
U s e r’ s G u i d e

S I E S T A 5.0.1

June 25, 2024

https://siesta-project.org

SIESTA Steering Committee:

https://siesta-project.org

Emilio Artacho CIC-Nanogune and University of Cambridge
José María Cela Barcelona Supercomputing Center
Julian D. Gale Curtin University of Technology, Perth
Alberto García Institut de Ciència de Materials, CSIC, Barcelona
Javier Junquera Universidad de Cantabria, Santander
Richard M. Martin University of Illinois at Urbana-Champaign
Pablo Ordejón Centre de Investigació en Nanociència

i Nanotecnologia, (CSIC-ICN), Barcelona
Nick Rübner Papior Technical University of Denmark
Daniel Sánchez-Portal Unidad de Física de Materiales,

Centro Mixto CSIC-UPV/EHU, San Sebastián
José M. Soler Universidad Autónoma de Madrid

SIESTA is Copyright © 1996-2024 by The Siesta Group

2

Contributors to SIESTA

The SIESTA project was initiated by Pablo Ordejon (then at the Univ.
de Oviedo), and Jose M. Soler and Emilio Artacho (Univ. Autonoma de
Madrid, UAM). The development team was then joined by Alberto Garcia
(then at Univ. del Pais Vasco, Bilbao), Daniel Sanchez-Portal (UAM),
and Javier Junquera (Univ. de Oviedo and later UAM), and sometime
later by Julian Gale (then at Imperial College, London). In 2007 Jose M.
Cela (Barcelona Supercomputing Center, BSC) became a core developer
and member of the Steering Committee.
The original TranSIESTA module was developed by Pablo Ordejon and
Jose L. Mozos (then at ICMAB-CSIC), and Mads Brandbyge, Kurt Stok-
bro, and Jeremy Taylor (Technical Univ. of Denmark).
The current TranSIESTA module within SIESTA is developed by Nick
R. Papior and Mads Brandbyge. Nick R. Papior became a core developer
and member of the Steering Committee in 2015.
Other contributors (we apologize for any omissions):
Eduardo Anglada, Thomas Archer, Luis C. Balbas, Xavier Blase, Jorge
I. Cerdá, Ramón Cuadrado, Michele Ceriotti, Fabiano Corsetti, Raul de
la Cruz, Gabriel Fabricius, Marivi Fernandez-Serra, Jaime Ferrer, Chu-
Chun Fu, Sandra Garcia, Victor M. Garcia-Suarez, Rogeli Grima, Rainer
Hoft, Georg Huhs, Jorge Kohanoff, Richard Korytar, In-Ho Lee, Lin Lin,
Nicolas Lorente, Miquel Llunell, Eduardo Machado, Maider Machado,
Jose Luis Martins, Volodymyr Maslyuk, Juana Moreno, Frederico Du-
tilh Novaes, Micael Oliveira, Magnus Paulsson, Oscar Paz, Federico Pe-
dron, Andrei Postnikov, Roberto Robles, Tristana Sondon, Rafi Ullah,
Andrew Walker, Andrew Walkingshaw, Toby White, Francois Willaime,
Chao Yang.
O.F. Sankey, D.J. Niklewski and D.A. Drabold made the FIREBALL code
available to P. Ordejon. Although we no longer use the routines in that
code, it was essential in the initial development of SIESTA, which still
uses many of the algorithms developed by them.

Contents

Contributors to SIESTA 1

1 INTRODUCTION 5

2 COMPILATION 7
2.1 Notes on compiler flags 7

2.1.1 Debug options . 7
2.2 Parallel operation . 7

2.2.1 MPI . 7
2.2.2 OpenMP . 8

2.3 Library dependencies . 8
2.4 Known Issues . 10
2.5 Installing git-enabled versions 11

3 EXECUTION OF THE PROGRAM 11
3.1 Specific execution options 11

4 THE FLEXIBLE DATA FORMAT (FDF) 12

5 PROGRAM OUTPUT 13
5.1 Standard output . 13
5.2 Output to dedicated files 14

6 DETAILED DESCRIPTION OF PROGRAM OPTIONS 14
6.1 General system descriptors 14
6.2 Pseudopotentials . 16
6.3 Basis set and KB projectors 18

6.3.1 Overview of atomic-orbital bases implemented in
SIESTA . 18

1

6.3.2 Type of basis sets 21
6.3.3 Size of the basis set 21
6.3.4 Range of the orbitals 22
6.3.5 Generation of multiple-zeta orbitals 22
6.3.6 Polarization-orbital options 23
6.3.7 Soft-confinement options 24
6.3.8 Kleinman-Bylander projectors 24
6.3.9 The PAO.Basis block 26
6.3.10 Filtering . 28
6.3.11 Saving and reading basis-set information 28
6.3.12 Tools to inspect the orbitals and KB projectors . . 29
6.3.13 Basis optimization 29
6.3.14 Low-level options regarding the radial grid 29
6.3.15 Summary of options and defaults enabling auto-

matic basis-set generation 30
6.3.16 Notes on backward compatibility in regard to new

program defaults 30
6.4 Structural information . 31

6.4.1 Traditional structure input in the fdf file 31
6.4.2 Z-matrix format and constraints 33
6.4.3 Output of structural information 35
6.4.4 Input of structural information from external files 36
6.4.5 Input from a FIFO file 37
6.4.6 Precedence issues in structural input 37
6.4.7 Interatomic distances 37

6.5 k-point sampling . 37
6.5.1 Output of k-point information 39

6.6 Exchange-correlation functionals 39

6.7 Spin polarization . 41
6.8 Spin-Orbit coupling . 41

6.8.1 On-site approximation 43
6.9 The self-consistent-field loop 43

6.9.1 Harris functional 44
6.9.2 Mixing options . 44
6.9.3 Mixing of the Charge Density 49
6.9.4 Initialization of the density-matrix 50
6.9.5 Initialization of the SCF cycle with charge densities 53
6.9.6 Output of density matrix and Hamiltonian 53
6.9.7 Convergence criteria 54

6.10 The real-space grid and the eggbox-effect 56
6.11 Matrix elements of the Hamiltonian and overlap 58

6.11.1 The auxiliary supercell 59
6.12 Calculation of the electronic structure 59

6.12.1 Diagonalization options 60
6.12.2 Output of eigenvalues and wavefunctions 63
6.12.3 Occupation of electronic states and Fermi level . . 63
6.12.4 Orbital minimization method (OMM) 64
6.12.5 Order(N) calculations 65

6.13 The CheSS solver . 67
6.13.1 Input parameters 67

6.14 The PEXSI solver . 68
6.14.1 Pole handling . 68
6.14.2 Parallel environment and control options 68
6.14.3 Electron tolerance and the PEXSI solver 69
6.14.4 Inertia-counting 70

2

6.14.5 Re-use of µ information accross iterations 71
6.14.6 Calculation of the density of states by inertia-counting 72
6.14.7 Calculation of the LDOS by selected-inversion . . 72

6.15 Band-structure analysis 73
6.15.1 Format of the .bands file 73
6.15.2 Output of wavefunctions associated to bands . . . 74

6.16 Output of selected wavefunctions 74
6.17 Density of states . 75

6.17.1 Total density of states 75
6.17.2 Partial (projected) density of states 75
6.17.3 Local density of states 76

6.18 Options for chemical analysis 77
6.18.1 Mulliken charges and overlap populations 77
6.18.2 Voronoi and Hirshfeld atomic population analysis . 77
6.18.3 Crystal-Orbital overlap and hamilton populations

(COOP/COHP) 78
6.19 Optical properties . 79
6.20 Macroscopic polarization 80
6.21 Maximally Localized Wannier Functions 81

6.21.1 wannier90 as a postprocessing tool 81
6.21.2 wannier90 called on-the-fly within siesta 83

6.22 Systems with net charge or dipole, and electric fields . . . 85
6.22.1 Bulk current . 89

6.23 Output of charge densities and potentials on the grid . . . 90
6.24 Auxiliary Force field . 92
6.25 Grimme’s DFT-D3 dispersion model 93

6.25.1 A note on LIBXC functionals 94
6.26 Parallel options . 94

6.26.1 Parallel decompositions for O(N) 94
6.27 Efficiency options . 95
6.28 Memory, CPU-time, and Wall time accounting options . . 95
6.29 The catch-all option UseSaveData 96
6.30 Output of information for Denchar 96
6.31 NetCDF (CDF4) output file 96

7 STRUCTURAL RELAXATION, PHONONS, AND
MOLECULAR DYNAMICS 97
7.1 Compatibility with pre-v4 versions 98
7.2 Structural relaxation . 99

7.2.1 Conjugate-gradients optimization 100
7.2.2 Broyden optimization 100
7.2.3 FIRE relaxation 100

7.3 Target stress options . 101
7.4 Molecular dynamics . 101
7.5 Output options for dynamics 102
7.6 Restarting geometry optimizations and MD runs 103
7.7 Use of general constraints 103
7.8 Phonon calculations . 106

8 DFT+U 106

9 RT-TDDFT 108
9.1 Brief description . 108
9.2 Partial Occupations . 108
9.3 Input options for RT-TDDFT 109

10 External control of SIESTA 109

3

10.1 Examples of Lua programs 112
10.2 External MD/relaxation methods 112

11 TRANSIESTA 112
11.1 Source code structure . 112
11.2 Compilation . 112
11.3 Brief description . 112
11.4 Electrodes . 114

11.4.1 Matching coordinates 115
11.4.2 Principal layer interactions 116

11.5 Convergence of electrodes and scattering regions 116
11.6 NEGF equations . 117
11.7 TranSIESTA Options 117

11.7.1 Quick and dirty . 117
11.7.2 General options . 118

11.8 k-point sampling . 122
11.8.1 Algorithm specific options 123
11.8.2 Poisson solution for fixed boundary conditions . . 124
11.8.3 Electrode description options 125
11.8.4 Chemical potentials 128
11.8.5 Complex contour integration options 129
11.8.6 Bias contour integration options 131

11.9 Output . 131
11.10Utilities for analysis: TBtrans 132

12 ANALYSIS TOOLS 132

13 SCRIPTING 132

14 PROBLEM HANDLING 132
14.1 Error and warning messages 132

15 REPORTING BUGS 133

16 ACKNOWLEDGMENTS 133

17 APPENDIX: Physical unit names recognized by FDF 133

18 APPENDIX: XML Output 134
18.1 Controlling XML output 134
18.2 Converting XML to XHTML 134

19 APPENDIX: Selection of precision for storage 135

20 APPENDIX: Data structures and reference counting 135

Bibliography 136

Index 138

4

1 INTRODUCTION

This Reference Manual contains descriptions of all the input, output
and execution features of SIESTA, but is not really a tutorial intro-
duction to the program. Interested users can find tutorial material pre-
pared for SIESTA schools and workshops at the web page https://docs.
siesta-project.org

SIESTA (Spanish Initiative for Electronic Simulations with Thousands
of Atoms) is both a method and its computer program implementation, to
perform electronic structure calculations and ab initio molecular dynamics
simulations of molecules and solids. Its main characteristics are:

• It uses the standard Kohn-Sham selfconsistent density functional
method in the local density (LDA-LSD) and generalized gradient
(GGA) approximations, as well as in a non local functional that
includes van der Waals interactions (VDW-DF).

• It uses norm-conserving pseudopotentials in their fully nonlocal
(Kleinman-Bylander) form.

• It uses atomic orbitals as a basis set, allowing unlimited multiple-
zeta and angular momenta, polarization and off-site orbitals. The
radial shape of every orbital is numerical and any shape can be used
and provided by the user, with the only condition that it has to be of
finite support, i.e., it has to be strictly zero beyond a user-provided
distance from the corresponding nucleus. Finite-support basis sets
are the key for calculating the Hamiltonian and overlap matrices in
O(N) operations.

• Projects the electron wavefunctions and density onto a real-space
grid in order to calculate the Hartree and exchange-correlation po-
tentials and their matrix elements.

• Besides the standard Rayleigh-Ritz eigenstate method, it allows the
use of localized linear combinations of the occupied orbitals (valence-
bond or Wannier-like functions), making the computer time and
memory scale linearly with the number of atoms. Simulations with
several hundred atoms are feasible with modest workstations.

• It is written in Fortran 2003 and memory is allocated dynamically.

• It may be compiled for serial or parallel execution (under MPI).

It routinely provides:

• Total and partial energies.

• Atomic forces.

• Stress tensor.

• Electric dipole moment.

• Atomic, orbital and bond populations (Mulliken).

• Electron density.

And also (though not all options are compatible):

• Geometry relaxation, fixed or variable cell.

• Constant-temperature molecular dynamics (Nose thermostat).

• Variable cell dynamics (Parrinello-Rahman).

• Spin polarized calculations (colinear or not).

• k-sampling of the Brillouin zone.

• Local and orbital-projected density of states.

• COOP and COHP curves for chemical bonding analysis.

• Dielectric polarization.

• Vibrations (phonons).

• Band structure.

• Ballistic electron transport under non-equilibrium (through Tran-
SIESTA)

5

https://docs.siesta-project.org
https://docs.siesta-project.org

Starting from version 3.0, SIESTA includes the TranSIESTA mod-
ule. TranSIESTA provides the ability to model open-boundary systems
where ballistic electron transport is taking place. Using TranSIESTA
one can compute electronic transport properties, such as the zero bias
conductance and the I-V characteristic, of a nanoscale system in contact
with two electrodes at different electrochemical potentials. The method is
based on using non equilibrium Greens functions (NEGF), that are con-
structed using the density functional theory Hamiltonian obtained from
a given electron density. A new density is computed using the NEGF
formalism, which closes the DFT-NEGF self consistent cycle.
Starting from version 4.1, TranSIESTA is an intrinsic part of the
SIESTA code. I.e. a separate executable is not necessary anymore. See
Sec. 11 for details.
For more details on the formalism, see the main TranSIESTA reference
cited below. A section has been added to this User’s Guide, that describes
the necessary steps involved in doing transport calculations, together with
the currently implemented input options.

References:

• “Unconstrained minimization approach for electronic computations
that scales linearly with system size” P. Ordejón, D. A. Drabold, M.
P. Grumbach and R. M. Martin, Phys. Rev. B 48, 14646 (1993);
“Linear system-size methods for electronic-structure calculations”
Phys. Rev. B 51 1456 (1995), and references therein.
Description of the order-N eigensolvers implemented in this code.

• “Self-consistent order-N density-functional calculations for very
large systems” P. Ordejón, E. Artacho and J. M. Soler, Phys. Rev.
B 53, 10441, (1996).
Description of a previous version of this methodology.

• “Density functional method for very large systems with LCAO basis
sets” D. Sánchez-Portal, P. Ordejón, E. Artacho and J. M. Soler, Int.
J. Quantum Chem., 65, 453 (1997).
Description of the present method and code.

• “Linear-scaling ab-initio calculations for large and complex systems”
E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García and J. M.
Soler, Phys. Stat. Sol. (b) 215, 809 (1999).
Description of the numerical atomic orbitals (NAOs) most com-
monly used in the code, and brief review of applications as of March
1999.

• “Numerical atomic orbitals for linear-scaling calculations” J. Jun-
quera, O. Paz, D. Sánchez-Portal, and E. Artacho, Phys. Rev. B
64, 235111, (2001).
Improved, soft-confined NAOs.

• “The SIESTA method for ab initio order-N materials simulation” J.
M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón,
and D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745-2779
(2002)
Extensive description of the SIESTA method.

• “Computing the properties of materials from first principles with
SIESTA”, D. Sánchez-Portal, P. Ordejón, and E. Canadell, Struc-
ture and Bonding 113, 103-170 (2004).
Extensive review of applications as of summer 2003.

• “Improvements on non-equilibrium and transport Green function
techniques: The next-generation TranSIESTA”, Nick Papior, Nico-
las Lorente, Thomas Frederiksen, Alberto García and Mads Brand-
byge, Computer Physics Communications, 212, 8–24 (2017).
Description of the TranSIESTA method.

• “Density-functional method for nonequilibrium electron transport”,
Mads Brandbyge, Jose-Luis Mozos, Pablo Ordejón, Jeremy Taylor,
and Kurt Stokbro, Phys. Rev. B 65, 165401 (2002).
Description of the original TranSIESTA method (prior to 4.1).

• “Siesta: Recent developments and applications”, Alberto García, et
al., J. Chem. Phys. 152, 204108 (2020).
Extensive review of applications and developments as of 2020.

6

For more information you can visit the web page https://
siesta-project.org.

2 COMPILATION

Please see the file INSTALL.md in the top directory of the SIESTA dis-
tribution for basic instructions on how to use CMake (≥3.20) to build
SIESTA and the utility programs.
A set of Spack recipes is also available to handle some dependencies and
multiple build configurations automatically.

2.1 Notes on compiler flags

NOTE: Intel compilers default to high optimizations which tend to break
SIESTA. We advice to use -fp-model source flag and to avoid optimiza-
tions higher than -O2.

NOTE: Since gfortran version 10.x the interfaces are strictly checked.
Currently one has to add -fallow-argument-mismatch to the compiler
flags to turn errors into warnings. These warnings are safe to ignore and
will look something like:

.../siesta/Src/fsiesta_mpi.F90:441:18:

440 | call MPI_Bcast(n, 1, MPI_Integer, 0, MPI_Comm_Siesta, error)
| 2

441 | call MPI_Bcast(x, 3*na, MPI_Double_Precision, 0, MPI_Comm_Siesta, error)
| 1

Warning: Type mismatch between actual argument at (1) and actual argument at (2) (REAL(8)/INTEGER(4)).

The CMake system takes care of adding the extra flag automatically. Note
that compilations with -pedantic flag are no longer possible.

2.1.1 Debug options

Being able to build SIESTA in debug mode is crucial for finding bugs
and debugging builds.
For GFortran, use the following flags:

FFLAGS = -Og -g -Wall -fcheck=all -fbacktrace -Warray-bounds -Wunused -Wuninitialized

For Intel, use the following flags:

FFLAGS = -Og -g -check bounds -traceback -fp-model strict

This will make SIESTA run significantly slower. Please report any
crashes to the developer team at https://gitlab.com/siesta-project/
siesta/-/issues.

2.2 Parallel operation

To achieve a parallel build of SIESTA one should first determine which
type of parallelism one requires. It is advised to use MPI for calculations
with moderate number of cores. If one requires extra parallelism SIESTA
provides hybrid parallelism using both MPI and OpenMP.

2.2.1 MPI

MPI is a message-passing interface which enables communication between
equivalently executed binaries. This library will thus duplicate all non-
distributed data such as local variables etc.
MPI is compiled-in by default in SIESTA , as long as the appropriate
libraries can be found. If MPI is not desired, simply set

-DWITH_MPI=OFF

in the CMake invocation.
Subsequently one may run SIESTA using the mpirun/mpiexec com-
mands:

7

https://siesta-project.org
https://siesta-project.org
https://gitlab.com/siesta-project/siesta/-/issues
https://gitlab.com/siesta-project/siesta/-/issues

mpirun -np <> siesta RUN.fdf

where <> is the number of cores used. Note that the actual commands
and syntax are system-dependent.

2.2.2 OpenMP

OpenMP is shared memory parallelism. It typically does not incur any
memory overhead and may be used if memory is scarce and the regular
MPI compilation is crashing due to insufficient memory, or is not efficient
due to the communication overhead.
To enable OpenMP, simply add this to your CMake invocation

-DWITH_OPENMP=ON

The above will yield the most basic parallelism using OpenMP. However,
the BLAS/LAPACK libraries, which are the most time-consuming part of
SIESTA are also required to be threaded, please see Sec. 2.3 for correct
linking.
The minimum required version of OpenMP is 3.0 (internally identified by
the YYYYMM date string 200805).
Subsequently one may run SIESTA using OpenMP through the en-
vironment variable OMP_NUM_THREADS which determine the number of
threads/cores used in the execution.

OMP_NUM_THREADS=<> siesta RUN.fdf
or (bash)
export OMP_NUM_THREADS=<>
siesta RUN.fdf
or (csh)
setenv OMP_NUM_THREADS <>
siesta RUN.fdf

where <> is the number of threads/cores used.
If SIESTA is also compiled using MPI it is more difficult to obtain a
good performance. Please refer to your local cluster documentation for
how to correctly call MPI with hybrid parallelism. An example for running

SIESTA with good performance using OpenMPI > 1.8.2 and OpenMP
on a machine with 2 sockets and 8 cores per socket, one may do:

MPI = 2 cores, OpenMP = 8 threads per core (total=16)
mpirun --map-by ppr:1:socket:pe=8 \

-x OMP_NUM_THREADS=8 \
-x OMP_PROC_BIND=true siesta RUN.fdf

MPI = 4 cores, OpenMP = 4 threads per core (total=16)
mpirun --map-by ppr:2:socket:pe=4 \

-x OMP_NUM_THREADS=4 \
-x OMP_PROC_BIND=true siesta RUN.fdf

MPI = 8 cores, OpenMP = 2 threads per core (total=16)
mpirun --map-by ppr:4:socket:pe=2 \

-x OMP_NUM_THREADS=2 \
-x OMP_PROC_BIND=true siesta RUN.fdf

If using only 1 thread per MPI core it is advised to compile SIESTA
without OpenMP. As such it may be advantageous to compile SIESTA
in 3 variants; OpenMP-only (small systems), MPI-only (medium to large
systems) and MPI+OpenMP (large> systems).
The variable OMP_PROC_BIND may heavily influence the performance of
the executable! Please perform tests for the architecture used.

2.3 Library dependencies

NOTE: The required libraries: xmlf90, libPSML, libfdf, and
libGridXC, can be installed automatically on-the-fly during the SIESTA
compilation process.
They can also be pre-installed, using their own CMake-based build-
ing systems. In that case their installation paths can be added to
CMAKE_PREFIX_PATH for the SIESTA compilation.

XMLF90 is required as a prerequisite for libPSML, and to produce
XML and CML output. (https://gitlab.com/siesta-project/
libraries/xmlf90).

8

https://gitlab.com/siesta-project/libraries/xmlf90
https://gitlab.com/siesta-project/libraries/xmlf90

libPSML is required to use pseudopotentials in PSML format (https:
//gitlab.com/siesta-project/libraries/libpsml)

libfdf is required to parse fdf files and handle the options in them.
(https://gitlab.com/siesta-project/libraries/libfdf)

libGridXC is required. (https://gitlab.com/siesta-project/
libraries/libgridxc)

libXC is optional. libGridXC can use it if present. (https://gitlab.
com/libxc/libxc)

BLAS it is recommended to use a high-performance library (OpenBLAS
or MKL library from Intel, or BLIS)

LAPACK it is recommended to use a high-performance library (Open-
BLAS1 or MKL library from Intel)
NOTE: If you use your *nix distribution package manager to install
BLAS/LAPACK you are bound to have a poor performance. Please
try and use performance libraries, whenever possible!
The CMake building system will search for the BLAS/LAPACK
libraries (maybe with help, by setting the BLAS_LIBRARY or LA-
PACK_LIBRARY CMake variables) and set the appropriate linking
options.

ScaLAPACK Only required for MPI compilation.
Here one may rely on the NetLIB2 version of ScaLAPACK.

Additionally SIESTA may be compiled with support for several other
libraries

fdict This library is shipped with SIESTA and compiled automatically
when needed.

NetCDF It is advised to compile NetCDF in CDF4 compliant mode
(thus also linking with HDF5) as this enables more advanced IO. If

1OpenBLAS enables the inclusion of the LAPACK routines. This is advised.
2ScaLAPACK’s performance is mainly governed by BLAS and LAPACK.

you only link against a CDF3 compliant library you will not get the
complete feature set of SIESTA.
NetCDF (both the C and Fortran interfaces) are typically al-
ready installed in supercomputer centers and can be installed
in most systems using package managers. As a temporary
convenience, SIESTA is shipped with the installation script
Docs/install_netcdf4.bash, which installs NetCDF with full
CDF4 support. Thus it installs zlib, hdf5 and NetCDF C and For-
tran.

ncdf This library is shipped with SIESTA and is compiled automatically
if NetCDF (v4) is enabled, unless the user sets -DWITH_NCDF=OFF.
If the NetCDF library is compiled with parallel support one may
take advantage of parallel IO by -DWITH_NCDF_PARALLEL=ON

ELPA The ELPA [1;10] library provides faster diagonalization routines.
The version of ELPA must be 2017.05.003 or later, since the new
ELPA API is used.
ELPA is used by default if found during the configuration phase of
the CMake run.
NOTE: ELPA can only be used in the parallel version of SIESTA.

Metis The Metis library may be used with TranSIESTA.
Currently there is no full support in CMake to build the Metis li-
brary. It has to be pre-compiled, and the options passed to CMake
in the form:

cmake [.....] -DFortran_FLAGS="-DSIESTA__METIS -L/opt/metis/lib -lmetis"

MUMPS The MUMPS library may currently be used with TranSI-
ESTA.
Currently there is no full support in CMake to build the MUMPS
library. It has to be pre-compiled, and the options passed to CMake
in the form:

cmake [.....] \
-DFortran_FLAGS="-DSIESTA__MUMPS -L/opt/mumps/lib -lzmumps -lmumps_common <>"

9

https://gitlab.com/siesta-project/libraries/libpsml
https://gitlab.com/siesta-project/libraries/libpsml
https://gitlab.com/siesta-project/libraries/libfdf
https://gitlab.com/siesta-project/libraries/libgridxc
https://gitlab.com/siesta-project/libraries/libgridxc
https://gitlab.com/libxc/libxc
https://gitlab.com/libxc/libxc
https://github.com/xianyi/OpenBLAS
https://github.com/xianyi/OpenBLAS
https://github.com/xianyi/OpenBLAS
https://github.com/zerothi/fdict
https://www.unidata.ucar.edu/software/netcdf
https://github.com/zerothi/ncdf
http://elpa.mpcdf.mpg.de
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://mumps.enseeiht.fr

where <> are any libraries that MUMPS depends on.

PEXSI The PEXSI library may be used with this version of SIESTA
for massively-parallel calculations, see Sec. 6.14.
The PEXSI interface in this version is the original native one, us-
ing the heuristics developed for SIESTA in collaboration with the
PEXSI developers, with the following features and limitations:

• It works only for the Gamma point (i.e. real matrices H and S).
This is not really a major limitation, since the PEXSI method
is typically used for large systems.

• It works for (collinear) spin-polarized systems.
• It can compute the DOS through inertia counting, and the

local DOS using selected inversion.
• It determines the Fermi level using a Newton algorithm.
• It offers two levels of parallelization: over poles, and over or-

bitals.

Newer versions of SIESTA (in the Gitlab development site) can use
the PEXSI library through the ELSI library interface, which offers

• Arbitrary sampling of the Brillouin Zone (both real and com-
plex H,S)

• It works for (collinear) spin-polarized systems.
• It determines the Fermi level using a parallel interpolation pro-

cedure.
• It offers three levels of parallelization: over poles, over orbitals,

and over interpolation points.

It turns out that the PEXSI library routines used by the native
interface in SIESTA are offered both by the PEXSI library itself
(versions 2.0 and higher), and by the ELSI library (if compiled with
PEXSI support). A special fortran interface file has been used to
allow the compilation of SIESTA with any one of these libraries.

CheSS SIESTA allows calculation of the electronic structure through
the use of the Order-N method CheSS3. To enable this solver (see

3See https://launchpad.net/chess.

SolutionMethod) one needs to first compile the CheSS-suite and
subsequently use:

cmake [.....] -DWITH_CHESS=ON

NOTE: The developers are working on streamlining the integration
of this library into the CMake build system.

flook SIESTA allows external control via the LUA scripting language.
Using this library one may do advanced MD simulations and much
more without changing any code in SIESTA.
This library is compiled automatically if found during the configu-
ration process.
See Tests/Dependency_Tests/h2o_lua for an example on the LUA
interface.

DFT-D3 This library is required in order to add Grimme’s D3 disper-
sion corrections to SIESTA. It is compiled on the fly (controlled
by -DWITH_DFTD3=ON/OFF) if the directories under External/DFTD3
are populated (through the use of git submodules or otherwise).

2.4 Known Issues

Cray There are few known issues when compiling SIESTA with Cray
compilers.

• Compilation with debug information "-g" fails for Cray Com-
piler versions lower than 14.0.3.

• For Cray versions 15.0 or higher available on certain systems,
it might be mandatory to manually add a compiler flag for
OpenMP compilations. For example:

cmake -B _build ...[Your Options Here]... -DFortran_FLAGS="-fopenmp"

ScalaPACK In some Linux-native versions of the ScaLAPACK distri-
bution, CMake detection might fail with the following message:

CMake Warning at CMakeLists.txt:63 (message):
MPI is found, but ScaLAPACK library cannot be found (or compiled against).

10

http://pexsi.org
https://launchpad.net/chess
https://github.com/electronicstructurelibrary/flook
https://github.com/awvwgk/simple-dftd3

If parallel support is required please supply the ScaLAPACK library with
appropriate flags:

-DSCALAPACK_LIBRARY=<lib>

In order to fix this, the cmake variable -DSCALAPACK_LIBRARY must
be explicitly set to -DSCALAPACK_LIBRARY=-lscalapack-openmpi
(or the appropriate ScaLAPACK version in your system).

2.5 Installing git-enabled versions

When installing versions of SIESTA via git clone or similar approaches,
one can take advantage of git to automatically setup all of SIESTAś
internal dependencies, using:

git submodule update --init --recursive

NOTE: Note that this requires git versions of 2.13 and above.

3 EXECUTION OF THE PROGRAM

A fast way to test your installation of SIESTA and get a feeling for the
workings of the program is implemented in directory Tests. Assuming
that you have built SIESTA in _build, you can do

cd _build
ctest -L simple

to test the execution of an assortment of tests. Executing ctest with
no other options will run all possible tests. Output verification is also
available via the VERIFY_TESTS environment variable:

VERIFY_TESTS=1 ctest -L simple

Other examples are provided in the Examples directory.

Further information about the running of SIESTA with tutorials and
how-to’s on various topics, including the generation of pseudopotentials
with the ATOM code, can be found in the documentation site https://
docs.siesta-project.org.

3.1 Specific execution options

SIESTA may be executed in different forms. The basic execution form is

siesta < RUN.fdf > RUN.out

which uses a pipe statement. SIESTA 4.1 and later does not require one
to pipe in the input file and the input file may instead be specified on the
command line:

siesta RUN.fdf > RUN.out

SIESTA 4.1 and later also accepts special flags and options described in
what follows:

• All flags must start by one or more dashes (-). The number of
leading dashes is irrelevant, as long as there is at least one of them.

• Some flags (e.g., [-L]) must be followed by a properly formed option
string. Other flags (e.g., [-elec]) are logical toggles and they are not
followed by option strings.

• Flags and option strings must all be separated by spaces (and only
spaces are valid separators for this).

• Option strings may be quoted. Option strings that contain spaces
need to either be quoted or have the spaces replaced by a colon (:)
or by an equal sign (=).

• If the input file is not piped in, it can be given as an argument:

siesta -L Hello -V 0.25:eV RUN.fdf > RUN.out
siesta -L Hello RUN.fdf -V 0.25:eV > RUN.out

The list of available flags and options is:

11

https://docs.siesta-project.org
https://docs.siesta-project.org

-help|-h Print a help instruction and quit.

-version|-v Print version information and quit.

-out|-o Specify the output file (instead of printing to the terminal). Ex-
ample:

siesta --out RUN.out

-L Override, temporarily, the SystemLabel flag. Example:

siesta -L Hello

-electrode|-elec overwrites: TS.HS.Save, TS.DE.Save

Denote this as an electrode cal-
culation which forces the SystemLabel.TSHS and SystemLabel.TSDE
files to be saved.
NOTE: This is equivalent to specifying TS.HS.Save true and
TS.DE.Save true in the input file.

-V overwrites: TS.Voltage

Specify the bias for the current TranSIESTA run. If no units are spec-
ified, eV are assumed. Example: any of the following three commands
set the applied bias to 0.25 eV:

siesta -V 0.25:eV
siesta -V "0.25 eV"
siesta -V 0.25

NOTE: This is equivalent to specifying TS.Voltage in the input file.

-fdf Specify any FDF option string. For example, another way to specify
the bias of the example of the previous option would be:

siesta --fdf TS.Voltage=0.25:eV

4 THE FLEXIBLE DATA FORMAT (FDF)

The main input file, typically with extension .fdf, contains the physical
data of the system and the parameters of the simulation to be performed.
This file is written in a special format called FDF, developed by Alberto
García and José M. Soler. This format allows data to be given in any

order, or to be omitted in favor of default values. Refer to documentation
of libfdf for details. Here we offer a glimpse of it through the following
rules:

• The fdf syntax is a “data label” followed by its value. Values that
are not specified in the datafile are assigned a default value.

• fdf labels are case insensitive, and characters - _ . in a data la-
bel are ignored. Thus, LatticeConstant and lattice_constant
represent the same label.

• All text following the # character is taken as comment.

• Logical values can be specified as T, true, .true., yes, F, false, .false.,
no. Blank is also equivalent to true.

• Character strings should not be in apostrophes.

• Real values which represent a physical magnitude must be fol-
lowed by its units. Look at function fdf_convfac in file
∼/siesta/Src/fdf/fdf.f for the units that are currently supported.
It is important to include a decimal point in a real number to dis-
tinguish it from an integer, in order to prevent ambiguities when
mixing the types on the same input line.

• Complex data structures are called blocks and are placed between
“%block label” and a “%endblock label” (without the quotes).

• You may “include” other fdf files and redirect the search for a
particular data label to another file. If a data label appears more
than once, its first appearance is used.

• If the same label is specified twice, the first one takes precedence.

• If a label is misspelled it will not be recognized (there is no in-
ternal list of “accepted” tags in the program). You can check the
actual value used by SIESTA by looking for the label in the output
fdf.log file.

These are some examples:

12

SystemName Water molecule # This is a comment
SystemLabel h2o
Spin polarized
SaveRho
NumberOfAtoms 64
LatticeConstant 5.42 Ang
%block LatticeVectors

1.000 0.000 0.000
0.000 1.000 0.000
0.000 0.000 1.000

%endblock LatticeVectors
KgridCutoff < BZ_sampling.fdf

Reading the coordinates from a file
%block AtomicCoordinatesAndAtomicSpecies < coordinates.data

Even reading more FDF information from somewhere else
%include mydefaults.fdf

The file fdf-XXXXX.log contains all the parameters used by SIESTA in
a given run, both those specified in the input fdf file and those taken by
default. They are written in fdf format, so that you may reuse them as
input directly. Input data blocks are copied to the fdf.log file only if
you specify the dump option for them. In practice, the name of a FDF log
file contains a sequence of digits (e.g., fdf-12345.log) chosen on-the-fly
in order to have a reduced chance of overwriting other FDF log files that
may be present in the same directory.

5 PROGRAM OUTPUT

5.1 Standard output

SIESTA writes a log of its workings to standard output (unit 6), which
is usually redirected to an “output file”.
A brief description follows. See the example cases in the siesta/Tests
directory for illustration.

The program starts writing the version of the code which is used. Then,
the input fdf file is dumped into the output file as is (except for empty
lines). The program does part of the reading and digesting of the data
at the beginning within the redata subroutine. It prints some of the
information it digests. It is important to note that it is only part of it,
some other information being accessed by the different subroutines when
they need it during the run (in the spirit of fdf input). A complete list
of the input used by the code can be found at the end in the file fdf.log,
including defaults used by the code in the run.
After that, the program reads the pseudopotentials, factorizes them into
Kleinman-Bylander form, and generates (or reads) the atomic basis set
to be used in the simulation. These stages are documented in the output
file.
The simulation begins after that, the output showing information of the
MD (or CG) steps and the SCF cycles within. Basic descriptions of the
process and results are presented. The user has the option to customize it,
however, by defining different options that control the printing of informa-
tions like coordinates, forces, k⃗ points, etc. The options are discussed in
the appropriate sections, but take into account the behavior of the legacy
LongOutput option, as in the current implementation might silently
activate output to the main .out file at the expense of auxiliary files.

LongOutput false (logical)
SIESTA can write to standard output different data sets depending
on the values for output options described below. By default SIESTA
will not write most of them. They can be large for large systems
(coordinates, eigenvalues, forces, etc.) and, if written to standard
output, they accumulate for all the steps of the dynamics. SIESTA
writes the information in other files (see Output Files) in addition to
the standard output, and these can be cumulative or not.
Setting LongOutput to true changes the default of some options,
obtaining more information in the output (verbose). In particular, it
redefines the defaults for the following:

• WriteKpoints
• WriteKbands
• WriteCoorStep

13

• WriteForces
• WriteEigenvalues
• WriteWaveFunctions
• WriteMullikenPop(it sets it to 1)

The specific changing of any of these options has precedence.

5.2 Output to dedicated files

SIESTA can produce a wealth of information in dedicated files, with
specific formats, that can be used for further analysis. See the appropriate
sections, and the appendix on file formats. Please take into account the
behavior of LongOutput, as in the current implementation might silently
activate output to the main .out file at the expense of auxiliary files.

6 DETAILED DESCRIPTION OF PROGRAM
OPTIONS

Here follows a description of the variables that you can define in your
SIESTA input file, with their data types and default values. For historical
reasons the names of the tags do not have an uniform structure, and can
be confusing at times.
Almost all of the tags are optional: SIESTA will assign a default if a
given tag is not found when needed (see fdf.log).

6.1 General system descriptors

SystemLabel siesta (string)
A single word (max. 20 characters without blanks) containing a nick-
name of the system, used to name output files.

SystemName 〈None〉 (string)
A string of one or several words containing a descriptive name of the
system (max. 150 characters).

NumberOfSpecies 〈lines in ChemicalSpeciesLabel〉 (integer)
Number of different atomic species in the simulation. Atoms of the
same species, but with a different pseudopotential or basis set are
counted as different species.
NOTE: This is not required to be set.

NumberOfAtoms 〈lines in
AtomicCoordinatesAndAtomicSpecies〉 (integer)
Number of atoms in the simulation.
NOTE: This is not required to be set.

%block ChemicalSpeciesLabel 〈None〉 (block)
It specifies the different chemical species that are present, assigning
them a number for further identification. SIESTA recognizes the
different atoms by the given atomic number.

%block ChemicalSpecieslabel
1 6 C pbe/C.psml
2 14 Si
3 14 Si_surface Si.psf

%endblock ChemicalSpecieslabel

The first number in a line is the species number, it is followed by
the atomic number, and then by the desired unique label. This label
will be used to identify each species. For example the label is the
equivalent label name that should be found in the PAO.Basis block.
This construction allows you to have atoms of the same species but
with different basis or pseudopotential, for example.
Optionally, a string ps-file-spec after the species name determines the
pseudopotential file to be used. In the example above, the C atoms
will use the pseudopotential file pbe/C.psml (with reference to the
current directory), and both the Si and the Si_surface species will
use a pseudopotential file named Si.psf. See section 6.2 for a full
discussion of options.
Negative atomic numbers are used for ghost atoms (see PAO.Basis).
For atomic numbers over 200 or below −200 you should read Syn-
theticAtoms.
NOTE: This block is mandatory.

14

%block SyntheticAtoms 〈None〉 (block)
This block provides information about the ground-state valence con-
figuration of a species. Its main use is to complement the information
in ChemicalSpeciesLabel for synthetic (alchemical) species, which
are represented by atomic numbers over 200 in ChemicalSpecies-
Label. These species are created for example as a “mixture” of two
real ones for a “virtual crystal” (VCA) calculation. In this special
case a new SyntheticAtoms block must be present to give SIESTA
information about the “ground state” of the synthetic atom.

%block ChemicalSpeciesLabel
1 201 ON-0.50000

%endblock ChemicalSpeciesLabel
%block SyntheticAtoms

1 # Species index
2 2 3 4 # n numbers for valence states with l=0,1,2,3
2.0 3.5 0.0 0.0 # occupations of valence states with l=0,1,2,3

%endblock SyntheticAtoms

Pseudopotentials for synthetic atoms can be created using the mixps
and fractional programs in the Util/VCA directory.
Atomic numbers below −200 represent ghost synthetic atoms.
Note that the procedure used in the automatic handling of semi-
core states does not work for synthetic atoms. If semicore states are
present, the species must be put in the PAO.Basis block. Otherwise
the program will assume that there are no semicore states.
This block can also be used to provide an alternate ground state va-
lence configuration for real atoms in some special cases. For example,
the nominal valence configuration for Pd in the Siesta internal tables
is 5s1 5p0 4d9 4f0, but in some tables it appears as 5s0 5p0 4d10 4f0.
In this case, the alternate configuration can be specified by the block:

%block ChemicalSpeciesLabel
1 46 Pd

%endblock ChemicalSpeciesLabel
%block synthetic-atoms
1

5 5 4 4
0.0 0.0 10.0 0.0

%endblock synthetic-atoms

As another example, the nominal valence for Cu in Siesta is 4s1 4p0
3d10 4f0, but in some cases a pseudopotential might be generated by
considering the 3d shell as frozen in the core. In this case the proper
valence configuration is:

%block ChemicalSpeciesLabel
1 29 Cu_3d_in_core

%endblock ChemicalSpeciesLabel
%block synthetic-atoms
1

4 4 4 4
1.0 0.0 0.0 0.0

%endblock synthetic-atoms

As a final example, the nominal valence configuration for Ce in Siesta
is 6s2 6p0 5d0 4f2, but on some tables it appears as [Xe] 6s2 4f1 5d1.
In addition, the pseudo-dojo pseudopotential (in the NC SR+3 table)
has the 4f shell frozen in the core. This case can be handled by the
block:

%block ChemicalSpeciesLabel
1 58 Ce_4f_in_core

%endblock ChemicalSpeciesLabel
%block synthetic-atoms
1

6 6 5 5
2.0 0.0 1.0 0.0

%endblock synthetic-atoms

Note that the change in the atomic ground-state configuration might
change the choice of polarization orbitals, and possibly other Siesta
heuristic decisions, so the results should be checked carefully.

%block AtomicMass 〈None〉 (block)
It allows the user to introduce the atomic masses of the different
species used in the calculation, useful for the dynamics with isotopes,
for example. If a species index is not found within the block, the
natural mass for the corresponding atomic number is assumed. If
the block is absent all masses are the natural ones. One line per
species with the species index (integer) and the desired mass (real).
The order is not important. If there is no integer and/or no real
numbers within the line, the line is disregarded.

15

%block AtomicMass
3 21.5
1 3.2

%endblock AtomicMass

The default atomic mass are the natural masses. For ghost atoms
(i.e. floating orbitals) the mass is 1030 a.u.

6.2 Pseudopotentials

SIESTA uses pseudopotentials to represent the electron-ion interac-
tion (as do most plane-wave codes and in contrast to so-called “all-
electron” programs). In particular, the pseudopotentials are of the “norm-
conserving” kind.
The pseudopotentials will be read by SIESTA from different files, accord-
ing to the species information in the block ChemicalSpeciesLabel). Re-
call that an optional ps-file-spec can be present for each species. If absent,
ps-file-spec defaults to the species’ label (Chemical_label).
The name of the files can be:

• ps-file-spec.vps (unformatted) or

• ps-file-spec.psf (ASCII) or

• ps-file-spec.psml (PSML format)

Files are searched by default in the current directory. In addition, the
environment variable SIESTA_PS_PATH can be used to provide a set of
alternate paths in which to search for files.
The rules for pseudopotential file discovery, given ps-file-spec, are:

• If ps-file-spec does not have an extension, the following rules are
applied in turn adding each of .vps,.psf,.psml to ps-file-spec, in
that order of preference. The search ends with the first finding.

• If ps-file-spec is not an absolute path, (e.g. Si or C.psf, or
pbe/C.psml), the search is done on the implied path (i.e. with
reference to the current directory), and in each of the sections in

SIESTA_PS_PATH with ps-file-spec (and possibly an extension) ap-
pended.

• If ps-file-spec is an absolute path, (e.g. /home/user/Si or
/data/ps/C.psml, the search is done only in the path, possibly
with an extension appended.

Pseudopotential files in the .psf format can be generated by the ATOM
program, (see Pseudo/README.ATOM) and by a number of other codes
such as APE. The .vps format is a binary version of the .psf format, and
is deprecated.
Pseudopotential files in the PSML format (see García et al. [6]) can
be produced by the combination of ATOM and psop (see directory
Pseudo/vnl-operator) in a form fully compatible with the SIESTA
procedures to generate the non-local pseudopotential operator. Notably,
they can also be produced by suitably patched versions of D.R. Hamann’s
oncvpsp program (see directory Pseudo/Third-Party-Tools/ONCVPSP)..
The oncvpsp code can generate several projectors per l channel, leading
to pseudopotentials that are more transferable.
For more information on the format itself and the PSML ecosystem of
generators and client ab-initio codes, please see http://esl.cecam.org/
PSML.
Note that curated databases of high-quality PSML files are available.
In particular, the Pseudo-Dojo project https://www.pseudo-dojo.org
offers PSML files for almost the whole periodic table, together with a
report of the tests carried out during the generation procedure.
In this connection, it should be stressed that all pseudopotentials
should be thoroughly tested before using them. We refer you to
the standard literature on pseudopotentials, to the ATOM manual, and to
the Pseudo-Dojo site for more information.
Please take into account the following when using PSML files:

• If present in the execution directory, .psf files take precedence
over .psml files. That is, if both Chemical_label.psf and Chemi-
cal_label.psml are present, SIESTA will process the former.

16

http://esl.cecam.org/PSML
http://esl.cecam.org/PSML
https://www.pseudo-dojo.org

• PSML files typically contain semilocal potentials, a local potential,
and non-local projectors. By default, SIESTA will use the local
potential and non-local projectors from the PSML file, unless the
respective options PSML.Vlocal and PSML.KB.projectors are
set to false. These options are true by default. Several combina-
tions are possible with these options:

– The recommended (and default) is to use the local potential
and projectors from the PSML file.

– One could use only the semilocal potentials from the PSML file,
and proceed to generate a local potential and KB projectors
with the traditional SIESTA algorithm.

– One could use the semilocal potentials and the local potential
from the PSML file, and generate a set of KB projectors from
them.

• In order to generate its basis set of pseudo-atomic orbitals (PAOs),
SIESTA still needs the semilocal parts of the pseudopotential. Cur-
rently all available PSML files (generated by ATOM+psop or ONCVPSP)
contain semilocal potentials, but this might change in the future (for
example, when a PSML file is obtained from a projectors-only UPF
file). This restriction will be lifted in a later version: SIESTA will
then be able to use the full pseudopotential operator to generate the
PAOs.

• For the full (default) version of spin-orbit-coupling (SOC), SIESTA
uses fully relativistic (lj) projectors. These are available in PSML
files generated by ONCVPSP in fully-relativistic mode, if the psfile
option upf or both is used in the appropriate place in the input
file. To obtain appropriate PSML files with the ATOM+psop chain
(see the directory Pseudo/vnl-operator), the projector generation
with psop must use the -r option. Note that lj projectors can
still be directly generated by SIESTA from relativistic semilocal
potentials.

• Fully-relativistic PSML files with only lj non-local projectors cannot
be used directly in calculations not involving “full” SOC. For this,
SIESTA needs the “scalar-relativistic” projectors. An algorithm for

direct generation of SR projectors from an lj set already exists as
part of the oncvpsp code, and it will be integrated in a forthcoming
version. In the meantime, while in principle it is possible to read
only the semilocal potentials from the file and proceed to generate
the appropriate projectors, it is better to use PSML files which
contain both (actually three) sets of non-local projectors: “sr”, “so”,
and lj. These can be obtained with ONCVPSP with the both option.
(For the ATOM+psop chain, it is currently necessary to run psop twice
(once with the -r option) and generate two different PSML files, and
then “graft” the “sr” set into the file containing the lj set.)

• A large number of PSML files obtained from the Pseudo-Dojo
database are generated with (several) semicore shells. Dealing with
them has uncovered a few weaknesses in the standard heuristics used
traditionally in SIESTA to generate basis sets:

– Sometimes it was not possible to execute successfully the
legacy split-norm algorithm. Now, the default is to use
PAO.SplitTailNorm true, with a simpler, more robust al-
gorithm. See the section on split-norm for full details.

– The default perturbative scheme for polarization orbitals can
fail in very specific cases. When the polarization orbital
has to have a node due to the presence of a lower-lying
orbital with the same l, the program can (if enabled by
the PAO.Polarization.NonPerturbative.Fallback option,
which is trueby default) automatically switch to using a non-
perturbative scheme. In other cases, include the Chemi-
cal_label in the PAO.Polarization.Scheme block to request
a non-perturbative scheme:

%block PAO.Polarization.Scheme
Mg non-perturbative

%endblock PAO.Polarization.Scheme

Please see the relevant section for a fuller explanation.
– A number of improvements to the PAO generation code have

been made while implementing support for PSML pseudopo-
tentials. In particular, SIESTA can now automatically detect
and generate basis sets for atoms with semicore shells without
the explicit use of a PAO.Basis block.

17

6.3 Basis set and KB projectors

6.3.1 Overview of atomic-orbital bases implemented in
SIESTA

The main advantage of atomic orbitals is their efficiency (fewer orbitals
needed per electron for similar precision) and their main disadvantage is
the lack of systematics for optimal convergence, an issue that quantum
chemists have been working on for many years. They have also clearly
shown that there is no limitation on precision intrinsic to LCAO. This
section provides some information about how basis sets can be generated
for SIESTA.
It is important to stress at this point that neither the SIESTA method nor
the program are bound to the use of any particular kind of atomic orbitals.
The user can feed into SIESTA the atomic basis set he/she choses by
means of radial tables (see User.Basis below), the only limitations being:
(i) the functions have to be atomic-like (radial functions mutiplied by
spherical harmonics), and (ii) they have to be of finite support, i.e., each
orbital becomes strictly zero beyond some cutoff radius chosen by the
user.
Most users, however, do not have their own basis sets. For these users we
have devised some schemes to generate basis sets within the program with
a minimum input from the user. If nothing is specified in the input file,
SIESTA generates a default basis set of a reasonable quality that might
constitute a good starting point. Of course, depending on the accuracy
required in the particular problem, the user has the degree of freedom to
tune several parameters that can be important for quality and efficiency.
A description of these basis sets and some performance tests can be found
in the references quoted below.
“Numerical atomic orbitals for linear-scaling calculations”, J. Junquera,
O. Paz, D. Sánchez-Portal, and E. Artacho, Phys. Rev. B 64, 235111,
(2001)
An important point here is that the basis set selection is a variational
problem and, therefore, minimizing the energy with respect to any pa-
rameters defining the basis is an “ab initio” way to define them.
We have also devised a quite simple and systematic way of generating

basis sets based on specifying only one main parameter (the energy shift)
besides the basis size. It does not offer the best NAO results one can
get for a given basis size but it has the important advantages mentioned
above. More about it in:
“Linear-scaling ab-initio calculations for large and complex systems”, E.
Artacho, D. Sánchez-Portal, P. Ordejón, A. García and J. M. Soler, Phys.
Stat. Sol. (b) 215, 809 (1999).
In addition to SIESTA we provide the program Gen-basis , which reads
SIESTA’s input and generates basis files for later use. Gen-basis can be
found in Util/Gen-basis. It should be run from the Tutorials/Bases
directory, using the gen-basis.sh script. It is limited to a single species.
Of course, as it happens for the pseudopotential, it is the responsibility
of the user to check that the physical results obtained are converged with
respect to the basis set used before starting any production run.
In the following we give some clues on the basics of the basis sets that
SIESTA generates. The starting point is always the solution of Kohn-
Sham’s Hamiltonian for the isolated pseudo-atoms, solved in a radial grid,
with the same approximations as for the solid or molecule (the same
exchange-correlation functional and pseudopotential), plus some way of
confinement (see below). We describe in the following three main features
of a basis set of atomic orbitals: size, range, and radial shape.
Size: number of orbitals per atom
Following the nomenclature of Quantum Chemistry, we establish a hierar-
chy of basis sets, from single-ζ to multiple-ζ with polarization and diffuse
orbitals, covering from quick calculations of low quality to high preci-
sion, as high as the finest obtained in Quantum Chemistry. A single-ζ
(also called minimal) basis set (SZ in the following) has one single ra-
dial function per angular momentum channel, and only for those angular
momenta with substantial electronic population in the valence of the free
atom. It offers quick calculations and some insight on qualitative trends
in the chemical bonding and other properties. It remains too rigid, how-
ever, for more quantitative calculations requiring both radial and angular
flexibilization.
Starting by the radial flexibilization of SZ, a better basis is obtained by
adding a second function per channel: double-ζ (DZ). In Quantum Chem-

18

istry, the split valence scheme is widely used: starting from the expansion
in Gaussians of one atomic orbital, the most contracted Gaussians are
used to define the first orbital of the double-ζ and the most extended
ones for the second. For strictly localized functions there was a first pro-
posal of using the excited states of the confined atoms, but it would work
only for tight confinement (see PAO.BasisType nodes below). This con-
struction was proposed and tested in D. Sánchez-Portal et al., J. Phys.:
Condens. Matter 8, 3859-3880 (1996).
We found that the basis set convergence is slow, requiring high levels of
multiple-ζ to achieve what other schemes do at the double-ζ level. This
scheme is related with the basis sets used in the OpenMX project [see T.
Ozaki, Phys. Rev. B 67, 155108 (2003); T. Ozaki and H. Kino, Phys.
Rev. B 69, 195113 (2004)].
We then proposed an extension of the split valence idea of Quantum
Chemistry to strictly localized NAO which has become the standard and
has been used quite successfully in many systems (see PAO.BasisType
split below). It is based on the idea of suplementing the first ζ with,
instead of a gaussian, a numerical orbital that reproduces the tail of the
original PAO outside a matching radius rm, and continues smoothly to-
wards the origin as rl(a − br2), with a and b ensuring continuity and
differentiability at rm. Within exactly the same Hilbert space, the sec-
ond orbital can be chosen to be the difference between the smooth one
and the original PAO, which gives a basis orbital strictly confined within
the matching radius rm (smaller than the original PAO!) continuously
differentiable throughout.
Extra parameters have thus appeared: one rm per orbital to be doubled.
The user can again introduce them by hand (see PAO.Basis below). Al-
ternatively, all the rm’s can be defined at once by specifying the value of
the tail of the original PAO beyond rm, the so-called split norm. Vari-
ational optimization of this split norm performed on different systems
shows a very general and stable performance for values around 15% (ex-
cept for the ∼ 50% for hydrogen). It generalizes to multiple-ζ trivially by
adding an additional matching radius per new zeta.
Note: In previous versions of the program what was actually used as split-
valence reference was the norm of the tail plus the norm of the parabola-
like inner function.

Angular flexibility is obtained by adding shells of higher angular momen-
tum. Ways to generate these so-called polarization orbitals have been
described in the literature for Gaussians. For NAOs there are two ways
for SIESTA and Gen-basis to generate them: (i) Use atomic PAO’s of
higher angular momentum with suitable confinement, and (ii) solve the
pseudoatom in the presence of an electric field and obtain the l+1 orbitals
from the perturbation of the l orbitals by the field. Experience shows that
method (i) tends to give better results.
So-called diffuse orbitals, that might be important in the description of
open systems such as surfaces, can be simply added by specifying extra
“n” shells. [See S. Garcia-Gil, A. Garcia, N. Lorente, P. Ordejon, Phys.
Rev. B 79, 075441 (2009)]
Finally, the method allows the inclusion of off-site (ghost) orbitals (not
centered around any specific atom), useful for example in the calculation
of the counterpoise correction for basis-set superposition errors. Bessel
functions for any radius and any excitation level can also be added any-
where to the basis set.
Range: cutoff radii of orbitals.
Strictly localized orbitals (zero beyond a cutoff radius) are used in order
to obtain sparse Hamiltonian and overlap matrices for linear scaling. One
cutoff radius per angular momentum channel has to be given for each
species.
A balanced and systematic starting point for defining all the different radii
is achieved by giving one single parameter, the energy shift, i.e., the energy
increase experienced by the orbital when confined. Allowing for system
and physical-quantity variablity, as a rule of thumb ∆EPAO ≈ 100 meV
gives typical precisions within the accuracy of current GGA functionals.
The user can, nevertheless, change the cutoff radii at will.
Shape
Within the pseudopotential framework it is important to keep the con-
sistency between the pseudopotential and the form of the pseudoatomic
orbitals in the core region. The shape of the orbitals at larger radii de-
pends on the cutoff radius (see above) and on the way the localization is
enforced.

19

The first proposal (and quite a standard among SIESTA users) uses
an infinite square-well potential. It was originally proposed and has
been widely and successfully used by Otto Sankey and collaborators,
for minimal bases within the ab initio tight-binding scheme, using the
Fireball program, but also for more flexible bases using the methodology
of SIESTA. This scheme has the disadavantage, however, of generating
orbitals with a discontinuous derivative at rc. This discontinuity is more
pronounced for smaller rc’s and tends to disappear for long enough values
of this cutoff. It does remain, however, appreciable for sensible values of rc

for those orbitals that would be very wide in the free atom. It is surprising
how small an effect such a kink produces in the total energy of condensed
systems. It is, on the other hand, a problem for forces and stresses, es-
pecially if they are calculated using a (coarse) finite three-dimensional
grid.
Another problem of this scheme is related to its defining the basis starting
from the free atoms. Free atoms can present extremely extended orbitals,
their extension being, besides problematic, of no practical use for the
calculation in condensed systems: the electrons far away from the atom
can be described by the basis functions of other atoms.
A traditional scheme to deal with this is one based on the radial scaling
of the orbitals by suitable scale factors. In addition to very basic bonding
arguments, it is soundly based on restoring the virial’s theorem for finite
bases, in the case of Coulombic potentials (all-electron calculations). The
use of pseudopotentials limits its applicability, allowing only for extremely
small deviations from unity (∼ 1%) in the scale factors obtained varia-
tionally (with the exception of hydrogen that can contract up to 25%).
This possiblity is available to the user.
Another way of dealing with the above problem and that of the kink
at the same time is adding a soft confinement potential to the atomic
Hamiltonian used to generate the basis orbitals: it smoothens the kink and
contracts the orbital as suited. Two additional parameters are introduced
for the purpose, which can be defined again variationally. The confining
potential is flat (zero) in the core region, starts off at some internal radius
ri with all derivatives continuous and diverges at rc ensuring the strict

localization there. It is

V (r) = Vo
e

− rc−ri
r−ri

rc − r
(1)

and both ri and Vo can be given to SIESTA together with rc in the input
(see PAO.Basis below). The kink is normally well smoothened with the
default values for soft confinement by default (PAO.SoftDefault true),
which are ri = 0.9rc and Vo = 40 Ry.
When explicitly introducing orbitals in the basis that would be empty in
the atom (e.g. polarisation orbitals) these tend to be extremely extended
if not completely unbound. The above procedure produces orbitals that
bulge as far away from the nucleus as possible, to plunge abruptly at rc.
Soft confinement can be used to try to force a more reasonable shape,
but it is not ideal (for orbitals peaking in the right region the tails tend
to be far too short). Charge confinement produces very good shapes for
empty orbitals. Essentially a Z/r potential is added to the soft confined
potential above. For flexibility the charge confinement option in SIESTA
is defined as

VQ(r) = Ze−λr

√
r2 + δ2

(2)

where δ is there to avoid the singularity (default δ = 0.01 Bohr), and λ
allows to screen the potential if longer tails are needed. The description
on how to introduce this option can be found in the PAO.Basis entry
below.
Finally, the shape of an orbital is also changed by the ionic character of
the atom. Orbitals in cations tend to shrink, and they swell in anions.
Introducing a δQ in the basis-generating free-atom calculations gives or-
bitals better adapted to ionic situations in the condensed systems.
More information about basis sets can be found in the proposed literature.

