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1 Introduction

This Reference Manual contains descriptions of all the input, output and
execution features of TBtrans, but is not a tutorial introduction to the
program.
TBtrans (Tight-Binding transport) is a generic computer program which
calculates transport and other physical quantities using the Green func-
tion formalism. It is a stand-alone program which allows extreme scale
tight-binding calculations.

• It uses the basic non-equilibrium Green function formalism and al-
lows extensive customizability and analysis forms.

• TBtrans may be given any type of local-orbital Hamiltonian and
calculate transport properties of arbitrary geometries and/or num-
ber of electrodes.

• The PHtrans variant may be compiled to obtain thermal (phonon)
transport using the same Green function formalism and all the same
functionalities as those presented in this manual.

As TBtrans output has changed to the flexible NetCDF-4 format you
are highly encouraged to use the sisl [3] toolsuite which has nearly all the
necessary tools available to perform advanced analysis. If used, please
cite sisl appropriately.
A list of the currently implemented features are:

• Density of states (orbital resolved)

– Green function DOS
– Scattering DOS

• Hamiltonian interpolation at different voltages

• Selective wide-band limit of the electrode(s)

• Transmission eigenvalues

• Bulk electrode density of state and transmission (directly from the
electrode Hamiltonian)

• Projected transmission of eigenstates

• Orbital resolved “bond-currents” which may subsequently be ana-
lyzed to yield actual bond-currents

• Density matrices using the Green function and/or the spectral den-
sity

• COOP and COHP curves using the Green function and/or the spec-
tral density.

References:

• Description of the TBtrans and TranSIESTA code in the N
terminal generic implementation [1].

• sisl is a data analysis/extraction utility for TBtrans which enables
easy access to the data stored in the output NetCDF-4 file [3].

1.1 PHtrans

The NEGF formalism also applies to phonons via some simple differences.
Here is a list of some of the differences:

• For PHtrans all options are still prefixed with TBT!

• The Green function calculation looks like:

Gq = [(ω2 + iη2)I−Dq −Σq(ω)]−1, (1)

where ω is referred to as energy in the remaining document.

• Calculating density matrices (TBT.DM.Gf , TBT.COOP.Gf ,
TBT.COHP.Gf) are prefactored with 2ω which is currently em-
pirically done.

NOTE: PHtrans is not as tested as TBtrans. Any feedback on all
parts are most welcome!
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2 Compilation

TBtrans may be compiled in the Util/TS/TBtrans directory.
To compile TBtrans simply go to the directory and type:

$ make

This will default to use the arch.make file in the Obj directory. To use a
different directory you may do:

$ make OBJDIR=AnotherObjDir

TBtrans is tightly intertwined with the SIESTA source to reduce code
duplication.
Please see the SIESTA manual for installing NetCDF easily.

2.1 The arch.make file

The compilation is done using a Makefile that is provided with the code.
This Makefile will generate the executable for any of several architec-
tures, with a minimum of tuning required from the user and encapsulated
in a separate file called arch.make.
TBtrans relies on the following libraries

BLAS it is recommended to use a high-performance library (OpenBLAS
or the MKL library from Intel)

• If you use your *nix distribution package manager to install
BLAS you are bound to have a poor performance. Please try
and use performance libraries.

To add BLAS to the arch.make file you need to add the required
linker flags to the LIBS variable in the arch.make file.
Example variables

# OpenBLAS:
LIBS += -L/opt/openblas/lib -lopenblas
# or for MKL
LIBS += -L/opt/intel/.../mkl/lib/intel64 -lmkl_blas95_lp64 ...

LAPACK it is recommended to use a high-performance library (Open-
BLAS1 or the MKL library from Intel)
Example variables

# OpenBLAS (OpenBLAS will default to build in LAPACK 3.6)
LIBS += -L/opt/openblas/lib -lopenblas
# or for MKL
LIBS += -L/opt/intel/.../mkl/lib/intel64 -lmkl_lapack95_lp64 ...

The above are the minimally required libraries.
Highly encouraged libraries

NetCDF Note that it should a NetCDF4 compliant compiled library2.
This library is required for a multitude of advanced analysis meth-
ods such as orbital resolved DOS, bond-currents, δH, eigenstate
projections, etc.
To use this library add these variables to your arch.make file

COMP_LIBS += libncdf.a
FPPFLAGS += -DCDF -DNCDF -DNCDF_4
LIBS += -lnetcdff -lnetcdf -lhdf5_fortran -lhdf5 -lz

If you have compiled NetCDF4 with parallel IO you may benefit
from parallel IO by adding this compilation flag:

FPPFLAGS += -DNCDF_PARALLEL

To easily install NetCDF please see the installation file:
Docs/install_netcdf4.bash.

Importantly, TBtrans is compatible with hybrid parallelism using MPI
and OpenMP or either of them alone.

MPI To compile using MPI add this to your arch.make file

FPPFLAGS += -DMPI
1OpenBLAS enables the inclusion of the LAPACK routines. This is advised.
2Remark that a NetCDF-3 compliant library is not sufficient for TBtrans.
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OpenMP To compile using OpenMP add this to your arch.make file

FFLAGS += -fopenmp
LIBS += -fopenmp

change the corresponding flag according to your compiler.
The minimum required version of OpenMP is 3.0 (internally identified by
the YYYYMM date string 200805).

Running Hybrid parallel TBtrans Running TBtrans using hybrid
parallelism is difficult due to the complexity of controlling the threads and
processors.
To achieve good performance one must ensure that the threads and pro-
cessors are not oversubscribe and are not overlapping. For instance if
using OpenMPI ≥ 1.8.4 one may run TBtrans using this command:

mpirun -np $((PBS_NP/OMP_NUM_THREADS)) \
-x OMP_NUM_THREADS \
-x OMP_PROC_BIND=true \
--map-by ppr:1:socket:pe=$OMP_NUM_THREADS

where PBS_NP is the total number of processors, OMP_NUM_THREADS is the
number of threads per processor. The above command assumes using
1 MPI processor per socket with each socket having OMP_NUM_THREADS
cores.

2.1.1 BLAS GEMM3M kernel

Several modern BLAS implementations allow the use of GEMM3M kernels
for complex linear algebra. They should provide a performance enhance-
ment for large matrices. To use these routines add this to your arch.make
file:

FPPFLAGS += -DUSE_GEMM3M

Note that OpenMP threaded BLAS libraries are known to fail with the
GEMM3M kernels.

2.1.2 Intel MKL libraries

The MKL libraries are very efficient, but may be difficult to obtain a
correct linking. Here is a short tutorial for linking the MKL BLAS and
LAPACK libraries correctly.
In the following assume that MKL_ROOT points to the root of the
MKL installation directory, for instance one may install MKL into
/opt/intel/mkl:

MKL_ROOT = /opt/intel/mkl

where MKL_ROOT/lib/intel64 contains the libraries.
The linking depends on the used compiler:

Intel compiler The MKL libraries are parallelized using threads and
you may also enable threads in TBtrans:

No threading
LIBS += -L$(MKL_ROOT)/lib/intel64 -lmkl_lapack95_lp64
-lmkl_blas95_lp64 -lmkl_intel_lp64 -lmkl_core -lmkl_sequential

OpenMP threading
LIBS += -openmp -L$(MKL_ROOT)/lib/intel64 -lmkl_lapack95_lp64
-lmkl_blas95_lp64 -lmkl_intel_lp64 -lmkl_core -lmkl_intel_thread

GNU compiler The MKL libraries are parallelized using threads and
you may also enable threads in TBtrans:

No threading
LIBS += -L$(MKL_ROOT)/lib/intel64 -lmkl_lapack95_lp64
-lmkl_blas95_lp64 -lmkl_gf_lp64 -lmkl_core -lmkl_sequential

OpenMP threading
LIBS += -fopenmp -L$(MKL_ROOT)/lib/intel64 -lmkl_lapack95_lp64
-lmkl_blas95_lp64 -lmkl_gf_lp64 -lmkl_core -lmkl_gnu_thread

4



3 Execution of the Program

TBtrans should be called with an input file which defines what it should
do. This may either be piped or simply added on the input line. The
latter method is preferred as one may use flags for the executable.

$ tbtrans < RUN.fdf
$ tbtrans RUN.fdf

Note that if TBtrans is compiled with MPI support one may call it like

$ mpirun -np 4 tbtrans RUN.fdf

for 4 MPI-processors.
TBtrans has these optional flags:

-help or -h print a help instruction and quit

-version or -v print TBtrans version and quit

-out or -o specify where all output should be written to (instead of STD-
OUT)

-L override SystemLabel flag

-V override TBT.Voltage flag. To denote the unit do as this example:
-V 0.2 eV which sets the voltage to 0.2 eV. A value without unit
is interpreted as eV.

