
TortoiseMerge

A diff/merge tool for Windows

Version 1.8

Stefan Küng
Lübbe Onken
Simon Large

TortoiseMerge: A diff/merge tool for Windows: Version 1.8
by Stefan Küng, Lübbe Onken, and Simon Large

Publication date 2013/11/11 21:33:57 (r24944)

iii

Table of Contents
Preface .. vi

1. TortoiseMerge is free! ... vi
2. Acknowledgments ... vi

1. Introduction .. 1
1.1. Overview ... 1
1.2. TortoiseMerge's History .. 2

2. Basic Concepts .. 3
2.1. Viewing and Merging Differences .. 3
2.2. Editing Conflicts ... 3
2.3. Applying Patches .. 4

3. Using TortoiseMerge .. 5
3.1. Viewing Modes ... 5

3.1.1. Viewing / Merging .. 5
3.1.2. Applying Patches .. 7

3.2. Buttons and Other Controls ... 8
3.3. Line Status Icons ... 9
3.4. Merging / Editing Conflicts ... 9
3.5. Open Files .. 10

3.5.1. Viewing / Merging .. 10
3.5.2. Applying Patches .. 10

3.6. Settings .. 11
3.6.1. Main Settings Page .. 11
3.6.2. Colour Settings Page .. 12

A. keyboard shortcuts ... 14
A.1. Keyboard shortcuts .. 14

B. Automating TortoiseMerge .. 16
B.1. TortoiseMerge Command Line Switches ... 16

Glossary ... 17

iv

List of Figures
1.1. File Conflict ... 1
2.1. File Conflict ... 3
3.1. One Pane View ... 5
3.2. Two Pane View .. 6
3.3. Three Pane View ... 7
3.4. Patch File List .. 8
3.5. The Open Dialog ... 10
3.6. The Settings Main Page .. 11
3.7. The Settings Color Page ... 12

v

List of Tables
B.1. List of available command line options ... 16

vi

Preface

When working on a project, either an open-source project where several people review your code, or a commercial
project where you sell a component with your source code, there will be people and customers who find bugs
or want to improve your project. To do that they send you patches which you have to review and decide if you
want to apply them.

TortoiseMerge helps you with both those tasks:

• Reviewing patches

• Applying the patches

TortoiseMerge also helps you to sort out conflicted files which can occur if you're working with a source control
system and others are working on the same files as you.

1. TortoiseMerge is free!

TortoiseMerge is free. You don't have to pay for it, you can use it any way you want. It is developed under the
GP license (GPL).

TortoiseMerge is an Open Source project. That means you have full read access to the source code of this program.
You can browse it on this link http://code.google.com/p/tortoisesvn/source/browse/ [http://code.google.com/p/
tortoisesvn/source/browse/]. The most recent version (where we're currently working) is located under /trunk/,
and the released versions are located under /tags/.

Donate!

Even though TortoiseSVN and TortoiseMerge are free, you can support the developers by sending in patches
and playing an active role in the development. You can also help to cheer us up during the endless hours
we spend in front of our computers.

While working on TortoiseSVN we love to listen to music. And since we spend many hours on the project
we need a lot of music. Therefore we have set up some wish-lists with our favourite music CDs and DVDs:
http://tortoisesvn.net/donate.html [http://tortoisesvn.net/donate.html] Please also have a look at the list of
people who contributed to the project by sending in patches or translations.

2. Acknowledgments

Stefan Küng
for the hard work on TortoiseMerge

Lübbe Onken
for the beautiful icons, logo, bug hunting and taking care of the documentation

The Tigris Style project
for some of the styles which are reused in this documentation

Our Contributors
for the patches, bug reports and new ideas, and for helping others by answering questions on our mailing list.