There are quite a number of options for the input of the basis-set and KB
projector specification, and they are all optional! By default, SIESTA
will use a DZP basis set with appropriate choices for the determina-
tion of the range, etc. Of course, the more you experiment with the
different options, the better your basis set can get. To aid in this
process we offer an auxiliary program for optimization which can be
used in particular to obtain variationally optimal basis sets (within a

20

chosen basis size). See Util/Optimizer for general information, and
Util/Optimizer/Examples/Basis_Optim for an example. The directory
Tutorials/Bases in the main SIESTA distribution contains some tuto-
rial material for the generation of basis sets and KB projectors.
Finally, some optimized basis sets for particular elements are available at
the SIESTA web page. Again, it is the responsability of the users to test
the transferability of the basis set to their problem under consideration.

6.3.2 Type of basis sets

PAO.BasisType split (string)
The kind of basis to be generated is chosen. All are based on finite-
range pseudo-atomic orbitals [PAO’s of Sankey and Niklewsky, PRB
40, 3979 (1989)]. The original PAO’s were described only for minimal
bases. SIESTA generates extended bases (multiple-ζ, polarization,
and diffuse orbitals) applying different schemes of choice:

- Generalization of the PAO’s: uses the excited orbitals of the
finite-range pseudo-atomic problem, both for multiple-ζ and for
polarization [see Sánchez-Portal, Artacho, and Soler, JPCM 8,
3859 (1996)]. Adequate for short-range orbitals.

- Multiple-ζ in the spirit of split valence, decomposing the orig-
inal PAO in several pieces of different range, either defining
more (and smaller) confining radii, or introducing Gaussians
from known bases (Huzinaga’s book).

All the remaining options give the same minimal basis. The different
options and their fdf descriptors are the following:

split Split-valence scheme for multiple-zeta. The split is based on
different radii.

splitgauss Same as split but using gaussian functions e−(x/αi)2 . The
gaussian widths αi are read instead of the scale factors (see below).
There is no cutting algorithm, so that a large enough rc should be
defined for the gaussian to have decayed sufficiently.

nodes Generalized PAO’s.

nonodes The original PAO’s are used, multiple-zeta is generated by
changing the scale-factors, instead of using the excited orbitals.

filteret Use the filterets as a systematic basis set. The size of the
basis set is controlled by the filter cut-off for the orbitals.

Note that, for the split and nodes cases the whole basis can be gen-
erated by SIESTA with no further information required. SIESTA
will use default values as defined in the following (PAO.BasisSize,
PAO.EnergyShift, and PAO.SplitNorm, see below).

6.3.3 Size of the basis set

PAO.BasisSize DZP (string)
It defines usual basis sizes. It has effect only if there is no block
PAO.Basis present.

SZ|minimal Use single-ζ basis.

DZ Double zeta basis, in the scheme defined by PAO.BasisType.

SZP Single-zeta basis plus polarization orbitals.

DZP|standard Like DZ plus polarization orbitals.
NOTE: The ground-state atomic configuration used internally by
SIESTA is defined in the source file Src/periodic_table.f. For
some elements (e.g., Pd), the configuration might not be the stan-
dard one.
NOTE: By default, polarization orbitals are constructed from per-
turbation theory, and they are defined so they have the minimum
angular momentum l such that there are no occupied orbitals with
the same l in the valence shell of the ground-state atomic configu-
ration. They polarize the corresponding l − 1 shell.
See PAO.Polarization.NonPerturbative and
PAO.Polarization.Scheme in Sec. 6.3.6 for options to generate
polarization orbitals non-perturbatively.

%block PAO.BasisSizes 〈None〉 (block)
Block which allows to specify a different value of the variable
PAO.BasisSize for each species. For example,

21

%block PAO.BasisSizes
Si DZ
H DZP
O SZP

%endblock PAO.BasisSizes

6.3.4 Range of the orbitals

PAO.EnergyShift 0.01 Ry (energy)
A standard for orbital-confining cutoff radii. It is the excitation en-
ergy of the PAO’s due to the confinement to a finite-range. It offers
a general procedure for defining the confining radii of the original
(first-zeta) PAO’s for all the species guaranteeing the compensation
of the basis. It only has an effect when the block PAO.Basis is not
present or when the radii specified in that block are zero for the first
zeta.

Write.Graphviz none|atom|orbital|atom+orbital (string)
Write out the sparsity pattern after having determined the ba-
sis size overlaps. This will generate SystemLabel.ATOM.gv or
SystemLabel.ORB.gv which both may be converted to a graph using
Graphviz’s program neato:

neato -x -Tpng siesta.ATOM.gv -o siesta_ATOM.png

The resulting graph will list each atom as i(j) where i is the atomic
index and j is the number of other atoms it is connected to.

6.3.5 Generation of multiple-zeta orbitals

PAO.SplitNorm 0.15 (real)
depends on: PAO.SplitTailNorm

A standard to define sensible default radii for the split-valence type
of basis. It gives the amount of norm that the second-ζ split-off piece
has to carry. The split radius is defined accordingly. If multiple-ζ
is used, the corresponding radii are obtained by imposing smaller
fractions of the SplitNorm (1/2, 1/4, 1/6 ...) value as norm carried
by the higher zetas. It only has an effect when the block PAO.Basis
is not present or when the radii specified in that block are zero for

zetas higher than one.
NOTE: When using PAO.SplitTailNorm true (the default as of
SIESTA V5) the mapping of split-norm parameters to radial match-
ing points changes. Legacy values might have to be revised. See the
longer note under PAO.SplitTailNorm.

PAO.SplitNormH 〈PAO.SplitNorm〉 (real)
This option is as per PAO.SplitNorm but allows a separate default
to be specified for hydrogen which typically needs larger values than
those for other elements.

PAO.SplitTailNorm true (logical)
Use the norm of the tail instead of the “tail+parabola” norm to
compute the “split” contribution. This is the behavior described in
the JPC paper, but for numerical reasons the square root of the tail
norm is used in the algorithm. This approach guarantees a match for
any value of the PAO.SplitNorm parameter, and is the preferred
mode of operation.
NOTE: For a given value of PAO.SplitNorm one can find these
two cases, depending on the setting of this option:

true the cutoff lengths of the higher ζ orbitals will be shorter
The split-norm curve (square root of the tail norm) approaches
0 faster in this case, hence the matching radius is found at a
shorter distance.

false the cutoff lengths of the higher ζ orbitals will be longer
The (tail+parabola) norm is used as the split-norm reference.
This curve likely approaches 0 more slowly (or not at all), hence
the matching radius is found at a longer distance.

PAO.SplitValence.Legacy false (logical)
Recovers the behavior and default settings of the legacy split-valence
options. In addition to PAO!SplitTailNorm, which would be false by
default, users can set the option PAO!FixSplitTable (see below).

PAO.FixSplitTable false (logical)
After the scan of the (tail+parabola) norm table (curve), apply a
damping function to the tail to make sure that the table goes to zero

22

at the radius of the first-zeta orbital. PAO.FixSplitTable true
guarantees that the program finds a solution, even when using the
tail+parabola split-norm heuristic. The result might not be optimal
(in the sense of producing a second-ζ rc very close to the first-ζ one).
This option is not accessible with PAO!SplitValence!Legacy:false.

PAO.EnergyCutoff 20 Ry (energy)
If the multiple zetas are generated using filterets then only the fil-
terets with an energy lower than this cutoff are included. Increasing
this value leads to a richer basis set (provided the cutoff is raised
above the energy of any filteret that was previously not included)
but a more expensive calculation. It only has an effect when the
option PAO.BasisType is set to filteret.

PAO.EnergyPolCutoff 20 Ry (energy)
If the multiple zetas are generated using filterets then only the fil-
terets with an energy lower than this cutoff are included for the po-
larisation functions. Increasing this value leads to a richer basis set
(provided the cutoff is raised above the energy of any filteret that was
previously not included) but a more expensive calculation. It only
has an effect when the option PAO.BasisType is set to filteret.

PAO.ContractionCutoff 0|0− 1 (real)
If the multiple zetas are generated using filterets then any filterets
that have a coefficient less than this threshold within the original
PAO will be contracted together to form a single filteret. Increasing
this value leads to a smaller basis set but allows the underlying basis
to have a higher kinetic energy cut-off for filtering. It only has an
effect when the option PAO.BasisType is set to filteret.

6.3.6 Polarization-orbital options

Polarization orbitals can be requested through an automatic basis-size
specification such as DZP, or TZP, etc, or through the use of the ’P’ shell
option in the PAO.Basis block.
In these cases, by default, polarization orbitals are generated perturba-
tively, by formally applying an electric field to the orbital being polarized.

Polarization shells can also be put explicitly in the PAO.Basis block.
In this case, the orbitals are generated in the standard way, using the
appropriate confinement and split-norm options.
If the perturbative method is not wanted, even when using the standard
basis specifications, the following global option can be used:

PAO.Polarization.NonPerturbative false (logical)
If enabled, it will promote any polarization shells to the status of
explicit shells, thus using the standard generation options.

Also, this setting can be controlled species by species, by using a block

%block PAO.Polarization.Scheme 〈None〉 (block)
Block which allows to specify a different polarization scheme for each
species. For example,

%block PAO.Polarization.Scheme
Si non-perturbative [optional Q options]
H perturbative

%endblock PAO.Polarization.Scheme

The presence of ’perturbative’ for a species in the block has the effect
of forcing the use of the perturbative option.
If a species does not appear in the block, the setting of
PAO.Polarization.NonPerturbative applies. The default scheme
is perturbative.
An optional charge-confinement specification can follow, starting
with a ’Q’, in exactly the same way as in the PAO.Basis block.

The perturbative method does not require any extra information regard-
ing confinement, since the rc value for the polarization shell is the same
as the one for the polarized shell. If the perturbative method is turned
off, the new explicit shell created for the polarization orbital will be as-
signed an rc equal to the one actually used for the shell to be polarized
(for the 1st zeta). The only extra control offered at this point is a possible
expansion of this value through the (global) option:

PAO.Polarization.Rc-Expansion-Factor 1.0 (real)
When turning off the perturbative method for the generation of po-
larization orbitals, assign to the 1st zeta of the explicit polarization

23

shell the rc of the polarized shell multiplied by this factor.

Note that, empirically, the perturbative method seems to give better re-
sults (in the variational sense), so the alternative should only be used
when the default fails for some reason, for full basis-set optimization,
or for experimentation purposes. In particular, non-perturbatively gen-
erated polarization orbitals tend to bulge outwards. To correct this,
the charge-confinement options in the PAO.Basis block (or in the
PAO.Polarization.Scheme block) might be helpful.
There is one case, however, which tends to exhibit problems in the per-
turbative algorithm: when a polarization orbital has to have a node due
to the presence of a lower-lying orbital of the same l (this will hap-
pen, for example, for Ge if the 3d orbital is considered part of the va-
lence). In this case, the program can automatically switch to using the
non-perturbative scheme. To enable this automatic switch, the option
PAO.Polarization.NonPerturbative.Fallback must be enabled (it is
by default). Note that if the ’perturbative’ option is explicitly set in the
block above, the fallback is overriden.
A proper basis-set optimization should be carried out using a PAO.Basis
block, which allows a full set of options.

6.3.7 Soft-confinement options

A brief description of the soft-confinement options is given below. This
is the default way of generating basis orbitals, and disabling it is not
recommended unless going for backwards compatibility. The default po-
tential and inner radius options should not be changed either, except when
needed for an specific application.

PAO.SoftDefault true (logical)
This option causes soft confinement to be the default form of potential
during orbital generation. Disabling this will cause a fallback to the
original hard-confined orbitals.

PAO.SoftInnerRadius 0.9 (real)
For default soft confinement, the inner radius is set at a fraction of
the outer confinement radius determined by the energy shift. This

option controls the fraction of the confinement radius to be used.

PAO.SoftPotential 40 Ry (energy)
For default soft confinement, this option controls the value of the
potential used for all orbitals.
NOTE: Soft-confinement options (inner radius, prefactor) have been
traditionally used to optimize the basis set, even though formally they
are just a technical necessity to soften the decay of the orbitals at rc.
To achieve this, it might be enough to use the above global options.

6.3.8 Kleinman-Bylander projectors

NOTE: SIESTA is now able to read directly the non-local projec-
tors from a PSML file. For this, the options PSML.Vlocal and
PSML.KB.projectors must be set to true(they are by default), and
a Chemical_label.psml file must be present. The rest of the options
discussed in this section will have no effect in that case.

%block PS.lmax 〈None〉 (block)
Block with the maximum angular momentum of the Kleinman-
Bylander projectors, lmxkb. This information is optional. If the
block is absent, or for a species which is not mentioned inside it,
SIESTA will take lmxkb(is) = lmxo(is) + 1, where lmxo(is) is
the maximum angular momentum of the basis orbitals of species is.
However, the value of lmxkb is actually limited by the highest-l chan-
nel in the pseudopotential file.

%block Ps.lmax
Al_adatom 3
H 1
O 2

%endblock Ps.lmax

By default lmax is the maximum angular momentum plus one, limited
by the highest-l channel in the pseudopotential file.

%block PS.KBprojectors 〈None〉 (block)
This block provides information about the number of Kleinman-
Bylander projectors per angular momentum that will used in the

24

calculation. This block is optional. If it is absent, or for species
not mentioned in it, only one projector will be used for each angular
momentum (except for l-shells with semicore states, for which two
projectors will be constructed). The projectors will be constructed
using the eigenfunctions of the respective pseudopotentials.
This block allows to specify also the reference energies of the wave-
functions used to build them. The specification of the reference en-
ergies is optional. If these energies are not given, the program will
use the eigenfunctions with an increasing number of nodes (if there is
not bound state with the corresponding number of nodes, the “eigen-
states” are taken to be just functions which are made zero at very
long distance of the nucleus). The units for the energy can be option-
ally specified; if not, the program will assumed that they are given in
Rydbergs. The data provided in this block must be consistent with
those read from the block PS.lmax. For example,

%block PS.KBprojectors
Si 3
2 1

-0.9 eV
0 2

-0.5 -1.0d4 Hartree
1 2

Ga 1
1 3

-1.0 1.0d5 -6.0
%endblock PS.KBprojectors

The reading is done this way (those variables in brackets are optional,
therefore they are only read if present):

From is = 1 to nspecies
read: label(is), l_shells(is)
From lsh=1 to l_shells(is)

read: l, nkbl(l,is)
read: {erefKB(izeta,il,is)}, from ikb = 1 to nkbl(l,is), {units}

All angular momentum shells should be specified. Default values
are assigned to missing shells with l below lmax, where lmax is the

highest angular momentum present in the block for that particular
species. High-l shells (beyond lmax) not specified in the block will
also be assigned default values.
Care should be taken for l-shells with semicore states. For them,
two KB projectors should be generated. This is not checked while
processing this block.
When a very high energy, higher that 1000 Ry, is specified, the default
is taken instead. On the other hand, very low (negative) energies,
lower than -1000 Ry, are used to indicate that the energy derivative
of the last state must be used. For example, in the block given above,
two projectors will be used for the s pseudopotential of Si. One
generated using a reference energy of -0.5 Hartree, and the second one
using the energy derivative of this state. For the p pseudopotential of
Ga, three projectors will be used. The second one will be constructed
from an automatically generated wavefunction with one node, and the
other projectors from states at -1.0 and -6.0 Rydberg.
The analysis looking for possible ghost states is only performed when
a single projector is used. Using several projectors some attention
should be paid to the “KB cosine” (kbcos), given in the output of
the program. The KB cosine gives the value of the overlap between
the reference state and the projector generated from it. If these
numbers are very small (< 0.01, for example) for all the projectors
of some angular momentum, one can have problems related with the
presence of ghost states.
The default is one KB projector from each angular momentum, con-
structed from the nodeless eigenfunction, used for each angular mo-
mentum, except for l-shells with semicore states, for which two pro-
jectors will be constructed. Note that the value of lmxkb is actually
limited by the highest-l channel in the pseudopotential file.
For full spin-orbit calculations, the program generates lj projectors
using the l + 1/2 and l − 1/2 components of the (relativistic) pseu-
dopotentials. In this case the specification of the reference energies
for projectors is not changed: only l is relevant. Fully relativistic
projectors can also be read from a suitably generated PSML file.

KB.New.Reference.Orbitals false (logical)
If true, the routine to generate KB projectors will use slightly differ-

25

ent parameters for the construction of the reference orbitals involved
(Rmax=60 Bohr both for integration and normalization).

6.3.9 The PAO.Basis block

%block PAO.Basis 〈None〉 (block)
Block with data to define explicitly the basis to be used. It al-
lows the definition by hand of all the parameters that are used
to construct the atomic basis. There is no need to enter infor-
mation for all the species present in the calculation. The basis
for the species not mentioned in this block will be generated auto-
matically using the parameters PAO.BasisSize, PAO.BasisType,
PAO.EnergyShift, PAO.SplitNorm (or PAO.SplitNormH),
and the soft-confinement defaults (see PAO.SoftDefault).
NOTE: This block gives full control to the user, and with that comes
the user’s responsibility of making sure that the contents of the block
are appropriate. This is particularly important for the specification of
the PAO shells to be included in the basis set. Some pseudopotentials
are generated with semicore states, which should be included in the
basis set. Conversely, a PAO.Basis block prepared for a species
with semicore states will not work for the same chemical element if
employing a pseudopotential without them. As a suggestion, users
might want to try first a run in “automatic mode” (i.e. without
using a PAO.Basis block) just to check which basis-set shells are
identified by the built-in heuristics in the program. Then the skeleton
PAO.Basis produced might be fully fleshed out according to the
user’s needs.
Some parameters can be set to zero, or left out completely. In these
cases the values will be generated from the magnitudes defined above,
or from the appropriate default values. For example, the radii will
be obtained from PAO.EnergyShift or from PAO.SplitNorm if
they are zero; the scale factors will be put to 1 if they are zero or not
given in the input. An example block for a two-species calculation
(H and O) is the following (opt means optional):

%block PAO.Basis # Define Basis set
O 2 nodes 1.0 # Label, l_shells, type (opt), ionic_charge (opt)
n=2 0 2 E 50.0 2.5 # n (opt if not using semicore levels),l,Nzeta,Softconf(opt)

3.50 3.50 # rc(izeta=1,Nzeta)(Bohr)
0.95 1.00 # scaleFactor(izeta=1,Nzeta) (opt)
1 1 P 2 # l, Nzeta, PolOrb (opt), NzetaPol (opt)
3.50 # rc(izeta=1,Nzeta)(Bohr)

H 2 # Label, l_shells, type (opt), ionic_charge (opt)
0 2 S 0.2 # l, Nzeta, Per-shell split norm parameter
5.00 0.00 # rc(izeta=1,Nzeta)(Bohr)
1 1 Q 3. 0.2 # l, Nzeta, Charge conf (opt): Z and screening
5.00 # rc(izeta=1,Nzeta)(Bohr)

%endblock PAO.Basis

The reading is done this way (those variables in brackets are op-
tional, therefore they are only read if present) (See the routines in
Src/basis_specs.f for detailed information):

From js = 1 to nspecies
read: label(is), l_shells(is), { type(is) }, { ionic_charge(is) }
From lsh=1 to l_shells(is)
read:
{ n }, l(lsh), nzls(lsh,is), { PolOrb(l+1) }, { NzetaPol(l+1) },
{SplitNormfFlag(lsh,is)}, {SplitNormValue(lsh,is)}
{SoftConfFlag(lsh,is)}, {PrefactorSoft(lsh,is)}, {InnerRadSoft(lsh,is)},
{FilteretFlag(lsh,is)}, {FilteretCutoff(lsh,is)}
{ChargeConfFlag(lsh,is)}, {Z(lsh,is)}, {Screen(lsh,is)}, {delta(lsh,is}

read: rcls(izeta,lsh,is), from izeta = 1 to nzls(l,is)
read: { contrf(izeta,il,is) }, from izeta = 1 to nzls(l,is)

And here is the variable description:

- Label: Species label, this label determines the species index is
according to the block ChemicalSpeciesLabel

- l_shells(is): Number of shells of orbitals with different an-
gular momentum for species is

- type(is): Optional input. Kind of basis set generation proce-
dure for species is. Same options as PAO.BasisType

- ionic_charge(is): Optional input. Net charge of species is.
This is only used for basis set generation purposes. Default
value: 0.0 (neutral atom). Note that if the pseudopotential was
generated in an ionic configuration, and no charge is specified
in PAO.Basis, the ionic charge setting will be that of pseudopo-
tential generation.

26

- n: Principal quantum number of the shell. This is an optional
input for normal atoms, however it must be specified when there
are semicore states (i.e. when states that usually are not con-
sidered to belong to the valence shell have been included in the
calculation)

- l: Angular momentum of basis orbitals of this shell
- nzls(lsh,is): Number of “zetas” for this shell. For a filteret

basis this number is ignored since the number is controlled by
the cutoff. For bessel-floating orbitals, the different ’zetas’ map
to increasingly excited states with the same angular momentum
(with increasing number of nodes).

- PolOrb(l+1): Optional input. If set equal to P, a shell of po-
larization functions (with angular momentum l +1) will be con-
structed from the first-zeta orbital of angular momentum l. De-
fault value: ’ ’ (blank = No polarization orbitals).

- NzetaPol(l+1): Optional input. Number of “zetas” for the po-
larization shell (generated automatically in a split-valence fash-
ion). For a filteret basis this number is ignored since the number
is controlled by the cutoff. Only active if PolOrb = P. Default
value: 1

- SplitNormFlag(lsh,is): Optional input. If set equal to S, the
following number sets the split-norm parameter for that shell.

- SoftConfFlag(l,is): Optional input. If set equal to E, the soft
confinement potential proposed in equation (1) of the paper by
J. Junquera et al., Phys. Rev. B 64, 235111 (2001), is used
instead of the Sankey hard-well potential.

- PrefactorSoft(l,is): Optional input. Prefactor of the soft
confinement potential (V0 in the formula). Units in Ry. Default
value: 0 Ry.

- InnerRadSoft(l,is): Optional input. Inner radius where the
soft confinement potential starts off (ri in the formula). If neg-
ative, the inner radius will be computed as the given fraction of
the PAO cutoff radius. Units in bohrs. Default value: 0 bohrs.

- FilteretFlag(l,is): Optional input. If set equal to F, then
an individual filter cut-off can be specified for the shell.

- FilteretCutoff(l,is): Optional input. Shell-specific value for
the filteret basis cutoff. Units in Ry. Default value: The same
as the value given by FilterCutoff .

- ChargeConfFlag(lsh,is): Optional input. If set equal to Q, the
charge confinement potential in equation (2) above is added to
the confining potential. If present it requires at least one number
after it (Z), but it can be followed by two or three numbers.

- Z(lhs,is): Optional input, needed if Q is set. Z charge in
equation (2) above for charge confinement (units of e).

- Screen(lhs,is): Optional input. Yukawa screening parameter
λ in equation (2) above for charge confinement (in Bohr−1).

- delta(lhs,is): Optional input. Singularity regularisation pa-
rameter δ in equation (2) above for charge confinement (in
Bohr).

- rcls(izeta,l,is): Cutoff radius (Bohr) of each ’zeta’ for this
shell. For the second zeta onwards, if this value is negative, the
actual rc used will be the given fraction of the first zeta’s rc. If
the number of rc’s for a given shell is less than the number of
’zetas’, the program will assign the last rc value to the remaining
zetas, rather than stopping with an error. This is particularly
useful for Bessel suites of orbitals.

- contrf(izeta,l,is): Optional input. Contraction factor of
each “zeta” for this shell. If the number of entries for a given
shell is less than the number of ’zetas’, the program will assign
the last contraction value to the remaining zetas, rather than
stopping with an error. Default value: 1.0

Polarization orbitals are generated by solving the atomic problem in
the presence of a polarizing electric field. The orbitals are generated
applying perturbation theory to the first-zeta orbital of lower angular
momentum. They have the same cutoff radius as the orbitals from
which they are constructed.
Note: The perturbative method has traditionally used the ’l’ com-
ponent of the pseudopotential, but it can be argued that it should
use the ’l+1’ component. The variable PAO.OldStylePolOrbs can
be set to true in order to enable the former method, but this is
discouraged unless testing for backwards compatibility.

27

There is a different possibility for generating polarization orbitals: by
introducing them explicitly in the PAO.Basis block (see Sec. 6.3.6
for full details). It has to be remembered, however, that they some-
times correspond to unbound states of the atom, their shape depend-
ing very much on the cutoff radius, not converging by increasing it,
similarly to the multiple-zeta orbitals generated with the nodes op-
tion. Using PAO.EnergyShift makes no sense, and a cut off radius
different from zero must be explicitly given (the same cutoff radius
as the orbitals they polarize is usually a sensible choice).
A species with atomic number = -100 will be considered by SIESTA
as a constant-pseudopotential atom, i.e., the basis functions gener-
ated will be spherical Bessel functions with the specified rc. In this
case, rc has to be given, as PAO.EnergyShift will not calculate it.
Other negative atomic numbers will be interpreted by SIESTA as
ghosts of the corresponding positive value: the orbitals are generated
and put in position as determined by the coordinates, but neither
pseudopotential nor electrons are considered for that ghost atom.
Useful for BSSE correction.
Use: This block is optional, except when Bessel functions are present.
Default: Basis characteristics defined by global definitions given
above.

6.3.10 Filtering

FilterCutoff 0 eV (energy)
Kinetic energy cutoff of plane waves used to filter all the atomic ba-
sis functions, the pseudo-core densities for partial core corrections,
and the neutral-atom potentials. The basis functions (which must
be squared to obtain the valence density) are really filtered with a
cutoff reduced by an empirical factor 0.72 ≃ 0.5. The FilterCutoff
should be similar or lower than the Mesh.Cutoff to avoid the eggbox
effect on the atomic forces. However, one should not try to converge
Mesh.Cutoff while simultaneously changing FilterCutoff , since
the latter in fact changes the used basis functions. Rather, fix a
sufficiently large FilterCutoff and converge only Mesh.Cutoff . If
FilterCutoff is not explicitly set, its value is calculated from Fil-

terTol.

FilterTol 0 eV (energy)
Residual kinetic-energy leaked by filtering each basis function. While
FilterCutoff sets a common reciprocal-space cutoff for all the ba-
sis functions, FilterTol sets a specific cutoff for each basis function,
much as the PAO.EnergyShift sets their real-space cutoff. There-
fore, it is reasonable to use similar values for both parameters. The
maximum cutoff required to meet the FilterTol, among all the ba-
sis functions, is used (multiplied by the empirical factor 1/0.72 ≃ 2)
to filter the pseudo-core densities and the neutral-atom potentials.
FilterTol is ignored if FilterCutoff is present in the input file. If
neither FilterCutoff nor FilterTol are present, no filtering is per-
formed. See Soler and Anglada [17], for details of the filtering proce-
dure.
Warning: If the value of FilterCutoff is made too small (or Filter-
Tol too large) some of the filtered basis orbitals may be meaningless,
leading to incorrect results or even a program crash.
To be implemented: If Mesh.Cutoff is not present in the input file,
it can be set using the maximum filtering cutoff used for the given
FilterTol (for the time being, you can use AtomSetupOnly true
to stop the program after basis generation, look at the maximum
filtering cutoff used, and set the mesh-cutoff manually in a later run.)

6.3.11 Saving and reading basis-set information

SIESTA (and the standalone program Gen-basis) always generate the
files Atomlabel.ion, where Atomlabel is the atomic label specified in block
ChemicalSpeciesLabel. Optionally, if NetCDF support is compiled
in, the programs generate NetCDF files Atomlabel.ion.nc (except for
ghost atoms). See an Appendix for information on the optional NetCDF
package.
These files can be used to read back information into SIESTA.

User.Basis false (logical)
If true, the basis, KB projector, and other information is read from
files Atomlabel.ion, where Atomlabel is the atomic species label spec-

28

ified in block ChemicalSpeciesLabel. These files can be generated
by a previous SIESTA run or (one by one) by the standalone pro-
gram Gen-basis. No pseudopotential files are necessary.

User.Basis.NetCDF false (logical)
If true, the basis, KB projector, and other information is read from
NetCDF files Atomlabel.ion.nc, where Atomlabel is the atomic la-
bel specified in block ChemicalSpeciesLabel. These files can be
generated by a previous SIESTA run or by the standalone program
Gen-basis. No pseudopotential files are necessary. NetCDF support
is needed. Note that ghost atoms cannot yet be adequately treated
with this option.

6.3.12 Tools to inspect the orbitals and KB projectors

The program ioncat in Util/Gen-basis can be used to extract orbital,
KB projector, and other information contained in the .ion files. The
output can be easily plotted with a graphics program. If the option
WriteIonPlotFiles is enabled, SIESTA will generate and extra set of
files that can be plotted with the gnuplot scripts in Tutorials/Bases.
The stand-alone program gen-basis sets that option by default, and the
script Tutorials/Bases/gen-basis.sh can be used to automate the pro-
cess. See also the NetCDF-based utilities in Util/PyAtom.

6.3.13 Basis optimization

There are quite a number of options for the input of the basis-set and KB
projector specification, and they are all optional! By default, SIESTA
will use a DZP basis set with appropriate choices for the determina-
tion of the range, etc. Of course, the more you experiment with the
different options, the better your basis set can get. To aid in this
process we offer an auxiliary program for optimization which can be
used in particular to obtain variationally optimal basis sets (within a
chosen basis size). See Util/Optimizer for general information, and
Util/Optimizer/Examples/Basis_Optim for an example.

BasisPressure 0.2 GPa (pressure)

SIESTA will compute and print the value of the “effective basis
enthalpy” constructed by adding a term of the form pbasisVorbs to the
total energy. Here pbasis is a fictitious basis pressure and Vorbs is the
volume of the system’s orbitals. This is a useful quantity for basis
optimization (See Anglada et al.). The total basis enthalpy is also
written to the ASCII file BASIS_ENTHALPY.

6.3.14 Low-level options regarding the radial grid

For historical reasons, the basis-set and KB projector code in SIESTA
uses a logarithmic radial grid, which is taken from the pseudopotential
file. Any “interesting” radii have to fall on a grid point, which introduces a
certain degree of coarseness that can limit the accuracy of the results and
the faithfulness of the mapping of input parameters to actual operating
parameters. For example, the same orbital will be produced by a finite
range of PAO.EnergyShift values, and any user-defined cutoffs will not
be exactly reflected in the actual cutoffs. This is particularly trouble-
some for automatic optimization procedures (such as those implemented
in Util/Optimizer), as the engine might be confused by the extra level of
indirection. The following options can be used to fine-tune the mapping.
Note that grid reparametrization is now (at version 5) enabled by default,
and it might change the numerical results appreciably (in effect, it leads
to slightly different basis orbitals and projectors).

Reparametrize.Pseudos true (logical)
By changing the a and b parameters of the logarithmic grid, a new one
with a more adequate grid-point separation can be used for the gen-
eration of basis sets and projectors. For example, by using a = 0.001
and b = 0.01, the grid point separations at r = 0 and 10 bohrs
are 0.00001 and 0.01 bohrs, respectively. More points are needed
to reach r’s of the order of a hundred bohrs, but the extra compu-
tational effort is negligible. The net effect of this option (notably
when coupled to Restricted.Radial.Grid) is a closer mapping of
any user-specified cutoff radii and of the radii implicitly resulting
from other input parameters to the actual values used by the pro-
gram. (The small grid-point separation near r=0 is still needed to
avoid instabilities for s channels that occurred with the previous -

29

reparametrized- default spacing of 0.005 bohr. This effect is not yet
completely understood.)

New.A.Parameter 0.001 (real)
New setting for the pseudopotential grid’s a parameter

New.B.Parameter 0.01 (real)
New setting for the pseudopotential grid’s b parameter

Rmax.Radial.Grid 50.0 (real)
New setting for the maximum value of the radial coordinate for inte-
gration of the atomic Schrodinger equation.
If Reparametrize.Pseudos is false this will be the maximum ra-
dius in the pseudopotential file.

Restricted.Radial.Grid true (logical)
In normal operation of the basis-set and projector generation code
the various cutoff radii are restricted to falling on an odd-numbered
grid point, shifting then accordingly. This restriction can be lifted
by setting this parameter to false.

6.3.15 Summary of options and defaults enabling automatic
basis-set generation

In this section we review settings that can allow a fully automatic basis-
set generation, with minimal user input. Philosophically this goes against
the SIESTA mindset of careful basis-set optimization, but we must ac-
knowledge the need for fully automatic, unattended, operation for high-
throughput computing.
Partly in response to this, some program defaults have changed in version
5 of SIESTA.

• Multiple-zeta orbitals are generated with a new algorithm with bet-
ter convergence properties.

• The generation of polarization orbitals can fall back to a non-
perturbative scheme in some known problematic cases.

• Orbitals that would be unbound in the atom are now given a default
rc (equal to the range of the largest orbital). This value that can
be controlled by the option

PAO.rc.unbound.state 0.0 Bohr (length)
A value of 0.0 will recover the old behavior (stopping if the
orbital is unbound in the atom).

• The radial grid used in PAO and KB construction, which is inher-
ited from that of the pseudopotential tables, is re-parametrized by
default, to make it finer in the range where most relevant cutoffs are
located. This is important for basis-optimization runs, since there
is a more faithful mapping of the rc’s requested by the optimization
algorithm and those actually used.

In addition, some defaults have been changed to provide a better overall
quality for the automatic basis sets. Note that full optimization is still
preferred for most work:

• The default energy-shift has been lowered to 0.01 Ry.

• The soft-confinement potential is enabled by default.

• The default split-norm parameter for Hydrogen has been increased
to 0.45.

• A change in the way perturbative polarization orbitals are gener-
ated: the l + 1 pseudopotential channel is used, instead of the l
channel.

6.3.16 Notes on backward compatibility in regard to new pro-
gram defaults

If users want to reuse basis sets generated with previous versions of
SIESTA, it is useful to keep in mind the old values of the defaults. In most
cases, setting them back as in the following fdf stanza will recover the old
behavior, except if any of the global options were given a different value in
the original input. Recall also that options in the PAO.Basis block take
precedence over any global options, but only if they are explicitly given.

30

PAO.EnergyShift 0.02 Ry
PAO.SoftDefault F
PAO.SplitNormH -1.0
PAO.OldStylePolOrbs T
PAO.SplitValence.Legacy T
ReparametrizePseudos F
PAO.Polarization.NonPerturbative.Fallback F
PAO.rc.unbound.state 0.0 Bohr

If users keep the .ion or .ion.nc files from a run with a previ-
ous version of SIESTA, they can be reused with the User.Basis or
User.Basis.Netcdf options. In this case there is no need to change
any flags. This is the most convenient option to maintain compatibility
with older results.

6.4 Structural information

There are many ways to give SIESTA structural information.

• Directly from the fdf file in traditional format.

• Directly from the fdf file in the newer Z-Matrix format, using a
Zmatrix block.

• From an external data file

Note that, regardless of the way in which the structure is described, the
ChemicalSpeciesLabel block is mandatory.
In the following sections we document the different structure input meth-
ods, and provide a guide to their precedence.

6.4.1 Traditional structure input in the fdf file

Firstly, the size of the cell itself should be specified, using some combi-
nation of the options LatticeConstant, LatticeParameters, and Lat-
ticeVectors, and SuperCell. If nothing is specified, SIESTA will con-
struct a cubic cell in which the atoms will reside as a cluster (a molecule).

Secondly, the positions of the atoms within the cells must be specified, us-
ing either the traditional SIESTA input format (a modified xyz format)
which must be described within a AtomicCoordinatesAndAtomic-
Species block.

LatticeConstant 〈None〉 (length)
depends on: LatticeParameters, LatticeVectors

Lattice constant. This is just to define the scale of the lattice vectors.
NOTE: This defaults to 1 Ang when used in combination with Lat-
ticeParameters or LatticeVectors. Otherwise it is not used.

%block LatticeParameters 〈None〉 (block)
depends on: LatticeConstant

Crystallographic way of specifying the lattice vectors, by giving six
real numbers: the three vector modules, a, b, and c, and the three
angles α (angle between b⃗ and c⃗), β, and γ. The three modules are
in units of LatticeConstant, the three angles are in degrees.
For example a square cell with side-lengths equal to LatticeCon-
stant.

1.0 1.0 1.0 90. 90. 90.

%block LatticeVectors 〈None〉 (block)
depends on: LatticeConstant

The cell vectors are read in units of the lattice constant, Lattice-
Constant which defaults to 1 Ang.
They are read as a matrix with each vector being one line.
For example a square cell with side-lengths equal to LatticeCon-
stant.

1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

%block SuperCell 〈None〉 (block)
Integer 3x3 matrix defining a supercell in terms of the unit cell. Any
values larger than 1 will expand the unitcell (plus atoms) along that
lattice vector direction (if possible).

%block SuperCell

31

M(1,1) M(2,1) M(3,1)
M(1,2) M(2,2) M(3,2)
M(1,3) M(2,3) M(3,3)

%endblock SuperCell

and the supercell is defined as SuperCell(ix, i) =
∑

j CELL(ix, j) ∗
M(j, i). Notice that the matrix indexes are inverted: each input line
specifies one supercell vector.
Warning: SuperCell is disregarded if the geometry is read from the
XV file, which can happen inadvertently.
Use: The atomic positions must be given only for the unit cell, and
they are ’cloned’ automatically in the rest of the supercell. The
NumberOfAtoms given must also be that in a single unit cell.
However, all values in the output are given for the entire supercell.
In fact, CELL is immediately redefined as the whole supercell and the
program no longer knows the existence of an underlying unit cell.
All other input (apart from NumberOfAtoms and atomic positions),
including kgrid.MonkhorstPack must refer to the supercell (this is
a change over previous versions). Therefore, to avoid confusions, we
recommend to use SuperCell only to generate atomic positions, and
then to copy them from the output to a new input file with all the
atoms specified explicitly and with the supercell given as a normal
unit cell.

AtomicCoordinatesFormat Bohr (string)
Character string to specify the format of the atomic positions in
input. These can be expressed in four forms:

Bohr|NotScaledCartesianBohr atomic positions are given di-
rectly in Bohr, in Cartesian coordinates

Ang|NotScaledCartesianAng atomic positions are given directly
in Ångström, in Cartesian coordinates

LatticeConstant|ScaledCartesian atomic positions are given in
Cartesian coordinates, in units of the lattice constant

Fractional|ScaledByLatticeVectors atomic positions are given re-
ferred to the lattice vectors

AtomCoorFormatOut 〈AtomicCoordinatesFormat〉 (string)

Character string to specify the format of the atomic positions in
output.
Same possibilities as for input AtomicCoordinatesFormat.

AtomicCoordinatesOrigin 〈None〉 (block/string)
The user can request a rigid shift of the coordinates, for example to
place a molecule near the center of the cell. This shift can be specified
in two ways:

• By an explicit vector, given in the same format and units as the
coordinates. Notice that the atomic positions (shifted or not)
need not be within the cell formed by LatticeVectors, since
periodic boundary conditions are always assumed.
This defaults to the origin:

0.0 0.0 0.0

• By a string that indicates an automatic shift that places the
“center” of the system at the center of the unit cell, or that
places the system near the borders of the cell. In this case, the
contents of the block, or the values associated directly to the
label (see below) can be:

COP Place the center of coordinates in the middle of the unit-
cell.

COM Place the center of mass in the middle of the unit-cell.

MIN Shift the coordinates so that the minimum value along
each cartesian axis is 0.

NOTE: Ghost atoms are not taken into account for the
above “centering” calculations (but their coordinates are indeed
shifted).
All string options may be given an optional value. For instance,
COP-XZ which limits the COP option to only affect x and z
Cartesian coordinates.
The accepted suffixes are: -X, -Y, -Z, -XY/-YX, -YZ/-YZ,
-XZ/-ZX and anything else will be regarded as all directions.

AtomicCoordinatesOrigin COP-X ! COP only for x-direction
AtomicCoordinatesOrigin COM-ZY ! COM only for y- and z-directions
AtomicCoordinatesOrigin MIN-Z ! MIN only for z-direction

32

AtomicCoordinatesOrigin MIN-XYZ ! MIN for all directions
AtomicCoordinatesOrigin MIN ! MIN for all directions

%block AtomicCoordinatesAndAtomicSpecies 〈None〉 (block)
Block specifying the position and species of each atom. One line per
atom, the reading is done this way:

From ia = 1 to natoms
read: xa(ix,ia), isa(ia)

where xa(ix,ia) is the ix coordinate of atom iai in the format
(units) specified by AtomicCoordinatesFormat, and isa(ia) is
the species index of atom ia.
NOTE: This block must be present in the fdf file. If Num-
berOfAtoms is not specified, NumberOfAtoms will be defaulted
to the number of atoms in this block.
NOTE: Zmatrix has precedence if specified.

6.4.2 Z-matrix format and constraints

The advantage of the traditional format is that it is much easier to set up
a system. However, when working on systems with constraints, there are
only a limited number of (very simple) constraints that may be expressed
within this format, and recompilation is needed for each new constraint.
For any more involved set of constraints, a full Zmatrix formulation
should be used - this offers much more control, and may be specified fully
at run time (thus not requiring recompilation) - but it is more work to
generate the input files for this form.

%block Zmatrix 〈None〉 (block)
This block provides a means for inputting the system geometry using
a Z-matrix format, as well as controlling the optimization variables.
This is particularly useful when working with molecular systems or
restricted optimizations (such as locating transition states or rigid
unit movements). The format also allows for hybrid use of Z-matrices
and Cartesian or fractional blocks, as is convenient for the study of
a molecule on a surface. As is always the case for a Z-matrix, the
responsibility falls to the user to chose a sensible relationship between

the variables to avoid triads of atoms that become linear.
Below is an example of a Z-matrix input for a water molecule:

%block Zmatrix
molecule fractional

1 0 0 0 0.0 0.0 0.0 0 0 0
2 1 0 0 HO1 90.0 37.743919 1 0 0
2 1 2 0 HO2 HOH 90.0 1 1 0

variables
HO1 0.956997
HO2 0.956997
HOH 104.4

%endblock Zmatrix

The sections that can be used within the Zmatrix block are as follows:
Firstly, all atomic positions must be specified within either a
“molecule” block or a “cartesian” block. Any atoms subject to
constraints more complicated than “do not change this coordinate of
this atom” must be specified within a “molecule” block.

molecule There must be one of these blocks for each independent set
of constrained atoms within the simulation.
This specifies the atoms that make up each molecule and their ge-
ometry. In addition, an option of “fractional” or “scaled” may
be passed, which indicates that distances are specified in scaled or
fractional units. In the absence of such an option, the distance
units are taken to be the value of “ZM.UnitsLength”.
A line is needed for each atom in the molecule; the format of each
line should be:

Nspecies i j k r a t ifr ifa ift

Here the values Nspecies, i, j, k, ifr, ifa, and ift are integers
and r, a, and t are double precision reals.
For most atoms, Nspecies is the species number of the atom, r
is distance to atom number i, a is the angle made by the present
atom with atoms j and i, while t is the torsional angle made by
the present atom with atoms k, j, and i. The values ifr, ifa and
ift are integer flags that indicate whether r, a, and t, respectively,
should be varied; 0 for fixed, 1 for varying.
The first three atoms in a molecule are a special case. Because there

33

are insufficient atoms defined to specify a distance/angle/torsion,
the values are set differently. For atom 1, r, a, and t, are the
Cartesian coordinates of the atom. For the second atom, r, a, and
t are the coordinates in spherical form of the second atom relative
to the first: first the radius, then the polar angle (angle between the
z-axis and the displacement vector) and then the azimuthal angle
(angle between the x-axis and the projection of the displacement
vector on the x-y plane). Finally, for the third atom, the numbers
take their normal form, but the torsional angle is defined relative
to a notional atom 1 unit in the z-direction above the atom j.
Secondly. blocks of atoms all of which are subject to the simplest
of constraints may be specified in one of the following three ways,
according to the units used to specify their coordinates:

cartesian This section specifies a block of atoms whose coordinates
are to be specified in Cartesian coordinates. Again, an option of
“fractional” or “scaled” may be added, to specify the units
used; and again, in their absence, the value of “ZM.UnitsLength”
is taken.
The format of each atom in the block will look like:

Nspecies x y z ix iy iz

Here Nspecies, ix, iy, and iz are integers and x, y, z are reals.
Nspecies is the species number of the atom being specified, while
x, y, and z are the Cartesian coordinates of the atom in whichever
units are being used. The values ix, iy and iz are integer flags that
indicate whether the x, y, and z coordinates, respectively, should
be varied or not. A value of 0 implies that the coordinate is fixed,
while 1 implies that it should be varied. NOTE: When performing
“variable cell” optimization while using a Zmatrix format for input,
the algorithm will not work if some of the coordinates of an atom
in a cartesian block are variables and others are not (i.e., ix iy
iz above must all be 0 or 1). This will be fixed in future versions
of the program.
A Zmatrix block may also contain the following, additional, sec-
tions, which are designed to make it easier to read.

constants Instead of specifying a numerical value, it is possible to
specify a symbol within the above geometry definitions. This sec-

tion allows the user to define the value of the symbol as a constant.
The format is just a symbol followed by the value:

HOH 104.4

variables Instead of specifying a numerical value, it is possible to
specify a symbol within the above geometry definitions. This sec-
tion allows the user to define the value of the symbol as a variable.
The format is just a symbol followed by the value:

HO1 0.956997

Finally, constraints must be specified in a constraints block.

constraint This sub-section allows the user to create constraints be-
tween symbols used in a Z-matrix:

constraint
var1 var2 A B

Here var1 and var2 are text symbols for two quantities in the Z-
matrix definition, and AandB are real numbers. The variables are
related by var1 = A ∗ var2 + B.

An example of a Z-matrix input for a benzene molecule over a metal
surface is:

%block Zmatrix
molecule
2 0 0 0 xm1 ym1 zm1 0 0 0
2 1 0 0 CC 90.0 60.0 0 0 0
2 2 1 0 CC CCC 90.0 0 0 0
2 3 2 1 CC CCC 0.0 0 0 0
2 4 3 2 CC CCC 0.0 0 0 0
2 5 4 3 CC CCC 0.0 0 0 0
1 1 2 3 CH CCH 180.0 0 0 0
1 2 1 7 CH CCH 0.0 0 0 0
1 3 2 8 CH CCH 0.0 0 0 0
1 4 3 9 CH CCH 0.0 0 0 0
1 5 4 10 CH CCH 0.0 0 0 0
1 6 5 11 CH CCH 0.0 0 0 0

fractional
3 0.000000 0.000000 0.000000 0 0 0
3 0.333333 0.000000 0.000000 0 0 0
3 0.666666 0.000000 0.000000 0 0 0
3 0.000000 0.500000 0.000000 0 0 0

34

3 0.333333 0.500000 0.000000 0 0 0
3 0.666666 0.500000 0.000000 0 0 0
3 0.166667 0.250000 0.050000 0 0 0
3 0.500000 0.250000 0.050000 0 0 0
3 0.833333 0.250000 0.050000 0 0 0
3 0.166667 0.750000 0.050000 0 0 0
3 0.500000 0.750000 0.050000 0 0 0
3 0.833333 0.750000 0.050000 0 0 0
3 0.000000 0.000000 0.100000 0 0 0
3 0.333333 0.000000 0.100000 0 0 0
3 0.666666 0.000000 0.100000 0 0 0
3 0.000000 0.500000 0.100000 0 0 0
3 0.333333 0.500000 0.100000 0 0 0
3 0.666666 0.500000 0.100000 0 0 0
3 0.166667 0.250000 0.150000 0 0 0
3 0.500000 0.250000 0.150000 0 0 0
3 0.833333 0.250000 0.150000 0 0 0
3 0.166667 0.750000 0.150000 0 0 0
3 0.500000 0.750000 0.150000 0 0 0
3 0.833333 0.750000 0.150000 0 0 0

constants
ym1 3.68

variables
zm1 6.9032294
CC 1.417
CH 1.112
CCH 120.0
CCC 120.0

constraints
xm1 CC -1.0 3.903229

%endblock Zmatrix

Here the species 1, 2 and 3 represent H, C, and the metal of the
surface, respectively.
(Note: the above example shows the usefulness of symbolic names for
the relevant coordinates, in particular for those which are allowed to
vary. The current output options for Zmatrix information work best
when this approach is taken. By using a “fixed” symbolic Zmatrix
block and specifying the actual coordinates in a “variables” section,
one can monitor the progress of the optimization and easily recon-
struct the coordinates of intermediate steps in the original format.)

ZM.UnitsLength Bohr (string)
Parameter that specifies the units of length used during Z-matrix
input.
Specify Bohr or Ang for the corresponding unit of length.

ZM.UnitsAngle rad (string)
Parameter that specifies the units of angles used during Z-matrix
input.
Specify rad or deg for the corresponding unit of angle.

6.4.3 Output of structural information

SIESTA is able to generate several kinds of files containing structural
information (maybe too many).

• SystemLabel.STRUCT_OUT:SIESTA always produces
a .STRUCT_OUT file with cell vectors in Å and atomic positions in
fractional coordinates. This file, renamed to .STRUCT_IN can be
used for crystal-structure input. Note that the geometry reported
is the last one for which forces and stresses were computed. See
UseStructFile

• SystemLabel.STRUCT_NEXT_ITER:This file is always written, in the
same format as .STRUCT_OUT file. The only difference is that it
contains the structural information after it has been updated by
the relaxation or the molecular-dynamics algorithms, and thus it
could be used as input (renamed as .STRUCT_IN) for a continuation
run, in the same way as the .XV file.
See UseStructFile

• SystemLabel.XV:The coordinates are always written in the .XV file,
and overriden at every step.

• OUT.UCELL.ZMATRIX:This file is produced if the Zmatrix format is
being used for input. (Please note that SystemLabel is not used
as a prefix.) It contains the structural information in fdf form, with
blocks for unit-cell vectors and for Zmatrix coordinates. The Zma-
trix block is in a “canonical” form with the following characteristics:

35

1. No symbolic variables or constants are used.
2. The position coordinates of the first atom in each molecule

are absolute Cartesian coordinates.
3. Any coordinates in ‘‘cartesian’’ blocks are also absolute Cartesians.
4. There is no provision for output of constraints.
5. The units used are those initially specified by the user, and are

noted also in fdf form.

Note that the geometry reported is the last one for which forces and
stresses were computed.

• NEXT_ITER.UCELL.ZMATRIX:A file with the same format as
OUT.UCELL.ZMATRIX but with a possibly updated geometry.

• The coordinates can be also accumulated in the SystemLabel.MD or
SystemLabel.MDX files depending on WriteMDHistory.

• Additionally, several optional formats are supported:

WriteCoorXmol false (logical)
If true it originates the writing of an extra file named
SystemLabel.xyz containing the final atomic coordinates in
a format directly readable by XMol.4 Coordinates come out
in Ångström independently of what specified in AtomicCoor-
dinatesFormat and in AtomCoorFormatOut. There is a
present Java implementation of XMol called JMol.

WriteCoorCerius false (logical)
If trueit originates the writing of an extra file named
SystemLabel.xtl containing the final atomic coordinates in
a format directly readable by Cerius.5 Coordinates come out
in Fractional format (the same as ScaledByLatticeVectors)
independently of what specified in AtomicCoordinatesFor-
mat and in AtomCoorFormatOut. If negative coordinates
are to be avoided, it has to be done from the start by shifting all

4XMol is under © copyright of Research Equipment Inc., dba Minnesota Supercom-
puter Center Inc.

5Cerius is under © copyright of Molecular Simulations Inc.

the coordinates rigidly to have them positive, by using Atom-
icCoordinatesOrigin. See the Sies2arc utility in the Util/
directory for generating .arc files for CERIUS animation.

WriteMDXmol false (logical)
If true it causes the writing of an extra file named
SystemLabel.ANI containing all the atomic coordinates of the
simulation in a format directly readable by XMol for anima-
tion. Coordinates come out in Ångström independently of what
is specified in AtomicCoordinatesFormat and in Atom-
CoorFormatOut. This file is accumulative even for different
runs.
There is an alternative for animation by generating a .arc file
for CERIUS. It is through the Sies2arc postprocessing utility
in the Util/ directory, and it requires the coordinates to be
accumulated in the output file, i.e., WriteCoorStep true.

6.4.4 Input of structural information from external files

The structural information can be also read from external files. Note that
ChemicalSpeciesLabel is mandatory in the fdf file.

MD.UseSaveXV false (logical)
Logical variable which instructs SIESTA to read the atomic positions
and velocities stored in file SystemLabel.XV by a previous run.
If the file does not exist, a warning is printed but the program does
not stop. Overrides UseSaveData, but can be implicitly set by it.

UseStructFile false (logical)
Controls whether the structural information is read from an external
file of name SystemLabel.STRUCT_IN. If true, all other structural
information in the fdf file will be ignored.
The format of the file is implied by the following code:

read(*,*) ((cell(ixyz,ivec),ixyz=1,3),ivec=1,3) ! Cell vectors, in Angstroms
read(*,*) na
do ia = 1,na

read(iu,*) isa(ia), dummy, xfrac(1:3,ia) ! Species number

36

! Dummy numerical column
! Fractional coordinates

enddo

Warning: Note that the resulting geometry could be clobbered if an
.XV file is read after this file. It is up to the user to remove any .XV
files.

MD.UseSaveZM false (logical)
Instructs to read the Zmatrix information stored in file .ZM by a
previous run.
If the required file does not exist, a warning is printed but the pro-
gram does not stop. Overrides UseSaveData, but can be implicitly
set by it.
Warning: Note that the resulting geometry could be clobbered if an
.XV file is read after this file. It is up to the user to remove any .XV
files.

6.4.5 Input from a FIFO file

See the “Forces” option in MD.TypeOfRun. Note that Chemical-
SpeciesLabel is still mandatory in the fdf file.

6.4.6 Precedence issues in structural input

• If the “Forces” option is active, it takes precedence over everything
(it will overwrite all other input with the information it gets from
the FIFO file).

• If MD.UseSaveXV is active, it takes precedence over the options
below.

• If MD.UseStructFile (or UseStructFile) is active, it takes
precedence over the options below.

• For atomic coordinates, the traditional and Zmatrix formats in the
fdf file are mutually exclusive. If MD.UseSaveZM is active, the
contents of the ZM file, if found, take precedence over the Zmatrix
information in the fdf file.

6.4.7 Interatomic distances

WarningMinimumAtomicDistance 1 Bohr (length)
Fixes a threshold interatomic distance below which a warning mes-
sage is printed.

MaxBondDistance 6 Bohr (length)
SIESTA prints the interatomic distances, up to a range of
MaxBondDistance, to file SystemLabel.BONDS upon first reading
the structural information, and to file SystemLabel.BONDS_FINAL af-
ter the last geometry iteration. The reference atoms are all the atoms
in the unit cell. The routine now prints the real location of the neigh-
bor atoms in space, and not, as in earlier versions, the location of the
equivalent representative in the unit cell.

6.5 k-point sampling

These are options for the k-point grid used in the SCF cycle. For other
specialized grids, see Secs. 6.20 and 6.17. The order of the following
keywords is equivalent to their precedence.

kgrid.MonkhorstPack Γ-point (block/list)
Real-space supercell, whose reciprocal unit cell is that of the k-
sampling grid, and grid displacement for each grid coordinate. Spec-
ified as an integer matrix and a real vector:

%block kgrid.MonkhorstPack
Mk(1,1) Mk(2,1) Mk(3,1) dk(1)
Mk(1,2) Mk(2,2) Mk(3,2) dk(2)
Mk(1,3) Mk(2,3) Mk(3,3) dk(3)

%endblock
kgrid.MonkhorstPack [Mk(1,1) Mk(2,2) Mk(3,3)]

where Mk(j,i) are integers and dk(i) are usually either 0.0 or 0.5
(the program will warn the user if the displacements chosen are
not optimal). The k-grid supercell is defined from Mk as in block
SuperCell above, i.e.: KgridSuperCell(ix, i) =

∑
j CELL(ix, j) ∗

Mk(j, i). Note again that the matrix indexes are inverted: each in-
put line gives the decomposition of a supercell vector in terms of the
unit cell vectors.