-D override TBT.Directory flag, all output of TBtrans will be put in
the corresponding folder (it will be created if non-existing)

-HS specify the TBT.HS variable, quickly override the used Hamilto-
nian

-fdf specify any given fdf flag on the command line, example -fdf
TBT.Voltage 0.2 eV

Note that for all flags one may use “:” as a replacement for “ ”, although
one may use quotation marks when having a space in the argument.

4 fdf-flags

Although TBtrans is a fully independent Green function transport code,
it is hard-wired with the TranSIESTA fdf flags and options. If you are
familiar with TranSIESTA and its input flags, then the use of TBtrans
should be easy.
All fdf-flags for TBtrans are defaulted to their equivalent TranSIESTA
flag. Thus if you are using TranSIESTA as a back-end you should
generally not change any flags. For instance TBT.Voltage defaults to
TS.Voltage if not supplied.

SystemLabel siesta (string)
The label defining this calculation. All relevant output will be pre-
fixed with the SystemLabel.
One may start several TBtrans calculations in the same directory
if they have different labels.

TBT.Voltage 0 eV (energy)
Define the applied bias in the scattering region.

TBT.Directory ./ (directory)
Define the output directory of files from TBtrans. This allow exe-
cution of several TBtrans instances in the same folder and writing
their result to different, say, sub-folders. It is particularly useful for
interpolation of Hamiltonian’s and for testing purposes.

TBT.Verbosity 5 (integer)
Specify how much information TBtrans will print-out (range 0-10).
For smaller numbers, less information will be printed, and for larger
values, more information is printed.

TBT.Progress 5. (real)
TBtrans prints out an estimated time of completion (ETA) for the
calculation. By default this is printed out every 5% of the total loops
(k-point × energy loops). Setting this to 0 will print out after every
energy loop.
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4.1 Define electronic structure

TBT.HS <SystemLabel>.TSHS (file)
Define the Hamiltonian file which contains information regarding the
Hamiltonian and geometry.

%block TBT.HS.Files 〈None〉 (block)
A list of files which each contain the Hamiltonian for the same geom-
etry at different bias’. Each line has three entries, 1) the TBT.HS
file, 2) the value of the bias applied, 3) the unit of the bias.
NOTE: if this is existing it will assume that you will perform
an interpolation of the Hamiltonians to the corresponding bias
(TBT.Voltage).

TBT.HS.Interp spline|linear (string)
depends on: TBT.HS.Files

Interpolate all files defined in TBT.HS.Files to the corresponding
applied bias.
Generally spline produces the best interpolated values and its use
is encouraged. The linear interpolation scheme is mainly used for
comparison to the spline. If they are very different from each other
then one may be required to perform additional self-consistent cal-
culations at the specific bias due to large changes in the electronic
structure.

Say you have calculated the SCF solution of a certain system at 5 different
applied bias’:

%block TBT.HS.Files
../V0/siesta.TSHS 0. eV
../V-0.5/siesta.TSHS -0.5 eV
../V0.5/siesta.TSHS 0.5 eV
../V-1.0/siesta.TSHS -1.0 eV
../V1.0/siesta.TSHS 1.0 eV

%endblock

and you wish to calculate the interpolated transmissions and currents at
steps of 0.1 eV, then you may use this simple loop

for V in ‘seq -1.5 0.1 1.5‘ ; do

tbtrans -V $V:eV -D V$V RUN.fdf
done

which at each execution of TBtrans interpolates the Hamiltonian to the
corresponding applied bias and store all output files in the V$V folder.

4.1.1 Changing the electronic structure via δ elements

The electronic structure may be altered by changing the Hamiltonian
elements via a simple additive term

H← H + δH + δΣ, (2)

which allows easy changes to the electronic structure or adding additional
terms such as imaginary self-energies. One may also use it to add magnetic
fields etc.
TBtrans uses a distinction between δH and δΣ only via the orbital
current calculation. I.e. δH enters the equations for calculating the orbital
current, whereas δΣ does not. Otherwise the two δ-terms are completely
identical. In the following discussion we will use the term δ to be either
δH or δΣ.
To use this feature at k points it is important to know that phases in
TBtrans are defined using the lattice vectors (and not inter-atomic dis-
tances)

Hk = H · eik·R. (3)

TBtrans will add the phases on all elements of δ via Eq. (3). To counter
these phases one may simply multiply δ with the negative phase (−i).
Note that phases are only added on super cell elements, not unit cell
elements.

TBT.dH 〈None〉 (file)
Denote a file which contains the δH information.
NOTE: that the terms defined in this file are added to the Hamil-
tonian when calculating the orbital currents, if your terms are not a
Hamiltonian change, then consider using TBT.dSE instead.
This file must adhere to these file format notations and is required
to be supplied in a NetCDF4 format
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netcdf file.dH {
dimensions:

one = 1 ;
n_s = 9 ;
xyz = 3 ;
no_u = 900 ;
spin = 1 ;

variables:
int nsc(xyz) ;

nsc:info = "Number of supercells in each unit-cell direction" ;

group: LEVEL-1 {
dimensions:

nnzs = 2670 ;
variables:

int n_col(no_u) ;
n_col:info = "Number of non-zero elements per row" ;

int list_col(nnzs) ;
list_col:info = "Supercell column indices in the sparse format" ;

int isc_off(n_s, xyz) ;
isc_off:info = "Index of supercell coordinates" ;

double Redelta(spin, nnzs) ;
Redelta:info = "Real part of delta" ;
Redelta:unit = "Ry" ;

double Imdelta(spin, nnzs) ;
Imdelta:info = "Imaginary part of delta" ;
Imdelta:unit = "Ry" ;

} // group LEVEL-1

group: LEVEL-2 {
dimensions:

nkpt = UNLIMITED ;
nnzs = 2670 ;

variables:
double kpt(nkpt, xyz) ;

kpt:info = "k-points for delta values" ;
kpt:unit = "b**-1" ;

... n_col list_col isc_off ...
double delta(nkpt, spin, nnzs) ;

delta:info = "delta" ;
delta:unit = "Ry" ;

} // group LEVEL-2

group: LEVEL-3 {
dimensions:

ne = UNLIMITED ;

nnzs = 2670 ;
variables:

double E(ne) ;
E:info = "Energy points for delta values" ;
E:unit = "Ry" ;

... n_col list_col isc_off ...
double delta(ne, spin, nnzs) ;

delta:info = "delta" ;
delta:unit = "Ry" ;

} // group LEVEL-3

group: LEVEL-4 {
dimensions:

nkpt = UNLIMITED ;
ne = UNLIMITED ;
nnzs = 2670 ;

variables:
double kpt(nkpt, xyz) ;

kpt:info = "k-points for delta values" ;
kpt:unit = "b**-1" ;

double E(ne) ;
E:info = "Energy points for delta values" ;
E:unit = "Ry" ;

... n_col list_col isc_off ...
double delta(nkpt, ne, spin, nnzs) ;

delta:info = "delta" ;
delta:unit = "Ry" ;

} // group LEVEL-4
}

This example file shows how the file should be formatted. Note that
one may either define the Hamiltonian as delta or as Redelta and
Imdelta. The former is defining δ as a real quantity while the latter
makes it an imaginary δ.
The levels are defined because they have precedence from each other,
if the energy point and k point is found in LEVEL-4 it will use this,
if not, it will check for the energy point in LEVEL-3, and so on.

The remaining options are only applicable if TBT.dH has been set.

TBT.dH.Parallel true (logical)
Whether the δH file should be read in parallel. If your architecture
supports parallel IO it is beneficial to do so. TBtrans performs a
basic check whether parallel IO may be possible, if it cannot assert
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this it will be turned off.

TBT.dSE 〈None〉 (file)
File has same format as specified for TBT.dH.
The only difference between a δH and δΣ file is that the terms in
δΣ does not enter the calculation of the bond-currents, whereas δH
does, see Eq. (16).

4.2 Determine calculated physical quantities

TBtrans can calculate a large variety of physical quantities. By default it
will only calculate the transmission between the electrodes. Calculating
as few quantities as possible will increase throughput, while requesting
many quantities will result in much longer run-times.
You are heavily encouraged to compile TBtrans with NetCDF4 support,
see Sec. 2.1, as quantities will be orbital resolved.
If TBtrans has been compiled with NetCDF4 support, one may extract
the projected DOS from the SystemLabel.TBT.nc using sisl (or manual
scripting). The calculated DOS can only be extracted from the atoms
in the device region (atoms in block TBT.Atoms.Device). Hence the
TBT.Atoms.Device block is extremely important when conducting de-
tailed DOS analysis. For instance if the input file has this:

%block TBT.Atoms.Device
atom [20 -- 40]

%endblock

one may extract the PDOS on a subset of atoms using this sisl command

sdata siesta.TBT.nc --atom 20-30 --dos --ados Left --out dos_20-30.dat
sdata siesta.TBT.nc --atom 20-30[1-3] --dos --ados Left --out dos_20-30_1-3.dat

where the former is the total PDOS on atoms 20 through 30, and the
latter is the PDOS on orbitals 1, 2 and 3 on atoms 20 through 30. It
thus is extremely easy to extract different PDOS once the calculation has
completed.

