User Manual for glossaries.sty v3.07

Nicola L.C. Talbot
http://www.dickimaw-books.com/

2013-07-05

http://www.dickimaw-books.com/

The glossaries bundle comes with the following documentation:

glossariesbegin.pdf If you are a complete beginner, start with
“The glossaries package: a guide for beginners”.

glossary2glossaries.pdf If you are moving over from the ob-
solete glossary package, read “Upgrading from the glossary
package to the glossaries package”.

glossaries-user.pdf This document is the main user guide for the glos-
saries package.

mfirstuc-manual.pdf The commands provided by the mfirstuc
package are briefly described in “mfirstuc.sty: uppercasing first
letter”.

glossaries—code.pdf Advanced users wishing to know more
about the inner workings of all the packages provided in the
glossaries bundle should read “Documented Code for glossaries
v3.07”. This includes the documented code for the mfirstuc pack-
age.

INSTALL Installation instructions.
CHANGES Change log.

README Package summary.

If you use hyperref and glossaries, you must load hyperref first. Sim-
ilarly the doc package must also be loaded before glossaries. (If

doc is loaded, the file extensions for the default main glossary are
changed to gls2, glo2 and .glg2 to avoid conflict with doc’s
changes glossary:.)

Other documents that describe using glossaries include: Using La-
TeX to Write a PhD Thesis and Glossaries, Nomenclature, Lists of
Symbols and Acronyms.

glossariesbegin.pdf
glossary2glossaries.pdf
mfirstuc-manual.pdf
glossaries-code.pdf
http://www.dickimaw-books.com/latex/thesis/
http://www.dickimaw-books.com/latex/thesis/
http://www.latex-community.org/know-how/latex/55-latex-general/263-glossaries-nomenclature-lists-of-symbols-and-acronyms
http://www.latex-community.org/know-how/latex/55-latex-general/263-glossaries-nomenclature-lists-of-symbols-and-acronyms

Contents

Glossary

1

Introduction

1.1 Sample Documents

1.2 Multi-Lingual Support
121 Changing the Fixed Names

1.3 Generating the Associated Glossary Files
1.3.1 Using the makeglossaries Perl Script
1.3.2 Using xindy explicitly
1.3.3 Using makeindex explicitly
1.3.4 Note to Front-End and Script Developers

Package Options

21 GeneralOptions
2.2 Sectioning, Headings and TOC Options
2.3 Glossary Appearance Options
24 SortingOptions 0L,
25 AcronymOptions,

Setting Up

Defining Glossary Entries

41 Plurals

4.2 Other Grammatical Constructs

43 Sub-Entries.
43.1 Hierarchical Categories
432 Homographs

44 Loading Entries FromaFile

4.5 Moving Entries to Another Glossary

Number lists

Links to Glossary Entries
6.1 Changing the format of the link text
6.2 Enabling and disabling hyperlinks to glossary entries .

Adding an Entry to the Glossary Without Generating Text

41

43
46
47
48
48
49
50
51

53

55
65
68

69

Contents

8 Cross-Referencing Entries
8.1 Customising Cross-reference Text

9 Using Glossary Terms Without Links
10 Displaying a glossary

11 Xindy
11.1 Language and Encodings
11.2 Locations and Numberlists
11.3 Glossary Groups

12 Defining New Glossaries

13 Acronyms
13.1 Predefined Acronym Styles
13.2 Displaying the List of Acronyms
13.3 Defining A Custom Acronym Style
13.4 Upgrading From the glossary Package

14 Unsetting and Resetting Entry Flags

15 Glossary Styles
15.1 ListStyles
152 LongtableStyles
15.3 Longtable Styles (Ragged Right)
15.4 SupertabularStyles
15.5 Supertabular Styles (Ragged Right)
15.6 Tree-LikeStyles
15.7 MulticolsStyle
15.8 In-LineStyle L L

16 Defining your own glossary style
16.1 Example: creating a completely new style
16.2 Example: creating a new glossary style based on an ex-
istingstyle L oL
16.3 Example: creating a glossary style that uses the user1,
ouserbkeys oL

17 Utilities
18 Accessibility Support
19 Troubleshooting

Index

71
73

75

80

132

137

Glossary

This glossary style was setup using:

\usepackage [xindy,
nonumberlist,
seeautonumberlist,
toc,
style=altlist] {glossaries}

\renewcommand«*{\glsgroupskip}{}
\renewcommand* {\glsseeformat} [3] [\seename] {%
(\xmakefirstuc{#1} \glsseelist{#2}.)}

Command Line Interface (CLI)

an application that doesn’t have a graphical user interface.
That is, an application that doesn’t have any windows, but-
tons or menus and can be run in a command prompt or
terminal (see http://www.dickimaw-books.com/latex/
novices/html/terminal .html).