37

Use: Used only if SolutionMethod diagon. The k-grid supercell
is compatible and unrelated (except for the default value, see below)
with the SuperCell specifier. Both supercells are given in terms
of the CELL specified by the LatticeVectors block. If Mk is the
identity matrix and dk is zero, only the Γ point of the unit cell is
used. Overrides kgrid.Cutoff .
One may also use the list input (last line in above example), in that
case the block input must not be present and in this case the dis-
placement vector cannot be selected.

kgrid.Cutoff 0. Bohr (length)
Parameter which determines the fineness of the k-grid used for Bril-
louin zone sampling. It is half the length of the smallest lattice vector
of the supercell required to obtain the same sampling precision with
a single k point. Ref: Moreno and Soler, PRB 45, 13891 (1992).
Use: If it is zero, only the gamma point is used. The resulting
k-grid is chosen in an optimal way, according to the method of
Moreno and Soler (using an effective supercell which is as spheri-
cal as possible, thus minimizing the number of k-points for a given
precision). The grid is displaced for even numbers of effective mesh
divisions. This parameter is not used if kgrid.MonkhorstPack is
specified. If the unit cell changes during the calculation (for example,
in a cell-optimization run, the k-point grid will change accordingly
(see ChangeKgridInMD for the case of variable-cell molecular-
dynamics runs, such as Parrinello-Rahman). This is analogous to
the changes in the real-space grid, whose fineness is specified by an
energy cutoff. If sudden changes in the number of k-points are not
desired, then the Monkhorst-Pack data block should be used instead.
In this case there will be an implicit change in the quality of the
sampling as the cell changes. Both methods should be equivalent for
a well-converged sampling.

kgrid.File none (string)
Specify a file from where the k-points are read in. The format of the
file is identical to the SystemLabel.KP file with the exception that
the k-points are given in units of the reciprocal lattice vectors. I.e.
the range of the k-points are]− 1/2; 1/2].

An example input may be (not physically justified in any sense):
4
1 0.0 0.0 0.0 0.25
2 0.5 0.5 0.5 0.25
3 0.2 0.2 0.2 0.25
4 0.3 0.3 0.3 0.25

The first integer specifies the total number of k-points in the file.
The first column is an index; the next 3 columns are the k-point
specification for each of the reciprocal lattice vectors while the fifth
column is the weight for the k-point.
SIESTA checks whether the sum of weights equals 1. If not, SIESTA
will die.

ChangeKgridInMD true (logical)
If true, the k-point grid is recomputed at every iteration during
MD runs that potentially change the unit cell: Parrinello-Rahman,
Nose-Parrinello-Rahman, and Anneal. Regardless of the setting of
this flag, the k-point grid is always updated at every iteration of a
variable-cell optimization and after each step in a “siesta-as-server”
run.
The only reason to set it to false would be to avoid sudden jumps
in some properties when the sampling changes; but if the calculation
is well-converged there should be no problems when the update is
enabled.

TimeReversalSymmetryForKpoints true (logical)
depends on: Spin, Spin.Spiral

If true, the k-points in the BZ generated by the methods above are
paired as (k, −k) and only one member of the pair is retained. This
symmetry is valid in the absence of external magnetic fields or non-
colinear/spin-orbit interaction.
This flag is only honored for spinless or collinear-spin calculations,
as the code will produce wrong results if there is no support for the
appropriate symmetrization.
The default value is true unless: a) the option Spin.Spiral is used.
In this case time-reversal-symmetry is broken explicitly. b) non-
colinear/spin-orbit calculations. This case is less clear cut, but the

38

time-reversal symmetry is not used to avoid possible breakings due to
subtle implementation details, and to make the set of wavefunctions
compatible with spin-orbit case in analysis tools.

6.5.1 Output of k-point information

The coordinates of the k⃗ points used in the sampling are always stored in
the file SystemLabel.KP.

WriteKpoints false (logical)
If true it writes the coordinates of the k⃗ vectors used in the grid for
k-sampling, into the main output file.
Default depends on LongOutput.

6.6 Exchange-correlation functionals

(Apart from the built-in functionals, SIESTA can use the functionals
provided by the LibXC library, if support for it is compiled-in in the
libGridXC library. See the description of the XC.mix block below for
the appropriate syntax.)

XC.Functional LDA (string)
Exchange-correlation functional type. May be LDA (local density
approximation, equivalent to LSD), GGA (Generalized Gradient
Approximation), or VDW (van der Waals).

XC.Authors PZ (string)
Particular parametrization of the exchange-correlation functional.
Options are:

• CA (equivalent to PZ): (Spin) local density approximation
(LDA/LSD). Quantum Monte Carlo calculation of the homo-
geneous electron gas by D. M. Ceperley and B. J. Alder, Phys.
Rev. Lett. 45,566 (1980), as parametrized by J. P. Perdew and
A. Zunger, Phys. Rev B 23, 5075 (1981)

• PW92: LDA/LSD, as parametrized by J. P. Perdew and Y.
Wang, Phys. Rev B, 45, 13244 (1992)

• PW91: Generalized gradients approximation (GGA) of Perdew
and Wang. Ref: P&W, J. Chem. Phys., 100, 1290 (1994)

• PBE: GGA of J. P. Perdew, K. Burke and M. Ernzerhof, Phys.
Rev. Lett. 77, 3865 (1996)

• revPBE: Modified GGA-PBE functional of Y. Zhang and W.
Yang, Phys. Rev. Lett. 80, 890 (1998)

• RPBE: Modified GGA-PBE functional of B. Hammer, L. B.
Hansen and J. K. Norskov Phys. Rev. B 59, 7413 (1999)

• WC: Modified GGA-PBE functional of Z. Wu and R. E. Cohen,
Phys. Rev. B 73, 235116 (2006)

• AM05: Modified GGA-PBE functional of R. Armiento and A.
E. Mattsson, Phys. Rev. B 72, 085108 (2005)

• PBEsol: Modified GGA-PBE functional of J. P. Perdew et al,
Phys. Rev. Lett. 100, 136406 (2008)

• PBEJsJrLO: GGA-PBE functional with parameters β, µ, and
κ fixed by the jellium surface (Js), jellium response (Jr), and
Lieb-Oxford bound (LO) criteria, respectively, as described by
L. S. Pedroza, A. J. R. da Silva, and K. Capelle, Phys. Rev.
B 79, 201106(R) (2009), and by M. M. Odashima, K. Capelle,
and S. B. Trickey, J. Chem. Theory Comput. 5, 798 (2009)

• PBEJsJrHEG: Same as PBEJsJrLO, with parameter κ fixed
by the Lieb-Oxford bound for the low density limit of the ho-
mogeneous electron gas (HEG)

• PBEGcGxLO: Same as PBEJsJrLO, with parameters β and µ
fixed by the gradient expansion of correlation (Gc) and exchange
(Gx), respectively

• PBEGcGxHEG: Same as previous ones, with parameters β, µ,
and κ fixed by the Gc, Gx, and HEG criteria, respectively.

• BLYP (equivalent to LYP): GGA with Becke exchange (A. D.
Becke, Phys. Rev. A 38, 3098 (1988)) and Lee-Yang-Parr cor-
relation (C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37, 785
(1988)), as modified by B. Miehlich, A. Savin, H. Stoll, and H.
Preuss, Chem. Phys. Lett. 157, 200 (1989). See also B. G.
Johnson, P. M. W. Gill and J. A. Pople, J. Chem. Phys. 98,
5612 (1993). (Some errors were detected in this last paper, so

39

not all of their expressions correspond exactly to those imple-
mented in SIESTA)

• DRSLL (equivalent to DF1): van der Waals density functional
(vdW-DF) of M. Dion, H. Rydberg, E. Schröder, D. C. Lan-
greth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004),
with the efficient implementation of G. Román-Pérez and J. M.
Soler, Phys. Rev. Lett. 103, 096102 (2009)

• LMKLL (equivalent to DF2): vdW-DF functional of Dion et
al (same as DRSLL) reparametrized by K. Lee, E. Murray, L.
Kong, B. I. Lundqvist and D. C. Langreth, Phys. Rev. B 82,
081101 (2010)

• KBM: vdW-DF functional of Dion et al (same as DRSLL)
with exchange modified by J. Klimes, D. R. Bowler, and A.
Michaelides, J. Phys.: Condens. Matter 22, 022201 (2010)
(optB88-vdW version)

• C09: vdW-DF functional of Dion et al (same as DRSLL) with
exchange modified by V. R. Cooper, Phys. Rev. B 81, 161104
(2010)

• BH: vdW-DF functional of Dion et al (same as DRSLL) with
exchange modified by K. Berland and P. Hyldgaard, Phys. Rev.
B 89, 035412 (2014)

• VV: vdW-DF functional of O. A. Vydrov and T. Van Voorhis,
J. Chem. Phys. 133, 244103 (2010)

%block XC.Mix 〈None〉 (block)
This data block allows the user to create a “cocktail” functional by
mixing the desired amounts of exchange and correlation from each of
the functionals described under XC.authors.
The first line of the block must contain the number of functionals
to be mixed. On the subsequent lines the values of XC.functl and
XC.authors must be given and then the weights for the exchange and
correlation, in that order. If only one number is given then the same
weight is applied to both exchange and correlation.
The following is an example in which a 75:25 mixture of Ceperley-
Alder and PBE correlation is made, with an equal split of the ex-
change energy:

%block XC.mix
2
LDA CA 0.5 0.75
GGA PBE 0.5 0.25

%endblock XC.mix

These blocks can also be used to request the use of LibXC functionals
(if the version of libGridXC in use is 0.7 or later and was compiled
with LibXC support). For example:

%block XC.mix
2
GGA LIBXC-00-GGA_X_PBE 1.0 0.0
GGA LIBXC-00-GGA_C_PBE 0.0 1.0
%endblock XC.mix

The weights reflect the “exchange” or “correlation” character of each
individual functional. In the above example we use mnemonic sym-
bols for the functionals and leave the numerical functional id field as
zero. It is also possible to use only the numerical id:

%block XC.mix
2
GGA LIBXC-101 1.0 0.0
GGA LIBXC-130 0.0 1.0
%endblock XC.mix

If both fields are used the information must be compatible. Also, the
“family” field (GGA, LDA) must be compatible with the functional
specified.
NOTE: In previous versions of the program this block was named,
confusingly, XC.Hybrid, and in some other versions, XC.Cocktail.
Those names are still allowed, but are deprecated.
Default value: If the block is not present, the XC information is read
from the fdf variables above.

XC.Use.BSC.CellXC false (logical)
If true, the version of cellXC from the BSC’s mesh suite is used
instead of the default SiestaXC version. BSC’s version might be
slightly better for GGA operations. SiestaXC’s version is mandatory
when dealing with van der Waals functionals.

40

6.7 Spin polarization

Spin non-polarized (string)
deprecates: SpinPolarized, NonCollinearSpin, SpinOrbit

Choose the spin-components in the simulation.
NOTE: This flag has precedence over SpinOrbit, NonCollinear-
Spin and SpinPolarized while these deprecated flags may still be
used.

non-polarized Perform a calculation with spin-degeneracy (only one
component).

polarized Perform a calculation with colinear spin (two spin compo-
nents).

non-colinear Perform a calculation with non-colinear spin (4 spin
components), up-down and angles.
Refs: T. Oda et al, PRL, 80, 3622 (1998); V. M. García-Suárez et
al, Eur. Phys. Jour. B 40, 371 (2004); V. M. García-Suárez et al,
Journal of Phys: Cond. Matt 16, 5453 (2004).

spin-orbit Performs calculations including the spin-orbit coupling.
By default the full SO option is set. To perform an on-site SO
calculation (see 6.8.1) this option has to be spin-orbit+onsite.
This requires the pseudopotentials to be relativistic.
See Sect. 6.8 for further specific spin-orbit options.

SIESTA can read a .DM with different spin structure by adapting the
information to the currently selected spin multiplicity, averaging or
splitting the spin components equally, as needed. This may be used
to greatly increase convergence.
Certain options may not be used together with specific parallelization
routines.

Spin.Fix false (logical)
If true, the calculation is done with a fixed value of the spin of the
system, defined by variable Spin.Total. This option can only be
used for colinear spin polarized calculations.

Spin.Total 0 (real)

Value of the imposed total spin polarization of the system (in units
of the electron spin, 1/2). It is only used if Spin.Fix true.

%block Spin.Spiral 〈None〉 (block)
depends on: Spin

Specify the spiral q vector for the non-collinear spin.
Spin.Spiral.Scale ReciprocalLatticeVectors
%block Spin.Spiral

0. 0. 0.5
%endblock

NOTE: this option only applies for non-collinear spin (not for spin-
orbit).
NOTE: this part of the code has not been tested, we would welcome
any person who could assert its correctness and provide tests. Use
with extreme care.

Spin.Spiral.Scale 〈None〉 (string)
depends on: Spin.Spiral

Specifies the scale of the spiral vector q vectors given in Spin.Spiral.
The options are:

pi/a vector is given in Cartesian coordinates, in units of π/a, where
a is the lattice constant (LatticeConstant)

ReciprocalLatticeVectors vector is given in reciprocal-lattice-
vector coordinates

SingleExcitation false (logical)
If true, SIESTA calculates a very rough approximation to the lowest
excited state by swapping the populations of the HOMO and the
LUMO. If there is no spin polarisation, it is half swap only. It is
done for the first spin component (up) and first k vector.

6.8 Spin-Orbit coupling

SIESTA includes the option of including in the total Hamiltonian not
only the Darwin and velocity correction terms (Scalar–Relativistic calcu-
lations), but also the spin-orbit (SO) contribution. See Spin on how to

41

enable spin-orbit coupling.
The SO functionality has been implemented by Dr. Ramón Cuadrado
and Dr. Jorge I. Cerdá based on their initial work (R. Cuadrado and
J. I. Cerdá “Fully relativistic pseudopotential formalism under an atomic
orbital basis: spin-orbit splittings and magnetic anisotropies”, J. Phys.:
Condens. Matter 24, 086005 (2012); “In-plane/out-of-plane disorder in-
fluence on the magnetic anisotropy of Fe1−yMnyPt-L1(0) bulk alloy”, R.
Cuadrado, Kai Liu, Timothy J. Klemmer and R. W. Chantrell, Applied
Physics Letters, 108, 123102 (2016)).
The inclusion of the SO term in the Hamiltonian (and in the Density Ma-
trix) causes an increase in the number of non-zero elements in their off-
diagonal parts, i.e., for some (µ, ν) pair of basis orbitals, Hσσ′

µν (DMσσ′
µν)

[σ, σ′ =↑, ↓] will be ̸= 0. This is mainly due to the fact that the L · S
operator will promote the mixing between different spin-up/down com-
ponents. In addition, these Hσσ′

µν (and DMσσ′
µν) elements will be complex,

in contrast with typical polarized/non-polarized calculations where these
matrices are purely real. Since the spin-up and spin-down manifolds are
essentially mixed, the solver has to deal with matrices whose dimensions
are twice as large as for the collinear (unmixed) spin problem. Due to this,
we advise to take special attention to the memory needed to perform a
spin-orbit calculation.
Apart from the study of effects of the spin–orbit interaction in the band
structure, a feature enabled by a SO formalism is the computation of the
Magnetic Anisotropy Energy (MAE): it can be obtained as the difference
in the total selfconsistent energy in two different spin orientations, usually
along the easy axis and the hard axis. In SIESTA it is possible to per-
form calculations for different magnetization orientations using the block
DM.InitSpin in the fdf file. In doing so one will be able to include the
initial orientation angles of the magnetization for each atom, as well as an
initial value of their net magnetic moments. See also the recent review [7].
Note: Due to the small contribution of the spin–orbit interaction to the
total energy, the level of precision required is quite high. The following pa-
rameters should be carefully checked for each specific system to assure that
the results are converged and accurate enough: SCF.H.Tolerance dur-
ing the selfconsistency (typically <10−4eV), ElectronicTemperature,
k-point sampling, and Mesh.Cutoff (specifically for extended solids).

In general, one can say that a good calculation will have a high number of
k–points, low ElectronicTemperature, very small SCF.H.Tolerance
and high values of Mesh.Cutoff . We encourage the user to test carefully
these options for each system.
An additional point to take into account when the spin–orbit contribu-
tion is included is the mixing scheme to use. You are encouraged to use
the option to mix the Hamiltonian (SCF.Mix hamiltonian) instead of
the density matrix to speed up convergence. In addition, the pseudopo-
tentials have to be well tested for each specific system. They have to be
generated in their fully relativistic form, and should use non-linear core
corrections. Finally it is worth to mention that the selfconsistent con-
vergence for some non-highly symmetric magnetizations directions with
respect to the physical symmetry axis could still be difficult.

Spin.OrbitStrength 1.0 (real)
It allows to vary the strength of the spin-orbit interaction from zero to
any positive value. It should be used only for debugging and testing
purposes, as the only physical value is 1.0. Note that this feature is
currently implemented by modifying the SO parts of the semilocal
potentials read from a .psf file. It will not work when reading the lj
projectors directly from a PSML file (or from a previous run’s .ion
file). Care must be taken when re-using any .ion files produced.

WriteOrbMom false (logical)
If true, a table is provided in the output file that includes an esti-
mation of the vector orbital magnetic moments, in units of the Bohr
magneton, projected onto each orbital and also onto each atom. The
estimation for the orbital moments is based on a two-center approx-
imation, and makes use of the Mulliken population analysis.
If MullikenInScf is true, this information is printed at every scf
step.

SOC.Split.SR.SO true (logical)
In calculations with spin-orbit-coupling (SOC) the program carries
out a splitting of the contributions to the Hamiltonian and energies
into scalar-relativistic (SR) and spin-orbit (SO) parts. The split-
ting procedure when lj projectors are involved can sometimes be

42

ill-defined, and in those cases the program relies on a heuristic to
compute the two contributions. A warning is printed.
If this option is set to false, it will prevent the program from at-
tempting the splitting (but it still will be able to detect a possible
problem and report an informational message).
When the SO contribution is not split, the relevant energy contribu-
tions in the output file are tagged Enl(+so) and Eso(nil).
The CML file is not thus changed (but there is a new parameter
Split-SR-SO).
Note that this is only a cosmetic change affecting the reporting of
some components of the energy. All the other results should be un-
changed.

6.8.1 On-site approximation

Within the so-called “on-site” approximation only the intra-atomic SO
contribution is taken into account, neglecting three-center SO matrix el-
ements.
The on-site spin-orbit scheme in this version of SIESTA has been im-
plemented by Dr. Ramón Cuadrado based on the original formalism and
implementation developed by Prof. Jaime Ferrer and his collaborators
(L Fernández–Seivane, M Oliveira, S Sanvito, and J Ferrer, Journal of
Physics: Condensed Matter, 18, 7999 (2006); L Fernández–Seivane and
Jaime Ferrer, Phys. Rev. Lett. 99, 183401 (2007)). 183401).
It should be noted that this approximation, while based on the physically
reasonable idea of the short-range of the SO interaction, is susceptible to
some inaccuracies [5]. Since the construction of the full SOC Hamiltonian
represents a small fraction of the computational effort, the performance
gains in using the on-site approximation are negligible and do not justify
its use. Hence, the full SO formalism is used by default, being necessary
to change the Spin flag in the input file if the on-site approximation is
desired.

6.9 The self-consistent-field loop

IMPORTANT NOTE: Convergence of the Kohn-Sham energy
and forces
In versions prior to 4.0 of the program, the Kohn-Sham energy was com-
puted using the “in” DM. The typical DM used as input for the calculation
of H was not directly computed from a set of wave-functions (it was ei-
ther the product of mixing or of the initialization from atomic values). In
this case, the “kinetic energy” term in the total energy computed in the
way stated in the SIESTA paper had an error which decreased with the
approach to self-consistency, but was non-zero. The net result was that
the Kohn-Sham energy converged more slowly than the “Harris” energy
(which is correctly computed).
When mixing H (see below under “Mixing Options”), the KS energy is in
effect computed from DM(out), so this error vanishes.
As a related issue, the forces and stress computed after SCF convergence
were calculated using the DM coming out of the cycle, which by default
was the product of a final mixing. This also introduced errors which grew
with the degree of non-selfconsistency.
The current version introduces several changes:

• When mixing the DM, the Kohn-Sham energy may be corrected to
make it variational. This involves an extra call to dhscf (although
with neither forces nor matrix elements being calculated, i.e. only
calls to rhoofd, poison, and cellxc), and is turned on by the option
SCF.Want.Variational.EKS.

• The program now prints a new column labeled “dHmax” for the self-
consistent cycle. The value represents the maximum absolute value
of the changes in the entries of H, but its actual meaning depends
on whether DM or H mixing is in effect: if mixing the DM, dHmax
refers to the change in H(in) with respect to the previous step; if
mixing H, dHmax refers to H(out)-H(in) in the current step.

• When achieving convergence, the loop might be exited without a
further mixing of the DM, thus preserving DM(out) for further pro-
cessing (including the calculation of forces and the analysis of the

43

electronic structure) (see the SCF.Mix.AfterConvergence op-
tion).

• It remains to be seen whether the forces, being computed “right”
on the basis of DM(out), exhibit somehow better convergence as
a function of the scf step. In order to gain some more data and
heuristics on this we have implemented a force-monitoring option,
activated by setting to true the variable SCF.MonitorForces.
The program will then print the maximum absolute value of the
change in forces from one step to the next. Other statistics could
be implemented.

• While the (mixed) DM is saved at every SCF step, as was standard
practice, the final DM(out) overwrites the SystemLabel.DM file at
the end of the SCF cycle. Thus it is still possible to use a “mixed”
DM for restarting an interrupted loop, but a “good” DM will be
used for any other post-processing.

MinSCFIterations 0 (integer)
Minimum number of SCF iterations per time step. In MD simulations
this can with benefit be set to 3.

MaxSCFIterations 1000 (integer)
Maximum number of SCF iterations per time step.

SCF.MustConverge true (logical)
Defines the behaviour if convergence is not reached in the maximum
number of SCF iterations. The default is to stop on the first SCF con-
vergence failure. Increasing MaxSCFIterations to a large number
may be advantageous when this is true.

6.9.1 Harris functional

Harris.Functional false (logical)
Logical variable to choose between self-consistent Kohn-Sham func-
tional or non self-consistent Harris functional to calculate energies
and forces.

• false: Fully self-consistent Kohn-Sham functional.

• true: Non self consistent Harris functional. Cheap but pretty
crude for some systems. The forces are computed within the
Harris functional in the first SCF step. Only implemented for
LDA in the Perdew-Zunger parametrization. It really only ap-
plies to starting densities which are superpositions of atomic
charge densities.
When this option is choosen, the values of DM.UseSaveDM,
SCF.MustConverge and SCF.Mix.First are automatically
set falseand MaxSCFIterations is set to 1, no matter what-
ever other specification are in the INPUT file.

6.9.2 Mixing options

Whether a calculation reaches self-consistency in a moderate number of
steps depends strongly on the mixing parameters used. The available
mixing options should be carefully tested for a given calculation type. This
search for optimal parameters can repay itself handsomely by potentially
saving many self-consistency steps in production runs.

SCF.Mix Hamiltonian|density|charge (string)
Control what physical quantity to mix in the self-consistent cycle.
The default is mixing the Hamiltonian, which may typically perform
better than density matrix mixing.

Hamiltonian Mix the Hamiltonian matrix (default).

density Mix the density matrix.

charge Mix the real-space charge density. Note this is an experimen-
tal feature.

NOTE: Real-space charge density does not follow the regular op-
tions that adhere to density-matrix or Hamiltonian mixing. Also it
is not recommended to use real-space charge density mixing with
TranSIESTA.

SCF.Mix.Spin all|spinor|sum|sum+diff (string)
Controls how the mixing is performed when carrying out spin-
polarized calculations.

44

all Use all spin-components in the mixing

spinor Estimate mixing coefficients using the spinor components

sum Estimate mixing coefficients using the sum of the spinor compo-
nents

sum+diff Estimate mixing coefficients using the sum and the differ-
ence between the spinor components

NOTE: This option only influences density-matrix (ρ) or Hamilto-
nian (H) mixing when using anything but the linear mixing scheme.
And it does not influence not charge (ρ) mixing.

SCF.Mix.First true (logical)
deprecates: DM.MixSCF1

depends on: SCF.Mix.First.Force

This flag is used to decide whether mixing (of the DM or H) should
be done in the first SCF step. If mixing is not performed the output
DM or H generated in the first SCF step is used as input in the
next SCF step. When mixing the DM, this “reset” has the effect of
avoiding potentially undesirable memory effects: for example, a DM
read from file which corresponds to a different structure might not
satisfy the correct symmetry, and mixing will not fix it. On the other
hand, when reusing a DM for a restart of an interrupted calculation,
a full reset might not be advised.
The value of this flag is one of the ingredients used by SIESTA to de-
cide what to do. If true (the default), mixing will be performed in all
cases, except when a DM has been read from file and the sparsity pat-
tern of the DM on file is different from the current one. To ensure that
a first-step mixing is done even in this case, SCF.Mix.First.Force
should be set to true.
If the flag is false, no mixing in the first step will be performed,
except if overridden by SCF.Mix.First.Force.
NOTE: that the default value for this flag has changed from the old
(pre-version 4) setting in SIESTA. The new setting is most appro-
priate for the case of restarting calculations. On the other hand, it
means that mixing in the first SCF step will also be performed for
the standard case in which the initial DM is built as a (diagonal) su-
perposition of atomic orbital occupation values. In some cases (e.g.

spin-orbit calculations) better results might be obtained by avoiding
this mixing.

SCF.Mix.First.Force false (logical)
Force the mixing (of DM or H) in the first SCF step, regardless of
what SIESTA may heuristically decide.
This overrules SCF.Mix.First.

In the following the density matrix (ρ) will be used in the equations, while
for Hamiltonian mixing, ρ, should be replaced by the Hamiltonian matrix.
Also we define R[i] = ρi

out − ρi
in and ∆R[i] = R[i]− R[i− 1].

SCF.Mixer.Method Pulay|Broyden|Linear (string)
Choose the mixing algorithm between different methods. Each
method may have different variants, see SCF.Mixer.Variant.

Linear A simple linear extrapolation of the input matrix as

ρn+1
in = ρn

in + w R[n]. (3)

Pulay Using the Pulay mixing method corresponds using the Kresse
and Furthmüller [8] variant. It relies on the previous N steps and
uses those for estimating an optimal input ρn+1

in for the following
iteration. The equation can be written as

ρn+1
in = ρn

in + G R[n] +
N−1∑

i=n−N+1
αi(R[i] + G ∆R[i]), (4)

where G is the damping factor of the Pulay mixing (also known as
the mixing weight). The values αi are calculated using this formula

αi = −
N−1∑
j=1

A−1
ji ⟨∆R[j]|R[N]⟩, (5)

with Aji = ⟨∆R[j]|∆R[i]⟩.
In SIESTA G is a constant, and not a matrix.
NOTE: Pulay mixing is a special case of Broyden mixing, see the
Broyden method.

45

Broyden The Broyden mixing is mixing method relying on the pre-
vious N steps in the history for calculating an optimum input ρn+1

in
for the following iteration. The equation can be written as

ρn+1
in = ρn

in +G R[n]−
N−1∑

i=n−N+1

N−1∑
j=n−N+1

wiwjcjβij(R[i]+G ∆R[i]),

(6)
where G is the damping factor (also known as the mixing weight).
The values weights may be expressed by

wi = 1 , for i > 0 (7)
ci = ⟨∆R[i]|R[n]⟩, (8)

βij =
[(

w2
0I + A

)−1]
ij

(9)

Aij = wiwj⟨∆R[i]|∆R[j]⟩. (10)

It should be noted that wi for i > 0 may be chosen arbitrarily.
Comparing with the Pulay mixing scheme it is obvious that Broy-
den and Pulay are equivalent for a suitable set of parameters.

SCF.Mixer.Variant original (string)
Choose the variant of the mixing method.

Pulay This is implemented in two variants:
original|kresse The original6 Pulay mixing scheme, as imple-

mented in Kresse and Furthmüller [8].

GR The “guaranteed-reduction” variant of Pulay [3]. This variant
has a special convergence path. It interchanges between linear
and Pulay mixing thus using the exact gradient at each ρn

in.
For relatively simple systems this may be advantageous to use.
However, for complex systems it may be worse until it reaches a
convergence basin.
To obtain the original guaranteed-reduction variant one should
set SCF.Mixer.<>.weight.linear to 1.

6As such the “original” version is a variant it-self. But this is more stable in the far
majority of cases.

SCF.Mixer.Weight 0.25 (real)
deprecates: DM.MixingWeight

The mixing weight used to mix the quantity. In the linear mixing
case this refers to

ρn+1
in = ρn

in + w R[n]. (11)

For details regarding the other methods please see
SCF.Mixer.Method.
Convergence of a system heavily depends on:

SCF.Mixer.Weight A high value retains much of the output solu-
tion, which may result in leaving the convergence basin. How-
ever, when close to the solution a high value might decrease
needed SCF steps.
A low value only uses very little of the output solution. This
may result in high number of SCF steps but is more likely to
converge since it becomes harder for the solution to leave the
convergence basin.
This value is heavily system dependent.

SCF.Mixer.Method The linear mixing is the only method that
does not make use of prior steps, for hard to converge systems
it should only be tried with very low mixing weights.
The choice of method may result in some reduction of SCF steps,
but experimentation with the mixing weight is preferred as a
first resort.

SCF.Mixer.History Number of previous steps to use for the mix-
ing. A too low value (say 2 – 6) might change the conver-
gence properties a lot. While two different high values might
not change the convergence properties significantly, if at all.

NOTE: the older keyword DM.MixingWeight is used if this key
is not found in the input.

SCF.Mixer.History 2 (integer)
deprecates: DM.NumberPulay, DM.NumberBroyden

Number of previous SCF steps used in estimating the following input.
Increasing this number, typically, increases stability and a number of
around 6 or above may be advised.

46

NOTE: the older key-
word DM.NumberPulay/DM.NumberBroyden is used if this
key is not found in the input.

SCF.Mixer.Kick 0 (integer)
After every N SCF steps a linear mix is inserted to kick the SCF
cycle out of a possible local minimum.
The mixing weight for this linear kick is determined by
SCF.Mixer.Kick.Weight.

SCF.Mixer.Kick.Weight 〈SCF.Mixer.Weight〉 (real)
The mixing weight for the linear kick (if used).

SCF.Mixer.Restart 0 (integer)
When using advanced mixers (Pulay/Broyden) the mixing scheme
may periodically restart the history. This may greatly improve
the convergence path as local constraints in the minimization pro-
cess are periodically removed. This method has similarity to the
method proposed in Banerjee et al. [2] and is a special case of the
SCF.Mixer.Kick method.
Please see SCF.Mixer.Restart.Save which is advised to be set
simultaneously.

SCF.Mixer.Restart.Save 1 (integer)
When restarting the history of saved SCF steps one may choose
to save a subset of the latest history steps. When using
SCF.Mixer.Restart it is encouraged to also save a couple of pre-
vious history steps.

SCF.Mixer.Linear.After -1 (integer)
After reaching convergence one may run additional SCF cycles using
a linear mixing scheme. If this has a value ≥ 0 SIESTA will perform
linear mixing after it has converged using the regular mixing method
(SCF.Mixer.Method).
The mixing weight for this linear mixing is controlled by
SCF.Mixer.Linear.After.Weight.

SCF.Mixer.Linear.After.Weight 〈SCF.Mixer.Weight〉 (real)

After reaching convergence one may run additional SCF cycles using
a linear mixing scheme. If this has a value ≥ 0 SIESTA will perform
linear mixing after it has converged using the regular mixing method
(SCF.Mixer.Method).
The mixing weight for this linear mixing is controlled by
SCF.Mixer.Linear.After.Weight.

In conjunction with the above simple settings controlling the SCF cycle
SIESTA employs a very configurable mixing scheme. In essence one
may switch mixing methods, arbitrarily, during the SCF cycle via control
commands. This can greatly speed up convergence.

%block SCF.Mixers 〈None〉 (block)
Each line in this block defines a separate mixer that is defined in a
subsequent SCF.Mixer.<> block.
The first line is the initial mixer used.
See the following options for controlling individual mixing methods.
NOTE: If this block is defined you must define all mixing parameters
individually.

%block SCF.Mixer.<> 〈None〉 (block)
This block controls the mixer named <>.

method Define the method for the mixer, see SCF.Mixer.Method
for possible values.

variant Define the variant of the method, see SCF.Mixer.Variant
for possible values.

weight|w Define the mixing weight for the mixing scheme, see
SCF.Mixer.Weight.

history Define number of previous history steps used in the mini-
mization process, see SCF.Mixer.History.

weight.linear|w.linear Define the linear mixing weight for the mix-
ing scheme. This only has meaning for Pulay or Broyden mixing.
It defines the initial linear mixing weight.
To obtain the original Pulay Guarenteed-Reduction variant one
should set this to 1.

47

restart Define the periodic restart of the saved history, see
SCF.Mixer.Restart.

restart.save Define number of latest history steps retained when
restarting the history, see SCF.Mixer.Restart.Save.

iterations Define the maximum number of iterations this mixer
should run before changing to another mixing method.
NOTE: This must be used in conjunction with the next setting.

next <> Specify the name of the next mixing scheme after having
conducted iterations SCF cycles using this mixing method.

next.conv <> If SCF convergence is reached using this mixer,
switch to the mixing scheme via <>. Then proceed with the
SCF cycle.

next.p If the relative difference between the latest two residuals is
below this quantity, the mixer will switch to the method given in
next. Thus if

⟨R[i]|R[i]⟩ − ⟨R[i− 1]|R[i− 1]⟩
⟨R[i− 1]|R[i− 1]⟩ < next.p (12)

is fulfilled it will skip to the next mixer.

restart.p If the relative difference between the latest two residuals is
below this quantity, the mixer will restart the history. Thus if

⟨R[i]|R[i]⟩ − ⟨R[i− 1]|R[i− 1]⟩
⟨R[i− 1]|R[i− 1]⟩ < restart.p (13)

is fulfilled it will reset the history.

The options covered now may be exemplified in these examples. If the
input file contains:

SCF.Mixer.Method pulay
SCF.Mixer.Weight 0.05
SCF.Mixer.History 10
SCF.Mixer.Restart 25
SCF.Mixer.Restart.Save 4
SCF.Mixer.Linear.After 0
SCF.Mixer.Linear.After.Weight 0.1

This may be equivalently setup using the more advanced input blocks:

%block SCF.Mixers
init
final

%endblock

%block SCF.Mixer.init
method pulay
weight 0.05
history 10
restart 25
restart.save 4
next.conv final

%endblock

%block SCF.Mixer.final
method linear
weight 0.1

%endblock

This advanced setup may be used to change mixers during the SCF to
change certain parameters of the mixing method, or fully change the
method for mixing. For instance it may be advantageous to increase the
mixing weight once a certain degree of self-consistency has been reached.
In the following example we change the mixing method to a different
scheme by increasing the weight and decreasing the history steps:

%block SCF.Mixers
init
final

%endblock

%block SCF.Mixer.init
method pulay
weight 0.05
history 10
next final
Switch when the relative residual goes below 5%
next.p 0.05

%endblock

48

%block SCF.Mixer.final
method pulay
weight 0.1
history 6

%endblock

In essence, very complicated schemes of convergence may be created using
the block’s input.
The following options refer to the global treatment of how/when mixing
should be performed.

Compat.Pre-v4-DM-H false (logical)
This controls the default values of SCF.Mix.AfterConvergence,
SCF.RecomputeHAfterScf and SCF.Mix.First.
In versions prior to v4 the two former options where defaulted to
true while the latter option was defaulted to false.

SCF.Mix.AfterConvergence false (logical)
Indicate whether mixing is done in the last SCF cycle (after con-
vergence has been achieved) or not. Not mixing after convergence
improves the quality of the final Kohn-Sham energy and of the forces
when mixing the DM.
NOTE: See Compat.Pre-v4-DM-H.

SCF.RecomputeHAfterSCF false (logical)
Indicate whether the Hamiltonian is updated after the scf cycle, while
computing the final energy, forces, and stresses. Not recomputing
H makes further analysis tasks (such as the computation of band
structures) more consistent, as they will be able to use the same H
used to generate the last density matrix.
NOTE: See Compat.Pre-v4-DM-H.

6.9.3 Mixing of the Charge Density

See SCF.Mix on how to enable charge density mixing. If charge den-
sity mixing is enabled the fourier components of the charge density are
mixed, as done in some plane-wave codes. (See for example Kresse and
Furthmüller, Comp. Mat. Sci. 6, 15-50 (1996), KF in what follows.)

The charge mixing is implemented roughly as follows:

• The charge density computed in dhscf is fourier-transformed and
stored in a new module. This is done both for “ρ(G)(in)” and
“ρ(G)(out)” (the “out” charge is computed during the extra call to
dhscf for correction of the variational character of the Kohn-Sham
energy)

• The “in” and “out” charges are mixed (see below), and the resulting
“in” fourier components are used by dhscf in successive iterations
to reconstruct the charge density.

• The new arrays needed and the processing of most new options is
done in the new module m_rhog.F90. The fourier-transforms are
carried out by code in rhofft.F.

• Following standard practice, two options for mixing are offered:

– A simple Kerker mixing, with an optional Thomas-Fermi
wavevector to damp the contributions for small G’s. The over-
all mixing weight is the same as for other kinds of mixing, read
from DM.MixingWeight.

– A DIIS (Pulay) procedure that takes into account a sub-set of
the G vectors (those within a smaller cutoff). Optionally, the
scalar product used for the construction of the DIIS matrix
from the residuals uses a weight factor.
The DIIS extrapolation is followed by a Kerker mixing step.
The code is m_diis.F90. The DIIS history is kept in a circu-
lar stack, implemented using the new framework for reference-
counted types. This might be overkill for this particular use,
and there are a few rough edges, but it works well.

The default convergence criteria remains based on the differences in the
density matrix, but in this case the differences are from step to step,
not the more fundamental DM_out-DM_in. Perhaps some other criterion
should be made the default (max |∆rho(G)|, convergence of the free-
energy...)

49

Note that with charge mixing the Harris energy as it is currently computed
in SIESTA loses its meaning, since there is no DM_in. The program prints
zeroes in the Harris energy field.
Note that the KS energy is correctly computed throughout the scf cycle,
as there is an extra step for the calculation of the charge stemming from
DM_out, which also updates the energies. Forces and final energies are
correctly computed with the final DM_out, regardless of the setting of the
option for mixing after scf convergence.
Initial tests suggest that charge mixing has some desirable properties and
could be a drop-in replacement for density-matrix mixing, but many more
tests are needed to calibrate its efficiency for different kinds of systems,
and the heuristics for the (perhaps too many) parameters:

SCF.Kerker.q0sq 0 Ry (energy)
Determines the parameter q2

0 featuring in the Kerker preconditioning,
which is always performed on all components of ρ(G), even those
treated with the DIIS scheme.

SCF.RhoGMixingCutoff 9 Ry (energy)
Determines the sub-set of G vectors which will undergo the DIIS
procedure. Only those with kinetic energies below this cutoff will be
considered. The optimal extrapolation of the ρ(G) elements will be
replaced in the fourier series before performing the Kerker mixing.

SCF.RhoG.DIIS.Depth 0 (integer)
Determines the maximum number of previous steps considered in the
DIIS procedure.

NOTE: The information from the first scf step is not included in the DIIS
history. There is no provision yet for any other kind of “kick-starting”
procedure. The logic is in m_rhog (rhog_mixing routine).

SCF.RhoG.Metric.Preconditioner.Cutoff 〈None〉 (energy)
Determines the value of q2

1 in the weighing of the different G compo-
nents in the scalar products among residuals in the DIIS procedure.
Following the KF ansatz, this parameter is chosen so that the smallest
(non-zero) G has a weight 20 times larger than that of the smallest
G vector in the DIIS set.

The default is the result of the KF prescription.

SCF.DebugRhoGMixing false (logical)
Controls the level of debugging output in the mixing procedure (ba-
sically whether the first few stars worth of Fourier components are
printed). Note that this feature will only display the components in
the master node.

Debug.DIIS false (logical)
Controls the level of debugging output in the DIIS procedure. If set,
the program prints the DIIS matrix and the extrapolation coefficients.

SCF.MixCharge.SCF1 false (logical)
Logical variable to indicate whether or not the charge is mixed in
the first SCF cycle. Anecdotal evidence indicates that it might be
advantageous, at least for calculations started from scratch, to avoid
that first mixing, and retain the “out” charge density as “in” for the
next step.

6.9.4 Initialization of the density-matrix

NOTE: The conditions and options for density-matrix re-use are quite
varied and not completely orthogonal at this point. For further informa-
tion, see routine Src/m_new_dm.F. What follows is a summary.
The Density matrix can be:

1. Synthesized directly from atomic occupations.
(See the options below for spin considerations)

2. Read from a .DM file (if the appropriate options are set)
3. Extrapolated from previous geometry steps

(this includes as a special case the re-use of the DM
of the previous geometry iteration)

In cases 2 and 3, the structure of the read or extrapolated DM
is automatically adjusted to the current sparsity pattern.

In what follows, "Initialization" of the DM means that the DM is

50

either read from file (if available) or synthesized from atomic
data. This is confusing, and better terminology should be used.

Special cases:

Harris functional: The matrix is always initialized

Force calculation: The DM should be written to disk
at the time of the "no displacement"
calculation and read from file at
every subsequent step.

Variable-cell calculation:

If the auxiliary cell changes, the DM is forced to be
synthesized (conceivably one could rescue some important
information from an old DM, but it is too much trouble
for now). NOTE that this is a change in policy with respect
to previous versions of the program, in which a (blind?)
re-use was allowed, except if ’ReInitialiseDM’ was ’true’.
Now ’ReInitialiseDM’ is ’true’ by default. Setting it to
’false’ is not recommended.

In all other cases (including "server operation"), the
default is to allow DM re-use (with possible extrapolation)
from previous geometry steps.

For "CG" calculations, the default is not to extrapolate the
DM (unless requested by setting ’DM.AllowExtrapolation’ to
"true"). The previous step’s DM is reused.

The fdf variables ’DM.AllowReuse’ and ’DM.AllowExtrapolation’
can be used to turn off DM re-use and extrapolation.

DM.UseSaveDM true (logical)
Instructs to read the density matrix stored in file SystemLabel.DM

by a previous run.
SIESTA will continue even if .DM is not found.
NOTE: That if the spin settings has changed SIESTA allows read-
ing a .DM from a similar calculation with different Spin option. This
may be advantageous when going from non-polarized calculations to
polarized, and beyond, see Spin for details.

DM.Init.Unfold true (logical)
depends on: DM.UseSaveDM

When reading the DM from a previous calculation there may be
inconsistencies in the auxiliary supercell. E.g. if the previous calcu-
lation did not use an auxiliary supercell and the current calculation
does (adding k-point sampling). SIESTA will automatically unfold
the Γ-only DM to the auxiliary supercell elements (if true).
For false the DM elements are assumed to originate from an auxiliary
supercell calculation and the sparse elements are not unfolded but
directly copied.
NOTE: Generally this shouldn’t not be touched, however, if the
initial DM is generated using sisl [15] and only on-site DM elements
are set, this should be set to false.

DM.FormattedFiles false (logical)
Setting this alters the default for DM.FormattedInput and
DM.FormattedOutput. Instructs to use formatted files for read-
ing and writing the density matrix. In this case, the files are labelled
SystemLabel.DMF.
Only usable if one has problems transferring files from one computer
to another.

DM.FormattedInput false (logical)
Instructs to use formatted files for reading the density matrix.

DM.FormattedOutput false (logical)
Instructs to use formatted files for writing the density matrix.

DM.Init atomic
Specify the initial density matrix composition. Methods are compat-
ible with a possible specification of DM.InitSpin.AF. Only a single

51

option is available now, but more could be implemented. See also
DM.Init.RandomStates.

atomic Only initialize the diagonal (on-site) elements of the density
matrix according to the atomic ground-state populations of the
atomic orbitals.

DM.InitSpin.AF false (logical)
It defines the initial spin density for a spin polarized calculation. The
spin density is initially constructed with the maximum possible spin
polarization for each atom in its atomic configuration. This variable
defines the relative orientation of the atomic spins:
If false the initial spin-configuration is a ferromagnetic order (all
spins up). If true all odd atoms are initialized to spin-up, all even
atoms are initialized to spin-down.

%block DM.InitSpin 〈None〉 (block)
Define the initial spin density for a spin polarized calculation atom
by atom. In the block there is one line per atom to be spin-polarized,
containing the atom index (integer, ordinal in the block Atom-
icCoordinatesAndAtomicSpecies) and the desired initial spin-
polarization (real, positive for spin up, negative for spin down). The
spin polarization is actually meant to be the net spin magnetic mo-
ment, in units of the Bohr magneton, and thus numerically equal to
the charge inbalance (in electrons) between spin up and spin down
channels (as the g-factor for the electron spin is very close to 2, and
the spin angular momentum is 1/2). A value larger than possible will
be reduced to the maximum possible polarization, keeping its sign.
Maximum polarization can also be given by introducing the symbol
+ or - instead of the polarization value. There is no need to include
a line for every atom, only for those to be polarized. The atoms not
contemplated in the block will be given non-polarized initialization.
For non-collinear spin, the spin direction may be specified for each
atom by the polar angle θ and the azimuthal angle ϕ (using the
physics ISO convention), given as the last two arguments in degrees.
If not specified, θ = 0 is assumed (z-polarized). Spin must be set to
use non-collinear or spin-orbit for the directions to have effect.
Example:

%block DM.InitSpin
5 -1. 90. 0. # Atom index, spin, theta, phi (deg)
3 + 45. -90.
7 -

%endblock DM.InitSpin

In the above example, atom 5 is polarized in the x-direction.
If this block is defined, but empty, all atoms are not polarized. This
block has precedence over DM.InitSpin.AF.

DM.Init.RandomStates 0 (integer)
The program will ’remove’ N electrons from the initial density matrix
and add N electrons in randomized ’states’ (i.e., N random vectors
which are normalized according to the S metric are used as “synthetic
states”). These extra states are not orthogonal to the occupied mani-
fold. The orbital coefficients of these states are scaled with the atomic
charges, to avoid populating high-lying shells.
This procedure is wholly experimental and meant to provide a kick
to the DM. It is inspired by the “random-wavefunction” initialization
used in some plane-wave codes. It is turned off by default.
This option only has an effect if the density matrix is initialized from
an atomic density and/or when using DM.InitSpin.
In case it is used together with DM.InitSpin it also randomizes the
spin-configuration, which may be undesirable.
NOTE: This option is currently experimental since the randomized
states are not ensured to be orthogonal. This flag may be removed
in later revisions or superseded by other options. If testing this, start
with a value of 1 to see if it has an effect; any higher numbers will
probably be worse.

DM.AllowReuse true (logical)
Controls whether density matrix information from previous geometry
iterations is re-used to start the new geometry’s SCF cycle.

DM.AllowExtrapolation true (logical)
Controls whether the density matrix information from several previ-
ous geometry iterations is extrapolated to start the new geometry’s
SCF cycle. This feature is useful for molecular dynamics simulations

52

and possibly also for geometry relaxations. The number of geometry
steps saved is controlled by the variable DM.History.Depth.
This is default true for molecular-dynamics simulations, but false,
for now, for geometry-relaxations (pending further tests which users
are kindly requested to perform).

DM.History.Depth 1 (integer)
Sets the number of geometry steps for which density-matrix informa-
tion is saved for extrapolation.

6.9.5 Initialization of the SCF cycle with charge densities

SCF.Read.Charge.NetCDF false (logical)
Instructs SIESTA to read the charge density stored in the netCDF
file Rho.IN.grid.nc. This feature allows the easier re-use of
electronic-structure information from a previous run. It is not nec-
essary that the basis sets are “similar” (a requirement if density-
matrices are to be read in).
NOTE: This is an experimental feature. Until robust checks are
implemented, care must be taken to make sure that the FFT grids
in the .grid.nc file and in SIESTA are the same.

SCF.Read.Deformation.Charge.NetCDF false (logical)
Instructs SIESTA to read the deformation charge density stored in
the netCDF file DeltaRho.IN.grid.nc. This feature allows the eas-
ier re-use of electronic-structure information from a previous run. It
is not necessary that the basis sets are “similar” (a requirement if
density-matrices are to be read in). The deformation charge is par-
ticularly useful to give a good starting point for slightly different
geometries.
NOTE: This is an experimental feature. Until robust checks are
implemented, care must be taken to make sure that the FFT grids
in the .grid.nc file and in SIESTA are the same.

6.9.6 Output of density matrix and Hamiltonian

Performance Note: For large-scale calculations, writing the DM at
every scf step can have a severe impact on performance. The sparse-
matrix I/O is undergoing a re-design, to facilitate the analysis of data
and to increase the efficiency.

Use.Blocked.WriteMat false (logical)
By using blocks of orbitals (according to the underlying default block-
cyclic distribution), the sparse-matrix I/O can be speeded-up signif-
icantly, both by saving MPI communication and by reducing the
number of file accesses. This is essential for large systems, for which
the I/O could take a significant fraction of the total computation
time.
To enable this “blocked format” (recommended for large-scale calcu-
lations) use the option Use.Blocked.WriteMat true. Note that it
is off by default.
The new format is not backwards compatible. A converter program
(Util/DensityMatrix/dmUnblock.F90) has been written to post-
process those files intended for further analysis or re-use in SIESTA.
This is the best option for now, since it allows liberal checkpointing
with a much smaller time consumption, and only incurs costs when
re-using or analyzing files.
Note that TranSIESTA will continue to produce SystemLabel.DM
files, in the old format (See save_density_matrix.F)
To test the new features, the option S.Only true can be used. It
will produce three files: a standard one, another one with optimized
MPI communications, and a third, blocked one.

Write.DM true (logical)
Control the creation of the current iterations density matrix to a file
for restart purposes and post-processing. If false nothing will be
written.
If Use.Blocked.WriteMat is false the SystemLabel.DM file will
be written. Otherwise these density matrix files will be created;
DM_MIXED.blocked and DM_OUT.blocked which are the mixed and
the diagonalization output, respectively.

53

Write.DM.end.of.cycle 〈Write.DM〉 (logical)
Equivalent to Write.DM, but will only write at the end of each SCF
loop.
NOTE: The file generated depends on
SCF.Mix.AfterConvergence.

Write.H false (logical)
Whether restart Hamiltonians should be written (not intrinsically
supported in 4.1).
If true these files will be created; H_MIXED or H_DMGEN which is the
mixed or the generated Hamiltonian from the current density matrix,
respectively. If Use.Blocked.WriteMat the just mentioned files
will have the additional suffix .blocked.

Write.H.end.of.cycle 〈Write.H〉 (logical)
Equivalent to Write.H, but will only write at the end of each SCF
loop.
NOTE: The file generated depends on
SCF.Mix.AfterConvergence.

The following options control the creation of netCDF files. The relevant
routines have not been optimized yet for large-scale calculations, so in
this case the options should not be turned on (they are off by default).

Write.DM.NetCDF true (logical)
It determines whether the density matrix (after the mixing step) is
output as a DM.nc netCDF file or not.
The file is overwritten at every SCF step. Use the
Write.DM.History.NetCDF option if a complete history is de-
sired.
The DM.nc and standard DM file formats can be converted at will
with the programs in Util/DensityMatrix directory. Note that the
DM values in the DM.nc file are in single precision.

Write.DMHS.NetCDF true (logical)
If true, the input density matrix, Hamiltonian, and output density
matrix, are stored in a netCDF file named DMHS.nc. The file also
contains the overlap matrix S.

The file is overwritten at every SCF step. Use the
Write.DMHS.History.NetCDF option if a complete history is de-
sired.

Write.DM.History.NetCDF false (logical)
If true, a series of netCDF files with names of the form DM-NNNN.nc
is created to hold the complete history of the density matrix (after
mixing). (See also Write.DM.NetCDF). Each file corresponds to
a geometry step.

Write.DMHS.History.NetCDF false (logical)
If true, a series of netCDF files with names of the form
DMHS-NNNN.nc is created to hold the complete history of the in-
put and output density matrix, and the Hamiltonian. (See also
Write.DMHS.NetCDF). Each file corresponds to a geometry step.
The overlap matrix is stored only once per SCF cycle.

Write.TSHS.History false (logical)
If true, a series of TSHS files with names of the form
SystemLabel.N.TSHS is created to hold the complete history of the
Hamiltonian and overlap matrix. Each file corresponds to a geometry
step. The overlap matrix is stored only once per SCF cycle. This
option only works with TranSIESTA.

6.9.7 Convergence criteria

NOTE: The older options with a DM prefix is still working for backwards
compatibility. However, the following flags has precedence.
Note that all convergence criteria are additive and may thus be used
simultaneously for complete control.

SCF.DM.Converge true (logical)
Logical variable to use the density matrix elements as monitor of
self-consistency.

SCF.DM.Tolerance 10−4 (real)
depends on: SCF.DM.Converge

Tolerance of Density Matrix. When the maximum difference between

54

the output and the input on each element of the DM in a SCF cycle
is smaller than SCF.DM.Tolerance, the self-consistency has been
achieved.
NOTE: DM.Tolerance is the actual default for this flag.

DM.Normalization.Tolerance 10−5 (real)
Tolerance for unnormalized density matrices (typically the product of
solvers such as PEXSI which have a built-in electron-count tolerance).
If this tolerance is exceeded, the program stops. It is understood as
a fractional tolerance. For example, the default will allow an excess
or shorfall of 0.01 electrons in a 1000-electron system.

SCF.H.Converge true (logical)
Logical variable to use the Hamiltonian matrix elements as moni-
tor of self-consistency: this is considered achieved when the max-
imum absolute change (dHmax) in the H matrix elements is be-
low SCF.H.Tolerance. The actual meaning of dHmax depends on
whether DM or H mixing is in effect: if mixing the DM, dHmax refers
to the change in H(in) with respect to the previous step; if mixing H,
dHmax refers to H(out)-H(in) in the previous(?) step.

SCF.H.Tolerance 10−3 eV (energy)
depends on: SCF.H.Converge

If SCF.H.Converge is true, then self-consistency is achieved when
the maximum absolute change in the Hamiltonian matrix elements
is below this value.

SCF.EDM.Converge true (logical)
Logical variable to use the energy density matrix elements as monitor
of self-consistency: this is considered achieved when the maximum
absolute change (dEmax) in the energy density matrix elements is
below SCF.EDM.Tolerance. The meaning of dEmax is equivalent
to that of SCF.DM.Tolerance.

SCF.EDM.Tolerance 10−3 eV (energy)
depends on: SCF.EDM.Converge

If SCF.EDM.Converge is true, then self-consistency is achieved
when the maximum absolute change in the energy density matrix

elements is below this value.

SCF.FreeE.Converge false (logical)
Logical variable to request an additional requirement for self-
consistency: it is considered achieved when the change in the to-
tal (free) energy between cycles of the SCF procedure is below
SCF.FreeE.Tolerance and the density matrix change criterion is
also satisfied.

SCF.FreeE.Tolerance 10−4 eV (energy)
depends on: SCF.FreeE.Converge

If SCF.FreeE.Converge is true, then self-consistency is achieved
when the change in the total (free) energy between cycles of the SCF
procedure is below this value and the density matrix change criterion
is also satisfied.

SCF.Harris.Converge false (logical)
Logical variable to use the Harris energy as monitor of self-
consistency: this is considered achieved when the change in the
Harris energy between cycles of the SCF procedure is below
SCF.Harris.Tolerance. This is useful if only energies are needed,
as the Harris energy tends to converge faster than the Kohn-Sham en-
ergy. The user is responsible for using the correct energies in further
processing, e.g., the Harris energy if the Harris criterion is used.
To help in basis-optimization
tasks, a new file BASIS_HARRIS_ENTHALPY is provided, holding the
same information as BASIS_ENTHALPY but using the Harris energy
instead of the Kohn-Sham energy.
NOTE: Setting this to true makes SCF.DM.Converge
SCF.H.Converge default to false.

SCF.Harris.Tolerance 10−4 eV (energy)
depends on: SCF.Harris.Converge

If SCF.Harris.Converge is true, then self-consistency is achieved
when the change in the Harris energy between cycles of the SCF
procedure is below this value. This is useful if only energies are
needed, as the Harris energy tends to converge faster than the Kohn-
Sham energy.

55

6.10 The real-space grid and the eggbox-effect

SIESTA uses a finite 3D grid for the calculation of some integrals and
the representation of charge densities and potentials. Its fineness is de-
termined by its plane-wave cutoff, as given by the Mesh.Cutoffoption.
It means that all periodic plane waves with kinetic energy lower than this
cutoff can be represented in the grid without aliasing. In turn, this im-
plies that if a function (e.g. the density or the effective potential) is an
expansion of only these plane waves, it can be Fourier transformed back
and forth without any approximation.
The existence of the grid causes the breaking of translational symmetry
(the egg-box effect, due to the fact that the density and potential do have
plane wave components above the mesh cutoff). This symmetry breaking
is clear when moving one single atom in an otherwise empty simulation
cell. The total energy and the forces oscillate with the grid periodicity
when the atom is moved, as if the atom were moving on an eggbox. In
the limit of infinitely fine grid (infinite mesh cutoff) this effect disappears.
For reasonable values of the mesh cutoff, the effect of the eggbox on
the total energy or on the relaxed structure is normally unimportant.
However, it can affect substantially the process of relaxation, by increasing
the number of steps considerably, and can also spoil the calculation of
vibrations, usually much more demanding than relaxations.
The Util/Scripting/eggbox_checker.py script can be used to diagnose
the eggbox effect to be expected for a particular pseudopotential/basis-set
combination.
Apart from increasing the mesh cutoff (see the Mesh.Cutoff option),
the following options might help in lessening a given eggbox problem.
But note also that a filtering of the orbitals and the relevant parts of the
pseudopotential and the pseudocore charge might be enough to solve the
issue (see Sec. 6.3.10).

Mesh.Cutoff 300 Ry (energy)
Defines the plane wave cutoff for the grid.

Mesh.Sizes 〈Mesh.Cutoff〉 (list)
Manual definition of grid size along each lattice vector. The value

must be divisible by Mesh.SubDivisions, otherwise the program
will die. The numbers should also be divisible with 2, 3 and 5 due to
the FFT algorithms.
This option may be specified as a block, or a list:

%block Mesh.Sizes
100 202 210

%endblock
Or equivalently:
Mesh.Sizes [100 202 210]

By default the grid size is determined via Mesh.Cutoff . This option
has precedence if both are specified.