TBT.T.Bulk false (logical)

Calculate the bulk (pristine) electrode transmission if true.
This generates SystemLabel.BTRANS_<> and
SystemLabel.AVBTRANS_<>.
NOTE: implicitly enables TBT.DOS.Elecs if true.

TBT.DOS.Elecs false (logical)
Calculate the bulk (pristine) electrode DOS if true.
This generates SystemLabel.BDOS_<> and SystemLabel.AVBDOS_<>.
NOTE: implicitly enables TBT.T.Bulk if true.

TBT.DOS.Gf false (logical)
depends on: TBT.Atoms.Device

Calculate the DOS from the Green function on the atoms in the
device region:

G(E) = [ES−H−
∑
e

Σe(E)]−1 (4)

=
∑
e

G(E)Γe(E)G†(E) + bound states (5)

=
∑
e

Ae(E) + bound states (6)

NOTE: this flag should only be used if there are bound states in the
scattering region (or if one wish to uncover whether there are bound
states). Due to internal algorithms the DOS from the Green function
is computationally more demanding than using TBT.DOS.A and
TBT.DOS.A.All.
This generates SystemLabel.DOS and SystemLabel.AVDOS.
See TBT.Atoms.Device.Connect.
In case any of TBT.DM.Gf , TBT.COOP.Gf or TBT.COHP.Gf
is true this flag will be set to true as well.

TBT.DOS.A false (logical)
depends on: TBT.Atoms.Device

Calculate the DOS from the spectral function. This will not calculate
the DOS from the last electrode (last in the list TBT.Elecs), see
TBT.DOS.A.All.
Its relation to the Green function DOS can be inferred from Eq. (4)
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(see TBT.DOS.Gf). If there are no bound states in the device
region then prefer this option and TBT.DOS.A.All.
This generates SystemLabel.ADOS_<> and SystemLabel.AVADOS_<>.
See TBT.Atoms.Device.Connect.
In case any of TBT.Current.Orb, TBT.DM.A, TBT.COOP.A
or TBT.COHP.A is true this flag will be set to true as well.

TBT.DOS.A.All false (logical)
depends on: TBT.Atoms.Device

Calculate the DOS from the spectral function and do so with all
electrodes.
This additionally
generates SystemLabel.ADOS_<> and SystemLabel.AVADOS_<> for
the last electrode in TBT.Elecs.
NOTE: if true, this implicitly sets TBT.DOS.A to true.

Setting the flags TBT.DOS.Gf and TBT.DOS.A.All to true enables
the estimation of bound states in the scattering region via this simple
expression

ρbound−states = ρG −
∑

i

ρAi , (7)

where the sum is over all electrodes, G and Ai are the Green and spectral
function, respectively. Note that typically ρbound−states = 0.
The below two options enables the calculation of the energy resolved den-
sity matrices. In effect they may be used to construct LDOS(E) profiles
using sisl.

TBT.DM.Gf false (logical)
depends on: TBT.Atoms.Device

Calculate the energy and k-resolved density matrix for the Green
function. The density matrix may be used to construct real-space
LDOS profiles.

TBT.DM.A false (logical)
depends on: TBT.Atoms.Device

Calculate the energy and k-resolved density matrix for the electrode
spectral functions. The density matrix may be used to construct
real-space LDOS profiles.

In addition to the DOS analysis of the Green and spectral functions,
the Crystal Orbital Overlap Population and Crystal Orbital Hamilton
Population may also be calculated. These are only available if TBtrans
is compiled with NetCDF-4 support.

TBT.COOP.Gf false (logical)
depends on: TBT.Atoms.Device, TBT.DOS.Gf

Calculate COOP from the Green function in the device region.
The COOP curve is calculated as:

COOPµν = −1
π
ℑ[GµνSνµ]. (8)

The COOP curves are orbital, energy and k-resolved and they may
thus result in very large output files.
NOTE: Untested!

TBT.COOP.A false (logical)
depends on: TBT.Atoms.Device, TBT.DOS.A.All

Calculate COOP from the spectral function in the device region.
The COOP curve is calculated as:

COOPµν = 1
2π
ℜ[AµνSνµ]. (9)

The COOP curves are orbital, energy and k-resolved and they may
thus result in very large output files.
NOTE: Untested!

TBT.COHP.Gf false (logical)
depends on: TBT.Atoms.Device

Calculate COHP from the Green function in the device region.
The COHP curve is calculated as:

COHPµν = −1
π
ℑ[GµνHνµ]. (10)

The COHP curves are orbital, energy and k-resolved and they may
thus result in very large output files.
NOTE: Untested!
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TBT.COHP.A false (logical)
depends on: TBT.Atoms.Device, TBT.DOS.A.All

Calculate COHP from the spectral function in the device region.
The COHP curve is calculated as:

COHPµν = 1
2π
ℜ[AµνHνµ]. (11)

The COHP curves are orbital, energy and k-resolved and they may
thus result in very large output files.
NOTE: Untested!

TBT.T.Eig 0 (integer)
Specify how many of the transmission eigenvalues will be calculated.
This generates SystemLabel.TEIG_<1>_<2> and
SystemLabel.AVTEIG_<1>_<2>, possibly SystemLabel.CEIG_<1>
and SystemLabel.AVCEIG_<1>. The former is for two different elec-
trodes i ̸= j, while the latter is for electrode i = j.
NOTE: if you specify a number of eigenvalues above the available
number of eigenvalues, TBtrans will automatically truncate it to a
reasonable number.
NOTE: The transmission eigenvalues for N > 2 systems is not fully
understood and the transmission eigenvalues calculated in TBtrans
is done by diagonalizing this sub-matrix:

GΓiG†Γj . (12)

TBT.T.All false (logical)
By default TBtrans only calculates transmissions in one direction
because time-reversal symmetry makes Tij = Tji. If one wishes to as-
sert this, or if time-reversal symmetry does not apply for your system,
one may set this to true to explicitly calculate all transmissions.
This additionally generates SystemLabel.TRANS_<1>_<2> and
SystemLabel.AVTRANS_<1>_<2> for all electrode combinations (and
the equivalent eigenvalue files if TBT.T.Eig is true.

TBT.T.Out false (logical)
The total transmission out of any electrode3 may easily be calculated

3In N > 2-electrode calculations one cannot use this quantity to calculate the total

using only the scattering matrix of the origin electrode and the scat-
tering region Green function. This enables the calculation of these
equations

i Tr[(G−G†)Γj ], (13)
Tr[GΓjG†Γj ]. (14)

The total transmission out of electrode j may then be calculated as

Tj = i Tr[(G−G†)Γj ]− Tr[GΓjG†Γj ]. (15)

This generates two sets of files: SystemLabel.CORR_<> and
SystemLabel.TRANS_<1>_<1> which corresponds to equations
Eqs. (13) and (14), respectively. To calculate Tj subtract the two
files according to Eq. (15).

TBT.Current.Orb false (logical)
depends on: TBT.Atoms.Device, TBT.DOS.A

Whether the orbital currents will be calculated and stored. These will
be stored in a sparse matrix format corresponding to the SIESTA
sparse format with only the device atoms in the sparse pattern.
Orbital currents are implemented as:

Jαβ(E) = i[(Hβα − ESβα)Aαβ(E)− (Hαβ − ESαβ)Aβα(E)], (16)

where we have left out the pre-factor (e/ℏ) intentionally. sisl may be
used to analyze the orbital currents and enables easy transformation
of orbital currents to bond currents and activity currents [1].
NOTE: this requires TBtrans to be compiled with NetCDF-4 sup-
port, see Sec. 2.1.

TBT.Spin 〈all〉 (integer)
If the Hamiltonian is a polarized calculation one my define the index
of the spin to be calculated.
This allows one to simultaneously calculate the spin-up and spin-
down transmissions, for instance

$ tbtrans -fdf TBT.Spin:1 -D UP RUN.fdf &
$ tbtrans -fdf TBT.Spin:2 -D DOWN RUN.fdf &

current out of an electrode.
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which will create two folders UP and DOWN and output the relevant
physical quantities in the respective folders.

TBT.Symmetry.TimeReversal true (logical)
Whether the Hamiltonian and the calculation should use time-
reversal symmetry. Currently this only affects k-point sampling cal-
culations by not removing any symmetry k-points.
If one has k-point sampling and wishes to use TBT.Current.Orb
this should be false.

4.2.1 Device region

The scattering region (and thus device region) is formally consisting of all
atoms besides the electrodes. However, when calculating the transmission
this choice is very inefficient. Thus to heavily increase throughput one
may define a smaller device region consisting of a subset of atoms in the
scattering region.
The choice of atoms must separate each electrode from each other. TB-
trans will stop if this is not enforced.
Remark that the physical quantities such as DOS, spectral DOS, orbital
currents may only be calculated in the selected device region.

