00001
00009 #define DKUTIL_C_SHA1_C
00010 #include "dkcSHA1.h"
00011 #include "dkcStdio.h"
00012
00013
00014 #define SHA_BUFFER_SIZE (SHA_BLOCK * 4)
00015
00016
00017 const static DWORD c_dwInitH0 = 0x67452301;
00018 const static DWORD c_dwInitH1 = 0xefcdab89;
00019 const static DWORD c_dwInitH2 = 0x98badcfe;
00020 const static DWORD c_dwInitH3 = 0x10325476;
00021 const static DWORD c_dwInitH4 = 0xc3d2e1f0;
00022
00023 const static DWORD c_dwK_00_19 = 0x5a827999;
00024 const static DWORD c_dwK_20_39 = 0x6ed9eba1;
00025 const static DWORD c_dwK_40_59 = 0x8f1bbcdc;
00026 const static DWORD c_dwK_60_79 = 0xca62c1d6;
00027
00028 static DKC_INLINE DWORD ReverseEndian(DWORD dwValue)
00029 {
00030
00031 return dkcReverseEndian32(dwValue);
00032 }
00033
00034 static DKC_INLINE DWORD Rotate(DWORD dwValue, DWORD dwNum)
00035 {
00036 return (dwValue << dwNum) | (dwValue >> (32 - dwNum));
00037 }
00038
00039
00040 static DKC_INLINE Generate(DKC_SHA1 *p)
00041 {
00042 int i;
00043 DWORD Work[SHA_WORK];
00044 DWORD Hash[SHA_WORK + SHA_HASH];
00045 DWORD *pHash;
00046
00047 for(i = 0; i < SHA_BLOCK; i++) Work[i] = ReverseEndian(p->m_aBlock[i]);
00048 for(i = SHA_BLOCK; i < SHA_WORK; i++){
00049 Work[i] = Rotate(Work[i - 3] ^ Work[i - 8] ^ Work[i - 14] ^ Work[i - 16], 1);
00050 }
00051
00052 for(i = 0; i < 5; i++) Hash[SHA_WORK + i] = p->m_dwH[i];
00053 pHash = &Hash[SHA_WORK];
00054
00055 for(i = 0; i < 20; i++){
00056 pHash--;
00057 pHash[0] = (pHash[2] & (pHash[3] ^ pHash[4])) ^ pHash[4];
00058 pHash[0] += Rotate(pHash[1], 5) + pHash[5] + Work[i] + c_dwK_00_19;
00059 pHash[2] = Rotate(pHash[2], 30);
00060 }
00061 for(i = 20; i < 40; i++){
00062 pHash--;
00063 pHash[0] = pHash[2] ^ pHash[3] ^ pHash[4];
00064 pHash[0] += Rotate(pHash[1], 5) + pHash[5] + Work[i] + c_dwK_20_39;
00065 pHash[2] = Rotate(pHash[2], 30);
00066 }
00067 for(i = 40; i < 60; i++){
00068 pHash--;
00069 pHash[0] = (pHash[2] & (pHash[3] | pHash[4])) | (pHash[3] & pHash[4]);
00070 pHash[0] += Rotate(pHash[1], 5) + pHash[5] + Work[i] + c_dwK_40_59;
00071 pHash[2] = Rotate(pHash[2], 30);
00072 }
00073 for(i = 60; i < 80; i++){
00074 pHash--;
00075 pHash[0] = pHash[2] ^ pHash[3] ^ pHash[4];
00076 pHash[0] += Rotate(pHash[1], 5) + pHash[5] + Work[i] + c_dwK_60_79;
00077 pHash[2] = Rotate(pHash[2], 30);
00078 }
00079
00080 for(i = 0; i < 5; i++) p->m_dwH[i] += pHash[i];
00081 }
00082
00083 DKC_SHA1 *WINAPI dkcAllocSHA1(){
00084 DKC_SHA1 *p = (DKC_SHA1 *)dkcAllocate(sizeof(DKC_SHA1));
00085 if(NULL==p){
00086 return NULL;
00087 }
00088 dkcSHA1Init(p);
00089 return p;
00090 }
00091
00092 void WINAPI dkcSHA1Init(DKC_SHA1 *p){
00093 p->m_dwH[0] = c_dwInitH0;
00094 p->m_dwH[1] = c_dwInitH1;
00095 p->m_dwH[2] = c_dwInitH2;
00096 p->m_dwH[3] = c_dwInitH3;
00097 p->m_dwH[4] = c_dwInitH4;
00098 p->m_dwLNumBits = 0;
00099 p->m_dwHNumBits = 0;
00100 p->m_nNumChr = 0;
00101
00102 p->mFinalized = FALSE;
00103 }
00104
00105 void WINAPI dkcSHA1Load(DKC_SHA1 *p,const BYTE *pBuffer,DWORD dwSize){
00106 DWORD dwLNumBits;
00107 BYTE *pBlock;
00108 DWORD dwReadSize;
00109
00110 if(dwSize == 0) return;
00111 if(p->mFinalized){
00112 return;
00113 }
00114
00115 dwLNumBits = (p->m_dwLNumBits + (dwSize << 3));
00116 if(dwLNumBits < p->m_dwLNumBits) p->m_dwHNumBits++;
00117 p->m_dwHNumBits += dwSize >> 29;
00118 p->m_dwLNumBits = dwLNumBits;
00119
00120 pBlock = (BYTE *)p->m_aBlock;
00121 while(dwSize){
00122
00123 dwReadSize = (dwSize < SHA_BUFFER_SIZE - (DWORD)p->m_nNumChr) ?