Mesh.SubDivisions 2 (integer)
Defines the number of sub-mesh points in each direction used to save
index storage on the mesh. It affects the memory requirements and
the CPU time, but not the results.
NOTE: The default value might be a bit conservative. Users might
experiment with higher values, 4 or 6, to lower the memory and
cputime usage.

%block Grid.CellSampling 〈None〉 (block)
It specifies points within the grid cell for a symmetrization sampling.
For a given grid the grid-cutoff convergence can be improved (and the
eggbox lessened) by recovering the lost symmetry: by symmetrizing
the sensitive quantities. The full symmetrization implies an integra-
tion (averaging) over the grid cell. Instead, a finite sampling can be
performed.
It is a sampling of rigid displacements of the system with respect
to the grid. The original grid-system setup (one point of the grid
at the origin) is always calculated. It is the (0,0,0) displacement.
The block Grid.CellSampling gives the additional displacements
wanted for the sampling. They are given relative to the grid-cell
vectors, i.e., (1,1,1) would displace to the next grid point across the
body diagonal, giving an equivalent grid-system situation (a useless
displacement for a sampling).
Examples: Assume a cubic cell, and therefore a (smaller) cubic grid
cell. If there is no block or the block is empty, then the original

56

(0,0,0) will be used only. The block:
%block Grid.CellSampling

0.5 0.5 0.5
%endblock Grid.CellSampling

would use the body center as a second point in the sampling. Or:
%block Grid.CellSampling

0.5 0.5 0.0
0.5 0.0 0.5
0.0 0.5 0.5

%endblock Grid.CellSampling

gives an fcc kind of sampling, and
%block Grid.CellSampling

0.5 0.0 0.0
0.0 0.5 0.0
0.0 0.0 0.5
0.0 0.5 0.5
0.5 0.0 0.5
0.5 0.5 0.0
0.5 0.5 0.5

%endblock Grid.CellSampling

gives again a cubic sampling with half the original side length. It is
not trivial to choose a right set of displacements so as to maximize
the new ’effective’ cutoff. It depends on the kind of cell. It may
be automatized in the future, but it is now left to the user, who
introduces the displacements manually through this block.
The quantities which are symmetrized are: (i) energy terms that
depend on the grid, (ii) forces, (iii) stress tensor, and (iv) electric
dipole.
The symmetrization is performed at the end of every SCF cycle.
The whole cycle is done for the (0,0,0) displacement, and, when the
density matrix is converged, the same (now fixed) density matrix is
used to obtain the desired quantities at the other displacements (the
density matrix itself is not symmetrized as it gives a much smaller
egg-box effect). The CPU time needed for each displacement in the
Grid.CellSampling block is of the order of one extra SCF iteration.
This may be required in systems where very precise forces are needed,

and/or if partial cores are used. It is advantageous to test whether
the forces are sampled sufficiently by sampling one point.
Additionally this may be given as a list of 3 integers which corre-
sponds to a “Monkhorst-Pack” like grid sampling. I.e.

Grid.CellSampling [2 2 2]

is equivalent to
%block Grid.CellSampling

0.5 0.0 0.0
0.0 0.5 0.0
0.5 0.5 0.0
0.0 0.0 0.5
0.5 0.0 0.5
0.0 0.5 0.5
0.5 0.5 0.5

%endblock Grid.CellSampling

This is an easy method to see if the flag is important for your system
or not.

%block EggboxRemove 〈None〉 (block)
For recovering translational invariance in an approximate way.
It works by substracting from Kohn-Sham’s total energy (and forces)
an approximation to the eggbox energy, sum of atomic contributions.
Each atom has a predefined eggbox energy depending on where it
sits on the cell. This atomic contribution is species dependent and
is obviously invariant under grid-cell translations. Each species con-
tribution is thus expanded in the appropriate Fourier series. It is
important to have a smooth eggbox, for it to be represented by a
few Fourier components. A jagged egg-box (unless very small, which
is then unimportant) is often an indication of a problem with the
pseudo.
In the block there is one line per Fourier component. The first in-
teger is for the atomic species it is associated with. The other three
represent the reciprocal lattice vector of the grid cell (in units of the
basis vectors of the reciprocal cell). The real number is the Fourier
coefficient in units of the energy scale given in EggboxScale (see
below), normally 1 eV.
The number and choice of Fourier components is free, as well as their

57

order in the block. One can choose to correct only some species and
not others if, for instance, there is a substantial difference in hardness
of the cores. The 0 0 0 components will add a species-dependent
constant energy per atom. It is thus irrelevant except if comparing
total energies of different calculations, in which case they have to be
considered with care (for instance by putting them all to zero, i.e. by
not introducing them in the list). The other components average to
zero representing no bias in the total energy comparisons.
If the total energies of the free atoms are put as 0 0 0 coefficients
(with spin polarisation if adequate etc.) the corrected total energy
will be the cohesive energy of the system (per unit cell).
Example: For a two species system, this example would give a quite
sufficent set in many instances (the actual values of the Fourier coef-
ficients are not realistic).

%block EggBoxRemove
1 0 0 0 -143.86904
1 0 0 1 0.00031
1 0 1 0 0.00016
1 0 1 1 -0.00015
1 1 0 0 0.00035
1 1 0 1 -0.00017
2 0 0 0 -270.81903
2 0 0 1 0.00015
2 0 1 0 0.00024
2 1 0 0 0.00035
2 1 0 1 -0.00077
2 1 1 0 -0.00075
2 1 1 1 -0.00002

%endblock EggBoxRemove

It represents an alternative to grid-cell sampling (above). It is only
approximate, but once the Fourier components for each species are
given, it does not represent any computational effort (neither memory
nor time), while the grid-cell sampling requires CPU time (roughly
one extra SCF step per point every MD step).
It will be particularly helpful in atoms with substantial partial core
or semicore electrons.
NOTE: This should only be used for fixed cell calculations, i.e. not
with MD.VariableCell.

For the time being, it is up to the user to obtain the Fourier
components to be introduced. They can be obtained by moving
one isolated atom through the cell to be used in the calculation
(for a give cell size, shape and mesh), once for each species. The
Util/Scripting/eggbox_checker.py script can be used as a start-
ing point for this.

EggboxScale 1 eV (energy)
Defines the scale in which the Fourier components of the egg-box
energy are given in the EggboxRemove block.

6.11 Matrix elements of the Hamiltonian and overlap

NeglNonOverlapInt false (logical)
Logical variable to neglect or compute interactions between orbitals
which do not overlap. These come from the KB projectors. Neglect-
ing them makes the Hamiltonian more sparse, and the calculation
faster.
NOTE: Use with care!

SCF.Write.Extra false (logical)
Instructs SIESTA to write out a variety of files with the Hamiltonian
and density matrix.
The output depends on whether a Hamiltonian mixing or density
matrix mixing is performed (see SCF.Mixing).
These files are created

• H_MIXED; the Hamiltonian after mixing
• DM_OUT; the density matrix as calculated by the current iteration
• H_DMGEN; the Hamiltonian used to calculate the density matrix
• DM_MIXED; the density matrix after mixing

SaveHS true (logical)
Instructs to write the Hamiltonian and overlap matrices, as well
as other data required to generate bands and density of states, in
file SystemLabel.HSX. The .HSX format is more compact than the
traditional .HS, and the Hamiltonian, overlap matrix, and relative-

58

positions array (which is always output, even for gamma-point only
calculations) are in single precision.
The program hsx2hs in Util/HSX can be used to generate an old-
style .HS file if needed.
SIESTA produces also an .HSX file if the COOP.Write option is
active.
NOTE: Since 5.0 the SystemLabel.HSX file format has changed to
reduce disk-space and store data in double precision. This means
that the file is not backward compatible and any external utilities
should adapt their SystemLabel.HSX file reading. See e.g. Util/HSX
for details on the new implementation.
See also the Write.DMHS.NetCDF and
Write.DMHS.History.NetCDF options.

6.11.1 The auxiliary supercell

When using k-points, this auxiliary supercell is needed to compute prop-
erly the matrix elements involving orbitals in different unit cells. It is
computed automatically by the program at every geometry step.
Note that for gamma-point-only calculations there is an implicit “folding”
of matrix elements corresponding to the images of orbitals outside the unit
cell. If information about the specific values of these matrix elements is
needed (as for COOP/COHP analysis), one has to make sure that the
unit cell is large enough, or force the use of an aunxiliary supercell.

ForceAuxCell false (logical)
If true, the program uses an auxiliary cell even for gamma-point-only
calculations. This might be needed for COOP/COHP calculations,
as noted above, or in degenerate cases, such as when the cell is so
small that a given orbital “self-interacts” with its own images (via
direct overlap or through a KB projector). In this case, the diagonal
value of the overlap matrix S for this orbital is different from 1, and
an initialization of the DM via atomic data would be faulty. The
program corrects the problem to zeroth-order by dividing the DM
value by the corresponding overlap matrix entry, but the initial charge
density would exhibit distortions from a true atomic superposition

(See routine m_new_dm.F). The distortion of the charge density is a
serious problem for Harris functional calculations, so this option must
be enabled for them if self-folding is present. (Note that this should
not happen in any serious calculation...)

6.12 Calculation of the electronic structure

SIESTA can use three qualitatively different methods to determine the
electronic structure of the system. The first is standard diagonalization,
which works for all systems and has a cubic scaling with the size. The
second is based on the direct minimization of a special functional over
a set of trial orbitals. These orbitals can either extend over the entire
system, resulting in a cubic scaling algorithm, or be constrained within
a localization radius, resulting in a linear scaling algorithm. The former
is a recent implementation (described in 6.12.4), that can be viewed as
an equivalent approach to diagonalization in terms of the accuracy of the
solution; the latter is the historical O(N) method used by SIESTA (de-
scribed in 6.12.5); it scales in principle linearly with the size of the system
(only if the size is larger than the radial cutoff for the local solution wave-
functions), but is quite fragile and substantially more difficult to use, and
only works for systems with clearly separated occupied and empty states.
The default is to use diagonalization. The third method (PEXSI) is based
on the pole expansion of the Fermi-Dirac function and the direct compu-
tation of the density matrix via an efficient scheme of selected inversion
(see Sec 6.14).
The calculation of the H and S matrix elements is always done with an
O(N) method. The actual scaling is not linear for small systems, but it
becomes O(N) when the system dimensions are larger than the scale of
orbital rc’s.
The relative importance of both parts of the computation (matrix ele-
ments and solution) depends on the size and quality of the calculation.
The mesh cutoff affects only the matrix-element calculation; orbital cut-
off radii affect the matrix elements and all solvers except diagonalization;
the need for k-point sampling affects the solvers only, and the number of
basis orbitals affects them all.
In practice, the vast majority of users employ diagonalization (or the

59

OMM method) for the calculation of the electronic structure. This is so
because the vast majority of calculations (done for intermediate system
sizes) would not benefit from the O(N) or PEXSI solvers.

SolutionMethod diagon (string)
Character string to choose among diagonalization (diagon), cubic-
scaling minimization (OMM), Order-N (OrderN) solution of the
Kohn-Sham Hamiltonian, transiesta, the PEXSI method (PEXSI)
or the CheSS solver. In addition, the Dummy solver will just return
a slightly perturbed density-matrix without actually solving for the
electronic structure. This is useful for timing other routines.

6.12.1 Diagonalization options

NumberOfEigenStates 〈all orbitals〉 (integer)
depends on: Diag.Algorithm

This parameter allows the user to reduce the number of eigenstates
that are calculated from the maximum possible. The benefit is that,
for any calculation, the cost of the diagonalization is reduced by find-
ing fewer eigenvalues/eigenvectors. For example, during a geometry
optimisation, only the occupied states are required rather than the
full set of virtual orbitals. Note, that if the electronic temperature
is greater than zero then the number of partially occupied states in-
creases, depending on the band gap. The value specified must be
greater than the number of occupied states and less than the number
of basis functions.
If a negative number is passed it corresponds to the number of orbitals
above the total charge of the system. In effect it corresponds to the
number of orbitals above the Fermi level for zero temperature. I.e.
if −2 is specified for a system with 20 orbitals and 10 electrons it is
equivalent to 12.
Using this option can greatly speed up your calculations if used cor-
rectly.
NOTE: If experiencing PDORMTR errors in Γ calculations with
MRRR algorithm, it is because of a buggy ScaLAPACK implemen-
tation, simply use another algorithm.
NOTE: This only affects the MRRR, ELPA and Expert diago-

nalization routines.

Diag.WFS.Cache none|cdf (string)
deprecates: UseNewDiagk

Specify whether SIESTA should cache wavefunctions in the diago-
nalization routine. Without a cache, a standard two-pass procedure
is used. First eigenvalues are obtained to determine the Fermi level,
and then the wavefunctions are computed to build the density matrix.
Using a cache one can do everything in one go. However, this requires
substantial IO and performance may vary.

none The wavefunctions will not be cached and the standard two-pass
diagonalization method is used.

cdf The wavefunctions are stored in WFS.nc (NetCDF format) and
created from a single root node. This requires NetCDF support,
see Sec. 2.3.
NOTE: This is an experimental feature.
NOTE: It is not compatible with the Diag.ParallelOverK op-
tion.

Diag.Use2D true (logical)
Determine whether a 1D or 2D data decomposition should be used
when calling ScaLAPACK. The use of 2D leads to superior scaling on
large numbers of processors and is therefore the default. This option
only influences the parallel performance.
If Diag.BlockSize is different from BlockSize this flag defaults to
true, else if Diag.ProcessorY is 1 or the total number of processors,
then this flag will default to false.

Diag.ProcessorY ∼
√

N (integer)
depends on: Diag.Use2D

Set the number of processors in the 2D distribution along the rows.
Its default is equal to the lowest multiple of N (number of MPI cores)
below

√
N such that, ideally, the distribution will be a square grid.

The input is required to be a multiple of the total number of MPI
cores but SIESTA will reduce the input value such that it coincides
with this.

60

Once the lowest multiple closest to
√

N, or the input, is determined
the 2D distribution will be ProcessorY × N/ProcessorY, rows ×
columns.
NOTE: If the automatic correction (lowest multiple of MPI cores)
is 1 the default of Diag.Use2D will be false.

Diag.BlockSize 〈BlockSize〉 (integer)
depends on: Diag.Use2D

The block-size used for the 2D distribution in the ScaLAPACK calls.
This number greatly affects the performance of ScaLAPACK.
If the ScaLAPACK library is threaded this parameter should not be
too small. In any case it may be advantageous to run a few tests to
find a suitable value.
NOTE: If Diag.Use2D is set to false this flag is not used.

Diag.Algorithm Divide-and-Conquer|... (string)
deprecates: Diag.DivideAndConquer, Diag.MRRR, Diag.ELPA,

Diag.NoExpert

Select the algorithm when calculating the eigenvalues and/or eigen-
vectors.
The fastest routines are typically MRRR or ELPA which may be
significantly faster by specifying a suitable NumberOfEigenStates
value.
Currently the implemented solvers are:

divide-and-Conquer Use the divide-and-conquer algorithm.

divide-and-Conquer-2stage Use the divide-and-conquer 2stage al-
gorithm (fall-back to the divide-and-conquer if not available).

MRRR depends on: NumberOfEigenStates

Use the multiple relatively robust algorithm.
NOTE: The MRRR method is defaulted not to be compiled in,
however, if your ScaLAPACK library does contain the relevant
sources one may add this pre-processor flag -DSIESTA__MRRR.

MRRR-2stage depends on: NumberOfEigenStates

Use the 2-stage multiple relatively robust algorithm.
expert depends on: NumberOfEigenStates

Use the expert algorithm which allows calculating a subset of the
eigenvalues/eigenvectors.

expert-2stage depends on: NumberOfEigenStates

Use the 2-stage expert algorithm which allows calculating a subset
of the eigenvalues/eigenvectors.

noexpert|QR Use the QR algorithm.

noexpert-2stage|QR-2stage Use the 2-stage QR algorithm.

ELPA-1stage depends on: NumberOfEigenStates

Use the ELPA [1;10] 1-stage solver. Requires compilation of
SIESTA with ELPA, see Sec. 2.3.
This option is not compatible with Diag.ParallelOverK. In ad-
dition, when using a GPU-enabled version of ELPA it is important
to verify that Diag.BlockSize is a power of 2; if not, ELPA will
only run on CPU.

ELPA|ELPA-2stage depends on: NumberOfEigenStates

Use the ELPA [1;10] 2-stage solver. Requires compilation of
SIESTA with ELPA, see Sec. 2.3.
This option is not compatible with Diag.ParallelOverK. In ad-
dition, when using a GPU-enabled version of ELPA it is important
to verify that Diag.BlockSize is a power of 2; if not, ELPA will
only run on CPU.

NOTE: All the 2-stage solvers are (as of July 2017) only imple-
mented in the LAPACK library, so they will only be usable in serial
or when using Diag.ParallelOverK.
If found by CMake in the LAPACK library, 2-stage solvers will be
enabled automatically, by setting the preprocessor variable

-DSIESTA__DIAG_2STAGE

Previous versions of SIESTA shipped a copy of the relevant LA-
PACK files, including the 2-stage solvers. That might no longer be
the case, and there is no direct support for compiling those files with
CMake.
NOTE: This flag has precedence over the deprecated flags:
Diag.DivideAndConquer, Diag.MRRR, Diag.ELPA and

61

Diag.NoExpert. However, the default is taken from the deprecated
flags.

Diag.ELPA.GPU false (logical)
Newer versions of the ELPA library have optional support for GPUs.
This flag will request that GPU-specific code be used by the library.
To use this feature, GPU support has to be explicitly enabled during
compilation of the ELPA library. At present, detection of GPU sup-
port in the code is not fool-proof, so this flag should only be enabled
if GPU support is indeed available.

Diag.ELPA.GPU.String nvidia-gpu (string)
Newer versions of the ELPA library have optional support for GPUs.
This string will be used as the key to set the GPU feature in the
ELPA interface.
Traditionally it was just “gpu”, but recent versions use “nvidia-gpu”,
or “amd-gpu”, etc. This setting can still be overridden by the value
of the environment variable SIESTA_ELPA_GPU_STRING. Its default
value can be set at build time to match the characteristics of the
ELPA library and the host architecture, using the CMake variable
SIESTA_ELPA_GPU_STRING.

Diag.ParallelOverK false (logical)
For the diagonalization there is a choice in strategy about whether
to parallelise over the k points (true) or over the orbitals (false). k
point diagonalization is close to perfectly parallel but is only useful
where the number of k points is much larger than the number of
processors and therefore orbital parallelisation is generally preferred.
The exception is for metals where the unit cell is small, but the
number of k points to be sampled is very large. In this last case it is
recommend that this option be used.
NOTE: This scheme is not used for the diagonalizations involved in
the generation of the band-structure (as specified with BandLines
or BandPoints) or in the generation of wave-function information
(as specified with WaveFuncKPoints). In these cases the program
falls back to using parallelization over orbitals.

Diag.AbsTol 10−16 (real)

The absolute tolerance for the orthogonality of the eigenvectors. This
tolerance is only applicable for the solvers:
expert for both the serial and parallel solvers.
mrrr for the serial solver.

Diag.OrFac 10−3 (real)
Re-orthogonalization factor to determine when the eigenvectors
should be re-orthogonalized.
Only applicable for the expert serial and parallel solvers.

Diag.Memory 1 (real)
Whether the parallel diagonalization of a matrix is successful or not
can depend on how much workspace is available to the routine when
there are clusters of eigenvalues. Diag.Memory allows the user to
increase the memory available, when necessary, to achieve successful
diagonalization and is a scale factor relative to the minimum amount
of memory that ScaLAPACK might need.

Diag.UpperLower lower|upper (string)
Which part of the symmetric triangular part should be used in the
solvers.
NOTE: Do not change this variable unless you are performing bench-
marks. It should be fastest with the lower part.

Deprecated diagonalization options

Diag.MRRR false (logical)
depends on: NumberOfEigenStates

Use the MRRR method in ScaLAPACK for diagonalization. Specify-
ing a number of eigenvectors to store is possible through the symbol
NumberOfEigenStates (see above).
NOTE: The MRRR method is defaulted not to be compiled in, how-
ever, if your ScaLAPACK library does contain the relevant sources
one may add this pre-processor flag -DSIESTA__MRRR.
NOTE: Use Diag.Algorithm instead.

Diag.DivideAndConquer true (logical)

62

Logical to select whether the normal or Divide and Conquer algo-
rithms are used within the ScaLAPACK/LAPACK diagonalization
routines.
NOTE: Use Diag.Algorithm instead.

Diag.ELPA false (logical)
depends on: NumberOfEigenStates

See the ELPA articles [1;10] for additional information.
NOTE: It is not compatible with the Diag.ParallelOverK option.
NOTE: Use Diag.Algorithm instead.

Diag.NoExpert false (logical)
Logical to select whether the simple or expert versions of the ScaLA-
PACK/LAPACK routines are used. Usually the expert routines are
faster, but may require slightly more memory.
NOTE: Use Diag.Algorithm instead.

6.12.2 Output of eigenvalues and wavefunctions

This section focuses on the output of eigenvalues and wavefunctions pro-
duced during the (last) iteration of the self-consistent cycle, and associated
to the appropriate k-point sampling.
For band-structure calculations (which typically use a different set of k-
points) and specific requests for wavefunctions, see Secs. 6.15 and 6.16,
respectively.
The complete set of wavefunctions obtained during the last iteration
of the SCF loop will be written to a NetCDF file WFS.nc if the
Diag.WFS.Cache cdf option is in effect.
The complete set of wavefunctions obtained during the last iteration
of the SCF loop will be written to SystemLabel.fullBZ.WFSX if the
COOP.Write option is in effect.

WriteEigenvalues false (logical)
If true it writes the Hamiltonian eigenvalues for the sampling k⃗
points, in the main output file. If false, it writes them in the file
SystemLabel.EIG, which can be used by the Eig2DOS postprocess-

ing utility (in the Util/Eig2DOS directory) for obtaining the density
of states.
NOTE: this option only works for SolutionMethod which calcu-
lates the eigenvalues.

6.12.3 Occupation of electronic states and Fermi level

OccupationFunction FD (string)
String variable to select the function that determines the occupation
of the electronic states. These options are available:

FD The usual Fermi-Dirac occupation function is used.

MP The occupation function proposed by Methfessel and Paxton
(Phys. Rev. B, 40, 3616 (1989)), is used.

Cold The occupation function proposed by Marzari, Vanderbilt et.
al (PRL, 82, 16 (1999)), is used, this is commonly referred to as
cold smearing.

The smearing of the electronic occupations is done, in all cases, using
an energy width defined by the ElectronicTemperature variable.
Note that, while in the case of Fermi-Dirac, the occupations cor-
respond to the physical ones if the electronic temperature is set to
the physical temperature of the system, this is not the case in the
Methfessel-Paxton function. In this case, the tempeature is just a
mathematical artifact to obtain a more accurate integration of the
physical quantities at a lower cost. In particular, the Methfessel-
Paxton scheme has the advantage that, even for quite large smearing
temperatures, the obtained energy is very close to the physical en-
ergy at T = 0. Also, it allows a much faster convergence with respect
to k-points, specially for metals. Finally, the convergence to selfcon-
sistency is very much improved (allowing the use of larger mixing
coefficients).
For the Methfessel-Paxton case, and similarly for cold smearing, one
can use relatively large values for the ElectronicTemperature pa-
rameter. How large depends on the specific system. A guide can be
found in the article by J. Kresse and J. Furthmüller, Comp. Mat.
Sci. 6, 15 (1996).

63

If Methfessel-Paxton smearing is used, the order of the corresponding
Hermite polynomial expansion must also be chosen (see description
of variable OccupationMPOrder).
We finally note that, in both cases (FD and MP), once a finite tem-
perature has been chosen, the relevant energy is not the Kohn-Sham
energy, but the Free energy. In particular, the atomic forces are
derivatives of the Free energy, not the KS energy. See R. Wentzcov-
itch et al., Phys. Rev. B 45, 11372 (1992); S. de Gironcoli, Phys.
Rev. B 51, 6773 (1995); J. Kresse and J. Furthmüller, Comp. Mat.
Sci. 6, 15 (1996), for details.

OccupationMPOrder 1 (integer)
Order of the Hermite-Gauss polynomial expansion for the electronic
occupation functions in the Methfessel-Paxton scheme (see Phys.
Rev. B 40, 3616 (1989)). Specially for metals, higher order ex-
pansions provide better convergence to the ground state result, even
with larger smearing temperatures, and provide also better conver-
gence with k-points.
NOTE: only used if OccupationFunction is MP.

ElectronicTemperature 300 K (temperature/energy)
Temperature for occupation function. Useful specially for metals,
and to accelerate selfconsistency in some cases.

6.12.4 Orbital minimization method (OMM)

The OMM is an alternative cubic-scaling solver that uses a minimization
algorithm instead of direct diagonalization to find the occupied subspace.
The main advantage over diagonalization is the possibility of iteratively
reusing the solution from each SCF/MD step as the starting guess of the
following one, thus greatly reducing the time to solution. Typically, there-
fore, the first few SCF cycles of the first MD step of a simulation will be
slower than diagonalization, but the rest will be faster. The main disad-
vantages are that individual Kohn-Sham eigenvalues are not computed,
and that only a fixed, integer number of electrons at each k point/spin
is allowed. Therefore, only spin-polarized calculations with Spin.Fix are
allowed, and Spin.Total must be chosen appropriately. For non-Γ point

calculations, the number of electrons is set to be equal at all k points.
Non-collinear calculations (see Spin) are not supported at present. The
OMM implementation was initially developed by Fabiano Corsetti.
It is important to note that the OMM requires all occupied Kohn-Sham
eigenvalues to be negative; this can be achieved by applying a shift to the
eigenspectrum, controlled by ON.eta (in this case, ON.eta simply needs
to be higher than the HOMO level). If the OMM exhibits a pathologically
slow or unstable convergence, this is almost certainly due to the fact that
the default value of ON.eta (0.0 eV) is too low, and should be raised by
a few eV.

OMM.UseCholesky true (logical)
Select whether to perform a Cholesky factorization of the general-
ized eigenvalue problem; this removes the overlap matrix from the
problem but also destroys the sparsity of the Hamiltonian matrix.

OMM.Use2D true (logical)
Select whether to use a 2D data decomposition of the matrices for
parallel calculations. This generally leads to superior scaling for large
numbers of MPI processes.

OMM.UseSparse false (logical)
Select whether to make use of the sparsity of the Hamiltonian and
overlap matrices where possible when performing matrix-matrix mul-
tiplications (these operations are thus reduced from O(N3) to O(N2)
without loss of accuracy).
NOTE: not compatible
with OMM.UseCholesky, OMM.Use2D, or non-Γ point calcu-
lations

OMM.Precon -1 (integer)
Number of SCF steps for all MD steps for which to apply a precon-
ditioning scheme based on the overlap and kinetic energy matrices;
for negative values the preconditioning is always applied. Precondi-
tioning is usually essential for fast and accurate convergence (note,
however, that it is not needed if a Cholesky factorization is performed;
in such cases this variable will have no effect on the calculation).

64

NOTE: cannot be used with OMM.UseCholesky.

OMM.PreconFirstStep 〈OMM.Precon〉 (integer)
Number of SCF steps in the first MD step for which to apply the
preconditioning scheme; if present, this will overwrite the value given
in OMM.Precon for the first MD step only.

OMM.Diagon 0 (integer)
Number of SCF steps for all MD steps for which to use a standard
diagonalization before switching to the OMM; for negative values
diagonalization is always used, and so the calculation is effectively
equivalent to SolutionMethod diagon. In general, selecting the
first few SCF steps can speed up the calculation by removing the
costly initial minimization (at present this works best for Γ point
calculations).

OMM.DiagonFirstStep 〈OMM.Diagon〉 (integer)
Number of SCF steps in the first MD step for which to use a standard
diagonalization before switching to the OMM; if present, this will
overwrite the value given in OMM.Diagon for the first MD step
only.

OMM.BlockSize 〈BlockSize〉 (integer)
Blocksize used for distributing the elements of the matrix over MPI
processes. Specifically, this variable controls the dimension relating
to the trial orbitals used in the minimization (equal to the number
of occupied states at each k point/spin); the equivalent variable for
the dimension relating to the underlying basis orbitals is controlled
by BlockSize.

OMM.TPreconScale 10 Ry (energy)
Scale of the kinetic energy preconditioning (see C. K. Gan et al.,
Comput. Phys. Commun. 134, 33 (2001)). A smaller value indi-
cates more aggressive kinetic energy preconditioning, while an infi-
nite value indicates no kinetic energy preconditioning. In general, the
kinetic energy preconditioning is much less important than the tenso-
rial correction brought about by the overlap matrix, and so this value
will have fairly little impact on the overall performace of the precon-

ditioner; however, too aggressive kinetic energy preconditioning can
have a detrimental effect on performance and accuracy.

OMM.RelTol 10−9 (real)
Relative tolerance in the conjugate gradients minimization of the
Kohn-Sham band energy (see ON.Etol).

OMM.Eigenvalues false (logical)
Select whether to perform a diagonalization at the end of each MD
step to obtain the Kohn-Sham eigenvalues.

OMM.WriteCoeffs false (logical)
Select whether to write the coefficients of the solution orbitals to file
at the end of each MD step.

OMM.ReadCoeffs false (logical)
Select whether to read the coefficients of the solution orbitals from
file at the beginning of a new calculation. Useful for restarting
an interrupted calculation, especially when used in conjuction with
DM.UseSaveDM. Note that the same number of MPI processes
and values of OMM.Use2D, OMM.BlockSize, and BlockSize
must be used when restarting.

OMM.LongOutput false (logical)
Select whether to output detailed information of the conjugate gra-
dients minimization for each SCF step.

6.12.5 Order(N) calculations

The Ordern(N) subsystem is quite fragile and only works for systems with
clearly separated occupied and empty states. Note also that the option
to compute the chemical potential automatically does not yet work in
parallel.
NOTE: Since it is used less often, bugs creeping into the O(N) solver
have been more resilient than in more popular bits of the code. Work is
ongoing to clean and automate the O(N) process, to make the solver more
user-friendly and robust.

65

ON.functional Kim (string)
Choice of order-N minimization functionals:

Kim Functional of Kim, Mauri and Galli, PRB 52, 1640 (1995).

Ordejon-Mauri Functional of Ordejón et al, or Mauri et al, see PRB
51, 1456 (1995). The number of localized wave functions (LWFs)
used must coincide with Nel/2 (unless spin polarized). For the
initial assignment of LWF centers to atoms, atoms with even num-
ber of electrons, n, get n/2 LWFs. Odd atoms get (n + 1)/2 and
(n− 1)/2 in an alternating sequence, ir order of appearance (con-
trolled by the input in the atomic coordinates block).

files Reads localized-function information from a file and chooses au-
tomatically the functional to be used.

ON.MaxNumIter 1000 (integer)
Maximum number of iterations in the conjugate minimization of the
electronic energy, in each SCF cycle.

ON.Etol 10−8 (real)
Relative-energy tolerance in the conjugate minimization of the elec-
tronic energy. The minimization finishes if 2(En − En−1)/(En +
En−1) ≤ ON.Etol.

ON.eta 0 eV (energy)
Fermi level parameter of Kim et al.. This should be in the energy
gap, and tuned to obtain the correct number of electrons. If the
calculation is spin polarised, then separate Fermi levels for each spin
can be specified.

ON.eta.alpha 0 eV (energy)
Fermi level parameter of Kim et al. for alpha spin electrons. This
should be in the energy gap, and tuned to obtain the correct number
of electrons. Note that if the Fermi level is not specified individually
for each spin then the same global eta will be used.

ON.eta.beta 0 eV (energy)
Fermi level parameter of Kim et al. for beta spin electrons. This
should be in the energy gap, and tuned to obtain the correct number

of electrons. Note that if the Fermi level is not specified individually
for each spin then the same global eta will be used.

ON.RcLWF 9.5 Bohr (length)
Localization redius for the Localized Wave Functions (LWF’s).

ON.ChemicalPotential false (logical)
Specifies whether to calculate an order-N estimate of the Chemical
Potential, by the projection method (Goedecker and Teter, PRB 51,
9455 (1995); Stephan, Drabold and Martin, PRB 58, 13472 (1998)).
This is done by expanding the Fermi function (or density matrix)
at a given temperature, by means of Chebyshev polynomials, and
imposing a real space truncation on the density matrix. To obtain a
realistic estimate, the temperature should be small enough (typically,
smaller than the energy gap), the localization range large enough
(of the order of the one you would use for the Localized Wannier
Functions), and the order of the polynomial expansion sufficiently
large (how large depends on the temperature; typically, 50-100).
NOTE: this option does not work in parallel. An alternative is
to obtain the approximate value of the chemical potential using an
initial diagonalization.

ON.ChemicalPotential.Use false (logical)
Specifies whether to use the calculated estimate of the Chemical Po-
tential, instead of the parameter ON.eta for the order-N energy
functional minimization. This is useful if you do not know the po-
sition of the Fermi level, typically in the beginning of an order-N
run.
NOTE: this overrides the value of ON.eta
and ON.ChemicalPotential. Also, this option does not work in
parallel. An alternative is to obtain the approximate value of the
chemical potential using an initial diagonalization.

ON.ChemicalPotential.Rc 9.5 Bohr (length)
Defines the cutoff radius for the density matrix or Fermi operator in
the calculation of the estimate of the Chemical Potential.

ON.ChemicalPotential.Temperature 0.05 Ry

66

(temperature/energy)
Defines the temperature to be used in the Fermi function expansion
in the calculation of the estimate of the Chemical Potential. To have
an accurate results, this temperature should be smaller than the gap
of the system.

ON.ChemicalPotential.Order 100 (integer)
Order of the Chebishev expansion to calculate the estimate of the
Chemical Potential.

ON.LowerMemory false (logical)
If true, then a slightly reduced memory algorithm is used in the
3-point line search during the order N minimisation. Only affects
parallel runs.

Output of localized wavefunctions At the end of each conjugate
gradient minimization of the energy functional, the LWF’s are stored on
disk. These can be used as an input for the same system in a restart, or
in case something goes wrong. The LWF’s are stored in sparse form in
file SystemLabel.LWF
It is important to keep very good care of this file, since the first mini-
mizations can take MANY steps. Loosing them will mean performing the
whole minimization again. It is also a good practice to save it periodically
during the simulation, in case a mid-run restart is necessary.

ON.UseSaveLWF false (logical)
Instructs to read the localized wave functions stored in file
SystemLabel.LWF by a previous run.

6.13 The CheSS solver

The CheSS solver uses an expansion based on Chebyshev polynomials to
calculate the density matrix, thereby exploiting the sparsity of the overlap
and Hamiltonian matrices. It works best for systems exhibiting a finite
HOMO-LUMO gap and a small spectral width.
CheSS exhibits a two level parallelization using MPI and OpenMP and

can scale to many thousand cores. It can be downloaded and installed
freely from https://launchpad.net/chess.
See Sec. 2.3 for details on installing SIESTA with CheSS. Note that this
is still an experimental feature. Feedback is welcome.

6.13.1 Input parameters

Usually CheSS only requires little user input, as the default values for
the input parameters work in general quite well. Moreover CheSS has the
capability to determine certain optimal values on its own. The only input
parameters which usually require some human action are the values of the
buffers required for the matrix multiplications to calculate the Chebyshev
polynomials.

CheSS.Buffer.Kernel 4.0 Bohr (length)
Buffer for the density kernel within the CheSS calculation.

CheSS.Buffer.Mult 6.0 Bohr (length)
Buffer for the matrix vector multiplication within the CheSS calcu-
lation.

CheSS.Fscale 10−1 Ry (energy)
Initial guess for the error function decay length (will be adjusted
automatically).

CheSS.FscaleLowerbound 10−2 Ry (energy)
Lower bound for the error function decay length.

CheSS.FscaleUpperbound 10−1 Ry (energy)
Upper bound for the error function decay length.

CheSS.evlowH −2.0 Ry (energy)
Initial guess for the lower bound of the eigenvalue spectrum of the
Hamiltonian matrix, will be adjusted automatically if chosen unprop-
erly.

CheSS.evhighH 2.0 Ry (energy)
Initial guess for the upper bound of the eigenvalue spectrum of the

67

https://launchpad.net/chess

Hamiltonian matrix, will be adjusted automatically if chosen unprop-
erly.

CheSS.evlowS 0.5 (real)
Initial guess for the lower bound of the eigenvalue spectrum of the
overlap matrix, will be adjusted automatically if chosen unproperly.

CheSS.evhighS 1.5 (real)
Initial guess for the upper bound of the eigenvalue spectrum of the
overlap matrix, will be adjusted automatically if chosen unproperly.

6.14 The PEXSI solver

The PEXSI solver is based on the combination of the pole expansion of
the Fermi-Dirac function and the computation of only a selected (sparse)
subset of the elements of the matrices (H − zlS)−1 at each pole zl.
This solver can efficiently use the sparsity pattern of the Hamiltonian
and overlap matrices generated in SIESTA, and for large systems has
a much lower computational complexity than that associated with the
matrix diagonalization procedure. It is also highly scalable.
The PEXSI technique can be used in this version of SIESTA to evaluate
the electron density, free energy, atomic forces, density of states and lo-
cal density of states without computing any eigenvalue or eigenvector of
the Kohn-Sham Hamiltonian. It can achieve an accuracy fully compara-
ble to that obtained from a matrix diagonalization procedure for general
systems, including metallic systems at low temperature.
The current implementation of the PEXSI solver in SIESTA makes
use of a full fine-grained-level interface to the PEXSI library (http:
//pexsi.org), and can deal with (collinear) spin-polarization, but it is
still restricted to Γ-point calculations. Newer versions of SIESTA (in
the Gitlab development site) can use the current PEXSI library through
the ELSI library interface, which offers some more options, although not
currently the density-of-states calculation.
The following is a brief description of the input-file parameters relevant
to the workings of the PEXSI solver. For more background, including a
discussion of the conditions under which this solver is competitive, the

user is referred to the paper Lin et al. [9], and references therein.
The technology involved in the PEXSI solver can also be used to com-
pute densities of states and “local densities of states”. These features
are documented in this section and also linked to in the relevant general
sections.

6.14.1 Pole handling

Note that the temperature for the Fermi-Dirac distribution which is pole-
expanded is taken directly from the ElectronicTemperature parameter
(see Sec. 6.12.3).

PEXSI.NumPoles 40 (integer)
Effective number of poles used to expand the Fermi-Dirac function.
When using the pole-generation method used in this legacy interface
(contour integral), the allowed values for NumPoles are: 10, 20, 30,
..., 110, and 120. Typically 60 to 100 poles are needed to get an
accuracy comparable to diagonalization.

PEXSI.deltaE 3 Ry (energy)
In principle PEXSI.deltaE should be Emax − µ, where Emax is
the largest eigenvalue for (H,S), and µ is the chemical poten-
tial. However, due to the fast decay of the Fermi-Dirac function,
PEXSI.deltaE can often be chosen to be much lower. In practice
we set the default to be 3 Ryd. This number should be set to be larger
if the difference between Tr[H · DM] and Tr[S ∗ EDM] (displayed in
the output if PEXSI.Verbosity is at least 2) does not decrease with
the increase of the number of poles.

PEXSI.Gap 0 Ry (energy)
Spectral gap. This can be set to be 0 in most cases.

6.14.2 Parallel environment and control options

MPI.Nprocs.SIESTA 〈total processors〉 (integer)
Specifies the number of MPI processes to be used in those parts of
the program (such as Hamiltonian setup and computation of forces)

68

http://pexsi.org
http://pexsi.org

which are outside of the PEXSI solver itself. This is needed in large-
scale calculations, for which the number of processors that can be
used by the PEXSI solver is much higher than those needed by other
parts of the code.
Note that when the PEXSI solver is not used, this parameter will
simply reduce the number of processors actually used by all parts of
the program, leaving the rest idle for the whole calculation. This will
adversely affect the computing budget, so take care not to use this
option in that case.

PEXSI.NP-per-pole 4 (integer)
Number of MPI processes used to perform the PEXSI computations
in one pole. If the total number of MPI processes is smaller than
this number times the number of poles (times the spin multiplicity),
the PEXSI library will compute appropriate groups of poles in se-
quence. The minimum time to solution is achieved by increasing this
parameter as much as it is reasonable for parallel efficiency, and using
enough MPI processes to allow complete parallelization over poles.
On the other hand, the minimum computational cost (in the sense of
computing budget) is obtained by using the minimum value of this
parameter which is compatible with the memory footprint. The ad-
ditional parallelization over poles will be irrelevant for cost, but it
will obviously affect the time to solution.
Internally, SIESTA computes the processor grid parameters nprow
and npcol for the PEXSI library, with nprow >= npcol, and as
similar as possible. So it is best to choose PEXSI.NP-per-pole as
the product of two similar numbers.
NOTE: The total number of MPI processes must be divisible by
PEXSI.NP-per-pole. In case of spin-polarized calculations, the
total number of MPI processes must be divisible by PEXSI.NP-
per-pole times 2.

PEXSI.Ordering 1 (integer)
For large matrices, symbolic factorization should be performed in
parallel to reduce the wall clock time. This can be done using
ParMETIS/PT-Scotch by setting PEXSI.Ordering to 0. However,
we have been experiencing some instability problem of the symbolic

factorization phase when ParMETIS/PT-Scotch is used. In such
case, for relatively small matrices one can either use the sequential
METIS (PEXSI.Ordering = 1) or set PEXSI.NP-symbfact to
1.

PEXSI.NP-symbfact 1 (integer)
Number of MPI processes used to perform the symbolic factorizations
needed in the PEXSI procedure. A default value should be given to
reduce the instability problem. From experience so far setting this
to be 1 is most stable, but going beyond 64 does not usually improve
much.

PEXSI.Verbosity 1 (integer)
It determines the amount of information logged by the solver in dif-
ferent places. A value of zero gives minimal information.

• In the files logPEXSI[0-9]+, the verbosity level is interpreted by
the PEXSI library itself. In the latest version, when PEXSI is
compiled in RELEASE mode, only logPEXSI0 is given in the
output. This is because we have observed that simultaneous
output for all processors can have very significant cost for a
large number of processors (>10000).

• In the SIESTA output file, a verbosity level of 1 and above will
print lines (prefixed by &o) indicating the various heuristics used
at each scf step. A verbosity level of 2 and above will print extra
information.

The design of the output logging is still in flux.

6.14.3 Electron tolerance and the PEXSI solver

PEXSI.num-electron-tolerance 10−4 (real)
Tolerance in the number of electrons for the PEXSI solver. At each
iteration of the solver, the number of electrons is computed as the
trace of the density matrix times the overlap matrix, and compared
with the total number of electrons in the system. This tolerance can
be fixed, or dynamically determined as a function of the degree of
convergence of the self-consistent-field loop.

69

PEXSI.num-electron-tolerance-lower-bound 10−2 (real)
See PEXSI.num-electron-tolerance-upper-bound.

PEXSI.num-electron-tolerance-upper-bound 0.5 (real)
The upper and lower bounds for the electron tolerance are used to
dynamically change the tolerance in the PEXSI solver, following the
simple algorithm:

tolerance = Max(lower_bound,Min(dDmax, upper_bound))

The first scf step uses the upper bound of the tolerance range, and
subsequent steps use progressively lower values, in correspondence
with the convergence-monitoring variable dDmax.
NOTE: This simple update schedule tends to work quite well. There
is an experimental algorithm, documented only in the code itself,
which allows a finer degree of control of the tolerance update.

PEXSI.mu-max-iter 10 (integer)
Maximum number of iterations of the PEXSI solver. Note that in
this implementation there is no fallback procedure if the solver fails
to converge in this number of iterations to the prescribed tolerance.
In this case, the resulting density matrix might still be re-normalized,
and the calculation able to continue, if the tolerance for non normal-
ized DMs is not set too tight. For example,

(true_no_electrons/no_electrons) - 1.0
DM.NormalizationTolerance 1.0e-3

will allow a 0.1% error in the number of electrons. For obvious rea-
sons, this feature, which is also useful in connection with the dynamic
tolerance update, should not be abused.
If the parameters of the PEXSI solver are adjusted correctly (includ-
ing a judicious use of inertia-counting to refine the µ bracket), we
should expect that the maximum number of solver iterations needed
is around 3

PEXSI.mu −0.6 Ry (energy)
The starting guess for the chemical potential for the PEXSI solver.
Note that this value does not affect the initial µ bracket for the

inertia-count refinement, which is controlled by PEXSI.mu-min
and PEXSI.mu-max. After an inertia-count phase, µ will be re-
set, and further iterations inherit this estimate, so this parameter is
only relevant if there is no inertia-counting phase.

PEXSI.mu-pexsi-safeguard 0.05 Ry (energy)
NOTE: This feature has been deactivated for now. The condition
for starting a new phase of inertia-counting is that the Newton es-
timation falls outside the current bracket. The bracket is expanded
accordingly.
The PEXSI solver uses Newton’s method to update the estimate of
µ. If the attempted change in µ is larger than PEXSI.mu-pexsi-
safeguard, the solver cycle is stopped and a fresh phase of inertia-
counting is started.

6.14.4 Inertia-counting

PEXSI.Inertia-Counts 3 (integer)
In a given scf step, the PEXSI procedure can optionally employ a µ
bracket-refinement procedure based on inertia-counting. Typically,
this is used only in the first few scf steps, and this parameter deter-
mines how many. If positive, inertia-counting will be performed for
exactly that number of scf steps. If negative, inertia-counting will
be performed for at least that number of scf steps, and then for as
long as the scf cycle is not yet deemed to be near convergence (as
determined by the PEXSI.safe-dDmax-no-inertia parameter).
NOTE: Since it is cheaper to perform an inertia-count phase than
to execute one iteration of the solver, it pays to call the solver only
when the µ bracket is sufficiently refined.

PEXSI.mu-min −1 Ry (energy)
The lower bound of the initial range for µ used in the inertia-count
refinement. In runs with multiple geometry iterations, it is used only
for the very first scf iteration at the first geometry step. Further
iterations inherit possibly refined values of this parameter.

PEXSI.mu-max 0 Ry (energy)
The upper bound of the initial range for µ used in the inertia-count

70

refinement. In runs with multiple geometry iterations, it is used only
for the very first scf iteration at the first geometry step. Further
iterations inherit possibly refined values of this parameter.

PEXSI.safe-dDmax-no-inertia 0.05 (real)
During the scf cycle, the variable conventionally called dDmax mon-
itors how far the cycle is from convergence. If PEXSI.Inertia-
Counts is negative, an inertia-counting phase will be performed in
a given scf step for as long as dDmax is greater than PEXSI.safe-
dDmax-no-inertia.
NOTE: Even though dDmax represents historically how far from
convergence the density-matrix is, the same mechanism applies to
other forms of mixing in which other magnitudes are monitored for
convergence (Hamiltonian, charge density...).

PEXSI.lateral-expansion-inertia 3 eV (energy)
If the correct µ is outside the bracket provided to the inertia-counting
phase, the bracket is expanded in the appropriate direction(s) by this
amount.

PEXSI.Inertia-mu-tolerance 0.05 Ry (energy)
One of the criteria for early termination of the inertia-counting phase.
The value of the estimated µ (basically the center of the resulting
brackets) is monitored, and the cycle stopped if its change from one
iteration to the next is below this parameter.

PEXSI.Inertia-max-iter 5 (integer)
Maximum number of inertia-count iterations per cycle.

PEXSI.Inertia-min-num-shifts 10 (integer)
Minimum number of sampling points for inertia counts.

PEXSI.Inertia-energy-width-tolerance
〈PEXSI.Inertia-mu-tolerance〉 (energy)
One of the criteria for early termination of the inertia-counting phase.
The cycle stops if the width of the resulting bracket is below this
parameter.

6.14.5 Re-use of µ information accross iterations

This is an important issue, as the efficiency of the PEXSI procedure de-
pends on how close a guess of µ we have at our disposal. There are two
types of information re-use:

• Bracketing information used in the inertia-counting phase.

• The values of µ itself for the solver.

PEXSI.safe-width-ic-bracket 4 eV (energy)
By default, the µ bracket used for the inertia-counting phase in
scf steps other than the first is taken as an interval of width
PEXSI.safe-width-ic-bracket around the latest estimate of µ.

PEXSI.safe-dDmax-ef-inertia 0.1 (real)
The change in µ from one scf iteration to the next can be crudely
estimated by assuming that the change in the band structure energy
(estimated as Tr∆HDM) is due to a rigid shift. When the scf cycle
is near convergence, this ∆µ can be used to estimate the new initial
bracket for the inertia-counting phase, rigidly shifting the output
bracket from the previous scf step. The cycle is assumed to be near
convergence when the monitoring variable dDmax is smaller than
PEXSI.safe-dDmax-ef-inertia.
NOTE: Even though dDmax represents historically how far from
convergence the density-matrix is, the same mechanism applies to
other forms of mixing in which other magnitudes are monitored for
convergence (Hamiltonian, charge density...).
NOTE: This criterion will lead in general to tighter brackets than the
previous one, but oscillations in H in the first few iterations might
make it more dangerous. More information from real use cases is
needed to refine the heuristics in this area.

PEXSI.safe-dDmax-ef-solver 0.05 (real)
When the scf cycle is near convergence, the ∆µ estimated as above
can be used to shift the initial guess for µ for the PEXSI solver. The
cycle is assumed to be near convergence when the monitoring variable
dDmax is smaller than PEXSI.safe-dDmax-ef-solver.

71

NOTE: Even though dDmax represents historically how far from
convergence the density-matrix is, the same mechanism applies to
other forms of mixing in which other magnitudes are monitored for
convergence (Hamiltonian, charge density...).

PEXSI.safe-width-solver-bracket 4 eV (energy)
In all cases, a “safe” bracket around µ is provided even in direct calls
to the PEXSI solver, in case a fallback to executing internally a cycle
of inertia-counting is needed. The size of the bracket is given by
PEXSI.safe-width-solver-bracket

6.14.6 Calculation of the density of states by inertia-counting

The cumulative or integrated density of states (INTDOS) can be easily
obtained by inertia-counting, which involves a factorization of H − σS
for varying σ (see SIESTA-PEXSI paper). Apart from the DOS-specific
options below, the “ordering”, “symbolic factorization”, and “pole group
size” (re-interpreted as the number of MPI processes dealing with a given
σ) options are honored.
The current version of the code generates a file with the energy-INTDOS
information, PEXSI_INTDOS, which can be later processed to gener-
ate the DOS by direct numerical differentiation, or a SIESTA-style
SystemLabel.EIG file (using the Util/PEXSI/intdos2eig program).

PEXSI.DOS false (logical)
Whether to compute the DOS (actually, the INTDOS — see above)
using the PEXSI technology.

PEXSI.DOS.Emin −1 Ry (energy)
Lower bound of energy window to compute the DOS in.
See PEXSI.DOS.Ef.Reference.

PEXSI.DOS.Emax 1 Ry (energy)
Upper bound of energy window to compute the DOS in.
See PEXSI.DOS.Ef.Reference.

PEXSI.DOS.Ef.Reference true (logical)

If this flag is true, the bounds of the energy window
(PEXSI.DOS.Emin and PEXSI.DOS.Emax) are with respect to
the Fermi level.

PEXSI.DOS.NPoints 200 (integer)
The number of points in the energy interval at which the DOS is
computed. It is rounded up to the nearest multiple of the number of
available factorization groups, as the operations are perfectly parallel
and there will be no extra cost involved.

6.14.7 Calculation of the LDOS by selected-inversion

The local-density-of-states (LDOS) around a given reference energy ε,
representing the contribution to the charge density of the states with
eigenvalues in the vicinity of ε, can be obtained formally by a “one-pole
expansion” with suitable broadening (see SIESTA-PEXSI paper).
Apart from the LDOS-specific options below, the “ordering”, “verbosity”,
and “symbolic factorization” options are honored.
The current version of the code generates a real-space grid file with
extension SystemLabel.LDOS, and (if netCDF is compiled-in) a file
LDOS.grid.nc.
NOTE: The LDOS computed with this procedure is not exactly the same
as the vanilla SIESTA LDOS, which uses an explicit energy interval. Here
the broadening acts around a single value of the energy.

PEXSI.LDOS false (logical)
Whether to compute the LDOS using the PEXSI technology.
NOTE: this flag is not compatible with LocalDensityOfStates.

PEXSI.LDOS.Energy 0 Ry (energy)
The (absolute) energy at which to compute the LDOS.

PEXSI.LDOS.Broadening 0.01 Ry (energy)
The broadening parameter for the LDOS.

PEXSI.LDOS.NP-per-pole 〈PEXSI.NP-per-pole〉 (integer)
The value of this parameter supersedes PEXSI.NP-per-pole for

72

the calculation of the LDOS, which otherwise would keep idle all but
PEXSI.NP-per-pole MPI processes, as it essentially consists of a
“one-pole” procedure.

6.15 Band-structure analysis

This calculation of the band structure is performed optionally after
the geometry loop finishes, and the output information written to the
SystemLabel.bands file (see below for the format).

BandLinesScale pi/a (string)
Specifies the scale of the k vectors given in BandLines and Band-
Points below. The options are:

pi/a k-vector coordinates are given in Cartesian coordinates, in units
of π/a, where a is the lattice constant

ReciprocalLatticeVectors k vectors are given in reciprocal-lattice-
vector coordinates

NOTE: you might need to define explicitly a LatticeConstant tag in
your fdf file if you do not already have one, and make it consistent
with the scale of the k-points and any unit-cell vectors you might
have already defined.

%block BandLines 〈None〉 (block)
Specifies the lines along which band energies are calculated (usually
along high-symmetry directions). An example for an FCC lattice is:

%block BandLines
1 1.000 1.000 1.000 L # Begin at L

20 0.000 0.000 0.000 \Gamma # 20 points from L to gamma
25 2.000 0.000 0.000 X # 25 points from gamma to X
30 2.000 2.000 2.000 \Gamma # 30 points from X to gamma

%endblock BandLines

where the last column is an optional LATEX label for use in the band
plot. If only given points (not lines) are required, simply specify 1 in
the first column of each line. The first column of the first line must
be always 1.
NOTE: this block is not used if BandPoints is present.

%block BandPoints 〈None〉 (block)
Band energies are calculated for the list of arbitrary k points given
in the block. Units defined by BandLinesScale as for BandLines.
The generated SystemLabel.bands file will contain the k point co-
ordinates (in a.u.) and the corresponding band energies (in eV).
Example:

%block BandPoints
0.000 0.000 0.000 # This is a comment. eg this is gamma
1.000 0.000 0.000
0.500 0.500 0.500

%endblock BandPoints

See also BandLines.

WriteKbands false (logical)
If true, it writes the coordinates of the k⃗ vectors defined for band
plotting, to the main output file.

WriteBands false (logical)
If true, it writes the Hamiltonian eigenvalues corresponding to the
k⃗ vectors defined for band plotting, in the main output file.

6.15.1 Format of the .bands file

FermiEnergy (all energies in eV) \\
kmin, kmax (along the k-lines path, i.e. range of k in the band plot) \\
Emin, Emax (range of all eigenvalues) \\
NumberOfBands, NumberOfSpins (1 or 2), NumberOfkPoints \\
k1, ((ek(iband,ispin,1),iband=1,NumberOfBands),ispin=1,NumberOfSpins) \\
k2, ek \\
. \\
. \\
. \\

klast, ek \\
NumberOfkLines \\
kAtBegOfLine1, kPointLabel \\
kAtEndOfLine1, kPointLabel \\

. \\

73

. \\

. \\
kAtEndOfLastLine, kPointLabel \\

The gnubands postprocessing utility program (found in the Util/Bands
directory) reads the SystemLabel.bands for plotting. See the Band-
Lines data descriptor above for more information.

6.15.2 Output of wavefunctions associated to bands

The user can optionally request that the wavefunctions corresponding
to the computed bands be written to file. They are written to the
SystemLabel.bands.WFSX file. The relevant options are:

WFS.Write.For.Bands false (logical)
Instructs the program to compute and write the wave functions as-
sociated to the bands specified (by a BandLines or a BandPoints
block) to the file SystemLabel.WFSX.
The information in this file might be useful, among other things, to
generate “fatbands” plots, in which both band eigenvalues and infor-
mation about orbital projections is presented. See the fat program
in the Util/COOP directory for details.

WFS.Band.Min 1 (integer)
Specifies the lowest band index of the wave-functions to be written to
the file SystemLabel.WFSX for each k-point (all k-points in the band
set are affected).

WFS.Band.Max number of orbitals (integer)
Specifies the highest band index of the wave-functions to be written
to the file SystemLabel.WFSX for each k-point (all k-points in the
band set are affected).

6.16 Output of selected wavefunctions

The user can optionally request that specific wavefunctions are written to
file. These wavefunctions are re-computed after the geometry loop (if any)

finishes, using the last (presumably converged) density matrix produced
during the last self-consistent field loop (after a final mixing). They are
written to the SystemLabel.selected.WFSX file.
Note that the complete set of wavefunctions obtained during the last
iteration of the SCF loop will be written to SystemLabel.fullBZ.WFSX if
the COOP.Write option is in effect.
Note that the complete set of wavefunctions obtained during the last
iteration of the SCF loop will be written to a NetCDF file WFS.nc if the
Diag.UseNewDiagk option is in effect.

WaveFuncKPointsScale pi/a (string)
Specifies the scale of the k vectors given in WaveFuncKPoints be-
low. The options are:

pi/a k-vector coordinates are given in Cartesian coordinates, in units
of π/a, where a is the lattice constant

ReciprocalLatticeVectors k vectors are given in reciprocal-lattice-
vector coordinates

%block WaveFuncKPoints 〈None〉 (block)
Specifies the k-points at which the electronic wavefunction coefficients
are written. An example for an FCC lattice is:

%block WaveFuncKPoints
0.000 0.000 0.000 from 1 to 10 # Gamma wavefuncs 1 to 10
2.000 0.000 0.000 1 3 5 # X wavefuncs 1,3 and 5
1.500 1.500 1.500 # K wavefuncs, all
%endblock WaveFuncKPoints

The index of a wavefunction is defined by its energy, so that the first
one has lowest energy.
The user can also narrow the energy-range used with the
WFS.Energy.Min and WFS.Energy.Max options (both take an
energy (with units) as extra argument – see section 6.18.3). Care
should be taken to make sure that the actual values of the options
make sense.
The output of the wavefunctions in described in Section 6.16.