Our Donators
for many hours of joy with the music they sent us

http://code.google.com/p/tortoisesvn/source/browse/
http://code.google.com/p/tortoisesvn/source/browse/
http://code.google.com/p/tortoisesvn/source/browse/
http://tortoisesvn.net/donate.html
http://tortoisesvn.net/donate.html

Preface

vii

1

Chapter 1. Introduction

1.1. Overview

TortoiseMerge is a free/open-source application. It lets you see differences in text files, merge those changes and
even review and apply unified diff files, often called patches.

While working on text files, e.g. source files in your favourite programming language, or html/xml files for your
documentation or website, you will often have a situation where you need to compare different versions of those
files. Sometimes you get a different version from someone else, sometimes you just want to see the changes you've
made.

If you're working with a version control system (e.g. Subversion) then you sometimes get conflicts when you update
your working copy. This happens if someone else changed the same parts of the file you're currently working on
as you did. Then you have to resolve those conflicts manually. This is where TortoiseMerge can help you.

The following diagram shows you the relationships between the files involved in a conflict:

Figure 1.1. File Conflict

A conflict can also occur if you try to apply an outdated patch file. In such cases, without TortoiseMerge, you
would either have to ask the person you got that patch file from for a current version or try to apply that patch
file manually.

But now with TortoiseMerge this isn't necessary anymore - at least not if you're working with a version control
system like Subversion. TortoiseMerge parses the patch file for the revision/version the patch was created for and
automatically tries to fetch that specific version from your source-control. Then it applies the patch and lets you
review both your changes to the file, and theirs. Then you can decide which changes you want to keep.

Introduction

2

1.2. TortoiseMerge's History

While working on TortoiseSVN [http://tortoisesvn.net] we found that whenever users sent in patches to enhance
the project or just to fix bugs, we had a lot of work just applying those patches. And many times those patches
were outdated and couldn't be applied with the command line patch tool http://unxutils.sourceforge.net/ [http://
unxutils.sourceforge.net/] because we were working on those files and had sometimes changed those files already.

This was also the main reason why TortoiseSVN did not originally have a TortoiseSVN → Create Patch
implemented: we preferred users to send us the whole files because with those it was easier to apply patches.

So we spent a lot of time, searching the Internet for a GUI tool which could apply patch files, but all we found
was that such a tool didn't exist. So to cut a long story short: We decided that if no-one else could provide such a
tool we would have to write our own. That's when TortoiseMerge was born.

Since TortoiseSVN already uses the Subversion library, which has a nice diffing engine built in, it was just natural
to use this library instead of the GNU diff.

http://tortoisesvn.net
http://tortoisesvn.net
http://unxutils.sourceforge.net/
http://unxutils.sourceforge.net/
http://unxutils.sourceforge.net/

3

Chapter 2. Basic Concepts
TortoiseMerge has several different uses:

• Viewing the difference between two files and merging changes into one of them, or removing unwanted changes.

• Editing conflicts between local changes and changes in the Subversion repository following an update.

• Applying patch files. This is the reason TortoiseMerge was created :)

2.1. Viewing and Merging Differences
In this mode you are comparing two files. The file in the left pane is considered to be the original file (sometimes
referred to as Theirs, and the file in the right pane is the modified file (sometimes referred to as Mine.

You can make simple line-based changes to the file in the right pane which include:

• Reverting changed lines back to the text shown in the left pane.

• Using a combination of both blocks, either Theirs before Mine or Mine before Theirs.

You can also edit the file in the right pane just as you would in a text editor. Such lines are marked using a pencil
icon. Please note that if you want to make any of the line/block-based changes described above, it is better to do
those first since once you start editing the file yourself it becomes impossible for TortoiseMerge to keep track of
the relationship to the original files.

2.2. Editing Conflicts
This is sometimes referred to as a three-way merge, and is shown in three panes. However there are actually four
files involved. The file which is not shown is the common base file, the last common ancestor of the two files
which are now in conflict. The relationships between the three files are explained in the diagram below:

Figure 2.1. File Conflict

Basic Concepts

4

The base file represents the oldest version of a file, from where You and They start making changes. Mine represents
the base file with all the changes you made, and Theirs is the file with all the changes someone else made to the file.
The left pane shows the changes in Theirs relative to the base file and the right pane shows the changes in Mine
relative to the base file. The bottom pane is the output file which is where you are trying to resolve the conflicts.

