write.Denchar false (logical)
Instructs to write information needed by the utility program DENCHAR (by J. Junquera
and P. Ordejón) to generate valence charge densities and/or wavefunctions in real space (see
Util/Denchar). The information is written in files SystemLabel.PLD and SystemLabel.DIM.
To run DENCHAR you will need, apart from the .PLD and .DIM files, the Density-Matrix (DM)
file and/or a wavefunction (.WFSX) file, and the .ion files containing the information about the
basis orbitals.

6.31 NetCDF (CDF4) output file

NOTE: this requires SIESTA compiled with CDF4 support.

130

To unify and construct a simple output file for an entire SIESTA calculation a generic NetCDF file
will be created if SIESTA is compiled with ncdf support, see Sec. 2.3 and the ncdf section.
Generally all output to NetCDF flags, SaveElectrostaticPotential, etc. apply to this file as well.
One may control the output file with compressibility and parallel I/O, if needed.

CDF.Save false (logical)
Create the SystemLabel.nc file which is a NetCDF file.
This file will be created with a large set of groups which make separating the quantities easily.
Also it will inherently denote the units for the stored quantities.
NOTE: this option is not available for MD/relaxations, only for force constant runs.

CDF.Compress 0 (integer)
Integer between 0 and 9. The former represents no compressing and the latter is the highest
compressing.
The higher the number the more computation time is spent on compressing the data. A good
compromise between speed and compression is 3.
NOTE: if one requests parallel I/O (CDF.MPI) this will automatically be set to 0. One
cannot perform parallel IO and compress the data simultaneously.
NOTE: instead of using SIESTA for compression you may compress after execution by:

nccopy -d 3 -s noncompressed.nc compressed.nc

CDF.MPI false (logical)
Write SystemLabel.nc in parallel using MPI for increased performance. This has almost no
memory overhead but may for very large number of processors saturate the file-system.
NOTE: this is an experimental flag.

CDF.Grid.Precision single|double (string)
At which precision should the real-space grid quantities be stored, such as the density, electro-
static potential etc.

7 STRUCTURAL RELAXATION, PHONONS, AND MOLECU-
LAR DYNAMICS

This functionality is not SIESTA-specific, but is implemented to provide a more complete simulation
package. The program has an outer geometry loop: it computes the electronic structure (and thus the
forces and stresses) for a given geometry, updates the atomic positions (and maybe the cell vectors)
accordingly and moves on to the next cycle. If there are molecular dynamics options missing you
are highly recommend to look into MD.TypeOfRun Lua or MD.TypeOfRun Master.
Several options for MD and structural optimizations are implemented, selected by

MD.TypeOfRun CG (string)

CG Performs an atomic coordinates optimization by using the conjugate gradients method. If
MD.VariableCell is enabled (see below), the optimization includes the cell vectors.

131

Broyden Performs an atomic coordinates optimization by using a modified Broyden method,
which falls within the Quasi-Newton family of algorithms. If MD.VariableCell is enabled
(see below), the optimization includes the cell vectors.

FIRE Performs an atomic coordinates optimization by using the Fast Inertial Relaxation Engine
(E. Bitzek et al, PRL 97, 170201, (2006)). If MD.VariableCell is enabled (see below), the
optimization includes the cell vectors. FIRE avoids the need for linear search, thus making
each individual iteration faster when compared to Quasi-Newton methods. However, it also
needs more iterations to converge, so its efficiency is system-dependent.

Verlet Standard Velocity-Verlet algorithm for NVE molecular dynamics.

Nose Constant temperature (NVT) MD with using a Nosé thermostat.

ParrinelloRahman Constant pressure (NPE) MD, controlled by the Parrinello-Rahman
method.

NoseParrinelloRahman Constant temperature and pressure (NPT) MD using both methods
above, the Nosé thermostat and the Parrinello-Rahman method.

Anneal Constant temperature and/or pressure MD (see the variable MD.AnnealOption be-
low), using a very simple velocity rescaling method. It should be used to quickly equilibrate
a system to a desired temperature and pressure; however, atomic velocities resulting from
this option are non-canonical and thus tend to produce physically-inaccurate results. There-
fore, it is strongly recommended to change to the Nosé and/or ParrinelloRahman options for
production MD runs after the equilibration is done.

FC Compute force constants matrix for phonon calculations.

Master|Forces Receive coordinates from, and return forces to, an external driver program, us-
ing MPI, Unix pipes, or Inet sockets for communication. The routines in module fsiesta
allow the user’s program to perform this communication transparently, as if SIESTA
were a conventional force-field subroutine. See Util/SiestaSubroutine/README for details.
WARNING: if this option is specified without a driver program sending data, siesta may hang
without any notice.
See directory Util/Scripting for other driving options.

Lua Fully control the MD cycle and convergence path using an external Lua script.
With an external Lua script one may control nearly everything from a script. One can query
any internal data-structures in SIESTA and, similarly, return any data thus overwriting the
internals. A list of ideas which may be implemented in such a Lua script are:

• New geometry relaxation algorithms
• NEB calculations
• New MD routines
• Convergence tests of Mesh.Cutoff and kgrid.MonkhorstPack, or other parameters

(currently basis set optimizations cannot be performed in the Lua script).
Sec. 10 for additional details (and a description of flos which implements some of the above
mentioned items).
Using this option requires the compilation of SIESTA with the flook library.If SIESTA is
not compiled as prescribed in Sec. 2.3 this option will make SIESTA die.

132

TDED New option to perform time-dependent electron dynamics simulations (TDED) within
RT-TDDFT. For more details see Sec. 9.
The second run of SIESTA uses this option with the files SystemLabel.TDWF and
SystemLabel.TDXV present in the working directory. In this option ions and electrons are as-
sumed to move simultaneously. The occupied electronic states are time-evolved instead of the
usual SCF calculations in each step. Choose this option even if you intend to do only-electron
dynamics. If you want to do an electron dynamics-only calculation set MD.FinalTimeStep
equal to 1. For optical response calculations switch off the external field during the sec-
ond run. The MD.LengthTimeStep, unlike in the standard MD simulation, is defined by
mulitpilication of TDED.TimeStep and TDED.Nsteps. In TDDFT calculations, the user
defined MD.LengthTimeStep is ignored.

NOTE: if Compat.Pre-v4-Dynamics is true this will default to Verlet.
Note that some options specified in later variables (like quenching) modify the behavior of these
MD options.
Appart from being able to act as a force subroutine for a driver program that uses module
fsiesta, SIESTA is also prepared to communicate with the i-PI code (see https://github.
com/i-pi/i-pi). To do this, SIESTA must be started after i-PI (it acts as a client of i-PI,
communicating with it through Inet or Unix sockets), and the following lines must be present
in the .fdf data file:

MD.TypeOfRun Master # equivalent to ’Forces’
Master.code i-pi # (fsiesta | i-pi)
Master.interface socket # (pipes | socket | mpi)
Master.address localhost # or driver’s IP, e.g. 150.242.7.140
Master.port 10001 # 10000+siesta_process_order
Master.socketType inet # (inet | unix)

7.1 Compatibility with pre-v4 versions

Starting in the summer of 2015, some changes were made to the behavior of the program regarding
default dynamics options and choice of coordinates to work with during post-processing of the
electronic structure. The changes are:

• The default dynamics option is “CG” instead of “Verlet”.

• The coordinates, if moved by the dynamics routines, are reset to their values at the previous
step for the analysis of the electronic structure (band structure calculations, DOS, LDOS, etc).

• Some output files reflect the values of the “un-moved” coordinates.

• The default convergence criteria is now both density and Hamiltonian convergence, see
SCF.DM.Converge and SCF.H.Converge.

To recover the previous behavior, the user can turn on the compatibility switch Compat.Pre-v4-
Dynamics, which is off by default.
Note that complete compatibility cannot be perfectly guaranteed.

133

https://github.com/i-pi/i-pi
https://github.com/i-pi/i-pi

7.2 Structural relaxation

In this mode of operation, the program moves the atoms (and optionally the cell vectors) trying to
minimize the forces (and stresses) on them.
These are the options common to all relaxation methods. If the Zmatrix input option is in effect
(see Sec. 6.4.2) the Zmatrix-specific options take precedence. The ’MD’ prefix is misleading but kept
for historical reasons.

MD.VariableCell false (logical)
If true, the lattice is relaxed together with the atomic coordinates. It allows to target hy-
drostatic pressures or arbitrary stress tensors. See MD.MaxStressTol, Target.Pressure,
Target.Stress.Voigt, Constant.Volume, and MD.PreconditionVariableCell.
NOTE: only compatible with MD.TypeOfRun CG, Broyden or fire.

Constant.Volume false (logical)
deprecates: MD.ConstantVolume

If true, the cell volume is kept constant in a variable-cell relaxation: only the cell shape and
the atomic coordinates are allowed to change. Note that it does not make much sense to
specify a target stress or pressure in this case, except for anisotropic (traceless) stresses. See
MD.VariableCell, Target.Stress.Voigt.
NOTE: only compatible with MD.TypeOfRun CG, Broyden or fire.

MD.RelaxCellOnly false (logical)
If true, only the cell parameters are relaxed (by the Broyden or FIRE method, not CG). The
atomic coordinates are re-scaled to the new cell, keeping the fractional coordinates constant.
For Zmatrix calculations, the fractional position of the first atom in each molecule is kept
fixed, and no attempt is made to rescale the bond distances or angles.
NOTE: only compatible with MD.TypeOfRun Broyden or fire.

MD.MaxForceTol 0.04 eV/Ang (force)
Force tolerance in coordinate optimization. Run stops if the maximum atomic force is smaller
than MD.MaxForceTol (see MD.MaxStressTol for variable cell).

MD.MaxStressTol 1 GPa (pressure)
Stress tolerance in variable-cell CG optimization. Run stops if the maximum atomic force
is smaller than MD.MaxForceTol and the maximum stress component is smaller than
MD.MaxStressTol.
Special consideration is needed if used with Sankey-type basis sets, since the combination of
orbital kinks at the cutoff radii and the finite-grid integration originate discontinuities in the
stress components, whose magnitude depends on the cutoff radii (or energy shift) and the mesh
cutoff. The tolerance has to be larger than the discontinuities to avoid endless optimizations if
the target stress happens to be in a discontinuity.

MD.Steps 0 (integer)
deprecates: MD.NumCGsteps

Maximum number of steps in a minimization routine (the minimization will stop if tolerance is
reached before; see MD.MaxForceTol below).

134

NOTE: The old flag MD.NumCGsteps will remain for historical reasons.

MD.MaxDispl 0.2 Bohr (length)
deprecates: MD.MaxCGDispl

Maximum atomic displacements in an optimization move.
In the Broyden optimization method, it is also possible to limit indirectly the initial atomic
displacements using MD.Broyden.Initial.Inverse.Jacobian. For the FIRE method, the
same result can be obtained by choosing a small time step.
Note that there are Zmatrix-specific options that override this option.
NOTE: The old flag MD.MaxCGDispl will remain for historical reasons.

MD.PreconditionVariableCell 5 Ang (length)
A length to multiply to the strain components in a variable-cell optimization. The strain
components enter the minimization on the same footing as the coordinates. For good efficiency,
this length should make the scale of energy variation with strain similar to the one due to
atomic displacements. It is also used for the application of the MD.MaxDispl value to the
strain components.

ZM.ForceTolLength 0.00155574 Ry/Bohr (force)
Parameter that controls the convergence with respect to forces on Z-matrix lengths

ZM.ForceTolAngle 0.00356549 Ry/rad (torque)
Parameter that controls the convergence with respect to forces on Z-matrix angles

ZM.MaxDisplLength 0.2 Bohr (length)
Parameter that controls the maximum change in a Z-matrix length during an optimisation step.

ZM.MaxDisplAngle 0.003 rad (angle)
Parameter that controls the maximum change in a Z-matrix angle during an optimisation step.

7.2.1 Conjugate-gradients optimization

This was historically the default geometry-optimization method, and all the above options were
introduced specifically for it, hence their names. The following pertains only to this method:

MD.UseSaveCG false (logical)
Instructs to read the conjugate-gradient hystory information stored in file SystemLabel.CG by
a previous run.
NOTE: to get actual continuation of iterrupted CG runs, use together with MD.UseSaveXV
true with the .XV file generated in the same run as the CG file. If the required file does not
exist, a warning is printed but the program does not stop. Overrides UseSaveData.
NOTE: no such feature exists yet for a Broyden-based relaxation.

7.2.2 Broyden optimization

It uses the modified Broyden algorithm to build up the Jacobian matrix. (See D.D. Johnson, PRB
38, 12807 (1988)). (Note: This is not BFGS.)

135

MD.Broyden.History.Steps 5 (integer)
Number of relaxation steps during which the modified Broyden algorithm builds up the Jacobian
matrix.

MD.Broyden.Cycle.On.Maxit true (logical)
Upon reaching the maximum number of history data sets which are kept for Jacobian estimation,
throw away the oldest and shift the rest to make room for a new data set. The alternative is
to re-start the Broyden minimization algorithm from a first step of a diagonal inverse Jacobian
(which might be useful when the minimization is stuck).

MD.Broyden.Initial.Inverse.Jacobian 1 (real)
Initial inverse Jacobian for the optimization procedure. (The units are those implied by the
internal SIESTA usage. The default value seems to work well for most systems.

7.2.3 FIRE relaxation

Implementation of the Fast Inertial Relaxation Engine (FIRE) method (E. Bitzek et al, PRL 97,
170201, (2006) in a manner compatible with the CG and Broyden modes of relaxation. (An older
implementation activated by the MD.FireQuench variable is still available).

MD.FIRE.TimeStep 〈MD.LengthTimeStep〉 (time)
The (fictitious) time-step for FIRE relaxation. This is the main user-variable when the option
FIRE for MD.TypeOfRun is active.
NOTE: the default value is encouraged to be changed as the link to MD.LengthTimeStep
is misleading.
There are other low-level options tunable by the user (see the routines fire_optim and
cell_fire_optim for more details.

7.3 Target stress options

Useful for structural optimizations and constant-pressure molecular dynamics.

Target.Pressure 0 GPa (pressure)
deprecates: MD.TargetPressure

Target pressure for Parrinello-Rahman method, variable cell optimizations, and annealing op-
tions.
NOTE: this is only compatible with MD.TypeOfRun ParrinelloRahman, NoseParrinel-
loRahman, CG, Broyden or FIRE (variable cell), or Anneal (if MD.AnnealOption Pres-
sure or TemperatureandPressure).

%block Target.Stress.Voigt −1 −1 −1 0 0 0 (block)
deprecates: MD.TargetStress

External or target stress tensor for variable cell optimizations. Stress components are given in
a line, in the Voigt order xx, yy, zz, yz, xz, xy. In units of Target.Pressure, but with
the opposite sign. For example, a uniaxial compressive stress of 2 GPa along the 100 direction
would be given by

136

Target.Pressure 2. GPa
%block Target.Stress.Voigt

-1.0 0.0 0.0 0.0 0.0 0.0
%endblock

Only used if MD.TypeOfRun is CG, Broyden or FIRE and MD.VariableCell is true.

%block MD.TargetStress −1 −1 −1 0 0 0 (block)
deprecated by: Target.Stress.Voigt

Same as Target.Stress.Voigt but the order is same as older SIESTA version (prior to 4.1).
Order is xx, yy, zz, xy, xz, yz.

MD.RemoveIntramolecularPressure false (logical)
If true, the contribution to the stress coming from the internal degrees of freedom of the
molecules will be subtracted from the stress tensor used in variable-cell optimization or variable-
cell molecular-dynamics. This is done in an approximate manner, using the virial form of the
stress, and assumming that the “mean force” over the coordinates of the molecule represents
the “inter-molecular” stress. The correction term was already computed in earlier versions of
SIESTA and used to report the “molecule pressure”. The correction is now computed molecule-
by-molecule if the Zmatrix format is used.
If the intra-molecular stress is removed, the corrected static and total stresses are printed in
addition to the uncorrected items. The corrected Voigt form is also printed.
NOTE: versions prior to 4.1 (also 4.1-beta releases) printed the Voigt stress-tensor in this
format: [x, y, z, xy, yz, xz]. In 4.1 and later SIESTA only show the correct Voigt rep-
resentation: [x, y, z, yz, xz, xy].

7.4 Molecular dynamics

In this mode of operation, the program moves the atoms (and optionally the cell vectors) in response
to the forces (and stresses), using the classical equations of motion.
Note that the Zmatrix input option (see Sec. 6.4.2) is not compatible with molecular dynamics. The
initial geometry can be specified using the Zmatrix format, but the Zmatrix generalized coordinates
will not be updated.

MD.InitialTimeStep 1 (integer)
Initial time step of the MD simulation. In the current version of SIESTA it must be 1.
Used only if MD.TypeOfRun is not CG or Broyden.

MD.FinalTimeStep 〈MD.Steps〉 (integer)
Final time step of the MD simulation.

MD.LengthTimeStep 1 fs (time)
Length of the time step of the MD simulation.

MD.InitialTemperature 0 K (temperature/energy)
Initial temperature for the MD run. The atoms are assigned random velocities drawn from the
Maxwell-Bolzmann distribution with the corresponding temperature. The constraint of zero
center of mass velocity is imposed.

137

NOTE: only used if MD.TypeOfRun Verlet, Nose, ParrinelloRahman, NoseParrinel-
loRahman or Anneal.

MD.TargetTemperature 0 K (temperature/energy)
Target temperature for Nose thermostat and annealing options.
NOTE: only used if MD.TypeOfRun Nose, NoseParrinelloRahman or Anneal if
MD.AnnealOption is Temperature or TemperatureandPressure.

MD.NoseMass 100 Ry fs2 (moment of inertia)
Generalized mass of Nose variable. This determines the time scale of the Nose variable dynamics,
and the coupling of the thermal bath to the physical system.
Only used for Nose MD runs.

MD.ParrinelloRahmanMass 100 Ry fs2 (moment of inertia)
Generalized mass of Parrinello-Rahman variable. This determines the time scale of the
Parrinello-Rahman variable dynamics, and its coupling to the physical system.
Only used for Parrinello-Rahman MD runs.

MD.AnnealOption TemperatureAndPressure (string)
Type of annealing MD to perform. The target temperature or pressure are achieved by velocity
and unit cell rescaling, in a given time determined by the variable MD.TauRelax below.

Temperature Reach a target temperature by velocity rescaling

Pressure Reach a target pressure by scaling of the unit cell size and shape

TemperatureandPressure Reach a target temperature and pressure by velocity rescaling and
by scaling of the unit cell size and shape

Only applicable for MD.TypeOfRun Anneal.

MD.TauRelax 100 fs (time)
Relaxation time to reach target temperature and/or pressure in annealing MD. Note that this
is a “relaxation time”, and as such it gives a rough estimate of the time needed to achieve the
given targets. As a normal simulation also exhibits oscillations, the actual time needed to reach
the averaged targets will be significantly longer.
Only applicable for MD.TypeOfRun Anneal.

MD.BulkModulus 100 Ry/Bohr3 (pressure)
Estimate (may be rough) of the bulk modulus of the system. This is needed to set the rate of
change of cell shape to reach target pressure in annealing MD.
Only applicable for MD.TypeOfRun Anneal, when MD.AnnealOption is Pressure or
TemperatureAndPressure

7.5 Output options for dynamics

Every time the atoms move, either during coordinate relaxation or molecular dynamics, their po-
sitions predicted for next step and current velocities are stored in file SystemLabel.XV. The
shape of the unit cell and its associated ’velocity’ (in Parrinello-Rahman dynamics) are also stored

138

in this file.

WriteCoorInitial true (logical)
It determines whether the initial atomic coordinates of the simulation are dumped into the main
output file. These coordinates correspond to the ones actually used in the first step (see the
section on precedence issues in structural input) and are output in Cartesian coordinates in
Bohr units.
It is not affected by the setting of LongOutput.

WriteCoorStep false (logical)
If true, it writes the atomic coordinates to standard output at every MD time step or relax-
ation step. The coordinates are always written in the SystemLabel.XV file, but overriden at
every step. They can be also accumulated in the .MD or SystemLabel.MDX files depending on
WriteMDHistory.

WriteForces false (logical)
If true, it writes the atomic forces to the output file at every MD time step or relaxation step.
Note that the forces of the last step can be found in the file SystemLabel.FA. If constraints are
used, the file SystemLabel.FAC is also written.