00124 dwSize :
00125 (SHA_BUFFER_SIZE - p->m_nNumChr);
00126
00127 memcpy(pBlock + p->m_nNumChr, pBuffer, dwReadSize);
00128
00129 p->m_nNumChr += dwReadSize;
00130 pBuffer += dwReadSize;
00131 dwSize -= dwReadSize;
00132
00133 if(p->m_nNumChr == SHA_BUFFER_SIZE){
00134 Generate(p);
00135 p->m_nNumChr = 0;
00136 }
00137 }
00138
00139 }
00140
00141 void WINAPI dkcSHA1Final(DKC_SHA1 *p){
00142 BYTE cZero = 0x00;
00143 BYTE cOne = 0x80;
00144 DWORD dwHNumBits;
00145 DWORD dwLNumBits;
00146 if(p->mFinalized){
00147 return ;
00148 }
00149
00150 dwHNumBits = ReverseEndian(p->m_dwHNumBits);
00151 dwLNumBits = ReverseEndian(p->m_dwLNumBits);
00152
00153 dkcSHA1Load(p,&cOne, 1);
00154 while(p->m_nNumChr != SHA_BUFFER_SIZE - 8) dkcSHA1Load(p,&cZero, 1);
00155
00156 dkcSHA1Load(p,(BYTE *)&dwHNumBits, 4);
00157 dkcSHA1Load(p,(BYTE *)&dwLNumBits, 4);
00158
00159
00160 p->mFinalized = TRUE;
00161
00162 }
00163
00164 int WINAPI dkcSHA1DigestStr(DKC_SHA1 *p,char *buff,size_t size){
00165
00166
00167 char s[SHA1_STR_BUFFER_SIZE];
00168 int i;
00169
00170 s[SHA1_STR_BUFFER_SIZE]='\0';
00171
00172 if(SHA1_STR_BUFFER_SIZE > size){
00173 return edk_BufferOverFlow;
00174 }
00175 if(FALSE==p->mFinalized){
00176
00177 return edk_LogicError;
00178 }
00179
00180 for( i = 0; i < SHA_HASH; i++){
00181 sprintf(s + i * 8, "%08x", p->m_dwH[i]);
00182 }
00183
00184
00185 return dkc_strcpy(buff,size,s,strlen(s));
00186 }
00187
00188
00189 int WINAPI dkcSHA1FinalDigestStr(DKC_SHA1 *p,char *buff,size_t size){
00190 dkcSHA1Final(p);
00191 return dkcSHA1DigestStr(p,buff,size);
00192 }
00193
00194 int WINAPI dkcSHA1Digest(DKC_SHA1 *p,BYTE *buff,size_t size){
00195 size_t i = 0;
00196
00197
00198
00199
00200 if(SHA1_BIN_BUFFER_SIZE > size){
00201 return edk_BufferOverFlow;
00202 }
00203 if(FALSE==p->mFinalized){
00204
00205 return edk_LogicError;
00206 }
00207
00208
00209
00210
00211
00212 for(i = 0; i < SHA1_BIN_BUFFER_SIZE; ++i){
00213 buff[i] = (BYTE)(p->m_dwH[i >> 2] >> (8 * (~i & 3)));
00214 }
00215 return edk_SUCCEEDED;
00216
00217
00218 }
00219
00220
00221 int WINAPI dkcSHA1FinalDigest(DKC_SHA1 *p,BYTE *buff,size_t size){
00222 dkcSHA1Final(p);
00223 return dkcSHA1Digest(p,buff,size);
00224 }
00225
00226 int WINAPI dkcFreeSHA1(DKC_SHA1 **p){
00227 if(NULL==p){
00228 return edk_FAILED;
00229 }
00230 return dkcFree((void **)p);
00231 }