In conflict resolution view, you can choose to use blocks from Mine or Theirs or both. But in this case, the changes
are shown in the bottom pane.

2.3. Applying Patches

A patch file is a Subversion unified diff file, which contains the information required to apply changes to a set of
files. The patch may have been supplied by another developer so that you can see changes he has made and possibly
commit them to the repository. Or it may have been generated internally by TortoiseSVN when comparing two
folders. This happens when you compare a repository revision with your working copy folder, or if you compare
two different repository revisions, or if you compare two different repository paths.

In either case TortoiseMerge will show a small window listing the files included in the patch. By double clicking
on one of these files you fetch the relevant file and apply the changes. The left pane shows the original file content
and the right pane shows it after the patch is applied.

You can edit the file in the right pane exactly as you would in compare/edit mode.

5

Chapter 3. Using TortoiseMerge

3.1. Viewing Modes

TortoiseMerge has three main viewing modes: one-pane, two-pane and three-pane view. One/two-pane view is
used to view changes and three-pane view is used to resolve conflicts.

3.1.1. Viewing / Merging

Figure 3.1. One Pane View

Using TortoiseMerge

6

Figure 3.2. Two Pane View

The two pane view has some features which are not available in the one pane view:

• Changes inside the modified lines are shown in different colors. Added string parts are shown with a lighter
color, but you can of course configure the colors used here. Removed parts are indicated with a dark brown
vertical line in the string. Check out the screenshot above to see how this works.

• Code reorganization usually means a lot of changes in whitespaces (space, tab, newlines) but no actual code
change. For example, you split up a very long line into several lines, or you sometimes compact several lines
together into one.

Such changes are marked with a white circle symbol on the left side of the views. If you see such a white circle,
you know immediately that no real code change is there and you don't have to check the changed block further.

• Hand editing of the file in the right pane is possible in two-pane view. Such changes are marked with a pencil
symbol. Hand editing of the file in the left pane is also possible, only when Enable Edit is pressed when the
left pane is active.

If you want to compare/merge three files, TortoiseMerge will show you the differences in a three pane view. This
view is also used if you need to resolve conflicted files.

Using TortoiseMerge

7

Figure 3.3. Three Pane View

The left pane shows you the differences between Their file and the Base file, while the right pane shows you the
differences between Mine file and the Base file. The bottom pane shows you the result of merging Base, Mine
and Theirs with possible conflicts.

If you hover the mouse over the pane title, a tooltip will show the filenames used for the diff in each pane.

Hand editing of the file in the left pane or right pane is also possible, only when Enable Edit is pressed when
that pane is active.

3.1.2. Applying Patches

After TortoiseMerge parses the patch file it will show you a small window with all the files which have changes
according to the patch file.

Using TortoiseMerge

8

Figure 3.4. Patch File List

If the filename is shown in black, then the patch can be applied without any problems. That means the file is not
outdated according to the patch. However, if the filename is shown in red, then the patch can't get applied directly
because you already changed that file.

The patch file window has a context menu which allows you to preview the effect of the patch on the current file
(apply without saving), to apply and save the changes for the selected file, or to apply and save changes to all files
in the list. The double click action is to preview.

3.2. Buttons and Other Controls

Depending on your setting, you either see a toolbar or a ribbon with many buttons. The buttons all show a tooltip
explaining their function when you hover the mouse pointer over them.

On the left side of the window is a locator bar. This provides a quick visual reference as to where the changes lie
within the file. The bar has three columns. The left column refers to the left pane, the right column to the right
pane, and the centre column to the bottom pane (if present). In one-pane view only the left column is used. The
locator bar can also be used as a scroll bar to scroll all the windows simultaneously.