TBT.Atoms.Device 〈all but electrodes〉 (block/list)
This flag may either be a block, or a list.
A block with each line denoting the atoms that consists of the device
region.

%block TBT.Atoms.Device
atom [ 10 -- 20 ]
atom [ 30 -- 40 ]
# Atoms removed from the device region
# Even though they are specified in other
# lines
not-atom [ 15, 35]

% endblock
# Or equivalently as a list
TBT.Atoms.Device [10 -- 14, 16 -- 20, 30 -- 34, 36 -- 40]

will limit the device region to atoms [10–14, 16–20, 30–34, 36–40].

TBT.Atoms.Device.Connect false (logical)
Setting this to true will extend the device region to also include
atoms that the input device atoms has matrix elements between.
This may be important when using non-orthogonal basis sets as one
can ensure the full overlap matrix on the selected device atoms.
NOTE: this parameter should be set to true in case accurate DOS
calculations are required on the specified device atoms (if using a
non-orthogonal basis set).

TBT.Atoms.Buffer 〈None〉 (block/list)
A block with each line denoting the atoms that are disregarded in the
Green function calculation. For self-consistent calculations it may be
required to introduce buffer atoms which are removed from the SCF
cycle. In such cases these atoms should also be removed from the
transport calculation.

%block TBT.Atoms.Buffer
atom [ 1 -- 5 ]

%endblock
# Or equivalently as a list
TBT.Atoms.Buffer [1 -- 5]

will remove atoms [1–5] from the calculation.

4.2.2 Brillouin zone

TBtrans allows calculating physical quantities via averaging in the Bril-
louin zone.

TBT.k 〈kgrid_Monkhorst_Pack〉 (list/block)
Specify how to perform Brillouin zone integrations.
This may be given as a list like this:

TBT.k [A B C]

where each integer corresponds to the diagonal elements of the
Monkhorst-Pack grid. I.e.

TBT.k [10 10 1]
%block TBT.k

10 0 0 0.
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0 10 0 0.
0 0 1 0.

%endblock

are equivalent.
If you supply this flag as a block the following options are available:

path Define a Brillouin zone path4 where the k-points are equi-
spaced. It may be best described using this example:

path 10
from 0. 0. 0.
to 0.5 0.5 0.

path 20
from 0.25 0.25 0.
to 0.0 0.5 0.

This will create k-points starting from the Γ-point and move to the
Brillouin zone boundary at [1/2, 1/2, 0] with spacing to have 10
points.
There is no requirement that the paths are connected and one may
specify as many paths as wanted.

even-path It is generally advised to add this flag in the blog (some-
where) if one wants equi-distance k-spacings in the Brillouin
zone. This flag sums up the total number of k-points on the to-
tal path and then calculates the exact number of required points
required on each path to have the same δk in each path.

NOTE: if any one path is found in the block the options (ex-
plained below) are ignored.

diagonal|diag Specify the number of k points in each unit-cell direc-
tion
diagonal 3 3 1 will use 3 k points along the first and second lattice
vectors and only one along the third lattice vector.

displacement|displ Specify the displacement of the Brillouin zone k
points along each lattice vector. This input is similar to diagonal
but requires real input.
displacement 0.5 0.25 0. will displace the first and second k
origin to [1/2, 1/4, 0].

4Much like BandLines in SIESTA.

size This reduces the sampled Brillouin zone to only the fractional
size of each lattice vector direction.
This may be used to only sample k-points in a reduced Brillouin
zone which for instance is useful if one wishes to sample the Dirac
point in graphene in an energy range of −0.5 eV – 0.5 eV.
size 0.5 1. 1. will reduce the sampled k points along the first
reciprocal lattice to be in the range ]−1/4, 1/4], while the other
directions are still sampled ]−1/2, 1/2].
NOTE: expert use only.

list Explicitly specify the sampled k-points and (optionally) the asso-
ciated weights.

list 2
0. 0. 0. 0.5
0.5 0.5 0.

where the integer on the list line specifies the number of lines that
contains k points. Each line must be created with 3 reals which
define the k point in units of the reciprocal lattice vectors (]−1/2–
1/2]).
An optional 4th value denote the associated weight which is de-
faulted to 1/N where N is the total number of k points.
NOTE: if this is found it will neglect the other input options
(except path).

method Define how the k-points should be created in the Brillouin
zone.
Currently these options are available (Monkhorst-Pack being the
default)

Monkhorst-Pack|MP Use the regular Monkhorst-Pack sampling
(equi-spaced) with simple linear weights.

Gauss-Legendre Use the Gauss-Legendre quadrature and weights
for constructing the k points and weights. These k points are
not equi-spaced and puts more weight to the Γ point.

Simpson-mix Use the Newton-Cotes method (Simpson, degree 3)
which uses equi-spaced points but non-uniform weights.

Boole-mix Use the Newton-Cotes method (Boole, degree 5) which
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uses equi-spaced points but non-uniform weights.

〈siesta-method〉 One
may also use the typical kgrid_Monkhorst_Pack method of
input as done in SIESTA. This is a 3× 3 block such as:

10 0 0 0.
0 15 0 0.
0 0 1 0.

which uses 10, 15 and 1 k-points along the 1st, 2nd and 3rd recip-
rocal lattice vectors. And with 0 displacement.
NOTE: it is recommended to use the diagonal option unless off-
diagonal k points are needed.

4.2.3 Energy grid

TBtrans uses a default energy reference as the Fermi level in the cor-
responding TranSIESTA calculation. I.e. the equilibrium Fermi level.
Thus one should be aware when using a shifted bias window that the
calculated properties shifts according to the applied bias. For example;
if one performs two equivalent 2-terminal calculations A) with µL = V ,
µR = 0 and the other B) with µL = V/2, µR = −V/2 then the calcu-
lated properties are equivalent if one shifts the energy spectrum of A) by
E → E − V/2. Any 2-terminal calculation is recommended to be setup
with µL = V/2 and µR = −V/2 due to the fixed energy reference, ER = 0.
The Green function is calculated at explicit energies and does not rely on
diagonalization routines to retrieve the eigenspectrum. This is due to the
smearing of states from the coupling with the semi-infinite electrodes.
It is thus important to define an energy grid for analysis of the DOS and
transmission.

TBT.Contours.Eta min[ηe]/10 (energy)
depends on: TBT.Elecs.Eta

The imaginary (η) part of the Green function in the device re-
gion. Note that the electrodes imaginary part may be controlled
via TBT.Elecs.Eta.
This value controls the smearing of the DOS on the energy axis.
Generally one need not take into account η values different from 0.

However, in cases where localized states are found a smearing in the
device region can help numerics. Therefore it defaults to min[ηe]/10.
This ensures that the device broadening is always smaller than the
electrodes while allowing broadening of localized states.

%block TBT.Contours see note further down (block)
Each line in this block corresponds to a specific contour. Enabling
several lines of input allows to create regions of the energy grid which
has a high density and ranges of energies with lower density. Also it
allows to bypass energy ranges where the DOS is zero in for instance
a semi-conductor.
See TBT.Contour.<> for details on specifying the energy contour.

%block TBT.Contour.<> 〈None〉 (block)
Specify a contour named <> with options within the block.
The names <> are taken from the TBT.Contours block.
The format of this block is made up of at least 3 lines, in the following
order of appearance.

from a to b Define the integration range on the energy axis. Thus
a and b are energies.

points|delta|file Define the number of integration points/energy sep-
aration. If specifying the number of points an integer should be
supplied.
If specifying the separation between consecutive points an energy
should be supplied (e.g. 0.01 eV).
Optionally one may specify a file which contains the energy points
and their weights.
This file has the same formatting as the SystemLabel.TBT.CC out-
put with some optional inputs. Below is an example input file.

# There are 2 different input options:
# 1. Re[E] Im[E] W (optional unit)
# 2. Re[E] W (optional unit) (imaginary part will be device Eta)
# If the unit is specified on any line, all subsequent lines will use
# the specified unit. Default unit is eV!
# Empty lines and lines starting with # will be ignored.
-0.5 0.1 # E = -0.5 eV, weight (for integrating current) of 0.1 eV
-0.01 0.1 Ry # E = -0.01 Ry and weight 0.1 Ry
-0.02 0.1 # E = -0.02 Ry (above unit continue) and weight 0.1 Ry
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-0.2 0.1 eV # E = -0.2 eV and weight 0.1 eV
-0.2 1. 0.1 # E = -0.2 eV and 1. eV eta and weight 0.1 eV

If the file specified is SystemLabel.TBT.CC the same energy points
will be used. Note that the resulting SystemLabel.TBT.nc file
does not store the energies as complex numbers, thus one cannot
subsequently extract the η value used for the individual energy
points.
NOTE: for PHtrans the energies will be squared internally to
be in correct units, hence the units should still be eV.

method Specify the numerical method used to conduct the integra-
tion. Here a number of different numerical integration schemes are
accessible

mid|mid-rule Use the mid-rule for integration.

simpson|simpson-mix Use the composite Simpson 3/8 rule (three
point Newton-Cotes).

boole|boole-mix Use the composite Booles rule (five point
Newton-Cotes).