WriteWaveFunctions false (logical)

74

If true, it writes to the output file a list of the wavefunctions actu-
ally written to the SystemLabel.selected.WFSX file, which is always
produced.

The unformatted WFSX file contains the information of the k-points for
which wavefunctions coefficients are written, and the energies and coef-
ficients of each wavefunction which was specified in the input file (see
WaveFuncKPoints descriptor above). It also contains information on
the atomic species and the orbitals for postprocessing purposes.
NOTE: The SystemLabel.WFSX file is in a more compact form than
the old WFS, and the wavefunctions are output in single precision. The
Util/WFS/wfsx2wfs program can be used to convert to the old format.
The readwf and readwfsx postprocessing utilities programs (found in the
Util/WFS directory) read the SystemLabel.WFS or SystemLabel.WFSX
files, respectively, and generate a readable file.

6.17 Density of states

6.17.1 Total density of states

There are several options to obtain the total density of states:

• The Hamiltonian eigenvalues for the SCF sampling k⃗ points can be
dumped into SystemLabel.EIG in a format analogous to System-
Label.bands, but without the kmin, kmax, emin, emax information,
and without the abscissa. The Eig2DOS postprocessing utility can
be then used to obtain the density of states. See the WriteEigen-
values descriptor.

• As a side-product of a partial-density-of-states calculation (see be-
low)

• As one of the files produced by the Util/COOP/mprop during the
off-line analysis of the electronic structure. This method allows the
flexibility of specifying energy ranges and resolutions at will, without
re-running SIESTA See Sec. 6.18.3.

• Using the inertia-counting routines in the PEXSI solver (see
Sec. 6.14.6).

The k-point specification for the partial and local density of states cal-
culations described in the following two sections may optionally be given
by

DOS.kgrid.? kgrid.?
The generic DOS k-grid specification.
See Sec. 6.5 for details. If any of DOS.kgrid.MonkhorstPack,
DOS.kgrid.Cutoff or DOS.kgrid.File is present, they will be
used, otherwise fall back to the SCF k-point sampling (kgrid.?).
NOTE: DOS.kgrid.? options are the default values for Projected-
DensityOfStates and LocalDensityOfStates, but they do not af-
fect the sampling used to generate the SystemLabel.EIG file. This
feature might be implemented in a later version.

6.17.2 Partial (projected) density of states

There are two options to obtain the partial density of states

• Using the options below

• Using the Util/COOP/mprop program for the off-line analysis of the
electronic structure in PDOS mode. This method allows the flexi-
bility of specifying energy ranges, orbitals, and resolutions at will,
without re-running SIESTA. See Sec. 6.18.3.

%block ProjectedDensityOfStates 〈None〉 (block)
Instructs to write the Total Density Of States (Total DOS) and the
Projected Density Of States (PDOS) on the basis orbitals, between
two given energies, in files SystemLabel.DOS and SystemLabel.PDOS,
respectively. The block must be a single line with the energies of the
range for PDOS projection, (relative to the program’s zero, i.e. the
same as the eigenvalues printed by the program), the peak width (an
energy) for broadening the eigenvalues, the number of points in the
energy window, and the energy units. An example is:

%block ProjectedDensityOfStates
-20.00 10.00 0.200 500 eV

%endblock ProjectedDensityOfStates

75

Optionally one may start the line with EF as this:
%block ProjectedDensityOfStates

EF -20.00 10.00 0.200 500 eV
%endblock ProjectedDensityOfStates

This specifies the energies with respect to the Fermi-level.
The broadening of the states is the Gaussian distribution with the
peak width being w:

f(E) = 1
w
√

π
exp

[
−

(
E − ϵ

w

)2
]

, (14)

where ϵ is the eigenvalue of the state. Note that the peak width is
equivalent to σ

√
2 = w, with σ being the standard deviation.

By default the projected density of states is generated for the same
grid of points in reciprocal space as used for the SCF calculation.
However, a separate set of K-points, usually on a finer grid, can be
generated by using PDOS.kgrid.? Note that if a gamma point
calculation is being used in the SCF part, especially as part of a
geometry optimisation, and this is then to be run with a grid of K-
points for the PDOS calculation it is more efficient to run the SCF
phase first and then restart to perform the PDOS evaluation using
the density matrix saved from the SCF phase.
NOTE: the two energies of the range must be ordered, with lowest
first.
The total DOS is stored in a file called SystemLabel.DOS. The format
of this file is:

Energy value, Total DOS (spin up), Total DOS (spin down)

The Projected Density Of States for all the orbitals in the unit cell
is dumped sequentially into a file called SystemLabel.PDOS. This
file is structured using spacing and xml tags. A machine-readable
(but not very human readable) xml file SystemLabel.PDOS.xml
is also produced. Both can be processed by the program in
Util/pdosxml. The SystemLabel.PDOS file can be processed by
utilites in Util/Contrib/APostnikov.
In all cases, the units for the DOS are (number of states/eV), and

the Total DOS, g(ϵ), is normalized as follows:∫ ∞

−∞
g(ϵ)dϵ = number of basis orbitals in unit cell (15)

PDOS.kgrid.? 〈DOS.kgrid.?〉
This is PDOS only specification for the k-points. I.e. if one wishes
to use a specific k-point sampling. These options are equivalent to
the kgrid.Cutoff , kgrid.MonkhorstPack and kgrid.File options.
Refer to them for additional details.
If PDOS.kgrid.? does not exist, then DOS.kgrid.? is checked,
and if that does not exist then kgrid.? options are used.

6.17.3 Local density of states

The LDOS is formally the DOS weighted by the amplitude of the corre-
sponding wavefunctions at different points in space, and is then a function
of energy and position. SIESTA can output the LDOS integrated over a
range of energies. This information can be used to obtain simple STM im-
ages in the Tersoff-Hamann approximation (See Util/STM/simple-stm).

%block LocalDensityOfStates 〈None〉 (block)
Instructs to write the LDOS, integrated between two given energies,
at the mesh used by DHSCF, in file SystemLabel.LDOS. This file can
be read by routine IORHO, which may be used by an application
program in later versions. The block must be a single line with the
energies of the range for LDOS integration (relative to the program’s
zero, i.e. the same as the eigenvalues printed by the program) and
their units. An example is:

%block LocalDensityOfStates
-3.50 0.00 eV

%endblock LocalDensityOfStates

One may optionally write EF as the first word to specify that the
energies are with respect to the Fermi level

%block LocalDensityOfStates
EF -3.50 0.00 eV

%endblock LocalDensityOfStates

76

would calculate the LDOS from −3.5 eV below the Fermi-level up to
the Fermi-level.
One may use LDOS.kgrid.? to fine-tune the k-point sampling in
the LDOS calculation.
NOTE: the two energies of the range must be ordered, with lowest
first.
NOTE: this flag is not compatible with PEXSI.LDOS.
If netCDF support is compiled in, the file LDOS.grid.nc is produced.

LDOS.kgrid.? 〈DOS.kgrid.?〉
This is LDOS only specification for the k-points. I.e. if one wishes
to use a specific k-point sampling. These options are equivalent to
the kgrid.Cutoff , kgrid.MonkhorstPack and kgrid.File options.
Refer to them for additional details.
If LDOS.kgrid.? does not exist, then DOS.kgrid.? is checked, if
that does not exist then kgrid.? are used.

6.18 Options for chemical analysis

6.18.1 Mulliken charges and overlap populations

WriteMullikenPop 0 (integer)
It determines the level of Mulliken analysis performed. This uses the
density-matrix (which by definition contains information integrated
up to the Fermi level) and the overlap matrix. Values accepted are:

0 none

1 Prints the atomic and orbital charges.

2 In addition to the Mulliken charges, it prints the Mulliken overlap
populations, grouped by atom.

3 In addition to the Mulliken charges, and the atom-grouped over-
laps, it prints the overlaps orbital by orbital (this can be quite
verbose).

The order of the orbitals in the population lists is defined by the order
of atoms. For each atom, populations for PAO orbitals and double-
z, triple-z, etc... derived from them are displayed first for all the

angular momenta. Then, populations for perturbative polarization
orbitals are written. Within a l-shell be aware that the order is not
conventional, being y, z, x for p orbitals, and xy, yz, z2, xz, and
x2 − y2 for d orbitals.
Mulliken charges are sometimes used to estimate the “net charge” on
an atom, which is an ill-defined concept to begin with. In addition,
this method gives results that depend on the basis set used. For
alternative ways to estimate the atomic charges, see 6.18.2 on Voronoi
and Hirshfeld charges.
Atom-based Mulliken overlaps are useful to estimate the level of
chemical interaction among two atoms.
For a finer analysis of the chemical bonding, it is advised to employ
the COOP/COHP curves (see 6.18.3).

MullikenInSCF false (logical)
If true, the Mulliken analysis will be carried out for every SCF step
at the level of detail specified in WriteMullikenPop. Useful when
dealing with SCF problems, otherwise too verbose.

SpinInSCF true (logical)
If true, the size and components of the (total) spin polarization will be
printed at every SCF step. This is analogous to the MullikenInSCF
feature. Enabled by default for calculations involving spin.

6.18.2 Voronoi and Hirshfeld atomic population analysis

Write.HirshfeldPop false (logical)
If true, the program calculates and prints the Hirshfeld “net” atomic
populations on each atom in the system. For a definition of the
Hirshfeld charges, see Hirshfeld, Theo Chem Acta 44, 129 (1977) and
Fonseca et al, J. Comp. Chem. 25, 189 (2003). Hirshfeld charges
are more reliable than Mulliken charges, specially for large basis sets.
Value (dQatom) is the total net charge of the atom: the variation from
the neutral charge, in units of |e|: positive (negative) values indicate
deficiency (excess) of electrons in the atom.
The output (here shown for a non-collinear calculation) looks like
this:

77

Hirshfeld Atomic Populations:
Atom # dQatom Atom pop S Sx Sy Sz Species

1 0.01003 7.98997 3.04744 0.18550 0.00000 3.04179 fe_nc
2 -0.02008 8.02008 1.41240 1.41240 0.00000 -0.00000 fe_nc
3 0.01003 7.98997 3.04744 0.18550 0.00000 -3.04179 fe_nc

Total 1.78340 1.78340 0.00000 0.00000

Where the column dQatom is the net atomic charge as noted above.
Column Atom pop is the number of electrons on the atom (com-
parable to Mulliken charges). Columns S, Sx, Sy and Sz are the
accumulated spin components for the atom.

Write.VoronoiPop false (logical)
If true, the program calculates and prints the Voronoi “net” atomic
populations on each atom in the system. For a definition of the
Voronoi charges, see Bickelhaupt et al, Organometallics 15, 2923
(1996) and Fonseca et al, J. Comp. Chem. 25, 189 (2003). Voronoi
charges are more reliable than Mulliken charges, specially for large
basis sets. Value (dQatom) is the total net charge of the atom: the
variation from the neutral charge, in units of |e|: positive (negative)
values indicate deficiency (excess) of electrons in the atom.
See Write.HirshfeldPop for detailed output explanation.

The Hirshfeld and Voronoi populations (partial charges) are computed by
default only at the end of the program (i.e., for the final geometry, after
self-consistency). The following options allow more control:

PartialChargesAtEveryGeometry false (logical)
The Hirshfeld and Voronoi populations are computed after self-
consistency is achieved, for all the geometry steps.

PartialChargesAtEverySCFStep false (logical)
The Hirshfeld and Voronoi populations are computed for every step
of the self-consistency process.

Performance note: The default behavior (computing at the end of the
program) involves an extra calculation of the charge density.

6.18.3 Crystal-Orbital overlap and hamilton populations
(COOP/COHP)

These curves are quite useful to analyze the electronic structure to get
insight about bonding characteristics. See the Util/COOP directory for
more details. The COOP.Write option must be activated to get the
information needed.
References:

• Original COOP reference: Hughbanks, T.; Hoffmann, R., J. Am.
Chem. Soc., 1983, 105, 3528.

• Original COHP reference: Dronskowski, R.; Blöchl, P. E., J. Phys.
Chem., 1993, 97, 8617.

• A tutorial introduction: Dronskowski, R. Computational Chemistry
of Solid State Materials; Wiley-VCH: Weinheim, 2005.

• Online material maintained by R. Dronskowski’s group: http://
www.cohp.de/

COOP.Write false (logical)
Instructs the program to generate SystemLabel.fullBZ.WFSX
(packed wavefunction file) and SystemLabel.HSX (H, S and X_ ij
file), to be processed by Util/COOP/mprop to generate COOP/COHP
curves, (projected) densities of states, etc.
The .WFSX file is in a more compact form than the usual .WFS, and
the wavefunctions are output in single precision. The Util/wfsx2wfs
program can be used to convert to the old format. The HSX file is
in a more compact form than the usual HS, and the Hamiltonian,
overlap matrix, and relative-positions array (which is always output,
even for gamma-point only calculations) are in single precision.
The user can narrow the energy-range used (and save some file space)
by using the WFS.Energy.Min and WFS.Energy.Max options
(both take an energy (with units) as extra argument), and/or the
WFS.Band.Min and WFS.Band.Max options. Care should be
taken to make sure that the actual values of the options make sense.
Note that the band range options could also affect the output of wave-
functions associated to bands (see section 6.15.2), and that the en-

78

http://www.cohp.de/
http://www.cohp.de/

ergy range options could also affect the output of user-selected wave-
functions with the WaveFuncKPoints block (see section 6.16).

WFS.Energy.Min −∞ (energy)
Specifies the lowest value of the energy (eigenvalue) of the wave-
functions to be written to the file SystemLabel.fullBZ.WFSX for
each k-point (all k-points in the BZ sampling are affected).

WFS.Energy.Max ∞ (energy)
Specifies the highest value of the energy (eigenvalue) of the wave-
functions to be written to the file SystemLabel.fullBZ.WFSX for
each k-point (all k-points in the BZ sampling are affected).

6.19 Optical properties

OpticalCalculation false (logical)
If specified, the imaginary part of the dielectric function will be cal-
culated and stored in a file called SystemLabel.EPSIMG. The calcu-
lation is performed using the simplest approach based on the dipolar
transition matrix elements between different eigenfunctions of the
self-consistent Hamiltonian. For molecules the calculation is per-
formed using the position operator matrix elements, while for solids
the calculation is carried out in the momentum space formulation.
Corrections due to the non-locality of the pseudopotentials are intro-
duced in the usual way.

Optical.Energy.Minimum 0 Ry (energy)
This specifies the minimum of the energy range in which the fre-
quency spectrum will be calculated.

Optical.Energy.Maximum 10 Ry (energy)
This specifies the maximum of the energy range in which the fre-
quency spectrum will be calculated.

Optical.Broaden 0 Ry (energy)
If this is value is set then a Gaussian broadening will be applied to
the frequency values.

Optical.Scissor 0 Ry (energy)

Because of the tendency of DFT calculations to under estimate the
band gap, a rigid shift of the unoccupied states, known as the scissor
operator, can be added to correct the gap and thereby improve the
calculated results. This shift is only applied to the optical calculation
and no where else within the calculation.

Optical.NumberOfBands all bands (integer)
This option controls the number of bands that are included in the
optical property calculation. Clearly this number must be larger than
the number of occupied bands and less than or equal to the number of
basis functions (which determines the number of unoccupied bands
available). Note, while including all the bands may be the most
accurate choice this will also be the most expensive!

%block Optical.Mesh 〈None〉 (block)
This block contains 3 numbers that determine the mesh size used for
the integration across the Brillouin zone. For example:

%block Optical.Mesh
5 5 5

%endblock Optical.Mesh

The three values represent the number of mesh points in the direction
of each reciprocal lattice vector.

Optical.OffsetMesh false (logical)
If set to true, then the mesh is offset away from the gamma point for
odd numbers of points.

Optical.PolarizationType polycrystal (string)
This option has three possible values that represent the type of po-
larization to be used in the calculation. The options are

polarized implies the application of an electric field in a given direc-
tion

unpolarized implies the propagation of light in a given direction

polycrystal In the case of the first two options a direction in space
must be specified for the electric field or propagation using the
Optical.Vector data block.

79

%block Optical.Vector 〈None〉 (block)
This block contains 3 numbers that specify the vector direction for
either the electric field or light propagation, for a polarized or unpo-
larized calculation, respectively. A typical block might look like:

%block Optical.Vector
1.0 0.0 0.5

%endblock Optical.Vector

6.20 Macroscopic polarization

%block PolarizationGrids 〈None〉 (block)
If specified, the macroscopic polarization will be calculated using the
geometric Berry phase approach (R.D. King-Smith, and D. Vander-
bilt, PRB 47, 1651 (1993)). In this method the electronic contri-
bution to the macroscopic polarization, along a given direction, is
calculated using a discretized version of the formula

Pe,∥ = ifqe

8π3

∫
A

dk⊥

M∑
n=1

∫ |G∥|

0
dk∥⟨ukn|

δ

δk∥
|ukn⟩ (16)

where f is the occupation (2 for a non-magnetic system), qe the
electron charge, M is the number of occupied bands (the system
must be an insulator), and ukn are the periodic Bloch functions. G∥
is the shortest reciprocal vector along the chosen direction.
As it can be seen in formula (16), to compute each component of the
polarization we must perform a surface integration of the result of a
1-D integral in the selected direction. The grids for the calculation
along the direction of each of the three lattice vectors are specified
in the block PolarizationGrids.

%block PolarizationGrids
10 3 4 yes
2 20 2 no
4 4 15

%endblock PolarizationGrids

All three grids must be specified, therefore a 3× 3 matrix of integer
numbers must be given: the first row specifies the grid that will
be used to calculate the polarization along the direction of the first

lattice vector, the second row will be used for the calculation along
the the direction of the second lattice vector, and the third row for
the third lattice vector. The numbers in the diagonal of the matrix
specifie the number of points to be used in the one dimensional line
integrals along the different directions. The other numbers specifie
the mesh used in the surface integrals. The last column specifies if
the bidimensional grids are going to be diplaced from the origin or
not, as in the Monkhorst-Pack algorithm (PRB 13, 5188 (1976)).
This last column is optional. If the number of points in one of the
grids is zero, the calculation will not be performed for this particular
direction.
For example, in the given example, for the computation in the di-
rection of the first lattice vector, 15 points will be used for the line
integrals, while a 3× 4 mesh will be used for the surface integration.
This last grid will be displaced from the origin, so Γ will not be in-
cluded in the bidimensional integral. For the directions of the second
and third lattice vectors, the number of points will be 20 and 2× 2,
and 15 and 4× 4, respectively.
It has to be stressed that the macroscopic polarization can only be
meaningfully calculated using this approach for insulators. Therefore,
the presence of an energy gap is necessary, and no band can cross the
Fermi level. The program performs a simple check of this condition,
just by counting the electrons in the unit cell (the number must
be even for a non-magnetic system, and the total spin polarization
must have an integer value for spin polarized systems), however is
the responsability of the user to check that the system under study
is actually an insulator (for both spin components if spin polarized).
The total macroscopic polarization, given in the output of the pro-
gram, is the sum of the electronic contribution (calculated as the
Berry phase of the valence bands), and the ionic contribution, which
is simply defined as the sum of the atomic positions within the unit
cell multiply by the ionic charges (

∑Na
i Ziri). In the case of the

magnetic systems, the bulk polarization for each spin component has
been defined as

Pσ = Pσ
e + 1

2

Na∑
i

Ziri (17)

Na is the number of atoms in the unit cell, and ri and Zi are the

80

positions and charges of the ions.
It is also worth noting, that the macroscopic polarization given by
formula (16) is only defined modulo a “quantum” of polarization
(the bulk polarization per unit cell is only well defined modulo fqeR,
being R an arbitrary lattice vector). However, the experimentally
observable quantities are associated to changes in the polarization
induced by changes on the atomic positions (dynamical charges),
strains (piezoelectric tensor), etc... The calculation of those changes,
between different configurations of the solid, will be well defined as
long as they are smaller than the “quantum”, i.e. the perturbations
are small enough to create small changes in the polarization.

BornCharge false (logical)
If true, the Born effective charge tensor is calculated for each atom
by finite differences, by calculating the change in electric polariza-
tion (see PolarizationGrids) induced by the small displacements
generated for the force constants calculation (see MD.TypeOfRun
FC):

Z∗
i,α,β = Ω0

e

∂Pα

∂ui,β

∣∣∣∣∣
q=0

(18)

where e is the charge of an electron and Ω0 is the unit cell volume.
To calculate the Born charges it is necessary to specify both the
Born charge flag and the mesh used to calculate the polarization, for
example:

%block PolarizationGrids
7 3 3
3 7 3
3 3 7

%endblock PolarizationGrids
BornCharge True

The Born effective charge matrix is then written to the file
SystemLabel.BC.
The method by which the polarization is calculated may introduce an
arbitrary phase (polarization quantum), which in general is far larger
than the change in polarization which results from the atomic dis-
placement. It is removed during the calculation of the Born effective

charge tensor.
The Born effective charges allow the calculation of LO-TO splittings
and infrared activities. The version of the Vibra utility code in which
these magnitudes are calculated is not yet distributed with SIESTA,
but can be obtained form Tom Archer (archert@tcd.ie).

6.21 Maximally Localized Wannier Functions.
Interface with the wannier90 code

wannier90 (http://www.wannier.org) is a code to generate maximally
localized wannier functions according to the original Marzari and Vander-
bilt recipe.
A wrapper interface between siesta and wannier90 (version 3.1.0) has
been implemented, so that wannier90 can be called from siesta on-the-
fly, as well as used as a post-processing tool.
It is strongly recommended to read the original papers on which this
method is based and the documentation of wannier90 code. Here we
shall focus only on those internal SIESTA variables required to produce
the files that will be processed by wannier90.

6.21.1 wannier90 as a postprocessing tool

This interface is analogous to that found in other programs. The user
first runs wannier90 in pre-processing mode to get a .nnkp file. Then
SIESTA is run with the appropriate options to generate the files needed
by a wannierization run with wannier90.
A complete list of examples and tests (including molecules, metals, semi-
conductors, insulators, magnetic systems, plotting of Fermi surfaces or
interpolation of bands), can be downloaded from
http:
//personales.unican.es/junqueraj/Wannier-examples.tar.gz

NOTE: The Bloch functions produced by a first-principles code have
arbitrary phases that depend on the number of processors used and other
possibly non-reproducible details of the calculation. In what follows it
is essential to maintain consistency in the handling of the overlap and

81

http://www.wannier.org
http://personales.unican.es/junqueraj/Wannier-examples.tar.gz
http://personales.unican.es/junqueraj/Wannier-examples.tar.gz

Bloch-function files produced and fed to wannier90.

Siesta2Wannier90.WriteMmn false (logical)
This flag determines whether the overlaps between the periodic part
of the Bloch states at neighbour k-points are computed and dumped
into a file in the format required by wannier90. These overlaps are
defined in Eq. (27) in the paper by N. Marzari et al., Review of
Modern Physics 84, 1419 (2012), or Eq. (1.7) of the Wannier90 User
Guide, Version 2.0.1.
The k-points for which the overlaps will be computed are read from
a .nnkp file produced by wannier90. It is strongly recommended for
the user to read the corresponding user guide.
The overlap matrices are written in a file with extension .mmn.

Siesta2Wannier90.WriteAmn false (logical)
This flag determines whether the overlaps between Bloch states and
trial localized orbitals are computed and dumped into a file in the
format required by wannier90. These projections are defined in Eq.
(16) in the paper by N. Marzari et al., Review of Modern Physics
84, 1419 (2012), or Eq. (1.8) of the Wannier90 User Guide, Version
2.0.1.
The localized trial functions to use are taken from the .nnkp file
produced by wannier90. It is strongly recommended for the user to
read the corresponding user guide.
The overlap matrices are written in a file with extension .amn.

Siesta2Wannier90.WriteEig false (logical)
Flag that determines whether the Kohn-Sham eigenvalues (in eV)
at each point in the Monkhorst-Pack mesh required by wannier90
are written to file. This file is mandatory in wannier90 if any of
disentanglement, plot_bands, plot_fermi_surface or hr_plot options
are set to true in the wannier90 input file.
The eigenvalues are written in a file with extension .eigW. This ex-
tension is chosen to avoid name clashes with SIESTA’s standard
eigenvalue file in case-insensitive filesystems.

Siesta2Wannier90.WriteUnk false (logical)

Produces UNKXXXXX.Y files which contain the periodic part of a Bloch
function in the unit cell on a grid given by global unk_nx, unk_ny,
unk_nz variables. The name of the output files is assumed to have
the previous form, where the XXXXXX refer to the k-point index (from
00001 to the total number of k-points considered), and the Y refers
to the spin component (1 or 2)
The periodic part of the Bloch functions is defined by

u
nk⃗

(r⃗) =
∑
R⃗ µ

cnµ(k⃗)eik⃗·(r⃗µ+R⃗ −r⃗)ϕµ(r⃗ − r⃗µ − R⃗), (19)

where ϕµ(r⃗− r⃗µ− R⃗) is a basis set atomic orbital centered on atom µ

in the unit cell R⃗, and cnµ(k⃗) are the coefficients of the wave function.
The latter must be identical to the ones used for wannierization in
Mmn. (See the above comment about arbitrary phases.)

Siesta2Wannier90.UnkGrid1 〈mesh points along A〉 (integer)
Number of points along the first lattice vector in the grid where the
periodic part of the wave functions will be plotted.

Siesta2Wannier90.UnkGrid2 〈mesh points along B〉 (integer)
Number of points along the second lattice vector in the grid where
the periodic part of the wave functions will be plotted.

Siesta2Wannier90.UnkGrid3 〈mesh points along C〉 (integer)
Number of points along the third lattice vector in the grid where the
periodic part of the wave functions will be plotted.

Siesta2Wannier90.UnkGridBinary true (logical)
Flag that determines whether the periodic part of the wave function
in the real space grid is written in binary format (default) or in ASCII
format.

Siesta2Wannier90.NumberOfBands occupied bands (integer)
In spin unpolarized calculations, number of bands that will be ini-
tially considered by SIESTA to generate the information required by
wannier90. Note that it should be at least as large as the index of the
highest-lying band in the wannier90 post-processing. For example,
if the wannierization is going to involve bands 3 to 5, the SIESTA

82

number of bands should be at least 5. Bands 1 and 2 should appear
in a “excluded” list.
NOTE: you are highly encouraged to explicitly specify the number
of bands.

Siesta2Wannier90.NumberOfBandsUp
〈Siesta2Wannier90.NumberOfBands〉 (integer)
In spin-polarized calculations, number of bands with spin up that
will be initially considered by SIESTA to generate the information
required by wannier90.

Siesta2Wannier90.NumberOfBandsDown
〈Siesta2Wannier90.NumberOfBands〉 (integer)
In spin-polarized calculations, number of bands with spin down that
will be initially considered by SIESTA to generate the information
required by wannier90.

6.21.2 wannier90 called on-the-fly within siesta

A wrapper interface to wannier90 can be compiled and called directly
from siesta. This presents several advantages:

• No need to prepare two different input files.

• No need to run wannier90 in pre-processing mode.

• We can use the basis set of siesta (numerical atomic orbitals) as
the initial guess for the projections.

• Wannierization of different manifolds can be done in the same run
of siesta.

• The unitary matrices connecting the Bloch and the Wannier repre-
sentations are available within siesta.

• The coefficients of the Wannier functions in the basis of the atomic
orbitals of the supercell in siesta are written in a file with
SystemLabel.WANNX extension. Then, the Wannier functions can
be plotted using denchar, following the same method as for the
wave functions.

Further details of the compilation of SIESTA with this functional-
ity can be found in the file External/Wannier/README.md. Note also
the (slightly outdated) presentation https://personales.unican.es/
junqueraj/JavierJunquera_files/Metodos/Wannier/
Exercise-Wannier90-within-siesta.pdf

%block Wannier.Manifolds 〈None〉 (block)
Each line denotes the name of a manifold to be processed by Wan-
nier90.
Options for each manifold is specified in the
Wannier.Manifold.<>

%block Wannier.Manifold.<> 〈None〉 (block)
Each line represents a setting for the Wannier manifold to be pro-
cessed.

bands Two integers specifying the initial and final band of the man-
ifold to be wannierized.
NOTE: required input

trial-orbitals Indices of the orbitals that will be used as localized
trial orbitals in the first step of the minimization of the spreading.
The user has to specify the same number of atomic orbitals as the
number of Wannier functions required. For the sake of readiness,
the number of trial orbitals can be split in several lines, all of
them starting with [trial-orbitals]. These indices can be found by
inspection of the SystemLabel.ORB_INDX file. If there are negative
integers in this line, then the projectors will be generated à-la-
Wannier90, with the instructions given in the WannierProjectors
block.
If there are negative numbers, it is not strictly required that they
must appear after the list of positive indices.
NOTE: required input

spreading.nitt Number of iterations that wannier90 will carry out
to minimize the spreading. If zero, then the procedure is the same
as a Löwdin orthonormalization. In such a case, the resulting Wan-
nier function will keep the symmetry of the trial projection func-
tion, but it will not be maximally localized.

83

https://personales.unican.es/junqueraj/JavierJunquera_files/Metodos/Wannier/Exercise-Wannier90-within-siesta.pdf
https://personales.unican.es/junqueraj/JavierJunquera_files/Metodos/Wannier/Exercise-Wannier90-within-siesta.pdf
https://personales.unican.es/junqueraj/JavierJunquera_files/Metodos/Wannier/Exercise-Wannier90-within-siesta.pdf

wannier-plot Instructs wannier90 to produce the files required to
plot the Wannier functions (if w90.in.siesta.compute.unk is set
to true). The integer refers to the size of the supercell for plotting
the Wannier functions (see the variable wannier.plot.supercell
in the wannier90 User’s Guide). This will produce files with the
.xsf extension, that can be directly plotted with xcrysden.

fermi-surface-plot Is the file required to plot the Fermi surface com-
puted? If true, this will produce files with the .bxsf extension, that
can be directly plotted with xcrysden.

write-hr Is the file with the Hamiltonian in real space in a basis of
Wannier functions written? If true, this will produce files with the
_hr.dat extension.

write-tb Is the file with the tight-binding parameters in a basis
of Wannier functions written? (this includes the lattice vectors,
Hamiltonian in real space, and position operator in a basis of Wan-
nier functions. If true, this will produce files with the _tb.dat
extension.

write-unk Are the files that contain the periodic part of a Bloch
function in the unit cell on a grid computed? If true, files like
those described in Siesta2Wannier90.WriteUnk are written for
this manifold, and then the corresponding .xsf files directly read-
able by xcrysden will be produced. The computation of the UNK
files might be rather expensive. To plot the shape of the Wannier
functions, the expansion of the Wannier functions in the basis of
Numerical Atomic Orbitals to produce .WFSX files, and the sub-
sequent use of denchar is recommended.
If a disentanglement procedure is required two extra lines are
mandatory:

window It refers to the bottom and top of the outer energy window
for band disentanglement. The units for the energy are introduced
as the last character string of the line.

window.frozen It refers to the bottom and top of the inner energy
window for band disentanglement. The units for the energy are
introduced as the last character string of the line. This is the
energy window where some Bloch states are forced to be preserved

identically in the projected manifold.

threshold Specification of the threshold for the real part of the co-
efficients of a Wannier in a basis of NAO that will be written in
a SystemLabel.WANNX extension file. This file can be used to plot
the Wannier functions using denchar, following the same method
as for the wave functions. This threshold is particularized for a
particular manifold.

An example of a manifold:
%block Wannier.Manifold.second

bands 21 23
trial-orbitals [24 25 27]
spreading.nitt 0
wannier_plot 3
fermi_surface_plot true
write_hr true
write_tb true

%endblock

%block Wannier.Projectors 〈projection functions as in
wannier90〉 (block)
Information on the projection functions à-la-wannier90, used to con-
struct the initial guesses for the unitary transformations.
These are used when some of the atomic orbitals in the trial-orbitals
lines of the block Wannier.Manifold.<> are negative.
For instance, to specify the projectors for the bottom of the
conduction band of bulk SrTiO3, we can write a block Wan-
nier.Manifold.<> as

%block Wannier.Manifold.example
Indices of the initial and final band of the manifold
bands 21 23
Number of bands for Wannier transformation
trial-orbitals -1 -2 -3
spreading.nitt 0 # Number of iterations for the minimization of \Omega
wannier-plot 3 # Plot the Wannier function
fermi-surface-plot # Plot the Fermi surface
write-hr # Write the Hamiltonian in the WF basis
write-tb # Write lattice vectors, Hamiltonian, and position operator in WF basis

%endblock

84

Then, the three projector functions that will be generated following
the recipe of wannier90 will be

%block Wannier.Projectors.example
0.5 0.5 0.5 2 2 1 0.00 0.00 1.00 1.00 0.00 0.00 1.00
0.5 0.5 0.5 2 3 1 0.00 0.00 1.00 1.00 0.00 0.00 1.00
0.5 0.5 0.5 2 5 1 0.00 0.00 1.00 1.00 0.00 0.00 1.00

%endblock

The different lines in this block are written following the wannier90
format provided in the .nnkp file.
centre: three real numbers; projection function centre in crystallo-
graphic co-ordinates relative to the direct lattice vectors.
l mr r: three integers; l and mr specify the angular part Θlmr (θ, φ),
and r specifies the radial part Rr(r) of the projection function (see
Tables 3.1, 3.2 and 3.3 of the wannier90 User’s Guide).
z-axis: three real numbers; default is 0.0 0.0 1.0; defines the axis from
which the polar angle θ in spherical polar coordinates is measured.
x-axis: three real numbers; must be orthogonal to z-axis default
is 1.0 0.0 0.0 or a vector perpendicular to z-axis if z-axis is given;
defines the axis from with the azimuthal angle φ in spherical polar
coordinates is measured.
zona: real number; the value of Z

a associated with the radial part of
the atomic orbital. Units are in reciprocal Angstrom.

Wannier.Manifolds.Threshold 10−6 (real)
Global specification of the threshold for the real part of the coef-
ficients of a Wannier in a basis of NAO that will be written in a
SystemLabel.WANNX extension file. This file can be used to plot the
Wannier functions using denchar, following the same method as for
the wave functions.
Individual manifolds can be controlled via
Wannier.Manifold.<>.threshold

Wannier.Manifolds.Unk false (logical)
Global flag that determines whether the periodic part of the
wave function in the real space grid will be computed (as using
Siesta2Wannier90.WriteUnk), and whether the files xsf directly read-
able by xcrysden will be produced.

Individual manifolds can be controlled via
Wannier.Manifold.<>.write-unk.
The computation of the UNK files might be rather expensive. To
plot the shape of the Wannier functions, the expansion of the Wan-
nier functions in the basis of Numerical Atomic Orbitals to produce
SystemLabel.WFSX files, and the subsequent use of denchar is rec-
ommended.

Wannier.k Γ-point (list/block)
Dimension of the Monkhorst-Pack grid of k-points that will be used
during the wannierization. The overlap matrices between periodic
parts of the wavefunctions at neighbour k-points in this grid will be
computed.

Wannier.k [4 4 4]
Or equivalently
%block Wannier.k

4 4 4
%endblock

6.22 Systems with net charge or dipole, and electric fields

NetCharge 0 (real)
Specify the net charge of the system (in units of |e|). For charged sys-
tems, the energy converges very slowly versus cell size. For molecules
or atoms, a Madelung correction term is applied to the energy to
make it converge much faster with cell size (this is done only if the
cell is SC, FCC or BCC). For other cells, or for periodic systems
(chains, slabs or bulk), this energy correction term can not be ap-
plied, and the user is warned by the program. It is not advised to
do charged systems other than atoms and molecules in SC, FCC or
BCC cells, unless you know what you are doing.
Use: For example, the F− ion would have NetCharge -1 , and the
Na+ ion would have NetCharge 1. Fractional charges can also be
used.
NOTE: Do-
ing non-neutral charge calculations with Slab.DipoleCorrection
is discouraged.

85

SimulateDoping false (logical)
This option instructs the program to add a background charge density
to simulate doping. The new “doping” routine calculates the net
charge of the system, and adds a compensating background charge
that makes the system neutral. This background charge is constant
at points of the mesh near the atoms, and zero at points far from the
atoms. This simulates situations like doped slabs, where the extra
electrons (holes) are compensated by opposite charges at the material
(the ionized dopant impurities), but not at the vacuum. This serves
to simulate properly doped systems in which there are large portions
of vacuum, such as doped slabs.
See Tests/sic-slab.

%block ExternalElectricField 〈None〉 (block)
It specifies an external electric field for molecules, chains and slabs.
The electric field should be orthogonal to “bulk directions”, like those
parallel to a slab (bulk electric fields, like in dielectrics or ferro-
electrics, are not allowed). If it is not, an error message is issued
and the components of the field in bulk directions are suppressed au-
tomatically. The input is a vector in Cartesian coordinates, in the
specified units. Example:

%block ExternalElectricField
0.000 0.000 0.500 V/Ang

%endblock ExternalElectricField

Starting with version 4.0, applying an electric field perpendicu-
lar to a slab will by default enable the slab dipole correction, see
Slab.DipoleCorrection. To reproduce older calculations, set this
correction option explicitly to false in the input file.
When examining a variety of electric fields it may be highly advan-
tageous to re-use the SystemLabel.DM from a previous calculation
with an electric field close to the current one.

Slab.DipoleCorrection ?|true|false|charge|vacuum|none
(string)

depends on: ExternalElectricField

If not false, SIESTA calculates the electric field required to compen-
sate the dipole of the system at every iteration of the self-consistent

cycle.
The dipole correction only works for Fourier transformed Poisson
solutions of the Hartree potential since that will introduce a com-
pensating field in the vacuum region to counter any inherent dipole
in the system. Do not use this option together with NetCharge
(charged systems).
There are two ways of calculating the dipole of the system:

charge|true The dipole of the system is calculated via

D = −e

∫
(r− r0)δρ(r) (20)

where r0 is the dipole origin, see Slab.DipoleCorrection.Origin,
and δρ is valence pseudocharge density minus the atomic valence
pseudocharge densities.

vacuum The electric field of the system is calculated via

E ∝
∫∫

dr⊥DV (r)
∣∣∣∣
rvacuum

(21)

where rvacuum is a point located in the vacuum region, see
Slab.DipoleCorrection.Vacuum. Once the field is determined
it is converted to an intrinsic system dipole.
This feature is mainly intended for Geometry.Charge calcula-
tions where Slab.DipoleCorrection charge may fail if the dipole
center is determined incorrectly.
For regular systems both this and charge should yield approxi-
mately (down to numeric precision) the same dipole moments.

The dipole correction should exactly compensate the electric field at
the vacuum level thus allowing one to treat asymmetric slabs (includ-
ing systems with an adsorbate on one surface) and compute proper-
ties such as the work funcion of each of the surfaces.
NOTE: If the program is fed a starting density matrix from an
uncorrected calculation (i.e., with an exagerated dipole), the first
iteration might use a compensating field that is too big, with the risk
of taking the system out of the convergence basin. In that case, it is
advisable to use the SCF.Mix.First option to request a mix of the
input and output density matrices after that first iteration.

86

NOTE: charge and vacuum will for many systems yield the same
result. If in doubt try both and see which one gives the best result.
See Tests/sic-slab, Tests/h2o_2_dipol_gate.
This will default to true if an external field is applied to a slab
calculation, otherwise it will default to false.

%block Slab.DipoleCorrection.Origin 〈None〉 (block)
depends on: Slab.DipoleCorrection charge

Specify the origin of the dipole in the calculation of the dipole from
the charge distribution.
Its format is

%block Slab.DipoleCorrection.Origin
0.000 10.000 0.500 Ang

%endblock

If this block is not specified the origin of the dipole will be the average
position of the atoms.
NOTE: this will only be read if Slab.DipoleCorrection charge
is used. NOTE: this should only affect calculations with Ge-
ometry.Charge due to the non-trivial dipole origin, see e.g.
Tests/h2o_2_dipol_gate and try and see if you can manually place
the dipole origin to achieve similar results as the vacuum method.

%block Slab.DipoleCorrection.Vacuum 〈None〉 (block)
depends on: Slab.DipoleCorrection vacuum

Options for the vacuum field determination.

direction Mandatory input for chain and molecule calculations.
Specify along which direction we should determine the electric
field/dipole.
For slabs this defaults to the non-bulk direction.

position Specify a point in the vacuum region.
Defaults to the vacuum region based on the atomic coordinates.

tolerance Tolerance for determining whether we are in a vacuum
region. The premise of the electric field calculation in the vacuum
region is that the derivative of the potential (E) is flat. When the
electric field changes by more than this tolerance the region is not

vacuum anymore and the point is disregarded.
Defaults to 10−4 eV/Ang/e.

Its format is
%block Slab.DipoleCorrection.Vacuum

this is optional
default position is the center of system + 0.5 lattice vector
along ’direction’
position 0.000 10.000 0.500 Ang
this is optional
default is 1e-4 eV/Ang/e
tolerance 0.001 eV/Ang/e
this is mandatory
direction 0.000 1.000 0.

%endblock

NOTE: this will only be read if Slab.DipoleCorrection vacuum
is used.

%block Geometry.Hartree 〈None〉 (block)
Allows introduction of regions with changed Hartree potential. Intro-
ducing a potential can act as a repulsion (positive value) or attraction
(negative value) region.
The regions are defined as geometrical objects and there are no limits
to the number of defined geometries.
Details regarding this implementation may be found in Papior
et al. [12].
Currently 4 different kinds of geometries are allowed:

Infinite plane Define a geometry by an infinite plane which cuts the
unit-cell.
This geometry is defined by a single point which is in the plane
and a vector normal to the plane.
This geometry has 3 different settings:

delta An infinite plane with δ-height.

gauss An infinite plane with a Gaussian distributed height profile.

exp An infinite plane with an exponentially distributed height pro-
file.

87

Bounded plane Define a geometric plane which is bounded, i.e. not
infinite.
This geometry is defined by an origo of the bounded plane and two
vectors which span the plane, both originating in the respective
origo.
This geometry has 3 different settings:

delta A plane with δ-height.

gauss A plane with a Gaussian distributed height profile.

exp A plane with an exponentially distributed height profile.

Box This geometry is defined by an origo of the box and three vectors
which span the box, all originating from the respective origo.
This geometry has 1 setting:

delta No decay-region outside the box.

Spheres This geometry is defined by a list of spheres and a common
radii.
This geometry has 2 settings:

gauss All spheres have an gaussian distribution about their centre.

exp All spheres have an exponential decay.

Here is a list of all options combined in one block:
%block Geometry.Hartree
plane 1. eV # The lifting potential on the geometry

delta
1.0 1.0 1.0 Ang # An intersection point, in the plane
1.0 0.5 0.2 # The normal vector to the plane

plane -1. eV # The lifting potential on the geometry
gauss 1. 2. Ang # the std. and the cut-off length
1.0 1.0 1.0 Ang # An intersection point, in the plane
1.0 0.5 0.2 # The normal vector to the plane

plane 1. eV # The lifting potential on the geometry
exp 1. 2. Ang # the half-length and the cut-off length
1.0 1.0 1.0 Ang # An intersection point, in the plane
1.0 0.5 0.2 # The normal vector to the plane

square 1. eV # The lifting potential on the geometry
delta
1.0 1.0 1.0 Ang # The starting point of the square

2.0 0.5 0.2 Ang # The first spanning vector
0.0 2.5 0.2 Ang # The second spanning vector

square 1. eV # The lifting potential on the geometry
gauss 1. 2. Ang # the std. and the cut-off length
1.0 1.0 1.0 Ang # The starting point of the square
2.0 0.5 0.2 Ang # The first spanning vector
0.0 2.5 0.2 Ang # The second spanning vector

square 1. eV # The lifting potential on the geometry
exp 1. 2. Ang # the half-length and the cut-off length
1.0 1.0 1.0 Ang # The starting point of the square
2.0 0.5 0.2 Ang # The first spanning vector
0.0 2.5 0.2 Ang # The second spanning vector

box 1. eV # The lifting potential on the geometry
delta
1.0 1.0 1.0 Ang # Origo of the box
2.0 0.5 0.2 Ang # The first spanning vector
0.0 2.5 0.2 Ang # The second spanning vector
0.0 0.5 3.2 Ang # The third spanning vector

coords 1. eV # The lifting potential on the geometry
gauss 2. 4. Ang # First is std. deviation, second is cut-off radii

2 spheres # How many spheres in the following lines
0.0 4. 2. Ang # The centre coordinate of 1. sphere
1.3 4. 2. Ang # The centre coordinate of 2. sphere

coords 1. eV # The lifting potential on the geometry
exp 2. 4. Ang # First is half-length, second is cut-off radii

2 spheres # How many spheres in the following lines
0.0 4. 2. Ang # The centre coordinate of 1. sphere
1.3 4. 2. Ang # The centre coordinate of 2. sphere

%endblock Geometry.Hartree

%block Geometry.Charge 〈None〉 (block)
This is similar to the Geometry.Hartree block. However, instead
of specifying a potential, one defines the total charge that is spread
on the geometry.
To see how the input should be formatted, see Geometry.Hartree
and remove the unit-specification. Note that the input value is num-
ber of electrons (similar to NetCharge, however this method ensures
charge-neutrality).
Details regarding this implementation may be found in Papior
et al. [12].

88

6.22.1 Bulk current

SIESTA enables a crude way of calculating a bulk current. The basic
principle may be understood from basic condensed matter physics by fill-
ing all right-moving states up to EF + V/2 and emptying all left-moving
states down to EF − V/2 (for a positively defined V).
When using this method the resulting eigenvalue spectrum in
SystemLabel.EIG contains the shifted eigenvalues corresponding to
whether they are left/right movers.
The occupation function for left/right movers uses that provided in Oc-
cupationFunction.

BulkBias.Voltage 0. eV (energy)
depends on: BulkBias.Direction, Diag.ParallelOverK,

TimeReversalSymmetryForKpoints

The applied bias shift in the band-structure. All right-moving states
will be shifted halve this value down in energy (more filled), while all
left-moving states will be shifted halve this value up in energy (less
filled).
Since states are filled differently close to the Fermi level it is impera-
tive that the k-point sampling is very high to discretize the integra-
tion around the Fermi level sufficiently.
NOTE: this requires Diag.ParallelOverK to be set to true, and
TimeReversalSymmetryForKpoints to be set to false.

%block BulkBias.Direction 〈None〉 (block)
depends on: BulkBias.Tolerance

The direction in which the electrons are moving. All electrons having
velocities with a positive projection onto this direction are considered
“right-movers” while all having a negative projection are considered
“left-movers”:

p = v · V̂, (22)

where v is the band velocity and V̂ is the bias unit vector.
An example of a direction pointing along the diagonal xy direction.
Internally the direction will be normalized.

%block BulkBias.Direction
1. 1. 0.

%endblock

BulkBias.Tolerance 10−15 (real)
The tolerance used for determining whether the velocity projection
is positive or negative. States with projections below this tolerance
value will not be shifted.
This value may be regarded as the velocity in atomic units and thus
having a larger value will only shift eigenstates with higher velocities
projected onto the potential-direction. The current value corresponds
roughly to a velocity of 1 · 10−11 Ang/ps.

BulkBias.Current true (logical)
Calculate and print out the bulk-bias current during each SCF and
also correct the total energy with respect to the applied bias. The
calculated current is given by the expression:

pk,i = vk,i · V̂ (23)

I(V) = 2e

Ω
∑

i

∫
dk pk,iΘ(pk,i)

[
nF (ϵk,i − V/2)− nF (ϵk,i + V/2)

]
,

(24)

where vk,i is the velocity of the ith eigenstate at k, V̂ is the velocity
unit vector describing the direction of the field. Θ(x) is the heaviside
step function. Finally Ω is the Brillouin zone volume which depends
on the dimensionality of the system:

1D Ω has unit length, and the resulting current is in A,
2D Ω has unit area, and the resulting current is A/Å,
3D Ω has unit volume, and the resulting current is A/Å2.

The factor 2 comes from spin degeneracy and is neglected in polarized
and non-colinear calculations.
When this is true the free energy will be corrected with the following:

EbV = −V/2(q+ − q−), (25)

where q+/− refer to the charges positively/negatively along the ap-
plied bias. If this option is false SIESTA cannot calculate the energy

89

correction and EbV = 0. Users are encouraged to have this to true
but may for parameter searches turn this off to speed up calculations.
For non-colinear calculations the spin-alignment of the current is also
calculated.
NOTE: there is a slight performance penalty of calculating the cur-
rent in the SCF. It requires the calculation of the velocities one more
time, however, it should be a relatively small overhead.

6.23 Output of charge densities and potentials on the grid

SIESTA represents these magnitudes on the real-space grid. The fol-
lowing options control the generation of the appropriate files, which
can be processed by the programs in the Util/Grid directory, and also
by Andrei Postnikov’s utilities in Util/Contrib/APostnikov. See also
Util/Denchar for an alternative way to plot the charge density (and
wavefunctions).

SaveRho false (logical)
Instructs to write the valence pseudocharge density at the mesh used
by DHSCF, in file SystemLabel.RHO.
NOTE: file .RHO is only written, not read, by siesta. This file can
be read by routine IORHO, which may be used by other application
programs.
If netCDF support is compiled in, the file Rho.grid.nc is produced.

SaveDeltaRho false (logical)
Instructs to write δρ(r⃗) = ρ(r⃗) − ρatm(r⃗), i.e., the valence pseu-
docharge density minus the sum of atomic valence pseudocharge den-
sities. It is done for the mesh points used by DHSCF and it comes
in file SystemLabel.DRHO. This file can be read by routine IORHO,
which may be used by an application program in later versions.
NOTE: file .DRHO is only written, not read, by siesta.
If netCDF support is compiled in, the file DeltaRho.grid.nc is pro-
duced.

SaveRhoXC false (logical)
Instructs to write the valence pseudocharge density at the mesh, in-

cluding the nonlocal core corrections used to calculate the exchange-
correlation energy, in file SystemLabel.RHOXC.
Use: File .RHOXC is only written, not read, by siesta.
If netCDF support is compiled in, the file RhoXC.grid.nc is pro-
duced.

SaveElectrostaticPotential false (logical)
Instructs to write the total electrostatic potential, defined as the sum
of the hartree potential plus the local pseudopotential, at the mesh
used by DHSCF, in file SystemLabel.VH. This file can be read by
routine IORHO, which may be used by an application program in
later versions.
Use: File .VH is only written, not read, by siesta.
If netCDF sup-
port is compiled in, the file ElectrostaticPotential.grid.nc is
produced.

SaveNeutralAtomPotential false (logical)
Instructs to write the neutral-atom potential, defined as the sum
of the hartree potential of a “pseudo atomic valence charge” plus
the local pseudopotential, at the mesh used by DHSCF, in file
SystemLabel.VNA. It is written at the start of the self-consistency
cycle, as this potential does not change.
Use: File .VNA is only written, not read, by siesta.
If netCDF support is compiled in, the file Vna.grid.nc is produced.

SaveTotalPotential false (logical)
Instructs to write the valence total effective local potential (local
pseudopotential + Hartree + Vxc), at the mesh used by DHSCF, in
file SystemLabel.VT. This file can be read by routine IORHO, which
may be used by an application program in later versions.
Use: File .VT is only written, not read, by siesta.
If netCDF support is compiled in, the file TotalPotential.grid.nc
is produced.
NOTE: a side effect; the vacuum level, defined as the effective poten-
tial at grid points with zero density, is printed in the standard output
whenever such points exist (molecules, slabs) and either SaveElec-

90

trostaticPotential or SaveTotalPotential are true. In a symetric
(nonpolar) slab, the work function can be computed as the difference
between the vacuum level and the Fermi energy.

SaveIonicCharge false (logical)
Instructs to write the soft diffuse ionic charge at the mesh used by
DHSCF, in file SystemLabel.IOCH. This file can be read by rou-
tine IORHO, which may be used by an application program in later
versions. Remember that, within the SIESTA sign convention, the
electron charge density is positive and the ionic charge density is
negative.
Use: File .IOCH is only written, not read, by siesta.
If netCDF support is compiled in, the file Chlocal.grid.nc is pro-
duced.

SaveTotalCharge false (logical)
Instructs to write the total charge density (ionic+electronic) at the
mesh used by DHSCF, in file SystemLabel.TOCH. This file can be
read by routine IORHO, which may be used by an application pro-
gram in later versions. Remember that, within the SIESTA sign con-
vention, the electron charge density is positive and the ionic charge
density is negative.
Use: File .TOCH is only written, not read, by siesta.
If netCDF support is compiled in, the file TotalCharge.grid.nc is
produced.

SaveGridFunc.Format binary (string)
Format of
the (requested) output files SystemLabel.RHO, SystemLabel.DRHO,
SystemLabel.RHOXC, SystemLabel.VH, SystemLabel.VNA,
SystemLabel.VT, SystemLabel.IOCH, and SystemLabel.TOCH. The
options are

• ascii : ASCII text format
• binary : unformatted (machine dependent)

NOTE: ASCII files require much more space than binary and
NetCDF files. Consider using the tools in Util/Grid to translate

between formats.

SaveBaderCharge false (logical)
Instructs the program to save the charge density for further post-
processing by a Bader-analysis program. This “Bader charge” is the
sum of the electronic valence charge density and a set of “model core
charges” placed at the atomic sites. For a given atom, the model
core charge is a generalized Gaussian, but confined to a radius of
1.0 Bohr (by default), and integrating to the total core charge (Z-
Zval). These core charges are needed to provide local maxima for
the charge density at the atomic sites, which are not guaranteed
in a pseudopotential calculation. For hydrogen, an artificial core
of 1 electron is added, with a confinement radius of 0.6 Bohr by
default. The Bader charge is projected on the grid points of the
mesh used by DHSCF, and saved in file SystemLabel.BADER. This
file can be post-processed by the program Util/grid2cube to convert
it to the “cube” format, accepted by several Bader-analysis programs
(for example, see http://theory.cm.utexas.edu/bader/). Due to
the need to represent a localized core charge, it is advisable to use
a moderately high Mesh!Cutoff when invoking this option (300-500
Ry). The size of the “basin of attraction” around each atom in the
Bader analysis should be monitored to check that the model core
charge is contained in it.
The radii for the model core charges can be specified in the input fdf
file. For example:

bader-core-radius-standard 1.3 Bohr
bader-core-radius-hydrogen 0.4 Bohr

The suggested way to run the Bader analysis with the Univ. of
Texas code is to use both the RHO and BADER files (both in “cube”
format), with the BADER file providing the “reference” and the RHO
file the actual significant valence charge data which is important in
bonding. (See the notes for pseudopotential codes in the above web
page.) For example, for the h2o-pop example:

bader h2o-pop.RHO.cube -ref h2o-pop.BADER.cube

If netCDF support is compiled in, the file BaderCharge.grid.nc is
produced.

91

http://theory.cm.utexas.edu/bader/

AnalyzeChargeDensityOnly false (logical)
If true, the program optionally generates charge density files and
computes partial atomic charges (Hirshfeld, Voronoi, Bader) from
the information in the input density matrix, and stops. This is use-
ful to analyze the properties of the charge density without a diag-
onalization step, and with a user-selectable mesh cutoff. Note that
the DM.UseSaveDM option should be active. Note also that if
an initial density matrix (DM file) is used, it is not normalized. All
the relevant fdf options for charge-density file production and partial
charge calculation can be used with this option.

SaveInitialChargeDensity false (logical)
deprecated by: AnalyzeChargeDensityOnly

If true, the program generates a SystemLabel.RHOINIT file (and a
RhoInit.grid.nc file if netCDF support is compiled in) containing
the charge density used to start the first self-consistency step, and it
stops. Note that if an initial density matrix (DM file) is used, it is not
normalized. This is useful to generate the charge density associated
to “partial” DMs, as created by progras such as dm_creator and
dm_filter.
(This option is to be deprecated in favor of AnalyzeChargeDensi-
tyOnly).

6.24 Auxiliary Force field

It is possible to supplement the DFT interactions with a limited set of
force-field options, typically useful to simulate dispersion interactions. It
is not yet possible to turn off DFT and base the dynamics only on the
force field. The GULP program should be used for that.

%block MM.Potentials 〈None〉 (block)
This block allows the input of molecular mechanics potentials be-
tween species. The following potentials are currently implemented:

• C6, C8, C10 powers of the Tang-Toennes damped dispersion
potential.

• A harmonic interaction.

• A dispersion potential of the Grimme type (similar to the C6
type but with a different damping function). (See S. Grimme,
J. Comput. Chem. Vol 27, 1787-1799 (2006)). See also
MM.Grimme.D and MM.Grimme.S6 below.

The format of the input is the two species numbers that are to inter-
act, the potential name (C6, C8, C10, harm, or Grimme), followed
by the potential parameters. For the damped dispersion potentials
the first number is the coefficient and the second is the exponent of
the damping term (i.e., a reciprocal length). A value of zero for the
latter term implies no damping. For the harmonic potential the force
constant is given first, followed by r0. For the Grimme potential C6
is given first, followed by the (corrected) sum of the van der Waals
radii for the interacting species (a real length). Positive values of the
C6, C8, and C10 coefficients imply attractive potentials.

%block MM.Potentials
1 1 C6 32.0 2.0
1 2 harm 3.0 1.4
2 3 Grimme 6.0 3.2

%endblock MM.Potentials

To automatically create input for Grimme’s method, please see the
utility: Util/Grimme which can read an fdf file and create the correct
input for Grimme’s method.

MM.Cutoff 30 Bohr (length)
Specifies the distance out to which molecular mechanics potential will
act before being treated as going to zero.

MM.UnitsEnergy eV (unit)
Specifies the units to be used for energy in the molecular mechanics
potentials.

MM.UnitsDistance Ang (unit)
Specifies the units to be used for distance in the molecular mechanics
potentials.

MM.Grimme.D 20.0 (real)
Specifies the scale factor d for the scaling function in the Grimme

92

dispersion potential (see above).

