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1 Introduction

A point mass m placed at position ~r0 in a gravitational field ~g(~r) experiences a force
~FG = m~g(~r0). For an extended object with a density distribution ρ(~r) the resulting

force can be obtained by integrating over its volume V ⊂ R
3:

~FG =

∫

V

~g(~r)ρ(~r)d~r

For numerical calculations it is sometimes useful to discretise the object into a rigid

system of point masses mi whose relative positions are defined by their barycentric

coordinates ~si. Then,
~FG =

∑

i

mi~g(~si + ~rCG)

where ~rCG is the position of the barycentre. For the calculation of the linear force
~FG Orbiter makes the assumption ~g(~si + ~rCG) = ~g(~rCG), i.e. the gravitational field

is homogeneous over the volume of the object. This approximation is justified when

calculating the gravitational force on a spacecraft which is small compared to its orbital

radius vector, |~si| ≪ |~rCG|. With this assumption, we arrive back at the expression for

a point mass:
~FG = ~g(~rCG)

∑

i

mi = m~g(~rCG)

However, an inhomogeneous potential will also induce an angular moment ~MG in an

extended object, and this can generally not be neglected. In the continuous case, ~MG

is given by

~MG =

∫

V

~g(~r)ρ(~r)× (~r − ~rCG)d~r, (1)

and after discretisation this becomes

~MG =
∑

i

mi~g(~si + ~rCG)× ~si (2)

2 Symmetric gravitational potential

If we assume that

~g(~r) = −GMr−3~r, (3)
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i.e. the central body is a sphere of mass M with homogeneous density distribution, and

further that |~r| = |~rCG + ~s| ≫ |~s| over the volume V of the spacecraft, then we can

approximate [1]:

r−3 = (~r · ~r)−3/2 =

{

r2CG

[

1 +
2~rCG · ~s

r2CG

+
~s2

r2CG

]}

−3/2

≈ r−3

CG

[

1−
3~rCG · ~s

r2CG

]

(4)

Substituting Eqns. 3 and 4 into Eq. 1 leads to

~MG =
3GM

r3CG

∫

V

(r̂CG × ~s)(r̂CG · ~s)ρ(~r)d~r (5)

If the vectors ~s and r̂CG are expressed in the vessel reference system, then ~MG can be

written as

~MG =
3GM

r3CG

[(Lr̂CG)× r̂CG] (6)

where L is the vessel’s inertia tensor expressed in the same frame. (Note that Orbiter

currently assumes that the vessel frame of reference is orientated so that L is diagonal.)

3 Discrete point mass systems

Orbiter implements gravity gradient torque as discussed in Section 2, assuming that

the vessel’s inertia tensor is known. In this section we give an alternative method that

describes the vessel as a rigid system of point masses. This method is not currently

implemented in Orbiter.

3.1 2-point systems

In the simplest case, a vessel can be expressed as a rigid system of two point masses.

This allows to simulate an angular moment as a result of a gradient in the gravitational

potential ~g(~r).
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We want to calculate the angular moment induced by the difference of the gravitational

fields at ~s1 and ~s2. Let the ratio of masses be denoted by m1/m2 = γ. Then ~s2 =
−γ~s1, and the forces acting on the two mass points are

~F1 = m1~g1, ~F2 = m2~g2 =
m1

γ
~g2.
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The angular moment is obtained by adding both components,

~MG = ~F1 × ~s1 + ~F2 × ~s2

= m1~g1 × ~s1 −
m1

γ
~g2 × γ~s1

= m1 (~g1 − ~g2)× ~s1

(7)

which is now expressed as a function of the local field gradient ~g1 − ~g2.

3.2 Numerical implementation

The field difference is usually small compared to the magnitude of the field acting on

the vessel:

|~g1 − ~g2| ≪ |~g1,2|

resulting in a significant loss of precision when the field difference in Eq. 7 is calculated

directly.

To avoid this problem, we can simplify Eq. 7 if the field ~g(~r) can be condsidered to

be generated by a single point mass M at position ~R0 relative to CG. Let ~R1 = ~R0−~s1
and ~R2 = ~R0 − ~s2 be the position of M relative to m1 and m2, and let ~s = ~s2 − ~s1.
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❄ ❄ ❄
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·

Since |~R0| ≫ |~s|, we can find the difference h = |~R1| − |~R2| of the distances between

the point masses m1 and m2 from M by

h = |~s| cos∢(~s, ~R0) =
~s~R0

|~R0|

We can now write the field difference ~g1 − ~g2 as

~g1 − ~g2 = GM

(

~R1

|~R1|3
−

~R2

|~R2|3

)

and by substituting ~R2 = ~R1 − ~s and |~R2| = |~R1| − h, and omitting higher-order
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terms,

~g1 − ~g2
GM

=
~R1

|~R1|3
−

~R1 − ~s

(|~R1| − h)3

=
h(−3|~R1|

2 + 3|~R1|h− h2)~R1 + |~R1|
3~s

|~R1|3(|~R1| − h)3

=
3h(h− |~R1|)~R1 + |~R1|

2~s

|~R1|4(|~R1| − 3h)
+O(2)

Substituting into Eq. 7 and utilising ~s ‖ ~s1 leads to

~MG ≈ 3GMm1

h(h− |~R1|)

|~R1|4(|~R1| − 3h)
~R1 × ~s1

3.3 Multi-point systems

For objects composed of more than two mass points, the formulation must be somewhat

extended. We split the gravitational potential acting on mass pointmi into a barycentric

and a perturbation component: ~g(~rCG + ~si) = ~gCG + ~γi. Then Eq. 2 becomes

~MG =
∑

i

(~gCG + ~γi)×mi~si

= ~gCG ×
∑

i

mi~si +
∑

i

~γi ×mi~si

=
∑

i

~γi ×mi~si

(8)

since the definition of the barycentre demands
∑

i mi~si = 0.

The perturbation components are calculated in the same way as in the 2-point prob-

lem, assuming that the gravitational potential is generated by a single point mass M at

position ~R0 in barycentric coordinates of the spacecraft, with |~R0| ≫ |~si| ∀i. Given
~Ri = ~R0 − ~si, the difference hi between the distances of mi and the CG from M is

given by

hi = |~si| cos∢(−~si, ~R0) = −
~si ~R0

|~R0|

Then as before,

~γi
GM

=
~R0 − ~si

(|~R0|+ hi)3
−

~R0

|~R0|3

= −
hi(3|~R0|

2 + 3|~R0|hi + h2

i )
~R0 + |~R3

0
|~si

(|~R0|+ hi)3|~R0|3

= −
3hi(|~R0|+ hi)~R0 + |~R0|

2~si

|~R0|4(|~R0|+ 3hi)
+O(2)

and inserting into Eq. 8 leads to

~MG = −
3GM

|~R0|4
~R0 ×

∑

i

mihi(|~R0|+ hi)

|~R0|+ 3hi

~si
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4 Damping

The model defined above has equilibrium states ( ~MG = 0) for the attitudes ~s ‖ ~R0

(vessel axis aligned with radius vector) and ~s ⊥ ~R0 (vessel axis perpendicular to ra-

dius vector). Only the first of these is stable because an attitude perturbation will

generate a torque in the opposite direction, leading to an undamped oscillation around

the equilibrium attitude.

Orbiter allows to introduce a damping term

~MD = −α~ωG

where ~ωG is the angular velocity induced by torque ~MG, and α is a user-defined damp-

ing coefficient. The physical source for the damping term may be the deformation of

the vessel by tidal forces, or redistribution of liquid propellants.
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