G-legendre Gauss-Legendre quadrature.

tanh-sinh Tanh-Sinh quadrature.
NOTE: has opt precision <>.

user User defined input via a file.

opt Specify additional options for the method. Only a selected sub-
set of the methods have additional options.

By default the TBtrans energy grid is defined as

TBT.Contours.Eta 0. eV
%block TBT.Contours

line
%endblock
%block TBT.Contour.line

from -2. eV to 2. eV
delta 0.01 eV

method mid-rule
%endblock

An example of input using a file (note that regular contour setups may
be used together with file-inputs)

TBT.Contours.Eta 0. eV
%block TBT.Contours

file
%endblock
%block TBT.Contour.file

from 2. eV to 2.5 eV
file my_energies

%endblock

Note that the energy specifications are necessary (due to internal book-
keeping).

4.3 Chemical potentials

For N electrodes there will also be Nµ chemical potentials. They are
defined via blocks similar to TBT.Elecs. If no bias is applied TBtrans
will default to a single chemical potential with the chemical potential in
equilibrium. In this case you need not specify any chemical potentials.
By default TBtrans creates a single chemical potential with the chemical
potential equal to the device Fermi-level. Hence, performing non-bias
calculations does not require one to specify these blocks.

%block TBT.ChemPots 〈None〉 (block)
Each line denotes a new chemical potential which may is further
defined in the TBT.ChemPot.<> block.

%block TBT.ChemPot.<> 〈None〉 (block)
Each line defines a setting for the chemical potential named <>.

chemical-shift|mu Define the chemical shift (an energy) for this
chemical potential. One may specify the shift in terms of the ap-
plied bias using V/<integer> instead of explicitly typing the
energy.

ElectronicTemperature|Temp|kT Specify the electronic tem-
perature (as an energy or in Kelvin). This defaults to
TS.ElectronicTemperature.
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One may specify this in units of TS.ElectronicTemperature by
using the unit kT.

It is important to realize that the parameterization of the voltage into
the chemical potentials enables one to have a single input file which
is never required to be changed, even when changing the applied bias.

These options complicate the input sequence for regular 2 electrode which
is unfortunate.

4.4 Electrode configuration

The electrodes are defining the semi-infinite region that is coupled to the
scattering region.
TBtrans is a fully N electrode calculator. Thus the input for such setups
is rather complicated.
TBtrans defaults to read the TranSIESTA electrodes and as such one
may replace TBT by TS and TBtrans will still work. However, the
TBT has precedence.
If there is only 1 chemical potential all electrodes will default to use this
chemical potential, thus for non-bias calculations there is no need to spec-
ify the chemical potential (TBT.Elec.<>.chemical-potential).

%block TBT.Elecs 〈None〉 (block)
Each line denote an electrode which may be queried in
TBT.Elec.<> for its setup.

%block TBT.Elec.<> 〈None〉 (block)
Each line represents a setting for electrode <>. There are a few lines
that must be present, HS, semi-inf-dir, electrode-pos, chem-pot
(only if TBT.Voltage is not 0).
If there are some settings that you only want to take effect in TB-
trans calculations you can prefix the option with tbt.Eta, e.g.
which will only be used for the TBtrans calculations. Note that
all tbt.* options must be located at the end of the block. This may
be particularly useful with respect to the Green function file options.

HS The electronic structure information from the initial electrode cal-
culation. This file retains the geometrical information as well as the
Hamiltonian, overlap matrix and the Fermi-level of the electrode.
This is a file-path and the electrode SystemLabel.TSHS need not
be located in the simulation folder.
TBtrans also reads NetCDF4 files which contain the electronic
structure. This may be created using sisl.

semi-inf-direction|semi-inf-dir|semi-inf The semi-infinite direc-
tion of the electrode with respect to the electrode unit-cell.
It may be one of [-+][abc], [-+]A[123], ab, ac, bc or abc. The
latter four all describe a real-space self-energy as described in [2].
NOTE: this has nothing to do with the scattering region unit cell,
TBtrans will figure out the alignment of the electrode unit-cell
and the scattering region unit-cell.

chemical-potential|chem-pot|mu The chemical potential that is
associated with this electrode. This is a string that should be
present in the TBT.ChemPots block in case there is a bias ap-
plied in the calculation.

electrode-position|elec-pos The index of the electrode in the scat-
tering region. This may be given by either elec-pos <idx>, which
refers to the first atomic index of the electrode residing at index
<idx>. Else the electrode position may be given via elec-pos
end <idx> where the last index of the electrode will be located
at <idx>.

used-atoms Number of atoms from the electrode calculation that is
used in the scattering region as electrode. This may be useful when
the periodicity of the electrodes forces extensive electrodes in the
semi-infinite direction.
NOTE: do not set this if you use all atoms in the electrode.

Bulk Logical controlling whether the Hamiltonian of the electrode re-
gion in the scattering region is enforced bulk or whether the Hamil-
tonian is taken from the scattering region elements.

tbt.Gf/Gf String with filename of the surface Green function data.
This may be used to place a common surface Green function file
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in a top directory which may then be used in all calculations using
the same electrode and the same contour. If many calculations
are performed this will heavily increase performance at the cost of
disk-space.

Eta depends on: TBT.Elecs.Eta

Control the imaginary energy (η) of the surface Green function for
this electrode.
NOTE: if this energy is negative the complex value associated with
the contour is used. This is particularly useful when providing a
user-defined contour. Ensure that all imaginary values are larger
than 0 as otherwise TBtrans may seg-fault.
NOTE: for PHtrans calculations you are highly encouraged to
change this value since the default (1 meV) is very low.

Accuracy depends on: TBT.Elecs.Accuracy

Control the convergence accuracy required for the self-energy cal-
culation when using the Lopez-Sanchez, Lopez-Sanchez iterative
scheme.
NOTE: advanced use only.

Bloch 3 integers are present on this line which each denote the num-
ber of times bigger the scattering region electrode is compared to
the electrode, in each lattice direction. Remark that these expan-
sion coefficients are with regard to the electrode unit-cell. This is
denoted “Bloch” because it is an expansion based on Bloch waves.
Please see Matching electrode coordinates: basic rules in the
SIESTA manual for details.

Bloch-A/a1|B/a2|C/a3 Specific Bloch expansions in each of the
electrode unit-cell direction. See Bloch for details.

pre-expand String denoting how the expansion of the surface Green
function file will be performed. This only affects the Green function
file if Bloch is larger than 1. By default the Green function file
will contain the fully expanded surface Green function, but not
Hamiltonian and overlap matrices (Green). One may reduce the
file size by setting this to Green which only expands the surface
Green function. Finally none may be passed to reduce the file size

to the bare minimum. For performance reasons all is preferred.

out-of-core If true the GF files are created which contain the surface
Green function. Setting this to true may be advantageous when
performing many calculations using the same k and energy grid
using the same electrode. In those case this will heavily increase
throughput. If false (default) the surface Green function will be
calculated when needed.
NOTE: simultaneous calculations may read the same GF file.

Gf-Reuse depends on: TBT.Elec.<>.out-of-core

Logical deciding whether the surface Green function file should be
re-used or deleted. If this is false the surface Green function file
is deleted and re-created upon start.

delta-Ef Specify an offset for the Fermi-level of the electrode. This
will directly be added to the Fermi-level found in the electrode file.
NOTE: this option only makes sense for semi-conducting elec-
trodes since it shifts the entire electronic structure. This is be-
cause the Fermi-level may be arbitrarily placed anywhere in the
band gap. It is the users responsibility to define a value which
does not introduce a potential drop between the electrode and de-
vice region.

V-fraction Specify the fraction of the chemical potential shift in the
electrode-device coupling region. This corresponds to:

HeD ← HeD + µeVf SeD (17)

in the coupling region. Consequently the value must be between 0
and 1.
NOTE: this option may be used for tight-binding calculations
as an empirical applied bias (with the potential drop at the elec-
trode/device interface).

check-kgrid For N electrode calculations the k mesh will sometimes
not be equivalent for the electrodes and the device region calcula-
tions. However, TBtrans requires that the device and electrode
k samplings are commensurate. This flag controls whether this
check is enforced.
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NOTE: only use if fully aware of the implications (for tight-
binding calculations this may safely be set to false).

There are several flags which are globally controlling the variables for the
electrodes (with TBT.Elec.<> taking precedence).

