
作りましょう ０．４
パラメタほうしきフォントファミリ

ユーザマニュアル

Tsukurimashou 0.4
Parametric Font Family

User Manual

Matthew Skala

mskala@ansuz.sooke.bc.ca

２０１１年１０月１６日 October 16, 2011

User manual for Tsukurimashou
Copyright © 2011 Matthew Skala

This program is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, version 3.

As a special exception, if you create a document which uses this font, and
embed this font or unaltered portions of this font into the document,
this font does not by itself cause the resulting document to be covered
by the GNU General Public License. This exception does not however
invalidate any other reasons why the document might be covered by the
GNU General Public License. If you modify this font, you may extend
this exception to your version of the font, but you are not obligated
to do so. If you do not wish to do so, delete this exception statement
from your version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/.

2

http://www.gnu.org/licenses/

イントロ

Introduction

日本ごのユーザマニュアルをまちうけば、ごめんなさい。 みらいは、日本ごのユーザマニュア
ルをかきます。

I want to learn Japanese. That’s a large project, likely to involve years of
daily study to memorize a few tens of thousands of words. It’s clearly
within the range of human instrumentality, because many millions of
Japanese people have done it; but most of them started in infancy, and
it’s widely believed that people’s brains change during childhood in such
a way that it’s much harder to learn languages if you start as an adult.
I also would like to be fully literate within somewhat less than the 15
years or so that it takes a native learner to gain that skill.

What about designing a Japanese-language typeface family? Typeface
design is a difficult activity, requiring hours of work by an expert
to design each glyph. A typeface for English requires maybe 200
glyphs or so; one for Japanese requires thousands. That makes the
English-language typeface about a year’s full-time work, and the Japanese-
language typeface enough work (20 to 25 man-years) that in practice
it’s rare for such a project to be completed by just one person working
alone, at all. There is also the minor detail that I said a “typeface
family”—one of those typically consists of five or six individual faces, so
the time estimate increases to between 100 and 150 years.

However, I’ve already decided to spend the time on the language-learning
project. And I’m sure that if I design a glyph for a character, I’m going
to remember that character a lot better than if I just see it a few times
on a flash card. And as a highly proficient user of computer automation,
I have access to a number of efficiency-increasing techniques that most
font designers don’t. So the deal is, I think if I study the language and
also design a typeface family for it, I might be able to finish both
big projects with less, or not much more, effort than just completing
the one big project of learning the language alone. And then I’d also end
up with a custom-made Japanese-language typeface family, which would
be a neat thing to have. And so, here I am, building one.

This is the fourth released version. Because it’s a parametrized design

3

built with Metafont, users can generate a potentially unlimited number
of typeface designs from the source code; but I’ve provided parameters
for six ready-made faces, each of which can be drawn in monospace or
proportional forms. There is also some experimental code intended to
eventually become a set of blackletter fonts, but it is disabled by default
and not currently usable.

Current glyph coverage is the MES-1 subset of Unicode (corresponding to
fairly complete coverage of the Latin script), the hiragana and katakana
syllabaries, and a total of 573 kanji including the 240 taught up to the
Grade Two level in the Japanese school system. So with these fonts
you can write English pretty well; you can write all the most popular
languages that use the Latin script (such as French, German, and Spanish,
to name only a few; but not Greek or Russian); and you can write
Japanese like a seven-year-old. There are also some extra goodies, such
as complete sets of I Ching hexagrams and Genjimon. More of that
sort of thing will probably appear in future versions, as I’m throwing
in characters that seem interesting whether they are particularly useful
and necessary, or not.

The main goal of this project is for me to learn the kanji by designing
glyphs for them, and so far it does seems to be helping my learning
process, though the nature of computer programming is certainly having
some unusual disruptive effects. For instance, in some cases I appear to
have unintentionally memorized the Unicode code points of kanji without
learning their meanings or pronunciations. I may end up learning to speak
Japanese just like a robot; but by the time I’m fluent, the Japanese
demographic collapse will be in full swing and they’ll have replaced much
of their population with humanoid interfaces anyway, so maybe I’ll fit
right in.

Please understand that the finished product is not the point so much as
the process of creation, hence the name. Furthermore, although the fonts
cover the MES-1 subset of Unicode, and thus can in principle be used for
almost all popular languages that use the Latin script, and I know that at
this stage most users are probably more likely to use the fonts for English
than for anything else, nonetheless these fonts are intended for eventual
primary use with the Japanese language. Some decisions on the Latin
characters were driven by that consideration—in particular, the simplistic

4

serif design and weighting in the Latin characters of Tsukurimashou
Mincho, and the limited customization of things like diacritical mark
positioning in Latin characters not used by English. I biased some marks
(notably ogonek and haček) toward the styles appropriate for Czech and
Polish as a nod to my own ancestors, but I cannot read those languages
myself, and I cannot claim that these fonts will really look right for
them. I’m not interested in spending a lot of time tweaking the Latin
to be perfect because it’s not really the point. I already know how to
read and write English.

Some other notes:

󱜳 Since my learning the kanji is a big part of the goal of this project,
“labour-saving” approaches that would relieve me of having to look
at all the kanji individually myself (for instance, by feeding a pre-
existing database of kanji shapes into my existing general font
technology) are not really of interest.

󱜳 Proportional spacing and kerning still require some work. Be aware
that future versions will change the spacing of some characters,
so if you are one of those people to whom any changes in line
breaking are anathema, you should not expect to be able to up-
grade the proportionally spaced versions of these fonts in archived
documents.

󱜳 I would like to include at least some support for vertical script,
but it is not a high priority. One obstacle is that I don’t have
access to competent vertical typesetting software, whether the
font could support it or not.

󱜳 Tsukurimashou is designed primarily for typesetting Japanese, sec-
ondarily for English. I have no immediate plans to support other
Han-script languages (such as any dialect of Chinese) nor put a lot
of effort into tweaking the fine details of characters only intended
for use in occasional foreign words.

󱜳 I reserve the right to add features that I think are fun, even if
they are not useful.

5

󱜳 Tsukurimashou is designed as a vector font, assuming an output
device with sufficient resolution to reproduce it. In practice, that
probably means a high-quality laser printer. I have not spent time
optimizing it for screens or low-resolution printers, and the hinting
is automated.

󱜳 Tsukurimashou Kaku is the main, baseline style, and only a limited
amount of effort will be put into optimizing other styles.

󱜳 In the case of monospace: The “wide” forms of Latin glyphs are
the baseline, even in cases of accented glyphs that Unicode doesn’t
include in wide form, and which appear in the fonts only in narrow
form. The “wide” forms are the ones on which I will lavish the
most attention; the “narrow” forms are mostly generated by an
automated nonlinear scaling operation from “wide” designs. In the
case of proportional space: “wide” and “narrow” glyphs are basically
identical, though in the current version there are some differences
in things like dollar sign ($ versus ＄).

󱜳 If it turns out to be too much work after all, I might abandon
the whole project.

󱜳 The current X ETEX as of this writing, or possibly its fontspec pack-
age, contains a bug related to the combination of non-stretchable
interword spaces with the LATEX font size commands. Typesetting
in monospace fonts in general is going to have problems until they
fix that; but I’ve been in communication with the parties respon-
sible and it appears that they will be fixing it before this typeface
family is usable enough for it to be a big issue anyway.

The Tsukurimashou fonts are distributed under the GNU General Public
License, version 3, with an added paragraph clarifying that they may
be embedded in documents. See the file named LICENSE and note the
following addition:

As a special exception, if you create a document which
uses this font, and embed this font or unaltered portions of
this font into the document, this font does not by itself cause

6

the resulting document to be covered by the GNU General
Public License. This exception does not however invalidate
any other reasons why the document might be covered by
the GNU General Public License. If you modify this font,
you may extend this exception to your version of the font,
but you are not obligated to do so. If you do not wish to
do so, delete this exception statement from your version.

The license means (and this paragraph is a general summary, not over-
riding the binding terms of the license) that you may use the fonts at no
charge; you may modify them; you may distribute them with or without
modifications; but if you distribute them in binary form, you must make
the source code available. Furthermore (this is where font-embedding
becomes relevant) embedding the font, for instance in a PDF file, does
not automatically trigger the source-distribution requirement.