WriteMDHistory false (logical)
If true, SIESTA accumulates the molecular dynamics trajectory in the following files:

• SystemLabel.MD : atomic coordinates and velocities (and lattice vectors and their time
derivatives, if the dynamics implies variable cell). The information is stored unformatted
for postprocessing with utility programs to analyze the MD trajectory.

• SystemLabel.MDE : shorter description of the run, with energy, temperature, etc., per time
step.

These files are accumulative even for different runs.
The trajectory of a molecular dynamics run (or a conjugate gradient minimization) can be
accumulated in different files: SystemLabel.MD, SystemLabel.MDE, and SystemLabel.ANI.
The first file keeps the whole trajectory information, meaning positions and velocities at every
time step, including lattice vectors if the cell varies. NOTE that the positions (and maybe the
cell vectors) stored at each time step are the predicted values for the next step. Care should
be taken if joint position-velocity correlations need to be computed from this file. The second
gives global information (energy, temperature, etc), and the third has the coordinates in a form
suited for XMol animation. See the WriteMDHistory and WriteMDXmol data descriptors
above for information. SIESTA always appends new information on these files, making them
accumulative even for different runs.
The iomd subroutine can generate both an unformatted file .MD (default) or ASCII formatted
files .MDX and .MDC containing the atomic and lattice trajectories, respectively. Edit the file to
change the settings if desired.

Write.OrbitalIndex true (logical)
If true it causes the writing of an extra file named SystemLabel.ORB_INDX containing all
orbitals used in the calculation.
Its formatting is clearly specified at the end of the file.

139

7.6 Restarting geometry optimizations and MD runs

Every time the atoms move, either during coordinate relaxation or molecular dynamics, their posi-
tions predicted for next step and current velocities are stored in file SystemLabel.XV, where
SystemLabel is the value of that fdf descriptor (or ’siesta’ by default). The shape of the unit cell and
its associated ’velocity’ (in Parrinello-Rahman dynamics) are also stored in this file. For MD runs of
type Verlet, Parrinello-Rahman, Nose, Nose-Parrinello-Rahman, or Anneal, a file named SystemLa-
bel.VERLET_RESTART, SystemLabel.PR_RESTART, SystemLabel.NOSE_RESTART, System-
Label.NPR_RESTART, or SystemLabel.ANNEAL_RESTART, respectively, is created to hold the
values of auxiliary variables needed for a completely seamless continuation.
If the restart file is not available, a simulation can still make use of the XV information, and “restart”
by basically repeating the last-computed step (the positions are shifted backwards by using a single
Euler-like step with the current velocities as derivatives). While this feature does not result in
seamless continuations, it allows cross-restarts (those in which a simulation of one kind (e.g., Anneal)
is followed by another (e.g., Nose)), and permits to re-use dynamical information from old runs.
This restart fix is not satisfactory from a fundamental point of view, so the MD subsystem in SIESTA
will have to be redesigned eventually. In the meantime, users are reminded that the scripting hooks
being steadily introduced (see Util/Scripting) might be used to create custom-made MD scripts.

7.7 Use of general constraints

Note: The Zmatrix format (see Sec. 6.4.2) provides an alternative constraint formulation which can
be useful for system involving molecules.

%block Geometry.Constraints 〈None〉 (block)
Constrains certain atomic coordinates or cell parameters in a consistent method.
There are a high number of configurable parameters that may be used to control the relaxation
of the coordinates.
NOTE: SIESTA prints out a small section of how the constraints are recognized.

atom|position Fix certain atomic coordinates.
This option takes a variable number of integers which each correspond to the atomic index
(or input sequence) in AtomicCoordinatesAndAtomicSpecies.
atom is now the preferred input option while position still works for backwards compatibility.
One may also specify ranges of atoms according to:

atom A [B [C [. . .]]] A sequence of atomic indices which are constrained.

atom from A to B [step s] Here atoms A up to and including B are constrained. If step
<s> is given, the range A:B will be taken in steps of s.

atom from 3 to 10 step 2

will constrain atoms 3, 5, 7 and 9.

atom from A plus/minus B [step s] Here atoms A up to and including A + B − 1 are
constrained. If step <s> is given, the range A:A + B− 1 will be taken in steps of s.

atom [A, B -- C [step s], D] Equivalent to from . . . to specification, however in a shorter
variant. Note that the list may contain arbitrary number of ranges and/or individual

140

indices.
atom [2, 3 -- 10 step 2, 6]

will constrain atoms 2, 3, 5, 7, 9 and 6.
atom [2, 3 -- 6, 8]

will constrain atoms 2, 3, 4, 5, 6 and 8.

atom all Constrain all atoms.
NOTE: these specifications are apt for directional constraints.

Z Equivalent to atom with all indices of the atoms that have atomic number equal to the
specified number.
NOTE: these specifications are apt for directional constraints.

species-i Equivalent to atom with all indices of the atoms that have species according to the
ChemicalSpeciesLabel and AtomicCoordinatesAndAtomicSpecies.
NOTE: these specifications are apt for directional constraints.

center One may retain the coordinate center of a range of atoms (say molecules or other groups
of atoms).
Atomic indices may be specified according to atom.
NOTE: these specifications are apt for directional constraints.

rigid|molecule Move a selection of atoms together as though they where one atom.
The forces are summed and averaged to get a net-force on the entire molecule.
Atomic indices may be specified according to atom.
NOTE: these specifications are apt for directional constraints.

rigid-max|molecule-max Move a selection of atoms together as though they where one atom.
The maximum force acting on one of the atoms in the selection will be expanded to act on
all atoms specified.
Atomic indices may be specified according to atom.
NOTE: these specifications are apt for directional constraints.

cell-angle Control whether the cell angles (α, β, γ) may be altered.
This takes either one or more of alpha/beta/gamma as argument.
alpha is the angle between the 2nd and 3rd cell vector.
beta is the angle between the 1st and 3rd cell vector.
gamma is the angle between the 1st and 2nd cell vector.
NOTE: currently only one angle can be constrained at a time and it forces only the spanning
vectors to be relaxed.

cell-vector Control whether the cell vectors (A, B, C) may be altered.
This takes either one or more of A/B/C as argument.
Constraining the cell-vectors are only allowed if they only have a component along their
respective Cartesian direction. I.e. B must only have a y-component.

stress Control which of the 6 stress components are constrained.
Numbers 1 ≤ i ≤ 6 where 1 corresponds to the XX stress-component, 2 is YY, 3 is ZZ, 4 is

141

YZ/ZY, 5 is XZ/ZX and 6 is XY /YX.
The text specifications are also allowed.

routine This calls the constr routine specified in the file: constr.f. Without having changed
the corresponding source file, this does nothing. See details and comments in the source-file.

clear Remove constraints on selected atoms from all previously specified constraints.
This may be handy when specifying constraints via Z or species-i.
Atomic indices may be specified according to atom.

clear-prev Remove constraints on selected atoms from the previous specified constraint.
This may be handy when specifying constraints via Z or species-i.
Atomic indices may be specified according to atom.
NOTE: two consecutive clear-prev may be used in conjunction as though the atoms where
specified on the same line.

It is instructive to give an example of the input options presented.
Consider a benzene molecule (C6H6) and we wish to relax all Hydrogen atoms (and no stress
in x and y directions). This may be accomplished with this

%block Geometry.Constraints
Z 6
stress 1 2

%endblock

Or as in this example
%block AtomicCoordinatesAndAtomicSpecies

... 1 # C 1

... 2 # H 2

... 1 # C 3

... 2 # H 4

... 1 # C 5

... 2 # H 6

... 1 # C 7

... 2 # H 8

... 1 # C 9

... 2 # H 10

... 1 # C 11

... 2 # H 12
stress XX YY

%endblock
%block Geometry.Constraints

atom from 1 to 12 step 2
stress XX YY

%endblock
%block Geometry.Constraints

atom [1 -- 12 step 2]
stress XX 2

%endblock
%block Geometry.Constraints

atom all
clear-prev [2 -- 12 step 2]

142

stress 1 YY
%endblock

where the 3 last blocks all create the same result.
Finally, the directional constraint is an important and often useful feature. The directional
constraints will subtract the force projected onto the direction specified. Hence an x directional
constraint will remove the force component along the x direction fx → 0.
When relaxing complex structures it may be advantageous to first relax along a given direction
(where you expect the stress to be the largest) and subsequently let it fully relax. Another
example would be to relax the binding distance between a molecule and a surface, before
relaxing the entire system by forcing the molecule and adsorption site to relax together. To
use directional constraints one may provide an additional 3 reals after the atom/rigid. For
instance in the previous example (benzene) one may first relax all Hydrogen atoms along the y
and z Cartesian vector by constraining the x Cartesian vector

%block Geometry.Constraints
Z 6 # constrain Carbon
Z 1 1. 0. 0. # constrain Hydrogen along x Cartesian vector

%endblock

Note that you must append a “.” to denote it a real. The vector specified need not be normalized.
Also, if you want it to be constrained along the x-y vector you may do

%block Geometry.Constraints
Z 6
Z 1 1. 1. 0.

%endblock

Therefore the directional constraint will remove the force components that projects onto the
direction specified.

7.8 Phonon calculations

If MD.TypeOfRun is FC, SIESTA sets up a special outer geometry loop that displaces individual
atoms along the coordinate directions to build the force-constant matrix.
The output (see below) can be analyzed to extract phonon frequencies and vectors with the VIBRA
package in the Util/Vibra directory. For computing the Born effective charges together with the
force constants, see BornCharge.

MD.FCDispl 0.04 Bohr (length)
Displacement to use for the computation of the force constant matrix for phonon calculations.

MD.FCFirst 1 (integer)
Index of first atom to displace for the computation of the force constant matrix for phonon
calculations.

MD.FCLast 〈MD.FCFirst〉 (integer)
Index of last atom to displace for the computation of the force constant matrix for phonon
calculations.

143

The force-constants matrix is written in file SystemLabel.FC. The format is the following: for the
displacement of each atom in each direction, the forces on each of the other atoms is writen (divided
by the value of the displacement), in units of eV/Å2. Each line has the forces in the x, y and z
direction for one of the atoms.
If constraints are used, the file SystemLabel.FCC is also written.

8 DFT+U

NOTE: This implementation works for both LDA and GGA, hence named DFT+U in the main
text.
NOTE: Current implementation is based on the simplified rotationally invariant DFT+U formula-
tion of Dudarev and collaborators [see, Dudarev et al., Phys. Rev. B 57, 1505 (1998)]. Although
the input allows to define independent values of the U and J parameters for each atomic shell, in
the actual calculation the two parameters are combined to produce an effective Coulomb repulsion
Ueff = U − J . Ueff is the parameter actually used in the calculations for the time being.
For large or intermediate values of Ueff the convergence is sometimes difficult. A step-by-step increase
of the value of Ueff can be advisable in such cases.
If DFT+U is used in combination with non-collinear or spin-orbit coupling, the Liechtenstein ap-
proach is implemented, where the U and the exchange J parameters are treated separately [see,
A. I. Liechtenstein et al., Phys. Rev. B 52, R5467 (1995)]. The generalization for the spin-
orbit or non-collinear cases follows the recipe given by E. Bousquet and N. Spaldin, Phys. Rev.
B 82, 220402(R) (2010). Currently, only the d-shell can be considered as the correlated shell
where the U and J are applied. The computation of the occupancies on the orbitals of the
correlated shells is done following the same recipe as for the Dudarev approach. That means
that the following entries related with the generation of the DFT+U projectors are still relevant.
However, the input options DFTU.FirstIteration, DFTU.ThresholdTol, DFTU.PopTol, and
DFTU.PotentialShift are irrelevant when DFT+U is used in combination with spin-orbit or non-
collinear magnetism.

DFTU.ProjectorGenerationMethod 2 (integer)
Generation method of the DFT+U projectors. The DFT+U projectors are the localized func-
tions used to calculate the local populations used in a Hubbard-like term that modifies the LDA
Hamiltonian and energy. It is important to recall that DFT+U projectors should be quite local-
ized functions. Otherwise the calculated populations loose their atomic character and physical
meaning. Even more importantly, the interaction range can increase so much that jeopardizes
the efficiency of the calculation.
Two methods are currently implemented:

1 Projectors are slightly-excited numerical atomic orbitals similar to those used as an auto-
matic basis set by SIESTA. The radii of these orbitals are controlled using the parameter
DFTU.EnergyShift and/or the data included in the block DFTU.Proj (quite similar to
the data block PAO.Basis used to specify the basis set, see below).

2 Projectors are exact solutions of the pseudoatomic problem (and, in principle, are not strictly
localized) which are cut using a Fermi function 1/{1 + exp[(r − rc)ω]}. The values of rc and

144

ω are controlled using the parameter DFTU.CutoffNorm and/or the data included in the
block DFTU.Proj.

DFTU.EnergyShift 0.05 Ry (energy)
Energy increase used to define the localization radius of the DFT+U projectors (similar to the
parameter PAO.EnergyShift).
NOTE: only used when DFTU.ProjectorGenerationMethod is 1.

DFTU.CutoffNorm 0.9 (real)
Parameter used to define the value of rc used in the Fermi distribution to cut the DFT+U
projectors generated according to generation method 2 (see above). DFTU.CutoffNorm is
the norm of the original pseudoatomic orbital contained inside a sphere of radius equal to rc.
NOTE: only used when DFTU.ProjectorGenerationMethod is 2.

%block DFTU.Proj 〈None〉 (block)
Data block used to specify the DFT+U projectors.

• If DFTU.ProjectorGenerationMethod is 1, the syntax is as follows:
%block DFTU.Proj # Define DFT+U projectors
Fe 2 # Label, l_shells
n=3 2 E 50.0 2.5 # n (opt if not using semicore levels),l,Softconf(opt)

5.00 0.35 # U(eV), J(eV) for this shell
2.30 # rc (Bohr)
0.95 # scaleFactor (opt)
0 # l
1.00 0.05 # U(eV), J(eV) for this shell
0.00 # rc(Bohr) (if 0, automatic r_c from DFTU.EnergyShift)

%endblock DFTU.Proj

• If DFTU.ProjectorGenerationMethod is 2, the syntax is as follows:
%block DFTU.Proj # Define DFTU projectors
Fe 2 # Label, l_shells
n=3 2 E 50.0 2.5 # n (opt if not using semicore levels),l,Softconf(opt)

5.00 0.35 # U(eV), J(eV) for this shell
2.30 0.15 # rc (Bohr), \omega(Bohr) (Fermi cutoff function)
0.95 # scaleFactor (opt)
0 # l
1.00 0.05 # U(eV), J(eV) for this shell
0.00 0.00 # rc(Bohr), \omega(Bohr) (if 0 r_c from DFTU.CutoffNorm

%endblock DFTU.Proj # and \omega from default value)

Certain of the quantites have default values:
U 0.0 eV
J 0.0 eV
ω 0.05 Bohr

Scale factor 1.0
rc depends on DFTU.EnergyShift or DFTU.CutoffNorm depending on the generation
method.

DFTU.FirstIteration false (logical)
If true, local populations are calculated and Hubbard-like term is switch on in the first iteration.

145

Useful if restarting a calculation reading a converged or an almost converged density matrix
from file.

DFTU.ThresholdTol 0.01 (real)
Local populations only calculated and/or updated if the change in the density matrix elements
(dDmax) is lower than DFTU.ThresholdTol.

DFTU.PopTol 0.001 (real)
Convergence criterium for the DFT+U local populations. In the current implementation the
Hubbard-like term of the Hamiltonian is only updated (except for the last iteration) if the
variations of the local populations are larger than this value.

DFTU.PotentialShift false (logical)
If set to true, the value given to the U parameter in the input file is interpreted as a local
potential shift. Recording the change of the local populations as a function of this potential
shift, we can calculate the appropriate value of U for the system under study following the
methology proposed by Cococcioni and Gironcoli in Phys. Rev. B 71, 035105 (2005).

9 RT-TDDFT

Now it is possible to perform Real-Time Time-Dependent Density Functional Theory (RT-TDDFT)-
based calculations using the SIESTA method. This section includes a brief introduction to the
TDDFT method and implementation, shows how to run the TDDFT-based calculations, and pro-
vides a reference guide to the additional input options.

9.1 Brief description

The basic features of the TDDFT have been implemented within the SIESTA code. Most of the
details can be found in the paper Phys. Rev. B 66 235416 (2002), by A. Tsolakidis, D. Sánchez-
Portal and, Richard M. Martin. However, the practical implementation of the present version is very
different from the initial version. The present implementation of the TDDFT has been programmed
with the primary aim of calculating the optical response of clusters and solids, however, it has been
successfully used to calculate the electronic stopping power of solids as well.
For the calculation of the optical response of the electronic systems a perturbation to the system
is applied at time step 0, and the system is allowed to reach a self-consistent solution. Then, the
perturbation is switched off for all subsequent time steps, and the electrons are allowed to evolve
according to time-dependent Kohn-Sham equations. For the case of a cluster the perturbation is
a finite (small) electric field. For the case of bulk material (not yet fully implemented) the initial
perturbation is different but the main strategy is similar.
The present version of the RT-TDDFT implementation is also capable of performing a simultaneous
dynamics of electrons and ions but this is limited to the cases in which forces on the ions are within
ignorable limit.
The general working scheme is as following. First, the system is allowed to reach a self-consistent
solution for some initial conditions (for example an initial ionic configuration or an applied external
field). The occupied Kohn-Sham orbitals (KSOs) are then selected and stored in memory. The

146

occupied KSOs are then made to evolve in time, and the Hamiltonian is recalculated for each time
step.

9.2 Partial Occupations

This is a note of caution. This implementation of RT-TDDFT can not propagate partially occupied
orbitals. While partial occupation of states is a common occurrence, they must be avoided. The
issue of partially occupied states becomes, particularly, tricky when dealing with metals and k-point
sampling at the same time. The code tries to detect partial occupations and stops during the first
run but it is not guarantied. Consequently, it can lead to additional or missing charge. Ultimately
it is users’ responsibility to make sure that the system has no partial occupations and missing or
added charge. There are different ways to avoid partial occupations depending on the system and
simulation parameters; for example changing spin-polarization and/or adding some k-point shift to
k-points.

9.3 Input options for RT-TDDFT

A TDDFT calculation requires two runs of SIESTA. In the first run with appropriate flags it cal-
culates the self-consistent initial state, i.e., only occupied initial KSOs stored in SystemLabel.TDWF
file. The second run uses this file and the structure file SystemLabel.TDXV as input and evolves the
occupied KSOs.

TDED.WF.Initialize false (logical)
If set to true in a standard self-consistent SIESTA calculation, it makes the program save the
KSOs after reaching self-consistency. This constitutes the first run.

TDED.Nsteps 1 (integer)
Number of electronic time steps between each atomic movement. It can not be less than 1.

TDED.TimeStep 0.001 fs (time)
Length of time for each electronic step. The default value is only suggestive. Users must
determine an appropriate value for the electronic time step.

TDED.Extrapolate false (logical)
An extrapolated Hamiltonian is applied to evolve KSOs for TDED.Extrapolate.Substeps
number of substeps within a sinlge electronic step without re-evaluating the Hamiltonian.

TDED.Extrapolate.Substeps 3 (integer)
Number of electronic substeps when an extrapolated Hamiltonian is applied to propogate the
KSOs. Effective only when TDED.Extrapolate set to be true.

TDED.Inverse.Linear true (logical)
If true the inverse of matrix

S + iH(t)dt

2 (26)

is calculated by solving a system of linear equations which implicitly multiplies the inverted
matrix to the right hand side matrix. The alternative is explicit inversion and multiplication.
The two options may differ in performance.

147

TDED.WF.Save false (logical)
Option to save wavefunctions at the end of a simulation for a possible restart or analysis. Wave-
functions are saved in file SystemLabel.TDWF. A TDED restart requires SystemLabel.TDWF,
SystemLabel.TDXV, and SystemLabel.VERLET_RESTART from the previous run. The first step
of the restart is same as the last of the previous run.

TDED.Write.Etot true (logical)
If true the total energy for every time step is stored in the file SystemLabel.TDETOT.

TDED.Write.Dipole false (logical)
If true a file SystemLabel.TDDIPOL is created that can be further processed to calculate po-
larizability.

TDED.Write.Eig false (logical)
If true the quantities ⟨ϕ(t)|H(t)|ϕ(t)⟩ in every time step are calculated and stored in the file
SystemLabel.TDEIG. This is not trivial, hence can increase computational time.