Entry location

The location of the entry in the document. This defaults to the
page number on which the entry appears. An entry may have
multiple locations.

First use

The first time a glossary entry is used (from the start of the doc-
ument or after a reset) with one of the following commands:
\gls, \Gls, \GLS, \glspl, \Glspl, \GLSpl or \glsdisp.
(See first use flag & first use text.)

First use flag

A conditional that determines whether or not the entry has been
used according to the rules of first use. Commands to unset or
reset this conditional are described in Section 14.

First use text

The text that is displayed on first use, which is governed by
the first and firstplural keys of \newglossaryentry. (May be
overridden by \glsdisp.)

http://www.dickimaw-books.com/latex/novices/html/terminal.html
http://www.dickimaw-books.com/latex/novices/html/terminal.html

Glossary

Indexing application

an application (piece of software) separate from TeX/IXTEX that
collates and sorts information that has an associated page ref-
erence. Generally the information is an index entry but in this
case the information is a glossary entry. There are two main
indexing applications that are used with TgX: makeindex and
xindy. These are both command line interface (CLI) applica-
tions.

Link text
The text produced by commands such as \gls. It may or may
not be a hyperlink to the glossary.

Location list

A list of entry locations. 22, (See number list.)

makeglossaries

A glossaries custom designed Perl script interface to xindy and
makeindex.

makeglossariesgui

A Java GUI alternative to makeglossaries that also provides
diagnostic tools. Home page: http://www.dickimaw-books.
com/apps/makeglossariesqgui/. Also available on CTAN.

makeindex

An indexing application.

Number list

A list of entry locations (also called a location list). The number
list can be suppressed using the nonumberlist package option.

Sanitize

Converts command names into character sequences. That is, a
command called, say, \foo, is converted into the sequence of
characters: \, f, o, o. Depending on the font, the backslash
character may appear as a dash when used in the main docu-
ment text, so \ foo will appear as: —foo.

When TgX writes information to a file, fragile commands must
be protected. The name, description, symbol and sort keys all have
their values written to a file, which means that care must be
taken if those values contain fragile commands. There are two
approaches: 1) the fragile commands must be protected using

http://www.dickimaw-books.com/apps/makeglossariesgui/
http://www.dickimaw-books.com/apps/makeglossariesgui/

Glossary

\protect; 2) the values are sanitized. Sanitizing the values
gets rid of the inconvenience of having to protect fragile com-
mands, but at the expense of no longer being able to use those
values in the document. Sanitization is governed by the pack-
age option sanitize described in Section 2.1.

xindy
A flexible indexing application with multilingual support writ-
ten in Perl.

1 Introduction

The glossaries package is provided to assist generating glossaries. It
has a certain amount of flexibility, allowing the user to customize the
format of the glossary and define multiple glossaries. It also sup-
ports acronyms and glossary styles that include symbols (in addition
to a name and description) for glossary entries. There is provision for
loading a database of glossary terms. Only those terms used! in the
document will be added to the glossary.

This package replaces the glossary package which is now obso-
lete. Please see the document “Upgrading from the glossary package
to the glossaries package” (glossary2glossaries.pdf) for assistance in
upgrading.

One of the strengths of this package is its flexibility, however the
drawback of this is the necessity of having a large manual that can
cover all the various settings. If you are daunted by the size of the
manual, try starting off with the much shorter guide for beginners
(glossariesbegin.pdf).

The glossaries package comes with a Perl script called
makeglossaries. This provides a convenient interface to
the indexing applications makeindex or xindy. It is strongly

recommended that you use this script, but it is not essential. If you
are reluctant to install Perl, or for any other reason you don’t want
to use makeglossaries, you can call makeindex or xindy
explicitly. See Section 1.3 for further details.

This document uses the glossaries package. For example, when view-
ing the PDF version of this document in a hyperlinked-enabled PDF
viewer (such as Adobe Reader) if you click on the word “xindy”
you’ll be taken to the entry in the glossary where there’s a brief de-
scription of what “xindy” is.

The remainder of this introductory section covers the following:

* Section 1.1 lists the sample documents provided with this pack-
age.

IThat is, if the term has been referenced using any of the commands described in
Section 6 and Section 7 or via \glssee (or the see key) or commands such as
\acrshort.

http://www.perl.org/about.html

1 Introduction

* Section 1.2 provides information for users who wish to write in
a language other than English.