My plan is that at some point in the future, when the fonts are in a
more useful and complete form, I will make precompiled binaries available
through commercial online channels. That will serve several purposes:
it will allow me to make some money from my work, and it will also
probably encourage some people to use the fonts who wouldn’t otherwise.
One of the bizarre aspects of human behaviour is that some people will
buy a product they would not accept for free. Okay, whatever; in such
a case I’m happy to take the money for it. Having a pay option will
also give anybody who wants to support my efforts, an easy way to
do that. For now, though, I am distributing Tsukurimashou only as this
source package, with precompiled versions included for the Kaku and
Mincho styles. If you want other styles, you’ll have to compile them
yourself or get them from someone who has done so. This limitation is
deliberate: with the fonts in their current partial form, I’d rather limit
their circulation to hobbyists.

Prior to releasing this package of source for the entire Tsukurimashou
project, I released a smaller package of fonts covering just the Genjimon
characters, in a different encoding. That package is now included in this
one, but remains a separate entity. You will find it in the “genjimon”
directory. It has its own, independent, documentation and build system.
My plan is not to do much further maintenance on it; my hope is that not

7

much further maintenance will be needed. If you want to use Genjimon
characters, you have the choice of using the fonts from the Genjimon
package (which encode the characters to replace the Latin alphabet) or
using the full Tsukurimashou fonts, which encode the Genjimon characters
in the Supplemental Private Use Area and also include a lot of other
characters.

This documentation file gives some notes on the build system, which is
much enhanced in this version, and on how to use the OpenType features
built into the fonts. Other documentation files included in the package
demonstrate what the fonts look like and list the current kanji coverage.
Better documentation (and some day, Japanese-language documentation)
will probably appear in a later version; at the moment, I’m just more
interested in designing fonts than in writing about them. Of course, all
the typesetting in this manual is done with fonts from this package.

The name “Tsukurimashou” could be translated as “Let’s make something!”

よろしくおねがいします。

Matthew Skala
mskala@ansuz.sooke.bc.ca
October 16, 2011

外のプロジェクト Other similar projects

Maybe you shouldn’t use this package! It is designed for specific purposes
that are relevant to its designer, and although I certainly hope others
will find it useful, my goals may or may not be in line with yours. Also,
although I sometimes describe Tsukurimashou as the first parameterized
MetaFont family with Japanese-language coverage, that claim requires
careful qualification because many projects with similar aims have existed
in some form for a long time. Here are some others, going back a few
decades, that you might want to check out.

This is not intended to be a complete list; in particular, I’m leaving out
many sources of CJK fonts that are not METAFONT-related, and many
academic papers that are not associated with publically-available fonts.
There is also no doubt a great deal of research and development locked
up inside commercial organizations, or published in the Chinese language

8

and thus inaccessible to me.

󱜳 “A Chinese Meta-Font,” John Hobby and Gu Guoan, paper in TUG-
boat 5–2, 1984. Proof of concept and discussion of some of the
graphic design issues for parameterized CJK fonts. They built
140 radicals and 128 characters, using infrastructure very similar
to Knuth’s techniques for Latin fonts, and the traditional Chinese
stroke-based analysis of characters. High-quality parameterized
designs. No apparent plan to actually turn these into a usable
full-coverage family—it seems to have been meant as research into
the techniques only—and I don’t think the resulting code was ever
released. http://www.tug.org/TUGboat/tb05-2/tb10hobby.pdf

󱜳 pTEX, ASCII Corporation, 1987 onward: not a font project, but
a TEX engine modified to handle 16-bit character codes and using
existing fonts from other systems. Very popular in Japan; to some
extent it still is, though other projects of similar nature (mostly
not listed here) have gained a lot of market share in recent years.

󱜳 The Quixote Oriental Fonts Project, spearheaded by Dan Hosek,
announced in a paper at the TUG 1989 Conference. Intended to be
a parameterized METAFONT-native family for Chinese, Japanese,
and Korean. Hosek apparently had some source code in hardcopy
form displayed at the conference, but I’ve not been able to find
the code nor any subsequent discussion of the project. http:
//www.tug.org/TUGboat/tb10-4/tb26hosek.pdf

󱜳 Poor Man’s Chinese and Poor Man’s Japanese, 1990, Tom Ridgeway:
technology for displaying 24×24 bitmap fonts through METAFONT.
This was not curve tracing, nor smooth scaling, but a way to
actually display the dot matrix, jaggies and all. Still available in
CTAN package “poorman,” but considered obsolete.

󱜳 JemTEX, 1991, François Jalbert: included a program called jis2mf
which would auto-trace 24×24 bitmaps to produce METAFONT
code. Many sources from the 1990s (for instance, a regular Usenet
posting aiming to list all then-available .mf-format fonts) describe
the availability of “Metafont for 61 Japanese fonts,” which is output
from this program.

9

http://www.tug.org/TUGboat/tb05-2/tb10hobby.pdf
http://www.tug.org/TUGboat/tb10-4/tb26hosek.pdf
http://www.tug.org/TUGboat/tb10-4/tb26hosek.pdf

󱜳 The CJK package, described in TUGboat at least as early as 1997,
still available though no longer popular, Werner Lemberg. Not a
font project but a system for typesetting CJK text in LATEX un-
der the standard 8-bit engines, getting around the encoding issue
by splitting each font into many smaller virtual fonts (similar to
Tsukurimashou’s “page” system). Fonts for this, at least at the out-
set, were usually bitmap fonts imported from other systems (one
popular one was 48×48); later, as free vector fonts became avail-
able, those started to be used, some of them via auto-conversion
from formats like TrueType to non-parameterized METAFONT.

󱜳 IPA Mincho and IPA Gothic fonts, 2003 onward. Note “IPA” in this
case stands for “Information-technology Promotion Agency,” not
the “International Phonetic Alphabet,” and these fonts do not cover
that IPA. Free high-quality fonts for Japanese, TrueType format,
not parameterized. http://ossipedia.ipa.go.jp/ipafont/index.html

󱜳 X ETEX, SIL International, 2004 onward: TEX engine extended to
handle Unicode and modern font technologies. Used to compile
this document, and one of the main compatibility targets for
Tsukurimashou. http://scripts.sil.org/xetex

󱜳 Hóng Zì project by Javier R. Laguna. Aimed to be a parameter-
ized MetaFont family for Chinese. Last release, in 2006, contained
125 characters. No infrastructure for addressing issues like Meta-
Font’s 256-glyph limit, or radicals changing shape depending on
their context. Probably abandoned. However, it did make sev-
eral releases of code that you can still download and compile.
http://hongzi.sourceforge.net/

󱜳 The KanjiVG Project, coordinated by Ulrich Appel, ongoing in 2011.
Still under development, but already has basically complete cover-
age, and is deployed in several important applications. This is not
a font family, but a database of kanji (primarily from a Japanese
point of view) broken down into strokes and radicals, with some
curve points and a lot of abstract information about how the
strokes correspond to the traditional radical classification (so that
you can automatically recognize, for instance, what 示 and 礻 have
in common), stroke order, and so on. This is a valuable resource

10

http://ossipedia.ipa.go.jp/ipafont/index.html
http://scripts.sil.org/xetex
http://hongzi.sourceforge.net/

for dictionaries and handwriting recognition systems. Some kind of
supervised semi-automatic processing could probably turn it into
a font, but keeping the style consistent (because the database has
multiple sources), and adding the serifs and other visual informa-
tion needed for styles like Mincho, would require some significant
work. http://kanjivg.tagaini.net/ See it in action in Ben Bullock’s
handwritten kanji recognizer at http://kanji.sljfaq.org/draw.html.

󱜳 Character Description Language, from Wenlin Institute, Inc. Cur-
rent in 2011. This is a commercial product. It is apparently
(though the Web page could be clearer on the exact nature of
what they’re selling) a database of character descriptions similar
to KanjiVG, plus a binary-only rendering library, the combination
available for license at some unspecified price. It says it’s capa-
ble of generating MetaPost as one of its several output formats.
Not clear to what extent there is parameterization, but presum-
ably that would be in the converter rather than in the resulting
MetaPost. http://www.wenlin.com/cdl/

デベロップメントロードマップ Development roadmap

This version contains all the kyouiku kanji (the ones taught in Japanese
elementary school) through Grade 2. The current plan is to release a
minor version after each grade level of kyouiku kanji and one halfway
through each grade level, which will take us up to version 0.12 at the
end of Grade 6. Version 1.0 will probably be a separate version released
shortly after 0.12, with a general clean-up and renovation, but it’s possible
I might skip directly from 0.11 to 1.0.