TBT.Elecs.Bulk true (logical)
This globally controls how the Hamiltonian is treated in all elec-
trodes. See TBT.Elec.<>.Bulk.

TBT.Elecs.Eta 1 meV (energy)
Globally control the imaginary energy (η) used for the surface Green
function calculation. This η value is not used in the device region.
See TBT.Elec.<>.Eta for extended details on the usage of this
flag.

TBT.Elecs.Accuracy 10−13 eV (energy)
Globally control the accuracy required for convergence of the self-
energy. See TBT.Elec.<>.Accuracy.

TBT.Elecs.Neglect.Principal false (logical)
If this is false TBtrans dies if there are connections beyond the
principal cell.
NOTE: set this to true with care, non-physical results may arise.
Use at your own risk!

TBT.Elecs.Out-of-core false (logical)
This enables reusing the self-energies by storing them on-disk (true).
The surface Green function files may be large files but heavily in-
creases throughput if one performs several transport calculations us-
ing the same electrodes.
You are encouraged to set this to true to reduce computations. See
TBT.Elec.<>.out-of-core.
Currently this option is not compatible with TBT.T.Bulk and
TBT.DOS.Elecs, and the bulk transmission and bulk DOS will
not be calculated if this option is true.

TBT.Elecs.Gf.Reuse true (logical)
depends on: TBT.Elecs.Out-of-core

Globally control whether the surface Green function files should be
re-used (true) or re-created (false). See TBT.Elec.<>.Gf-Reuse.

TBT.Elecs.Coord.EPS 10−4 Bohr (length)
When using Bloch expansion of the self-energies one may experience
difficulties in obtaining perfectly aligned electrode coordinates.
This parameter controls how strict the criteria for equivalent atomic
coordinates is. If TBtrans crashes due to mismatch between the
electrode atomic coordinates and the scattering region calculation,
one may increase this criteria. This should only be done if one is sure
that the atomic coordinates are almost similar and that the difference
in electronic structures of the two may be negligible.

4.4.1 Principal layer interactions

It is extremely important that the electrodes only interact with one neigh-
boring supercell due to the self-energy calculation. TBtrans will print
out a block as this

<> principal cell is perfect!

if the electrode is correctly setup and it only interacts with its neighboring
supercell. In case the electrode is erroneously setup, something similar to
the following will be shown in the output file.

<> principal cell is extending out with 96 elements:
Atom 1 connects with atom 3
Orbital 8 connects with orbital 26
Hamiltonian value: |H(8,6587)|@R=-2 = 0.651E-13 eV
Overlap : S(8,6587)|@R=-2 = 0.00

It is imperative that you have a perfect electrode as otherwise nonphysical
results will occur.

4.5 Calculation settings

The calculation time is currently governed by two things:
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1. the size of the device region,

2. and by the partitioning of the block-tri-diagonal matrix.

The first may be controlled via TBT.Atoms.Device. If one is only inter-
ested in transmission coefficients this flag is encouraged to select the min-
imum number of atoms that will successfully run the calculation. Please
see the flag entry for further details.
Secondly there is, currently, no way to determine the most optimal block-
partitioning of a banded matrix and TBtrans allows several algorithms
to determine an optimal partitioning scheme. The following flag controls
the partitioning for the device region.

TBT.Analyze false (logical)
As the pivoting algorithm highly influences the performance and
throughput of the transport calculation it is crucial to select the
best performing algorithm available. This option tells TBtrans to
analyze the pivoting table for nearly all the implemented algorithms
and print-out information about them.
NOTE: we advice users to always run an analyzation step prior to
actual calculation and select the best BTD format. This analyzing
step is very fast and can be performed on small work-station com-
puters, even on systems of ≫ 10, 000 orbitals.
To run the analyzing step you may do:

tbtrans -fdf TBT.Analyze RUN.fdf > analyze.out

note that there is little gain on using MPI and it should complete
within a few minutes, no matter the number of orbitals.
Choosing the best one may be difficult. Generally one should choose
the pivoting scheme that uses the least amount of memory. However,
one should also choose the method with the largest block-size being
as small as possible. As an example:

TBT.BTD.Pivot.Device atom+GPS
...

BTD partitions (7):
[ 2984, 2776, 192, 192, 1639, 4050, 105 ]

BTD matrix block size [max] / [average]: 4050 / 1705.429
BTD matrix elements in % of full matrix: 47.88707 %

TBT.BTD.Pivot.Device atom+GGPS
...

BTD partitions (6):
[ 2880, 2916, 174, 174, 2884, 2910 ]

BTD matrix block size [max] / [average]: 2916 / 1989.667
BTD matrix elements in % of full matrix: 48.62867 %

Although the GPS method uses the least amount of memory, the
GGPS will likely perform better as the largest block in GPS is 4050
vs. 2916 for the GGPS method.

TBT.BTD.Optimize speed|memory (string)
When selecting the smallest blocks for the BTD matrix there are
certain criteria that may change the size of each block. For very
memory consuming jobs one may choose the memory.
NOTE: often both methods provide exactly the same BTD matrix
due to constraints on the matrix.

TBT.BTD.Pivot.Device atom-〈largest overlapping
electrode〉 (string)
Decide on the partitioning for the BTD matrix. One may denote
either atom+ or orb+ as a prefix which does the analysis on the
atomic sparsity pattern or the full orbital sparsity pattern, respec-
tively. If neither are used it will default to atom+.

<elec-name>|CG-<elec-name> The partitioning will be a con-
nectivity graph starting from the electrode denoted by the name.
This name must be found in the TBT.Elecs block. One can ap-
pend more than one electrode to simultaneously start from more
than 1 electrode. This may be necessary for multi-terminal calcu-
lations.
NOTE: One may append an optional setting front or fan which
makes the connectivity graph to consider the geometric front of the
atoms. For extreme scale simulations or tight-binding calculations
with constrictions this may improve the BTD matrix substantially
because it splits the unit-cell into segments of equal width.

rev-CM Use the reverse Cuthill-McKee for pivoting the matrix ele-
ments to reduce bandwidth. One may omit rev- to use the stan-
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dard Cuthill-McKee algorithm (not recommended).
This pivoting scheme depends on the initial starting electrodes, ap-
pend +<elec-name> to start the Cuthill-McKee algorithm from
the specified electrode.

GPS Use the Gibbs-Poole-Stockmeyer algorithm for reducing the
bandwidth.

GGPS Use the generalized Gibbs-Poole-Stockmeyer algorithm for re-
ducing the bandwidth.

PCG Use the perphiral connectivity graph algorithm for reducing the
bandwidth.
This pivoting scheme may depend on the initial starting elec-
trode(s), append +<elec-name> to initialize the PCG algorithm
from the specified electrode.

Examples are
TBT.BTD.Pivot.Device atom+GGPS
TBT.BTD.Pivot.Device GGPS
TBT.BTD.Pivot.Device orb+GGPS
TBT.BTD.Pivot.Device orb+PCG
TBT.BTD.Pivot.Device orb+PCG+Left
TBT.BTD.Pivot.Device orb+rev-CM+Right

where the first two are equivalent. The 3rd and 4th are more heavily
on analysis and will typically not improve the bandwidth reduction.

TBT.BTD.Pivot.Elec.<> atom-〈<>〉 (string)
depends on: TBT.Atoms.Device

If TBT.Atoms.Device has been set to a reduced region the elec-
trode self-energies must be down-folded through the atoms not part
of the device-region. In this case these down-fold regions can also be
considered a BTD matrix which may be optimized separately from
the device region BTD matrix.
This option have all available options as
described in TBT.BTD.Pivot.Device but one will generally find
the best pivoting scheme by using the default (atom-<>) which is
the atomic connectivity graph from the electrode it-self.
It may be advantageous to use atom-<>-front for very large tight-

binding calculations where the device region is chosen far from this
electrode and normal to the electrode-plane.

TBT.BTD.Spectral propagation|column (string)
Method used for calculating the spectral function (Ai). For 4 or more
electrodes the column option is the default while propagation is
the default for less electrodes.
NOTE: this option may heavily influence performance. Test for a
single k-point and single energy point to figure out the implications
of using one over the other.

TBT.BTD.Pivot.Graphviz false (logical)
Create Graphviz5 compatible input files for the pivoting tables
for all electrodes, SystemLabel.TBT.<elec>.gv, and the device,
SystemLabel.TBT.gv.
These files may be processed by Graphviz display commands neato
etc.

neato -x <>
neato -x -Tpdf <> -o graph.pdf
neato -x -Tpng <> -o graph.png

4.6 Input/Output

TBtrans IO is mainly relying on the NetCDF4 library and full capability
is only achieved if compiled with this library.
Several fdf-flags control how TBtrans performs IO.

TBT.CDF.Precision single|float|double (string)
Specify the precision used for storing the quantities in the NetCDF4.
single takes half the disk-space as double and will generally retain
a sufficient precision of the quantities.
single and float are equivalent.
NOTE: all calculations are performed using double so this is only
a storage precision.

