#include "md5.h"
#include <string.h>
#include <stdio.h>
md5.cのインクルード依存関係図
マクロ定義 | |
#define | BYTE_ORDER 0 |
#define | T_MASK ((md5_word_t)~0) |
#define | T1 /* 0xd76aa478 */ (T_MASK ^ 0x28955b87) |
#define | T2 /* 0xe8c7b756 */ (T_MASK ^ 0x173848a9) |
#define | T3 0x242070db |
#define | T4 /* 0xc1bdceee */ (T_MASK ^ 0x3e423111) |
#define | T5 /* 0xf57c0faf */ (T_MASK ^ 0x0a83f050) |
#define | T6 0x4787c62a |
#define | T7 /* 0xa8304613 */ (T_MASK ^ 0x57cfb9ec) |
#define | T8 /* 0xfd469501 */ (T_MASK ^ 0x02b96afe) |
#define | T9 0x698098d8 |
#define | T10 /* 0x8b44f7af */ (T_MASK ^ 0x74bb0850) |
#define | T11 /* 0xffff5bb1 */ (T_MASK ^ 0x0000a44e) |
#define | T12 /* 0x895cd7be */ (T_MASK ^ 0x76a32841) |
#define | T13 0x6b901122 |
#define | T14 /* 0xfd987193 */ (T_MASK ^ 0x02678e6c) |
#define | T15 /* 0xa679438e */ (T_MASK ^ 0x5986bc71) |
#define | T16 0x49b40821 |
#define | T17 /* 0xf61e2562 */ (T_MASK ^ 0x09e1da9d) |
#define | T18 /* 0xc040b340 */ (T_MASK ^ 0x3fbf4cbf) |
#define | T19 0x265e5a51 |
#define | T20 /* 0xe9b6c7aa */ (T_MASK ^ 0x16493855) |
#define | T21 /* 0xd62f105d */ (T_MASK ^ 0x29d0efa2) |
#define | T22 0x02441453 |
#define | T23 /* 0xd8a1e681 */ (T_MASK ^ 0x275e197e) |
#define | T24 /* 0xe7d3fbc8 */ (T_MASK ^ 0x182c0437) |
#define | T25 0x21e1cde6 |
#define | T26 /* 0xc33707d6 */ (T_MASK ^ 0x3cc8f829) |
#define | T27 /* 0xf4d50d87 */ (T_MASK ^ 0x0b2af278) |
#define | T28 0x455a14ed |
#define | T29 /* 0xa9e3e905 */ (T_MASK ^ 0x561c16fa) |
#define | T30 /* 0xfcefa3f8 */ (T_MASK ^ 0x03105c07) |
#define | T31 0x676f02d9 |
#define | T32 /* 0x8d2a4c8a */ (T_MASK ^ 0x72d5b375) |
#define | T33 /* 0xfffa3942 */ (T_MASK ^ 0x0005c6bd) |
#define | T34 /* 0x8771f681 */ (T_MASK ^ 0x788e097e) |
#define | T35 0x6d9d6122 |
#define | T36 /* 0xfde5380c */ (T_MASK ^ 0x021ac7f3) |
#define | T37 /* 0xa4beea44 */ (T_MASK ^ 0x5b4115bb) |
#define | T38 0x4bdecfa9 |
#define | T39 /* 0xf6bb4b60 */ (T_MASK ^ 0x0944b49f) |
#define | T40 /* 0xbebfbc70 */ (T_MASK ^ 0x4140438f) |
#define | T41 0x289b7ec6 |
#define | T42 /* 0xeaa127fa */ (T_MASK ^ 0x155ed805) |
#define | T43 /* 0xd4ef3085 */ (T_MASK ^ 0x2b10cf7a) |
#define | T44 0x04881d05 |
#define | T45 /* 0xd9d4d039 */ (T_MASK ^ 0x262b2fc6) |
#define | T46 /* 0xe6db99e5 */ (T_MASK ^ 0x1924661a) |
#define | T47 0x1fa27cf8 |
#define | T48 /* 0xc4ac5665 */ (T_MASK ^ 0x3b53a99a) |
#define | T49 /* 0xf4292244 */ (T_MASK ^ 0x0bd6ddbb) |
#define | T50 0x432aff97 |
#define | T51 /* 0xab9423a7 */ (T_MASK ^ 0x546bdc58) |
#define | T52 /* 0xfc93a039 */ (T_MASK ^ 0x036c5fc6) |
#define | T53 0x655b59c3 |
#define | T54 /* 0x8f0ccc92 */ (T_MASK ^ 0x70f3336d) |
#define | T55 /* 0xffeff47d */ (T_MASK ^ 0x00100b82) |
#define | T56 /* 0x85845dd1 */ (T_MASK ^ 0x7a7ba22e) |
#define | T57 0x6fa87e4f |
#define | T58 /* 0xfe2ce6e0 */ (T_MASK ^ 0x01d3191f) |
#define | T59 /* 0xa3014314 */ (T_MASK ^ 0x5cfebceb) |
#define | T60 0x4e0811a1 |