There are 1006 kyouiku kanji, though my expectation is that by that
point the fonts will probably contain somewhat more than that number
of kanji glyphs because my general practice is to add other glyphs that
are convenient to add whenever they come up, regardless of their level.
For instance, when I added the “gate” radical 門 it was easy to add many
other kanji that consist of that wrapped around an easy pre-existing
kanji, even though some of those are not in common use and one, 閠,
isn’t even a real kanji at all, having been created by an error in the
standards process. But having just over a thousand in the main-line

11

http://kanjivg.tagaini.net/
http://kanji.sljfaq.org/draw.html
http://www.wenlin.com/cdl/

roadmap makes the end of the kyouiku kanji a good milestone for the
first major version number.

That may be a few years from now. Progress past that point will be
somewhat dependent on how I feel about the project by then and what
my personal career situation is. My hope is that at that point or before,
I’ll have the chance to present this work at one or more conferences
and that it will have attracted some attention. Of course, if I can figure
out a way to get paid to do it that would be nice, but attention is more
important.

Although this is subject to change and cancellation, my current thought
is that the next major versions would be 2.0 with the jouyou kanji
(taught in high school, a total of 1130 additional glyphs), and 3.0 with
the jinmeiyou kanji (the “name-only” kanji, 983 additional glyphs). I don’t
know how I’d break those up into minor versions, but presumably I’d aim
for a similar spacing of about 100 new characters per release. At the 3.0
point, with a little over 3000 kanji, the fonts should be basically complete
in the sense of being usable to write the full Japanese language as most
reasonably competent native readers know it. Many more kanji exist; I
don’t know how far I’ll want to take this project toward covering them
all. For reference, looking at some other fonts I have handy, IPA Mincho
contains 6682 kanji (probably aiming to cover the JIS 208 standard),
and Sazanami Gothic contains 12202 (probably aiming to cover JIS 212).
Those might be reasonable milestones for 4.0 and 5.0.

Figure 1 is a chart of the progress to date. Note the horizontal axis is
labelled by version but scaled by time. There was a long gap between
0.3 and 0.4, which I hope won’t be typical of future minor versions. The
last half of Grade 2 turned out to include some really hard characters,
and I did a lot of infrastructure work during this time that isn’t shown
in the numbers but will become important for speeding up future work.

Figure 2 gives a different view of development progress: the number of
lines of code (total lines in mp/*.mp, including comments and blanks but
not including code in other languages and locations) plotted against the
total number of glyphs. At present I’m running about 15 lines per glyph.
Since lines of code correlate strongly with amount of work done, my
hope is to lower that average with better factoring of the code base,

12

..0 .

500

.

1000

.

1500

.

2000

.

g
ly
ph

s

.

0.1

.

0.2

.

0.3

.

0.4

.

version and time

. 漢.

漢

.

漢

.

漢

.

󱜳

.

󱜳

.

󱜳

.

󱜳

.

kanji

.

total

Figure 1: Growth of glyph counts

to improve overall productivity of glyphs.

13

..0 .

10000

.

20000

.

30000

.

li
ne

s
o
f
co

d
e

.

0

.

500

.

1000

.

1500

.

2000

.

glyphs

.

󱜳

.

󱜳

.

󱜳

.

󱜳

Figure 2: Lines of code per glyph

14

『作りましょう』のつかいかた

Using Tsukurimashou

Fonts appear in OpenType format in the otf/ subdirectory of the pack-
age. If you just unpack a distribution, there will be four fonts there
corresponding to the monospace and proportional versions of Tsukuri-
mashou Kaku and Mincho. If you run the build process, that will create
more. For a quick start, all you need to do is install the font files in
whatever way is standard for installing OpenType fonts on your system.
It is safe to delete everything else in the package, though you might
want to keep the PDF documentation files.

Samples of what the different styles look like are in the file demo.pdf,
which see. Here’s a brief summary:

󱜳 作りましょう角 Tsukurimashou Kaku (“Square Gothic”): sans-serif with
squared stroke-ends.

󱜳 作りましょう丸 Tsukurimashou Maru (“Round Gothic”): sans-serif with
rounded stroke-ends.

󱜳 作りましょうアンビル的 Tsukurimashou Anbiruteki (“Anvilicious”):
extra-bold, rounded sans-serif.

󱜳 作りましょう天使の髪 Tsukurimashou Tenshi no Kami (“Angel Hair”): very
thin hairline display font.

󱜳 作りましょう僕っ娘 Tsukurimashou Bokukko (“Tomboy”): felt marker
style.

󱜳 作りましょう明朝 Tsukurimashou Mincho (“Ming Dynasty”): mod-
ern serif.

The remainder of this document is reference material describing the
special features of the fonts, as well as instructions on how to build and
customize your own font files, including the styles that aren’t distributed
in precompiled form.

15

ＯｐｅｎＴｙｐｅのフィーチャー

OpenType Features

外の分すう Alternate Fractions (afrc)

As of version 0.4, fractions work properly only in the monospaced
fonts.

Tsukurimashou does not contain any special support for diagonal fractions,
but it does support vertical or “nut” fractions using the OpenType feature
“afrc.” With the afrc feature turned on, any sequence of up to four digits,
a slash, and up to four more digits becomes a vertical fraction:

1/2 → 󿂱󿀅󿆲 34/56 → 󿀣󿀴󿀂󿄥󿄶 789/123 → 󿁇󿁘󿁩󿀃󿅁󿅒󿅣 4567/8901 → 󿁴󿂅󿂖󿂧󿀄󿅸󿆉󿆐󿆡

This feature works with both the “narrow” digits and slash (ASCII 47–57,
Unicode U+002F–U+0039) and the “wide” ones (Unicode U+FF0F–U+FF19).
If the input digits are narrow, and the fraction is one digit over one digit,
then the resulting glyph will be narrow (the same width as monospaced
Latin characters). Otherwise—with wide input or more than one digit in
the numerator or the denominator—the fraction will be the width of a
wide (ideographic) character.

]1/2[→]󿂱󿀅󿆲[]１／２[→]󿀑󿀁󿄒[]34/56[→]󿀣󿀴󿀂󿄥󿄶[]３４／５６[→]󿀣󿀴󿀂󿄥󿄶[

ともえのはながた Ornaments (ornm)

Tsukurimashou provides eight tomoe ornaments that look like this:

󱜱 󱜲 󱜳 󱜴 󱜵 󱜶 󱜷 󱜸

These glyphs are encoded to the Unicode private-use code points U+F1731
to U+F1738, and always available that way. If the “ornm” feature is turned
on, then they will also appear as substitutions (not alternates!) for the
ASCII capital letters A through H; so that the text “A BIG TEST” comes
out as “󱜱 󱜲I󱜷 T󱜵ST.” It is likely that the way this OpenType feature
works will change in the future, since it seems not to be current best
practice to implement ornm by substitution but I’m not quite sure yet
what the best practice actually is.

16

These ornaments look the same in all the fonts; they do not change
from one style to the next.

スモールキャピタル Small Caps (smcp)

S      OT “” .
This feature simply substitutes the 26 lowercase ASCII Latin letters with
alternates that are encoded into the Private Use Area at the code points
formerly used by Adobe for this purpose: U+F761 to U+F77A. At some
point in the future, other glyphs may be added to support small cap
letters other than the 26 ASCII ones, and I may start using unencoded
glyphs rather than mapping them into the PUA.

ヘビーメタルウムラウト Heavy Metal Umlaut (ss01)

With Stylistic Set 1 (OpenType feature “ss01”) turned on, umlaut or
dieresis over the vowels ÄËÏÖÜŸäëïöüÿ as well as tilde over Ñ and
ñ is replaced by a “heavy metal” umlaut intended for spelling musical
names like “Mot󱝌rhead,” “Spı󱝋al Tap,” and “Mormo󱝋 Tab󱝈rnacle Cho󱝊r.”
The heavy metal umlaut differs from the regular umlaut in that the dots
are larger and pointier.

Glyphs to support this feature, including a “spacing heavy metal umlaut”
character, are encoded into the private-use area at U+F1740 through
U+F174E.