* Section 1.3 describes how to use a post-processor to create the
sorted glossaries for your document.

1.1 Sample Documents

The glossaries package is provided with some sample documents
that illustrate the various functions. These should be located in the
samples subdirectory (folder) of the glossaries documentation direc-
tory. This location varies according to your operating system and TgX
distribution. You can use texdoc to locate the main glossaries docu-
mentation. For example, in a terminal or command prompt, type:

texdoc -1 glossaries

This should display the full pathname of the file glossaries-code.pdf.
View the contents of that directory and see if it contains the samples
subdirectory.

If you can’t find the sample files, they are available in the subdirec-
torydoc/latex/glossaries/samples/intheglossaries.tds.zip
archive which can be downloaded from CTAN.

The sample documents are as follows:

minimalgls.tex This document is a minimal working example. You
can test your installation using this file. To create the complete
document you will need to do the following steps:

1. Runminimalgls.tex through IXTEX either by typing

latex minimalgls

in a terminal or by using the relevant button or menu item
in your text editor or front-end. This will create the re-
quired associated files but you will not see the glossary. If
you use PDFIAIEX you will also get warnings about non-
existent references. These warnings may be ignored on the
first run.

If you get a Missing \begin{document} error, then
it’s most likely that your version of xkeyval is out of date.
Check the log file for a warning of that nature. If this is the
case, you will need to update the xkeyval package.

http://www.dickimaw-books.com/latex/novices/html/terminal.html
http://tug.ctan.org/tex-archive/macros/latex/contrib/glossaries/

1 Introduction

2. Run makeglossaries on the document (Section 1.3).
This can be done on a terminal either by typing

makeglossaries minimalgls
or by typing
perl makeglossaries minimalgls

If your system doesn’t recognise the command perl then
it’s likely you don’t have Perl installed. In which case you
will need to use makeindex directly. You can do this in a
terminal by typing (all on one line):

makeindex -s minimalgls.ist -t minimalgls.glg
-0 minimalgls.gls minimalgls.glo

(See Section 1.3.3 for further details on using makeindex
explicitly.)

Note that if you need to specify the full path and the path
contains spaces, you will need to delimit the file names
with the double-quote character.

3. Runminimalgls.tex through I£TEX again (as step 1)

You should now have a complete document. The number fol-
lowing each entry in the glossary is the location number. By de-
fault, this is the page number where the entry was referenced.

sampledcol.tex This document illustrates a four column glossary where
the entries have a symbol in addition to the name and descrip-
tion. To create the complete document, you need to do:

latex sampledcol
makeglossaries sampledcol

latex sampledcol

As before, if you don’t have Perl installed, you will need to use
makeindex directly instead of using makeglossaries. The
vertical gap between entries is the gap created at the start of

10

1 Introduction

each group. This can be suppressed using the nogroupskip pack-
age option.

sampleAcr.tex This document has some sample acronyms. It also
adds the glossary to the table of contents, so an extra run
through I&TEX is required to ensure the document is up to date:

latex sampleAcr
makeglossaries sampleAcr
latex sampleAcr

latex sampleAcr

sampleAcrDesc.tex This is similar to the previous example, except
that the acronyms have an associated description. As with the
previous example, the glossary is added to the table of contents,
so an extra run through IXIEX is required:

latex sampleAcrDesc
makeglossaries sampleAcrDesc
latex sampleAcrDesc

latex sampleAcrDesc

sampleDesc.tex This is similar to the previous example, except that
it defines the acronyms using \newglossaryentry instead of
\newacronym. As with the previous example, the glossary is
added to the table of contents, so an extra run through IXTgX is
required:

latex sampleDesc
makeglossaries sampleDesc
latex sampleDesc

latex sampleDesc

sample-custom-acronym.tex This document illustrates how to define
your own acronym style if the predefined styles don’t suit your
requirements.