#define | T61 /* 0xf7537e82 */ (T_MASK ^ 0x08ac817d) |
#define | T62 /* 0xbd3af235 */ (T_MASK ^ 0x42c50dca) |
#define | T63 0x2ad7d2bb |
#define | T64 /* 0xeb86d391 */ (T_MASK ^ 0x14792c6e) |
#define | ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n)))) |
#define | F(x, y, z) (((x) & (y)) | (~(x) & (z))) |
#define | SET(a, b, c, d, k, s, Ti) |
#define | G(x, y, z) (((x) & (z)) | ((y) & ~(z))) |
#define | SET(a, b, c, d, k, s, Ti) |
#define | H(x, y, z) ((x) ^ (y) ^ (z)) |
#define | SET(a, b, c, d, k, s, Ti) |
#define | I(x, y, z) ((y) ^ ((x) | ~(z))) |
#define | SET(a, b, c, d, k, s, Ti) |
関数 | |
void | md5_process (md5_state_t *pms, const md5_byte_t *data) |
void | md5_init (md5_state_t *pms) |
void | md5_append (md5_state_t *pms, const md5_byte_t *data, int nbytes) |
void | md5_finish (md5_state_t *pms, md5_byte_t digest[16]) |
void | md5_finalize (md5_state_t *pms) |
void | md5_get_digest (md5_state_t *pms, md5_byte_t digest[16]) |
void | md5_get_str_digest (md5_state_t *pms, char digest[32+1]) |
Copyright (C) 1999, 2000, 2002 Aladdin Enterprises. All rights reserved.
This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution.
L. Peter Deutsch ghost@aladdin.com
Independent implementation of MD5 (RFC 1321).
This code implements the MD5 Algorithm defined in RFC 1321, whose text is available at http://www.ietf.org/rfc/rfc1321.txt The code is derived from the text of the RFC, including the test suite (section A.5) but excluding the rest of Appendix A. It does not include any code or documentation that is identified in the RFC as being copyrighted.
The original and principal author of md5.c is L. Peter Deutsch <ghost@aladdin.com>. Other authors are noted in the change history that follows (in reverse chronological order):
2002-04-13 lpd Clarified derivation from RFC 1321; now handles byte order either statically or dynamically; added missing #include <string.h> in library. 2002-03-11 lpd Corrected argument list for main(), and added int return type, in test program and T value program. 2002-02-21 lpd Added missing #include <stdio.h> in test program. 2000-07-03 lpd Patched to eliminate warnings about "constant is unsigned in ANSI C, signed in traditional"; made test program self-checking. 1999-11-04 lpd Edited comments slightly for automatic TOC extraction. 1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5). 1999-05-03 lpd Original version.
md5.c で定義されています。
|
|
|
|
|
|
|
|
|
|
|
|
|
値: t = a + I(b,c,d) + X[k] + Ti;\ a = ROTATE_LEFT(t, s) + b |
|
値: t = a + H(b,c,d) + X[k] + Ti;\ a = ROTATE_LEFT(t, s) + b |
|
値: t = a + G(b,c,d) + X[k] + Ti;\ a = ROTATE_LEFT(t, s) + b |
|
値: t = a + F(b,c,d) + X[k] + Ti;\ a = ROTATE_LEFT(t, s) + b 参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_process(). |
|
参照元 md5_init(). |
|
Append a string to the message. 参照先 md5_state_s::buf, md5_state_s::count, md5_byte_t, md5_process(), md5_state_t, と md5_word_t. 参照元 dkcMD5LoadStandard(), と md5_finalize().