丸つき字 Enclosed Letters and Numerals (ss02)

With Stylistic Set 2 (OpenType feature “ss02”) turned on, the enclosed
characters described by Unicode become available as contextual substi-
tutions for sequences of (in most cases ASCII) characters:

󱜳 (0) → ⓪ through (50) → ㊿

󱜳 (A) → Ⓐ through (Z) → Ⓩ

󱜳 (a) → ⓐ through (z) → ⓩ

󱜳 (ア) → ㋐ through (ン) → 󱜑

󱜳 ((1)) → ⓵ through ((10)) → ⓾

17

󱜳 {0} → ⓿ through {20} → ⓴

󱜳 {A} → 🅐 through {Z} → 🅩

󱜳 [A] → 🄰 through [Z] → 🅉

󱜳 <A> → 🅰 through <Z> → 🆉

The choice of which ranges of numbers and letters to support is mostly
not mine—I just implemented what I found in the Unicode charts.

Unicode only has code points for the unvoiced versions of the enclosed
katakana (e.g. ㋕㋖㋗ but not enclosed versions of ガギグ), and it has
no code point for enclosed ン. I’ve added 󱜑, encoded to private-use
code point U+F1711, but not the others. If there’s a demand for other
enclosed characters, though, they are pretty easy to add. I held off
on just defining dozens or hundreds more, because it’s not clear to me
what the typical use of these characters actually is, and a complete set
of enclosed characters might be better seen as a font in itself rather
than a series of special characters inside the font.

Note that for the enclosed katakana the substitution will accept either
ASCII parentheses or wide parentheses (U+FF08 and U+FF09); the others
work with ASCII parentheses only.

18

付加文字

Extra glyph coverage

げんじもん Genjimon

Glyphs for the 54 Genjimon are encoded to private-use code points
U+F17C1 to U+F17F6, in the order of the corresponding Tale of Genji
chapters (“Kiritsubo” to “Yume no Ukihashi”). The style of these glyphs
varies a fair bit between the different font styles. Here are samples:

󱜳 Kaku: 󱟕󱟖󱟗

󱜳 Maru: 󱟕󱟖󱟗

󱜳 Anbiruteki: 󱟕󱟖󱟗

󱜳 Tenshi no Kami: 󱟕󱟖󱟗

󱜳 Bokukko: 󱟕󱟖󱟗

󱜳 Mincho: 󱟕󱟖󱟗

えききょう I Ching

All the I Ching-related characters defined by Unicode in the Basic Mul-
tilingual Plane are supported: trigrams U+2630 to U+2637, monograms
U+268A and U+268B, digrams U+268C to U+268F, and hexagrams U+4DC0
to U+4DFF. These characters are sized to fit in the same box as kanji,
and so in most cases you will probably want to scale them to a signifi-
cantly larger point size than that of nearby text. The style does change
somewhat from one font to the next.

There are also some “I Ching dot” combining characters in the private-
use code points U+F1701 to U+F1709, intended to show movement of lines
1 through 6 of hexagrams or 1 through 3 of trigrams, encoded in that
order. The idea is that you can typeset something like this:

䷞󱜂󱜄→䷯
using a sequence of codes like this:

19

U+4DDE U+F1702 U+F1704 U+2192 U+4DEF

Combining I Ching dots only work properly in monospace fonts at
present.

おおやけのユーログリフ Official Euro Sign

Fonts that include a symbol for the European currency unit (Unicode
U+20AC) usually re-draw it to match the style of the rest of the font,
and the Tsukurimashou fonts are no exceptions. However, there is an
official glyph design that apparently was intended to be normative—in
theory, you’re supposed to use the official glyph, which does not change
with the style of the rest of the font, even if it clashes. For those who
want to do so, the official Euro sign is included in the Tsukurimashou
fonts at private-use code point U+F1710.

It looks like this: 󱜐

20

フォントの名前ついて

Regarding Font Names

First, I will use the term “font” to refer to an OTF or similar file
with a complete glyph set (or as many glyphs as have been selected
with configure). This will generally be a few thousand glyphs. Because
MetaType1 is limited to producing Postscript font files with at most 256
glyphs each, the system builds “subfonts” each corresponding to a “page”
of the Unicode character set—that is, an aligned 256-code-point block.
For instance, the range U+0000 to U+00FF is the page containing ASCII
and Latin-1 characters.

The most authoritative form of the name of a font is the “Hamlog
name,” which is an ordered quadruple of Hamlog atoms. These names
are manipulated by, for instance, the code in select.hl. The items in the
quadruple are called the family, the style, the weight, and the spacing.
An example Hamlog name might be “(tsukurimashou, bokukko, demibold,
monospace).”

The family represents the broad category of the font. Generally, all
fonts sharing the same family value will have basically the same glyph
set and the same shapes for all glyphs, though some fine details will
vary. If there are significant differences in shapes, they will be put in a
separate family. At present the only fully supported value for the family
is “tsukurimashou,” though some experimental (less than alpha status)
code exists for a family to be called “blackletter_lolita,” and a planned
future possibility (for a family with italic letterforms) might be called
“tsuita.”

The possible values for style will depend on the family. At present
the allowed style values for the tsukurimashou family are “kaku,” “maru,”
“mincho,” “bokukko,” “anbiruteki,” and “tenshinokami,” though this list may
be subject to a lot of change and could be out of date. Styles generally
correspond to preset values for the adjustable parameters of a family’s
letter-drawing code.

The weight is not presently used; the only implemented value is “normal.”
The plan is that in future it will be allowed to take six different values
ranging from “light” to “extrabold,” and corresponding to different levels

21

of boldness. Still to be determined is how this will interact with style
values that imply something about boldness, such as “tenshinokami.”

The spacing may be “monospace” or “proportional.”

The Hamlog name is translated into a few other kinds of names, by a
combination of Hamlog code in select.hl and Perl code in the Makefile.
One important translated name is the “short name,” which is a sequence
of two, three, or (never occurring in the current version, but allowed in
principle) four short ASCII tokens, which in different parts of the code
may be separated by either hyphens or underscores. An example short
name is “tsuku-mi-ps,” corresponding to the Hamlog name “(tsukurimashou,
mincho, normal, proportional).” Each element in the Hamlog name is
translated into a token for the short name, according to the table
given by the short_name/2 predicate in select.hl, but some Hamlog
atoms (namely “normal” and “monospace”) translate to the special value
“l___da” (for “lambda,” meaning empty string) and are removed, usually
leaving fewer than four tokens in the result.

Subfonts also have short names, formed by adding an extra token at
the end which is the two- or three-digit hexadecimal representation of
the page number. For instance, “tsuku-mi-ps-00” might be the short
name of a subfont. These are often used in constructing filenames for
intermediate files during build.

Fragments of short names are also used to name source code files. Files
following this scheme (not all source files do) have names consisting
of one family token, a hyphen, and one other token, followed by the
appropriate extension. Building a subfont involves creating a temporary
driver file that includes all the relevant source files for that font’s short
name. For instance, to build “tsuku-mi-ps-00.pfb” the build system would
create a driver file that loads “tsuku-mi.mp,” “tsuku-ps.mp,” and “tsuku-
00.mp,” in that order. Some of those files might then go and load other
files outside this naming scheme.

In the case of the family token not being “tsuku,” the build system
will use source files that match the subfont’s family token where those
exist, and default to “tsuku” when such files don’t exist. For instance,
to build “bll-co-01.pfb” (Blackletter Lolita Cosette, page 01) it might load
“bll-co.mp” (which exists), but then load “tsuku-01.mp” because “bll-01.mp”

22

doesn’t exist. Thus, the “tsukurimashou” family can be thought of as a
generic ancestor from which any others inherit.

Fonts also have “long names,” which are created by a similar translation
process. Long names are generally mixed case ASCII, and the elements
are separated by spaces and may also contain internal spaces. As with
short names, normal weight and monospace translate to nothing and are
removed when forming the long name. An example long name might be
“Tsukurimashou Tenshi no Kami PS.” There are also some places, notably
in the filenames of final OTF fonts, where a long name is used with all
the spaces removed.