5www.graphviz.org
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TBT.CDF.DOS.Precision <TBT.CDF.Precision> (string)
Specify the precision used for storing DOS in NetCDF4.

TBT.CDF.T.Precision <TBT.CDF.Precision> (string)
Specify the precision used for storing transmission function in
NetCDF4.

TBT.CDF.T.Eig.Precision <TBT.CDF.Precision> (string)
Specify the precision used for storing transmission eigenvalues in
NetCDF4.

TBT.CDF.Current.Precision <TBT.CDF.Precision> (string)
Specify the precision used for storing orbital current in NetCDF4.
NOTE: This is heavily advised to be in single precision as this may
easily use large amounts of disk-space if in double precision.

TBT.CDF.DM.Precision <TBT.CDF.Precision> (string)
Specify the precision used for storing density matrices in NetCDF4.
NOTE: This is heavily advised to be in single precision as this may
easily use large amounts of disk-space if in double precision.

TBT.CDF.COOP.Precision <TBT.CDF.Precision> (string)
Specify the precision used for storing COOP and COHP curves in
NetCDF4.
NOTE: This is heavily advised to be in single precision as this may
easily use large amounts of disk-space if in double precision.

TBT.CDF.Compress 0 (integer)
Specify whether the NetCDF4 files stored will be compressed. This
may heavily reduce disk-utilization at the cost of some performance.
This number must be between 0 (no compression) and 9 (maximum
compression). A higher compression is more time consuming and a
good compromise between speed and compression is 3.
NOTE: one may subsequently to a TBtrans compilation compress
a NetCDF4 file using:

nccopy -d 3 siesta.TBT.nc newsiesta.TBT.nc

NOTE: one can not do parallel I/O together with compression.

TBT.CDF.MPI false (logical)
Whether the IO is performed in parallel. If using a large amount of
MPI processors this may increase performance.
NOTE: the actual performance increase is very dependent on your
hardware support for parallel IO.
NOTE: this automatically sets the compression to 0 (one cannot
compress and perform parallel IO).

4.6.1 Self-energy

TBtrans enables the storage of the self-energies from the electrodes in
selected regions. I.e. in a two electrode setup the self-energies may be
“down-folded” to a region of interest (say molecule etc.) and then saved.
This feature enables one to easily use self-energies in Python for subse-
quent analysis etc. It is only available if compiled against NetCDF4.

TBT.SelfEnergy.Save false (logical)
Store the self-energies of the electrodes. The self-energies are first
down-folded into the device region (see TBT.Atoms.Device).

TBT.SelfEnergy.Save.Mean false (logical)
If true the down-folded self-energies will be k-averaged after TB-
trans has finished.

TBT.SelfEnergy.Only false (logical)
If true this will only calculate and store the down-folded self-energies.
No physical quantities will be calculated and TBtrans will quit.

TBT.CDF.SelfEnergy.Precision <TBT.CDF.Precision>
(string)

depends on: TBT.CDF.Precision

Specify the precision used for storing the self-energies in NetCDF4.

TBT.CDF.SelfEnergy.Compress <TBT.CDF.Compress>
(integer)

depends on: TBT.CDF.Compress

Specify the compression of the self-energies in NetCDF4.
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TBT.CDF.SelfEnergy.MPI false (logical)
depends on: TBT.CDF.MPI

If true TBtrans will use MPI when writing the NetCDF files con-
taining the downfolded self-energies.

4.6.2 Projected transmissions

The transmission through a scattering region is determined by the elec-
trodes band-structure and the energy levels for the scattering part. In
for instance molecular electronics it is often useful to determine which
molecular orbitals are responsible for the transmission as well as knowing
their hybridization with the substrate (electrodes).
TBtrans implements an advanced projection method which splits the
transmission and DOS into eigenstate projectors.
In the following we concentrate on a 2 terminal device while it may be
used for N electrode calculations. One important aspect of projection
is that the self-energies that are to be projected must be fully located
on the projection region. TBtrans will die if this is not enforced. A
projection can only be performed if the down-folding of the self-energies
for the projected electrode is fully encapsulated in the device region
(TBT.Atoms.Device). I.e. one should reduce the device region such
that any couplings from the electrodes only couple into the projection re-
gion. Generally for the most simple projections the device region should
be equivalent to the projection region in case there is only one projection
region.
These projections should not be confused with local DOS which may be
obtained if compiled with the NetCDF4 library and via the use of sisl,
see Sec. 4.2.
NOTE: if the TBT.Projs block is defined, then the TBT.Projs.T block
is required in the input unless TBT.Projs.Init is true.

%block TBT.Projs 〈None〉 (block)
List of molecular projections used:

%block TBT.Projs
M-L
M-R

%endblock

This tells TBtrans that two projections will exist. Each projection
setup will be read in TBT.Proj.<>.
There is no limit to the number of projection molecules.

%block TBT.Proj.<> 〈None〉 (block)
Block that designates a molecular projection by the names specified
in the TBT.Projs block.
This block determines how each projection is interpreted, it consists
of several options defined below:

atom There may be several atom lines. The full set of atomic indices
will be used as a sub-space for the Hamiltonian. The atoms may
be defined via these variants

atom A [B [C [. . . ]]] A sequence of atomic indices which are used
for the projection.

atom from A to B [step s] Here atoms A up to and including B
are used. If step <s> is given, the range A:B will be taken in
steps of s.

atom from 3 to 10 step 2

will add atoms 3, 5, 7 and 9.

atom from A plus/minus B [step s] Atoms A up to and in-
cluding A + B − 1 are added to the projection. If step <s>
is given, the range A:A + B− 1 will be taken in steps of s.

atom [<A>, B -- C [step s], D] Equivalent to from . . . to
specification, however in a shorter variant. Note that the list
may contain arbitrary number of ranges and/or individual in-
dices.

atom [2, 3 -- 10 step 2, 6]

will add atoms 2, 3, 5, 7, 9 and 6.

Gamma Logical variable which determines whether the projectors
are the Γ-point projectors, or the k resolved ones. For Γ-only
calculations this has no effect. If the eigenstates are non-dispersive
in the Brillouin zone there should be no difference between true
or false.
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NOTE: it is very important to know the dispersion and possible
band-crossings of the eigenstates if this option is false. For band-
crossings one must manually perform the projections for the k-
points in a stringent manner as the order of eigenstates are not
retained.

proj <P-name> Allows to define a projection based on the eigen-
states for the current molecule.
The <P-name> designates the name associated with this projec-
tion.
It is parsed like this, in the following 0 is the Fermi level (HOMO
= −1, LUMO = 1):

level from <E1> to <E2> Energy eigenstates E1 and E2 will
be part of the molecular orbitals that constitute this projection

level from <E> plus <N> Energy eigenstates between E and
E + N − 1 will be part of the molecular orbitals that constitute
this projection

level from <E> minus <N> Energy eigenstates between E
and E − N + 1 will be part of the molecular orbitals that con-
stitute this projection

level <E1> <E2> ... <En> All eigenstates specified will be
part of the molecular orbitals that constitute this projection

level [ <list> ] A comma-separated list specification.

end All gathered eigenstates so far will constitute the projection
named <P-name>

Note that level 0 refers to the Fermi level, it will be silently removed
as it is not an eigenstate, so you do not need to think about it.
You can specify named projection blocks as many times as you
want.
To conclude the full projection block here is an example describing
three different projections for the left molecule in

%block TBT.Proj.M-L
# We have 2 atoms on this molecule
atom from 5 plus 2
# We only do a Gamma projection

Gamma .true.
# We will utilise three different projections on
# this molecule
proj HOMO
level -1

end
proj LUMO
level 1

end
proj H-plus-L
level from -1 to 1

end
%endblock

Similarly for the right molecule we do
%block TBT.Proj.M-R

# We have 2 atoms on this molecule
atom from 8 plus 2
# We only do a Gamma projection
Gamma .true.
# We will utilise three different projections on
# this molecule
proj HOMO
level -1

end
proj LUMO
level 1

end
proj H-plus-L
level from -1 to 1

end
%endblock

TBT.Proj.<>.States false (logical)
Save all states for the projection. The saved quantity can be post-
processed to decipher the locality of each projection.
In the NetCDF file there will be two variables: state and states
where the former will contain S1/2|i⟩, while the latter will contain |i⟩.
Needed if you wish to select specific molecular orbitals dependent on
the nature of the molecular orbital.

TBT.CDF.Proj.Compress <TBT.CDF.Compress> (integer)
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Allows a different compression for the projection file. The projection
file is typically larger than the default output file, so compression of
them separately might be needed.

