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1 Introduction

This document describes the method Orbiter uses to define the inertial behaviour for

composite vessels from the parameters of its components.

2 Definitions

To describe the dynamics of a rigid body we use Euler’s rotation equations that describe

the rotation of the body in the rotating system:

I~̇ω + ~ω × (I~ω) = ~M (1)

where ~ω are the components of angular velocity around the three main vessel axes, ~M
are the applied torques, and I is the inertia matrix.

In the principal body frame, the inertia matrix is diagonal, where diagonal elements

In (n = 1, 2, 3) are the principal moments of inertia (PMI). We then get

I1ω̇1 + (I3 − I2)ω2ω3 = M1

I2ω̇2 + (I1 − I3)ω3ω1 = M2

I3ω̇3 + (I2 − I1)ω1ω2 = M3

(2)

Note that Orbiter assumes vessels to be defined in the principal frame but does not

enforce it, that is, only the diagonal elements of I are considered. For most vessel

layouts, an intrinsic symmetry is present, and the vessel frame naturally aligns closely

with the principal frame, so that neglecting the off-diagonal elements of I incurs a small

error. For composite structures this may not be true, so a more general framework may

be introduced in the future.

3 Composite structures

In spaceflight scenarios, rigid structures may commonly be formed by connecting indi-

vidual components (launch stack composed from individual stages, spacecraft docked

at a space station, Apollo CSM+LM assembly, etc.) These rigid assemblies act as a

single body under rotation, governed by its own composite PMI.

While the composite PMI may be pre-calculated for commonly encountered ar-

rangements, not all combinations are predictable. In Orbiter, any vessels with suitable
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docking ports can be connected to form arbitrary new “super-vessels” of two or more

components. It is therefore necessary to find a method to compute the composite PMI

from the inertia parameters of the individual components and the geometry of the as-

sembly. Orbiter uses the following method:

• Represent a vessel by a small number of discrete point masses arranged so that

they generate the same PMI as the original vessel.

• Transform the point masses of all individual vessels into the common barycentric

frame of the super-vessel.

• Compute the PMI of the super-vessel by summing over the point masses of all

individual components.

3.1 Point mass representation of a vessel

In general, the PMI components of an object occupying a volume V with mass density

distribution ρ(~r), ~r ∈ V are given by

I1 =

∫

V

ρ(~r)(y2 + z2)d~r

I2 =

∫

V

ρ(~r)(z2 + x2)d~r

I3 =

∫

V

ρ(~r)(x2 + y2)d~r

(3)

with ~r = {x, y, z}. For an object composed of n individual point masses mi at loca-

tions ~ri this simplifies to

I1 =

n
∑

i=1

mi(y
2

i + z2i )

I2 =
n
∑

i=1

mi(z
2

i + x2

i )

I3 =

n
∑

i=1

mi(x
2

i + y2i )

(4)

We can now represent a vessel with arbitrary PMI values by 6 point masses that

produce the same PMI values:

~̂r1,2 = {±x̂, 0, 0}

~̂r3,4 = {0,±ŷ, 0}

~̂r5,6 = {0, 0,±ẑ}

(5)

and mi = m̂ = m/6, i = 1..6, given vessel mass m. To compute the axis offsets

x̂, ŷ, ẑ of the point masses we note that

I1 = m̂(2ŷ2 + 2ẑ2)

I2 = m̂(2ẑ2 + 2x̂2)

I3 = m̂(2x̂2 + 2ŷ2)

(6)
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and thus
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(7)

It is left to the reader to confirm that this point sample arrangement generates the correct

PMI values.

3.2 Super-vessel definition

A super-vessel is a composite structure arranged by rigid assembly of individual ves-

sels where the geometry is defined by the position and orientation of the participating

docking ports of the component vessels.

The origin of the super-vessel frame is given by the barycentre of the assembly. It

should be noted that the origin can shift continuously relative to the vessel assembly if

the masses of the component vessels change (e.g. as a result of fuel consumption).

The orientation of the super-vessel frame is currently arbitrarily set to the orienta-

tion of the first vessel in the assembly. No attempt is made to rotate to the principal

frame. This may need some thought.

With this arrangement, we can define transformations for each component vessel j
into the supervessel frame:

~rSj = Rj~rj + ~r0j , (8)

where Rj is a rotation matrix and ~r0j is the position of the vessel CoG in the super-

vessel frame. The transformation of the point-mass representations of all participating

vessels into the super-vessel frame is given by

~̂rSji = Rj~̂rji + ~r0j , j = 1..N, i = 1..6, (9)

where N is the number of participating vessels. We can now assemble the components

ISn of the super-vessel PMI by summing over the point samples of all vessels:

IS
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(10)

4 Mass-normalised PMI

It should be noted that Orbiter uses mass-normalised PMI values Ĩn = In/m, which

has the advantage that PMI values can remain unchanged even if the vessel mass
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changes. All Orbiter API calls by convention return and expect Ĩn instead of In. Ap-

plying this convention to the super-vessel definition yields

ĨSn =
ISn

∑N

j=1
mj

(11)

Likewise, for the computation of the sample offsets in Eq. 7 we can write
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Ĩ1m

m̂
+
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with corresponding expressions for ŷ and ẑ.
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