00321 { 00322 const md5_byte_t *p = data; 00323 int left = nbytes; 00324 int offset = (pms->count[0] >> 3) & 63; 00325 md5_word_t nbits = (md5_word_t)(nbytes << 3); 00326 00327 if (nbytes <= 0) 00328 return; 00329 /* Update the message length. */ 00330 pms->count[1] += nbytes >> 29; 00331 pms->count[0] += nbits; 00332 if (pms->count[0] < nbits) 00333 pms->count[1]++; 00334 /* Process an initial partial block. */ 00335 if (offset) { 00336 int copy = (offset + nbytes > 64 ? 64 - offset : nbytes); 00337 memcpy(pms->buf + offset, p, copy); 00338 if (offset + copy < 64) 00339 return; 00340 p += copy; 00341 left -= copy; 00342 md5_process(pms, pms->buf); 00343 } 00344 /* Process full blocks. */ 00345 for (; left >= 64; p += 64, left -= 64) 00346 md5_process(pms, p); 00347 /* Process a final partial block. */ 00348 if (left) 00349 memcpy(pms->buf, p, left); 00350 } |
|
finalize process 参照先 md5_state_s::count, md5_append(), md5_byte_t, と md5_state_t. 参照元 dkcMD5Final(), と md5_finish().
00364 { 00365 static const md5_byte_t pad[64] = { 00366 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 00367 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 00368 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 00369 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 00370 }; 00371 md5_byte_t data[8]; 00372 int i; 00373 /* Save the length before padding. */ 00374 for (i = 0; i < 8; ++i){ 00375 data[i] = (md5_byte_t)(pms->count[i >> 2] >> ((i & 3) << 3)); 00376 } 00377 /* Pad to 56 bytes mod 64. */ 00378 md5_append(pms, pad, ((55 - (pms->count[0] >> 3)) & 63) + 1); 00379 /* Append the length. */ 00380 md5_append(pms, data, 8); 00381 } |
|
Finish the message and return the digest. ( md5_finalize() + md5_get_digest() ) 参照先 md5_byte_t, md5_finalize(), md5_get_digest(), と md5_state_t.
00355 { 00356 md5_finalize(pms); 00357 md5_get_digest(pms,digest); 00358 } |
|
get digest binary value 参照先 md5_state_s::abcd, md5_byte_t, と md5_state_t. 参照元 dkcMD5Digest(), md5_finish(), と md5_get_str_digest().
00383 { 00384 int i; 00385 for (i = 0; i < 16; ++i){ 00386 digest[i] = (md5_byte_t)(pms->abcd[i >> 2] >> ((i & 3) << 3)); 00387 } 00388 } |
|
get digest strings 参照先 md5_byte_t, md5_get_digest(), と md5_state_t. 参照元 dkcMD5DigestStr().
00390 { 00391 md5_byte_t temp[16]; 00392 int i; 00393 00394 md5_get_digest(pms,temp); 00395 00396 00397 for (i=0; i<16; i++){ 00398 //wsprintf(digest+i*2, "%02x", temp[i]); 00399 sprintf(digest+i*2,"%02x", temp[i]); 00400 } 00401 digest[32]='\0'; 00402 } |
|
Initialize the algorithm. 参照先 md5_state_s::abcd, md5_state_s::count, md5_state_t, と T_MASK. 参照元 dkcMD5Init().
|
|
参照先 md5_state_s::abcd, md5_byte_t, md5_state_t, md5_word_t, SET, T1, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T2, T20, T21, T22, T23, T24, T25, T26, T27, T28, T29, T3, T30, T31, T32, T33, T34, T35, T36, T37, T38, T39, T4, T40, T41, T42, T43, T44, T45, T46, T47, T48, T49, T5, T50, T51, T52, T53, T54, T55, T56, T57, T58, T59, T6, T60, T61, T62, T63, T64, T7, T8, と T9. 参照元 md5_append().