Some code exists to create “Japanese names,” which are constructed
just like long names but with elements written in Japanese (and thus
generally in non-ASCII Unicode characters), and no spaces between
elements. At present these are not actually used anywhere, but the
intention is that they will eventually be put into font metadata tables. An
example Japanese name might be 「作りましょう天使の髪ＰＳ」, corresponding to
“Tsukurimashou Tenshi no Kami PS.” Since there is some information loss
in transliteration from Japanese to English, and many of the names come
from Japanese words anyway, it may be best to think of the Japanese
name as the truest name of the font for human purposes, even though
from the code’s perspective both are derived from the authoritative
Hamlog name. The source of the translation table for Japanese names
is in jnames.txt, which is processed by Perl to change the UTF-8 into a
hexadecimal form that Hamlog can handle, the result going into jnames.hl.

23

『作りましょう』を作りましょう！

Building Tsukurimashou

Please note that if you just unpack the Tsukurimashou distribution and
look in the “otf” subdirectory, you will find some ready-made font files
there. If you are content with them, then those are the only files you
need; you can safely delete everything else in the package (save the PDF
documentation files, if you want) and ignore this sub-section. These
notes on building Tsukurimashou are only for expert users who want the
greater control, wider style coverage, and intellectual challenge of doing
custom compilation.

Assuming you wish to embark on the adventure of compiling Tsukuri-
mashou, you will need at least the following:

󱜳 A reasonably standard Unix command-line environment. I use
Slackware Linux. Anything branded as “Unix” should work. MacOS
X might work. Windows with Cygwin might work.

󱜳 Perl.

󱜳 GNU Make.

󱜳 MetaType1, specifically the mtype13 distribution.

󱜳 A version of FontForge that actually works. This will probably
require local patching, and possibly local debugging; see below.

Other things that might also be useful include:

󱜳 X ELATEX (needed for compiling the documentation).

󱜳 Expect (makes the build system work better—exactly why is ex-
plained in more detail in the warning you will get if you don’t
have it).

󱜳 The KANJIDIC2 database (needed for the kanji coverage chart and
a planned future fine-grained character subset selection feature).

24

󱜳 A supported Prolog interpreter (not necessary, but if one is avail-
able then the build system will use it and run more efficiently).

󱜳 A multi-CPU computer (the build system will by default detect and
use all your CPUs; since some stages of compilation require a lot
of processing, it’s nice to have several).

󱜳 A checksum program, preferably sha256sum (used for some subtle
build-system optimizations).

If you have a current version of TEXLive 2010, then you probably have
MetaType1 and X ELATEX already. Note that it does have to be fairly
up-to-date. The version that came with Slackware on my laptop had a
bug that caused “❸” to appear as “{3},” where it should be a white “3”
in a black circle. (It appears that the issue was with the braces being
treated as “math” characters and substituted from Latin Modern instead
of the specified Tsukurimashou font, so that as a result the OpenType
substitution wasn’t being triggered.)

I mentioned a requirement for a version of FontForge “that actually
works.” FontForge is plagued by many bugs and numerical instabilities in
its spline geometry code, and stock, distributed “stable” versions tend to
hang and/or segfault when they are used to compile Tsukurimashou. I
recommend compiling your own from recent development sources, with
the “--enable-longdouble” option to configure, and also paying attention
to this bug report I filed:
http://sourceforge.net/mailarchive/message.php?msg_id=26871721

I can’t promise that applying that patch and turning on long doubles
will be enough to keep FontForge from crashing; what I do myself is
go in with gdb after each sufficiently annoying crash, find the line that
is segfaulting, and try to fix it. I’m not sure that I have reported or
recorded all the changes I’ve made as a result of this procedure. But,
hey, if you’re lucky, maybe FontForge will have fixed all its own bugs by
the time you read this and you’ll get along all right with the distributed
version!

25

http://sourceforge.net/mailarchive/message.php?msg_id=26871721

ブリドのシステム Build System

The build system is based on GNU Autotools and should be reasonably
familiar to anyone who has compiled popular free software before. Run
“./configure --help” for a description of available configuration options;
run “./configure” possibly with other options as described in the help
message to set up the system the way you want it; then once it is
configured to your liking, run “make” to build it. The completed font
files end up in a directory called “otf” in the distribution tree. A
few ready-made ones should be there already when you unpack the
distribution, for the benefit of the probable majority of users who can’t
do their own compilation.

If you run “make install” it will attempt to install the fonts and doc-
umentation files in sensible locations, but it’s not really customary for
fonts to be installed like other software, and you may be better off
simply taking the compiled files from the otf directory and doing with
them whatever you would normally do with fonts instead of using the
automated install. At this time there is no TEX-specific font installa-
tion support, though that might be a nice feature for me to build in
the future. The install target uses the “--prefix” and similar options to
configure in a reasonably obvious and standard way.

If you have KANJIDIC2, place it (in the gzipped XML form in which
it is distributed) in the build directory, the doc subdirectory off of the
build directory, or your system’s dict or share/dict directories, possibly
under /usr or /usr/local or your configured installation prefix; or put
it somewhere else and tell configure where with the “--with-kanjidic2”
option. Although what’s used by Tsukurimashou is factual information
not subject to copyright, and KANJIDIC2 (which also includes creative
content that might be subject to copyright) is distributed freely, it is not
distributed under a GPL-compatible license and so for greater certainty
I’m avoiding including KANJIDIC2 or any data extracted from it in the
Tsukurimashou distribution. What you get if you have KANJIDIC2 is any
features that depend on knowing the grade levels and similar properties
of kanji characters—such as the chart showing how much of each grade
has been covered, which is important for my own development efforts
in planning what to design next and knowing when to release.

26

The build system for Tsukurimashou is fairly elaborate; it may seem like
overkill, but given that I expect to run this myself several times a day
for at least a couple years, it’s important that it should be pleasant for
me and efficient in time consumption. Thus it defaults to “silent” build
rules, uses pretty ANSI colours, and does a bunch of complicated checks
on whether file contents (not just modification times) have changed
in order to avoid expensive dependency rebuilds unless those are really
needed, while triggering them automatically when I add new source files.

One important tip is that if things are failing, you can add “V=1” to
the “make” command line (note no hyphen, because this is a variable
setting instead of an option; and you will probably also want to specify
a target filename, which implicitly overrides the default “-j” multi-CPU
option) to temporarily disable the silent build rules and see what’s going
on. The third-party font-building programs unconfigurably produce large
quantities of verbose messages, some sent inexcusibly to /dev/tty instead
of standard output or error, and the build system will go to heroic lengths
with Expect (if available) to filter those out by default.

You can turn subsets of the character set on and off with the “--enable-
chars” option to configure. Give it a parameter consisting of a comma-
separated list of tags with optional plusses and minuses. The idea is that
each tag represents a subset of the character set, and they are evaluated
in the order specified. The default is “all,” meaning all characters defined
in the source code will be included in the fonts. Other tags currently
supported are “none” (which actually has no effect but is included for
readability purposes), “ascii,” “latin1,” “mes1,” and families of tags named
like “page12,” “uni1234,” and “u123ab,” with lowercase hexadecimal digits,
which correspond to 256-character blocks of Unicode code points and
to individual code points. For example, the specifier “all,-page02” would
include every character it can except none in the range U+0200–U+02FF;
the specifier “uni0041” would create very small fonts containing only the
uppercase A from the ASCII range. The default is “all.” The point of this
system is to make it easier to generate stripped-down fonts for Web
embedding and to reduce compile time during maintenance, when I may
want to focus on just one subrange of the character space for a while.

The “--enable-ot-features” option works the same way for OpenType
features; note that OpenType features may also be automatically and

27

silently disabled in whole or in part, overriding this setting, if you have
used the previous setting to disable characters necessary to implement
the features. For instance, you can’t have OpenType contextual substi-
tution support of fractions or enclosed numerals if you have disabled
the numeral characters—though you can build a font with enclosed and
not regular numeric glyphs, because glyphs are mostly independent of
each other.1 This automatic disabling may not be perfectly clean, either;
in some cases disabling a character might not disable the feature code
that mentions it, and in that case FontForge may create an empty glyph
for the character even though you disabled it. That shouldn’t happen
unless you attempt something very unusual and non-standard, however.
Currently supported tags are “all,” “none,” and a four-character tag cor-
responding to the OpenType name of each feature that exists: “afrc”
(alternate, that is, vertical or nut, fractions), “ornm” (ornaments), “smcp”
(small caps), “ss01” (stylistic set one, heavy metal umlaut), and “ss02”
(stylistic set two, enclosed characters).