If you double click on a word then every occurrence of that word will be highlighted throughout the document,
both in the main panes and the locator bar. Double click on the word again to remove the highlighting.

If you click in the left margin, or if you triple click within a line, that whole line will be selected.

Below the bottom window is the status bar. This shows the number of lines added and deleted in Theirs and
Mine, and the number of unresolved conflicts remaining. You can also see which line-ending style is in use,
what encoding (ASCII, UTF-8, etc) is assumed by TortoiseMerge, and whether there is a byte-order-mark (BOM)
present in UTF-8 files. You can change line-ending style and encoding by double-clicking the corresponding
column of that view. A dialog box will be displayed. The left side of the status bar is used to display hints when
you hover the mouse over a control.

Using TortoiseMerge

9

3.3. Line Status Icons

Changed lines are marked with an icon to indicate what type of change has occurred.

A line has been added.

A line has been removed.

A change has been undone by reverting to the original content of the line.

This line contains only whitespace changes. Where several consecutive lines are marked, the paragraph may have
been re-wrapped, causing words to shuffle onto adjacent lines.

A line has been edited by hand, using TortoiseMerge as a text editor.

This line is in conflict.

This line is conflicted, but the effect is hidden by whitespace or line-ending settings.

This line is detected as being moved from / to another location.

3.4. Merging / Editing Conflicts

TortoiseMerge not only shows you the differences between files but also lets you resolve conflicts or apply
changes.

If you're in two pane view, then you can only edit the file in the right pane (Mine). To apply changes made in the

left file (Theirs), right click on the changed lines and select Context Menu → Use text block from 'theirs' .
Then the changes from the left file are added to the right file.

Sometimes you actually want both text blocks, and the context menu also offers you Context Menu → Use both

text blocks (this one first) and Context Menu → Use both text blocks (this one last).

You can also edit the output file just as you would in a text editor. Such lines are marked using a pencil icon.
Please note that if you want to make any of the line/block-based changes described above, it is better to do those
first since once you start editing the file yourself it becomes impossible for TortoiseMerge to keep track of the
relationship to the original files.

If you're in three pane view (sometimes called merge view) you can only edit the file in the bottom view (Merged).

As in two pane view, you can right click on conflicted lines and either select Context Menu → Use text block

from 'theirs' or Context Menu → Use text block from 'mine' . In addition, if you want both blocks, you can

select Context Menu → Use text block from 'mine' before 'theirs' or Context Menu → Use text block
from 'theirs' before 'mine' . According to the command you've selected, the changes are used in the resulting
Merged file.

Sometimes a file will be marked as conflicted in Subversion, yet when you view it using TortoiseMerge there are
no conflicts shown. This may be due to the whitespace handling you have chosen. If you choose to ignore line-

Using TortoiseMerge

10

endings or whitespace changes, those lines will be marked using the Conflict-Ignored icon. To resolve the conflict
you still need to pick which version you want to use.

Important

Note that if you use TortoiseMerge on the same files again, any changes to your working copy,
whether in TortoiseMerge, or by hand-editing, will be discarded and the file will appear as it did
when conflict-editing first started.

3.5. Open Files

When you start TortoiseMerge without any command line switches then you have to open the files manually,

using File → Open.

Figure 3.5. The Open Dialog

The first thing you have to do is to decide whether you just want to compare/merge files, or whether you want to
apply a patch file. Depending on what you choose, the corresponding edit boxes and browse buttons are activated.

3.5.1. Viewing / Merging

If you want to compare / merge files you have to set at least two of the three possible paths for Base, Mine and
Theirs. If you select only two files, then TortoiseMerge will show you the differences between those two files,
either in a two pane view or in a one pane view.

If you want to merge three files, TortoiseMerge will show you the differences in a three pane view. This view is
generally used if you need to resolve conflicted files. The output file is not named in this case and you will have

to use the File → Save As.... to save the results.