00141 { 00142 md5_word_t 00143 a = pms->abcd[0], b = pms->abcd[1], 00144 c = pms->abcd[2], d = pms->abcd[3]; 00145 md5_word_t t; 00146 #if BYTE_ORDER > 0 00147 /* Define storage only for big-endian CPUs. */ 00148 md5_word_t X[16]; 00149 #else 00150 /* Define storage for little-endian or both types of CPUs. */ 00151 md5_word_t xbuf[16]; 00152 const md5_word_t *X; 00153 #endif 00154 { 00155 #if BYTE_ORDER == 0 00156 /* 00157 * Determine dynamically whether this is a big-endian or 00158 * little-endian machine, since we can use a more efficient 00159 * algorithm on the latter. 00160 */ 00161 static const int w = 1; 00162 if (*((const md5_byte_t *)&w)) /* dynamic little-endian */ 00163 #endif 00164 #if BYTE_ORDER <= 0 /* little-endian */ 00165 { 00166 /* 00167 * On little-endian machines, we can process properly aligned 00168 * data without copying it. 00169 */ 00170 if (!((data - (const md5_byte_t *)0) & 3)) { 00171 /* data are properly aligned */ 00172 X = (const md5_word_t *)data; 00173 } else { 00174 /* not aligned */ 00175 memcpy(xbuf, data, 64); 00176 X = xbuf; 00177 } 00178 } 00179 #endif 00180 #if BYTE_ORDER == 0 00181 else /* dynamic big-endian */ 00182 #endif 00183 #if BYTE_ORDER >= 0 /* big-endian */ 00184 { 00185 /* 00186 * On big-endian machines, we must arrange the bytes in the 00187 * right order. 00188 */ 00189 const md5_byte_t *xp = data; 00190 int i; 00191 # if BYTE_ORDER == 0 00192 X = xbuf; /* (dynamic only) */ 00193 # else 00194 # define xbuf X /* (static only) */ 00195 # endif 00196 for (i = 0; i < 16; ++i, xp += 4) 00197 xbuf[i] = xp[0] + (xp[1] << 8) + (xp[2] << 16) + (xp[3] << 24); 00198 } 00199 #endif 00200 } 00201 #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n)))) 00202 /* Round 1. */ 00203 /* Let [abcd k s i] denote the operation 00204 a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */ 00205 #define F(x, y, z) (((x) & (y)) | (~(x) & (z))) 00206 #define SET(a, b, c, d, k, s, Ti)\ 00207 t = a + F(b,c,d) + X[k] + Ti;\ 00208 a = ROTATE_LEFT(t, s) + b 00209 /* Do the following 16 operations. */ 00210 SET(a, b, c, d, 0, 7, T1); 00211 SET(d, a, b, c, 1, 12, T2); 00212 SET(c, d, a, b, 2, 17, T3); 00213 SET(b, c, d, a, 3, 22, T4); 00214 SET(a, b, c, d, 4, 7, T5); 00215 SET(d, a, b, c, 5, 12, T6); 00216 SET(c, d, a, b, 6, 17, T7); 00217 SET(b, c, d, a, 7, 22, T8); 00218 SET(a, b, c, d, 8, 7, T9); 00219 SET(d, a, b, c, 9, 12, T10); 00220 SET(c, d, a, b, 10, 17, T11); 00221 SET(b, c, d, a, 11, 22, T12); 00222 SET(a, b, c, d, 12, 7, T13); 00223 SET(d, a, b, c, 13, 12, T14); 00224 SET(c, d, a, b, 14, 17, T15); 00225 SET(b, c, d, a, 15, 22, T16); 00226 #undef SET 00227 /* Round 2. */ 00228 /* Let [abcd k s i] denote the operation 00229 a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */ 00230 #define G(x, y, z) (((x) & (z)) | ((y) & ~(z))) 