TDED.Saverho false (logical)
If true the instantaneous time-dependent density is saved to <istep>.TDRho after every
TDED.Nsaverho number of steps.

TDED.Nsaverho 100 (integer)
Fixes the number of steps of ion-electron dynamics after which the instantaneous time-dependent
density is saved. May require a lot of disk space.

10 External control of SIESTA

Since SIESTA 4.1 an additional method of controlling the convergence and MD of SIESTA is
enabled through external scripting capability. The external control comes in two variants:

• Implicit control of MD through updating/changing parameters and optimizing forces. For
instance one may use a Verlet MD method but additionally update the forces through some
external force-field to amend limitations by the Verlet method for your particular case. In
the implicit control the molecular dynamics is controlled by SIESTA.

• Explicit control of MD. In this mode the molecular dynamics must be controlled in the external
Lua script and the convergence of the geometry should also be controlled via this script.

The implicit control is in use if MD.TypeOfRun is something other than lua, while if the option
is lua the explicit control is in use.
For examples on the usage of the Lua scripting engine and the power you may find the library
flos7, see https://github.com/siesta-project/flos. At the time of writing the flos library
already implements new geometry/cell relaxation schemes and new force-constants algorithms. You
are highly encouraged to use the new relaxation schemes as they may provide faster convergence of
the relaxation.

7This library is implemented by Nick R. Papior to further enhance the inter-operability with SIESTA and external
contributions.

148

https://github.com/siesta-project/flos

Lua.Script 〈none〉 (file)
Specify a Lua script file which may be used to control the internal variables in SIESTA. Such
a script file must contain at least one function named siesta_comm with no arguments.
An example file could be this (note this is Lua code):

-- This function (siesta_comm) is REQUIRED
function siesta_comm()

-- Define which variables we want to retrieve from SIESTA
get_tbl = {"geom.xa", "E.total"}

-- Signal to SIESTA which variables we want to explore
siesta.receive(get_tbl)

-- Now we have the required variables,
-- convert to a simpler variable name (not nested tables)
-- (note the returned quantities are in SIESTA units (Bohr, Ry)
xa = siesta.geom.xa
Etot = siesta.E.total

-- If we know our energy is wrong by 0.001 Ry we may now
-- change the total energy
Etot = Etot - 0.001

-- Return to SIESTA the total energy such that
-- it internally has the "correct" energy.

siesta.E.total = Etot
ret_tbl = {"E.total"}

siesta.send(ret_tbl)

end

Within this function there are certain states which defines different execution points in SIESTA:

Initialization This is right after SIESTA has read the options from the FDF file. Here you
may query some of the FDF options (and even change them) for your particular problem.
NOTE: siesta.state == siesta.INITIALIZE.

Initialize-MD Right before the SCF step starts. This point is somewhat superfluous, but is
necessary to communicate the actual meshcutoff used8.
NOTE: siesta.state == siesta.INIT_MD.

SCF Right after SIESTA has calculated the output density matrix, and just after SIESTA has
performed mixing.
NOTE: siesta.state == siesta.SCF_LOOP.

Forces This stage is right after SIESTA has calculated the forces.
NOTE: siesta.state == siesta.FORCES.

Move This state will only be reached if MD.TypeOfRun is lua.
8Remember that the Mesh.Cutoff defined is the minimum cutoff used.

149

If one does not return updated atomic coordinates SIESTA will reuse the same geometry as
just analyzed.
NOTE: siesta.state == siesta.MOVE.

After-move Right after determining the atomic coordinates for the next step. Therefore, this
is the first thing that is done with the new atomic coordinates.
NOTE: siesta.state == siesta.AFTER_MOVE.

Analysis Just before SIESTA completes and exits.
NOTE: siesta.state == siesta.ANALYSIS.

Beginning with implementations of Lua scripts may be cumbersome. It is recommended to
start by using flos, see https://github.com/siesta-project/flos which contains several
examples on how to start implementing your own scripts. Currently flos implements a larger
variety of relaxation schemes, for instance:

local flos = require "flos"
LBFGS = flos.LBFGS()
function siesta_comm()

LBFGS:SIESTA(siesta)
end

which is the most minimal example of using the L-BFGS algorithm for geometry relax-
ation. Note that flos reads the parameters MD.MaxDispl and MD.MaxForceTol through
SIESTA automatically.
NOTE: The number of available variables continues to grow and to find which quantities are
accessible in Lua you may add this small code in your Lua script:

siesta.print_allowed()

which prints out a list of all accessible variables (note they are not sorted).
If there are any variables you require which are not in the list, please contact the developers.
If you want to stop SIESTA from Lua you can use the following:

siesta.Stop = true
siesta.send({"Stop"})

which will abort SIESTA.
Remark that since anything may be changed via Lua one may easily make SIESTA crash due to
inconsistencies in the internal logic. This is because SIESTA does not check what has changed,
it accepts everything as is and continues. Hence, one should be careful what is changed.

Lua.Debug false (logical)
Debug the Lua script mode by printing out (on stdout) information everytime SIESTA com-
municates with Lua.

Lua.Debug.MPI false (logical)
Debug all nodes (if in a parallel run).

Lua.Interactive false (logical)
Start an interactive Lua session at all the states in the program and ask for user-input. This is
primarily intended for debugging purposes. The interactive session is executed just before the
siesta_comm function call (if the script is used).

150

https://github.com/siesta-project/flos

For serial runs siesta.send may be used. For parallel runs do not use siesta.send as the
code is only executed on the first MPI node.
There are various commands that are caught if they are the only content on a line:

/debug Turn on/off debugging information.

/show Show the currently collected lines of code.

/clear Clears the currently collected lines of code.

; Run the currently collected lines of code and continue collecting lines.

/run Same as ;.

/cont Run the currently collected lines of code and continue SIESTA.

/stop Run the currently collected lines of code and stop all future interactive Lua sessions.

Currently this only works if Lua.Script is having a valid Lua file (note the file may be empty).

10.1 Examples of Lua programs

Please look in the Tests/lua_* folders where examples of basic Lua scripts are found. Below is a
description of the * examples.

h2o Changes the mixing weight continuously in the SCF loop. This will effectively speed up con-
vergence time if one can attain the best mixing weight per SCF-step.

si111 Change the mixing method based on certain convergence criteria. I.e. after a certain conver-
gence one can switch to a more aggressive mixing method.

A combination of the above two examples may greatly improve convergence, however, creating a
generic method to adaptively change the mixing parameters may be very difficult to implement. If
you do create such a Lua script, please share it on the mailing list.

10.2 External MD/relaxation methods

Using the Lua interface allows a very easy interface for creating external MD and/or relaxation
methods.
A public library (flos, https://github.com/siesta-project/flos) already implements a wider
range of relaxation methods than intrinsically enabled in SIESTA. Secondly, by using external
scripting mechanisms one can customize the routines to a much greater extend while simultaneously
create custom constraints.
You are highly encouraged to try out the flos library (please note that flook is required, see
installation instructions above).

11 TRANSIESTA

SIESTA includes the possibility of performing calculations of electronic transport properties using
the TranSIESTA method. This Section describes how to use these capabilities, and a reference

151

https://github.com/siesta-project/flos

guide to the relevant fdf options. We describe here only the additional options available for Tran-
SIESTA calculations, while the rest of the SIESTA functionalities and variables are described in
the previous sections of this User’s Guide.
An accompanying Python toolbox is available which will assist with TranSIESTA calculations.
Please use (and cite) sisl [15].

11.1 Source code structure

In this implementation, the TranSIESTA routines have been grouped in a set of modules whose
file names begin with m_ts or ts.

11.2 Compilation

Prior to SIESTA 4.1 TranSIESTA was a separate executable. Now TranSIESTA is fully incor-
porated into SIESTA. Only compile SIESTA and the full functionality is present. Sec. 2 for details
on compiling SIESTA.

11.3 Brief description

The TranSIESTA method is a procedure to solve the electronic structure of an open system
formed by a finite structure sandwiched between semi-infinite metallic leads. A finite bias can be
applied between leads, to drive a finite current. The method is described in detail in Brandbyge
et al. [4]; Papior et al. [13]. In practical terms, calculations using TranSIESTA involve the solution of
the electronic density from the DFT Hamiltonian using Greens functions techniques, instead of the
usual diagonalization procedure. Therefore, TranSIESTA calculations involve a SIESTA run, in
which a set of routines are invoked to solve the Greens functions and the charge density for the open
system. These routines are packed in a set of modules, and we will refer to it as the ’TranSIESTA
module’ in what follows.
TranSIESTA was originally developed by Mads Brandbyge, José-Luis Mozos, Pablo Ordejón,
Jeremy Taylor and Kurt Stokbro [4]. It consisted, mainly, in setting up an interface between SIESTA
and the (tight-binding) transport codes developed by M. Brandbyge and K. Stokbro. Initially ev-
erything was written in Fortran-77. As SIESTA started to be translated to Fortran-90, so were the
TranSIESTA parts of the code. This was accomplished by José-Luis Mozos, who also worked on
the parallelization of TranSIESTA. Subsequently Frederico D. Novaes extended TranSIESTA to
allow k-point sampling for transverse directions. Additional extensions was added by Nick R. Papior
during 2012.
The current TranSIESTA module has been completely rewritten by Nick R. Papior and encompass
highly advanced inversion algorithms as well as allowing N ≥ 1 electrode setups among many new
features. Furthermore, the utility TBtrans has also been fully re-coded (by Nick R. Papior) to be
a generic tight-binding code capable of analyzing physics from the Greens function perspective in
N ≥ 1 setups [13].

• Transport calculations involve electrode (EL) calculations, and subsequently the Scattering
Region (SR) calculation. The electrode calculations are usual SIESTA calculations, but where

152

files SystemLabel.TSHS, and optionally SystemLabel.TSDE, are generated. These files contain
the information necessary for calculation of the self-energies. If any electrodes have identical
structures (see below) the same files can and should be used to describe those. In general,
however, electrodes can be different and therefore two different SystemLabel.TSHS files must
be generated. The location of these electrode files must be specified in the fdf input file of
the SR calculation, see TS.Elec.<>.HS.

• For the SR, TranSIESTA starts with the usual SIESTA procedure, converging a Density
Matrix (DM) with the usual Kohn-Sham scheme for periodic systems. It uses this solution
as an initial input for the Greens function self consistent cycle. Effectively you will start a
TranSIESTA calculation from a fully periodic calculation. This is why the 0 V calculation
should be the only calculation where you start from SIESTA.
TranSIESTA stores the SCF DM in a file named SystemLabel.TSDE. In a rerun of the same
system (meaning the same SystemLabel), if the code finds a SystemLabel.TSDE file in the
directory, it will take this DM as the initial input and this is then considered a continua-
tion run. In this case it does not perform an initial SIESTA run. It must be clear that
when starting a calculation from scratch, in the end one will find both files, SystemLabel.DM
and SystemLabel.TSDE. The first one stores the SIESTA density matrix (periodic boundary
conditions in all directions and no voltage), and the latter the TranSIESTA solution.

• When performing several bias calculations, it is heavily advised to run different bias’ in dif-
ferent directories. To drastically improve convergence (and throughput) one should copy the
SystemLabel.TSDE from the closest, previously, calculated bias to the current bias.

• The SystemLabel.TSDE may be read equivalently as the SystemLabel.DM. Thus, it may be
used by fx. denchar to analyze the non-equilibrium charge density. Alternatively one can use
sisl [15] to interpolate the DM and EDM to speed up convergence.

• As in the case of SIESTA calculations, what TranSIESTA does is to obtain a converged DM,
but for open boundary conditions and possibly a finite bias applied between electrodes. The
corresponding Hamiltonian matrix (once self consistency is achieved) of the SR is also stored in
a SystemLabel.TSHS file. Subsequently, transport properties are obtained in a post-processing
procedure using the TBtrans code (located in the Util/TS/TBtrans directory). We note that
the SystemLabel.TSHS files contain all the needed structural information (atomic positions,
matrix elements, . . .), and so the input (fdf) flags for the geometry and basis have no influence
of the subsequent TBtrans calculations.

• When the non-equilibrium calculation uses different electrodes one should use so-called buffer
atoms behind the electrodes to act as additional screening regions when calculating the initial
guess (using SIESTA) for TranSIESTA. Essentially they may be used to achieve a better
“bulk-like” environment at the electrodes in the SR calculation.

• An important parameter is the lower bound of the energy contours. It is a good practice, to
start with a SIESTA calculation for the SR and look at the eigenvalues of the system. The
lower bound of the contours must be well below the lowest eigenvalue.

• Periodic boundary conditions are assumed in 2 cases.

1. For NE ̸= 2 all lattice vectors are periodic, users must manually define
TS.kgrid.MonkhorstPack

153

2. For NE = 2 TranSIESTA will auto-detect if both electrodes are semi-infinite along the
same lattice vector. If so, only 1 k point will be used along that lattice vector.

• The default algorithm for matrix inversion is the BTD method, before starting a TranSIESTA
calculation please run with the analyzation step TS.Analyze (note this is very fast and can
be done on any desktop computer, regardless of system size).

• Importantly(!) the k-point sampling need typically be much higher in a TBtrans calculation
to achieve a converged transmission function.

• Energies from TranSIESTA are not to be trusted since the open boundaries complicates
the energy calculation. Therefore care needs to be taken when comparing energies between
different calculations and/or different bias’.

• Always ensure that charges are preserved in the scattering region calculation. Doing the SCF
an output like the following will be shown:

ts-q: D E1 C1 E2 C2 dQ
ts-q: 436.147 392.146 3.871 392.146 3.871 7.996E-3

Always ensure the last column (dQ) is a very small fraction of the total number of electrons.
Ideally this should be 0. For 0 bias calculations this should be very small, typically less than
0.1 % of the total charge in the system. If this is not the case, it probably means that there
is not enough screening towards the electrodes which can be solved by adding more electrode
layers between the electrode and the scattering region. This layer thickness is very important
to obtain a correct open boundary calculation.

• Do not perform TranSIESTA calculations using semi-conducting electrodes. The basic
premise of TranSIESTA calculations is that the electrodes behave like bulk in the electrode
regions of the SR. This means that the distance between the electrode and the perturbed must
equal the screening length of the electrode.
This is problematic for semi-conducting systems since they intrinsically have a very long screen-
ing length.
In addition, the Fermi-level of semi-conductors are not well-defined since it may be placed
anywhere in the band gap.

11.4 Electrodes

To calculate the electronic structure of a system under external bias, TranSIESTA attaches the
system to semi-infinite electrodes which extend to their respective semi-infinite directions. Examples
of electrodes would include surfaces, nanowires, nanotubes or fully infinite regions. The electrode
must be large enough (in the semi-infinite direction) so that orbitals within the unit cell only interact
with a single nearest neighbor cell in the semi-infinite direction (the size of the unit cell can thus be
derived from the range of support for the orbital basis functions). TranSIESTA will stop if this
is not enforced. The electrodes are generated by a separate TranSIESTA run on a bulk system.
This implies that the proper bulk properties are obtained by a sufficiently high k-point sampling.
If in doubt, use 100 k-points along the semi-infinite direction. The results are saved in a file with
extension SystemLabel.TSHS which contains a description of the electrode unit cell, the position
of the atoms within the unit cell, as well as the Hamiltonian and overlap matrices that describe

154

the electronic structure of the lead. One can generate a variety of electrodes and the typical use
of TranSIESTA would involve reusing the same electrode for several setups. At runtime, the
TranSIESTA coordinates are checked against the electrode coordinates and the program stops
if there is a mismatch to a certain precision (10−4 Bohr). Note that the atomic coordinates are
compared relatively. Hence the input atomic coordinates of the electrode and the device need not
be the same (see e.g. the tests in the Tests directory.
To run an electrode calculation one should do:

siesta --electrode RUN.fdf

or define these options in the electrode fdf files: TS.HS.Save and TS.DE.Save to true (the above
–electrode is a shorthand to forcefully define the two options).

11.4.1 Matching coordinates

Here are some rules required to successfully construct the appropriate coordinates of the scattering
region. Contrary to versions prior to 4.1, the order of atoms is largely irrelevant. One may define
all electrodes, then subsequently the device, or vice versa. Similarly, buffer atoms are not restricted
to be the first/last atoms.
However, atoms in any given electrode must be consecutive in the device file. I.e. if an electrode
input option is given by:

%block TS.Elec.<>
HS ../elec-<>/siesta.TSHS
bloch 1 3 1
used-atoms 4
electrode-position 10
...

%endblock

then the atoms from 10 to 10 + 4 ∗ 3− 1 must coincide with the atoms of the calculation performed
in the ../elec-<>/ subdirectory. The above options will be discussed in the following section.
When using the Bloch expansion (highly recommended if your system allows it) it is advised to
follow the tiling method. However both of the below sequences are allowed.

Tile Here the atoms are copied and displaced by the full electrode. Generally this expansion should
be preferred over the repeat expansion due to much faster execution.

iaD = 10 ! as per the above input option
do iC = 0 , nC - 1
do iB = 0 , nB - 1
do iA = 0 , nA - 1

do iaE = 1 , na_u
xyz_device(:, iaD) = xyz_elec(:, iaE) + &

cell_elec(:, 1) * iA + &
cell_elec(:, 2) * iB + &
cell_elec(:, 3) * iC

155

iaD = iaD + 1
end do

end do
end do
end do

By using sisl [15] one can achieve the tiling scheme by using the following command-line utility on
an input ELEC.fdf structure with the minimal electrode:

sgeom -tx 1 -ty 3 -tz 1 ELEC.fdf DEVICE_ELEC.fdf

Repeat Here the atoms are copied individually. Generally this expansion should not be used since
it is much slower than tiling.

iaD = 10 ! as per the above input option
do iaE = 1 , na_u

do iC = 0 , nC - 1
do iB = 0 , nB - 1
do iA = 0 , nA - 1

xyz_device(:, iaD) = xyz_elec(:, iaE) + &
cell_elec(:, 1) * iA + &
cell_elec(:, 2) * iB + &
cell_elec(:, 3) * iC

iaD = iaD + 1
end do
end do
end do

end do

By using sisl [15] one can achieve the repeating scheme by using the following command-line utility
on an input ELEC.fdf structure with the minimal electrode:

sgeom -rz 1 -ry 3 -rx 1 ELEC.fdf DEVICE_ELEC.fdf

11.4.2 Principal layer interactions

It is extremely important that the electrodes only interact with one neighboring supercell due to the
self-energy calculation [16]. TranSIESTA will print out a block as this (<> is the electrode name):

<> principal cell is perfect!

if the electrode is correctly setup and it only interacts with its neighboring supercell. In case the
electrode is erroneously setup, something similar to the following will be shown in the output file.

<> principal cell is extending out with 96 elements:
Atom 1 connects with atom 3
Orbital 8 connects with orbital 26
Hamiltonian value: |H(8,6587)|@R=-2 = 0.651E-13 eV
Overlap : S(8,6587)|@R=-2 = 0.00

156

It is imperative that you have a perfect electrode as otherwise nonphysical results will occur. This
means that you need to add more layers in your electrode calculation (and hence also in your
scattering region). An example is an ABC stacking electrode. If the above error is shown one has
to create an electrode with ABCABC stacking in order to retain periodicity.
By default TranSIESTA will die if there are connections beyond the principal cell. One may control
whether this is allowed or not by using TS.Elecs.Neglect.Principal.

11.5 Convergence of electrodes and scattering regions

For successful TranSIESTA calculations it is imperative that the electrodes and scattering regions
are well-converged. The basic principle is equivalent to the SIESTA convergence, see Sec. 6.9.
The steps should be something along the line of (only done at 0 V).

1. Converge electrodes and find optimal Mesh.Cutoff , kgrid.MonkhorstPack etc.
Electrode k points should be very high along the semi-infinite direction. The default is 100,
but at least > 50 should easily be reachable.

2. Use the parameters from the electrodes and also converge the same parameters for the scat-
tering region SCF.
This is an iterative process since the scattering region forces the electrodes to use equivalent
k points (see TS.Elec.<>.check-kgrid).
Note that k points should be limited in the TranSIESTA run, see
TS.kgrid.MonkhorstPack.
One should always use the same parameters in both the electrode and scattering region cal-
culations, except the number of k points for the electrode calculations along their respective
semi-infinite directions.