MM.Grimme.S6 1.66 (real)
Specifies the overall fitting factor s6 for the Grimme dispersion po-
tential (see above). This number depends on the quality of the basis
set, the exchange-correlation functional, and the fitting set.

6.25 Grimme’s DFT-D3 dispersion model

The current implementation has the possibility of adding D3 corrections
to DFT calculations (See Grimme, J. Chem. Phys. 132 (2010), 154104.
DOI: 10.1063/1.3382344). The following options provide a great deal of
fine-tuning within this model; see in the above reference for insight on
the parameters Sn, rSn and alpha, which correspond to the following
equations:

ED3 = E2body + E3body

E2body =
∑

A,B
s6CAB

6
(rAB)6 f6(rAB) +

∑
A,B

s8CAB
8

(rAB)8 f8(rAB) ;
fn(rAB) = 1

1+6
(

rAB
SrnRAB

0

)−αn

The 3-body interaction is also calculated but there are no input parame-
ters involved except for enabling or disabling it entirely. In this case, the
value of α is always 16 and the value of Sr is 4/3.

E3body =
∑

A,B,C f3(rABC)EABC

EABC = 1+3cos(θABC)cos(θBCA)cos(θACB)
(rABrBCrAC)3 CABC

9 ; CABC
9 = −

√
CAB

6 CBC
6 CAC

6

DFTD3 false (logical)
If true, D3 corrections are enabled for the current calculation.

DFTD3.UseXCDefaults true (logical)
When doing D3 corrections, SIESTA may use default parameters for
the D3 model which where already available for some functionals. At
the moment this covers only PBE, PBESol, RevPBE, RPBE, LYP,
BLYP, but more of them may be added in the future. With LIBXC,
HS6 and PBE0 are also available.

DFTD3.BJdamping true (logical)
If true, uses the Becke-Johnson damping for D3 interaction. If not,
uses the zero-damping variant.

DFTD3.s6 1.0 (real)
Sets the value for the s6 coefficient in the D3 model, with s6 being
the factor that multiplies the C6 interaction terms.

DFTD3.rs6 1.0 (real)
Sets the value for the rs6, which is the prefactor present in the C6
damping function.

DFTD3.s8 1.0 (real)
Sets the value for the s8 coefficient in the D3 model, with s8 being
the factor that multiplies the C8 interaction terms.

DFTD3.rs8 1.0 (real)
Sets the value for the rs8, which is the prefactor present in the C8
damping function. This is usually set to 1.0 and not changed.

DFTD3.alpha 14.0 (real)
Sets the value for the the exponent in the C6 damping function. The
C8 damping function automatically takes the value of alpha + 2.

DFTD3.a1 0.4 (real)
Value of the a1 coefficient for Becke-Johnson damping.

DFTD3.a2 5.0 (real)
Value of the a2 coefficient for Becke-Johnson damping.

DFTD3.2BodyCutOff 60.0bohr (length)
Cut-off distance for 2-body dispersion interactions. Interactions cor-
responding to atom pairs farther away than this distance are ignored.

DFTD3.3BodyCutOff 40.0bohr (length)
Cut-off distance for 3-body dispersion interactions. Interactions cor-
responding to atom pairs farther away than this distance are ignored.

DFTD3.CoordinationCutoff 10.0bohr (length)

93

Cut-off distance for coordination number calculation (i.e. first neigh-
bours count). This is relevant for the correct calculation of the C6
and C8 factors.

6.25.1 A note on LIBXC functionals

SIESTA has now LIBXC functionality enabled via GRIDXC. However,
not every single one of the posibilities provided by that library are present
in the standard D3 model. Most of the one that are already present, are
already the standard SIESTA GGA functionals. So in case you want to
try something different, we recommend referring to the following webpage
for already existing D3 parameters:

https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-
d3/dft-d3
Don’t forget to set DFTD3.UseXCDefaults to F when adding external pa-
rameters.

6.26 Parallel options

BlockSize 〈automatic〉 (integer)
The orbitals are distributed over the processors when running in par-
allel using a 1-D block-cyclic algorithm. BlockSize is the number
of consecutive orbitals which are located on a given processor before
moving to the next one. Large values of this parameter lead to poor
load balancing, while small values can lead to inefficient execution.
The performance of the parallel code can be optimised by varying
this parameter until a suitable value is found.

ProcessorY 〈automatic〉 (integer)
The mesh points are divided in the Y and Z directions (more precisely,
along the second and third lattice vectors) over the processors in a 2-D
grid. ProcessorY specifies the dimension of the processor grid in the
Y-direction and must be a factor of the total number of processors.
Ideally the processors should be divided so that the number of mesh
points per processor along each axis is as similar as possible.
Defaults to a value set automatically by the program. There are

two methods. The default is to set ProcessorY to a factor of the
number of processors which takes into account the relative sizes of
the second and third lattice vectors. An older method based only on
searching for factors of the number of processors in the set {2,3,5}
can be enabled by the following option.

FFT.ProcessorY.Traditional false (logical)
If true, the program sets the default value for the FFT ProcessorY
variable by searching for factors of the total number of processors in
the set {2,3,5}. Note that this default value can still be overridden
by setting ProcessorY explicitly.

6.26.1 Parallel decompositions for O(N)

Apart from the default block-cyclic decomposition of the orbital data,
O(N) calculations can use other schemes which should be more efficient:
spatial decomposition (based on atom proximity), and domain decompo-
sition (based on the most efficient abstract partition of the interaction
graph of the Hamiltonian).

UseDomainDecomposition false (logical)
This option instructs the program to employ a graph-partitioning al-
gorithm (using the METIS library (See www.cs.umn.edu/~metis) to
find an efficient distribution of the orbital data over processors. To
use this option (meaningful only in parallel) the program has to be
compiled with the preprocessor option SIESTA__METIS (or the dep-
recated ON_DOMAIN_DECOMP) and the METIS library has to be linked
in.

UseSpatialDecomposition false (logical)
When performing a parallel order N calculation, this option instructs
the program to execute a spatial decomposition algorithm in which
the system is divided into cells, which are then assigned, together
with the orbitals centered in them, to the different processors. The
size of the cells is, by default, equal to the maximum distance at which
there is a non-zero matrix element in the Hamiltonian between two
orbitals, or the radius of the Localized Wannier function - which ever
is the larger. If this is the case, then an orbital will only interact

94

 https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3/dft-d3
 https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3/dft-d3
www.cs.umn.edu/~metis

with other orbitals in the same or neighbouring cells. However, by
decreasing the cell size and searching over more cells it is possible to
achieve better load balance in some cases. This is controlled by the
variable RcSpatial.
NOTE: the distribution algorithm is quite fragile and a careful tun-
ing of RcSpatial might be needed. This option is therefore not
enabled by default.

RcSpatial 〈maximum orbital range〉 (length)
Controls the cell size during the spatial decomposition.

6.27 Efficiency options

DirectPhi false (logical)
The calculation of the matrix elements on the mesh requires the value
of the orbitals on the mesh points. This array represents one of the
largest uses of memory within the code. If set to true this option
allows the code to generate the orbital values when needed rather
than storing the values. This obviously costs more computer time
but will make it possible to run larger jobs where memory is the
limiting factor.
This controls whether the values of the orbitals at the mesh points
are stored or calculated on the fly.

6.28 Memory, CPU-time, and Wall time accounting op-
tions

AllocReportLevel 0 (integer)
Sets the level of the allocation report, printed
in file SystemLabel.alloc. However, not all the allocated arrays
are included in the report (this will be corrected in future versions).
The allowed values are:

• level 0 : no report at all (the default)
• level 1 : only total memory peak and where it occurred
• level 2 : detailed report printed only at normal program termi-

nation

• level 3 : detailed report printed at every new memory peak
• level 4 : print every individual (re)allocation or deallocation

NOTE: In MPI runs, only node-0 peak reports are produced.

AllocReportThreshold 0. (real)
Sets the minimum size (in bytes) of the arrays whose memory use is
individually printed in the detailed allocation reports (levels 2 and
3). It does not affect the reported memory sums and peaks, which
always include all arrays.

TimerReportThreshold 0. (real)
Sets the minimum fraction, of total CPU time, of the subroutines or
code sections whose CPU time is individually printed in the detailed
timer reports. To obtain the accounting of MPI communication times
in parallel executions, you must compile with option -DMPI_TIMING.
In serial execution, the CPU times are printed at the end of the
output file. In parallel execution, they are reported in a separated
file named SystemLabel.times.

UseTreeTimer false (logical)
Enable an experimental timer which is based on wall time on the
master node and is aware of the tree-structure of the timed sections.
At the end of the program, a report is generated in the output file,
and a time.json file in JSON format is also written. This file can
be used by third-party scripts to process timing data.
NOTE: , if used with the PEXSI solver (see Sec. 6.14) this defaults
to true.

UseParallelTimer true (logical)
Determine whether timings are performed in parallel. This may in-
troduce slight overhead.
NOTE: , if used with the PEXSI solver (see Sec. 6.14) this defaults
to false.

TimingSplitScfSteps false (logical)
The timings for individual scf steps will be recorded separately.
NOTE: The ’tree’ timer should be used to make meaningful use of

95

this information. It is enabled by default if this variable is true.

MaxWalltime Infinity (real time)
Set an internal limit to the wall time allotted to the program’s ex-
ecution. Typically this is related to the external limit imposed by
queuing systems. The code checks its wall time periodically and will
abort if nearing the limit, with some slack left for clean-up oper-
ations (proper closing of files, emergency output...), as determined
by MaxWalltime.Slack. See Sec. 17 for available units of time (s,
mins, hours, days).

MaxWalltime.Slack 5 s (real time)
The code checks its wall time Twall periodically and will abort if
Twall > Tmax − Tslack, so that some slack is left for any clean-up
operations.

6.29 The catch-all option UseSaveData

This is a dangerous feature, and is deprecated, but retained for historical
compatibility. Use the individual options instead.

UseSaveData false (logical)
Instructs to use as much information as possible stored from
previous runs in files SystemLabel.XV, SystemLabel.DM and
SystemLabel.LWF,
NOTE: if the files are not existing it will read the information from
the fdf file.

6.30 Output of information for Denchar

The program denchar in Util/Denchar can generate charge-density and
wavefunction information in real space.

Write.Denchar false (logical)
Instructs to write information needed by the utility program
DENCHAR (by J. Junquera and P. Ordejón) to generate va-
lence charge densities and/or wavefunctions in real space (see

Util/Denchar). The information is written in files SystemLabel.PLD
and SystemLabel.DIM.
To run DENCHAR you will need, apart from the .PLD and .DIM files,
the Density-Matrix (DM) file and/or a wavefunction (.WFSX) file, and
the .ion files containing the information about the basis orbitals.

6.31 NetCDF (CDF4) output file

NOTE: this requires SIESTA compiled with CDF4 support.
To unify and construct a simple output file for an entire SIESTA calcu-
lation a generic NetCDF file will be created if SIESTA is compiled with
ncdf support, see Sec. 2.3 and the ncdf section.
Generally all output to NetCDF flags, SaveElectrostaticPotential, etc.
apply to this file as well.
One may control the output file with compressibility and parallel I/O, if
needed.

CDF.Save false (logical)
Create the SystemLabel.nc file which is a NetCDF file.
This file will be created with a large set of groups which make sepa-
rating the quantities easily. Also it will inherently denote the units
for the stored quantities.
NOTE: this option is not available for MD/relaxations, only for force
constant runs.

CDF.Compress 0 (integer)
Integer between 0 and 9. The former represents no compressing and
the latter is the highest compressing.
The higher the number the more computation time is spent on com-
pressing the data. A good compromise between speed and compres-
sion is 3.
NOTE: if one requests parallel I/O (CDF.MPI) this will automat-
ically be set to 0. One cannot perform parallel IO and compress the
data simultaneously.
NOTE: instead of using SIESTA for compression you may compress

96

after execution by:
nccopy -d 3 -s noncompressed.nc compressed.nc

CDF.MPI false (logical)
Write SystemLabel.nc in parallel using MPI for increased perfor-
mance. This has almost no memory overhead but may for very large
number of processors saturate the file-system.
NOTE: this is an experimental flag.

CDF.Grid.Precision single|double (string)
At which precision should the real-space grid quantities be stored,
such as the density, electrostatic potential etc.

7 STRUCTURAL RELAXATION, PHONONS,
AND MOLECULAR DYNAMICS

This functionality is not SIESTA-specific, but is implemented to provide
a more complete simulation package. The program has an outer geom-
etry loop: it computes the electronic structure (and thus the forces and
stresses) for a given geometry, updates the atomic positions (and maybe
the cell vectors) accordingly and moves on to the next cycle. If there are
molecular dynamics options missing you are highly recommend to look
into MD.TypeOfRun Lua or MD.TypeOfRun Master.
Several options for MD and structural optimizations are implemented,
selected by

MD.TypeOfRun CG (string)

CG Performs an atomic coordinates optimization by using the con-
jugate gradients method. If MD.VariableCell is enabled (see
below), the optimization includes the cell vectors.

Broyden Performs an atomic coordinates optimization by using a
modified Broyden method, which falls within the Quasi-Newton
family of algorithms. If MD.VariableCell is enabled (see below),
the optimization includes the cell vectors.

FIRE Performs an atomic coordinates optimization by using the
Fast Inertial Relaxation Engine (E. Bitzek et al, PRL 97, 170201,
(2006)). If MD.VariableCell is enabled (see below), the opti-
mization includes the cell vectors. FIRE avoids the need for linear
search, thus making each individual iteration faster when compared
to Quasi-Newton methods. However, it also needs more iterations
to converge, so its efficiency is system-dependent.

Verlet Standard Velocity-Verlet algorithm for NVE molecular dy-
namics.

Nose Constant temperature (NVT) MD with using a Nosé thermo-
stat.

ParrinelloRahman Constant pressure (NPE) MD, controlled by the
Parrinello-Rahman method.

NoseParrinelloRahman Constant
temperature and pressure (NPT) MD using both methods above,
the Nosé thermostat and the Parrinello-Rahman method.

Anneal Constant temperature and/or pressure MD (see the variable
MD.AnnealOption below), using a very simple velocity rescal-
ing method. It should be used to quickly equilibrate a system
to a desired temperature and pressure; however, atomic velocities
resulting from this option are non-canonical and thus tend to pro-
duce physically-inaccurate results. Therefore, it is strongly recom-
mended to change to the Nosé and/or ParrinelloRahman options
for production MD runs after the equilibration is done.

FC Compute force constants matrix for phonon calculations.

Master|Forces Receive coordinates from, and return forces to, an
external driver program, using MPI, Unix pipes, or Inet sock-
ets for communication. The routines in module fsiesta allow
the user’s program to perform this communication transparently,
as if SIESTA were a conventional force-field subroutine. See
Util/SiestaSubroutine/README for details. WARNING: if this
option is specified without a driver program sending data, siesta
may hang without any notice.
See directory Util/Scripting for other driving options.

97

Lua Fully control the MD cycle and convergence path using an ex-
ternal Lua script.
With an external Lua script one may control nearly everything
from a script. One can query any internal data-structures in
SIESTA and, similarly, return any data thus overwriting the in-
ternals. A list of ideas which may be implemented in such a Lua
script are:

• New geometry relaxation algorithms
• NEB calculations
• New MD routines
• Convergence tests of Mesh.Cutoff and

kgrid.MonkhorstPack, or other parameters (currently basis
set optimizations cannot be performed in the Lua script).

Sec. 10 for additional details (and a description of flos which
implements some of the above mentioned items).
Using this option requires the compilation of SIESTA with the
flook library.If SIESTA is not compiled as prescribed in Sec. 2.3
this option will make SIESTA die.

TDED New option to perform time-dependent electron dynamics
simulations (TDED) within RT-TDDFT. For more details see
Sec. 9.
The second run of SIESTA uses this option with the files
SystemLabel.TDWF and SystemLabel.TDXV present in the working
directory. In this option ions and electrons are assumed to move
simultaneously. The occupied electronic states are time-evolved in-
stead of the usual SCF calculations in each step. Choose this option
even if you intend to do only-electron dynamics. If you want to do
an electron dynamics-only calculation set MD.FinalTimeStep
equal to 1. For optical response calculations switch off the ex-
ternal field during the second run. The MD.LengthTimeStep,
unlike in the standard MD simulation, is defined by mulitpilication
of TDED.TimeStep and TDED.Nsteps. In TDDFT calcula-
tions, the user defined MD.LengthTimeStep is ignored.

NOTE: if Compat.Pre-v4-Dynamics is true this will default to
Verlet.

Note that some options specified in later variables (like quenching)
modify the behavior of these MD options.
Appart from being able to act as a force subroutine for a driver
program that uses module fsiesta, SIESTA is also prepared to com-
municate with the i-PI code (see https://github.com/i-pi/i-pi).
To do this, SIESTA must be started after i-PI (it acts as a client of
i-PI, communicating with it through Inet or Unix sockets), and the
following lines must be present in the .fdf data file:

MD.TypeOfRun Master # equivalent to ’Forces’
Master.code i-pi # (fsiesta | i-pi)
Master.interface socket # (pipes | socket | mpi)
Master.address localhost # or driver’s IP, e.g. 150.242.7.140
Master.port 10001 # 10000+siesta_process_order
Master.socketType inet # (inet | unix)

7.1 Compatibility with pre-v4 versions

Starting in the summer of 2015, some changes were made to the behavior
of the program regarding default dynamics options and choice of coor-
dinates to work with during post-processing of the electronic structure.
The changes are:

• The default dynamics option is “CG” instead of “Verlet”.

• The coordinates, if moved by the dynamics routines, are reset to
their values at the previous step for the analysis of the electronic
structure (band structure calculations, DOS, LDOS, etc).

• Some output files reflect the values of the “un-moved” coordinates.

• The
default convergence criteria is now both density and Hamiltonian
convergence, see SCF.DM.Converge and SCF.H.Converge.

To recover the previous behavior, the user can turn on the compatibility
switch Compat.Pre-v4-Dynamics, which is off by default.
Note that complete compatibility cannot be perfectly guaranteed.

98

https://github.com/i-pi/i-pi

7.2 Structural relaxation

In this mode of operation, the program moves the atoms (and optionally
the cell vectors) trying to minimize the forces (and stresses) on them.
These are the options common to all relaxation methods. If the Zmatrix
input option is in effect (see Sec. 6.4.2) the Zmatrix-specific options take
precedence. The ’MD’ prefix is misleading but kept for historical reasons.

MD.VariableCell false (logical)
If true, the lattice is relaxed together with the atomic coordinates.
It allows to target hydrostatic pressures or arbitrary stress tensors.
See MD.MaxStressTol, Target.Pressure, Target.Stress.Voigt,
Constant.Volume, and MD.PreconditionVariableCell.
NOTE: only compatible with MD.TypeOfRun CG, Broyden or
fire.

Constant.Volume false (logical)
deprecates: MD.ConstantVolume

If true, the cell volume is kept constant in a variable-cell relaxation:
only the cell shape and the atomic coordinates are allowed to change.
Note that it does not make much sense to specify a target stress or
pressure in this case, except for anisotropic (traceless) stresses. See
MD.VariableCell, Target.Stress.Voigt.
NOTE: only compatible with MD.TypeOfRun CG, Broyden or
fire.

MD.RelaxCellOnly false (logical)
If true, only the cell parameters are relaxed (by the Broyden or
FIRE method, not CG). The atomic coordinates are re-scaled to the
new cell, keeping the fractional coordinates constant. For Zmatrix
calculations, the fractional position of the first atom in each molecule
is kept fixed, and no attempt is made to rescale the bond distances
or angles.
NOTE: only compatible with MD.TypeOfRun Broyden or fire.

MD.MaxForceTol 0.04 eV/Ang (force)
Force tolerance in coordinate optimization. Run stops if the

maximum atomic force is smaller than MD.MaxForceTol (see
MD.MaxStressTol for variable cell).

MD.MaxStressTol 1 GPa (pressure)
Stress tolerance in variable-cell CG optimization. Run stops if the
maximum atomic force is smaller than MD.MaxForceTol and the
maximum stress component is smaller than MD.MaxStressTol.
Special consideration is needed if used with Sankey-type basis sets,
since the combination of orbital kinks at the cutoff radii and the finite-
grid integration originate discontinuities in the stress components,
whose magnitude depends on the cutoff radii (or energy shift) and the
mesh cutoff. The tolerance has to be larger than the discontinuities
to avoid endless optimizations if the target stress happens to be in a
discontinuity.

MD.Steps 0 (integer)
deprecates: MD.NumCGsteps

Maximum number of steps in a minimization routine (the minimiza-
tion will stop if tolerance is reached before; see MD.MaxForceTol
below).
NOTE: The old flag MD.NumCGsteps will remain for historical
reasons.

MD.MaxDispl 0.2 Bohr (length)
deprecates: MD.MaxCGDispl

Maximum atomic displacements in an optimization move.
In the Broyden optimization method, it is
also possible to limit indirectly the initial atomic displacements using
MD.Broyden.Initial.Inverse.Jacobian. For the FIRE method,
the same result can be obtained by choosing a small time step.
Note that there are Zmatrix-specific options that override this option.
NOTE: The old flag MD.MaxCGDispl will remain for historical
reasons.

MD.PreconditionVariableCell 5 Ang (length)
A length to multiply to the strain components in a variable-cell op-
timization. The strain components enter the minimization on the
same footing as the coordinates. For good efficiency, this length

99

should make the scale of energy variation with strain similar to the
one due to atomic displacements. It is also used for the application
of the MD.MaxDispl value to the strain components.

ZM.ForceTolLength 0.00155574 Ry/Bohr (force)
Parameter that controls the convergence with respect to forces on
Z-matrix lengths

ZM.ForceTolAngle 0.00356549 Ry/rad (torque)
Parameter that controls the convergence with respect to forces on
Z-matrix angles

ZM.MaxDisplLength 0.2 Bohr (length)
Parameter that controls the maximum change in a Z-matrix length
during an optimisation step.

ZM.MaxDisplAngle 0.003 rad (angle)
Parameter that controls the maximum change in a Z-matrix angle
during an optimisation step.

7.2.1 Conjugate-gradients optimization

This was historically the default geometry-optimization method, and all
the above options were introduced specifically for it, hence their names.
The following pertains only to this method:

MD.UseSaveCG false (logical)
Instructs to read the conjugate-gradient hystory information stored
in file SystemLabel.CG by a previous run.
NOTE: to get actual continuation of iterrupted CG runs, use to-
gether with MD.UseSaveXV true with the .XV file generated in
the same run as the CG file. If the required file does not exist, a
warning is printed but the program does not stop. Overrides Us-
eSaveData.
NOTE: no such feature exists yet for a Broyden-based relaxation.

7.2.2 Broyden optimization

It uses the modified Broyden algorithm to build up the Jacobian matrix.
(See D.D. Johnson, PRB 38, 12807 (1988)). (Note: This is not BFGS.)

MD.Broyden.History.Steps 5 (integer)
Number of relaxation steps during which the modified Broyden algo-
rithm builds up the Jacobian matrix.

MD.Broyden.Cycle.On.Maxit true (logical)
Upon reaching the maximum number of history data sets which are
kept for Jacobian estimation, throw away the oldest and shift the
rest to make room for a new data set. The alternative is to re-start
the Broyden minimization algorithm from a first step of a diagonal
inverse Jacobian (which might be useful when the minimization is
stuck).

MD.Broyden.Initial.Inverse.Jacobian 1 (real)
Initial inverse Jacobian for the optimization procedure. (The units
are those implied by the internal SIESTA usage. The default value
seems to work well for most systems.

7.2.3 FIRE relaxation

Implementation of the Fast Inertial Relaxation Engine (FIRE) method (E.
Bitzek et al, PRL 97, 170201, (2006) in a manner compatible with the CG
and Broyden modes of relaxation. (An older implementation activated by
the MD.FireQuench variable is still available).

MD.FIRE.TimeStep 〈MD.LengthTimeStep〉 (time)
The (fictitious) time-step for FIRE relaxation. This is the main user-
variable when the option FIRE for MD.TypeOfRun is active.
NOTE: the default value is encouraged to be changed as the link to
MD.LengthTimeStep is misleading.
There are other low-level options tunable by the user (see the routines
fire_optim and cell_fire_optim for more details.

100

7.3 Target stress options

Useful for structural optimizations and constant-pressure molecular dy-
namics.

Target.Pressure 0 GPa (pressure)
deprecates: MD.TargetPressure

Target pressure for Parrinello-Rahman method, variable cell opti-
mizations, and annealing options.
NOTE: this is only compatible with MD.TypeOfRun Parrinel-
loRahman, NoseParrinelloRahman, CG, Broyden or FIRE
(variable cell), or Anneal (if MD.AnnealOption Pressure or
TemperatureandPressure).

%block Target.Stress.Voigt −1 −1 −1 0 0 0 (block)
deprecates: MD.TargetStress

External or target stress tensor for variable cell optimizations. Stress
components are given in a line, in the Voigt order xx, yy, zz, yz,
xz, xy. In units of Target.Pressure, but with the opposite sign.
For example, a uniaxial compressive stress of 2 GPa along the 100
direction would be given by

Target.Pressure 2. GPa
%block Target.Stress.Voigt

-1.0 0.0 0.0 0.0 0.0 0.0
%endblock

Only used if MD.TypeOfRun is CG, Broyden or FIRE and
MD.VariableCell is true.

%block MD.TargetStress −1 −1 −1 0 0 0 (block)
deprecated by: Target.Stress.Voigt

Same as Target.Stress.Voigt but the order is same as older
SIESTA version (prior to 4.1). Order is xx, yy, zz, xy, xz, yz.

MD.RemoveIntramolecularPressure false (logical)
If true, the contribution to the stress coming from the internal de-
grees of freedom of the molecules will be subtracted from the stress
tensor used in variable-cell optimization or variable-cell molecular-
dynamics. This is done in an approximate manner, using the virial

form of the stress, and assumming that the “mean force” over the co-
ordinates of the molecule represents the “inter-molecular” stress. The
correction term was already computed in earlier versions of SIESTA
and used to report the “molecule pressure”. The correction is now
computed molecule-by-molecule if the Zmatrix format is used.
If the intra-molecular stress is removed, the corrected static and to-
tal stresses are printed in addition to the uncorrected items. The
corrected Voigt form is also printed.
NOTE: versions prior to 4.1 (also 4.1-beta releases) printed the Voigt
stress-tensor in this format: [x, y, z, xy, yz, xz]. In 4.1 and
later SIESTA only show the correct Voigt representation: [x, y,
z, yz, xz, xy].

7.4 Molecular dynamics

In this mode of operation, the program moves the atoms (and optionally
the cell vectors) in response to the forces (and stresses), using the classical
equations of motion.
Note that the Zmatrix input option (see Sec. 6.4.2) is not compatible
with molecular dynamics. The initial geometry can be specified using
the Zmatrix format, but the Zmatrix generalized coordinates will not be
updated.

MD.InitialTimeStep 1 (integer)
Initial time step of the MD simulation. In the current version of
SIESTA it must be 1.
Used only if MD.TypeOfRun is not CG or Broyden.

MD.FinalTimeStep 〈MD.Steps〉 (integer)
Final time step of the MD simulation.

MD.LengthTimeStep 1 fs (time)
Length of the time step of the MD simulation.

MD.InitialTemperature 0 K (temperature/energy)
Initial temperature for the MD run. The atoms are assigned random
velocities drawn from the Maxwell-Bolzmann distribution with the

101

corresponding temperature. The constraint of zero center of mass
velocity is imposed.
NOTE: only used if MD.TypeOfRun Verlet, Nose, Parrinel-
loRahman, NoseParrinelloRahman or Anneal.

MD.TargetTemperature 0 K (temperature/energy)
Target temperature for Nose thermostat and annealing options.
NOTE: only used if MD.TypeOfRun Nose, NoseParrinel-
loRahman or Anneal if MD.AnnealOption is Temperature or
TemperatureandPressure.

MD.NoseMass 100 Ry fs2 (moment of inertia)
Generalized mass of Nose variable. This determines the time scale of
the Nose variable dynamics, and the coupling of the thermal bath to
the physical system.
Only used for Nose MD runs.

MD.ParrinelloRahmanMass 100 Ry fs2 (moment of inertia)
Generalized mass of Parrinello-Rahman variable. This determines
the time scale of the Parrinello-Rahman variable dynamics, and its
coupling to the physical system.
Only used for Parrinello-Rahman MD runs.

MD.AnnealOption TemperatureAndPressure (string)
Type of annealing MD to perform. The target temperature or pres-
sure are achieved by velocity and unit cell rescaling, in a given time
determined by the variable MD.TauRelax below.

Temperature Reach a target temperature by velocity rescaling

Pressure Reach a target pressure by scaling of the unit cell size and
shape

TemperatureandPressure Reach a target temperature and pres-
sure by velocity rescaling and by scaling of the unit cell size and
shape

Only applicable for MD.TypeOfRun Anneal.

MD.TauRelax 100 fs (time)

Relaxation time to reach target temperature and/or pressure in an-
nealing MD. Note that this is a “relaxation time”, and as such it gives
a rough estimate of the time needed to achieve the given targets. As
a normal simulation also exhibits oscillations, the actual time needed
to reach the averaged targets will be significantly longer.
Only applicable for MD.TypeOfRun Anneal.

MD.BulkModulus 100 Ry/Bohr3 (pressure)
Estimate (may be rough) of the bulk modulus of the system. This is
needed to set the rate of change of cell shape to reach target pressure
in annealing MD.
Only applicable for MD.TypeOfRun Anneal, when
MD.AnnealOption is Pressure or TemperatureAndPressure

7.5 Output options for dynamics

Every time the atoms move, either during coordinate relaxation or molec-
ular dynamics, their positions predicted for next step and current
velocities are stored in file SystemLabel.XV. The shape of the unit cell
and its associated ’velocity’ (in Parrinello-Rahman dynamics) are also
stored in this file.

WriteCoorInitial true (logical)
It determines whether the initial atomic coordinates of the simula-
tion are dumped into the main output file. These coordinates cor-
respond to the ones actually used in the first step (see the section
on precedence issues in structural input) and are output in Cartesian
coordinates in Bohr units.
It is not affected by the setting of LongOutput.

WriteCoorStep false (logical)
If true, it writes the atomic coordinates to standard output at every
MD time step or relaxation step. The coordinates are always written
in the SystemLabel.XV file, but overriden at every step. They can
be also accumulated in the .MD or SystemLabel.MDX files depending
on WriteMDHistory.

102

WriteForces false (logical)
If true, it writes the atomic forces to the output file at every MD
time step or relaxation step. Note that the forces of the last step can
be found in the file SystemLabel.FA. If constraints are used, the file
SystemLabel.FAC is also written.

WriteMDHistory false (logical)
If true, SIESTA accumulates the molecular dynamics trajectory in
the following files:

• SystemLabel.MD : atomic coordinates and velocities (and lat-
tice vectors and their time derivatives, if the dynamics implies
variable cell). The information is stored unformatted for post-
processing with utility programs to analyze the MD trajectory.

• SystemLabel.MDE : shorter description of the run, with energy,
temperature, etc., per time step.

These files are accumulative even for different runs.
The trajectory of a molecular dynamics run (or a conjugate gra-
dient minimization) can be accumulated in different files: System-
Label.MD, SystemLabel.MDE, and SystemLabel.ANI. The first file
keeps the whole trajectory information, meaning positions and ve-
locities at every time step, including lattice vectors if the cell varies.
NOTE that the positions (and maybe the cell vectors) stored at each
time step are the predicted values for the next step. Care should be
taken if joint position-velocity correlations need to be computed from
this file. The second gives global information (energy, temperature,
etc), and the third has the coordinates in a form suited for XMol
animation. See the WriteMDHistory and WriteMDXmol data
descriptors above for information. SIESTA always appends new in-
formation on these files, making them accumulative even for different
runs.
The iomd subroutine can generate both an unformatted file .MD (de-
fault) or ASCII formatted files .MDX and .MDC containing the atomic
and lattice trajectories, respectively. Edit the file to change the set-
tings if desired.

Write.OrbitalIndex true (logical)

If true it causes the writing of
an extra file named SystemLabel.ORB_INDX containing all orbitals
used in the calculation.
Its formatting is clearly specified at the end of the file.

7.6 Restarting geometry optimizations and MD runs

Every time the atoms move, either during coordinate relaxation or molec-
ular dynamics, their positions predicted for next step and current
velocities are stored in file SystemLabel.XV, where SystemLabel is the
value of that fdf descriptor (or ’siesta’ by default). The shape of the
unit cell and its associated ’velocity’ (in Parrinello-Rahman dynamics)
are also stored in this file. For MD runs of type Verlet, Parrinello-
Rahman, Nose, Nose-Parrinello-Rahman, or Anneal, a file named Sys-
temLabel.VERLET_RESTART, SystemLabel.PR_RESTART, System-
Label.NOSE_RESTART, SystemLabel.NPR_RESTART, or SystemLa-
bel.ANNEAL_RESTART, respectively, is created to hold the values of
auxiliary variables needed for a completely seamless continuation.
If the restart file is not available, a simulation can still make use of the
XV information, and “restart” by basically repeating the last-computed
step (the positions are shifted backwards by using a single Euler-like step
with the current velocities as derivatives). While this feature does not
result in seamless continuations, it allows cross-restarts (those in which a
simulation of one kind (e.g., Anneal) is followed by another (e.g., Nose)),
and permits to re-use dynamical information from old runs.
This restart fix is not satisfactory from a fundamental point of view, so
the MD subsystem in SIESTA will have to be redesigned eventually. In
the meantime, users are reminded that the scripting hooks being steadily
introduced (see Util/Scripting) might be used to create custom-made
MD scripts.

7.7 Use of general constraints

Note: The Zmatrix format (see Sec. 6.4.2) provides an alternative con-
straint formulation which can be useful for system involving molecules.

103

%block Geometry.Constraints 〈None〉 (block)
Constrains certain atomic coordinates or cell parameters in a consis-
tent method.
There are a high number of configurable parameters that may be
used to control the relaxation of the coordinates.
NOTE: SIESTA prints out a small section of how the constraints
are recognized.

atom|position Fix certain atomic coordinates.
This option takes a variable number of integers which each corre-
spond to the atomic index (or input sequence) in AtomicCoor-
dinatesAndAtomicSpecies.
atom is now the preferred input option while position still works
for backwards compatibility.
One may also specify ranges of atoms according to:

atom A [B [C [. . .]]] A sequence of atomic indices which are con-
strained.

atom from A to B [step s] Here atoms A up to and including B
are constrained. If step <s> is given, the range A:B will be
taken in steps of s.

atom from 3 to 10 step 2

will constrain atoms 3, 5, 7 and 9.

atom from A plus/minus B [step s] Here atoms A up to and
including A + B− 1 are constrained. If step <s> is given, the
range A:A + B− 1 will be taken in steps of s.

atom [A, B -- C [step s], D] Equivalent to from . . . to speci-
fication, however in a shorter variant. Note that the list may
contain arbitrary number of ranges and/or individual indices.

atom [2, 3 -- 10 step 2, 6]

will constrain atoms 2, 3, 5, 7, 9 and 6.
atom [2, 3 -- 6, 8]

will constrain atoms 2, 3, 4, 5, 6 and 8.

atom all Constrain all atoms.
NOTE: these specifications are apt for directional constraints.

Z Equivalent to atom with all indices of the atoms that have atomic
number equal to the specified number.
NOTE: these specifications are apt for directional constraints.

species-i Equivalent to atom with all indices of the atoms that have
species according to the ChemicalSpeciesLabel and Atomic-
CoordinatesAndAtomicSpecies.
NOTE: these specifications are apt for directional constraints.

center One may retain the coordinate center of a range of atoms (say
molecules or other groups of atoms).
Atomic indices may be specified according to atom.
NOTE: these specifications are apt for directional constraints.

rigid|molecule Move a selection of atoms together as though they
where one atom.
The forces are summed and averaged to get a net-force on the
entire molecule.
Atomic indices may be specified according to atom.
NOTE: these specifications are apt for directional constraints.

rigid-max|molecule-max Move a selection of atoms together as
though they where one atom.
The maximum force acting on one of the atoms in the selection
will be expanded to act on all atoms specified.
Atomic indices may be specified according to atom.
NOTE: these specifications are apt for directional constraints.

cell-angle Control whether the cell angles (α, β, γ) may be altered.
This takes either one or more of alpha/beta/gamma as argu-
ment.
alpha is the angle between the 2nd and 3rd cell vector.
beta is the angle between the 1st and 3rd cell vector.
gamma is the angle between the 1st and 2nd cell vector.
NOTE: currently only one angle can be constrained at a time and
it forces only the spanning vectors to be relaxed.

cell-vector Control whether the cell vectors (A, B, C) may be al-

104

tered.
This takes either one or more of A/B/C as argument.
Constraining the cell-vectors are only allowed if they only have a
component along their respective Cartesian direction. I.e. B must
only have a y-component.

stress Control which of the 6 stress components are constrained.
Numbers 1 ≤ i ≤ 6 where 1 corresponds to the XX stress-
component, 2 is YY, 3 is ZZ, 4 is YZ/ZY, 5 is XZ/ZX and 6
is XY /YX.
The text specifications are also allowed.

routine This calls the constr routine specified in the file: constr.f.
Without having changed the corresponding source file, this does
nothing. See details and comments in the source-file.

clear Remove constraints on selected atoms from all previously spec-
ified constraints.
This may be handy when specifying constraints via Z or species-i.
Atomic indices may be specified according to atom.

clear-prev Remove constraints on selected atoms from the previous
specified constraint.
This may be handy when specifying constraints via Z or species-i.
Atomic indices may be specified according to atom.
NOTE: two consecutive clear-prev may be used in conjunction
as though the atoms where specified on the same line.

It is instructive to give an example of the input options presented.
Consider a benzene molecule (C6H6) and we wish to relax all Hy-
drogen atoms (and no stress in x and y directions). This may be
accomplished with this

%block Geometry.Constraints
Z 6
stress 1 2

%endblock

Or as in this example
%block AtomicCoordinatesAndAtomicSpecies

... 1 # C 1

... 2 # H 2

... 1 # C 3

... 2 # H 4

... 1 # C 5

... 2 # H 6

... 1 # C 7

... 2 # H 8

... 1 # C 9

... 2 # H 10

... 1 # C 11

... 2 # H 12
stress XX YY

%endblock
%block Geometry.Constraints

atom from 1 to 12 step 2
stress XX YY

%endblock
%block Geometry.Constraints

atom [1 -- 12 step 2]
stress XX 2

%endblock
%block Geometry.Constraints

atom all
clear-prev [2 -- 12 step 2]
stress 1 YY

%endblock

where the 3 last blocks all create the same result.
Finally, the directional constraint is an important and often useful
feature. The directional constraints will subtract the force projected
onto the direction specified. Hence an x directional constraint will
remove the force component along the x direction fx → 0.
When relaxing complex structures it may be advantageous to first
relax along a given direction (where you expect the stress to be the
largest) and subsequently let it fully relax. Another example would be
to relax the binding distance between a molecule and a surface, before
relaxing the entire system by forcing the molecule and adsorption site
to relax together. To use directional constraints one may provide an
additional 3 reals after the atom/rigid. For instance in the previous
example (benzene) one may first relax all Hydrogen atoms along the

105

y and z Cartesian vector by constraining the x Cartesian vector
%block Geometry.Constraints

Z 6 # constrain Carbon
Z 1 1. 0. 0. # constrain Hydrogen along x Cartesian vector

%endblock

Note that you must append a “.” to denote it a real. The vector spec-
ified need not be normalized. Also, if you want it to be constrained
along the x-y vector you may do

%block Geometry.Constraints
Z 6
Z 1 1. 1. 0.

%endblock

Therefore the directional constraint will remove the force components
that projects onto the direction specified.

7.8 Phonon calculations

If MD.TypeOfRun is FC, SIESTA sets up a special outer geometry
loop that displaces individual atoms along the coordinate directions to
build the force-constant matrix.
The output (see below) can be analyzed to extract phonon frequencies
and vectors with the VIBRA package in the Util/Vibra directory. For
computing the Born effective charges together with the force constants,
see BornCharge.

MD.FCDispl 0.04 Bohr (length)
Displacement to use for the computation of the force constant matrix
for phonon calculations.

MD.FCFirst 1 (integer)
Index of first atom to displace for the computation of the force con-
stant matrix for phonon calculations.

MD.FCLast 〈MD.FCFirst〉 (integer)
Index of last atom to displace for the computation of the force con-
stant matrix for phonon calculations.

The force-constants matrix is written in file SystemLabel.FC. The format
is the following: for the displacement of each atom in each direction, the
forces on each of the other atoms is writen (divided by the value of the
displacement), in units of eV/Å2. Each line has the forces in the x, y and
z direction for one of the atoms.
If constraints are used, the file SystemLabel.FCC is also written.

8 DFT+U

NOTE: This implementation works for both LDA and GGA, hence
named DFT+U in the main text.
NOTE: Current implementation is based on the simplified rotationally
invariant DFT+U formulation of Dudarev and collaborators [see, Dudarev
et al., Phys. Rev. B 57, 1505 (1998)]. Although the input allows to define
independent values of the U and J parameters for each atomic shell, in
the actual calculation the two parameters are combined to produce an
effective Coulomb repulsion Ueff = U − J . Ueff is the parameter actually
used in the calculations for the time being.
For large or intermediate values of Ueff the convergence is sometimes diffi-
cult. A step-by-step increase of the value of Ueff can be advisable in such
cases.
If DFT+U is used in combination with non-collinear or spin-orbit cou-
pling, the Liechtenstein approach is implemented, where the U and the
exchange J parameters are treated separately [see, A. I. Liechtenstein
et al., Phys. Rev. B 52, R5467 (1995)]. The generalization for the
spin-orbit or non-collinear cases follows the recipe given by E. Bousquet
and N. Spaldin, Phys. Rev. B 82, 220402(R) (2010). Currently, only
the d-shell can be considered as the correlated shell where the U and J
are applied. The computation of the occupancies on the orbitals of the
correlated shells is done following the same recipe as for the Dudarev ap-
proach. That means that the following entries related with the generation
of the DFT+U projectors are still relevant. However, the input options
DFTU.FirstIteration, DFTU.ThresholdTol, DFTU.PopTol, and
DFTU.PotentialShift are irrelevant when DFT+U is used in combina-
tion with spin-orbit or non-collinear magnetism.

106

DFTU.ProjectorGenerationMethod 2 (integer)
Generation method of the DFT+U projectors. The DFT+U projec-
tors are the localized functions used to calculate the local populations
used in a Hubbard-like term that modifies the LDA Hamiltonian and
energy. It is important to recall that DFT+U projectors should be
quite localized functions. Otherwise the calculated populations loose
their atomic character and physical meaning. Even more importantly,
the interaction range can increase so much that jeopardizes the effi-
ciency of the calculation.
Two methods are currently implemented:

1 Projectors are slightly-excited numerical atomic orbitals similar to
those used as an automatic basis set by SIESTA. The radii of these
orbitals are controlled using the parameter DFTU.EnergyShift
and/or the data included in the block DFTU.Proj (quite similar
to the data block PAO.Basis used to specify the basis set, see
below).

2 Projectors are exact solutions of the pseudoatomic problem (and,
in principle, are not strictly localized) which are cut using a Fermi
function 1/{1 + exp[(r − rc)ω]}. The values of rc and ω are con-
trolled using the parameter DFTU.CutoffNorm and/or the data
included in the block DFTU.Proj.

DFTU.EnergyShift 0.05 Ry (energy)
Energy increase used to define the localization radius of the DFT+U
projectors (similar to the parameter PAO.EnergyShift).
NOTE: only used when DFTU.ProjectorGenerationMethod is
1.

DFTU.CutoffNorm 0.9 (real)
Parameter used to define the value of rc used in the Fermi distribu-
tion to cut the DFT+U projectors generated according to generation
method 2 (see above). DFTU.CutoffNorm is the norm of the orig-
inal pseudoatomic orbital contained inside a sphere of radius equal
to rc.
NOTE: only used when DFTU.ProjectorGenerationMethod is
2.

%block DFTU.Proj 〈None〉 (block)
Data block used to specify the DFT+U projectors.

• If DFTU.ProjectorGenerationMethod is 1, the syntax is
as follows:

%block DFTU.Proj # Define DFT+U projectors
Fe 2 # Label, l_shells
n=3 2 E 50.0 2.5 # n (opt if not using semicore levels),l,Softconf(opt)

5.00 0.35 # U(eV), J(eV) for this shell
2.30 # rc (Bohr)
0.95 # scaleFactor (opt)
0 # l
1.00 0.05 # U(eV), J(eV) for this shell
0.00 # rc(Bohr) (if 0, automatic r_c from DFTU.EnergyShift)

%endblock DFTU.Proj

• If DFTU.ProjectorGenerationMethod is 2, the syntax is
as follows:

%block DFTU.Proj # Define DFTU projectors
Fe 2 # Label, l_shells
n=3 2 E 50.0 2.5 # n (opt if not using semicore levels),l,Softconf(opt)

5.00 0.35 # U(eV), J(eV) for this shell
2.30 0.15 # rc (Bohr), \omega(Bohr) (Fermi cutoff function)
0.95 # scaleFactor (opt)
0 # l
1.00 0.05 # U(eV), J(eV) for this shell
0.00 0.00 # rc(Bohr), \omega(Bohr) (if 0 r_c from DFTU.CutoffNorm

%endblock DFTU.Proj # and \omega from default value)

Certain of the quantites have default values:
U 0.0 eV
J 0.0 eV
ω 0.05 Bohr

Scale factor 1.0
rc depends on DFTU.EnergyShift or DFTU.CutoffNorm de-
pending on the generation method.

DFTU.FirstIteration false (logical)
If true, local populations are calculated and Hubbard-like term is
switch on in the first iteration. Useful if restarting a calculation
reading a converged or an almost converged density matrix from file.

107

DFTU.ThresholdTol 0.01 (real)
Local populations only calculated and/or updated if the change in
the density matrix elements (dDmax) is lower than
DFTU.ThresholdTol.

DFTU.PopTol 0.001 (real)
Convergence criterium for the DFT+U local populations. In the
current implementation the Hubbard-like term of the Hamiltonian is
only updated (except for the last iteration) if the variations of the
local populations are larger than this value.

DFTU.PotentialShift false (logical)
If set to true, the value given to the U parameter in the input file
is interpreted as a local potential shift. Recording the change of the
local populations as a function of this potential shift, we can calculate
the appropriate value of U for the system under study following the
methology proposed by Cococcioni and Gironcoli in Phys. Rev. B
71, 035105 (2005).

9 RT-TDDFT

Now it is possible to perform Real-Time Time-Dependent Density
Functional Theory (RT-TDDFT)-based calculations using the SIESTA
method. This section includes a brief introduction to the TDDFT method
and implementation, shows how to run the TDDFT-based calculations,
and provides a reference guide to the additional input options.

9.1 Brief description

The basic features of the TDDFT have been implemented within the
SIESTA code. Most of the details can be found in the paper Phys. Rev.
B 66 235416 (2002), by A. Tsolakidis, D. Sánchez-Portal and, Richard M.
Martin. However, the practical implementation of the present version is
very different from the initial version. The present implementation of the
TDDFT has been programmed with the primary aim of calculating the
optical response of clusters and solids, however, it has been successfully

used to calculate the electronic stopping power of solids as well.
For the calculation of the optical response of the electronic systems a
perturbation to the system is applied at time step 0, and the system
is allowed to reach a self-consistent solution. Then, the perturbation is
switched off for all subsequent time steps, and the electrons are allowed to
evolve according to time-dependent Kohn-Sham equations. For the case
of a cluster the perturbation is a finite (small) electric field. For the case
of bulk material (not yet fully implemented) the initial perturbation is
different but the main strategy is similar.
The present version of the RT-TDDFT implementation is also capable
of performing a simultaneous dynamics of electrons and ions but this is
limited to the cases in which forces on the ions are within ignorable limit.
The general working scheme is as following. First, the system is allowed
to reach a self-consistent solution for some initial conditions (for example
an initial ionic configuration or an applied external field). The occupied
Kohn-Sham orbitals (KSOs) are then selected and stored in memory. The
occupied KSOs are then made to evolve in time, and the Hamiltonian is
recalculated for each time step.

9.2 Partial Occupations

This is a note of caution. This implementation of RT-TDDFT can not
propagate partially occupied orbitals. While partial occupation of states
is a common occurrence, they must be avoided. The issue of partially
occupied states becomes, particularly, tricky when dealing with metals
and k-point sampling at the same time. The code tries to detect par-
tial occupations and stops during the first run but it is not guarantied.
Consequently, it can lead to additional or missing charge. Ultimately it
is users’ responsibility to make sure that the system has no partial occu-
pations and missing or added charge. There are different ways to avoid
partial occupations depending on the system and simulation parameters;
for example changing spin-polarization and/or adding some k-point shift
to k-points.

108

9.3 Input options for RT-TDDFT

A TDDFT calculation requires two runs of SIESTA. In the first run
with appropriate flags it calculates the self-consistent initial state, i.e.,
only occupied initial KSOs stored in SystemLabel.TDWF file. The second
run uses this file and the structure file SystemLabel.TDXV as input and
evolves the occupied KSOs.

TDED.WF.Initialize false (logical)
If set to true in a standard self-consistent SIESTA calculation, it
makes the program save the KSOs after reaching self-consistency.
This constitutes the first run.

TDED.Nsteps 1 (integer)
Number of electronic time steps between each atomic movement. It
can not be less than 1.

TDED.TimeStep 0.001 fs (time)
Length of time for each electronic step. The default value is only sug-
gestive. Users must determine an appropriate value for the electronic
time step.

TDED.Extrapolate false (logical)
An extrapolated Hamiltonian is applied to evolve KSOs for
TDED.Extrapolate.Substeps number of substeps within a sinlge
electronic step without re-evaluating the Hamiltonian.

TDED.Extrapolate.Substeps 3 (integer)
Number of electronic substeps when an extrapolated Hamilto-
nian is applied to propogate the KSOs. Effective only when
TDED.Extrapolate set to be true.

TDED.Inverse.Linear true (logical)
If true the inverse of matrix

S + iH(t)dt

2 (26)

is calculated by solving a system of linear equations which implicitly
multiplies the inverted matrix to the right hand side matrix. The

alternative is explicit inversion and multiplication. The two options
may differ in performance.

TDED.WF.Save false (logical)
Option to save wavefunctions at the end of a simulation for
a possible restart or analysis. Wavefunctions are saved in file
SystemLabel.TDWF. A TDED restart requires SystemLabel.TDWF,
SystemLabel.TDXV, and SystemLabel.VERLET_RESTART from the
previous run. The first step of the restart is same as the last of
the previous run.

TDED.Write.Etot true (logical)
If true the total energy for every time step is stored in the file
SystemLabel.TDETOT.

TDED.Write.Dipole false (logical)
If true a file SystemLabel.TDDIPOL is created that can be further
processed to calculate polarizability.

TDED.Write.Eig false (logical)
If true the quantities ⟨ϕ(t)|H(t)|ϕ(t)⟩ in every time step are calcu-
lated and stored in the file SystemLabel.TDEIG. This is not trivial,
hence can increase computational time.

TDED.Saverho false (logical)
If true the instantaneous time-dependent density is saved to
<istep>.TDRho after every TDED.Nsaverho number of steps.

TDED.Nsaverho 100 (integer)
Fixes the number of steps of ion-electron dynamics after which the
instantaneous time-dependent density is saved. May require a lot of
disk space.

10 External control of SIESTA

Since SIESTA 4.1 an additional method of controlling the convergence
and MD of SIESTA is enabled through external scripting capability. The

109

external control comes in two variants:

• Implicit control of MD through updating/changing parameters and
optimizing forces. For instance one may use a Verlet MD method
but additionally update the forces through some external force-field
to amend limitations by the Verlet method for your particular
case. In the implicit control the molecular dynamics is controlled
by SIESTA.

• Explicit control of MD. In this mode the molecular dynamics must
be controlled in the external Lua script and the convergence of the
geometry should also be controlled via this script.

The implicit control is in use if MD.TypeOfRun is something other
than lua, while if the option is lua the explicit control is in use.
For examples on the usage of the Lua scripting engine and the power you
may find the library flos7, see https://github.com/siesta-project/
flos. At the time of writing the flos library already implements new ge-
ometry/cell relaxation schemes and new force-constants algorithms. You
are highly encouraged to use the new relaxation schemes as they may
provide faster convergence of the relaxation.

Lua.Script 〈none〉 (file)
Specify a Lua script file which may be used to control the internal
variables in SIESTA. Such a script file must contain at least one
function named siesta_comm with no arguments.
An example file could be this (note this is Lua code):

-- This function (siesta_comm) is REQUIRED
function siesta_comm()

-- Define which variables we want to retrieve from SIESTA
get_tbl = {"geom.xa", "E.total"}

-- Signal to SIESTA which variables we want to explore
siesta.receive(get_tbl)

7This library is implemented by Nick R. Papior to further enhance the inter-
operability with SIESTA and external contributions.

-- Now we have the required variables,
-- convert to a simpler variable name (not nested tables)
-- (note the returned quantities are in SIESTA units (Bohr, Ry)
xa = siesta.geom.xa
Etot = siesta.E.total

-- If we know our energy is wrong by 0.001 Ry we may now
-- change the total energy
Etot = Etot - 0.001

-- Return to SIESTA the total energy such that
-- it internally has the "correct" energy.

siesta.E.total = Etot
ret_tbl = {"E.total"}

siesta.send(ret_tbl)

end

Within this function there are certain states which defines different
execution points in SIESTA:

Initialization This is right after SIESTA has read the options from
the FDF file. Here you may query some of the FDF options (and
even change them) for your particular problem.
NOTE: siesta.state == siesta.INITIALIZE.

Initialize-MD Right before the SCF step starts. This point is some-
what superfluous, but is necessary to communicate the actual
meshcutoff used8.
NOTE: siesta.state == siesta.INIT_MD.

SCF Right after SIESTA has calculated the output density matrix,
and just after SIESTA has performed mixing.
NOTE: siesta.state == siesta.SCF_LOOP.

Forces This stage is right after SIESTA has calculated the forces.
NOTE: siesta.state == siesta.FORCES.

Move This state will only be reached if MD.TypeOfRun is lua.
8Remember that the Mesh.Cutoff defined is the minimum cutoff used.

110

https://github.com/siesta-project/flos
https://github.com/siesta-project/flos

If one does not return updated atomic coordinates SIESTA will
reuse the same geometry as just analyzed.
NOTE: siesta.state == siesta.MOVE.

After-move Right after determining the atomic coordinates for the
next step. Therefore, this is the first thing that is done with the
new atomic coordinates.
NOTE: siesta.state == siesta.AFTER_MOVE.

Analysis Just before SIESTA completes and exits.
NOTE: siesta.state == siesta.ANALYSIS.

Beginning with implementations of Lua scripts may be cumbersome.
It is recommended to start by using flos, see https://github.com/
siesta-project/flos which contains several examples on how to
start implementing your own scripts. Currently flos implements a
larger variety of relaxation schemes, for instance:

local flos = require "flos"
LBFGS = flos.LBFGS()
function siesta_comm()

LBFGS:SIESTA(siesta)
end

which is the most minimal example of using the L-BFGS algo-
rithm for geometry relaxation. Note that flos reads the parame-
ters MD.MaxDispl and MD.MaxForceTol through SIESTA au-
tomatically.
NOTE: The number of available variables continues to grow and to
find which quantities are accessible in Lua you may add this small
code in your Lua script:

siesta.print_allowed()

which prints out a list of all accessible variables (note they are not
sorted).
If there are any variables you require which are not in the list, please
contact the developers.
If you want to stop SIESTA from Lua you can use the following:

siesta.Stop = true
siesta.send({"Stop"})

which will abort SIESTA.
Remark that since anything may be changed via Lua one may easily
make SIESTA crash due to inconsistencies in the internal logic. This
is because SIESTA does not check what has changed, it accepts
everything as is and continues. Hence, one should be careful what is
changed.

Lua.Debug false (logical)
Debug the Lua script mode by printing out (on stdout) information
everytime SIESTA communicates with Lua.

Lua.Debug.MPI false (logical)
Debug all nodes (if in a parallel run).

Lua.Interactive false (logical)
Start an interactive Lua session at all the states in the program and
ask for user-input. This is primarily intended for debugging purposes.
The interactive session is executed just before the siesta_comm func-
tion call (if the script is used).
For serial runs siesta.send may be used. For parallel runs do not
use siesta.send as the code is only executed on the first MPI node.
There are various commands that are caught if they are the only
content on a line:

/debug Turn on/off debugging information.

/show Show the currently collected lines of code.

/clear Clears the currently collected lines of code.

; Run the currently collected lines of code and continue collecting
lines.

/run Same as ;.

/cont Run the currently collected lines of code and continue SIESTA.

/stop Run the currently collected lines of code and stop all future
interactive Lua sessions.

Currently this only works if Lua.Script is having a valid Lua file
(note the file may be empty).

111

https://github.com/siesta-project/flos
https://github.com/siesta-project/flos

10.1 Examples of Lua programs

Please look in the Tests/lua_* folders where examples of basic Lua
scripts are found. Below is a description of the * examples.

h2o Changes the mixing weight continuously in the SCF loop. This will
effectively speed up convergence time if one can attain the best
mixing weight per SCF-step.

si111 Change the mixing method based on certain convergence criteria.
I.e. after a certain convergence one can switch to a more aggressive
mixing method.

A combination of the above two examples may greatly improve conver-
gence, however, creating a generic method to adaptively change the mixing
parameters may be very difficult to implement. If you do create such a
Lua script, please share it on the mailing list.

10.2 External MD/relaxation methods

Using the Lua interface allows a very easy interface for creating external
MD and/or relaxation methods.
A public library (flos, https://github.com/siesta-project/flos) al-
ready implements a wider range of relaxation methods than intrinsically
enabled in SIESTA. Secondly, by using external scripting mechanisms
one can customize the routines to a much greater extend while simulta-
neously create custom constraints.
You are highly encouraged to try out the flos library (please note that
flook is required, see installation instructions above).