TBT.Projs.Init false (logical)
Whether TBtrans will only create the projection tables and then
quit.
As TBtrans allows to re-use the projection file the user can choose
to stop right after creation. Specifically it will allow one to swap
projection states with other projection states. This can be useful
when bias is applied and the hybridisation “destroys” the molecule
Hamiltonian. After initialising the projection tables the user can
manually swap them with those calculated at zero bias, thus retaining
the same projection tables for different bias’.
Note that for spin calculations you need to utilise the TBT.Spin flag
to initialise both projection files (spin UP and spin DOWN) before
proceeding with the calculation.

TBT.Projs.Debug false (logical)
Print out additional information regarding the projections. It will
print out assertion lines orthogonality.
Possibly not useful for other than the developers.

%block TBT.Projs.T 〈None〉 (block)
depends on: TBT.Projs, TBT.Projs.T.All, TBT.Projs.T.out

As one might specify many molecular projections to investigate a
lot of details of the system it seems perilous to always calculate all
allowed transmission permutations.
Instead the user has to supply the permutations of transport that is
calculated. This block will let the user decide which to calculate and
which to not.
In the following Left(L)/Right(R)
corresponds to T = Tr[GΓLG†ΓR] where Left, Right are found
in the TBT.Elecs block.

from <proj-L> to Projects ΓL on to the <projection> before do-
ing the R projections.
The R projections are constructed in the following lines until end

is seen.
<proj-R> Projects ΓR on to the <projection> which then cal-

culates the transmission

Each projection can be represented in three different ways:

<elec> Makes no projection on the scattering matrix

<elec>.<name> Makes all permutations of the projections at-
tached to the molecule named <name>

<elec>.<name>.<P-name> Projects the named projection <P-
name> from molecule <name> onto electrode <elec>

An example input for projection two molecules could be:
%block TBT.Projs.T

from Left.M-L.HOMO to
Right.M-R
Right

end
from Left.M-L.LUMO to

Right.M-R.LUMO
end

%endblock

which will be equivalent to the more verbose
%block TBT.Projs.T

from Left.M-L.HOMO to
Right.M-R.HOMO
Right.M-R.LUMO
Right.M-R.H-plus-L
Right

end
from Left.M-L.LUMO to

Right.M-R.LUMO
end

%endblock
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This will calculate the transport using all these equations

T|H1⟩,|H2⟩ = Tr
[
G|H1⟩⟨H1|ΓL|H1⟩⟨H1|G†|H2⟩⟨H2|ΓR|H2⟩⟨H2|

]
(18)

T|H1⟩,|L2⟩ = Tr
[
G|H1⟩⟨H1|ΓL|H1⟩⟨H1|G†|L2⟩⟨L2|ΓR|L2⟩⟨L2|

]
(19)

T|H1⟩,|H2⟩+|L2⟩ = Tr
[
G|H1⟩⟨H1|ΓL|H1⟩⟨H1|G†(

|H2⟩⟨H2|+ |L2⟩⟨L2|
)
ΓR

(
|H2⟩⟨H2|+ |L2⟩⟨L2|

)]
(20)

T|H1⟩,R = Tr
[
G|H1⟩⟨H1|ΓL|H1⟩⟨H1|G†ΓR

]
(21)

T|L1⟩,|L2⟩ = Tr
[
G|L1⟩⟨L1|ΓL|L1⟩⟨L1|G†|L2⟩⟨L2|ΓR|L2⟩⟨L2|

]
(22)

Notice that Eq. (20) is equivalent to (21) in our two state model.
Note that removing an explicit named projection allows easy creation
of all available permutations of the projection states associated with
the molecule.
By default some electrodes are not accessible for projections unless
TBT.Projs.T.Out or TBT.Projs.T.All are true.

TBT.Projs.Only false (logical)
Whether TBtrans will not calculate non-projected transmissions. If
you are only interested in the projection transmissions and/or have
already calculated the non-projected transmissions you can use this
option.

TBT.Projs.DOS.A false (logical)
depends on: TBT.Atoms.Device

Save the spectral density of states for the projections. In case you
have set TBT.DOS.A this will default to that flag.
In case any of TBT.Projs.Current.Orb, TBT.Projs.DM.A,
TBT.Projs.COOP.A or TBT.Projs.COHP.A is true this flag
will be set to true as well.

TBT.Projs.Current.Orb false (logical)
depends on: TBT.Atoms.Device

Will calculate and save the orbital current for the device with the

projections.
The orbital current will be saved in the same sparsity pattern as the
cut-out device region sparsity pattern.

TBT.Projs.DM.A false (logical)
depends on: TBT.Atoms.Device

Calculate the energy and k-resolved density matrix for the projected
spectral functions. The density matrix may be used to construct
real-space LDOS profiles.

TBT.Projs.COOP.A false (logical)
depends on: TBT.Atoms.Device

Calculate COOP from the projected spectral function in the device
region.

TBT.Projs.COHP.A false (logical)
depends on: TBT.Atoms.Device

Calculate COHP from the projected spectral function in the device
region.

TBT.Projs.T.All false (logical)
Same as TBT.T.All, but for projections. If differing projections
are performed on the scattering states the transmission will not be
reversible. You can turn on all projection operations using this flag.

TBT.Projs.T.Out false (logical)
Same as TBT.T.Out for projections.

4.6.3 NetCDF4 support

TBtrans stores all rele-
vant physical quantities in the SystemLabel.TBT.nc file which retains
orbital resolved DOS, orbital currents, transmissions, transmission eigen-
values, etc. One may use sisl to easily analyze and extract quantities
from this file using Python.
These files are created if NetCDF4 support is enabled

SystemLabel.TBT.nc File which contain nearly everything calculated in
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TBtrans. The structure of this file is a natural tree structure to
accommodate N electrode output.

SystemLabel.TBT.SE.nc see TBT.SelfEnergy.Save
Down-folded self-energies are stored in this file.

SystemLabel.TBT.Proj.nc see TBT.Projs
Stores projected DOS, transmission and/or orbital currents. Using
projections for large k and energy sampling will create very large
files. Ensure that you have a large amount of disk-space available.

SystemLabel.DOS see TBT.DOS.Gf
The k resolved density of states from the Green function.

SystemLabel.AVDOS see TBT.DOS.Gf
The k averaged density of states from the Green function.

SystemLabel.ADOS_<> see TBT.DOS.A
The k resolved density of states from the electrode name <>.

SystemLabel.AVADOS_<> see TBT.DOS.A
The k averaged density of states from the electrode name <>.

SystemLabel.TRANS_<1>_<2>

The k resolved transmission from <1> to <2>.

SystemLabel.AVTRANS_<1>_<2>

The k averaged transmission from <1> to <2>.

SystemLabel.CORR_<1> see TBT.T.Out
The k resolved correction to the transmission for <1>.

SystemLabel.AVCORR_<1> see TBT.T.Out
The k averaged correction to the transmission for <1>.

SystemLabel.TEIG_<1>_<2> see TBT.T.Eig
The k resolved transmission eigenvalues from <1> to <2>.

SystemLabel.AVTEIG_<1>_<2> see TBT.T.Eig
The k averaged transmission eigenvalues from <1> to <2>.

SystemLabel.CEIG_<1> see TBT.T.Out
The k resolved correction eigenvalues for <1>.

SystemLabel.AVCEIG_<1> see TBT.T.Out
The k averaged correction eigenvalues for <1>.

SystemLabel.BDOS_<> see TBT.DOS.Elecs/TBT.T.Bulk
The k resolved bulk density of states of electrode <>.

SystemLabel.AVBDOS_<> see TBT.DOS.Elecs/TBT.T.Bulk
The k averaged bulk density of states of electrode <>.

SystemLabel.BTRANS_<> see TBT.DOS.Elecs/TBT.T.Bulk
The k resolved bulk transmission of electrode <>.

SystemLabel.AVBTRANS_<> see TBT.DOS.Elecs/TBT.T.Bulk
The k averaged bulk transmission of electrode <>.

All the above files will only be created if TBtrans was successfully exe-
cuted and their respective options was enabled.

4.6.4 No NetCDF4 support

In case TBtrans is not compiled with NetCDF4 support TBtrans is
heavily limited in functionality and subsequent analysis. Particularly the
DOS quantities are not orbital resolved. Also none of the quantities will
be k averaged, this is required to be done externally.
The following files are created:

SystemLabel.DOS see TBT.DOS.Gf
The k resolved density of states from the Green function.

SystemLabel.ADOS_<> see TBT.DOS.A
The k resolved density of states from the electrode name <>.
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SystemLabel.TRANS_<1>_<2>

The k resolved transmission from <1> to <2>.

SystemLabel.TEIG_<1>_<2> see TBT.T.Eig
The k resolved transmission eigenvalues from <1> to <2>.

SystemLabel.BDOS_<> see TBT.DOS.Elecs/TBT.T.Bulk
The k resolved bulk density of states of electrode <>.

SystemLabel.BTRANS_<> see TBT.DOS.Elecs/TBT.T.Bulk
The k resolved bulk transmission of electrode <>.
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