3. Once TranSIESTA is completed one should also converge the number of k points for TB-
trans. Note that k point sampling in TBtrans should generally be much denser but always
fulfill NTranSIESTA

k ≥ NTBtrans
k

The converged parameters obtained at 0 V should be used for all subsequent bias calculations.
Remember to copy the SystemLabel.TSDE from the closest, previously, calculated bias for restart
and much faster convergence.
TranSIESTA is also more difficult to converge during the SCF steps. This may be due to several
interrelated problems:

• A too short screening distance between the scattering atoms and the electrode layers.

• In case buffer atoms (TS.Atoms.Buffer) are used with vacuum on the backside it may be
that there are too few buffer atoms to accurately screen off the vacuum region for a sufficiently
good initial guess. This effect is only true for 0 V calculations.

• The mixing parameters may need to be smaller than for SIESTA, see Sec. 6.9.2 and it is never
guaranteed that it will converge. It is always a trial and error method, there are no omnipotent
mixing parameters.

157

• Very high bias’ may be extremely difficult to converge. Generally one can force bias convergence
by doing smaller steps of bias. E.g. if problems arise at 0.5 V with an initial DM from a 0.25 V
calculation, one could try and 0.3 V first.

• If a particular bias point is hard to converge, even by doing the previous step, it may be related
to an eigenstate close to the chemical potentials of either electrode (e.g. a molecular eigenstate
in the junction). In such cases one could try an even higher bias and see if this converges more
smoothly.

11.6 NEGF equations

The options available for TranSIESTA will impact how the calculation is performed. It is vital
that the users carefully read this section and the options that refer to these.
The NEGF equation are primarily concerning the Green function:

G(E) =
[
(E + iη)S−H−

∑
e

Σe(E). (27)

The electrode self-energy is calculated from the bulk electrode calculation

Σe(E)←
{
He, Se

}
. (28)

TranSIESTA has options to discern which Hamiltonian elements can be used in which parts of the
calculation. Default is that the electrode matrices (He, Se) are used whenever the electrode enters a
matrix. Lets show a partitioning of the Green function for a particular electrode (z = E + iη)

G(z) =

 Me,e Me,D . . .
MD,e MD,D

... . . .


−1

=

(z + µelec)Se −He −Σe(E) zSe,D −He,D . . .
zSD,e −HD,e zSD −HD

... . . .


−1

. (29)

The following options alter the above equation slightly:

• TS.Elec.<>.Bulk

• TS.Elec.<>.Eta

• TS.Elec.<>.chemical-potential

• TS.Elec.<>.V-fraction (experts only!)

• TS.Elec.<>.delta-Ef (experts only!)

11.7 TranSIESTA Options

The fdf options shown here are only to be used at the input file for the scattering region. When using
TranSIESTA for electrode calculations, only the usual SIESTA options are relevant. Note that
since TranSIESTA is a generic NE electrode NEGF code the input options are heavily changed
compared to versions prior to 4.1.

158

11.7.1 Quick and dirty

Since 4.1, TranSIESTA has been fully re-implemented. And so have every input fdf-flag. To
accommodate an easy transition between previous input files and the new version format a small
utility called ts2ts. It may be compiled in Util/TS/ts2ts. It is recommended that you use this
tool if you are familiar with previous TranSIESTA versions.
One may input options as in the old TranSIESTA version and then run

ts2ts OLD.fdf > NEW.fdf

which translates all keys to the new, equivalent, input format. If you are familiar with the old-style
flags this is highly recommendable while becoming comfortable with the new input format. Please
note that some defaults have changed to more conservative values in the newer release.
If one does not know the old flags and wish to get a basic example of an input file, a script
Util/TS/tselecs.sh exists that can create the basic input for NE electrodes. One may call it
like:

tselecs.sh -2 > TWO_ELECTRODE.fdf
tselecs.sh -3 > THREE_ELECTRODE.fdf
tselecs.sh -4 > FOUR_ELECTRODE.fdf
...

where the first call creates an input fdf for 2 electrode setups, the second for a 3 electrode setup,
and so on. See the help (-h) for the program for additional options.
Before endeavoring on large scale calculations you are advised to run an analyzation of the system
at hand, you may run your system as

siesta -fdf TS.Analyze RUN.fdf > analyze.out

which will analyze the sparsity pattern and print out several different pivoting schemes. Please see
TS.Analyze for more information.

11.7.2 General options

One have to set SolutionMethod to transiesta to enable TranSIESTA.

TS.SolutionMethod btd|mumps|full (string)
Control the algorithm used for calculating the Green function. Generally the BTD method is
the fastest and this option need not be changed.

BTD Use the block-tri-diagonal algorithm for matrix inversion.
This is generally the recommended method.

MUMPS Use sparse matrix inversion algorithm (MUMPS). This requires TranSIESTA to be
compiled with MUMPS.

full Use full matrix inversion algorithm (LAPACK). Generally only usable for debugging pur-
poses.

159

TS.Voltage 0 eV (energy)
Define the reference applied bias. For NE = 2 electrode calculations this refers to the actual
potential drop between the electrodes, while for NE ̸= 2 this is a reference bias. In the latter
case it must be equivalent to the maximum difference between the chemical potential of any
two electrodes.
NOTE: Specifying -V on the command-line overwrites the value in the fdf file.

%block TS.kgrid.MonkhorstPack 〈kgrid.MonkhorstPack〉 (block)
k points used for the TranSIESTA calculation.
For NE ̸= 2 this should always be defined. Always take care to use only 1 k point along non-
periodic lattice vectors. An electrode semi-infinite region is considered non-periodic since it is
integrated out through the self-energies.
This defaults to kgrid.MonkhorstPack.

TS.Atoms.Buffer 〈None〉 (block/list)
Specify atoms that will be removed in the TranSIESTA SCF. They are not considered in the
calculation and may be used to improve the initial guess for the Hamiltonian.
An intended use for buffer atoms is to ensure a bulk behavior in the electrode regions when
electrodes are different. As an example: a 2 electrode calculation with left consisting of Au
atoms and the right consisting of Pt atoms. In such calculations one cannot create a periodic
geometry along the transport direction. One needs to add vacuum between the Au and Pt
atoms that comprise the electrodes. However, this creates an artificial edge of the electrostatic
environment for the electrodes since in SIESTA there is vacuum, whereas in TranSIESTA
the effective Hamiltonian sees a bulk environment. To ensure that SIESTA also exhibits a
bulk environment on the electrodes we add buffer atoms towards the vacuum region to screen
off the electrode region. These buffer atoms is thus a technicality that has no influence on the
TranSIESTA calculation but they are necessary to ensure the electrode bulk properties.
The above discussion is even more important when doing NE-electrode calculations.
NOTE: all lines are additive for the buffer atoms and the input method is similar to that of
Geometry.Constraints for the atom line(s).

%block TS.Atoms.Buffer
atom [1 -- 5]

%endblock
Or equivalently as a list
TS.Atoms.Buffer [1 -- 5]

will remove atoms [1–5] from the calculation.

TS.ElectronicTemperature 〈ElectronicTemperature〉 (energy)
Define the temperature used for the Fermi distributions for the chemical potentials. See
TS.ChemPot.<>.ElectronicTemperature.

TS.SCF.DM.Tolerance 〈SCF.DM.Tolerance〉 (real)
depends on: SCF.DM.Tolerance, SCF.DM.Converge

The density matrix tolerance for the TranSIESTA SCF cycle.

TS.SCF.H.Tolerance 〈SCF.H.Tolerance〉 (energy)
depends on: SCF.H.Tolerance, SCF.H.Converge

160

The Hamiltonian tolerance for the TranSIESTA SCF cycle.

TS.SCF.dQ.Converge true (logical)
Whether TranSIESTA should check whether the total charge is within a provided tolerance,
see TS.SCF.dQ.Tolerance.

TS.SCF.dQ.Tolerance Q(device) · 10−3 (real)
depends on: TS.SCF.dQ.Converge

The charge tolerance during the SCF.
The charge is not stable in TranSIESTA calculations and this flag ensures that one does not,
by accident, do post-processing of files where the charge distribution is completely wrong.
A too high tolerance may heavily influence the electrostatics of the simulation.
NOTE: Please see TS.dQ for ways to reduce charge loss in equilibrium calculations.

TS.SCF.Initialize diagon|transiesta (string)
Control which initial guess should be used for TranSIESTA. The general way is the diagon
solution method (which is preferred), however, one can start a TranSIESTA run immediately.
If you start directly with TranSIESTA please refer to these flags: TS.Elecs.DM.Init and
TS.Fermi.Initial.
NOTE: Setting this to transiesta is highly experimental and convergence may be extremely
poor.

TS.Fermi.Initial
∑NE

i Ei
F /NE (energy)

Manually set the initial Fermi level to a predefined value.
NOTE: this may also be used to change the Fermi level for calculations where you restart
calculations. Using this feature is highly experimental.

TS.Weight.Method orb-orb|[[un]correlated+][sum|tr]-atom-[atom|orb]|mean (string)
Control how the NEGF weighting scheme is conducted. Generally one should only use the
orb-orb while the others are present for more advanced usage. They refer to how the weighting
coefficients of the different non-equilibrium contours are performed. In the following the weight
are denoted in a two-electrode setup while they are generalized for multiple electrodes.
Define the normalised geometric mean as ∝|| via

w
||
∝⟨·L⟩ ≡ ⟨·L⟩

⟨·L⟩+ ⟨·R⟩ . (30)

When applying a bias, TranSIESTA will printout the following during the SCF cycle:
ts-err-D: ij(447, 447), M = 1.8275, ew = -.257E-2, em = 0.258E-2. avg_em = 0.542E-06
ts-err-E: ij(447, 447), M = -6.7845, ew = 0.438E-3, em = -.439E-3. avg_em = -.981E-07
ts-w-q: qP1 qP2
ts-w-q: 219.150 216.997
ts-q: D E1 C1 E2 C2 dQ
ts-q: 436.147 392.146 3.871 392.146 3.871 7.996E-3

The extra output corresponds to fine details in the integration scheme.

ts-err-* are estimated error outputs from the different integrals, for the density matrix
(D) and the energy density matrix (E), see Eq. (12) in [13]. All values (except avg_em)
are for the given orbital site

161

ij(A,B) refers to the matrix element between orbital A and B

M is the weighted matrix element value,
∑

e weρ
e

ew is the maximum difference between
∑

e weρ
e − ρe for all e.

em is the maximum difference between ρe′ − ρe for all combinations of e and e′.
avg_em is the averaged difference of em for all orbital sites.

ts-w-q is the Mulliken charge from the different integrals: Tr[weρ
eS]

orb-orb Weight each orbital-density matrix element individually.

tr-atom-atom Weight according to the trace of the atomic density matrix sub-blocks

wTr
ij

||
∝

√∑
∈{i}

(∆ρL
µµ)2

∑
∈{j}

(∆ρL
µµ)2 (31)

tr-atom-orb Weight according to the trace of the atomic density matrix sub-block times the
weight of the orbital weight

wTr
ij,µν

||
∝

√
wTr

ij wij,µν (32)

sum-atom-atom Weight according to the total sum of the atomic density matrix sub-blocks

wΣ
ij,µν

||
∝

√∑
∈{i}

(∆ρL
µν)2

∑
∈{j}

(∆ρL
µν)2 (33)

sum-atom-orb Weight according to the total sum of the atomic density matrix sub-block times
the weight of the orbital weight

wΣ
ij,µν

||
∝

√
wΣ

ijwij,µν (34)

mean A standard average.

Each of the methods (except mean) comes in a correlated and uncorrelated variant where
∑

is either outside or inside the square, respectively.

TS.Weight.k.Method correlated|uncorrelated (string)
Control weighting per k-point or the full sum. I.e. if uncorrelated is used it will weight nk

times if there are nk k-points in the Brillouin zone.

TS.Forces true (logical)
Control whether the forces are calculated. If not TranSIESTA will use slightly less memory
and the performance slightly increased, however the final forces shown are incorrect.
If this is true the file SystemLabel.TSFA (and possibly the SystemLabel.TSFAC) will be cre-
ated. They contain forces for the atoms that are having updated density-matrix elements
(TS.Elec.<>.DM-update all).
Generally one should not expect good forces close to the electrode/device interface since this
typically has some electrostatic effects that are inherent to the TranSIESTA method. Forces
on atoms far from the electrode can safely be analyzed.

162

TS.dQ none|buffer|fermi (string)
Any excess/deficiency of charge can be re-adjusted after each TranSIESTA cycle to reduce
charge fluctuations in the cell.
NOTE: recommended to only use charge corrections for 0 V calculations.
The non-neutral charge in TranSIESTA cycles is an expression of one of the following things:

1. An incorrect screening towards the electrodes. To check this, simply add more electrode
layers towards the device at each electrode and see how the charge evolves. It should tend
to zero.
The best way to check this is to follow these steps:
(a) Perform a SIESTA-only calculation (the resulting DM should be used as the starting

point for both following calculations)
(b) Perform a TranSIESTA calculation with the option TS.Elecs.DM.Init diagon

(please note that the electrode option has precedence, so remove any entry from the
TS.Elec.<> block)

(c) Perform a TranSIESTA calculation with the option TS.Elec.<>.DM-init bulk
(please note that the electrode option has precedence, so remove any entry from the
TS.Elec.<> block)

Now compare the final output and the initial charge distribution, e.g.:
>>> TS.Elecs.DM.Init diagon
transiesta: Charge distribution, target = 396.00000
Total charge [Q] : 396.00000

>>> TS.Elecs.DM.Init bulk
transiesta: Charge distribution, target = 396.00000
Total charge [Q] : 395.9995

The above shows that there is very little charge difference between the bulk electrode DM
and the scattering region. This ensures that the charge distribution are similar and that
your electrode is sufficiently screened.
Additionally one may compare the final output such as total energies, calculated DOS
and ADOS (see TBtrans). If the two calculations show different properties, one should
carefully examine the system setup.

2. An incorrect reference energy level. In TranSIESTA the Fermi level is calculated from
the SIESTA SCF. However, the SIESTA Fermi level corresponds to a periodic calculation
and not an open system calculation such as NEGF.
If the first step shows a good screening towards the electrode it is usually the reference
energy level, then use TS.dQ fermi.

3. A combination of the above, this is the typical case.

none No charge corrections are introduced.

buffer Excess/missing electrons are placed in the buffer regions (buffer atoms are required to
exist)

fermi Correct the charge filling by calculating a new reference energy level (referred to as the
Fermi level).

163

We approximate the contribution to be constant around the Fermi level and find

dEF = Q′ −Q

Q|EF

, (35)

where Q′ is the charge from a TranSIESTA SCF step and Q|EF
is the equilibrium charge at

the current Fermi level, Q is the supposed charge to reside in the calculation. Fermi correction
utilizes Eq. (35) for the first correction and all subsequent corrections are based on a cubic
spline interpolation to faster converge the “correct” Fermi level.
This method will create a file called TS_FERMI.
NOTE: correcting the reference energy level is a costly operation since the SCF cycle typically
gets corrupted resulting in many more SCF cycles.

TS.dQ.Factor 0.8 (real)
Any positive value close to 1. 0 means no charge correction. 1 means total charge correction.
This will reduce the fluctuations in the SCF and setting this to 1 may result in difficulties in
converging.

TS.dQ.Fermi.Tolerance 0.01 (real)
The tolerance at which the charge correction will converge. Any excess/missing charge (|Q′ −
Q| > Tol) will result in a correction for the Fermi level.

TS.dQ.Fermi.Max 1.5 eV (energy)
The maximally allowed value that the Fermi level will change from a charge correction using
the Fermi correction method. In case the Fermi level lies in between two bands a DOS of 0 at
the Fermi level will make the Fermi change equal to ∞. This is not physical and the user can
thus truncate the correction.
NOTE: If you know the band-gab, setting this to 1/4 (or smaller) of the band gab seems like
a better value than the rather arbitrarily default one.

TS.dQ.Fermi.Eta 1 meV (energy)
The η value that we extrapolate the charge at the poles to. Usually a smaller η value will mean
larger changes in the Fermi level. If the charge convergence w.r.t. the Fermi level is fluctuating
a lot one should increase this η value.

TS.HS.Save true (logical)
Must be true for saving the Hamiltonian (SystemLabel.TSHS). Can only be set if Solution-
Method is not transiesta.
The default is false for SolutionMethod different from transiesta and if –electrode has
not been passed as a command line argument.

TS.DE.Save true (logical)
Must be true for saving the density and energy density matrix for continuation runs
(SystemLabel.TSDE). Can only be set if SolutionMethod is not transiesta.
The default is false for SolutionMethod different from transiesta and if –electrode has
not been passed as a command line argument.

TS.S.Save false (logical)

164

This is a flag mainly used for the Inelastica code to produce overlap matrices for Pulay correc-
tions. This should only be used by advanced users.

TS.SIESTA.Only false (logical)
Stop TranSIESTA right after the initial diagonalization run in SIESTA. Upon exit it will
also create the SystemLabel.TSDE file which may be used for initialization runs later.
This may be used to start several calculations from the same initial density matrix, and it
may also be used to rescale the Fermi level of electrodes. The rescaling is primarily used for
semi-conductors where the Fermi levels of the device and electrodes may be misaligned.

TS.Analyze false (logical)
When using the BTD solution method (TS.SolutionMethod) this will analyze the Hamilto-
nian and printout an analysis of the sparsity pattern for optimal choice of the BTD partitioning
algorithm.
This yields information regarding the TS.BTD.Pivot flag.
NOTE: we advice users to always run an analyzation step prior to actual calculation and
select the best BTD format. This analyzing step is very fast and may be performed on small
work-station computers, even on systems of ≫ 10, 000 orbitals.
To run the analyzing step you may do:

siesta -fdf TS.Analyze RUN.fdf > analyze.out

note that there is little gain on using MPI and it should complete within a few minutes, no
matter the number of orbitals.
Choosing the best one may be difficult. Generally one should choose the pivoting scheme that
uses the least amount of memory. However, one should also choose the method with the largest
block-size being as small as possible. As an example:

TS.BTD.Pivot atom+GPS
...

BTD partitions (7):
[2984, 2776, 192, 192, 1639, 4050, 105]

BTD matrix block size [max] / [average]: 4050 / 1705.429
BTD matrix elements in % of full matrix: 47.88707 %

TS.BTD.Pivot atom+GGPS
...

BTD partitions (6):
[2880, 2916, 174, 174, 2884, 2910]

BTD matrix block size [max] / [average]: 2916 / 1989.667
BTD matrix elements in % of full matrix: 48.62867 %

Although the GPS method uses the least amount of memory, the GGPS will likely perform
better as the largest block in GPS is 4050 vs. 2916 for the GGPS method.

TS.Analyze.Graphviz false (logical)
depends on: TS.Analyze

If performing the analysis, also create the connectivity graph and store it as GRAPHVIZ_atom.gv
or GRAPHVIZ_orbital.gv to be post-processed in Graphviz9.

9www.graphviz.org

165

www.graphviz.org

11.8 k-point sampling

The options for k-point sampling are identical to the SIESTA options, kgrid.MonkhorstPack,
kgrid.Cutoff or kgrid.File.
One may however use specific TranSIESTA k-points by using these options:

%block TS.kgrid.MonkhorstPack 〈kgrid.MonkhorstPack〉 (block)
See kgrid.MonkhorstPack for details.

TS.kgrid.Cutoff 0. Bohr (length)
See kgrid.Cutoff for details.

TS.kgrid.File none (string)
See kgrid.File for details.

11.8.1 Algorithm specific options

These options adhere to the specific solution methods available for TranSIESTA. For instance the
TS.BTD.* options adhere only when using TS.SolutionMethod BTD, similarly for options with
MUMPS.

TS.BTD.Pivot 〈first electrode〉 (string)
Decide on the partitioning for the BTD matrix. One may denote either atom+ or orb+ as a
prefix which does the analysis on the atomic sparsity pattern or the full orbital sparsity pattern,
respectively. If neither are used it will default to atom+.
Please see TS.Analyze.

<elec-name>|CG-<elec-name> The partitioning will be a connectivity graph starting from
the electrode denoted by the name. This name must be found in the TS.Elecs block. One
can append more than one electrode to simultaneously start from more than 1 electrode. This
may be necessary for multi-terminal calculations.

rev-CM Use the reverse Cuthill-McKee for pivoting the matrix elements to reduce bandwidth.
One may omit rev- to use the standard Cuthill-McKee algorithm (not recommended).
This pivoting scheme depends on the initial starting electrodes, append +<elec-name> to
start the Cuthill-McKee algorithm from the specified electrode(s).