11 TRANSIESTA

SIESTA includes the possibility of performing calculations of electronic
transport properties using the TranSIESTA method. This Section de-
scribes how to use these capabilities, and a reference guide to the relevant

fdf options. We describe here only the additional options available for
TranSIESTA calculations, while the rest of the SIESTA functionalities
and variables are described in the previous sections of this User’s Guide.
An accompanying Python toolbox is available which will assist with
TranSIESTA calculations. Please use (and cite) sisl [15].

11.1 Source code structure

In this implementation, the TranSIESTA routines have been grouped
in a set of modules whose file names begin with m_ts or ts.

11.2 Compilation

Prior to SIESTA 4.1 TranSIESTA was a separate executable. Now
TranSIESTA is fully incorporated into SIESTA. Only compile SIESTA
and the full functionality is present. Sec. 2 for details on compiling
SIESTA.

11.3 Brief description

The TranSIESTA method is a procedure to solve the electronic structure
of an open system formed by a finite structure sandwiched between semi-
infinite metallic leads. A finite bias can be applied between leads, to drive
a finite current. The method is described in detail in Brandbyge et al. [4];
Papior et al. [13]. In practical terms, calculations using TranSIESTA
involve the solution of the electronic density from the DFT Hamiltonian
using Greens functions techniques, instead of the usual diagonalization
procedure. Therefore, TranSIESTA calculations involve a SIESTA run,
in which a set of routines are invoked to solve the Greens functions and
the charge density for the open system. These routines are packed in a
set of modules, and we will refer to it as the ’TranSIESTA module’ in
what follows.
TranSIESTA was originally developed by Mads Brandbyge, José-Luis
Mozos, Pablo Ordejón, Jeremy Taylor and Kurt Stokbro [4]. It con-
sisted, mainly, in setting up an interface between SIESTA and the (tight-
binding) transport codes developed by M. Brandbyge and K. Stokbro.

112

https://github.com/siesta-project/flos

Initially everything was written in Fortran-77. As SIESTA started to
be translated to Fortran-90, so were the TranSIESTA parts of the code.
This was accomplished by José-Luis Mozos, who also worked on the paral-
lelization of TranSIESTA. Subsequently Frederico D. Novaes extended
TranSIESTA to allow k-point sampling for transverse directions. Addi-
tional extensions was added by Nick R. Papior during 2012.
The current TranSIESTA module has been completely rewritten by Nick
R. Papior and encompass highly advanced inversion algorithms as well as
allowing N ≥ 1 electrode setups among many new features. Furthermore,
the utility TBtrans has also been fully re-coded (by Nick R. Papior)
to be a generic tight-binding code capable of analyzing physics from the
Greens function perspective in N ≥ 1 setups [13].

• Transport calculations involve electrode (EL) calculations, and
subsequently the Scattering Region (SR) calculation. The elec-
trode calculations are usual SIESTA calculations, but where files
SystemLabel.TSHS, and optionally SystemLabel.TSDE, are gener-
ated. These files contain the information necessary for calculation
of the self-energies. If any electrodes have identical structures (see
below) the same files can and should be used to describe those. In
general, however, electrodes can be different and therefore two dif-
ferent SystemLabel.TSHS files must be generated. The location of
these electrode files must be specified in the fdf input file of the
SR calculation, see TS.Elec.<>.HS.

• For the SR, TranSIESTA starts with the usual SIESTA proce-
dure, converging a Density Matrix (DM) with the usual Kohn-Sham
scheme for periodic systems. It uses this solution as an initial input
for the Greens function self consistent cycle. Effectively you will
start a TranSIESTA calculation from a fully periodic calculation.
This is why the 0 V calculation should be the only calculation where
you start from SIESTA.
TranSIESTA
stores the SCF DM in a file named SystemLabel.TSDE. In a re-
run of the same system (meaning the same SystemLabel), if the
code finds a SystemLabel.TSDE file in the directory, it will take this
DM as the initial input and this is then considered a continuation

run. In this case it does not perform an initial SIESTA run. It must
be clear that when starting a calculation from scratch, in the end
one will find both files, SystemLabel.DM and SystemLabel.TSDE.
The first one stores the SIESTA density matrix (periodic bound-
ary conditions in all directions and no voltage), and the latter the
TranSIESTA solution.

• When performing several bias calculations, it is heavily ad-
vised to run different bias’ in different directories. To drasti-
cally improve convergence (and throughput) one should copy the
SystemLabel.TSDE from the closest, previously, calculated bias to
the current bias.

• The SystemLabel.TSDE may be read equivalently as the
SystemLabel.DM. Thus, it may be used by fx. denchar to ana-
lyze the non-equilibrium charge density. Alternatively one can use
sisl [15] to interpolate the DM and EDM to speed up convergence.

• As in the case of SIESTA calculations, what TranSIESTA does
is to obtain a converged DM, but for open boundary conditions and
possibly a finite bias applied between electrodes. The correspond-
ing Hamiltonian matrix (once self consistency is achieved) of the SR
is also stored in a SystemLabel.TSHS file. Subsequently, transport
properties are obtained in a post-processing procedure using the
TBtrans code (located in the Util/TS/TBtrans directory). We
note that the SystemLabel.TSHS files contain all the needed struc-
tural information (atomic positions, matrix elements, . . .), and so
the input (fdf) flags for the geometry and basis have no influence of
the subsequent TBtrans calculations.

• When the non-equilibrium calculation uses different electrodes one
should use so-called buffer atoms behind the electrodes to act as
additional screening regions when calculating the initial guess (us-
ing SIESTA) for TranSIESTA. Essentially they may be used to
achieve a better “bulk-like” environment at the electrodes in the SR
calculation.

• An important parameter is the lower bound of the energy contours.
It is a good practice, to start with a SIESTA calculation for the SR

113

and look at the eigenvalues of the system. The lower bound of the
contours must be well below the lowest eigenvalue.

• Periodic boundary conditions are assumed in 2 cases.

1. For NE ̸= 2 all lattice vectors are periodic, users must manually
define TS.kgrid.MonkhorstPack

2. For NE = 2 TranSIESTA will auto-detect if both electrodes
are semi-infinite along the same lattice vector. If so, only 1 k
point will be used along that lattice vector.

• The default algorithm for matrix inversion is the BTD method, be-
fore starting a TranSIESTA calculation please run with the ana-
lyzation step TS.Analyze (note this is very fast and can be done
on any desktop computer, regardless of system size).

• Importantly(!) the k-point sampling need typically be much higher
in a TBtrans calculation to achieve a converged transmission func-
tion.

• Energies from TranSIESTA are not to be trusted since the open
boundaries complicates the energy calculation. Therefore care needs
to be taken when comparing energies between different calculations
and/or different bias’.

• Always ensure that charges are preserved in the scattering region
calculation. Doing the SCF an output like the following will be
shown:

ts-q: D E1 C1 E2 C2 dQ
ts-q: 436.147 392.146 3.871 392.146 3.871 7.996E-3

Always ensure the last column (dQ) is a very small fraction of the
total number of electrons. Ideally this should be 0. For 0 bias
calculations this should be very small, typically less than 0.1 % of
the total charge in the system. If this is not the case, it probably
means that there is not enough screening towards the electrodes
which can be solved by adding more electrode layers between the
electrode and the scattering region. This layer thickness is very
important to obtain a correct open boundary calculation.

• Do not perform TranSIESTA calculations using semi-conducting
electrodes. The basic premise of TranSIESTA calculations is that
the electrodes behave like bulk in the electrode regions of the SR.
This means that the distance between the electrode and the per-
turbed must equal the screening length of the electrode.
This is problematic for semi-conducting systems since they intrinsi-
cally have a very long screening length.
In addition, the Fermi-level of semi-conductors are not well-defined
since it may be placed anywhere in the band gap.

11.4 Electrodes

To calculate the electronic structure of a system under external bias,
TranSIESTA attaches the system to semi-infinite electrodes which ex-
tend to their respective semi-infinite directions. Examples of electrodes
would include surfaces, nanowires, nanotubes or fully infinite regions. The
electrode must be large enough (in the semi-infinite direction) so that or-
bitals within the unit cell only interact with a single nearest neighbor cell
in the semi-infinite direction (the size of the unit cell can thus be derived
from the range of support for the orbital basis functions). TranSIESTA
will stop if this is not enforced. The electrodes are generated by a sepa-
rate TranSIESTA run on a bulk system. This implies that the proper
bulk properties are obtained by a sufficiently high k-point sampling. If
in doubt, use 100 k-points along the semi-infinite direction. The results
are saved in a file with extension SystemLabel.TSHS which contains a
description of the electrode unit cell, the position of the atoms within the
unit cell, as well as the Hamiltonian and overlap matrices that describe
the electronic structure of the lead. One can generate a variety of elec-
trodes and the typical use of TranSIESTA would involve reusing the
same electrode for several setups. At runtime, the TranSIESTA coor-
dinates are checked against the electrode coordinates and the program
stops if there is a mismatch to a certain precision (10−4 Bohr). Note that
the atomic coordinates are compared relatively. Hence the input atomic
coordinates of the electrode and the device need not be the same (see e.g.
the tests in the Tests directory.
To run an electrode calculation one should do:

114

siesta --electrode RUN.fdf

or define these options in the electrode fdf files: TS.HS.Save and
TS.DE.Save to true (the above –electrode is a shorthand to force-
fully define the two options).

11.4.1 Matching coordinates

Here are some rules required to successfully construct the appropriate
coordinates of the scattering region. Contrary to versions prior to 4.1,
the order of atoms is largely irrelevant. One may define all electrodes,
then subsequently the device, or vice versa. Similarly, buffer atoms are
not restricted to be the first/last atoms.
However, atoms in any given electrode must be consecutive in the device
file. I.e. if an electrode input option is given by:

%block TS.Elec.<>
HS ../elec-<>/siesta.TSHS
bloch 1 3 1
used-atoms 4
electrode-position 10
...

%endblock

then the atoms from 10 to 10 + 4 ∗ 3− 1 must coincide with the atoms of
the calculation performed in the ../elec-<>/ subdirectory. The above
options will be discussed in the following section.
When using the Bloch expansion (highly recommended if your system
allows it) it is advised to follow the tiling method. However both of the
below sequences are allowed.

Tile Here the atoms are copied and displaced by the full electrode. Gen-
erally this expansion should be preferred over the repeat expansion due
to much faster execution.

iaD = 10 ! as per the above input option
do iC = 0 , nC - 1

do iB = 0 , nB - 1
do iA = 0 , nA - 1

do iaE = 1 , na_u
xyz_device(:, iaD) = xyz_elec(:, iaE) + &

cell_elec(:, 1) * iA + &
cell_elec(:, 2) * iB + &
cell_elec(:, 3) * iC

iaD = iaD + 1
end do

end do
end do
end do

By using sisl [15] one can achieve the tiling scheme by using the following
command-line utility on an input ELEC.fdf structure with the minimal
electrode:

sgeom -tx 1 -ty 3 -tz 1 ELEC.fdf DEVICE_ELEC.fdf

Repeat Here the atoms are copied individually. Generally this expan-
sion should not be used since it is much slower than tiling.

iaD = 10 ! as per the above input option
do iaE = 1 , na_u

do iC = 0 , nC - 1
do iB = 0 , nB - 1
do iA = 0 , nA - 1

xyz_device(:, iaD) = xyz_elec(:, iaE) + &
cell_elec(:, 1) * iA + &
cell_elec(:, 2) * iB + &
cell_elec(:, 3) * iC

iaD = iaD + 1
end do
end do
end do

end do

By using sisl [15] one can achieve the repeating scheme by using the fol-
lowing command-line utility on an input ELEC.fdf structure with the
minimal electrode:

sgeom -rz 1 -ry 3 -rx 1 ELEC.fdf DEVICE_ELEC.fdf

115

11.4.2 Principal layer interactions

It is extremely important that the electrodes only interact with one neigh-
boring supercell due to the self-energy calculation [16]. TranSIESTA will
print out a block as this (<> is the electrode name):

<> principal cell is perfect!

if the electrode is correctly setup and it only interacts with its neighboring
supercell. In case the electrode is erroneously setup, something similar to
the following will be shown in the output file.

<> principal cell is extending out with 96 elements:
Atom 1 connects with atom 3
Orbital 8 connects with orbital 26
Hamiltonian value: |H(8,6587)|@R=-2 = 0.651E-13 eV
Overlap : S(8,6587)|@R=-2 = 0.00

It is imperative that you have a perfect electrode as otherwise nonphysical
results will occur. This means that you need to add more layers in your
electrode calculation (and hence also in your scattering region). An exam-
ple is an ABC stacking electrode. If the above error is shown one has to
create an electrode with ABCABC stacking in order to retain periodicity.
By default TranSIESTA will die if there are connections beyond the
principal cell. One may control whether this is allowed or not by using
TS.Elecs.Neglect.Principal.

11.5 Convergence of electrodes and scattering regions

For successful TranSIESTA calculations it is imperative that the elec-
trodes and scattering regions are well-converged. The basic principle is
equivalent to the SIESTA convergence, see Sec. 6.9.
The steps should be something along the line of (only done at 0 V).

1. Converge electrodes and find optimal Mesh.Cutoff ,
kgrid.MonkhorstPack etc.

Electrode k points should be very high along the semi-infinite di-
rection. The default is 100, but at least > 50 should easily be
reachable.

2. Use the parameters from the electrodes and also converge the same
parameters for the scattering region SCF.
This is an iterative process since the scattering region forces the elec-
trodes to use equivalent k points (see TS.Elec.<>.check-kgrid).
Note that k points should be limited in the TranSIESTA run, see
TS.kgrid.MonkhorstPack.
One should always use the same parameters in both the electrode
and scattering region calculations, except the number of k points
for the electrode calculations along their respective semi-infinite di-
rections.

3. Once TranSIESTA is completed one should also converge the
number of k points for TBtrans. Note that k point sampling
in TBtrans should generally be much denser but always fulfill
NTranSIESTA

k ≥ NTBtrans
k

The converged parameters obtained at 0 V should be used for all subse-
quent bias calculations. Remember to copy the SystemLabel.TSDE from
the closest, previously, calculated bias for restart and much faster conver-
gence.
TranSIESTA is also more difficult to converge during the SCF steps.
This may be due to several interrelated problems:

• A too short screening distance between the scattering atoms and
the electrode layers.

• In case buffer atoms (TS.Atoms.Buffer) are used with vacuum
on the backside it may be that there are too few buffer atoms to
accurately screen off the vacuum region for a sufficiently good initial
guess. This effect is only true for 0 V calculations.

• The mixing parameters may need to be smaller than for SIESTA,
see Sec. 6.9.2 and it is never guaranteed that it will converge. It is
always a trial and error method, there are no omnipotent mixing
parameters.

116

• Very high bias’ may be extremely difficult to converge. Generally
one can force bias convergence by doing smaller steps of bias. E.g. if
problems arise at 0.5 V with an initial DM from a 0.25 V calculation,
one could try and 0.3 V first.

• If a particular bias point is hard to converge, even by doing the
previous step, it may be related to an eigenstate close to the chemical
potentials of either electrode (e.g. a molecular eigenstate in the
junction). In such cases one could try an even higher bias and see
if this converges more smoothly.

11.6 NEGF equations

The options available for TranSIESTA will impact how the calculation
is performed. It is vital that the users carefully read this section and the
options that refer to these.
The NEGF equation are primarily concerning the Green function:

G(E) =
[
(E + iη)S−H−

∑
e

Σe(E). (27)

The electrode self-energy is calculated from the bulk electrode calculation

Σe(E)←
{
He, Se

}
. (28)

TranSIESTA has options to discern which Hamiltonian elements can
be used in which parts of the calculation. Default is that the electrode
matrices (He, Se) are used whenever the electrode enters a matrix. Lets
show a partitioning of the Green function for a particular electrode (z =
E + iη)

G(z) =

 Me,e Me,D . . .
MD,e MD,D

... . . .


−1

=

(z + µelec)Se −He −Σe(E) zSe,D −He,D . . .
zSD,e −HD,e zSD −HD

... . . .


−1

.

(29)
The following options alter the above equation slightly:

• TS.Elec.<>.Bulk

• TS.Elec.<>.Eta

• TS.Elec.<>.chemical-potential

• TS.Elec.<>.V-fraction (experts only!)

• TS.Elec.<>.delta-Ef (experts only!)

11.7 TranSIESTA Options

The fdf options shown here are only to be used at the input file for the
scattering region. When using TranSIESTA for electrode calculations,
only the usual SIESTA options are relevant. Note that since TranSI-
ESTA is a generic NE electrode NEGF code the input options are heavily
changed compared to versions prior to 4.1.

11.7.1 Quick and dirty

Since 4.1, TranSIESTA has been fully re-implemented. And so have
every input fdf-flag. To accommodate an easy transition between previous
input files and the new version format a small utility called ts2ts. It may
be compiled in Util/TS/ts2ts. It is recommended that you use this tool
if you are familiar with previous TranSIESTA versions.
One may input options as in the old TranSIESTA version and then run

ts2ts OLD.fdf > NEW.fdf

which translates all keys to the new, equivalent, input format. If you
are familiar with the old-style flags this is highly recommendable while
becoming comfortable with the new input format. Please note that some
defaults have changed to more conservative values in the newer release.
If one does not know the old flags and wish to get a basic example of an
input file, a script Util/TS/tselecs.sh exists that can create the basic
input for NE electrodes. One may call it like:

tselecs.sh -2 > TWO_ELECTRODE.fdf
tselecs.sh -3 > THREE_ELECTRODE.fdf
tselecs.sh -4 > FOUR_ELECTRODE.fdf
...

117

where the first call creates an input fdf for 2 electrode setups, the second
for a 3 electrode setup, and so on. See the help (-h) for the program for
additional options.
Before endeavoring on large scale calculations you are advised to run an
analyzation of the system at hand, you may run your system as

siesta -fdf TS.Analyze RUN.fdf > analyze.out

which will analyze the sparsity pattern and print out several different
pivoting schemes. Please see TS.Analyze for more information.

11.7.2 General options

One have to set SolutionMethod to transiesta to enable TranSI-
ESTA.

TS.SolutionMethod btd|mumps|full (string)
Control the algorithm used for calculating the Green function. Gen-
erally the BTD method is the fastest and this option need not be
changed.

BTD Use the block-tri-diagonal algorithm for matrix inversion.
This is generally the recommended method.

MUMPS Use sparse matrix inversion algorithm (MUMPS). This re-
quires TranSIESTA to be compiled with MUMPS.

full Use full matrix inversion algorithm (LAPACK). Generally only
usable for debugging purposes.

TS.Voltage 0 eV (energy)
Define the reference applied bias. For NE = 2 electrode calculations
this refers to the actual potential drop between the electrodes, while
for NE ̸= 2 this is a reference bias. In the latter case it must be
equivalent to the maximum difference between the chemical potential
of any two electrodes.
NOTE: Specifying -V on the command-line overwrites the value in
the fdf file.

%block TS.kgrid.MonkhorstPack 〈kgrid.MonkhorstPack〉
(block)
k points used for the TranSIESTA calculation.
For NE ̸= 2 this should always be defined. Always take care to use
only 1 k point along non-periodic lattice vectors. An electrode semi-
infinite region is considered non-periodic since it is integrated out
through the self-energies.
This defaults to kgrid.MonkhorstPack.

TS.Atoms.Buffer 〈None〉 (block/list)
Specify atoms that will be removed in the TranSIESTA SCF. They
are not considered in the calculation and may be used to improve the
initial guess for the Hamiltonian.
An intended use for buffer atoms is to ensure a bulk behavior in
the electrode regions when electrodes are different. As an example:
a 2 electrode calculation with left consisting of Au atoms and the
right consisting of Pt atoms. In such calculations one cannot create
a periodic geometry along the transport direction. One needs to add
vacuum between the Au and Pt atoms that comprise the electrodes.
However, this creates an artificial edge of the electrostatic environ-
ment for the electrodes since in SIESTA there is vacuum, whereas
in TranSIESTA the effective Hamiltonian sees a bulk environment.
To ensure that SIESTA also exhibits a bulk environment on the
electrodes we add buffer atoms towards the vacuum region to screen
off the electrode region. These buffer atoms is thus a technicality
that has no influence on the TranSIESTA calculation but they are
necessary to ensure the electrode bulk properties.
The above discussion is even more important when doing NE-
electrode calculations.
NOTE: all lines are additive for the buffer atoms and the input
method is similar to that of Geometry.Constraints for the atom
line(s).

%block TS.Atoms.Buffer
atom [1 -- 5]

%endblock
Or equivalently as a list
TS.Atoms.Buffer [1 -- 5]

118

will remove atoms [1–5] from the calculation.

TS.ElectronicTemperature 〈ElectronicTemperature〉 (energy)
Define the temperature used for the Fermi distributions for the chem-
ical potentials. See TS.ChemPot.<>.ElectronicTemperature.

TS.SCF.DM.Tolerance 〈SCF.DM.Tolerance〉 (real)
depends on: SCF.DM.Tolerance, SCF.DM.Converge

The density matrix tolerance for the TranSIESTA SCF cycle.

TS.SCF.H.Tolerance 〈SCF.H.Tolerance〉 (energy)
depends on: SCF.H.Tolerance, SCF.H.Converge

The Hamiltonian tolerance for the TranSIESTA SCF cycle.

TS.SCF.dQ.Converge true (logical)
Whether TranSIESTA should check whether the total charge is
within a provided tolerance, see TS.SCF.dQ.Tolerance.

TS.SCF.dQ.Tolerance Q(device) · 10−3 (real)
depends on: TS.SCF.dQ.Converge

The charge tolerance during the SCF.
The charge is not stable in TranSIESTA calculations and this flag
ensures that one does not, by accident, do post-processing of files
where the charge distribution is completely wrong.
A too high tolerance may heavily influence the electrostatics of the
simulation.
NOTE: Please see TS.dQ for ways to reduce charge loss in equilib-
rium calculations.

TS.SCF.Initialize diagon|transiesta (string)
Control which initial guess should be used for TranSIESTA. The
general way is the diagon solution method (which is preferred),
however, one can start a TranSIESTA run immediately. If
you start directly with TranSIESTA please refer to these flags:
TS.Elecs.DM.Init and TS.Fermi.Initial.
NOTE: Setting this to transiesta is highly experimental and con-
vergence may be extremely poor.

TS.Fermi.Initial
∑NE

i Ei
F /NE (energy)

Manually set the initial Fermi level to a predefined value.
NOTE: this may also be used to change the Fermi level for calcu-
lations where you restart calculations. Using this feature is highly
experimental.

TS.Weight.Method
orb-orb|[[un]correlated+][sum|tr]-atom-[atom|orb]|mean
(string)
Control how the NEGF weighting scheme is conducted. Generally
one should only use the orb-orb while the others are present for
more advanced usage. They refer to how the weighting coefficients of
the different non-equilibrium contours are performed. In the follow-
ing the weight are denoted in a two-electrode setup while they are
generalized for multiple electrodes.
Define the normalised geometric mean as ∝|| via

w
||
∝⟨·L⟩ ≡ ⟨·L⟩

⟨·L⟩+ ⟨·R⟩ . (30)

When applying a bias, TranSIESTA will printout the following dur-
ing the SCF cycle:

ts-err-D: ij(447, 447), M = 1.8275, ew = -.257E-2, em = 0.258E-2. avg_em = 0.542E-06
ts-err-E: ij(447, 447), M = -6.7845, ew = 0.438E-3, em = -.439E-3. avg_em = -.981E-07
ts-w-q: qP1 qP2
ts-w-q: 219.150 216.997
ts-q: D E1 C1 E2 C2 dQ
ts-q: 436.147 392.146 3.871 392.146 3.871 7.996E-3

The extra output corresponds to fine details in the integration
scheme.

ts-err-* are estimated error outputs from the different in-
tegrals, for the density matrix (D) and the energy density
matrix (E), see Eq. (12) in [13]. All values (except avg_em)
are for the given orbital site
ij(A,B) refers to the matrix element between orbital A

and B

M is the weighted matrix element value,
∑

e weρ
e

119

ew is the maximum difference between
∑

e weρ
e−ρe for all

e.
em is the maximum difference between ρe′−ρe for all com-

binations of e and e′.
avg_em is the averaged difference of em for all orbital sites.

ts-w-q is the Mulliken charge from the different integrals:
Tr[weρ

eS]

orb-orb Weight each orbital-density matrix element individually.

tr-atom-atom Weight according to the trace of the atomic density
matrix sub-blocks

wTr
ij

||
∝

√∑
∈{i}

(∆ρL
µµ)2

∑
∈{j}

(∆ρL
µµ)2 (31)

tr-atom-orb Weight according to the trace of the atomic density
matrix sub-block times the weight of the orbital weight

wTr
ij,µν

||
∝

√
wTr

ij wij,µν (32)

sum-atom-atom Weight according to the total sum of the atomic
density matrix sub-blocks

wΣ
ij,µν

||
∝

√∑
∈{i}

(∆ρL
µν)2

∑
∈{j}

(∆ρL
µν)2 (33)

sum-atom-orb Weight according to the total sum of the atomic den-
sity matrix sub-block times the weight of the orbital weight

wΣ
ij,µν

||
∝

√
wΣ

ijwij,µν (34)

mean A standard average.

Each of the methods (except mean) comes in a correlated and un-
correlated variant where

∑
is either outside or inside the square,

respectively.

TS.Weight.k.Method correlated|uncorrelated (string)
Control weighting per k-point or the full sum. I.e. if uncorrelated
is used it will weight nk times if there are nk k-points in the Brillouin
zone.

TS.Forces true (logical)
Control whether the forces are calculated. If not TranSIESTA will
use slightly less memory and the performance slightly increased, how-
ever the final forces shown are incorrect.
If this is true the file SystemLabel.TSFA (and possibly the
SystemLabel.TSFAC) will be created. They contain forces for
the atoms that are having updated density-matrix elements
(TS.Elec.<>.DM-update all).
Generally one should not expect good forces close to the elec-
trode/device interface since this typically has some electrostatic ef-
fects that are inherent to the TranSIESTA method. Forces on
atoms far from the electrode can safely be analyzed.

TS.dQ none|buffer|fermi (string)
Any excess/deficiency of charge can be re-adjusted after each Tran-
SIESTA cycle to reduce charge fluctuations in the cell.
NOTE: recommended to only use charge corrections for 0 V calcu-
lations.
The non-neutral charge in TranSIESTA cycles is an expression of
one of the following things:

1. An incorrect screening towards the electrodes. To check this,
simply add more electrode layers towards the device at each
electrode and see how the charge evolves. It should tend to
zero.
The best way to check this is to follow these steps:
(a) Perform a SIESTA-only calculation (the resulting DM

should be used as the starting point for both following cal-
culations)

(b) Perform a TranSIESTA calculation with the option
TS.Elecs.DM.Init diagon (please note that the elec-
trode option has precedence, so remove any entry from the

120

TS.Elec.<> block)
(c) Perform a TranSIESTA calculation with the option

TS.Elec.<>.DM-init bulk (please note that the elec-
trode option has precedence, so remove any entry from the
TS.Elec.<> block)

Now compare the final output and the initial charge distribution,
e.g.:

>>> TS.Elecs.DM.Init diagon
transiesta: Charge distribution, target = 396.00000
Total charge [Q] : 396.00000

>>> TS.Elecs.DM.Init bulk
transiesta: Charge distribution, target = 396.00000
Total charge [Q] : 395.9995

The above shows that there is very little charge difference be-
tween the bulk electrode DM and the scattering region. This
ensures that the charge distribution are similar and that your
electrode is sufficiently screened.
Additionally one may compare the final output such as total
energies, calculated DOS and ADOS (see TBtrans). If the
two calculations show different properties, one should carefully
examine the system setup.

2. An incorrect reference energy level. In TranSIESTA the
Fermi level is calculated from the SIESTA SCF. However, the
SIESTA Fermi level corresponds to a periodic calculation and
not an open system calculation such as NEGF.
If the first step shows a good screening towards the electrode it
is usually the reference energy level, then use TS.dQ fermi.

3. A combination of the above, this is the typical case.

none No charge corrections are introduced.

buffer Excess/missing electrons are placed in the buffer regions
(buffer atoms are required to exist)

fermi Correct the charge filling by calculating a new reference energy
level (referred to as the Fermi level).
We approximate the contribution to be constant around the Fermi

level and find
dEF = Q′ −Q

Q|EF

, (35)

where Q′ is the charge from a TranSIESTA SCF step and Q|EF

is the equilibrium charge at the current Fermi level, Q is the sup-
posed charge to reside in the calculation. Fermi correction utilizes
Eq. (35) for the first correction and all subsequent corrections are
based on a cubic spline interpolation to faster converge the “cor-
rect” Fermi level.
This method will create a file called TS_FERMI.
NOTE: correcting the reference energy level is a costly operation
since the SCF cycle typically gets corrupted resulting in many more
SCF cycles.

TS.dQ.Factor 0.8 (real)
Any positive value close to 1. 0 means no charge correction. 1 means
total charge correction. This will reduce the fluctuations in the SCF
and setting this to 1 may result in difficulties in converging.

TS.dQ.Fermi.Tolerance 0.01 (real)
The tolerance at which the charge correction will converge. Any
excess/missing charge (|Q′ −Q| > Tol) will result in a correction for
the Fermi level.

TS.dQ.Fermi.Max 1.5 eV (energy)
The maximally allowed value that the Fermi level will change from
a charge correction using the Fermi correction method. In case the
Fermi level lies in between two bands a DOS of 0 at the Fermi level
will make the Fermi change equal to ∞. This is not physical and the
user can thus truncate the correction.
NOTE: If you know the band-gab, setting this to 1/4 (or smaller)
of the band gab seems like a better value than the rather arbitrarily
default one.

TS.dQ.Fermi.Eta 1 meV (energy)
The η value that we extrapolate the charge at the poles to. Usually
a smaller η value will mean larger changes in the Fermi level. If the
charge convergence w.r.t. the Fermi level is fluctuating a lot one

121

should increase this η value.

TS.HS.Save true (logical)
Must be true for saving the Hamiltonian (SystemLabel.TSHS). Can
only be set if SolutionMethod is not transiesta.
The default is false for SolutionMethod different from transiesta
and if –electrode has not been passed as a command line argument.

TS.DE.Save true (logical)
Must be true for saving the density and energy density matrix for
continuation runs (SystemLabel.TSDE). Can only be set if Solution-
Method is not transiesta.
The default is false for SolutionMethod different from transiesta
and if –electrode has not been passed as a command line argument.

TS.S.Save false (logical)
This is a flag mainly used for the Inelastica code to produce overlap
matrices for Pulay corrections. This should only be used by advanced
users.

TS.SIESTA.Only false (logical)
Stop TranSIESTA right after the initial diagonalization run in
SIESTA. Upon exit it will also create the SystemLabel.TSDE file
which may be used for initialization runs later.
This may be used to start several calculations from the same initial
density matrix, and it may also be used to rescale the Fermi level of
electrodes. The rescaling is primarily used for semi-conductors where
the Fermi levels of the device and electrodes may be misaligned.

TS.Analyze false (logical)
When using the BTD solution method (TS.SolutionMethod) this
will analyze the Hamiltonian and printout an analysis of the sparsity
pattern for optimal choice of the BTD partitioning algorithm.
This yields information regarding the TS.BTD.Pivot flag.
NOTE: we advice users to always run an analyzation step prior to
actual calculation and select the best BTD format. This analyzing
step is very fast and may be performed on small work-station com-
puters, even on systems of ≫ 10, 000 orbitals.

To run the analyzing step you may do:
siesta -fdf TS.Analyze RUN.fdf > analyze.out

note that there is little gain on using MPI and it should complete
within a few minutes, no matter the number of orbitals.
Choosing the best one may be difficult. Generally one should choose
the pivoting scheme that uses the least amount of memory. However,
one should also choose the method with the largest block-size being
as small as possible. As an example:

TS.BTD.Pivot atom+GPS
...

BTD partitions (7):
[2984, 2776, 192, 192, 1639, 4050, 105]

BTD matrix block size [max] / [average]: 4050 / 1705.429
BTD matrix elements in % of full matrix: 47.88707 %

TS.BTD.Pivot atom+GGPS
...

BTD partitions (6):
[2880, 2916, 174, 174, 2884, 2910]

BTD matrix block size [max] / [average]: 2916 / 1989.667
BTD matrix elements in % of full matrix: 48.62867 %

Although the GPS method uses the least amount of memory, the
GGPS will likely perform better as the largest block in GPS is 4050
vs. 2916 for the GGPS method.

TS.Analyze.Graphviz false (logical)
depends on: TS.Analyze

If performing the analysis, also create the connectivity graph and
store it as GRAPHVIZ_atom.gv or GRAPHVIZ_orbital.gv to be post-
processed in Graphviz9.

11.8 k-point sampling

The options for k-point sampling are identical to the SIESTA options,
kgrid.MonkhorstPack, kgrid.Cutoff or kgrid.File.

9www.graphviz.org

122

www.graphviz.org

One may however use specific TranSIESTA k-points by using these op-
tions:

%block TS.kgrid.MonkhorstPack 〈kgrid.MonkhorstPack〉
(block)
See kgrid.MonkhorstPack for details.

TS.kgrid.Cutoff 0. Bohr (length)
See kgrid.Cutoff for details.

TS.kgrid.File none (string)
See kgrid.File for details.

11.8.1 Algorithm specific options

These options adhere to the specific solution methods available for Tran-
SIESTA. For instance the TS.BTD.* options adhere only when using
TS.SolutionMethod BTD, similarly for options with MUMPS.

TS.BTD.Pivot 〈first electrode〉 (string)
Decide on the partitioning for the BTD matrix. One may denote
either atom+ or orb+ as a prefix which does the analysis on the
atomic sparsity pattern or the full orbital sparsity pattern, respec-
tively. If neither are used it will default to atom+.
Please see TS.Analyze.

<elec-name>|CG-<elec-name> The partitioning will be a con-
nectivity graph starting from the electrode denoted by the name.
This name must be found in the TS.Elecs block. One can append
more than one electrode to simultaneously start from more than 1
electrode. This may be necessary for multi-terminal calculations.

rev-CM Use the reverse Cuthill-McKee for pivoting the matrix ele-
ments to reduce bandwidth. One may omit rev- to use the stan-
dard Cuthill-McKee algorithm (not recommended).
This pivoting scheme depends on the initial starting electrodes, ap-
pend +<elec-name> to start the Cuthill-McKee algorithm from
the specified electrode(s).

GPS Use the Gibbs-Poole-Stockmeyer algorithm for reducing the
bandwidth.

GGPS Use the generalized Gibbs-Poole-Stockmeyer algorithm for re-
ducing the bandwidth.
NOTE: this algorithm does not work on dis-connected graphs.

PCG Use the perphiral connectivity graph algorithm for reducing the
bandwidth.
This pivoting scheme may depend on the initial starting elec-
trode(s), append +<elec-name> to initialize the PCG algorithm
from the specified electrode(s).

Examples are
TS.BTD.Pivot atom+GGPS
TS.BTD.Pivot GGPS
TS.BTD.Pivot orb+GGPS
TS.BTD.Pivot orb+PCG+Left

where the first two are equivalent. The 3rd and 4th are more heavy
on analysis and will typically not improve the bandwidth reduction.

TS.BTD.Optimize speed|memory (string)
When selecting the smallest blocks for the BTD matrix there are
certain criteria that may change the size of each block. For very
memory consuming jobs one may choose the memory.
NOTE: often both methods provide exactly the same BTD matrix
due to constraints on the matrix.

TS.BTD.Guess1.Min 〈empirically determined〉 (int)
depends on: TS.BTD.Guess1.Max

Constructing the blocks for the BTD starts by guessing the first
block size. One could guess on all different block sizes, but to speed
up the process one can define a smaller range of guesses by defining
TS.BTD.Guess1.Min and TS.BTD.Guess1.Max.
The initial guessed block size will be between the two values.
By default this is 1/4 of the minimum bandwidth for a selected first
set of orbitals.
NOTE: setting this to 1 may sometimes improve the final BTD

123

matrix blocks.

TS.BTD.Guess1.Max 〈empirically determined〉 (int)
depends on: TS.BTD.Guess1.Min

See TS.BTD.Guess1.Min.
NOTE: for improved initialization performance setting Min/Max
flags to the first block size for a given pivoting scheme will drastically
reduce the search space and make initialization much faster.

TS.BTD.Spectral propagation|column (string)
How to compute the spectral function (GΓG†).
For NE < 4 this defaults to propagation which should be the fastest.
For NE ≥ 4 this defaults to column.
Check which has the best performance for your system if you endeavor
on huge amounts of calculations for the same system.

TS.MUMPS.Ordering 〈read MUMPS manual〉 (string)
One may select from a number of different matrix orderings which
are all described in the MUMPS manual.
The following list of orderings are available (without detailing their
differences): auto, AMD, AMF, SCOTCH, PORD, METIS,
QAMD.

TS.MUMPS.Memory 20 (integer)
Specify a factor for the memory consumption in MUMPS. See the
INFOG(9) entry in the MUMPS manual. Generally if TranSI-
ESTA dies and INFOG(9)=-9 one should increase this number.

TS.MUMPS.BlockingFactor 112 (integer)
Specify the number of internal block sizes. Larger numbers increases
performance at the cost of memory.
NOTE: this option may heavily influence performance.

11.8.2 Poisson solution for fixed boundary conditions

TranSIESTA requires fixed boundary conditions and forcing this is an
intricate and important detail.

It is important that these options are exactly the same if one reuses the
SystemLabel.TSDE files.

TS.Poisson ramp|elec-box|〈file〉 (string)
Define how the correction of the Poisson equation is superimposed.
The default is to apply the linear correction across the entire cell
(if there are two semi-infinite aligned electrodes). Otherwise this
defaults to the box solution which will introduce spurious effects at
the electrode boundaries. In this case you are encouraged to supply
a file.
If the input is a file, it should be a NetCDF file containing the grid
information which acts as the boundary conditions for the SCF cycle.
The grid information should conform to the grid size of the unit-cell in
the simulation. NOTE: the file option is only applicable if compiled
with CDF4 compliance.

ramp Apply the ramp for the full cell. This is the default for 2
electrodes.

<file> Specify an external file used as the boundary conditions for
the applied bias. This is encouraged to use for NE > 2 electrode
calculations but may also be used when an a priori potential profile
is know.
The file should contain something similar to this output (ncdump
-h):

netcdf <file> {
dimensions:

one = 1 ;
a = 43 ;
b = 451 ;
c = 350 ;

variables:
double Vmin(one) ;

Vmin:unit = "Ry" ;
double Vmax(one) ;

Vmax:unit = "Ry" ;
double V(c, b, a) ;

V:unit = "Ry" ;
}

Note that the units should be in Ry. Vmax/Vmin should contain
the maximum/minimum fixed boundary conditions in the Poisson

124

solution. This is used internally by TranSIESTA to scale the
potential to arbitrary V . This enables the Poisson solution to
only be solved once independent on subsequent calculations. For
chemical potential configurations where the Poisson solution is not
linearly dependent one have to create separate files for each applied
bias.

elec-box The default potential profile for NE > 2, or when the elec-
trodes does are not aligned (in terms of their transport direction).
NOTE: usage of this Poisson solution is highly discouraged. Please
see TS.Poisson <file>.

TS.Hartree.Fix [-+][ABC] (string)
Specify which plane to fix the Hartree potential at. For regular (2
electrode calculations with a single transport direction) this should
not be set. For NE ̸= 2 electrode systems one have to specify a plane
to fix. One can specify one or several planes to fix. Users are encour-
aged to fix the plane where the entire plane has the highest/lowest
potential.

TS.Hartree.Fix.Frac 1. (real)
Fraction of the correction that is applied.
NOTE: this is an experimental feature!

TS.Hartree.Offset 0 eV (energy)
An offset in the Hartree potential to match the electrode potential.
This value may be useful in certain cases where the Hartree poten-
tials are very different between the electrode and device region cal-
culations.
This should not be changed between different bias calculations. It
directly relates to the reference energy level (EF).

11.8.3 Electrode description options

As TranSIESTA supports NE electrodes one needs to specify all elec-
trodes in a generic input format.

%block TS.Elecs 〈None〉 (block)

Each line denote an electrode which is queried in TS.Elec.<> for
its setup.

%block TS.Elec.<> 〈None〉 (block)
Each line represents a setting for electrode <>. There are a few lines
that must be present, HS, semi-inf-dir, electrode-pos, chem-pot.
The remaining options are optional.
NOTE: Options prefixed with tbt are neglected in TranSIESTA
calculations. In TBtrans calculations these flags has precedence
over the other options and must be placed at the end of the block.

HS The Hamiltonian information from the initial electrode calcula-
tion. This file retains the geometrical information as well as the
Hamiltonian, overlap matrix and the Fermi-level of the electrode.
This is a file-path and the electrode SystemLabel.TSHS need not
be located in the simulation folder.

semi-inf-direction|semi-inf-dir|semi-inf The semi-infinite direc-
tion of the electrode with respect to the electrode unit-cell.
It may be one of [-+][abc], [-+]A[123], ab, ac, bc or abc. The
latter four all refer to a real-space self-energy as described in [14].
NOTE: this direction is not with respect to the scattering region
unit cell. It is with respect to the electrode unit cell. TranSI-
ESTA will figure out the alignment of the electrode unit cell and
the scattering region unit-cell.

chemical-potential|chem-pot|mu The chemical potential that is
associated with this electrode. This is a string that should be
present in the TS.ChemPots block.

electrode-position|elec-pos The index of the electrode in the scat-
tering region. This may be given by either elec-pos <idx>, which
refers to the first atomic index of the electrode residing at index
<idx>. Else the electrode position may be given via elec-pos
end <idx> where the last index of the electrode will be located
at <idx>.

used-atoms Number of atoms from the electrode calculation that is
used in the scattering region as electrode. This may be useful when
the periodicity of the electrodes forces extensive electrodes in the

125

semi-infinite direction.
NOTE: do not set this if you use all atoms in the electrode.

Bulk Control whether the Hamiltonian of the electrode region in the
scattering region is enforced bulk or whether the Hamiltonian is
taken from the scattering region elements.
This defaults to true. If there are buffer atoms behind the electrode
it may be advantageous to set this to false to extend the electrode
region, otherwise it is recommended to keep the default.
This option changes how Me,e, see Eq. (29), is setup.
For true

{
He, Se

}
are taken from the electrode file

(TS.Elec.<>.HS).
For false

{
He, Se

}
are substituted by the device calculations elec-

trode region. I.e. it is the self-consistent Hamiltonian.
DM-update depends on: TS.Elec.<>.Bulk

String of values none, cross-terms or all which controls which
part of the electrode density matrix elements that are updated.
The density matrices that comprises an electrode and device-
electrode region can be written as (omitting the central device
region)

ρ =


ρe ρeD 0

ρDe
.

0 . . .

 (36)

This flag determines whether ρe (all) or ρeD (cross-terms and
all) or neither (none) are updated in the SCF. The density ma-
trices contains the charges and thus affects the Hamiltonian and
Poisson solutions. Generally the default value will suffice and is
recommended.
If TS.Elec.<>.Bulk false this is forced to all and cannot be
changed.
If TS.Elec.<>.Bulk true this defaults to cross-terms, but may
be changed.
NOTE: if this is none the forces on the atoms coupled to the
electrode regions are not to be trusted. The value none should be
avoided, if possible.

DM-init depends on: TS.Elecs.DM.Init, TS.Elec.<>.Bulk, TS.Voltage

String of values bulk, diagon (default) or force-bulk which con-
trols whether the DM is initially overwritten by the DM from the
bulk electrode calculation. This requires the DM file for the elec-
trode to be present. Only force-bulk will have effect if V ̸= 0.
Otherwise this option only affects V = 0 calculations.
The density matrix elements in the electrodes of the scattering
region may be forcefully set to the bulk values by reading in the
DM of the corresponding electrode. If one uses TS.Elec.<>.Bulk
false it may be dis-advantageous to set this to bulk. If the system
is well setup (good screening towards electrodes), setting this to
bulk may be advantageous.
This option may be used to check how good the electrodes are
screened, see TS.dQ fermi.

Gf String with filename of the surface Green function data
(SystemLabel.TSGF*). This may be used to place a common sur-
face Green function file in a top directory which may then be used
in all calculations using the same electrode and the same contour.
If many calculations are performed this will heavily increase per-
formance at the cost of disk-space.

Gf-Reuse Logical deciding whether the surface Green function file
should be re-used or deleted. If this is false the surface Green
function file is deleted and re-created upon start.

Eta depends on: TS.Elecs.Eta

Control the imaginary energy (η) of the surface Green function for
this electrode.
The imaginary part is only used in the non-equilibrium contours
since the equilibrium are already lifted into the complex plane.
Thus this η reflects the imaginary part in the GΓG† calculations.
Ensure that all imaginary values are larger than 0 as otherwise
TranSIESTA may seg-fault.
NOTE: if this energy is negative the complex value associated with
the non-equilibrium contour is used. This is particularly useful
when providing a user-defined contour along the real axis.
See Sec. 11.6 for details. This options changes the η value in the

126

calculated self-energy (Σ(E + iη)), while it does not change the η
value used in the device region.

Accuracy depends on: TS.Elecs.Accuracy

Control the convergence accuracy required for the self-energy cal-
culation when using the Lopez-Sanchez, Lopez-Sanchez iterative
scheme.
NOTE: advanced use only.

DE Density and energy density matrix file for the electrode. This may
be used to initialize the density matrix elements in the electrode
region by the bulk values. See TS.Elec.<>.DM-init bulk.
NOTE: this should only be performed on one TranSIESTA cal-
culation as then the scattering region SystemLabel.TSDE contains
the electrode density matrix.

Bloch 3 integers should be present on this line which each denote
the number of times bigger the scattering region electrode is com-
pared to the electrode, in each lattice direction. Remark that these
expansion coefficients are with regard to the electrode unit-cell.
This is denoted “Bloch” because it is an expansion based on Bloch
waves.
NOTE: Using symmetries such as periodicity will greatly increase
performance.

Bloch-A/a1|B/a2|C/a3 Specific Bloch expansions in each of the
electrode unit-cell direction. See Bloch for details.

pre-expand String denoting how the expansion of the surface Green
function file will be performed. This only affects the Green function
file if Bloch is larger than 1. By default the Green function file
will contain the fully expanded surface Green function, but not
Hamiltonian and overlap matrices (Green). One may reduce the
file size by setting this to Green which only expands the surface
Green function. Finally none may be passed to reduce the file size
to the bare minimum. For performance reasons all is preferred.
If disk-space is a limited resource and the SystemLabel.TSGF* files
are really big, try none.

out-of-core If true (default) the GF files are created which contain

the surface Green function. If false the surface Green function
will be calculated when needed. Setting this to false will heavily
degrade performance and it is highly discouraged!

delta-Ef Specify an offset for the Fermi-level of the electrode. This
will directly be added to the Fermi-level found in the electrode file.
Effectively this will transform the used chemical potential to

µ′
used = µused + δEF . (37)

NOTE: this option only makes sense for semi-conducting elec-
trodes since it shifts the entire electronic structure. This is be-
cause the Fermi-level may be arbitrarily placed anywhere in the
band gap. It is the users responsibility to define a value which
does not introduce a potential drop between the electrode and de-
vice region. Please do not use unless you really know what you are
doing.

V-fraction Specify the fraction of the chemical potential shift in
the electrode-device coupling region. This corresponds to alter-
ing Eq. (29) by:

He,D ← He,D + µeV− fractionSe,D (38)

in the coupling region. Consequently the value must be between 0
and 1.
NOTE: this option only makes sense for TS.Elec.<>.DM-
update none since otherwise the electrostatic potential will be
incorporated in the Hamiltonian.
Only expert users should play with this number.

check-kgrid For NE electrode calculations the k mesh will sometimes
not be equivalent for the electrodes and the device region calcula-
tions. However, TranSIESTA requires that the device and elec-
trode k samplings are commensurate. This flag controls whether
this check is enforced for a given electrode.
NOTE: only use if fully aware of the implications!

There are several flags which are globally controlling the variables for the
electrodes (with TS.Elec.<> taking precedence).

127

TS.Elecs.Bulk true (logical)
This globally controls how the Hamiltonian is treated in all elec-
trodes. See TS.Elec.<>.Bulk.

TS.Elecs.Eta 1 meV (energy)
Globally control the imaginary energy (η) used for the surface
Green function calculation on the non-equilibrium contour. See
TS.Elec.<>.Eta for extended details on the usage of this flag.

TS.Elecs.Accuracy 10−13 eV (energy)
Globally control the accuracy required for convergence of the self-
energy. See TS.Elec.<>.Accuracy.

TS.Elecs.Neglect.Principal false (logical)
If this is false TranSIESTA dies if there are connections beyond
the principal cell.
NOTE: set this to true with care, non-physical results may arise.
Use at your own risk!

TS.Elecs.Gf.Reuse true (logical)
Globally control whether the surface Green function files should be
re-used (true) or re-created (false).
See TS.Elec.<>.Gf-Reuse.

TS.Elecs.Out-of-core true (logical)
Whether the electrodes will calculate the self energy at each SCF
step. Using this will not require the surface Green function files but
at the cost of heavily degraded performance.
See TS.Elec.<>.Out-of-core.

TS.Elecs.DM.Update cross-terms|all|none (string)
Globally controls which parts of the electrode density matrix gets
updated.
See TS.Elec.<>.DM-update.

TS.Elecs.DM.Init diagon|bulk|force-bulk (string)
Specify how the density matrix elements in the electrode regions of
the scattering region will be initialized when starting TranSIESTA.

See TS.Elec.<>.DM-init.

TS.Elecs.Coord.EPS 0.001 Ang (length)
When using Bloch expansion of the self-energies one may experience
difficulties in obtaining perfectly aligned electrode coordinates.
This parameter controls how strict the criteria for equivalent atomic
coordinates is. If TranSIESTA crashes due to mismatch between
the electrode atomic coordinates and the scattering region calcula-
tion, one may increase this criteria. This should only be done if one
is sure that the atomic coordinates are almost similar and that the
difference in electronic structures of the two may be negligible.

11.8.4 Chemical potentials

For NE electrodes there will also be Nµ chemical potentials. They are
defined via blocks similar to TS.Elecs.

%block TS.ChemPots 〈None〉 (block)
Each line denotes a new chemical potential which is defined in the
TS.ChemPot.<> block.

%block TS.ChemPot.<> 〈None〉 (block)
Each line defines a setting for the chemical potential named <>.

chemical-shift|mu Define the chemical shift (an energy) for this
chemical potential. One may specify the shift in terms of the ap-
plied bias using V/<integer> instead of explicitly typing the
energy.

contour.eq A subblock which defines the integration curves for the
equilibrium contour for this equilibrium chemical potential. One
may supply as many different contours to create whatever shape
of the contour
Its format is

contour.eq
begin
<contour-name-1>
<contour-name-2>
...

128

end

NOTE: If you do not specify contour.eq in the block one will
automatically use the continued fraction method and you are en-
couraged to use 50 or more poles [11].

ElectronicTemperature|Temp|kT Specify the electronic tem-
perature (as an energy or in Kelvin). This defaults to
TS.ElectronicTemperature.
One may specify this in units of TS.ElectronicTemperature by
using the unit kT.

contour.eq.pole Define the number of poles used via an energy spec-
ification. TranSIESTA will automatically convert the energy to
the closest number of poles (rounding up).
NOTE: this has precedence
over TS.ChemPot.<>.contour.eq.pole.N if it is specified and
a positive energy. Set this to a negative energy to directly control
the number of poles.

contour.eq.pole.N Define the number of poles via an integer.
NOTE: this will only
take effect if TS.ChemPot.<>.contour.eq.pole is a negative
energy.

NOTE: It is important to realize that the parametrization in 4.1 of
the voltage into the chemical potentials enables one to have a single
input file which is never required to be changed, even when changing
the applied bias (if using the command line options for specifying the
applied bias). This is different from 4.0 and prior versions since one
had to manually change the TS.biasContour.NumPoints for each
applied bias.

These options complicate the input sequence for regular 2 electrode which
is unfortunate.
Using tselecs.sh -only-mu yields this output:

%block TS.ChemPots
Left
Right

%endblock

%block TS.ChemPot.Left
mu V/2
contour.eq

begin
C-Left
T-Left

end
%endblock
%block TS.ChemPot.Right

mu -V/2
contour.eq

begin
C-Right
T-Right

end
%endblock

Note that the default is a 2 electrode setup with chemical potentials asso-
ciated directly with the electrode names “Left”/“Right”. Each chemical
potential has two parts of the equilibrium contour named according to
their name.

11.8.5 Complex contour integration options

Specifying the contour for NE electrode systems is a bit extensive due
to the possibility of more than 2 chemical potentials. Please use the
Util/TS/tselecs.sh as a means to create default input blocks.
The contours are split in two segments. One, being the equilibrium con-
tour of each of the different chemical potentials. The second for the non-
equilibrium contour. The equilibrium contours are shifted according to
their chemical potentials with respect to a reference energy. Note that
for TranSIESTA the reference energy is named the Fermi-level, which
is rather unfortunate (for non-equilibrium but not equilibrium). Fortu-
nately the non-equilibrium contours are defined from different chemical
potentials Fermi functions, and as such this contour is defined in the
window of the minimum and maximum chemical potentials. Because the
reference energy is the periodic Fermi level it is advised to retain the aver-
age chemical potentials equal to 0. Otherwise applying different bias will
shift transmission curves calculated via TBtrans relative to the average

129

chemical potential.
In this section the equilibrium contours are defined, and in the next section
the non-equilibrium contours are defined.

TS.Contours.Eq.Pole 1.5 eV (energy)
The imaginary part of the line integral crossing the chemical po-
tential. Note that the actual number of poles may differ between
different calculations where the electronic temperatures are different.
NOTE: if the energy specified is negative,
TS.Contours.Eq.Pole.N takes effect.

TS.Contours.Eq.Pole.N 8 (integer)
Manually select the number poles for the equilibrium contour.
NOTE: this flag will only take effect if TS.Contours.Eq.Pole is a
negative energy.

%block TS.Contour.<> 〈None〉 (block)
Specify a contour named <> with options within the block.
The names <> are taken from the TS.ChemPot.<>.contour.eq
block in the chemical potentials.
The format of this block is made up of at least 4 lines, in the following
order of appearance.

part Specify which part of the equilibrium contour this is:
circle The initial circular part of the contour

square The initial square part of the contour

line The straight line of the contour

tail The final part of the contour must be a tail which denotes the
Fermi function tail.

from a to b Define the integration range on the energy axis. Thus
a and b are energies.
The parameters may also be given values prev/next which is the
equivalent of specifying the same energy as the previous contour it
is connected to.
NOTE: that b may be supplied as inf for tail parts.

points/delta Define the number of integration points/energy sepa-
ration. If specifying the number of points an integer should be
supplied.
If specifying the separation between consecutive points an energy
should be supplied.

method Specify the numerical method used to conduct the integra-
tion. Here a number of different numerical integration schemes are
accessible

mid|mid-rule Use the mid-rule for integration.

simpson|simpson-mix Use the composite Simpson 3/8 rule (three
point Newton-Cotes).

boole|boole-mix Use the composite Booles rule (five point
Newton-Cotes).

G-legendre Gauss-Legendre quadrature.
NOTE: has opt left
NOTE: has opt right

tanh-sinh Tanh-Sinh quadrature.
NOTE: has opt precision <>
NOTE: has opt left
NOTE: has opt right

G-Fermi Gauss-Fermi quadrature (only on tails).

opt Specify additional options for the method. Only a selected sub-
set of the methods have additional options.

These options complicate the input sequence for regular 2 electrode which
is unfortunate. However, it allows highly customizable contours.
Using tselecs.sh -only-c yields this output:

TS.Contours.Eq.Pole 2.5 eV
%block TS.Contour.C-Left

part circle
from -40. eV + V/2 to -10 kT + V/2

points 25
method g-legendre

130

opt right
%endblock
%block TS.Contour.T-Left

part tail
from prev to inf

points 10
method g-fermi

%endblock
%block TS.Contour.C-Right

part circle
from -40. eV -V/2 to -10 kT -V/2

points 25
method g-legendre
opt right

%endblock
%block TS.Contour.T-Right

part tail
from prev to inf

points 10
method g-fermi

%endblock

These contour options refer to input options for the chemical potentials as
shown in Sec. 11.8.4 (p. 128). Importantly one should note the shift of the
contours corresponding to the chemical potential (the shift corresponds
to difference from the reference energy used in TranSIESTA).

11.8.6 Bias contour integration options

The bias contour is similarly defined as the equilibrium contours. Please
use the Util/TS/tselecs.sh as a means to create default input blocks.

TS.Contours.nEq.Eta min[ηe]/10 (energy)
depends on: TS.Elecs.Eta

The imaginary part (η) of the device states. While this may be
set to 0 for most systems it defaults to the minimum η value for
the electrodes (min[ηe]/10). This ensures that the device broadening
is always smaller than the electrodes while allowing broadening of
localized states.

TS.Contours.nEq.Fermi.Cutoff 5 kBT (energy)
The bias contour is limited by the Fermi function tails. Numerically
it does not make sense to integrate to infinity. This energy defines
where the bias integration window is turned into zero. Thus above
−|V |/2− E or below |V |/2 + E the DOS is defined as exactly zero.

%block TS.Contours.nEq 〈None〉 (block)
Each line defines a new contour on the non-equilibrium bias window.
The contours defined must be defined in TS.Contour.nEq.<>.
These contours must all be part line or part tail.

%block TS.Contour.nEq.<> 〈None〉 (block)
This block is exactly equivalently defined as the TS.Contour.<>.
See page 130.

The default options related to the non-equilibrium bias contour are defined
as this:

%block TS.Contours.nEq
neq

%endblock TS.Contours.nEq
%block TS.Contour.nEq.neq

part line
from -|V|/2 - 5 kT to |V|/2 + 5 kT

delta 0.01 eV
method mid-rule

%endblock TS.Contour.nEq.neq

If one chooses a different reference energy than 0, then the lim-
its should change accordingly. Note that here kT refers to
TS.ElectronicTemperature.