3.5.2. Applying Patches

If you want to apply a patch file you have to set both the path to the patch file itself and the path to the folder
where the patch file should be applied.

Using TortoiseMerge

11

Caution

Currently, only patch files in Unified Diff Format are supported. And only files which were generated
from a Subversion working copy. Other formats like patch files generated by CVS are currently not
supported!

3.6. Settings

3.6.1. Main Settings Page

Figure 3.6. The Settings Main Page

Most of the options here are self-explanatory, but a few points need clarifying.

Backup original file renames the original file in the WC to filename.bak before saving the modified version.

Default to UTF-8 encoding when set, ANSI files are loaded as UTF-8 encoded and saved as such when edited.

Max line length for inline diffs TortoiseMerge can get slow when showing inline diffs for very long lines. Because
of that only lines that are shorter than 3000 chars are shown with inline diffs. You can change this value here.

Ignore line endings hides changes which are due solely to difference in line-end style.

Using TortoiseMerge

12

Ignore case changes hides changes which are due solely to case changes within the text. This can be useful with
apps such as Visual Basic, which changes case in variables without warning.

3.6.2. Colour Settings Page

Figure 3.7. The Settings Color Page

This dialog allows you to select the background color coding used to highlight the different line changes.

Normal
All lines which are unchanged, or where changes are hidden.

Added
Lines which have been added.

Removed
Lines which have been deleted.

Modified
Lines which have relatively small changes, and are shown using inline diff. This colour is used for the
unchanged portion of the line content. Changed portions will be shown using the inline added and deleted
colours described below. If Colour code in-line changes is not enabled, this colour will not be used and
changed lines will always be shown as replacements.

Conflicted
Where the same line has been changed in both files.

Using TortoiseMerge

13

Conflict resolved
Where the same line has been changed in both files, and you have now selected which version should be used.

Empty
Where lines have been added in the opposite pane, and no such line existed in this pane.

Inline added text
When inline diffs are shown, added text is shown in this colour.

Inline removed text
When inline diffs are shown, deleted text is shown in this colour.

Misc whitespaces
Characters used to indicate Whitespace are shown in a different colour from normal text.

14

Appendix A. keyboard shortcuts
List of keyboard shortcuts and commands.

A.1. Keyboard shortcuts

Ctrl-Q, Ctrl-W, Escape
Quit the program

Ctrl-C
Copy the selected text to the clipboard

Ctrl-X, Shift-Del
Cut the selected text to the clipboard

Ctrl-V, Shift-Insert
Paste the selected text from the clipboard

Ctrl-Z, Alt-Backspace
Undo the last edits

Ctrl-F
Open the Find dialog for text searches

Ctrl-O
Open files to diff/merge

Ctrl-S
Save the changes

Ctrl-Shift-S
Save as...

F7
Go to next difference

Shift-F7
Go to previous difference

F8
Go to next conflict

Shift-F8
Go to previous conflict

Ctrl-D
Toggle between one-pane diff and two-pane diff

Ctrl-R
Reload the files and revert all changes made

Ctrl-T
Toggles between showing whitespaces or not

Ctrl-L
Toggles between collapsing unchanged sections or not

Ctrl-P
Toggles between line wrapping

keyboard shortcuts

15

Ctrl-G
Go to line

Ctrl-A
Select all text

Ctrl-P
Toggles between line wrapping

Ctrl-U
Switches views

Ctrl-mousewheel
Scroll the display left/right

Ctrl-Tab
Switch between left/right/bottom view

16

Appendix B. Automating TortoiseMerge
TortoiseMerge can be started with command line parameters to avoid having to go through the Open dialog to
select the files yourself. This is useful also if you want to use TortoiseMerge from another application.

B.1. TortoiseMerge Command Line Switches

Most switches require additional information like a path or some other string. In those cases, append an ':' to the
switch and put the string/path after it. Example:

/base:"c:\folder\my base file.txt"

Command Description

/? Shows a dialog box with the most important command line switches.