GPS Use the Gibbs-Poole-Stockmeyer algorithm for reducing the bandwidth.

GGPS Use the generalized Gibbs-Poole-Stockmeyer algorithm for reducing the bandwidth.
NOTE: this algorithm does not work on dis-connected graphs.

PCG Use the perphiral connectivity graph algorithm for reducing the bandwidth.
This pivoting scheme may depend on the initial starting electrode(s), append +<elec-
name> to initialize the PCG algorithm from the specified electrode(s).

Examples are
TS.BTD.Pivot atom+GGPS
TS.BTD.Pivot GGPS

166

TS.BTD.Pivot orb+GGPS
TS.BTD.Pivot orb+PCG+Left

where the first two are equivalent. The 3rd and 4th are more heavy on analysis and will typically
not improve the bandwidth reduction.

TS.BTD.Optimize speed|memory (string)
When selecting the smallest blocks for the BTD matrix there are certain criteria that may
change the size of each block. For very memory consuming jobs one may choose the memory.
NOTE: often both methods provide exactly the same BTD matrix due to constraints on the
matrix.

TS.BTD.Guess1.Min 〈empirically determined〉 (int)
depends on: TS.BTD.Guess1.Max

Constructing the blocks for the BTD starts by guessing the first block size. One could guess on
all different block sizes, but to speed up the process one can define a smaller range of guesses
by defining TS.BTD.Guess1.Min and TS.BTD.Guess1.Max.
The initial guessed block size will be between the two values.
By default this is 1/4 of the minimum bandwidth for a selected first set of orbitals.
NOTE: setting this to 1 may sometimes improve the final BTD matrix blocks.

TS.BTD.Guess1.Max 〈empirically determined〉 (int)
depends on: TS.BTD.Guess1.Min

See TS.BTD.Guess1.Min.
NOTE: for improved initialization performance setting Min/Max flags to the first block size for
a given pivoting scheme will drastically reduce the search space and make initialization much
faster.

TS.BTD.Spectral propagation|column (string)
How to compute the spectral function (GΓG†).
For NE < 4 this defaults to propagation which should be the fastest.
For NE ≥ 4 this defaults to column.
Check which has the best performance for your system if you endeavor on huge amounts of
calculations for the same system.

TS.MUMPS.Ordering 〈read MUMPS manual〉 (string)
One may select from a number of different matrix orderings which are all described in the
MUMPS manual.
The following list of orderings are available (without detailing their differences): auto, AMD,
AMF, SCOTCH, PORD, METIS, QAMD.

TS.MUMPS.Memory 20 (integer)
Specify a factor for the memory consumption in MUMPS. See the INFOG(9) entry in the
MUMPS manual. Generally if TranSIESTA dies and INFOG(9)=-9 one should increase
this number.

TS.MUMPS.BlockingFactor 112 (integer)
Specify the number of internal block sizes. Larger numbers increases performance at the cost

167

of memory.
NOTE: this option may heavily influence performance.

11.8.2 Poisson solution for fixed boundary conditions

TranSIESTA requires fixed boundary conditions and forcing this is an intricate and important
detail.
It is important that these options are exactly the same if one reuses the SystemLabel.TSDE files.

TS.Poisson ramp|elec-box|〈file〉 (string)
Define how the correction of the Poisson equation is superimposed. The default is to apply
the linear correction across the entire cell (if there are two semi-infinite aligned electrodes).
Otherwise this defaults to the box solution which will introduce spurious effects at the electrode
boundaries. In this case you are encouraged to supply a file.
If the input is a file, it should be a NetCDF file containing the grid information which acts as
the boundary conditions for the SCF cycle. The grid information should conform to the grid
size of the unit-cell in the simulation. NOTE: the file option is only applicable if compiled with
CDF4 compliance.

ramp Apply the ramp for the full cell. This is the default for 2 electrodes.

<file> Specify an external file used as the boundary conditions for the applied bias. This is
encouraged to use for NE > 2 electrode calculations but may also be used when an a priori
potential profile is know.
The file should contain something similar to this output (ncdump -h):

netcdf <file> {
dimensions:

one = 1 ;
a = 43 ;
b = 451 ;
c = 350 ;

variables:
double Vmin(one) ;

Vmin:unit = "Ry" ;
double Vmax(one) ;

Vmax:unit = "Ry" ;
double V(c, b, a) ;

V:unit = "Ry" ;
}

Note that the units should be in Ry. Vmax/Vmin should contain the maximum/minimum
fixed boundary conditions in the Poisson solution. This is used internally by TranSIESTA
to scale the potential to arbitrary V . This enables the Poisson solution to only be solved once
independent on subsequent calculations. For chemical potential configurations where the
Poisson solution is not linearly dependent one have to create separate files for each applied
bias.

elec-box The default potential profile for NE > 2, or when the electrodes does are not aligned
(in terms of their transport direction).
NOTE: usage of this Poisson solution is highly discouraged. Please see TS.Poisson <file>.

168

TS.Hartree.Fix [-+][ABC] (string)
Specify which plane to fix the Hartree potential at. For regular (2 electrode calculations with
a single transport direction) this should not be set. For NE ̸= 2 electrode systems one have to
specify a plane to fix. One can specify one or several planes to fix. Users are encouraged to fix
the plane where the entire plane has the highest/lowest potential.

TS.Hartree.Fix.Frac 1. (real)
Fraction of the correction that is applied.
NOTE: this is an experimental feature!

TS.Hartree.Offset 0 eV (energy)
An offset in the Hartree potential to match the electrode potential.
This value may be useful in certain cases where the Hartree potentials are very different between
the electrode and device region calculations.
This should not be changed between different bias calculations. It directly relates to the reference
energy level (EF).

11.8.3 Electrode description options

As TranSIESTA supports NE electrodes one needs to specify all electrodes in a generic input
format.

%block TS.Elecs 〈None〉 (block)
Each line denote an electrode which is queried in TS.Elec.<> for its setup.

%block TS.Elec.<> 〈None〉 (block)
Each line represents a setting for electrode <>. There are a few lines that must be present,
HS, semi-inf-dir, electrode-pos, chem-pot. The remaining options are optional.
NOTE: Options prefixed with tbt are neglected in TranSIESTA calculations. In TBtrans
calculations these flags has precedence over the other options and must be placed at the end of
the block.

HS The Hamiltonian information from the initial electrode calculation. This file retains the
geometrical information as well as the Hamiltonian, overlap matrix and the Fermi-level of the
electrode. This is a file-path and the electrode SystemLabel.TSHS need not be located in the
simulation folder.

semi-inf-direction|semi-inf-dir|semi-inf The semi-infinite direction of the electrode with re-
spect to the electrode unit-cell.
It may be one of [-+][abc], [-+]A[123], ab, ac, bc or abc. The latter four all refer to a
real-space self-energy as described in [14].
NOTE: this direction is not with respect to the scattering region unit cell. It is with respect
to the electrode unit cell. TranSIESTA will figure out the alignment of the electrode unit
cell and the scattering region unit-cell.

chemical-potential|chem-pot|mu The chemical potential that is associated with this elec-
trode. This is a string that should be present in the TS.ChemPots block.

169

electrode-position|elec-pos The index of the electrode in the scattering region. This may
be given by either elec-pos <idx>, which refers to the first atomic index of the electrode
residing at index <idx>. Else the electrode position may be given via elec-pos end <idx>
where the last index of the electrode will be located at <idx>.

used-atoms Number of atoms from the electrode calculation that is used in the scattering
region as electrode. This may be useful when the periodicity of the electrodes forces extensive
electrodes in the semi-infinite direction.
NOTE: do not set this if you use all atoms in the electrode.

Bulk Control whether the Hamiltonian of the electrode region in the scattering region is enforced
bulk or whether the Hamiltonian is taken from the scattering region elements.
This defaults to true. If there are buffer atoms behind the electrode it may be advantageous
to set this to false to extend the electrode region, otherwise it is recommended to keep the
default.
This option changes how Me,e, see Eq. (29), is setup.
For true

{
He, Se

}
are taken from the electrode file (TS.Elec.<>.HS).

For false
{
He, Se

}
are substituted by the device calculations electrode region. I.e. it is the

self-consistent Hamiltonian.
DM-update depends on: TS.Elec.<>.Bulk

String of values none, cross-terms or all which controls which part of the electrode density
matrix elements that are updated. The density matrices that comprises an electrode and
device-electrode region can be written as (omitting the central device region)

ρ =


ρe ρeD 0

ρDe
.

0 . . .

 (36)

This flag determines whether ρe (all) or ρeD (cross-terms and all) or neither (none) are up-
dated in the SCF. The density matrices contains the charges and thus affects the Hamiltonian
and Poisson solutions. Generally the default value will suffice and is recommended.
If TS.Elec.<>.Bulk false this is forced to all and cannot be changed.
If TS.Elec.<>.Bulk true this defaults to cross-terms, but may be changed.
NOTE: if this is none the forces on the atoms coupled to the electrode regions are not to
be trusted. The value none should be avoided, if possible.

DM-init depends on: TS.Elecs.DM.Init, TS.Elec.<>.Bulk, TS.Voltage

String of values bulk, diagon (default) or force-bulk which controls whether the DM is
initially overwritten by the DM from the bulk electrode calculation. This requires the DM
file for the electrode to be present. Only force-bulk will have effect if V ̸= 0. Otherwise this
option only affects V = 0 calculations.
The density matrix elements in the electrodes of the scattering region may be forcefully
set to the bulk values by reading in the DM of the corresponding electrode. If one uses
TS.Elec.<>.Bulk false it may be dis-advantageous to set this to bulk. If the system is
well setup (good screening towards electrodes), setting this to bulk may be advantageous.
This option may be used to check how good the electrodes are screened, see TS.dQ fermi.

170

Gf String with filename of the surface Green function data (SystemLabel.TSGF*). This may
be used to place a common surface Green function file in a top directory which may then be
used in all calculations using the same electrode and the same contour. If many calculations
are performed this will heavily increase performance at the cost of disk-space.

Gf-Reuse Logical deciding whether the surface Green function file should be re-used or deleted.
If this is false the surface Green function file is deleted and re-created upon start.

Eta depends on: TS.Elecs.Eta

Control the imaginary energy (η) of the surface Green function for this electrode.
The imaginary part is only used in the non-equilibrium contours since the equilibrium are
already lifted into the complex plane. Thus this η reflects the imaginary part in the GΓG†

calculations. Ensure that all imaginary values are larger than 0 as otherwise TranSIESTA
may seg-fault.
NOTE: if this energy is negative the complex value associated with the non-equilibrium
contour is used. This is particularly useful when providing a user-defined contour along the
real axis.
See Sec. 11.6 for details. This options changes the η value in the calculated self-energy
(Σ(E + iη)), while it does not change the η value used in the device region.

Accuracy depends on: TS.Elecs.Accuracy

Control the convergence accuracy required for the self-energy calculation when using the
Lopez-Sanchez, Lopez-Sanchez iterative scheme.
NOTE: advanced use only.

DE Density and energy density matrix file for the electrode. This may be used to initialize the
density matrix elements in the electrode region by the bulk values. See TS.Elec.<>.DM-
init bulk.
NOTE: this should only be performed on one TranSIESTA calculation as then the scat-
tering region SystemLabel.TSDE contains the electrode density matrix.

Bloch 3 integers should be present on this line which each denote the number of times bigger
the scattering region electrode is compared to the electrode, in each lattice direction. Remark
that these expansion coefficients are with regard to the electrode unit-cell. This is denoted
“Bloch” because it is an expansion based on Bloch waves.
NOTE: Using symmetries such as periodicity will greatly increase performance.

Bloch-A/a1|B/a2|C/a3 Specific Bloch expansions in each of the electrode unit-cell direction.
See Bloch for details.

pre-expand String denoting how the expansion of the surface Green function file will be per-
formed. This only affects the Green function file if Bloch is larger than 1. By default the
Green function file will contain the fully expanded surface Green function, but not Hamilto-
nian and overlap matrices (Green). One may reduce the file size by setting this to Green
which only expands the surface Green function. Finally none may be passed to reduce the
file size to the bare minimum. For performance reasons all is preferred.
If disk-space is a limited resource and the SystemLabel.TSGF* files are really big, try none.

out-of-core If true (default) the GF files are created which contain the surface Green function.
If false the surface Green function will be calculated when needed. Setting this to false will

171

heavily degrade performance and it is highly discouraged!

delta-Ef Specify an offset for the Fermi-level of the electrode. This will directly be added to
the Fermi-level found in the electrode file.
Effectively this will transform the used chemical potential to

µ′
used = µused + δEF . (37)

NOTE: this option only makes sense for semi-conducting electrodes since it shifts the entire
electronic structure. This is because the Fermi-level may be arbitrarily placed anywhere in
the band gap. It is the users responsibility to define a value which does not introduce a
potential drop between the electrode and device region. Please do not use unless you really
know what you are doing.

V-fraction Specify the fraction of the chemical potential shift in the electrode-device coupling
region. This corresponds to altering Eq. (29) by:

He,D ← He,D + µeV− fractionSe,D (38)

in the coupling region. Consequently the value must be between 0 and 1.
NOTE: this option only makes sense for TS.Elec.<>.DM-update none since otherwise
the electrostatic potential will be incorporated in the Hamiltonian.
Only expert users should play with this number.

check-kgrid For NE electrode calculations the k mesh will sometimes not be equivalent for
the electrodes and the device region calculations. However, TranSIESTA requires that the
device and electrode k samplings are commensurate. This flag controls whether this check is
enforced for a given electrode.
NOTE: only use if fully aware of the implications!

There are several flags which are globally controlling the variables for the electrodes (with
TS.Elec.<> taking precedence).

TS.Elecs.Bulk true (logical)
This globally controls how the Hamiltonian is treated in all electrodes. See TS.Elec.<>.Bulk.

TS.Elecs.Eta 1 meV (energy)
Globally control the imaginary energy (η) used for the surface Green function calculation on
the non-equilibrium contour. See TS.Elec.<>.Eta for extended details on the usage of this
flag.

TS.Elecs.Accuracy 10−13 eV (energy)
Globally control the accuracy required for convergence of the self-energy. See
TS.Elec.<>.Accuracy.

TS.Elecs.Neglect.Principal false (logical)
If this is false TranSIESTA dies if there are connections beyond the principal cell.
NOTE: set this to true with care, non-physical results may arise. Use at your own risk!

TS.Elecs.Gf.Reuse true (logical)

172

Globally control whether the surface Green function files should be re-used (true) or re-created
(false).
See TS.Elec.<>.Gf-Reuse.

TS.Elecs.Out-of-core true (logical)
Whether the electrodes will calculate the self energy at each SCF step. Using this will not
require the surface Green function files but at the cost of heavily degraded performance.
See TS.Elec.<>.Out-of-core.

TS.Elecs.DM.Update cross-terms|all|none (string)
Globally controls which parts of the electrode density matrix gets updated.
See TS.Elec.<>.DM-update.

TS.Elecs.DM.Init diagon|bulk|force-bulk (string)
Specify how the density matrix elements in the electrode regions of the scattering region will
be initialized when starting TranSIESTA.
See TS.Elec.<>.DM-init.

TS.Elecs.Coord.EPS 0.001 Ang (length)
When using Bloch expansion of the self-energies one may experience difficulties in obtaining
perfectly aligned electrode coordinates.
This parameter controls how strict the criteria for equivalent atomic coordinates is. If Tran-
SIESTA crashes due to mismatch between the electrode atomic coordinates and the scattering
region calculation, one may increase this criteria. This should only be done if one is sure that
the atomic coordinates are almost similar and that the difference in electronic structures of the
two may be negligible.

11.8.4 Chemical potentials

For NE electrodes there will also be Nµ chemical potentials. They are defined via blocks similar to
TS.Elecs.

%block TS.ChemPots 〈None〉 (block)
Each line denotes a new chemical potential which is defined in the TS.ChemPot.<> block.

%block TS.ChemPot.<> 〈None〉 (block)
Each line defines a setting for the chemical potential named <>.

chemical-shift|mu Define the chemical shift (an energy) for this chemical potential. One may
specify the shift in terms of the applied bias using V/<integer> instead of explicitly typing
the energy.

contour.eq A subblock which defines the integration curves for the equilibrium contour for
this equilibrium chemical potential. One may supply as many different contours to create
whatever shape of the contour
Its format is

contour.eq
begin

173

<contour-name-1>
<contour-name-2>
...

end

NOTE: If you do not specify contour.eq in the block one will automatically use the con-
tinued fraction method and you are encouraged to use 50 or more poles [11].

ElectronicTemperature|Temp|kT Specify the electronic temperature (as an energy or in
Kelvin). This defaults to TS.ElectronicTemperature.
One may specify this in units of TS.ElectronicTemperature by using the unit kT.

contour.eq.pole Define the number of poles used via an energy specification. TranSIESTA
will automatically convert the energy to the closest number of poles (rounding up).
NOTE: this has precedence over TS.ChemPot.<>.contour.eq.pole.N if it is specified
and a positive energy. Set this to a negative energy to directly control the number of poles.

contour.eq.pole.N Define the number of poles via an integer.
NOTE: this will only take effect if TS.ChemPot.<>.contour.eq.pole is a negative energy.

NOTE: It is important to realize that the parametrization in 4.1 of the voltage into the chemical
potentials enables one to have a single input file which is never required to be changed, even
when changing the applied bias (if using the command line options for specifying the applied
bias). This is different from 4.0 and prior versions since one had to manually change the
TS.biasContour.NumPoints for each applied bias.

These options complicate the input sequence for regular 2 electrode which is unfortunate.
Using tselecs.sh -only-mu yields this output:

%block TS.ChemPots
Left
Right

%endblock
%block TS.ChemPot.Left

mu V/2
contour.eq

begin
C-Left
T-Left

end
%endblock
%block TS.ChemPot.Right

mu -V/2
contour.eq

begin
C-Right
T-Right

end
%endblock

Note that the default is a 2 electrode setup with chemical potentials associated directly with the
electrode names “Left”/“Right”. Each chemical potential has two parts of the equilibrium contour
named according to their name.

174

11.8.5 Complex contour integration options

Specifying the contour for NE electrode systems is a bit extensive due to the possibility of more
than 2 chemical potentials. Please use the Util/TS/tselecs.sh as a means to create default input
blocks.
The contours are split in two segments. One, being the equilibrium contour of each of the different
chemical potentials. The second for the non-equilibrium contour. The equilibrium contours are
shifted according to their chemical potentials with respect to a reference energy. Note that for
TranSIESTA the reference energy is named the Fermi-level, which is rather unfortunate (for non-
equilibrium but not equilibrium). Fortunately the non-equilibrium contours are defined from different
chemical potentials Fermi functions, and as such this contour is defined in the window of the minimum
and maximum chemical potentials. Because the reference energy is the periodic Fermi level it is
advised to retain the average chemical potentials equal to 0. Otherwise applying different bias will
shift transmission curves calculated via TBtrans relative to the average chemical potential.
In this section the equilibrium contours are defined, and in the next section the non-equilibrium
contours are defined.

TS.Contours.Eq.Pole 1.5 eV (energy)
The imaginary part of the line integral crossing the chemical potential. Note that the actual
number of poles may differ between different calculations where the electronic temperatures are
different.
NOTE: if the energy specified is negative, TS.Contours.Eq.Pole.N takes effect.

TS.Contours.Eq.Pole.N 8 (integer)
Manually select the number poles for the equilibrium contour.
NOTE: this flag will only take effect if TS.Contours.Eq.Pole is a negative energy.

%block TS.Contour.<> 〈None〉 (block)
Specify a contour named <> with options within the block.
The names <> are taken from the TS.ChemPot.<>.contour.eq block in the chemical po-
tentials.
The format of this block is made up of at least 4 lines, in the following order of appearance.

part Specify which part of the equilibrium contour this is:
circle The initial circular part of the contour

square The initial square part of the contour

line The straight line of the contour

tail The final part of the contour must be a tail which denotes the Fermi function tail.

from a to b Define the integration range on the energy axis. Thus a and b are energies.
The parameters may also be given values prev/next which is the equivalent of specifying
the same energy as the previous contour it is connected to.
NOTE: that b may be supplied as inf for tail parts.

points/delta Define the number of integration points/energy separation. If specifying the num-
ber of points an integer should be supplied.