00231 #define SET(a, b, c, d, k, s, Ti)\ 00232 t = a + G(b,c,d) + X[k] + Ti;\ 00233 a = ROTATE_LEFT(t, s) + b 00234 /* Do the following 16 operations. */ 00235 SET(a, b, c, d, 1, 5, T17); 00236 SET(d, a, b, c, 6, 9, T18); 00237 SET(c, d, a, b, 11, 14, T19); 00238 SET(b, c, d, a, 0, 20, T20); 00239 SET(a, b, c, d, 5, 5, T21); 00240 SET(d, a, b, c, 10, 9, T22); 00241 SET(c, d, a, b, 15, 14, T23); 00242 SET(b, c, d, a, 4, 20, T24); 00243 SET(a, b, c, d, 9, 5, T25); 00244 SET(d, a, b, c, 14, 9, T26); 00245 SET(c, d, a, b, 3, 14, T27); 00246 SET(b, c, d, a, 8, 20, T28); 00247 SET(a, b, c, d, 13, 5, T29); 00248 SET(d, a, b, c, 2, 9, T30); 00249 SET(c, d, a, b, 7, 14, T31); 00250 SET(b, c, d, a, 12, 20, T32); 00251 #undef SET 00252 /* Round 3. */ 00253 /* Let [abcd k s t] denote the operation 00254 a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */ 00255 #define H(x, y, z) ((x) ^ (y) ^ (z)) 00256 #define SET(a, b, c, d, k, s, Ti)\ 00257 t = a + H(b,c,d) + X[k] + Ti;\ 00258 a = ROTATE_LEFT(t, s) + b 00259 /* Do the following 16 operations. */ 00260 SET(a, b, c, d, 5, 4, T33); 00261 SET(d, a, b, c, 8, 11, T34); 00262 SET(c, d, a, b, 11, 16, T35); 00263 SET(b, c, d, a, 14, 23, T36); 00264 SET(a, b, c, d, 1, 4, T37); 00265 SET(d, a, b, c, 4, 11, T38); 00266 SET(c, d, a, b, 7, 16, T39); 00267 SET(b, c, d, a, 10, 23, T40); 00268 SET(a, b, c, d, 13, 4, T41); 00269 SET(d, a, b, c, 0, 11, T42); 00270 SET(c, d, a, b, 3, 16, T43); 00271 SET(b, c, d, a, 6, 23, T44); 00272 SET(a, b, c, d, 9, 4, T45); 00273 SET(d, a, b, c, 12, 11, T46); 00274 SET(c, d, a, b, 15, 16, T47); 00275 SET(b, c, d, a, 2, 23, T48); 00276 #undef SET 00277 /* Round 4. */ 00278 /* Let [abcd k s t] denote the operation 00279 a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */ 00280 #define I(x, y, z) ((y) ^ ((x) | ~(z))) 00281 #define SET(a, b, c, d, k, s, Ti)\ 00282 t = a + I(b,c,d) + X[k] + Ti;\ 00283 a = ROTATE_LEFT(t, s) + b 00284 /* Do the following 16 operations. */ 00285 SET(a, b, c, d, 0, 6, T49); 00286 SET(d, a, b, c, 7, 10, T50); 00287 SET(c, d, a, b, 14, 15, T51); 00288 SET(b, c, d, a, 5, 21, T52); 00289 SET(a, b, c, d, 12, 6, T53); 00290 SET(d, a, b, c, 3, 10, T54); 00291 SET(c, d, a, b, 10, 15, T55); 00292 SET(b, c, d, a, 1, 21, T56); 00293 SET(a, b, c, d, 8, 6, T57); 00294 SET(d, a, b, c, 15, 10, T58); 00295 SET(c, d, a, b, 6, 15, T59); 00296 SET(b, c, d, a, 13, 21, T60); 00297 SET(a, b, c, d, 4, 6, T61); 00298 SET(d, a, b, c, 11, 10, T62); 00299 SET(c, d, a, b, 2, 15, T63); 00300 SET(b, c, d, a, 9, 21, T64); 00301 #undef SET 00302 /* Then perform the following additions. (That is increment each 00303 of the four registers by the value it had before this block 00304 was started.) */ 00305 pms->abcd[0] += a; 00306 pms->abcd[1] += b; 00307 pms->abcd[2] += c; 00308 pms->abcd[3] += d; 00309 } |