Table B.1. List of available command line options

You can also supply simple filenames on the command line for compatibility with other diff programs. In this
simplified form the command line is

TortoiseMerge BaseFilePath MyFilePath [TheirFilePath]

If two files are given they will be compared with each other. If three files are given, the first is taken as the BASE
file, and the other two are compared with it in a three-way diff.

17

Glossary
Add A Subversion command that is used to add a file or directory to your working

copy. The new items are added to the repository when you commit.

BASE revision The current base revision of a file or folder in your working copy. This is the
revision the file or folder was in, when the last checkout, update or commit
was run. The BASE revision is normally not equal to the HEAD revision.

BDB Berkeley DB. A well tested database backend for repositories, that cannot be
used on network shares. Default for pre 1.2 repositories.

Blame This command is for text files only, and it annotates every line to show the
repository revision in which it was last changed, and the author who made that
change. Our GUI implementation is called TortoiseBlame and it also shows
the commit date/time and the log message when you hover the mouse of the
revision number.

Branch A term frequently used in revision control systems to describe what happens
when development forks at a particular point and follows 2 separate paths.
You can create a branch off the main development line so as to develop a
new feature without rendering the main line unstable. Or you can branch a
stable release to which you make only bug fixes, while new developments
take place on the unstable trunk. In Subversion a branch is implemented as
a “cheap copy”.

Checkout A Subversion command which creates a local working copy in an empty
directory by downloading versioned files from the repository.

Cleanup To quote from the Subversion book: “ Recursively clean up the working
copy, removing locks and resuming unfinished operations. If you ever get a
working copy locked error, run this command to remove stale locks and get
your working copy into a usable state again. ” Note that in this context lock
refers to local filesystem locking, not repository locking.

Commit This Subversion command is used to pass the changes in your local working
copy back into the repository, creating a new repository revision.

Conflict When changes from the repository are merged with local changes, sometimes
those changes occur on the same lines. In this case Subversion cannot
automatically decide which version to use and the file is said to be in conflict.
You have to edit the file manually and resolve the conflict before you can
commit any further changes.

Copy In a Subversion repository you can create a copy of a single file or an entire
tree. These are implemented as “cheap copies” which act a bit like a link to
the original in that they take up almost no space. Making a copy preserves
the history of the item in the copy, so you can trace changes made before the
copy was made.

Delete When you delete a versioned item (and commit the change) the item no longer
exists in the repository after the committed revision. But of course it still exists
in earlier repository revisions, so you can still access it. If necessary, you can
copy a deleted item and “resurrect” it complete with history.

Diff Shorthand for “Show Differences”. Very useful when you want to see exactly
what changes have been made.

Export This command produces a copy of a versioned folder, just like a working copy,
but without the local .svn folders.

Glossary

18

FSFS A proprietary Subversion filesystem backend for repositories. Can be used on
network shares. Default for 1.2 and newer repositories.

GPO Group policy object.

HEAD revision The latest revision of a file or folder in the repository.

History Show the revision history of a file or folder. Also known as “Log”.

Import Subversion command to import an entire folder hierarchy into the repository
in a single revision.

Lock When you take out a lock on a versioned item, you mark it in the repository as
non-committable, except from the working copy where the lock was taken out.

Log Show the revision history of a file or folder. Also known as “History”.

Merge The process by which changes from the repository are added to your
working copy without disrupting any changes you have already made locally.
Sometimes these changes cannot be reconciled automatically and the working
copy is said to be in conflict.

Merging happens automatically when you update your working copy. You
can also merge specific changes from another branch using TortoiseSVN's
Merge command.

Patch If a working copy has changes to text files only, it is possible to use
Subversion's Diff command to generate a single file summary of those
changes in Unified Diff format. A file of this type is often referred to as a
“Patch”, and it can be emailed to someone else (or to a mailing list) and applied
to another working copy. Someone without commit access can make changes
and submit a patch file for an authorized committer to apply. Or if you are
unsure about a change you can submit a patch for others to review.