175

If specifying the separation between consecutive points an energy should be supplied.

method Specify the numerical method used to conduct the integration. Here a number of
different numerical integration schemes are accessible

mid|mid-rule Use the mid-rule for integration.

simpson|simpson-mix Use the composite Simpson 3/8 rule (three point Newton-Cotes).

boole|boole-mix Use the composite Booles rule (five point Newton-Cotes).

G-legendre Gauss-Legendre quadrature.
NOTE: has opt left
NOTE: has opt right

tanh-sinh Tanh-Sinh quadrature.
NOTE: has opt precision <>
NOTE: has opt left
NOTE: has opt right

G-Fermi Gauss-Fermi quadrature (only on tails).

opt Specify additional options for the method. Only a selected subset of the methods have
additional options.

These options complicate the input sequence for regular 2 electrode which is unfortunate. However,
it allows highly customizable contours.
Using tselecs.sh -only-c yields this output:

TS.Contours.Eq.Pole 2.5 eV
%block TS.Contour.C-Left

part circle
from -40. eV + V/2 to -10 kT + V/2

points 25
method g-legendre
opt right

%endblock
%block TS.Contour.T-Left

part tail
from prev to inf

points 10
method g-fermi

%endblock
%block TS.Contour.C-Right

part circle
from -40. eV -V/2 to -10 kT -V/2

points 25
method g-legendre
opt right

%endblock
%block TS.Contour.T-Right

part tail
from prev to inf

points 10

176

method g-fermi
%endblock

These contour options refer to input options for the chemical potentials as shown in Sec. 11.8.4
(p. 173). Importantly one should note the shift of the contours corresponding to the chemical
potential (the shift corresponds to difference from the reference energy used in TranSIESTA).

11.8.6 Bias contour integration options

The bias contour is similarly defined as the equilibrium contours. Please use the
Util/TS/tselecs.sh as a means to create default input blocks.

TS.Contours.nEq.Eta min[ηe]/10 (energy)
depends on: TS.Elecs.Eta

The imaginary part (η) of the device states. While this may be set to 0 for most systems it
defaults to the minimum η value for the electrodes (min[ηe]/10). This ensures that the device
broadening is always smaller than the electrodes while allowing broadening of localized states.

TS.Contours.nEq.Fermi.Cutoff 5 kBT (energy)
The bias contour is limited by the Fermi function tails. Numerically it does not make sense to
integrate to infinity. This energy defines where the bias integration window is turned into zero.
Thus above −|V |/2− E or below |V |/2 + E the DOS is defined as exactly zero.

%block TS.Contours.nEq 〈None〉 (block)
Each line defines a new contour on the non-equilibrium bias window. The contours defined must
be defined in TS.Contour.nEq.<>.
These contours must all be part line or part tail.

%block TS.Contour.nEq.<> 〈None〉 (block)
This block is exactly equivalently defined as the TS.Contour.<>. See page 175.

The default options related to the non-equilibrium bias contour are defined as this:

%block TS.Contours.nEq
neq

%endblock TS.Contours.nEq
%block TS.Contour.nEq.neq

part line
from -|V|/2 - 5 kT to |V|/2 + 5 kT

delta 0.01 eV
method mid-rule

%endblock TS.Contour.nEq.neq

If one chooses a different reference energy than 0, then the limits should change accordingly. Note
that here kT refers to TS.ElectronicTemperature.

11.9 Output

TranSIESTA generates several output files.

177

SystemLabel.DM : The SIESTA density matrix. SIESTA initially performs a calculation at zero
bias assuming periodic boundary conditions in all directions, and no voltage, which is used as
a starting point for the TranSIESTA calculation.

SystemLabel.TSDE : The TranSIESTA density matrix and energy density matrix. During a
TranSIESTA run, the SystemLabel.DM values are used for the density matrix in the buffer
(if used) and electrode regions. The coupling terms may or may not be updated in a Tran-
SIESTA run, see TS.Elec.<>.DM-update.

SystemLabel.TSHS : The Hamiltonian corresponding to SystemLabel.TSDE. This file also contains
geometry information etc. needed by TranSIESTA and TBtrans.

SystemLabel.TS.KP : The k-points used in the TranSIESTA calculation. See SIESTA
SystemLabel.KP file for formatting information.

SystemLabel.TSFA : Forces only on atoms in the device region. See TS.Forces for details.

SystemLabel.TSCCEQ* : The equilibrium complex contour integration paths.

SystemLabel.TSCCNEQ* : The non-equilibrium complex contour integration paths for correcting the
equilibrium contours.

SystemLabel.TSGF* : Self-energy files containing the used self-energies from the leads. These are
very large files used in the SCF loop. Once completed one can safely delete these files. For
heavily increased throughput these files may be re-used for the same electrode settings in
various calculations.

11.10 Utilities for analysis: TBtrans

Please see the separate TBtrans manual (tbtrans.pdf).

12 ANALYSIS TOOLS

There are a number of analysis tools and programs in the Util directory. Some of them have
been directly or indirectly mentioned in this manual. Their documentation is the appropriate sub-
directory of Util. See Util/README.
In addition to the shipped utilities SIESTA is also officially supported by sisl [15] which is a Python
library enabling many of the most commonly encountered things.

13 SCRIPTING

In the Util/Scripting directory we provide an experimental python scripting framework built on
top of the “Atomic Simulation Environment” (see https://wiki.fysik.dtu.dk/ase) by the CAMD
group at DTU, Denmark.

178

https://wiki.fysik.dtu.dk/ase

(NOTE: “ASE version 2”, not the new version 3, is needed)
There are objects implementing the “Siesta as server/subroutine” feature, and also hooks for file-
oriented-communication usage. This interface is different from the SIESTA-specific functionality
already contained in the ASE framework.
Users can create their own scripts to customize the “outer geometry loop” in SIESTA, or to perform
various repetitive calculations in compact form.
Note that the interfaces in this framework are still evolving and are subject to change.
Suggestions for improvements can be sent to Alberto Garcia (albertog@icmab.es)

14 PROBLEM HANDLING

14.1 Error and warning messages

chkdim: ERROR: In routine dimension parameter = value. It must be ... And other
similar messages.
Description: Some array dimensions which change infrequently, and do not lead to much
memory use, are fixed to oversized values. This message means that one of this parameters
is too small and neads to be increased. However, if this occurs and your system is not very
large, or unusual in some sense, you should suspect first of a mistake in the data file (incorrect
atomic positions or cell dimensions, too large cutoff radii, etc).
Fix: Check again the data file. Look for previous warnings or suspicious values in the output.
If you find nothing unusual, edit the specified routine and change the corresponding parameter.

15 REPORTING BUGS

Your assistance is essential to help improve the program. If you find any problem, or would like to
offer a suggestion for improvement, please follow the instructions in the file Docs/REPORTING_BUGS.
Since SIESTA has moved to https://gitlab.com/siesta-project/siesta you are encouraged to
follow the instructions by pressing “New Issue” and selecting “Bug” in the Description drop-down.
Also please follow the debug build options, see Sec. 2.1.1

16 ACKNOWLEDGMENTS

We want to acknowledge the use of a small number of routines, written by other authors, in de-
veloping the siesta code. In most cases, these routines were acquired by now-forgotten routes, and
the reported authorships are based on their headings. If you detect any incorrect or incomplete
attribution, or suspect that other routines may be due to different authors, please let us know.

• The main nonpublic contribution, that we thank thoroughly, are modified versions of a number
of routines, originally written by A. R. Williams around 1985, for the solution of the radial
Schrödinger and Poisson equations in the APW code of Soler and Williams (PRB 42, 9728

179

mailto:albertog@icmab.es
https://gitlab.com/siesta-project/siesta

(1990)). Within SIESTA, they are kept in files arw.f and periodic_table.f, and they are used
for the generation of the basis orbitals and the screened pseudopotentials.

• The exchange-correlation routines contained in SiestaXC were written by J.M.Soler in 1996 and
1997, in collaboration with C. Balbás and J. L. Martins. Routine pzxc, which implements
the Perdew-Zunger LDA parametrization of xc, is based on routine velect, written by S.
Froyen.

• The serial version of the multivariate fast fourier transform used to solve Poisson’s equation
was written by Clive Temperton.

• Subroutine iomd.f for writing MD history in files was originally written by J. Kohanoff.

We want to thank very specially O. F. Sankey, D. J. Niklewski and D. A. Drabold for making
the FIREBALL code available to P. Ordejón. Although we no longer use the routines in that code,
it was essential in the initial development of the SIESTA project, which still uses many of the
algorithms developed by them.
We thank V. Heine for his support and encouraging us in this project.
The SIESTA project is supported by the Spanish DGES through several contracts. We also ac-
knowledge past support by the Fundación Ramón Areces.

17 APPENDIX: Physical unit names recognized by FDF

Since SIESTA 5.0 the units follow the CODATA 2018 values. This affects comparisons with prior
versions of SIESTA due to small numeric differences.
To compare numerical values between SIESTA 5.0 and prior versions one have to recompile 5.0 with

cmake [.....] -DWITH_UNIT_CONVENTION=legacy

. Please only use this for comparisons and not for production runs.
fdf accepts nearly all conventional units used in physics and chemistry. If a unit is not accepted a
list of accepted units for the requested dimension will be printed to standard out.

180

18 APPENDIX: XML Output

From version 2.0, SIESTA includes an option to write its output to an XML file. The XML
it produces is in accordance with the CMLComp subset of version 2.2 of the Chemical Markup
Language. Further information and resources can be found at http://cmlcomp.org/ and tools for
working with the XML file can be found in the Util/CMLComp directory.
The main motivation for standarised XML (CML) output is as a step towards standarising formats
for uses like the following.

• To have SIESTA communicating with other software, either for postprocessing or as part of a
larger workflow scheme. In such a scenario, the XML output of one SIESTA simulation may
be easily parsed in order to direct further simulations. Detailed discussion of this is out of the
scope of this manual.

• To generate webpages showing SIESTA output in a more accessible, graphically rich, fashion.
This section will explain how to do this.

18.1 Controlling XML output

XML.Write false (logical)
Determine if the main XML file should be created for this run.

18.2 Converting XML to XHTML

The translation of the SIESTA XML output to a HTML-based webpage is done using XSLT tech-
nology. The stylesheets conform to XSLT-1.0 plus EXSLT extensions; an xslt processor capable of
dealing with this is necessary. However, in order to make the system easy to use, a script called
ccViz is provided in Util/CMLComp that works on most Unix or Mac OS X systems. It is run like so:
./ccViz SystemLabel.xml

A new file will be produced. Point your web-browser at SystemLabel.xhtml to view the output.
The generated webpages include support for viewing three-dimensional interactive images of the
system. If you want to do this, you will either need jMol (http://jmol.sourceforge.net) installed
or access to the internet. As this is a Java applet, you will also need a working Java Runtime
Environment and browser plugin - installation instructions for these are outside the scope of this
manual, though. However, the webpages are still useful and may be viewed without this plugin.
An online version of this tool is avalable from http://cmlcomp.org/ccViz/, as are updated versions
of the ccViz script.

181

http://cmlcomp.org/
http://jmol.sourceforge.net
http://cmlcomp.org/ccViz/

19 APPENDIX: Selection of precision for storage

Some of the real arrays used in SIESTA are by default single-precision, to save memory. This applies
to the array that holds the values of the basis orbitals on the real-space grid, to the historical data
sets in Broyden mixing, and to the arrays used in the O(N) routines. Note that the grid functions
(charge densities, potentials, etc) are (since mid January 2010) in double precision by default.
The following options and pre-processing symbols control the precision selection.

• Add -DWITH_GRID_SP to the CMake invocation to use single-precision for all the grid magni-
tudes, including the orbitals array and charge densities and potentials. This will cause some
numerical differences and will have a negligible effect on memory consumption, since the or-
bitals array is the main user of memory on the grid, and it is single-precision by default. This
setting will recover the default behavior of versions prior to 4.0.

• Use -DFortran_FLAGS="-DGRID_DP" to use double-precision for all the grid magnitudes, in-
cluding the orbitals array. This will significantly increase the memory used for large problems,
with negligible differences in accuracy.

• Use -DFortran_FLAGS="-DBROYDEN_DP" to use double-precision arrays for the data sets in the
Broyden mixing for SCF convergence acceleration.

• Use -DFortran_FLAGS="-DON_DP" to use double-precision for all the arrays in the O(N) rou-
tines.

182

20 APPENDIX: Data structures and reference counting

To implement some of the new features (e.g. charge mixing and DM extrapolation), SIESTA uses
new flexible data structures. These are defined and handled through a combination and extension
of ideas already in the Fortran community:

• Simple templating using the “include file” mechanism, as for example in the FLIBS project led
by Arjen Markus (http://flibs.sourceforge.net).

• The classic reference-counting mechanism to avoid memory leaks, as implemented in the
PyF95++ project (http://blockit.sourceforge.net).

Reference counting makes it much simpler to store data in container objects. For example, a circular
stack is used in the charge-mixing module. A number of future enhancements depend on this
paradigm.

183

http://flibs.sourceforge.net
http://blockit.sourceforge.net

References
[1] T. Auckenthaler, V. Blum, H.-J. Bungartz, T. Huckle, R. Johanni, L. Krämer, B. Lang, H. Led-

erer, and P.R. Willems. Parallel solution of partial symmetric eigenvalue problems from elec-
tronic structure calculations. Parallel Computing, 37(12):783 – 794, 2011. ISSN 0167-8191.
doi: http://dx.doi.org/10.1016/j.parco.2011.05.002. URL http://www.sciencedirect.com/
science/article/pii/S0167819111000494. 6th International Workshop on Parallel Matrix
Algorithms and Applications (PMAA’10).

[2] Amartya S. Banerjee, Phanish Suryanarayana, and John E. Pask. Periodic Pulay method
for robust and efficient convergence acceleration of self-consistent field iterations. Chemical
Physics Letters, 647:31–35, mar 2016. ISSN 00092614. doi: 10.1016/j.cplett.2016.01.033. URL
http://linkinghub.elsevier.com/retrieve/pii/S0009261416000464.

[3] D.R Bowler and M.J Gillan. An efficient and robust technique for achieving self consistency
in electronic structure calculations. Chemical Physics Letters, 325(4):473–476, jul 2000. ISSN
00092614. doi: 10.1016/S0009-2614(00)00750-8. URL http://linkinghub.elsevier.com/
retrieve/pii/S0009261400007508.

[4] Mads Brandbyge, José-Luis Mozos, Pablo Ordejón, Jeremy Taylor, and Kurt Stokbro. Density-
functional method for nonequilibrium electron transport. Physical Review B, 65(16):165401,
mar 2002. ISSN 0163-1829. doi: 10.1103/PhysRevB.65.165401. URL http://link.aps.org/
doi/10.1103/PhysRevB.65.165401.

[5] R. Cuadrado, R. Robles, A. García, M. Pruneda, P. Ordejón, J. Ferrer, and Jorge I. Cerdá.
Validity of the on-site spin-orbit coupling approximation. Phys. Rev. B, 104:195104, Nov 2021.
doi: 10.1103/PhysRevB.104.195104. URL https://link.aps.org/doi/10.1103/PhysRevB.
104.195104.

[6] Alberto García, Matthieu J. Verstraete, Yann Pouillon, and Javier Junquera. The psml format
and library for norm-conserving pseudopotential data curation and interoperability. Comput.
Phys. Commun., 227:51 – 71, 2018. ISSN 0010-4655. doi: 10.1016/j.cpc.2018.02.011. URL
http://www.sciencedirect.com/science/article/pii/S0010465518300390.

[7] Alberto García, Nick Papior, Arsalan Akhtar, Emilio Artacho, Volker Blum, Emanuele Bosoni,
Pedro Brandimarte, Mads Brandbyge, J. I. Cerdá, Fabiano Corsetti, Ramón Cuadrado,
Vladimir Dikan, Jaime Ferrer, Julian Gale, Pablo García-Fernández, V. M. García-Suárez,
Sandra García, Georg Huhs, Sergio Illera, Richard Korytár, Peter Koval, Irina Lebedeva, Lin
Lin, Pablo López-Tarifa, Sara G. Mayo, Stephan Mohr, Pablo Ordejón, Andrei Postnikov,
Yann Pouillon, Miguel Pruneda, Roberto Robles, Daniel Sánchez-Portal, Jose M. Soler, Rafi
Ullah, Victor Wen-zhe Yu, and Javier Junquera. Siesta: Recent developments and applica-
tions. The Journal of Chemical Physics, 152(20):204108, 2020. doi: 10.1063/5.0005077. URL
https://doi.org/10.1063/5.0005077.

[8] G. Kresse and J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and
semiconductors using a plane-wave basis set. Computational Materials Science, 6(1):15–50,
jul 1996. ISSN 09270256. doi: 10.1016/0927-0256(96)00008-0. URL http://linkinghub.
elsevier.com/retrieve/pii/0927025696000080.

184

http://www.sciencedirect.com/science/article/pii/S0167819111000494
http://www.sciencedirect.com/science/article/pii/S0167819111000494
http://linkinghub.elsevier.com/retrieve/pii/S0009261416000464
http://linkinghub.elsevier.com/retrieve/pii/S0009261400007508
http://linkinghub.elsevier.com/retrieve/pii/S0009261400007508
http://link.aps.org/doi/10.1103/PhysRevB.65.165401
http://link.aps.org/doi/10.1103/PhysRevB.65.165401
https://link.aps.org/doi/10.1103/PhysRevB.104.195104
https://link.aps.org/doi/10.1103/PhysRevB.104.195104
http://www.sciencedirect.com/science/article/pii/S0010465518300390
https://doi.org/10.1063/5.0005077
http://linkinghub.elsevier.com/retrieve/pii/0927025696000080
http://linkinghub.elsevier.com/retrieve/pii/0927025696000080

[9] Lin Lin, Alberto García, Georg Huhs, and Chao Yang. SIESTA-PEXSI: massively paral-
lel method for efficient and accurate ab initio materials simulation without matrix diagonal-
ization. Journal of Physics: Condensed Matter, 26(30):305503, jul 2014. ISSN 0953-8984.
doi: 10.1088/0953-8984/26/30/305503. URL http://stacks.iop.org/0953-8984/26/i=30/
a=305503?key=crossref.dd07c5e621546c5e67b1052b8800daca.

[10] A Marek, V Blum, R Johanni, V Havu, B Lang, T Auckenthaler, A Heinecke, H-J Bungartz,
and H Lederer. The elpa library: scalable parallel eigenvalue solutions for electronic structure
theory and computational science. Journal of Physics: Condensed Matter, 26(21):213201, 2014.
URL http://stacks.iop.org/0953-8984/26/i=21/a=213201.

[11] Taisuke Ozaki, Kengo Nishio, and Hiori Kino. Efficient implementation of the nonequilibrium
Green function method for electronic transport calculations. Physical Review B, 81(3):035116,
jan 2010. ISSN 1098-0121. doi: 10.1103/PhysRevB.81.035116. URL http://link.aps.org/
doi/10.1103/PhysRevB.81.035116.

[12] Nick Papior, Tue Gunst, Daniele Stradi, and Mads Brandbyge. Manipulating the voltage drop
in graphene nanojunctions using a gate potential. Phys. Chem. Chem. Phys., 18(2):1025–
1031, 2016. ISSN 1463-9076. doi: 10.1039/C5CP04613K. URL http://xlink.rsc.org/?DOI=
C5CP04613K.

[13] Nick Papior, Nicolás Lorente, Thomas Frederiksen, Alberto García, and Mads Brandbyge. Im-
provements on non-equilibrium and transport Green function techniques: The next-generation
TranSiesta. Computer Physics Communications, 212:8–24, mar 2017. ISSN 00104655. doi:
10.1016/j.cpc.2016.09.022. URL https://doi.org/10.1016/j.cpc.2016.09.022.

[14] Nick Papior, Gaetano Calogero, Susanne Leitherer, and Mads Brandbyge. Removing all periodic
boundary conditions: Efficient nonequilibrium Green’s function calculations. Physical Review
B, 100(19):195417, nov 2019. ISSN 2469-9950. doi: 10.1103/PhysRevB.100.195417. URL
https://link.aps.org/doi/10.1103/PhysRevB.100.195417.

[15] Nick R. Papior. sisl, 2020. URL https://doi.org/10.5281/zenodo.597181.

