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1 Introduction

Orbiter uses a zonal representation of the gravitational potential generated by a celestial

body, using a Legendre polynomial series expansion in the latitude θ. The perturbations

in longitude (φ) are assumed to be negligible. The potential is expressed as
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where G is the gravitational constant, M and R are the mass and mean radius of the

central body, respectively, r is the length of the radius vector, Jn are the coefficients

of the series expansion, and Pn are the Legendre polynomials of order n. The first

Legendre polynomials are defined as
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The acceleration due to the gravitational field of a test mass at point ~r = (r, φ, θ) is

then given by the gradient of the potential:

~aG(r, φ, θ) = −~∇UG(r, φ, θ) (3)

In spherical polar coordinates, the gradient operator is expressed as
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Substituting equations 1 and 4 into 3 yields
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Figure 1: Planet-relative coordinates and polar unit vectors at a point (r, φ, θ).

J2 J3 J4 J5
Mercury 60 - - -

Venus 27 - - -

Earth 1082.6269 -2.51 -1.60 -0.15

Mars 1964 - - -

Jupiter 14750 - - -

Saturn 16450 - - -

Uranus 12000 - - -

Neptune 4000 - - -

Table 1: Coefficients (×106) for zonal expansion of planetary gravitational potentials.

with the first terms given by
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The coefficients Jn used by Orbiter are listed in Table 1.

The field perturbations can lead to a rotation of the orbit trajectory of a satellite.

This rotation can be expressed in terms of the movement of the longitude of the as-

cending node (Ω) and the movement of the argument of periapsis (ω). If only terms up
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to J2 are included, approximate values of the movements ∂Ω/∂t and ∂ω/∂t are given

by
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where n = 2π/P is the mean motion (with orbit period P ), a is the mean distance, e
is the eccentricity, and i is the inclination.

Example: calculate the inclination for a sun-synchronous polar orbit

A sun-synchronous orbits exploits the propagation of the line of nodes to keep the

orbital plane synchronised with the relative position of the sun. A satellite can for

example be placed in a sun-synchronous orbit so that it continuously flys over the

planet’s terminator line. From 7 we have
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A sun-synchronous orbit requires the line of nodes to move at a rate of 2π per year.

For Earth, this is equivalent to ∂Ω/∂t = 1.99 · 10−7 rad/s (about 0.99 deg. per day).

Assume a circular orbit (e = 0) at an altitude of 300 km (a = 6671010m, with RE =
6371010m). With P = 2π

√

a3/µE we get n =
√

µE/a3 = 0.0012 rad/s. This leads

to
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or isync = 96.7 deg.
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