The configure script is designed to accept an option for a similar
plus/minus selection of font styles, but the code in other places to
support that option does not exist yet and if specified it will have no
effect on what really gets built.

The “make dist” target defaults to building a ZIP file only, instead of
GNU’s recommended tar-gzip. This decision was made in order to be
friendlier to Windows users, who tend to have seizures when confronted
with other archive formats, and TEX users, who are accustomed to ZIP
as well. However, the makefiles should also support many other formats
via “make dist-gzip” and similar.

I am not confident that “make dist” will really include everything it
should if you have disabled optional features with the above options to
configure. Please “make me one with everything,” as the Buddhist master
said at the hamburger stand, before trying to build a distribution.

The “make clean” target and its variations probably do not really make
things as clean as they should.

1Mostly. In the case of white-on-black reversed glyphs and some fractions precomposed by FontForge

instead of by MetaType1, you must include all the parts that FontForge will assemble in order to get

the combined glyph made by assembling those parts. This is a sufficiently arcane scenario that the

build system will not check for it.

28

Don’t bother with “--disable-dependency-tracking”; that is an Autotools
thing meant for much larger and more softwary packages. It applies only
to code in languages supported by Autotools, which at present means
only the C kerning program whose dependency is trivial. The dependency
tracking for MetaType1 code is completely separate, unaffected by this
option, and trying to disable it would be a bad idea.

Autotools encourages the use of a separate build directory, with the
sources remaining inviolate elsewhere, but that is completely untested
and probably will not work in this version. I hope to make it work in
some future version. For the moment it is safer to build right in an
unzipped copy of the distribution. The “dist-check” target will almost
certainly fail because of the lack of separate build directory support.

If you look in the source of the build system, specifically files like
configure.ac, you’ll see that I did a whole lot of work ripping out
sections of Autotools that were designed for installations of executable
software. GNU standards require the definition of a ridiculous number
of different installation directories, almost none of which are applicable
to a package of this type, and I took out most of the support for
those to reduce the cognitive load for users who would otherwise have
to think about their inapplicability. This package doesn’t install any
executables, libraries, C header files, or similar, at all. Cross-compilation
and executable name munging were removed for the same reason; a
C program does get compiled to do the kerning, but it is only meant
to run on the host system during build, with all the installable files
being architecture-independent. The hacking I did on Autotools means
that if you modify the build system such that you would be re-running
Autotools, it’s likely to break unless your version of Autotools is close
to the 2.65 version I used. The configure script will try to detect such
a situation and warn you.

ブリドのシステムの図示 Build system diagrams

As of version 0.4 this section is still under construction, but it is planned
to be a graphical summary of what is going on in Tsukurimashou’s rather
complicated collection of Makefiles. Figure 3 describes the symbols
used, and Figure 4 shows the process by which OpenType fonts are built.
Be aware that these diagrams are meant to clarify, not to formally

29

..foo.bar. foo.bar comes with the distribution.

naninani.dat

.

naninani.dat is generated during build

.

A

.

B

.

A is input for B

.

C

.

D

.

C creates D

.

E

.

F

.

E sometimes creates F

.

G

.

H

.

G modifies H in place

Figure 3: Legend for build system diagrams

describe, the code; this is not a formal modelling language like UML,
and the semantics of the symbols are not necessarily entirely consistent.
Also left out of the diagrams are language interpreters like Perl, and a
great deal of information flow to and from the main Makefile itself. It
passes configuration information, mostly in command-line arguments, to
pretty much all parts of the system.

ハムログ Hamlog

Evaluating the consequences of build options like “--enable-chars” requires
doing a certain amount of logical inference for which shell scripts are
not well-suited. It might be possible to get GNU Make to do the
necessary computations, inasmuch as it’s quite programmable, already
required to build Tsukurimashou, and fundamentally a logical inference
engine at heart. But that would probably involve creating many tiny
files corresponding to logical propositions, which would waste space and
cause other problems on some filesystems. A more elegant approach
would be to use a real logic programming system, i.e. Prolog—which
happens to be one of my research interests. But I didn’t want to create
a dependency on a Prolog interpreter because I think users will object to
that; the existing dependencies of this package are already hard enough
to sell. I also didn’t want to bundle a Prolog interpreter, even though
good ones are available on permissive licensing terms, because of the
file size and build-system complexity consequences of bringing a bunch
of compiled-language software into the Tsukurimashou distribution.

30

..mp/*.mp.
see detail diagram

.

pfb/*.pfb

.

prf/*.prf

.

pe/rmo.pe

.

flag/*.rmo

.

pe/assemble-font.pe

.

otf/*.otf

.

monospace fonts
stop here

.

pe/bdf.pe

.

*-temp-100.bdf

.

kerner.c

.

kerner

.

chars.lst

.

make-ass

.

tsukurimashou.nam

.

fea/*-kern.tmp

.

pe/kern-font.pe

.

otf/*.otf

.

flag/*.kern

.

fea/tsukurimashou.fsc

.

make-fea

.

fea/tsukurimashou.fea

.

proportional fonts only

Figure 4: Building the fonts themselves

31

The solution: Tsukurimasho’s build system will look for Prolog, and use
it if possible. But the package also ships with something called Hamlog,
which is a toy Prolog-like logic programming system written in Perl.
(A ham is like a pro, but less so.) If the build system can’t find a
Prolog interpreter, it will use Hamlog instead. Hamlog is slow, and
internally horrifying, but it works in this particular application. It is not
particularly recommended for any other applications.

The configure script looks for SWI-Prolog, ECLiPSe-CLP, and GNU Prolog.
If one of these can be safely detected, it will be used. ECLiPSe-CLP has
the issue that it shares a name with a widely-used programmer’s IDE, so
it is not safe for the configure script to actually execute an executable
called “eclipse” if it finds one. If something that might be ECLiPSe-CLP
is detected, the configure script puts up a warning and the user is free
to enable it explicitly.

The rest of this subsection can and probably should be skipped by anyone
who isn’t both a Perl and a Prolog hacker.

Still with me? The way Hamlog works is sort of fun and so I’m going
to spend a few pages describing it for those who are interested, if only
as an example of something you should Not Try At Home. The idea is
to use regular expressions for the operation of finding a clause whose
head matches the current goal. Hamlog reads its program into a Perl
hash, where the key is the functor and arity (like “foo/3”) and the value
is a newline-separated pile of clauses in more or less plain text. When it
tries to satisfy a goal, it takes the goal (which starts out as plain text)
and converts it to a regular expression that will match any appropriate
lines in the database. Variables in the goal turn into wildcard regular
expressions; ground terms turn into literal text; and then when there’s
a match, parenthesized sub-expressions are used to extract the body of
that clause.

It is because of the use of regular expressions that Hamlog doesn’t do
compound terms, and in turn is likely not Turing-complete (though I
haven’t thought carefully through all the possibilities of using recursive
predicates to build data structures on the stack). As all the world knows,
it is impossible to write a regular expression to match balanced parenthe-
ses. Current versions of Perl actually bend the theory with experimental

32

extensions that do allow the matching of balanced parentheses, so that
in a certain important sense Perl regular expressions are not regular
expressions anymore at all, but even I am not quite twisted enough
to actually deploy such code. Things in Hamlog that look like compound
terms (such as the sub-goals in a clause body) are handled as special
cases; but the point is that arguments to a functor that will be used as
a goal have to be either atoms or variables. This also means Hamlog
doesn’t do Prolog syntactic sugar things that expand to compound terms,
such as square brackets for lists.

Once there’s a match, it does string substitution on the matching head,
the current partially-completed goal, and the body, to get a new modified
body for the clause, taking into account any variables assigned by the
head match. The new clause body gets substituted into the current
partially-completed goal (which is a string) as a replacement for the
head that just matched. So the partially-completed goal is a sort of
stack of comma-separated heads that grows from right to left and
implicitly contains all the assigned variables.

Because of the simplistic way variables are given their values, it is
dangerous to use the same variable more than once in the same head,
so constructions like “foo(X,Y,X)” should not be used. If you want to do
that you should instead write “foo(X,Y,Z):- =(X,Z).” Note the non-sugary
use of “=” as a functor, since the more common infix notation isn’t
supported. Note also that there should be a space between “:-” and
“=”; Hamlog doesn’t require that but it may reduce the likelihood of
parsing problems should the same code be run on interpreters other
than Hamlog.