[16] M P Lopez Sancho, J M Lopez Sancho, and J. Rubio. Highly convergent schemes for the
calculation of bulk and surface Green functions. Journal of Physics F: Metal Physics, 15(4):
851–858, apr 1985. ISSN 0305-4608. doi: 10.1088/0305-4608/15/4/009. URL http://stacks.
iop.org/0305-4608/15/i=4/a=009?key=crossref.8c77f34b0366ff84eaf622609268f5a2.

[17] José M. Soler and Eduardo Anglada. Optimal fourier filtering of a function that is strictly
confined within a sphere. Computer Physics Communications, 180(7):1134 – 1136, 2009. ISSN
0010-4655. doi: https://doi.org/10.1016/j.cpc.2009.01.017. URL http://www.sciencedirect.
com/science/article/pii/S0010465509000332.

185

http://stacks.iop.org/0953-8984/26/i=30/a=305503?key=crossref.dd07c5e621546c5e67b1052b8800daca
http://stacks.iop.org/0953-8984/26/i=30/a=305503?key=crossref.dd07c5e621546c5e67b1052b8800daca
http://stacks.iop.org/0953-8984/26/i=21/a=213201
http://link.aps.org/doi/10.1103/PhysRevB.81.035116
http://link.aps.org/doi/10.1103/PhysRevB.81.035116
http://xlink.rsc.org/?DOI=C5CP04613K
http://xlink.rsc.org/?DOI=C5CP04613K
https://doi.org/10.1016/j.cpc.2016.09.022
https://link.aps.org/doi/10.1103/PhysRevB.100.195417
https://doi.org/10.5281/zenodo.597181
http://stacks.iop.org/0305-4608/15/i=4/a=009?key=crossref.8c77f34b0366ff84eaf622609268f5a2
http://stacks.iop.org/0305-4608/15/i=4/a=009?key=crossref.8c77f34b0366ff84eaf622609268f5a2
http://www.sciencedirect.com/science/article/pii/S0010465509000332
http://www.sciencedirect.com/science/article/pii/S0010465509000332

Index
animation, 51
antiferromagnetic initial DM, 72

Backward compatibility, 67, 133
band structure, 100
basis, 41

basis set superposition error (BSSE), 40
Bessel functions, 40
confinement radius expansion, 34
default soft confinement, 35
default soft confinement potential, 35
default soft confinement radius, 35
filteret basis set, 39
filtering, 40
fix split-valence table, 33
Gen-basis standalone program, 41
Gen-basis standalone program, 41
ghost atoms, 40
minimal, 31
new split-valence code, 32
PAO, 30, 31, 37
per-shell split norm, 39
point at infinity, 42
polarization, 31, 39
polarization orbitals, 33, 34
reparametrization of pseudopotential, 42
soft confinement potential, 39
split valence, 32
split valence for H, 32
User basis, 41
User basis (NetCDF format), 41

Berry phase, 109
Bessel functions, 40
%block, 19
Born effective charges, 110
Broyden mixing, 182
Broyden optimization, 136
bug reports, 179
bulk polarization, 109

cell relaxation, 134
Cerius2, 51
Charge confinement, 30, 39
Charge of the system, 116, 120
Chebyshev Polynomials, 91

Chemical Potential, 90, 91
CheSS, 16
CheSS solver, 92
CML, 181
compile

issues, 16
libraries, 14
MPI, 12
OpenMP, 13
pre-processor

-DCDF, 15
-DMPI, 13
-DMPI_TIMING, 129
-DNCDF_4, 131
-DSIESTA__DIAG_2STAGE, 84
-DSIESTA__METIS, 15
-DSIESTA__MRRR, 84, 86
-DSIESTA__MUMPS, 15
-DSIESTA__UNITS_ORIGINAL, 180

Conjugate-gradient history information, 135
constant-volume cell relaxation, 134
constraints in relaxations, 140
COOP/COHP curves, 107

Folding in Gamma-point calculations, 81
Folding in Gamma-point calculations, 81

cutoff radius, 37

Data Structures, 183
denchar, 130
density of states, 86, 102
DFT-D3, 16
Dielectric function,optical absorption, 107
diffuse orbitals, 30
Doping, 116, 120
double-ζ, 31

egg-box effect, 78–80
Eig2DOS, 86, 102
ELPA, 15
exchange-correlation

AM05, 55
BH, 56
BLYP, 55
C09, 56
CA, 55

186

cellXC, 57
DRSLL, 56
GGA, 55
KBM, 56
LDA, 55
LMKLL, 56
LSD, 55
PBE, 55
PBEGcGxHEG, 55
PBEGcGxLO, 55
PBEJsJrHEG, 55
PBEJsJrLO, 55
PBEsol, 55
PW91, 55
PW92, 55
PZ, 55
revPBE, 55
RPBE, 55
vdW, 56
vdW-DF, 56
vdW-DF1, 56
vdW-DF2, 56
VV, 56
WC, 55

External library
BLAS, 14
CheSS, 16
dft-d3, 16
ELPA, 15
fdict, 15
flook, 16, 132
LAPACK, 14
libfdf, 14
libGridXC, 14
libPSML, 14
libXC, 14
Metis, 15
MPI, 12
MUMPS, 15, 159
ncdf, 15
NetCDF, 15
OpenMP, 13
PEXSI, 15
ScaLAPACK, 15
xmlf90, 14

fatbands, 101

FDF, 19
ferromagnetic initial DM, 72
finite-range pseudo-atomic orbitals, 30
fixed spin state, 57
flook, 16, 132
Force Constants Matrix, 132, 143
fractional program, 23

Gate, 119
bounded plane, 119
box, 119
infinite plane, 119
spheres, 119

Gaussians, 30
Gen-basis, 27
Gen-basis, 41
ghost atoms, 22
ghost atoms, 40
gnubands, 100
grid, 77
Grid precision, 182
Ground-state atomic configuration, 31

Hirshfeld population analysis, 106

input file, 19
interatomic distances, 52
isotopes, 24

JMol, 51
JSON timing report, 129

Kleinman-Bylander projectors, 35
from PSML file, 35

LibXC library, 54, 56
Localized Wave Functions, 90, 91
Lower order N memory, 91
LSD, 57

mesh, 77
Metis, 15
minimal basis, 30
mixps program, 23
Molden, 51
Mulliken population analysis, 21, 105
multiple-ζ, 30, 32
MUMPS, 15, 159

187

NetCDF format, 15, 41

output
δρ(r⃗), 122
atomic coordinates

in a dynamics step, 21, 139
initial, 139

Bader charge, 124
band k⃗ points, 21, 100
band structure, 100
basis, 41
charge density, 122–125
charge density and/or wfs for DENCHAR

code, 130
customization, 21
dedicated files, 21
density matrix, 73–75
density matrix history, 75
eigenvalues, 21, 86, 102
electrostatic potential, 123
forces, 21, 139
grid k⃗ points, 21, 54
Hamiltonian, 75
Hamiltonian & overlap, 80, 81
Hamiltonian history, 75
Hirshfeld analysis, 106
HSX file, 81
Information for COOP/COHP curves, 107
ionic charge, 123
kpoint mesh for Wannierization, 116
local density of states, 104
long, 21
main output file, 20
molecular dynamics

Force Constants Matrix, 143
history, 139

Mulliken analysis, 21, 105
overlap matrix, 75
overlap matrix history, 75
projected density of states, 103
total charge, 123
total potential, 123
Voronoi analysis, 106
wave functions, 21, 102

output of wave functions for bands, 101

perturbative polarization, 31
perturbative polarization, 39

PEXSI, 15
PEXSI solver, 93
polarization orbitals, 30
Precision selection, 182
ProcessorY, 128
pseudopotential

ATOM code, 25
files, 24
generation, 24
oncvpsp code, 25
PSML format, 25

PSML, 35
from SIESTA’s vnl-operator, 25
from oncvpsp code, 25

PSML format, 25

reading saved data, 130
all, 130
CG, 135
charge density, 73
deformation charge density, 73
density matrix, 71
localized wave functions (order-N), 91
XV, 51
ZM, 52

readwf, 102
readwfsx, 102
Reference counting, 183
relaxation of cell parameters only, 134
removal of intramolecular pressure, 137
Restart of O(N) calculations, 91
rippling, 78–80
RT-TDDFT, 146

scale factor, 39
SCF, 61

compat-pre4-dm-h, 67
Doping, 116, 120
mixing, 61, 62, 68

Broyden, 63
Charge, 62, 68, 69
Density, 62
Density matrix convergence, 75
end of cycle, 68
energy convergence, 76
energy density matrix convergence, 76
Hamiltonian, 62
Hamiltonian convergence, 76

188

harris energy convergence, 76
Linear, 63
Pulay, 63

Potential, 119
Recomputing H, 68

SCF convergence criteria, 75
Scripting, 132
Sies2arc, 51
Sies2arc, 51
SIESTA, 9
single-ζ, 31
Slab dipole correction, 118
Slabs with net charge, 116
species, 22
spin, 57

initialization, 71, 72
split valence, 30
structure input precedence issues, 52
synthetic atoms, 22

TBtrans, 178
TDDFT, 146
Tests, 17, 155

lua, 16
TranSIESTA, 10
transiesta

electrode
principal layer, 156

valence configuration (alternate), 23
Variational character of E_KS, 61
VCA, 22
VIBRA, 143
Voronoi population analysis, 106

XML, 181
XMol, 51

189

List of SIESTA files
<istep>.TDRho, 148

BaderCharge.grid.nc, 124
BASIS_ENTHALPY, 41, 76
BASIS_HARRIS_ENTHALPY, 76

Chlocal.grid.nc, 123
constr.f, 142

DeltaRho.grid.nc, 122
DeltaRho.IN.grid.nc, 73
DM-NNNN.nc, 75
DM.nc, 74
DM_MIXED, 81
DM_MIXED.blocked, 74
DM_OUT, 80
DM_OUT.blocked, 74
DMHS-NNNN.nc, 75
DMHS.nc, 75

ElectrostaticPotential.grid.nc, 123
External/Wannier/README.md, 113

fdf-XXXXX.log, 20
fdf.log, 19–21

GRAPHVIZ_atom.gv, 165
GRAPHVIZ_orbital.gv, 165

H_DMGEN, 74, 80
H_MIXED, 74, 80

LDOS.grid.nc, 99, 104

m_new_dm.F, 81

NEXT_ITER.UCELL.ZMATRIX, 50

OUT.UCELL.ZMATRIX, 50

PEXSI_INTDOS, 98

Rho.grid.nc, 122
Rho.IN.grid.nc, 73
RhoInit.grid.nc, 125
RhoXC.grid.nc, 123

Src/m_new_dm.F, 70

SystemLabel.alloc, 129
SystemLabel.amn, 112
SystemLabel.ANI, 51
SystemLabel.arc, 51
SystemLabel.ATOM.gv, 32
SystemLabel.BADER, 124
SystemLabel.bands, 99, 100
SystemLabel.bands.WFSX, 101
SystemLabel.BC, 110
SystemLabel.BONDS, 52
SystemLabel.BONDS_FINAL, 52
SystemLabel.CG, 135
SystemLabel.DIM, 130
SystemLabel.DM, 57, 61, 71, 74, 117, 130, 153,

178
SystemLabel.DMF, 71
SystemLabel.DOS, 103
SystemLabel.DRHO, 122, 124
SystemLabel.EIG, 86, 98, 102, 103, 121
SystemLabel.eigW, 112
SystemLabel.EPSIMG, 107
SystemLabel.FA, 139
SystemLabel.FAC, 139
SystemLabel.FC, 144
SystemLabel.FCC, 144
SystemLabel.fullBZ.WFSX, 86, 107
SystemLabel.grid.nc, 73
SystemLabel.HS, 81
SystemLabel.HSX, 81, 107
SystemLabel.IOCH, 123, 124
SystemLabel.KP, 53, 54, 178
SystemLabel.LDOS, 99, 104
SystemLabel.LWF, 91, 130
SystemLabel.MD, 50, 139
SystemLabel.MDC, 139
SystemLabel.MDE, 139
SystemLabel.MDX, 50, 139
SystemLabel.mmn, 111
SystemLabel.N.TSHS, 75
SystemLabel.nc, 131
SystemLabel.nnkp, 111, 112
SystemLabel.ORB.gv, 32
SystemLabel.ORB_INDX, 114, 139
SystemLabel.PDOS, 103, 104

190

SystemLabel.PDOS.xml, 104
SystemLabel.PLD, 130
SystemLabel.RHO, 122, 124
SystemLabel.RHOINIT, 125
SystemLabel.RHOXC, 123, 124
SystemLabel.selected.WFSX, 101, 102
SystemLabel.STRUCT_IN, 50, 51
SystemLabel.STRUCT_NEXT_ITER, 50
SystemLabel.STRUCT_OUT, 50
SystemLabel.TDDIPOL, 148
SystemLabel.TDEIG, 148
SystemLabel.TDETOT, 148
SystemLabel.TDWF, 133, 147, 148
SystemLabel.TDXV, 133, 147, 148
SystemLabel.times, 129
SystemLabel.TOCH, 123, 124
SystemLabel.TS.KP, 178
SystemLabel.TSCCEQ*, 178
SystemLabel.TSCCNEQ*, 178
SystemLabel.TSDE, 18, 153, 157, 164, 165, 168,

171, 178
SystemLabel.TSFA, 162, 178
SystemLabel.TSFAC, 162
SystemLabel.TSGF*, 171, 178
SystemLabel.TSHS, 18, 153, 154, 164, 169, 178
SystemLabel.VERLET_RESTART, 148
SystemLabel.VH, 123, 124
SystemLabel.VNA, 123, 124
SystemLabel.VT, 123, 124
SystemLabel.WANNX, 113, 114, 116
SystemLabel.WFS, 102, 107
SystemLabel.WFSX, 101, 102, 107, 116, 130
SystemLabel.xtl, 51
SystemLabel.XV, 50–52, 130, 135, 138, 139
SystemLabel.xyz, 51
SystemLabel.ZM, 52

time.json, 129
TotalCharge.grid.nc, 124
TotalPotential.grid.nc, 123
TS_FERMI, 164

UNKXXXXX.Y, 112

Vna.grid.nc, 123

WFS.nc, 83, 86, 101

xsf, 116

191

List of fdf flags

[trial-orbitals], 114

AllocReportLevel, 129
AllocReportThreshold, 129
AnalyzeChargeDensityOnly, 124, 125
AtomCoorFormatOut, 45, 51
AtomicCoordinatesAndAtomicSpecies, 22, 44,

46, 72, 140, 141
AtomicCoordinatesFormat, 45, 46, 51

Ang, 45
Bohr, 45
Fractional, 45
LatticeConstant, 45
NotScaledCartesianAng, 45
NotScaledCartesianBohr, 45
ScaledByLatticeVectors, 45
ScaledCartesian, 45

AtomicCoordinatesOrigin, 45, 51
COM, 46
COP, 46
MIN, 46

AtomicMass, 24
AtomSetupOnly, 40

BandLines, 85, 99–101
BandLinesScale, 99, 100
BandPoints, 85, 99–101
BasisPressure, 41
BlockSize, 83, 89, 127, 128
BornCharge, 110, 143
BulkBias

Current, 121
Direction, 121
Tolerance, 121
Voltage, 121

CDF
Compress, 131
Grid.Precision, 131
MPI, 131
Save, 131

ChangeKgridInMD, 53, 54
ChemicalSpeciesLabel, 22, 24, 38, 41, 44, 51, 52,

141
CheSS

Buffer
Kernel, 92
Mult, 92

evhighH, 92
evhighS, 92
evlowH, 92
evlowS, 92
Fscale, 92
FscaleLowerbound, 92
FscaleUpperbound, 92

Command line options
-L, 18
-V, 18, 160
-elec, 18
-electrode, 18
-fdf, 19
-h, 18
-o, 18
-out, 18
-v, 18

Compat
Pre-v4-DM-H, 67, 68
Pre-v4-Dynamics, 133

Constant
Volume, 134

COOP.Write, 81, 86, 101, 107

Debug
DIIS, 69

DFTD3, 126
DFTD3.2BodyCutOff, 127
DFTD3.3BodyCutOff, 127
DFTD3.a1, 127
DFTD3.a2, 127
DFTD3.alpha, 127
DFTD3.BJdamping, 126
DFTD3.CoordinationCutoff, 127
DFTD3.rs6, 127
DFTD3.rs8, 127
DFTD3.s6, 126
DFTD3.s8, 127
DFTD3.UseXCDefaults, 126
DFTU

CutoffNorm, 145

192

EnergyShift, 144, 145
FirstIteration, 144, 145
PopTol, 144, 146
PotentialShift, 144, 146
Proj, 144, 145
ProjectorGenerationMethod, 144, 145
ThresholdTol, 144, 146

Diag
AbsTol, 85
Algorithm, 82, 83, 86

Divide-and-Conquer, 83
Divide-and-Conquer-2stage, 84
ELPA-1stage, 84
ELPA-2stage, 84
Expert, 84
Expert-2stage, 84
MRRR, 84
MRRR-2stage, 84
NoExpert, 84
NoExpert-2stage, 84
QR, 84

BlockSize, 83
DivideAndConquer, 83, 84, 86
ELPA, 83, 84, 86

GPU, 84
Memory, 85
MRRR, 83, 84, 86
NoExpert, 83, 84, 86
OrFac, 85
ParallelOverK, 83–86, 121
ProcessorY, 83
UpperLower, 85
Use2D, 83
UseNewDiagk, 101
WFS.Cache, 82

cdf, 83, 86
none, 83

Diag.BlockSize, 84
DirectPhi, 129
DM

AllowExtrapolation, 73
AllowReuse, 73
FormattedFiles, 71
FormattedInput, 71
FormattedOutput, 71
History.Depth, 73
Init, 71

atomic, 71
RandomStates, 71

Init.RandomStates, 72
Init.Unfold, 71
InitSpin, 72

AF, 71, 72
KickMixingWeight, see

SF.Mixer.Kick.Weight65
MixingWeight, 64, see SF.Mixer.Weight64,

68
UseSaveDM, 61, 71

DM.EnergyTolerance, 76
DM.InitSpin, 59
DM.MixSCF1, 62, see SF.Mix.First62
DM.Normalization.Tolerance, 75
DM.NumberBroyden, 64, see

SF.Mixer.History64, 65
DM.NumberKick, see SF.Mixer.Kick65
DM.NumberPulay, 64, see SF.Mixer.History64,

65
DM.Require.Harris.Convergence, 76
DM.RequireEnergyConvergence, 76
DM.Tolerance, 75
DM.UseSaveDM, 89, 124
DOS.kgrid.?, 102–105

EggboxRemove, 79, 80
EggboxScale, 79, 80
ElectronicTemperature, 59, 87, 93, 160
ExternalElectricField, 117

FFT
ProcessorY

Traditional, 128
FilterCutoff, 39, 40
FilterTol, 40
ForceAuxCell, 81

Geometry
Charge, 117, 118, 120
Constraints, 140, 160
Hartree, 119, 120

Grid.CellSampling, 78, 79

Harris
Functional, 61

KB.New.Reference.Orbitals, 37

193

kgrid
Cutoff, 53, 104, 105, 166
File, 53, 104, 105, 166
MonkhorstPack, 45, 53, 104, 105, 157, 160,

166
kgrid.MonkhorstPack, 132

LatticeConstant, 44, 45, 58
LatticeParameters, 44
LatticeVectors, 44, 46, 53
LDAU

CutoffNorm, 145
EnergyShift, 145
FirstIteration, 145
PopTol, 146
PotentialShift, 146
Proj, 145
ProjectorGenerationMethod, 144
ThresholdTol, 146

LDOS.kgrid.?, 104, 105
LocalDensityOfStates, 99, 103, 104
LongOutput, 21, 54, 139
Lua

Debug, 150
Debug.MPI, 150
Interactive, 150
Script, 149, 151

MaxBondDistance, 52
MaxSCFIterations, 61
MaxWalltime, 130

Slack, 130
MD

UseSaveXV, 51, 52
UseSaveZM, 52

MD.AnnealOption, 132, 136, 138
MD.Broyden

Cycle.On.Maxit, 136
History.Steps, 136
Initial.Inverse.Jacobian, 136

MD.Broyden.Initial.Inverse.Jacobian, 135
MD.BulkModulus, 138
MD.ConstantVolume, 134
MD.FCDispl, 143
MD.FCFirst, 143
MD.FCLast, 143
MD.FinalTimeStep, 133, 137
MD.FIRE.TimeStep, 136