11.9 Output

TranSIESTA generates several output files.

SystemLabel.DM : The SIESTA density matrix. SIESTA initially per-
forms a calculation at zero bias assuming periodic boundary condi-
tions in all directions, and no voltage, which is used as a starting
point for the TranSIESTA calculation.

131

SystemLabel.TSDE : The TranSIESTA density matrix and energy den-
sity matrix. During a TranSIESTA run, the SystemLabel.DM
values are used for the density matrix in the buffer (if used) and
electrode regions. The coupling terms may or may not be updated
in a TranSIESTA run, see TS.Elec.<>.DM-update.

SystemLabel.TSHS : The Hamiltonian corre-
sponding to SystemLabel.TSDE. This file also contains geometry
information etc. needed by TranSIESTA and TBtrans.

SystemLabel.TS.KP : The k-points used in the TranSIESTA calcula-
tion. See SIESTA SystemLabel.KP file for formatting information.

SystemLabel.TSFA : Forces only on atoms in the device region. See
TS.Forces for details.

SystemLabel.TSCCEQ* : The equilibrium complex contour integration
paths.

SystemLabel.TSCCNEQ* : The non-equilibrium complex contour integra-
tion paths for correcting the equilibrium contours.

SystemLabel.TSGF* : Self-energy files containing the used self-energies
from the leads. These are very large files used in the SCF loop. Once
completed one can safely delete these files. For heavily increased
throughput these files may be re-used for the same electrode settings
in various calculations.

11.10 Utilities for analysis: TBtrans

Please see the separate TBtrans manual (tbtrans.pdf).

12 ANALYSIS TOOLS

There are a number of analysis tools and programs in the Util directory.
Some of them have been directly or indirectly mentioned in this man-

ual. Their documentation is the appropriate sub-directory of Util. See
Util/README.
In addition to the shipped utilities SIESTA is also officially supported by
sisl [15] which is a Python library enabling many of the most commonly
encountered things.

13 SCRIPTING

In the Util/Scripting directory we provide an experimental python
scripting framework built on top of the “Atomic Simulation Environment”
(see https://wiki.fysik.dtu.dk/ase) by the CAMD group at DTU,
Denmark.
(NOTE: “ASE version 2”, not the new version 3, is needed)
There are objects implementing the “Siesta as server/subroutine” feature,
and also hooks for file-oriented-communication usage. This interface is
different from the SIESTA-specific functionality already contained in the
ASE framework.
Users can create their own scripts to customize the “outer geometry loop”
in SIESTA, or to perform various repetitive calculations in compact form.
Note that the interfaces in this framework are still evolving and are subject
to change.
Suggestions for improvements can be sent to Alberto Garcia (alber-
tog@icmab.es)

14 PROBLEM HANDLING

14.1 Error and warning messages

chkdim: ERROR: In routine dimension parameter = value. It must be ...
And other similar messages.
Description: Some array dimensions which change infrequently, and
do not lead to much memory use, are fixed to oversized values. This
message means that one of this parameters is too small and neads

132

https://wiki.fysik.dtu.dk/ase
mailto:albertog@icmab.es
mailto:albertog@icmab.es

to be increased. However, if this occurs and your system is not very
large, or unusual in some sense, you should suspect first of a mistake
in the data file (incorrect atomic positions or cell dimensions, too
large cutoff radii, etc).
Fix: Check again the data file. Look for previous warnings or sus-
picious values in the output. If you find nothing unusual, edit the
specified routine and change the corresponding parameter.

15 REPORTING BUGS

Your assistance is essential to help improve the program. If you find any
problem, or would like to offer a suggestion for improvement, please follow
the instructions in the file Docs/REPORTING_BUGS.
Since SIESTA has moved to https://gitlab.com/siesta-project/
siesta you are encouraged to follow the instructions by pressing “New
Issue” and selecting “Bug” in the Description drop-down. Also please
follow the debug build options, see Sec. 2.1.1

16 ACKNOWLEDGMENTS

We want to acknowledge the use of a small number of routines, written by
other authors, in developing the siesta code. In most cases, these routines
were acquired by now-forgotten routes, and the reported authorships are
based on their headings. If you detect any incorrect or incomplete attri-
bution, or suspect that other routines may be due to different authors,
please let us know.

• The main nonpublic contribution, that we thank thoroughly, are
modified versions of a number of routines, originally written by A.
R. Williams around 1985, for the solution of the radial Schrödinger
and Poisson equations in the APW code of Soler and Williams (PRB
42, 9728 (1990)). Within SIESTA, they are kept in files arw.f and
periodic_table.f, and they are used for the generation of the basis
orbitals and the screened pseudopotentials.

• The exchange-correlation routines contained in SiestaXC were writ-
ten by J.M.Soler in 1996 and 1997, in collaboration with C. Balbás
and J. L. Martins. Routine pzxc, which implements the Perdew-
Zunger LDA parametrization of xc, is based on routine velect, writ-
ten by S. Froyen.

• The serial version of the multivariate fast fourier transform used to
solve Poisson’s equation was written by Clive Temperton.

• Subroutine iomd.f for writing MD history in files was originally writ-
ten by J. Kohanoff.

We want to thank very specially O. F. Sankey, D. J. Niklewski and
D. A. Drabold for making the FIREBALL code available to P. Ordejón.
Although we no longer use the routines in that code, it was essential in
the initial development of the SIESTA project, which still uses many of
the algorithms developed by them.
We thank V. Heine for his support and encouraging us in this project.
The SIESTA project is supported by the Spanish DGES through several
contracts. We also acknowledge past support by the Fundación Ramón
Areces.

17 APPENDIX: Physical unit names recognized
by FDF

Since SIESTA 5.0 the units follow the CODATA 2018 values. This af-
fects comparisons with prior versions of SIESTA due to small numeric
differences.
To compare numerical values between SIESTA 5.0 and prior versions one
have to recompile 5.0 with

cmake [.....] -DWITH_UNIT_CONVENTION=legacy

. Please only use this for comparisons and not for production runs.
fdf accepts nearly all conventional units used in physics and chemistry. If
a unit is not accepted a list of accepted units for the requested dimension
will be printed to standard out.

133

https://gitlab.com/siesta-project/siesta
https://gitlab.com/siesta-project/siesta

18 APPENDIX: XML Output

From version 2.0, SIESTA includes an option to write its output to an
XML file. The XML it produces is in accordance with the CMLComp
subset of version 2.2 of the Chemical Markup Language. Further infor-
mation and resources can be found at http://cmlcomp.org/ and tools for
working with the XML file can be found in the Util/CMLComp directory.
The main motivation for standarised XML (CML) output is as a step
towards standarising formats for uses like the following.

• To have SIESTA communicating with other software, either for
postprocessing or as part of a larger workflow scheme. In such a
scenario, the XML output of one SIESTA simulation may be easily
parsed in order to direct further simulations. Detailed discussion of
this is out of the scope of this manual.

• To generate webpages showing SIESTA output in a more accessible,
graphically rich, fashion. This section will explain how to do this.

18.1 Controlling XML output

XML.Write false (logical)
Determine if the main XML file should be created for this run.

18.2 Converting XML to XHTML

The translation of the SIESTA XML output to a HTML-based webpage
is done using XSLT technology. The stylesheets conform to XSLT-1.0
plus EXSLT extensions; an xslt processor capable of dealing with this is
necessary. However, in order to make the system easy to use, a script
called ccViz is provided in Util/CMLComp that works on most Unix or
Mac OS X systems. It is run like so:
./ccViz SystemLabel.xml

A new file will be produced. Point your web-browser at
SystemLabel.xhtml to view the output.

The generated webpages include support for viewing three-dimensional
interactive images of the system. If you want to do this, you will either
need jMol (http://jmol.sourceforge.net) installed or access to the
internet. As this is a Java applet, you will also need a working Java
Runtime Environment and browser plugin - installation instructions for
these are outside the scope of this manual, though. However, the webpages
are still useful and may be viewed without this plugin.
An online version of this tool is avalable from http://cmlcomp.org/
ccViz/, as are updated versions of the ccViz script.

134

http://cmlcomp.org/
http://jmol.sourceforge.net
http://cmlcomp.org/ccViz/
http://cmlcomp.org/ccViz/

19 APPENDIX: Selection of precision for stor-
age

Some of the real arrays used in SIESTA are by default single-precision,
to save memory. This applies to the array that holds the values of the
basis orbitals on the real-space grid, to the historical data sets in Broyden
mixing, and to the arrays used in the O(N) routines. Note that the grid
functions (charge densities, potentials, etc) are (since mid January 2010)
in double precision by default.
The following options and pre-processing symbols control the precision
selection.

• Add -DWITH_GRID_SP to the CMake invocation to use single-
precision for all the grid magnitudes, including the orbitals array
and charge densities and potentials. This will cause some numerical
differences and will have a negligible effect on memory consumption,
since the orbitals array is the main user of memory on the grid, and
it is single-precision by default. This setting will recover the default
behavior of versions prior to 4.0.

• Use -DFortran_FLAGS="-DGRID_DP" to use double-precision for all
the grid magnitudes, including the orbitals array. This will signifi-
cantly increase the memory used for large problems, with negligible
differences in accuracy.

• Use -DFortran_FLAGS="-DBROYDEN_DP" to use double-precision ar-
rays for the data sets in the Broyden mixing for SCF convergence
acceleration.

• Use -DFortran_FLAGS="-DON_DP" to use double-precision for all the
arrays in the O(N) routines.

20 APPENDIX: Data structures and reference
counting

To implement some of the new features (e.g. charge mixing and DM
extrapolation), SIESTA uses new flexible data structures. These are
defined and handled through a combination and extension of ideas already
in the Fortran community:

• Simple templating using the “include file” mechanism, as for ex-
ample in the FLIBS project led by Arjen Markus (http://flibs.
sourceforge.net).

• The classic reference-counting mechanism to avoid memory leaks,
as implemented in the PyF95++ project (http://blockit.
sourceforge.net).

Reference counting makes it much simpler to store data in container ob-
jects. For example, a circular stack is used in the charge-mixing module.
A number of future enhancements depend on this paradigm.

135

http://flibs.sourceforge.net
http://flibs.sourceforge.net
http://blockit.sourceforge.net
http://blockit.sourceforge.net

References
[1] T. Auckenthaler, V. Blum, H.-J. Bungartz, T. Huckle, R. Jo-

hanni, L. Krämer, B. Lang, H. Lederer, and P.R. Willems. Par-
allel solution of partial symmetric eigenvalue problems from elec-
tronic structure calculations. Parallel Computing, 37(12):783 – 794,
2011. ISSN 0167-8191. doi: http://dx.doi.org/10.1016/j.parco.2011.
05.002. URL http://www.sciencedirect.com/science/article/
pii/S0167819111000494. 6th International Workshop on Parallel
Matrix Algorithms and Applications (PMAA’10).

[2] Amartya S. Banerjee, Phanish Suryanarayana, and John E. Pask.
Periodic Pulay method for robust and efficient convergence accel-
eration of self-consistent field iterations. Chemical Physics Letters,
647:31–35, mar 2016. ISSN 00092614. doi: 10.1016/j.cplett.2016.
01.033. URL http://linkinghub.elsevier.com/retrieve/pii/
S0009261416000464.

[3] D.R Bowler and M.J Gillan. An efficient and robust technique
for achieving self consistency in electronic structure calculations.
Chemical Physics Letters, 325(4):473–476, jul 2000. ISSN 00092614.
doi: 10.1016/S0009-2614(00)00750-8. URL http://linkinghub.
elsevier.com/retrieve/pii/S0009261400007508.

[4] Mads Brandbyge, José-Luis Mozos, Pablo Ordejón, Jeremy Tay-
lor, and Kurt Stokbro. Density-functional method for nonequilib-
rium electron transport. Physical Review B, 65(16):165401, mar
2002. ISSN 0163-1829. doi: 10.1103/PhysRevB.65.165401. URL
http://link.aps.org/doi/10.1103/PhysRevB.65.165401.

[5] R. Cuadrado, R. Robles, A. García, M. Pruneda, P. Ordejón, J. Fer-
rer, and Jorge I. Cerdá. Validity of the on-site spin-orbit cou-
pling approximation. Phys. Rev. B, 104:195104, Nov 2021. doi:
10.1103/PhysRevB.104.195104. URL https://link.aps.org/doi/
10.1103/PhysRevB.104.195104.

[6] Alberto García, Matthieu J. Verstraete, Yann Pouillon, and Javier
Junquera. The psml format and library for norm-conserving pseu-
dopotential data curation and interoperability. Comput. Phys. Com-
mun., 227:51 – 71, 2018. ISSN 0010-4655. doi: 10.1016/j.cpc.2018.

02.011. URL http://www.sciencedirect.com/science/article/
pii/S0010465518300390.

[7] Alberto García, Nick Papior, Arsalan Akhtar, Emilio Artacho, Volker
Blum, Emanuele Bosoni, Pedro Brandimarte, Mads Brandbyge, J. I.
Cerdá, Fabiano Corsetti, Ramón Cuadrado, Vladimir Dikan, Jaime
Ferrer, Julian Gale, Pablo García-Fernández, V. M. García-Suárez,
Sandra García, Georg Huhs, Sergio Illera, Richard Korytár, Peter
Koval, Irina Lebedeva, Lin Lin, Pablo López-Tarifa, Sara G. Mayo,
Stephan Mohr, Pablo Ordejón, Andrei Postnikov, Yann Pouillon,
Miguel Pruneda, Roberto Robles, Daniel Sánchez-Portal, Jose M.
Soler, Rafi Ullah, Victor Wen-zhe Yu, and Javier Junquera. Siesta:
Recent developments and applications. The Journal of Chemi-
cal Physics, 152(20):204108, 2020. doi: 10.1063/5.0005077. URL
https://doi.org/10.1063/5.0005077.

[8] G. Kresse and J. Furthmüller. Efficiency of ab-initio total en-
ergy calculations for metals and semiconductors using a plane-wave
basis set. Computational Materials Science, 6(1):15–50, jul 1996.
ISSN 09270256. doi: 10.1016/0927-0256(96)00008-0. URL http:
//linkinghub.elsevier.com/retrieve/pii/0927025696000080.

[9] Lin Lin, Alberto García, Georg Huhs, and Chao Yang.
SIESTA-PEXSI: massively parallel method for efficient and ac-
curate ab initio materials simulation without matrix diagonal-
ization. Journal of Physics: Condensed Matter, 26(30):305503,
jul 2014. ISSN 0953-8984. doi: 10.1088/0953-8984/26/30/
305503. URL http://stacks.iop.org/0953-8984/26/i=30/a=
305503?key=crossref.dd07c5e621546c5e67b1052b8800daca.

[10] A Marek, V Blum, R Johanni, V Havu, B Lang, T Auckenthaler,
A Heinecke, H-J Bungartz, and H Lederer. The elpa library: scal-
able parallel eigenvalue solutions for electronic structure theory and
computational science. Journal of Physics: Condensed Matter, 26
(21):213201, 2014. URL http://stacks.iop.org/0953-8984/26/
i=21/a=213201.

[11] Taisuke Ozaki, Kengo Nishio, and Hiori Kino. Efficient imple-
mentation of the nonequilibrium Green function method for elec-
tronic transport calculations. Physical Review B, 81(3):035116, jan

136

http://www.sciencedirect.com/science/article/pii/S0167819111000494
http://www.sciencedirect.com/science/article/pii/S0167819111000494
http://linkinghub.elsevier.com/retrieve/pii/S0009261416000464
http://linkinghub.elsevier.com/retrieve/pii/S0009261416000464
http://linkinghub.elsevier.com/retrieve/pii/S0009261400007508
http://linkinghub.elsevier.com/retrieve/pii/S0009261400007508
http://link.aps.org/doi/10.1103/PhysRevB.65.165401
https://link.aps.org/doi/10.1103/PhysRevB.104.195104
https://link.aps.org/doi/10.1103/PhysRevB.104.195104
http://www.sciencedirect.com/science/article/pii/S0010465518300390
http://www.sciencedirect.com/science/article/pii/S0010465518300390
https://doi.org/10.1063/5.0005077
http://linkinghub.elsevier.com/retrieve/pii/0927025696000080
http://linkinghub.elsevier.com/retrieve/pii/0927025696000080
http://stacks.iop.org/0953-8984/26/i=30/a=305503?key=crossref.dd07c5e621546c5e67b1052b8800daca
http://stacks.iop.org/0953-8984/26/i=30/a=305503?key=crossref.dd07c5e621546c5e67b1052b8800daca
http://stacks.iop.org/0953-8984/26/i=21/a=213201
http://stacks.iop.org/0953-8984/26/i=21/a=213201

2010. ISSN 1098-0121. doi: 10.1103/PhysRevB.81.035116. URL
http://link.aps.org/doi/10.1103/PhysRevB.81.035116.

[12] Nick Papior, Tue Gunst, Daniele Stradi, and Mads Brandbyge. Ma-
nipulating the voltage drop in graphene nanojunctions using a gate
potential. Phys. Chem. Chem. Phys., 18(2):1025–1031, 2016. ISSN
1463-9076. doi: 10.1039/C5CP04613K. URL http://xlink.rsc.
org/?DOI=C5CP04613K.

[13] Nick Papior, Nicolás Lorente, Thomas Frederiksen, Alberto Gar-
cía, and Mads Brandbyge. Improvements on non-equilibrium and
transport Green function techniques: The next-generation TranSi-
esta. Computer Physics Communications, 212:8–24, mar 2017. ISSN
00104655. doi: 10.1016/j.cpc.2016.09.022. URL https://doi.org/
10.1016/j.cpc.2016.09.022.

[14] Nick Papior, Gaetano Calogero, Susanne Leitherer, and Mads Brand-
byge. Removing all periodic boundary conditions: Efficient nonequi-
librium Green’s function calculations. Physical Review B, 100(19):
195417, nov 2019. ISSN 2469-9950. doi: 10.1103/PhysRevB.
100.195417. URL https://link.aps.org/doi/10.1103/PhysRevB.
100.195417.

[15] Nick R. Papior. sisl, 2020. URL https://doi.org/10.5281/
zenodo.597181.

[16] M P Lopez Sancho, J M Lopez Sancho, and J. Rubio. Highly
convergent schemes for the calculation of bulk and surface Green
functions. Journal of Physics F: Metal Physics, 15(4):851–
858, apr 1985. ISSN 0305-4608. doi: 10.1088/0305-4608/15/
4/009. URL http://stacks.iop.org/0305-4608/15/i=4/a=009?
key=crossref.8c77f34b0366ff84eaf622609268f5a2.

[17] José M. Soler and Eduardo Anglada. Optimal fourier filtering of
a function that is strictly confined within a sphere. Computer
Physics Communications, 180(7):1134 – 1136, 2009. ISSN 0010-4655.
doi: https://doi.org/10.1016/j.cpc.2009.01.017. URL http://www.
sciencedirect.com/science/article/pii/S0010465509000332.

137

http://link.aps.org/doi/10.1103/PhysRevB.81.035116
http://xlink.rsc.org/?DOI=C5CP04613K
http://xlink.rsc.org/?DOI=C5CP04613K
https://doi.org/10.1016/j.cpc.2016.09.022
https://doi.org/10.1016/j.cpc.2016.09.022
https://link.aps.org/doi/10.1103/PhysRevB.100.195417
https://link.aps.org/doi/10.1103/PhysRevB.100.195417
https://doi.org/10.5281/zenodo.597181
https://doi.org/10.5281/zenodo.597181
http://stacks.iop.org/0305-4608/15/i=4/a=009?key=crossref.8c77f34b0366ff84eaf622609268f5a2
http://stacks.iop.org/0305-4608/15/i=4/a=009?key=crossref.8c77f34b0366ff84eaf622609268f5a2
http://www.sciencedirect.com/science/article/pii/S0010465509000332
http://www.sciencedirect.com/science/article/pii/S0010465509000332

Index
animation, 36
antiferromagnetic initial DM, 52

Backward compatibility, 49, 98
band structure, 73
basis, 28

basis set superposition error (BSSE), 28
Bessel functions, 28
confinement radius expansion, 23
default soft confinement, 24
default soft confinement potential, 24
default soft confinement radius, 24
filteret basis set, 27
filtering, 28
fix split-valence table, 22
Gen-basis standalone program, 29
Gen-basis standalone program, 28
ghost atoms, 28
minimal, 21
new split-valence code, 22
PAO, 21, 26
per-shell split norm, 27
point at infinity, 30
polarization, 21, 27
polarization orbitals, 23
reparametrization of pseudopotential, 30
soft confinement potential, 27
split valence, 22
split valence for H, 22
User basis, 28
User basis (NetCDF format), 29

Berry phase, 80
Bessel functions, 28
%block, 12
Born effective charges, 81

Broyden mixing, 135
Broyden optimization, 100
bug reports, 133
bulk polarization, 80

cell relaxation, 99
Cerius2, 36
Charge confinement, 20, 27
Charge of the system, 85, 88
Chebyshev Polynomials, 66
Chemical Potential, 66, 67
CheSS, 10
CheSS solver, 67
CML, 134
compile

issues, 10
libraries, 8
MPI, 7
OpenMP, 8
pre-processor

-DCDF, 9
-DMPI, 7
-DMPI_TIMING, 95
-DNCDF_4, 96
-DSIESTA__DIAG_2STAGE, 61
-DSIESTA__METIS, 9
-DSIESTA__MRRR, 61, 62
-DSIESTA__MUMPS, 10
-DSIESTA__UNITS_ORIGINAL, 133

Conjugate-gradient history information, 100
constant-volume cell relaxation, 99
constraints in relaxations, 104
COOP/COHP curves, 78

Folding in Gamma-point calculations, 59
Folding in Gamma-point calculations, 59

138

cutoff radius, 26

Data Structures, 135
denchar, 96
density of states, 63, 75
DFT-D3, 10
Dielectric function,optical absorption, 79
diffuse orbitals, 21
Doping, 85, 88
double-ζ, 21

egg-box effect, 56–58
Eig2DOS, 63, 75
ELPA, 9
exchange-correlation

AM05, 39
BH, 40
BLYP, 39
C09, 40
CA, 39
cellXC, 40
DRSLL, 40
GGA, 39
KBM, 40
LDA, 39
LMKLL, 40
LSD, 39
PBE, 39
PBEGcGxHEG, 39
PBEGcGxLO, 39
PBEJsJrHEG, 39
PBEJsJrLO, 39
PBEsol, 39
PW91, 39
PW92, 39
PZ, 39
revPBE, 39
RPBE, 39

vdW, 40
vdW-DF, 40
vdW-DF1, 40
vdW-DF2, 40
VV, 40
WC, 39

External library
BLAS, 9
CheSS, 10
dft-d3, 10
ELPA, 9
fdict, 9
flook, 10, 98
LAPACK, 9
libfdf, 9
libGridXC, 9
libPSML, 8
libXC, 9
Metis, 9
MPI, 7
MUMPS, 9, 118
ncdf, 9
NetCDF, 9
OpenMP, 8
PEXSI, 10
ScaLAPACK, 9
xmlf90, 8

fatbands, 74
FDF, 12
ferromagnetic initial DM, 52
finite-range pseudo-atomic orbitals, 21
fixed spin state, 41
flook, 10, 98
Force Constants Matrix, 97, 106
fractional program, 15

Gate, 87

139

bounded plane, 88
box, 88
infinite plane, 87
spheres, 88

Gaussians, 21
Gen-basis, 18
Gen-basis, 29
ghost atoms, 14
ghost atoms, 28
gnubands, 74
grid, 56
Grid precision, 135
Ground-state atomic configuration, 21

Hirshfeld population analysis, 77, 78

input file, 12
interatomic distances, 37
isotopes, 15

JMol, 36
JSON timing report, 95

Kleinman-Bylander projectors, 24
from PSML file, 24

LibXC library, 39, 40
Localized Wave Functions, 66, 67
Lower order N memory, 67
LSD, 41

mesh, 56
Metis, 9
minimal basis, 21
mixps program, 15
Molden, 36
Mulliken population analysis, 14, 77
multiple-ζ, 21, 22
MUMPS, 9, 118

NetCDF format, 9, 28, 29

output
δρ(r⃗), 90
atomic coordinates

in a dynamics step, 13, 102
initial, 102

Bader charge, 91
band k⃗ points, 13, 73
band structure, 73
basis, 28
charge density, 90–92
charge density and/or wfs for DENCHAR code, 96
customization, 13
dedicated files, 14
density matrix, 53, 54
density matrix history, 54
eigenvalues, 14, 63, 75
electrostatic potential, 90
forces, 14, 103
grid k⃗ points, 13, 39
Hamiltonian, 54
Hamiltonian & overlap, 58
Hamiltonian history, 54
Hirshfeld analysis, 77, 78
HSX file, 59
Information for COOP/COHP curves, 78
ionic charge, 91
kpoint mesh for Wannierization, 85
local density of states, 76
long, 13
main output file, 13
molecular dynamics

Force Constants Matrix, 106
history, 103

Mulliken analysis, 14, 77
overlap matrix, 54
overlap matrix history, 54

140

projected density of states, 75
total charge, 91
total potential, 90
Voronoi analysis, 78
wave functions, 14, 74

output of wave functions for bands, 74

perturbative polarization, 21
perturbative polarization, 27
PEXSI, 10
PEXSI solver, 68
polarization orbitals, 21
Precision selection, 135
ProcessorY, 94
pseudopotential

ATOM code, 16
files, 16
generation, 16
oncvpsp code, 16
PSML format, 16

PSML, 24
from SIESTA’s vnl-operator, 16
from oncvpsp code, 16

PSML format, 16

reading saved data, 96
all, 96
CG, 100
charge density, 53
deformation charge density, 53
density matrix, 51
localized wave functions (order-N), 67
XV, 36
ZM, 37

readwf, 75
readwfsx, 75
Reference counting, 135
relaxation of cell parameters only, 99

removal of intramolecular pressure, 101
Restart of O(N) calculations, 67
rippling, 56–58
RT-TDDFT, 108

scale factor, 27
SCF, 44

compat-pre4-dm-h, 49
Doping, 85, 88
mixing, 44, 49

Broyden, 46
Charge, 44, 49, 50
Density, 44
Density matrix convergence, 54
end of cycle, 49
energy convergence, 55
energy density matrix convergence, 55
Hamiltonian, 44
Hamiltonian convergence, 55
harris energy convergence, 55
Linear, 45
Pulay, 45

Potential, 87
Recomputing H, 49

SCF convergence criteria, 54
Scripting, 97
Sies2arc, 36
Sies2arc, 36
SIESTA, 5
single-ζ, 21
Slab dipole correction, 86
Slabs with net charge, 86
species, 14
spin, 41

initialization, 51, 52
split valence, 21
structure input precedence issues, 37
synthetic atoms, 15

141

TBtrans, 132
TDDFT, 108
Tests, 11, 114

lua, 10
TranSIESTA, 6
transiesta

electrode
principal layer, 116

valence configuration (alternate), 15
Variational character of E_KS, 44
VCA, 15
VIBRA, 106
Voronoi population analysis, 78

XML, 134
XMol, 36

142

List of SIESTA files
<istep>.TDRho, 109

BaderCharge.grid.nc, 91
BASIS_ENTHALPY, 29, 55
BASIS_HARRIS_ENTHALPY, 55

Chlocal.grid.nc, 91
constr.f, 105

DeltaRho.grid.nc, 90
DeltaRho.IN.grid.nc, 53
DM-NNNN.nc, 54
DM.nc, 54
DM_MIXED, 58
DM_MIXED.blocked, 53
DM_OUT, 58
DM_OUT.blocked, 53
DMHS-NNNN.nc, 54
DMHS.nc, 54

ElectrostaticPotential.grid.nc, 90
External/Wannier/README.md, 83

fdf-XXXXX.log, 13
fdf.log, 12–14

GRAPHVIZ_atom.gv, 122
GRAPHVIZ_orbital.gv, 122

H_DMGEN, 54, 58
H_MIXED, 54, 58

LDOS.grid.nc, 72, 77

m_new_dm.F, 59

NEXT_ITER.UCELL.ZMATRIX, 36

OUT.UCELL.ZMATRIX, 35, 36

PEXSI_INTDOS, 72

Rho.grid.nc, 90
Rho.IN.grid.nc, 53
RhoInit.grid.nc, 92
RhoXC.grid.nc, 90

Src/m_new_dm.F, 50
SystemLabel.alloc, 95
SystemLabel.amn, 82
SystemLabel.ANI, 36
SystemLabel.arc, 36
SystemLabel.ATOM.gv, 22
SystemLabel.BADER, 91
SystemLabel.bands, 73, 74
SystemLabel.bands.WFSX, 74
SystemLabel.BC, 81
SystemLabel.BONDS, 37
SystemLabel.BONDS_FINAL, 37
SystemLabel.CG, 100
SystemLabel.DIM, 96
SystemLabel.DM, 41, 44, 51, 53, 86, 96, 113, 131, 132
SystemLabel.DMF, 51
SystemLabel.DOS, 75, 76
SystemLabel.DRHO, 90, 91
SystemLabel.EIG, 63, 72, 75, 89
SystemLabel.eigW, 82
SystemLabel.EPSIMG, 79
SystemLabel.FA, 103
SystemLabel.FAC, 103
SystemLabel.FC, 106
SystemLabel.FCC, 106
SystemLabel.fullBZ.WFSX, 63, 78, 79
SystemLabel.grid.nc, 53

143

SystemLabel.HS, 58, 59
SystemLabel.HSX, 58, 59, 78
SystemLabel.IOCH, 91
SystemLabel.KP, 38, 39, 132
SystemLabel.LDOS, 72, 76
SystemLabel.LWF, 67, 96
SystemLabel.MD, 36, 102, 103
SystemLabel.MDC, 103
SystemLabel.MDE, 103
SystemLabel.MDX, 36, 102, 103
SystemLabel.mmn, 82
SystemLabel.N.TSHS, 54
SystemLabel.nc, 96, 97
SystemLabel.nnkp, 82
SystemLabel.ORB.gv, 22
SystemLabel.ORB_INDX, 83, 103
SystemLabel.PDOS, 75, 76
SystemLabel.PDOS.xml, 76
SystemLabel.PLD, 96
SystemLabel.RHO, 90, 91
SystemLabel.RHOINIT, 92
SystemLabel.RHOXC, 90, 91
SystemLabel.selected.WFSX, 74, 75
SystemLabel.STRUCT_IN, 35, 36
SystemLabel.STRUCT_NEXT_ITER, 35
SystemLabel.STRUCT_OUT, 35
SystemLabel.TDDIPOL, 109
SystemLabel.TDEIG, 109
SystemLabel.TDETOT, 109
SystemLabel.TDWF, 98, 109
SystemLabel.TDXV, 98, 109
SystemLabel.times, 95
SystemLabel.TOCH, 91
SystemLabel.TS.KP, 132
SystemLabel.TSCCEQ*, 132
SystemLabel.TSCCNEQ*, 132
SystemLabel.TSDE, 12, 113, 116, 122, 124, 127, 132

SystemLabel.TSFA, 120, 132
SystemLabel.TSFAC, 120
SystemLabel.TSGF*, 126, 127, 132
SystemLabel.TSHS, 12, 113, 114, 122, 125, 132
SystemLabel.VERLET_RESTART, 109
SystemLabel.VH, 90, 91
SystemLabel.VNA, 90, 91
SystemLabel.VT, 90, 91
SystemLabel.WANNX, 83–85
SystemLabel.WFS, 75, 78
SystemLabel.WFSX, 74, 75, 78, 85, 96
SystemLabel.xtl, 36
SystemLabel.XV, 35–37, 96, 100, 102
SystemLabel.xyz, 36
SystemLabel.ZM, 37

time.json, 95
TotalCharge.grid.nc, 91
TotalPotential.grid.nc, 90
TS_FERMI, 121

UNKXXXXX.Y, 82

Vna.grid.nc, 90

WFS.nc, 60, 63, 74

xsf, 85

144

List of fdf flags

[trial-orbitals], 83

AllocReportLevel, 95
AllocReportThreshold, 95
AnalyzeChargeDensityOnly, 92
AtomCoorFormatOut, 32, 36
AtomicCoordinatesAndAtomicSpecies, 14, 31, 33, 52, 104
AtomicCoordinatesFormat, 32, 33, 36

Ang, 32
Bohr, 32
Fractional, 32
LatticeConstant, 32
NotScaledCartesianAng, 32
NotScaledCartesianBohr, 32
ScaledByLatticeVectors, 32
ScaledCartesian, 32

AtomicCoordinatesOrigin, 32, 36
COM, 32
COP, 32
MIN, 32

AtomicMass, 15
AtomSetupOnly, 28

BandLines, 62, 73, 74
BandLinesScale, 73
BandPoints, 62, 73, 74
BasisPressure, 29
BlockSize, 60, 61, 65, 94
BornCharge, 81, 106
BulkBias

Current, 89
Direction, 89
Tolerance, 89
Voltage, 89

CDF

Compress, 96
Grid.Precision, 97
MPI, 96, 97
Save, 96

ChangeKgridInMD, 38
ChemicalSpeciesLabel, 14–16, 26, 28, 29, 31, 36, 37, 104
CheSS

Buffer
Kernel, 67
Mult, 67

evhighH, 67
evhighS, 68
evlowH, 67
evlowS, 68
Fscale, 67
FscaleLowerbound, 67
FscaleUpperbound, 67

Command line options
-L, 12
-V, 12, 118
-elec, 12
-electrode, 12
-fdf, 12
-h, 12
-o, 12
-out, 12
-v, 12

Compat
Pre-v4-DM-H, 49
Pre-v4-Dynamics, 98

Constant
Volume, 99

COOP.Write, 59, 63, 74, 78

Debug

145

DIIS, 50
DFTD3, 93
DFTD3.2BodyCutOff, 93
DFTD3.3BodyCutOff, 93
DFTD3.a1, 93
DFTD3.a2, 93
DFTD3.alpha, 93
DFTD3.BJdamping, 93
DFTD3.CoordinationCutoff, 93
DFTD3.rs6, 93
DFTD3.rs8, 93
DFTD3.s6, 93
DFTD3.s8, 93
DFTD3.UseXCDefaults, 93
DFTU

CutoffNorm, 107
EnergyShift, 107
FirstIteration, 106, 107
PopTol, 106, 108
PotentialShift, 106, 108
Proj, 107
ProjectorGenerationMethod, 107
ThresholdTol, 106, 108

Diag
AbsTol, 62
Algorithm, 60–63

Divide-and-Conquer, 61
Divide-and-Conquer-2stage, 61
ELPA-1stage, 61
ELPA-2stage, 61
Expert, 61
Expert-2stage, 61
MRRR, 61
MRRR-2stage, 61
NoExpert, 61
NoExpert-2stage, 61
QR, 61

BlockSize, 60, 61
DivideAndConquer, 61, 62
ELPA, 61, 63

GPU, 62
Memory, 62
MRRR, 61, 62
NoExpert, 61–63
OrFac, 62
ParallelOverK, 60–63, 89
ProcessorY, 60
UpperLower, 62
Use2D, 60, 61
UseNewDiagk, 74
WFS.Cache, 60

cdf, 60, 63
none, 60

Diag.BlockSize, 61
DirectPhi, 95
DM

AllowExtrapolation, 52
AllowReuse, 52
FormattedFiles, 51
FormattedInput, 51
FormattedOutput, 51
History.Depth, 53
Init, 51

atomic, 52
RandomStates, 52

Init.RandomStates, 52
Init.Unfold, 51
InitSpin, 52

AF, 51, 52
KickMixingWeight, see SF.Mixer.Kick.Weight47
MixingWeight, 46, see SF.Mixer.Weight46, 49
UseSaveDM, 44, 51

DM.EnergyTolerance, 55
DM.InitSpin, 42

146

DM.MixSCF1, 45, see SF.Mix.First45
DM.Normalization.Tolerance, 55
DM.NumberBroyden, 46, see SF.Mixer.History46, 47
DM.NumberKick, see SF.Mixer.Kick47
DM.NumberPulay, 46, see SF.Mixer.History46, 47
DM.Require.Harris.Convergence, 55
DM.RequireEnergyConvergence, 55
DM.Tolerance, 54, 55
DM.UseSaveDM, 65, 92
DOS.kgrid.?, 75–77

EggboxRemove, 57, 58
EggboxScale, 57, 58
ElectronicTemperature, 42, 63, 64, 68, 119
ExternalElectricField, 86

FFT
ProcessorY

Traditional, 94
FilterCutoff, 27, 28
FilterTol, 28
ForceAuxCell, 59

Geometry
Charge, 86–88
Constraints, 104, 118
Hartree, 87, 88

Grid.CellSampling, 56, 57

Harris
Functional, 44

KB.New.Reference.Orbitals, 25
kgrid

Cutoff, 38, 76, 77, 122, 123
File, 38, 76, 77, 122, 123
MonkhorstPack, 32, 37, 38, 76, 77, 116, 118, 122, 123

kgrid.MonkhorstPack, 98

LatticeConstant, 31, 41

LatticeParameters, 31
LatticeVectors, 31, 32, 38
LDAU

CutoffNorm, 107
EnergyShift, 107
FirstIteration, 107
PopTol, 108
PotentialShift, 108
Proj, 107
ProjectorGenerationMethod, 107
ThresholdTol, 108

LDOS.kgrid.?, 77
LocalDensityOfStates, 72, 75, 76
LongOutput, 13, 14, 39, 102
Lua

Debug, 111
Debug.MPI, 111
Interactive, 111
Script, 110, 111

MaxBondDistance, 37
MaxSCFIterations, 44
MaxWalltime, 96

Slack, 96
MD

UseSaveXV, 36, 37
UseSaveZM, 37

MD.AnnealOption, 97, 101, 102
MD.Broyden

Cycle.On.Maxit, 100
History.Steps, 100
Initial.Inverse.Jacobian, 100

MD.Broyden.Initial.Inverse.Jacobian, 99
MD.BulkModulus, 102
MD.ConstantVolume, 99
MD.FCDispl, 106
MD.FCFirst, 106
MD.FCLast, 106

147

MD.FinalTimeStep, 98, 101
MD.FIRE.TimeStep, 100
MD.InitialTemperature, 101
MD.InitialTimeStep, 101
MD.LengthTimeStep, 98, 100, 101
MD.MaxCGDispl, 99
MD.MaxDispl, 99, 100, 111
MD.MaxForceTol, 99, 111
MD.MaxStressTol, 99
MD.NoseMass, 102
MD.NumCGsteps, 99
MD.ParrinelloRahmanMass, 102
MD.PreconditionVariableCell, 99
MD.RelaxCellOnly, 99
MD.RemoveIntramolecularPressure, 101
MD.Steps, 99, 101
MD.TargetPressure, 101
MD.TargetStress, 101
MD.TargetTemperature, 102
MD.TauRelax, 102
MD.TypeOfRun, 37, 97, 100–102, 106, 110

Anneal, 97, 102
Broyden, 97, 99
CG, 97, 99
FC, 81, 97
FIRE, 97
Forces, 97
Lua, 97
Master, 97
Nose, 97
NoseParrinelloRahman, 97
ParrinelloRahman, 97
TDED, 98
Verlet, 97

MD.UseSaveCG, 100
MD.UseSaveXV, 100
MD.VariableCell, 58, 97, 99, 101

Mesh
Cutoff, 28, 42, 56, 98, 110, 116
Sizes, 56
SubDivisions, 56

MinSCFIterations, 44
MM, 92

Cutoff, 92
Grimme.D, 92
Grimme.S6, 92, 93
Potentials, 92
UnitsDistance, 92
UnitsEnergy, 92

MPI
Nprocs.SIESTA, 68

MullikenInSCF, 77
MullikenInScf, 42

NeglNonOverlapInt, 58
NetCharge, 85, 86, 88
New

A.Parameter, 30
B.Parameter, 30

NonCollinearSpin, 41
NumberOfAtoms, 14, 32, 33
NumberOfEigenStates, 60–63
NumberOfSpecies, 14

OccupationFunction, 63, 64, 89
OccupationMPOrder, 64
OMM

BlockSize, 65
Diagon, 65
DiagonFirstStep, 65
Eigenvalues, 65
LongOutput, 65
Precon, 64, 65
PreconFirstStep, 65
ReadCoeffs, 65

148

RelTol, 65
TPreconScale, 65
Use2D, 64, 65
UseCholesky, 64, 65
UseSparse, 64
WriteCoeffs, 65

ON
Etol, 65

ON.ChemicalPotential, 66
ON.ChemicalPotential.Order, 67
ON.ChemicalPotential.Rc, 66
ON.ChemicalPotential.Temperature, 66
ON.ChemicalPotential.Use, 66
ON.eta, 64, 66
ON.eta.alpha, 66
ON.eta.beta, 66
ON.Etol, 66
ON.functional, 66
ON.LowerMemory, 67
ON.MaxNumIter, 66
ON.RcLWF, 66
ON.UseSaveLWF, 67
Optical.Broaden, 79
Optical.Energy.Maximum, 79
Optical.Energy.Minimum, 79
Optical.Mesh, 79
Optical.NumberOfBands, 79
Optical.OffsetMesh, 79
Optical.PolarizationType, 79
Optical.Scissor, 79
Optical.Vector, 79, 80
OpticalCalculation, 79

PAO
Basis, 14, 15, 17, 19–24, 26, 28, 107
BasisSize, 21, 26

DZ, 21
DZP, 21

minimal, 21
SZ, 21
SZP, 21

BasisSizes, 21
BasisType, 19, 21, 23, 26

filteret, 21
nodes, 21
nonodes, 21
split, 21
splitgauss, 21

ContractionCutoff, 23
EnergyCutoff, 23
EnergyPolCutoff, 23
EnergyShift, 21, 22, 26, 28, 29, 107
FixSplitTable, 22

true, 23
OldStylePolOrbs, 27
Polarization

NonPerturbative, 21, 23
NonPerturbative.Fallback, 17, 24
Rc-Expansion-Factor, 23
Scheme, 17, 21, 23, 24

rc.unbound.state, 30
SoftDefault, 20, 24, 26
SoftInnerRadius, 24
SoftPotential, 24
SplitNorm, 21, 22, 26
SplitNormH, 22, 26
SplitTailNorm, 22

true, 17, 22
SplitValence

Legacy, 22
PartialChargesAtEveryGeometry, 78
PartialChargesAtEverySCFStep, 78
PDOS.kgrid.?, 76
PEXSI

deltaE, 68

149

DOS, 72
Ef.Reference, 72
Emax, 72
Emin, 72
NPoints, 72

Gap, 68
Inertia-Counts, 70, 71
Inertia-energy-width-tolerance, 71
Inertia-max-iter, 71
Inertia-min-num-shifts, 71
Inertia-mu-tolerance, 71
lateral-expansion-inertia, 71
LDOS, 72, 77

Broadening, 72
Energy, 72
NP-per-pole, 72

mu, 70
mu-max, 70
mu-max-iter, 70
mu-min, 70
mu-pexsi-safeguard, 70
NP-per-pole, 69, 72, 73
NP-symbfact, 69
num-electron-tolerance, 69
num-electron-tolerance-lower-bound, 70
num-electron-tolerance-upper-bound, 70
NumPoles, 68
Ordering, 69
safe-dDmax-ef-inertia, 71
safe-dDmax-ef-solver, 71
safe-dDmax-no-inertia, 70, 71
safe-width-ic-bracket, 71
safe-width-solver-bracket, 72
Verbosity, 68, 69

PolarizationGrids, 80, 81
ProcessorY, 94
ProjectedDensityOfStates, 75

projection functions as in wannier90, 84
PS

lmax, 24, 25
PS.KBprojectors, 24
PSML

KB.projectors, 17, 24
Vlocal, 17, 24

RcSpatial, 95
Reparametrize.Pseudos, 29, 30
Restricted.Radial.Grid, 29, 30
Rmax.Radial.Grid, 30

S.Only, 53
SaveBaderCharge, 91
SaveDeltaRho, 90
SaveElectrostaticPotential, 90, 91, 96
SaveGridFunc.Format, 91
SaveHS, 58
SaveInitialChargeDensity, 92
SaveIonicCharge, 91
SaveNeutralAtomPotential, 90
SaveRho, 90
SaveRhoXC, 90
SaveTotalCharge, 91
SaveTotalPotential, 90, 91
SCF

Mixing, 58
MonitorForces, 44
MustConverge, 44
RecomputeHAfterSCF, 49
RecomputeHAfterScf, 49
Want.Variational.EKS, 43
Write.Extra, 58

SCF.DebugRhoGMixing, 50
SCF.DM

Converge, 54, 55, 98, 119
Tolerance, 54, 55, 119

150

SCF.EDM
Converge, 55
Tolerance, 55

SCF.FreeE
Converge, 55
Tolerance, 55

SCF.H
Converge, 55, 98, 119
Tolerance, 42, 55, 119

SCF.Harris
Converge, 55
Tolerance, 55

SCF.Kerker.q0sq, 50
SCF.Mix, 42, 44, 49

AfterConvergence, 44, 49, 54
charge, 44
density, 44
First, 44, 45, 49, 86
First.Force, 45
Hamiltonian, 44
Spin, 44

SCF.MixCharge
SCF1, 50

SCF.Mixer
History, 46, 47
Kick, 47
Kick.Weight, 47
Linear.After, 47
Linear.After.Weight, 47
Method, 45–47
Restart, 47, 48
Restart.Save, 47, 48
Variant, 45–47
Weight, 46, 47

SCF.Mixer.<>, 47
history, 47
iterations, 48

method, 47
next, 48
next.conv, 48
next.p, 48
restart, 47
restart.p, 48
restart.save, 48
variant, 47
weight, 47
weight.linear, 46, 47

SCF.Mixers, 47
SCF.Read.Charge.NetCDF, 53
SCF.Read.Deformation.Charge.NetCDF, 53
SCF.RhoG.DIIS.Depth, 50
SCF.RhoG.Metric.Preconditioner.Cutoff, 50
SCF.RhoGMixingCutoff, 50
Siesta2Wannier90.NumberOfBands, 82, 83
Siesta2Wannier90.NumberOfBandsDown, 83
Siesta2Wannier90.NumberOfBandsUp, 83
Siesta2Wannier90.UnkGrid1, 82
Siesta2Wannier90.UnkGrid2, 82
Siesta2Wannier90.UnkGrid3, 82
Siesta2Wannier90.UnkGridBinary, 82
Siesta2Wannier90.WriteAmn, 82
Siesta2Wannier90.WriteEig, 82
Siesta2Wannier90.WriteMmn, 82
Siesta2Wannier90.WriteUnk, 82, 84
SimulateDoping, 86
SingleExcitation, 41
Slab.DipoleCorrection, 85, 86

charge, 86, 87
Origin, 86, 87
Vacuum, 86, 87
vacuum, 86, 87

SOC.Split.SR.SO, 42
SolutionMethod, 10, 38, 60, 63, 65, 118, 122
Spin, 38, 41, 43, 51, 52, 64

151

Fix, 41, 64
non-colinear, 41
non-polarized, 41
OrbitStrength, 42
polarized, 41
spin-orbit, 41
Spiral, 38, 41
Spiral.Scale, 41
Total, 41, 64

SpinInSCF, 77
SpinOrbit, 41
SpinPolarized, 41
SuperCell, 31, 32, 37, 38
SyntheticAtoms, 14, 15
SystemLabel, 12, 14, 35, 113
SystemName, 14

Target
Pressure, 99, 101
Stress.Voigt, 99, 101

Target.Stress.Voigt, 99
TDED

Extrapolate, 109
Extrapolate.Substeps, 109
Inverse.Linear, 109
Nsaverho, 109
Nsteps, 98, 109
Saverho, 109
TimeStep, 98, 109
WF.Initialize, 109
WF.Save, 109
Write.Dipole, 109
Write.Eig, 109
Write.Etot, 109

TimeReversalSymmetryForKpoints, 38, 89
TimerReportThreshold, 95
TimingSplitScfSteps, 95
trial-orbitals, 84

TS
Analyze, 114, 118, 122, 123
Analyze.Graphviz, 122
Atoms.Buffer, 116, 118
BTD

Guess1.Max, 123, 124
Guess1.Min, 123, 124
Optimize, 123
Pivot, 122, 123
Spectral, 124

ChemPot.<>, 128
chemical-shift, 128
contour.eq, 128, 130
contour.eq.pole, 129
contour.eq.pole.N, 129
ElectronicTemperature, 119, 129
kT, 129
mu, 128
Temp, 129

ChemPots, 125, 128
Contour.<>, 130, 131

delta, 130
from, 130
method, 130
opt, 130
part, 130
points, 130

Contour.nEq.<>, 131
Contours

Eq.Pole, 130
Eq.Pole.N, 130

Contours.nEq, 131
Eta, 131
Fermi.Cutoff, 131

DE.Save, 12, 115, 122
true, 12, 122

dQ, 119, 120

152

Factor, 121
fermi, 120, 121, 126
Fermi.Eta, 121
Fermi.Max, 121
Fermi.Tolerance, 121

Elec.<>, 121, 125, 127
Accuracy, 127, 128
Bloch, 115, 127
Bulk, 117, 126, 128
check-kgrid, 116, 127
chemical-potential, 117, 125
DE, 127
delta-Ef, 117, 127
DM-init, 126, 128
DM-update, 126, 128, 132
electrode-position, 125
Eta, 117, 126, 128
Gf, 126
Gf-Reuse, 126, 128
HS, 113, 125, 126
Out-of-core, 127, 128
pre-expand, 127
semi-inf-direction, 125
used-atoms, 125
V-fraction, 117, 127

Elecs, 123, 125, 128
Accuracy, 127, 128
Bulk, 128
Coord.EPS, 128
DM.Init, 119, 126, 128
DM.Update, 128
Eta, 126, 128, 131
Gf.Reuse, 128
Neglect.Principal, 116, 128
Out-of-core, 128

ElectronicTemperature, 119, 129, 131
Fermi.Initial, 119

Forces, 120, 132
Hartree.Fix, 125

Frac, 125
Hartree.Offset, 125
HS.Save, 12, 115, 122

true, 12, 122
kgrid

MonkhorstPack, 114, 116, 118
MUMPS

BlockingFactor, 124
Memory, 124
Ordering, 124

Poisson, 124
<file>, 124, 125
elec-box, 125
ramp, 124

S.Save, 122
SCF

DM.Tolerance, 119
dQ.Converge, 119
dQ.Tolerance, 119
H.Tolerance, 119

SCF.Initialize, 119
SIESTA.Only, 122
SolutionMethod, 118, 122

BTD, 118, 123
full, 118
MUMPS, 118

Voltage, 12, 118, 126
Weight.k.Method, 120
Weight.Method, 119

mean, 120
orb-orb, 120
sum-atom-atom, 120
sum-atom-orb, 120
tr-atom-atom, 120
tr-atom-orb, 120

153

TS.kgrid
Cutoff, 123
File, 123
MonkhorstPack, 123

Use.Blocked.WriteMat, 53, 54
UseDomainDecomposition, 94
UseNewDiagk, 60
UseParallelTimer, 95
User

Basis, 28
Basis.NetCDF, 29

User.Basis, 18, 31
User.Basis.Netcdf, 31
UseSaveData, 36, 37, 96, 100
UseSpatialDecomposition, 94
UseStructFile, 35–37
UseTreeTimer, 95

w90.in.siesta.compute.unk, 84
Wannier

k, 85
Manifold.<>, 83, 84

bands, 83
fermi-surface-plot, 84
spreading.nitt, 83
threshold, 85
trial-orbitals, 83
wannier-plot, 84
window, 84
window.frozen, 84
window.threshold, 84
write-hr, 84
write-tb, 84
write-unk, 84, 85

Manifolds, 83
Threshold, 85
Unk, 85

Projectors, 84
wannier.plot.supercell, 84
WarningMinimumAtomicDistance, 37
WaveFuncKPoints, 62, 74, 75, 79
WaveFuncKPointsScale, 74
WFS.Band.Max, 74, 78
WFS.Band.Min, 74, 78
WFS.Energy.Max, 74, 78, 79
WFS.Energy.Min, 74, 78, 79
WFS.Write.For.Bands, 74
Write

Denchar, 96
DM, 53, 54
DM.end.of.cycle, 54
DM.History.NetCDF, 54
DM.NetCDF, 54
DMHS.History.NetCDF, 54, 59
DMHS.NetCDF, 54, 59
Graphviz, 22
H, 54
H.end.of.cycle, 54
HirshfeldPop, 77, 78
TSHS.History, 54
VoronoiPop, 78

Write.OrbitalIndex, 103
WriteBands, 73
WriteCoorCerius, 36
WriteCoorInitial, 102
WriteCoorStep, 13, 36, 102
WriteCoorXmol, 36
WriteEigenvalues, 14, 63, 75
WriteForces, 14, 103
WriteIonPlotFiles, 29
WriteKbands, 13, 73
WriteKpoints, 13, 39
WriteMDHistory, 36, 102, 103
WriteMDXmol, 36, 103

154

WriteMullikenPop, 14, 77
WriteOrbMom, 42
WriteWaveFunctions, 14, 74

XC
Authors, 39
Functional, 39
Mix, 40
Use.BSC.CellXC, 40

XC.mix, 39
XML

Write, 134

ZM
UnitsAngle, 35
UnitsLength, 35

ZM.ForceTolAngle, 100
ZM.ForceTolLength, 100
ZM.MaxDisplAngle, 100
ZM.MaxDisplLength, 100
Zmatrix, 31, 33, 99, 101

155

	Contributors to Siesta
	INTRODUCTION
	COMPILATION
	Notes on compiler flags
	Debug options

	Parallel operation
	MPI
	OpenMP

	Library dependencies
	Known Issues
	Installing git-enabled versions

	EXECUTION OF THE PROGRAM
	Specific execution options

	THE FLEXIBLE DATA FORMAT (FDF)
	PROGRAM OUTPUT
	Standard output
	Output to dedicated files

	DETAILED DESCRIPTION OF PROGRAM OPTIONS
	General system descriptors
	Pseudopotentials
	Basis set and KB projectors
	Overview of atomic-orbital bases implemented in SIESTA
	Type of basis sets
	Size of the basis set
	Range of the orbitals
	Generation of multiple-zeta orbitals
	Polarization-orbital options
	Soft-confinement options
	Kleinman-Bylander projectors
	The PAO.Basis block
	Filtering
	Saving and reading basis-set information
	Tools to inspect the orbitals and KB projectors
	Basis optimization
	Low-level options regarding the radial grid
	Summary of options and defaults enabling automatic basis-set generation
	Notes on backward compatibility in regard to new program defaults

	Structural information
	Traditional structure input in the fdf file
	Z-matrix format and constraints
	Output of structural information
	Input of structural information from external files
	Input from a FIFO file
	Precedence issues in structural input
	Interatomic distances

	k-point sampling
	Output of k-point information

	Exchange-correlation functionals
	Spin polarization
	Spin-Orbit coupling
	On-site approximation

	The self-consistent-field loop
	Harris functional
	Mixing options
	Mixing of the Charge Density
	Initialization of the density-matrix
	Initialization of the SCF cycle with charge densities
	Output of density matrix and Hamiltonian
	Convergence criteria

	The real-space grid and the eggbox-effect
	Matrix elements of the Hamiltonian and overlap
	The auxiliary supercell

	Calculation of the electronic structure
	Diagonalization options
	Output of eigenvalues and wavefunctions
	Occupation of electronic states and Fermi level
	Orbital minimization method (OMM)
	Order(N) calculations

	The CheSS solver
	Input parameters

	The PEXSI solver
	Pole handling
	Parallel environment and control options
	Electron tolerance and the PEXSI solver
	Inertia-counting
	Re-use of u information accross iterations
	Calculation of the density of states by inertia-counting
	Calculation of the LDOS by selected-inversion

	Band-structure analysis
	Format of the .bands file
	Output of wavefunctions associated to bands

	Output of selected wavefunctions
	Density of states
	Total density of states
	Partial (projected) density of states
	Local density of states

	Options for chemical analysis
	Mulliken charges and overlap populations
	Voronoi and Hirshfeld atomic population analysis
	Crystal-Orbital overlap and hamilton populations (COOP/COHP)

	Optical properties
	Macroscopic polarization
	Maximally Localized Wannier Functions
	wannier90 as a postprocessing tool
	wannier90 called on-the-fly within siesta

	Systems with net charge or dipole, and electric fields
	Bulk current

	Output of charge densities and potentials on the grid
	Auxiliary Force field
	Grimme's DFT-D3 dispersion model
	 A note on LIBXC functionals

	Parallel options
	Parallel decompositions for O(N)

	Efficiency options
	Memory, CPU-time, and Wall time accounting options
	The catch-all option UseSaveData
	Output of information for Denchar
	NetCDF (CDF4) output file

	STRUCTURAL RELAXATION, PHONONS, AND MOLECULAR DYNAMICS
	Compatibility with pre-v4 versions
	Structural relaxation
	Conjugate-gradients optimization
	Broyden optimization
	FIRE relaxation

	Target stress options
	Molecular dynamics
	Output options for dynamics
	Restarting geometry optimizations and MD runs
	Use of general constraints
	Phonon calculations

	DFT+U
	RT-TDDFT
	Brief description
	Partial Occupations
	Input options for RT-TDDFT

	External control of SIESTA
	Examples of Lua programs
	External MD/relaxation methods

	TRANSIESTA
	Source code structure
	Compilation
	Brief description
	Electrodes
	Matching coordinates
	Principal layer interactions

	Convergence of electrodes and scattering regions
	NEGF equations
	TranSIESTA Options
	Quick and dirty
	General options

	k-point sampling
	Algorithm specific options
	Poisson solution for fixed boundary conditions
	Electrode description options
	Chemical potentials
	Complex contour integration options
	Bias contour integration options

	Output
	Utilities for analysis: TBtrans

	ANALYSIS TOOLS
	SCRIPTING
	PROBLEM HANDLING
	Error and warning messages

	REPORTING BUGS
	ACKNOWLEDGMENTS
	APPENDIX: Physical unit names recognized by FDF
	APPENDIX: XML Output
	Controlling XML output
	Converting XML to XHTML

	APPENDIX: Selection of precision for storage
	APPENDIX: Data structures and reference counting
	Bibliography
	Index