Variables in clause bodies are renamed once (using the clause serial
number), when the clauses are loaded; as a result if the same clause body
gets expanded a second time while variables from its earlier expansion
are still unassigned, there could be trouble. This is not a very likely
scenario, but it’s worth mentioning.

Clauses in the database have serial numbers; and when a choice point
goes on the stack, the serial number of the clause at which it matched
is part of the record on the stack. Then if the interpreter backtracks to
re-satisfy a clause, it writes the regular expression in such a way that

33

it can match all and only serial numbers greater than the last place it
matched. Creating an “integer greater than N” regular expression was
surprisingly difficult—it’s a simple enough concept but there are several
cases that all must be handled properly or weird bugs turn up.

Syntax is simplified from Prolog. Variables start with an uppercase
letter or an underscore and may contain uppercase alphanumerics and
underscores. Atoms start with a lowercase letter or numeric digit
and may contain lowercase alphanumerics and underscores. For Prolog
compatibility, atoms starting with digits should not contain anything
other than digits, and the only atom starting with zero that should be
used is zero itself; but Hamlog doesn’t care about those points. Things
containing a mixture of upper- and lowercase alphabetic characters should
not be used. The special tokens “!” and “=” are technically treated as
atoms too, but you should only use them in their typical meanings of
cut and unification, and “=” should only be used with the general prefix
syntax applicable to all functors, not as an infix operator (see above).

Variable names starting with, and especially the unique variable name
consisting entirely of, an underscore, are not special in Hamlog. Beware,
that means “foo(_,_)” contains only one variable occurring twice, not
two distinct variables as it would in Prolog, and it violates the “only one
appearance of each variable in a head” guideline. The unique variable
name consisting of one underscore is probably best avoided entirely.
But it may be desirable to use variable names starting with underscores
anyway in some cases, because of their specialness to Prolog interpreters.
I was really tempted to allow and use arbitrary UTF-8 (in particular,
kanji) in atoms but refrained because of the desire for Hamlog code to
be easily readable by nearly all Prolog interpreters.

I tried to keep the number of built-in predicates to an absolute min-
imum, partly because any that are not standard Prolog have to be
re-implemented in Prolog (and probably once for every supported Pro-
log) to build the shell that executes Hamlog programs on a Prolog
interpreter. Here’s an exhaustive list.

󱜳 ! [cut]. This is implemented by string substitution as well: when a
clause body gets added to the to-satisfy stack, there’s an additional
regular expression substitution pass that converts any instances

34

of !/0 in the body into !/1 where the argument is an integer
identifying the current height of the choice-point stack. If at any
point in the future we attempt to satisfy a !/1 goal, then the
stack gets popped back to that point (discarding any choice points
created between the time the ! got its argument and the present
time). For this reason, ! should not be used as an atom or functor
for any other purposes than as the cut, even if to do so would
otherwise be valid Prolog.

󱜳 fail, which causes immediate backtrack (useful in conjunction with
cut to implement negation).

󱜳 true, which is not actually used, so maybe I should delete it.

󱜳 var, true if the argument is a variable (not yet bound to an atom).
This is important in Hamlog because many predicates need to be
written to accept more than one instantiation pattern for their
arguments.

󱜳 atom, true if the argument is an atom. This is implemented by
rewriting the database entry for atom/1 on the fly; when you call
“atom(foo)” it magically changes to having been defined as either
the single fact “atom(foo).” or nothing, depending on whether “foo”
is an atom.

󱜳 atom_final(AZ,A,Z), where AZ is an atom whose last character is
Z and A is everything except the last character. Used for building
and tearing apart atoms like “page00.” This requires some careful
handling in other interpreters because Hamlog has no concept of
quotation marks and treats single-digit integers exactly the same
as atoms whose names are the ASCII digits; real Prologs have
more subtle type handling. As with atom/1, this is implemented
by magically creating appropriate clauses on the fly.

󱜳 =/2. This also creates clauses on the fly. At least one of the
two arguments should already be atomic when the goal executes,
though that is rarely difficult to guarantee in practice.

And that’s it for built-in predicates. Note that goals in a clause body also
can only be combined with comma for conjunction (no semicolons for

35

disjunction, and without them parentheses become unnecessary and are
not supported either). There is also no syntactic support for negation.
However, you can (and the existing code does) compute negation and
disjunction using multi-clause predicates, cut, and fail. What you can’t
build is any kind of I/O—so how can Hamlog programs communicate
with the outside world?

The interpreter (after checking for the “--version” and “--debug” options,
which do fairly obvious things) interprets its first two command-line
arguments as a template and a query. The template ought to be a valid
Prolog compound term for compatibility with other interpreters, but
Hamlog actually treats it as a string. Then it backtracks through all
solutions to the query, attempting to instantiate all variables, and writes
(newline separated to standard out) all the distinct values assumed by
the template. This is basically the same operation as Prolog findall/3
followed by sort/2, which is how the Prolog shell for Hamlog implements
it. Any remaining command-line arguments, and standard input if there
are none of those, will be read in the usual <> way to fill the Hamlog
program database. Hamlog code is conventionally stored in “*.hl” files.

In the build system, the string of comma-separated tags for things like
characters to be selected gets converted (by the “make-cfghl” Perl script)
into a few clauses of Hamlog and written into the file config.hl. Also
written there is a list of page_exists/1 facts naming the 256-code-point
blocks for source files that exist in the mp directory. Then elsewhere
in the build system, it invokes Hamlog with appropriate queries against
config.hl and select.hl to get lists of characters, OpenType features, and
other things that the user does or doesn’t want, based on knowledge
built into select.hl of what the different selection tags actually mean.

It is planned that in a future version, the KANJIDIC2 file will be
automatically translated to more Hamlog facts expressing which kanji are
or aren’t included in the different grade levels; then it will be possible to
use options like “--enable-chars=kanji,-grade3’ for finer-grained selection
of kanji.

In the case of a Prolog interpreter other than Hamlog, there is some
other code written in that interpreter’s own language to allow it to exe-
cute Hamlog programs and export something resembling this command-

36

line interface to the Makefiles. Since Hamlog programs are also syn-
tactically valid Prolog, this support shouldn’t be difficult in general. See
the swi-ham.pl file for what currently exists of this nature. The main
advantage of using a non-Hamlog interpreter is simply speed.

37

カーニングしかた

Kerning

This is a summary of how the automated proportional spacing and kerning
code works.

First, the build system generates the future PS font as an OpenType file,
all complete except for widths and kerning. It then calls bdf.pe, which
sets all the bearings to 50 font units and makes a BDF-format bitmap
font scaled so that the reference kanji square (1000 font units) takes up
100 pixels.

The “kerner” C program reads that BDF font, puts all the glyphs into
a common bounding box big enough to contain any of them, and finds
the left and right contours—basically, the x-coordinates of the leftmost
and rightmost black pixels on each row—for each glyph, as well as the
margins, which are defined as the x-coordinates of the leftmost and
rightmost pixels on any row of the glyph.

There is some special processing applied to the contours to make them
more suitable. Consider what happens in a glyph like “=”: many horizontal
rows, namely those above and below the entire glyph and those in
between the two lines, contain no black pixels at all, and so the leftmost
and rightmost black pixels in those rows are formally undefined. If we
set it next to another glyph like “.” which only has ink in rows where
“=” does not, then a kerning algorithm that looked only horizontally
might let the period slide all the way under the equals and out on the
other side. There has to be some vertical effect to prevent that. So
the Tsukurimashou kerning program makes a couple of passes over each
contour (one forward, one backward) to enforce the following rules,
which (except for glyphs containing no black pixels at all, which are
removed from consideration) fully define where the contour should be.

󱜳 The right contour cannot be any further left than the rightmost
black pixel in the row.

󱜳 The right contour cannot be more than 10 font units (one pixel)
further left than its value in the next or the previous row.

38

󱜳 If the right contour in the next or previous row is left of the
left margin, then the right contour in this row cannot be more
than 5 font units (half a pixel) further left than in the next or
previous row.

󱜳 Subject to the above rules, the right contour is as far left as
possible.

󱜳 The left contour’s rules are the mirror image of these.