Property In addition to versioning your directories and files, Subversion allows you
to add versioned metadata - referred to as “properties” to each of your
versioned directories and files. Each property has a name and a value, rather
like a registry key. Subversion has some special properties which it uses
internally, such as svn:eol-style. TortoiseSVN has some too, such as
tsvn:logminsize. You can add your own properties with any name and
value you choose.

Relocate If your repository moves, perhaps because you have moved it to a different
directory on your server, or the server domain name has changed, you need
to “relocate” your working copy so that its repository URLs point to the new
location.

Note: you should only use this command if your working copy is referring to
the same location in the same repository, but the repository itself has moved.
In any other circumstance you probably need the “Switch” command instead.

Repository A repository is a central place where data is stored and maintained. A
repository can be a place where multiple databases or files are located for
distribution over a network, or a repository can be a location that is directly
accessible to the user without having to travel across a network.

Resolve When files in a working copy are left in a conflicted state following a merge,
those conflicts must be sorted out by a human using an editor (or perhaps
TortoiseMerge). This process is referred to as “Resolving Conflicts”. When
this is complete you can mark the conflicted files as being resolved, which
allows them to be committed.

Glossary

19

Revert Subversion keeps a local “pristine” copy of each file as it was when you last
updated your working copy. If you have made changes and decide you want to
undo them, you can use the “revert” command to go back to the pristine copy.

Revision Every time you commit a set of changes, you create one new “revision” in
the repository. Each revision represents the state of the repository tree at a
certain point in its history. If you want to go back in time you can examine
the repository as it was at revision N.

In another sense, a revision can refer to the set of changes that were made
when that revision was created.

Revision Property (revprop) Just as files can have properties, so can each revision in the repository. Some
special revprops are added automatically when the revision is created, namely:
svn:date svn:author svn:log which represent the commit date/
time, the committer and the log message respectively. These properties can
be edited, but they are not versioned, so any change is permanent and cannot
be undone.

SVN A frequently-used abbreviation for Subversion.

The name of the Subversion custom protocol used by the “svnserve”
repository server.

Switch Just as “Update-to-revision” changes the time window of a working copy to
look at a different point in history, so “Switch” changes the space window
of a working copy so that it points to a different part of the repository. It is
particularly useful when working on trunk and branches where only a few
files differ. You can switch your working copy between the two and only the
changed files will be transferred.

Update This Subversion command pulls down the latest changes from the repository
into your working copy, merging any changes made by others with local
changes in the working copy.

Working Copy This is your local “sandbox”, the area where you work on the versioned files,
and it normally resides on your local hard disk. You create a working copy by
doing a “Checkout” from a repository, and you feed your changes back into
the repository using “Commit”.

	TortoiseMerge
	Table of Contents
	Preface
	1. TortoiseMerge is free!
	2. Acknowledgments

	Chapter 1. Introduction
	1.1. Overview
	1.2. TortoiseMerge's History

	Chapter 2. Basic Concepts
	2.1. Viewing and Merging Differences
	2.2. Editing Conflicts
	2.3. Applying Patches

	Chapter 3. Using TortoiseMerge
	3.1. Viewing Modes
	3.1.1. Viewing / Merging
	3.1.2. Applying Patches

	3.2. Buttons and Other Controls
	3.3. Line Status Icons
	3.4. Merging / Editing Conflicts
	3.5. Open Files
	3.5.1. Viewing / Merging
	3.5.2. Applying Patches

	3.6. Settings
	3.6.1. Main Settings Page
	3.6.2. Colour Settings Page

	Appendix A. keyboard shortcuts
	A.1. Keyboard shortcuts

	Appendix B. Automating TortoiseMerge
	B.1. TortoiseMerge Command Line Switches

	Glossary