MD.InitialTemperature, 137
MD.InitialTimeStep, 137
MD.LengthTimeStep, 133, 136, 137
MD.MaxCGDispl, 135
MD.MaxDispl, 135, 150
MD.MaxForceTol, 134, 150
MD.MaxStressTol, 134
MD.NoseMass, 138
MD.NumCGsteps, 134, 135
MD.ParrinelloRahmanMass, 138
MD.PreconditionVariableCell, 134, 135
MD.RelaxCellOnly, 134
MD.RemoveIntramolecularPressure, 137
MD.Steps, 134, 137
MD.TargetPressure, 136
MD.TargetStress, 136, 137
MD.TargetTemperature, 138
MD.TauRelax, 138
MD.TypeOfRun, 52, 131, 136–138, 143, 148, 149

Anneal, 132, 138
Broyden, 132, 134
CG, 131, 134
FC, 110, 132
FIRE, 132
Forces, 132
Lua, 131, 132
Master, 131, 132
Nose, 132
NoseParrinelloRahman, 132
ParrinelloRahman, 132
TDED, 132
Verlet, 132

MD.UseSaveCG, 135
MD.UseSaveXV, 135
MD.VariableCell, 80, 131, 132, 134, 137
Mesh

Cutoff, 40, 59, 77, 132, 149, 157
Sizes, 77
SubDivisions, 77

MinSCFIterations, 61
MM, 125

Cutoff, 125
Grimme.D, 125, 126
Grimme.S6, 125, 126
Potentials, 125
UnitsDistance, 126
UnitsEnergy, 126

194

MPI
Nprocs.SIESTA, 94

MullikenInSCF, 105
MullikenInScf, 59

NeglNonOverlapInt, 80
NetCharge, 116, 117, 120
New

A.Parameter, 42
B.Parameter, 42

NonCollinearSpin, 57
NumberOfAtoms, 22, 45, 46
NumberOfEigenStates, 82–84, 86
NumberOfSpecies, 22

OccupationFunction, 87, 121
OccupationMPOrder, 87
OMM

BlockSize, 89
Diagon, 88, 89
DiagonFirstStep, 89
Eigenvalues, 89
LongOutput, 89
Precon, 88
PreconFirstStep, 88
ReadCoeffs, 89
RelTol, 89
TPreconScale, 89
Use2D, 88, 89
UseCholesky, 88
UseSparse, 88
WriteCoeffs, 89

ON
Etol, 89

ON.ChemicalPotential, 90, 91
ON.ChemicalPotential.Order, 91
ON.ChemicalPotential.Rc, 91
ON.ChemicalPotential.Temperature, 91
ON.ChemicalPotential.Use, 91
ON.eta, 88, 90, 91
ON.eta.alpha, 90
ON.eta.beta, 90
ON.Etol, 90
ON.functional, 90
ON.LowerMemory, 91
ON.MaxNumIter, 90
ON.RcLWF, 90
ON.UseSaveLWF, 91

Optical.Broaden, 108
Optical.Energy.Maximum, 108
Optical.Energy.Minimum, 108
Optical.Mesh, 108
Optical.NumberOfBands, 108
Optical.OffsetMesh, 108
Optical.PolarizationType, 108
Optical.Scissor, 108
Optical.Vector, 108, 109
OpticalCalculation, 107

PAO
Basis, 22, 23, 26, 28–34, 37, 39, 144
BasisSize, 31, 37

DZ, 31
DZP, 31
minimal, 31
SZ, 31
SZP, 31

BasisSizes, 31
BasisType, 28, 30, 31, 33, 37, 38

filteret, 31
nodes, 31
nonodes, 31
split, 30
splitgauss, 31

ContractionCutoff, 33
EnergyCutoff, 33
EnergyPolCutoff, 33
EnergyShift, 31, 37, 40, 42, 145
FixSplitTable, 33

true, 33
OldStylePolOrbs, 39
Polarization

NonPerturbative, 31, 33, 34
NonPerturbative.Fallback, 26, 34
Rc-Expansion-Factor, 34
Scheme, 26, 31, 34

rc.unbound.state, 43
SoftDefault, 29, 35, 37
SoftInnerRadius, 35
SoftPotential, 35
SplitNorm, 31, 32, 37
SplitNormH, 32, 37
SplitTailNorm, 32

true, 26, 32
SplitValence

195

Legacy, 33
PartialChargesAtEveryGeometry, 106
PartialChargesAtEverySCFStep, 106
PDOS.kgrid.?, 103, 104
PEXSI

deltaE, 93
DOS, 98

Ef.Reference, 98
Emax, 98
Emin, 98
NPoints, 98

Gap, 93
Inertia-Counts, 96
Inertia-energy-width-tolerance, 97
Inertia-max-iter, 97
Inertia-min-num-shifts, 97
Inertia-mu-tolerance, 97
lateral-expansion-inertia, 96
LDOS, 99, 104

Broadening, 99
Energy, 99
NP-per-pole, 99

mu, 96
mu-max, 96
mu-max-iter, 95
mu-min, 96
mu-pexsi-safeguard, 96
NP-per-pole, 94, 99
NP-symbfact, 94
num-electron-tolerance, 95
num-electron-tolerance-lower-bound, 95
num-electron-tolerance-upper-bound, 95
NumPoles, 93
Ordering, 94
safe-dDmax-ef-inertia, 97
safe-dDmax-ef-solver, 97
safe-dDmax-no-inertia, 96
safe-width-ic-bracket, 97
safe-width-solver-bracket, 98
Verbosity, 93, 94

PolarizationGrids, 109, 110
ProcessorY, 128
ProjectedDensityOfStates, 103
projection functions as in wannier90, 115
PS

lmax, 35, 36
PS.KBprojectors, 35

PSML
KB.projectors, 25, 35
Vlocal, 25, 35

RcSpatial, 128, 129
Reparametrize.Pseudos, 42
Restricted.Radial.Grid, 42
Rmax.Radial.Grid, 42

S.Only, 74
SaveBaderCharge, 124
SaveDeltaRho, 122
SaveElectrostaticPotential, 123, 131
SaveGridFunc.Format, 124
SaveHS, 81
SaveInitialChargeDensity, 125
SaveIonicCharge, 123
SaveNeutralAtomPotential, 123
SaveRho, 122
SaveRhoXC, 123
SaveTotalCharge, 123
SaveTotalPotential, 123
SCF

Mixing, 80
MonitorForces, 61
MustConverge, 61
RecomputeHAfterSCF, 68
RecomputeHAfterScf, 68
Want.Variational.EKS, 60
Write.Extra, 80

SCF.DebugRhoGMixing, 69
SCF.DM

Converge, 75, 76, 133, 160
Tolerance, 75, 76, 160

SCF.EDM
Converge, 76
Tolerance, 76

SCF.FreeE
Converge, 76
Tolerance, 76

SCF.H
Converge, 76, 133, 160
Tolerance, 59, 76, 160

SCF.Harris
Converge, 76
Tolerance, 76

SCF.Kerker.q0sq, 69
SCF.Mix, 59, 62, 68

196

AfterConvergence, 61, 68, 74
charge, 62
density, 62
First, 61–63, 68, 118
First.Force, 62, 63
Hamiltonian, 62
Spin, 62

SCF.MixCharge
SCF1, 69

SCF.Mixer
History, 64, 66
Kick, 65
Kick.Weight, 65
Linear.After, 65
Linear.After.Weight, 65
Method, 63–66
Restart, 65, 66
Restart.Save, 65, 66
Variant, 63, 64, 66
Weight, 64–66

SCF.Mixer.<>, 65, 66
history, 66
iterations, 66
method, 66
next, 66
next.conv, 66
next.p, 66
restart, 66
restart.p, 66
restart.save, 66
variant, 66
weight, 66
weight.linear, 64, 66

SCF.Mixers, 65
SCF.Read.Charge.NetCDF, 73
SCF.Read.Deformation.Charge.NetCDF, 73
SCF.RhoG.DIIS.Depth, 69
SCF.RhoG.Metric.Preconditioner.Cutoff, 69
SCF.RhoGMixingCutoff, 69
Siesta2Wannier90.NumberOfBands, 112, 113
Siesta2Wannier90.NumberOfBandsDown, 113
Siesta2Wannier90.NumberOfBandsUp, 113
Siesta2Wannier90.UnkGrid1, 112
Siesta2Wannier90.UnkGrid2, 112
Siesta2Wannier90.UnkGrid3, 112
Siesta2Wannier90.UnkGridBinary, 112
Siesta2Wannier90.WriteAmn, 111

Siesta2Wannier90.WriteEig, 112
Siesta2Wannier90.WriteMmn, 111
Siesta2Wannier90.WriteUnk, 112, 114
SimulateDoping, 116
SingleExcitation, 58
Slab.DipoleCorrection, 116, 117

charge, 117, 118
Origin, 117, 118
Vacuum, 117, 118
vacuum, 117–119

SOC.Split.SR.SO, 59
SolutionMethod, 16, 53, 82, 86, 89, 159, 164
Spin, 54, 57, 58, 60, 71, 72, 88

Fix, 57, 88
non-colinear, 57
non-polarized, 57
OrbitStrength, 59
polarized, 57
spin-orbit, 57
Spiral, 54, 57, 58
Spiral.Scale, 58
Total, 57, 88

SpinInSCF, 105
SpinOrbit, 57
SpinPolarized, 57
SuperCell, 44, 45, 53
SyntheticAtoms, 22
SystemLabel, 18, 21, 50, 153
SystemName, 22

Target
Pressure, 134, 136
Stress.Voigt, 134, 136, 137

Target.Stress.Voigt, 134
TDED

Extrapolate, 147
Extrapolate.Substeps, 147
Inverse.Linear, 147
Nsaverho, 148
Nsteps, 133, 147
Saverho, 148
TimeStep, 133, 147
WF.Initialize, 147
WF.Save, 148
Write.Dipole, 148
Write.Eig, 148
Write.Etot, 148

197

TimeReversalSymmetryForKpoints, 54, 121
TimerReportThreshold, 129
TimingSplitScfSteps, 130
trial-orbitals, 115
TS

Analyze, 154, 159, 165, 166
Analyze.Graphviz, 165
Atoms.Buffer, 157, 160
BTD

Guess1.Max, 167
Guess1.Min, 167
Optimize, 167
Pivot, 165, 166
Spectral, 167

ChemPot.<>, 173
chemical-shift, 173
contour.eq, 173, 175
contour.eq.pole, 174
contour.eq.pole.N, 174
ElectronicTemperature, 160, 174
kT, 174
mu, 173
Temp, 174

ChemPots, 169, 173
Contour.<>, 175, 177

delta, 175
from, 175
method, 176
opt, 176
part, 175
points, 175

Contour.nEq.<>, 177
Contours

Eq.Pole, 175
Eq.Pole.N, 175

Contours.nEq, 177
Eta, 177
Fermi.Cutoff, 177

DE.Save, 18, 155, 164
true, 18, 164

dQ, 161, 163
Factor, 164
fermi, 163, 170
Fermi.Eta, 164
Fermi.Max, 164
Fermi.Tolerance, 164

Elec.<>, 163, 169, 172

Accuracy, 171, 172
Bloch, 155, 156, 171
Bulk, 158, 170, 172
check-kgrid, 157, 172
chemical-potential, 158, 169
DE, 171
delta-Ef, 158, 172
DM-init, 170, 173
DM-update, 170, 173, 178
electrode-position, 169
Eta, 158, 171, 172
Gf, 170
Gf-Reuse, 171, 173
HS, 153, 169, 170
Out-of-core, 171, 173
pre-expand, 171
semi-inf-direction, 169
used-atoms, 170
V-fraction, 158, 172

Elecs, 166, 169, 173
Accuracy, 171, 172
Bulk, 172
Coord.EPS, 173
DM.Init, 161, 170, 173
DM.Update, 173
Eta, 171, 172, 177
Gf.Reuse, 172
Neglect.Principal, 157, 172
Out-of-core, 173

ElectronicTemperature, 160, 174, 177
Fermi.Initial, 161
Forces, 162, 178
Hartree.Fix, 169

Frac, 169
Hartree.Offset, 169
HS.Save, 18, 155, 164

true, 18, 164
kgrid

MonkhorstPack, 153, 157, 160
MUMPS

BlockingFactor, 167
Memory, 167
Ordering, 167

Poisson, 168
<file>, 168
elec-box, 168
ramp, 168

198

S.Save, 164
SCF

DM.Tolerance, 160
dQ.Converge, 161
dQ.Tolerance, 161
H.Tolerance, 160

SCF.Initialize, 161
SIESTA.Only, 165
SolutionMethod, 159, 165

BTD, 159, 166
full, 159
MUMPS, 159

Voltage, 18, 19, 160, 170
Weight.k.Method, 162
Weight.Method, 161

mean, 162
orb-orb, 162
sum-atom-atom, 162
sum-atom-orb, 162
tr-atom-atom, 162
tr-atom-orb, 162

TS.kgrid
Cutoff, 166
File, 166
MonkhorstPack, 166

Use.Blocked.WriteMat, 73, 74
UseDomainDecomposition, 128
UseNewDiagk, 82
UseParallelTimer, 130
User

Basis, 41
Basis.NetCDF, 41

User.Basis, 27, 44
User.Basis.Netcdf, 44
UseSaveData, 51, 52, 130, 135
UseSpatialDecomposition, 128
UseStructFile, 50–52
UseTreeTimer, 129

w90.in.siesta.compute.unk, 114
Wannier

k, 116
Manifold.<>, 113, 115

bands, 113
fermi-surface-plot, 114
spreading.nitt, 114
threshold, 116

trial-orbitals, 114
wannier-plot, 114
window, 114
window.frozen, 114
window.threshold, 114
write-hr, 114
write-tb, 114
write-unk, 114, 116

Manifolds, 113
Threshold, 116
Unk, 116

Projectors, 115
wannier.plot.supercell, 114
WarningMinimumAtomicDistance, 52
WaveFuncKPoints, 85, 101, 102, 107
WaveFuncKPointsScale, 101
WFS.Band.Max, 101, 107
WFS.Band.Min, 101, 107
WFS.Energy.Max, 102, 107
WFS.Energy.Min, 102, 107
WFS.Write.For.Bands, 101
Write

Denchar, 130
DM, 74
DM.end.of.cycle, 74
DM.History.NetCDF, 74, 75
DM.NetCDF, 74, 75
DMHS.History.NetCDF, 75, 81
DMHS.NetCDF, 75, 81
Graphviz, 32
H, 74
H.end.of.cycle, 74
HirshfeldPop, 106
TSHS.History, 75
VoronoiPop, 106

Write.OrbitalIndex, 139
WriteBands, 100
WriteCoorCerius, 51
WriteCoorInitial, 139
WriteCoorStep, 21, 51, 139
WriteCoorXmol, 51
WriteEigenvalues, 21, 86, 102
WriteForces, 21, 139
WriteIonPlotFiles, 41
WriteKbands, 21, 100
WriteKpoints, 21, 54
WriteMDHistory, 50, 139

199

WriteMDXmol, 51, 139
WriteMullikenPop, 21, 105
WriteOrbMom, 59
WriteWaveFunctions, 21, 102

XC
Authors, 55
Functional, 55
Mix, 56
Use.BSC.CellXC, 57

XC.mix, 54
XML

Write, 181

ZM
UnitsAngle, 50
UnitsLength, 50

ZM.ForceTolAngle, 135
ZM.ForceTolLength, 135
ZM.MaxDisplAngle, 135
ZM.MaxDisplLength, 135
Zmatrix, 44, 46, 47, 134, 137

200

	Contributors to Siesta
	INTRODUCTION
	COMPILATION
	Notes on compiler flags
	Debug options

	Parallel operation
	MPI
	OpenMP

	Library dependencies
	Known Issues
	Installing git-enabled versions

	EXECUTION OF THE PROGRAM
	Specific execution options

	THE FLEXIBLE DATA FORMAT (FDF)
	PROGRAM OUTPUT
	Standard output
	Output to dedicated files

	DETAILED DESCRIPTION OF PROGRAM OPTIONS
	General system descriptors
	Pseudopotentials
	Basis set and KB projectors
	Overview of atomic-orbital bases implemented in SIESTA
	Type of basis sets
	Size of the basis set
	Range of the orbitals
	Generation of multiple-zeta orbitals
	Polarization-orbital options
	Soft-confinement options
	Kleinman-Bylander projectors
	The PAO.Basis block
	Filtering
	Saving and reading basis-set information
	Tools to inspect the orbitals and KB projectors
	Basis optimization
	Low-level options regarding the radial grid
	Summary of options and defaults enabling automatic basis-set generation
	Notes on backward compatibility in regard to new program defaults

	Structural information
	Traditional structure input in the fdf file
	Z-matrix format and constraints
	Output of structural information
	Input of structural information from external files
	Input from a FIFO file
	Precedence issues in structural input
	Interatomic distances

	k-point sampling
	Output of k-point information

	Exchange-correlation functionals
	Spin polarization
	Spin-Orbit coupling
	On-site approximation

	The self-consistent-field loop
	Harris functional
	Mixing options
	Mixing of the Charge Density
	Initialization of the density-matrix
	Initialization of the SCF cycle with charge densities
	Output of density matrix and Hamiltonian
	Convergence criteria

	The real-space grid and the eggbox-effect
	Matrix elements of the Hamiltonian and overlap
	The auxiliary supercell

	Calculation of the electronic structure
	Diagonalization options
	Output of eigenvalues and wavefunctions
	Occupation of electronic states and Fermi level
	Orbital minimization method (OMM)
	Order(N) calculations

	The CheSS solver
	Input parameters

	The PEXSI solver
	Pole handling
	Parallel environment and control options
	Electron tolerance and the PEXSI solver
	Inertia-counting
	Re-use of u information accross iterations
	Calculation of the density of states by inertia-counting
	Calculation of the LDOS by selected-inversion

	Band-structure analysis
	Format of the .bands file
	Output of wavefunctions associated to bands

	Output of selected wavefunctions
	Density of states
	Total density of states
	Partial (projected) density of states
	Local density of states

	Options for chemical analysis
	Mulliken charges and overlap populations
	Voronoi and Hirshfeld atomic population analysis
	Crystal-Orbital overlap and hamilton populations (COOP/COHP)

	Optical properties
	Macroscopic polarization
	Maximally Localized Wannier Functions
	wannier90 as a postprocessing tool
	wannier90 called on-the-fly within siesta

	Systems with net charge or dipole, and electric fields
	Bulk current

	Output of charge densities and potentials on the grid
	Auxiliary Force field
	Grimme's DFT-D3 dispersion model
	 A note on LIBXC functionals

	Parallel options
	Parallel decompositions for O(N)

	Efficiency options
	Memory, CPU-time, and Wall time accounting options
	The catch-all option UseSaveData
	Output of information for Denchar
	NetCDF (CDF4) output file

	STRUCTURAL RELAXATION, PHONONS, AND MOLECULAR DYNAMICS
	Compatibility with pre-v4 versions
	Structural relaxation
	Conjugate-gradients optimization
	Broyden optimization
	FIRE relaxation

	Target stress options
	Molecular dynamics
	Output options for dynamics
	Restarting geometry optimizations and MD runs
	Use of general constraints
	Phonon calculations

	DFT+U
	RT-TDDFT
	Brief description
	Partial Occupations
	Input options for RT-TDDFT

	External control of SIESTA
	Examples of Lua programs
	External MD/relaxation methods

	TRANSIESTA
	Source code structure
	Compilation
	Brief description
	Electrodes
	Matching coordinates
	Principal layer interactions

	Convergence of electrodes and scattering regions
	NEGF equations
	TranSIESTA Options
	Quick and dirty
	General options

	k-point sampling
	Algorithm specific options
	Poisson solution for fixed boundary conditions
	Electrode description options
	Chemical potentials
	Complex contour integration options
	Bias contour integration options

	Output
	Utilities for analysis: TBtrans

	ANALYSIS TOOLS
	SCRIPTING
	PROBLEM HANDLING
	Error and warning messages

	REPORTING BUGS
	ACKNOWLEDGMENTS
	APPENDIX: Physical unit names recognized by FDF
	APPENDIX: XML Output
	Controlling XML output
	Converting XML to XHTML

	APPENDIX: Selection of precision for storage
	APPENDIX: Data structures and reference counting
	Bibliography
	Index