These rules can be imagined as simulating something like the way let-
terpress printers kern type by physically cutting the metal type bodies
at an angle to fit them more tightly together: it’s bad to cut off part
of the actual printing surface; you basically cut at a 45° angle; but with
glyphs that only have a small vertical extent, so that the 45° angle would
cut all the way across to the other side, then you want to use a more
vertical angle so you don’t end up setting the next character actually
earlier on the line.

The right margin is subtracted from the right contours and the left
margin from the left contours to get, for each glyph, a vector of
numbers describing its shape along the left and right sides, independent
of the width of the glyph.

All the left contour vectors, and (independently) all the right contour
vectors, are subjected to k-means classification. That means they are
initially put into 150 classes (by a simple round-robin: first glyph in class
1, second in class 2, on to 150th in class 150, 151st in class 1 again, and
so on), and then for each contour the program asks the question “How
far is this contour from the centroid of its class, and if I moved it to a
different class, how far (after accounting for the fact that the centroid
changes when I add the glyph) would it be from the centroid of the new
class?” If moving the glyph to some other class would make it closer to
the new centroid, then the glyph gets moved to the other class where
its distance to the centroid will be minimized.

Note that a glyph in a class by itself will never want to move out of
that class, because its distance to the centroid is already zero. Glyphs
are examined in this way until no more such moves are possible. The

39

idea is that at the end of it, the glyphs will all be in classes that
are as tightly clustered as possible. It’s not guaranteed to be a global
optimum (in other words, it’s possible that some other assignment of
glyphs to classes might be better; really optimizing this problem is
difficult) but it’s guaranteed to be a local optimum in the sense that it
can’t be improved by changing the assignment of just one glyph, and
it’s expected to be pretty good overall. Note that the initial assignment
was deterministic (where random would be more usual for this kind of
algorithm) because it seems undesirable for the kerning distances, overall,
to be non-deterministic; my copy of the font shouldn’t have different
metrics from yours if they were compiled from the same sources with
the same options.

After classification, we’ve got 150 classes of left contours and 150 classes
of right contours. The actual kerning is done class-to-class, using the
class centroids, rather than glyph-to-glyph. That way we will end up
with up to 22500 kern pairs instead of millions. OpenType supports this
kind of kerning pretty well—there will be a feature file generated listing
the contents of the classes and the distances for each pair of classes,
and that’s much more efficient both in source and compiled form than
specifying a distance for every pair of glyphs.

The number 150 seems to be about as big as I can make it without
FontForge starting to complain about tables being too large; it is possi-
ble that paying more attention to “subtable” division could stretch this
number larger, but that’s not a gimmie because this table (unlike typical
human-designed tables) is dense, with a kern between each class and a
large fraction of all other classes. Because we are in theory kerning
every character to every other character, there’s no block structure
such as would come from only kerning pairs we think are likely to occur
in text. As I understand it, the point of subtables is to exploit block
structure.

To kern two contours together, we can compute a closeness value for
each row by saying “if we positioned the margins of the glyphs this much
apart, how far apart would the contours be in this row?” That distance,
divided by a constant representing the optimal distance (currently 230
font units) and raised to a power representing how much extra weight
to give to the closest points (currently 3), represents closeness for the

40

row. The sum of closeness for all the rows would be equal to the
number of rows in the case of two perfectly vertical lines 230 units
apart. The kerner program adjusts the margin-to-margin distance so
that the sum of closeness is equal to that. It uses a binary search to
do that adjustment, which is probably not optimal for a fixed exponent
(there should be an exact analytic solution possible without iterating) but
has the big advantage of not requiring a redesign should the exponent
or even the entire closeness function change.

The effect of the exponent 3 in the calculation is to give extra weight
to points that are close together. If we’re kerning a pair like “]<”, we
want to pay more attention to the point of the less-than than to the
distant ends. An exponent of 3 means that points at half the distance
count eight times as much toward overall closeness, so there’s a strong
bias toward seeing the points of closest approach. If we imagined using
a larger exponent, this bias would be even stronger; in the limit, with an
infinite exponent, the kerning would be determined solely by setting the
closest approach to the optimum without reference to any other points.
That is how most auto-kerning software works; but the results tend not
to be good because in a serif font with a pair like “AV,” inserting the
ideal vertical-to-vertical distance between the serifs is going to place
the stems, which are much more visually important, too far apart. Using
an exponent somewhat less than infinity causes the stems to still have
some significant weight. The value 3 was chosen by trial and error and
may be subject to further adjustment.

Once all the class-to-class distances have been chosen, it remains to
choose the bearings for the characters. Recall that kerning was computed
from margin to margin, that is the amount of space to insert between
the strict bounding boxes of the glyphs. Adding a certain amount of
extra space to the glyphs themselves, and subtracting it from the kern
distances, may result in a better, more concise kern table, as well as
better results when glyphs from this font are set next to spaces, things
from other fonts, and so on.

The first step is that the kerner program finds the average of all kern
table values, and puts half that much bearing space on either side of
every glyph, adjusting the kern values accordingly. This has the effect
of giving every glyph an “average” amount of space, and changing the

41

overall average kern adjustment to zero. If we were to throw away
the kerning table at this point and just use the bearings, then in some
sense these bearings would give the best possible approximation of the
discarded kerning table.

Then for each left-class (which is actually a class of right contours: it
is a class of glyphs that can appear on the left in a kerning pair) the
program finds the maximum, that is farthest apart, amount of kerning
between that left-class and any right-class. Two thirds of that kerning
amount are added to the right-bearing of the left-class. The concept
here is that we generally want kerning to be pushing things together,
not pulling them apart, so the “default” amount of kerning indicated by
the bearing should be near the maximum distance apart, from which
individual entries can then push things closer. Also, we generally want
most (two thirds) of this adjustment to happen to the right bearing of
the left-hand glyph in the pair.

Then to clean up the rest, the program examines each right-class (which
is a class of left contours) and similarly finds the furthest-apart kern pair
and adds that to the left bearing of the right class, adjusting all kern
pairs appropriately. At this stage it’s guaranteed that all the kern table
entries will be zero or negative: kerning only pushes glyphs together
from where they would otherwise be, it never pulls them apart.

Kern table entries are rounded to the nearest multiple of 12 font units
and written to a feature file. The rounding is to eliminate the many
entries that are very close to zero, and possibly enable better file
compression by reducing the number of distinct values of entries; I
still plan to do some experiments to see whether just leaving out small
entries and not rounding others, would be better. Bearings are written
to a FontForge .pe script. The build system runs kern-font.pe, which
applies the output of the kerner program to the font. Something else
that kern-font.pe does is to add a hardcoded additional bearing of 40 on
the left and 80 on the right to all Japanese-script characters (kana and
kanji); by trial and error, this seems to make the results look better.
It seems to be simply a fact that Japanese characters need more space
between them to look right than Latin characters do at the same type
size.

42

That is how the horizontal spacing of the font is currently computed.
It still isn’t perfect; in particular, I’d like to add some overrides for
things like combining characters, whose negative bearings are completely
screwed up by this process. The fractions feature, which depends on all
the fraction characters having the same width (it’s basically implemented
as a bunch of combining characters) also needs work. And I’m still not
sure what to do about characters for which white space can be thought
of as part of the character (for instance, ideographic fullstop). But this
is a start.

さてさてなにが、できるかな？

43

	とびら Title Page
	コピーライト Copyright
	イントロ Introduction
	外のプロジェクト Other similar projects
	デベロップメントロードマップ Development roadmap

	『作りましょう』のつかいかた Using Tsukurimashou
	ＯｐｅｎＴｙｐｅのフィーチャー OpenType Features
	外の分すう Alternate Fractions (afrc)
	ともえのはながた Ornaments (ornm)
	スモールキャピタル Small Caps (smcp)
	ヘビーメタルウムラウト Heavy Metal Umlaut (ss01)
	丸つき字 Enclosed Letters and Numerals (ss02)

	付加文字 Extra glyph coverage
	げんじもん Genjimon
	えききょう I Ching
	おおやけのユーログリフ Official Euro Sign

	フォントの名前ついて Regarding Font Names
	『作りましょう』を作りましょう！ Building Tsukurimashou
	ブリドのシステム Build System
	ブリドのシステムの図示 Build system diagrams
	ハムログ Hamlog

	カーニングしかた Kerning