11

1 Introduction

latex sample-custom-acronym
makeglossaries sample-custom—-acronym

latex sample—-custom—acronym

sample-crossref.tex This document illustrates how to cross-reference
entries in the glossary.

latex sample-crossref
makeglossaries sample-crossref

latex sample-crossref

sampleDB.tex This document illustrates how to load external files
containing the glossary definitions. It also illustrates how to
define a new glossary type. This document has the number list
suppressed and uses \glsaddall to add all the entries to the
glossaries without referencing each one explicitly. To create the
document do:

latex sampleDB
makeglossaries sampleDB

latex sampleDB

The glossary definitions are stored in the accompanying files
databasel.tex and database2.tex. Note that if you don’t
have Perl installed, you will need to use makeindex twice in-
stead of a single call to makeglossaries:

1. Create the main glossary:

makeindex —-s sampleDB.ist -t sampleDB.glg -o
sampleDB.gls sampleDB.glo

2. Create the secondary glossary:

makeindex -s sampleDB.ist -t sampleDB.nlg -o
sampleDB.not sampleDB.ntn

12

1 Introduction

sampleEq.tex This document illustrates how to change the location
to something other than the page number. In this case, the
equation counter is used since all glossary entries appear in-
side an equation environment. To create the document do:

latex sampleEq
makeglossaries sampleEqg

latex sampleEq

sampleEqPg.tex This is similar to the previous example, but the num-
ber lists are a mixture of page numbers and equation numbers.
This example adds the glossary to the table of contents, so an
extra IXIEX run is required:

latex sampleEgPg
makeglossaries sampleEgPg
latex sampleEgPg
latex sampleEgPg

sampleSec.tex This document also illustrates how to change the lo-
cation to something other than the page number. In this case,
the section counter is used. This example adds the glossary
to the table of contents, so an extra IXIEX run is required:

latex sampleSec
makeglossaries sampleSec
latex sampleSec

latex sampleSec

sampleNtn.tex This document illustrates how to create an additional
glossary type. This example adds the glossary to the table of
contents, so an extra KTEX run is required:

latex sampleNtn

makeglossaries sampleNtn

latex sampleNtn

13

1 Introduction
latex sampleNtn

Note that if you don’t have Perl installed, you will need to use
makeindex twice instead of a single call to makeglossaries:

1. Create the main glossary:

makeindex —-s sampleNtn.ist -t sampleNtn.glg
-0 sampleNtn.gls sampleNtn.glo

2. Create the secondary glossary:

makeindex -s sampleNtn.ist -t sampleNtn.nlg
-0 sampleNtn.not sampleNtn.ntn

sample.tex This document illustrates some of the basics, including
how to create child entries that use the same name as the par-
ent entry. This example adds the glossary to the table of con-
tents and it also uses \glsrefentry, so an extra IXIEX run is
required:

latex sample
makeglossaries sample
latex sample

latex sample

You can see the difference between word and letter ordering if
you substitute order=word with order=letter. (Note that this will
only have an effect if you use makeglossaries. If you use
makeindex explicitly, you will need to use the -1 switch to
indicate letter ordering.)

sample-inline.tex This document is like sample.tex, above, but uses
the inline glossary style to put the glossary in a footnote.

sampletree.tex This document illustrates a hierarchical glossary struc-
ture where child entries have different names to their corre-
sponding parent entry. To create the document do:

latex sampletree

14

1 Introduction

makeglossaries sampletree

latex sampletree

sample-dual.tex This document illustrates how to define an entry that
both appears in the list of acronyms and in the main glossary.
To create the document do:

latex sample—-dual
makeglossaries sample-dual

latex sample—-dual

sample-langdict This document illustrates how to use the glossaries
package to create English to French and French to English dic-
tionaries. To create the document do:

latex sample-langdict
makeglossaries sample—-langdict

latex sample-langdict

samplexdy.tex This document illustrates how to use the glossaries
package with xindy instead of makeindex. The document
uses UTF8 encoding (with the inputenc package). The encoding
is picked up by makeglossaries. By default, this document
will create a xindy style file called samplexdy . xdy, butif you
uncomment the lines

\setStyleFile{samplexdy-mc}
\noist
\GlsSetXdyLanguage{}

it will set the style file to samplexdy-mc.xdy instead. This
provides an additional letter group for entries starting with
“Mc” or “Mac”. If you use makeglossaries, you don’t
need to supply any additional information. If you don’t use
makeglossaries, you will need to specify the required infor-
mation. Note that if you set the style file to samplexdy-mc. xdy
you must also specify \noist, otherwise the glossaries package
will overwrite samplexdy-mc . xdy and you will lose the “Mc”
letter group.

15

1 Introduction

To create the document do:

latex samplexdy
makeglossaries samplexdy

latex samplexdy

If you don’t have Perl installed, you will have to call xindy
explicitly instead of using makeglossaries. If you are using
the default style file samplexdy . xdy, then do (no line breaks):

xindy -L english -C utf8 -I xindy -M samplexdy -t
samplexdy.glg —-o samplexdy.gls samplexdy.glo

otherwise, if you are using samplexdy-mc.xdy, then do (no
line breaks):

xindy -I xindy —-M samplexdy-mc -t samplexdy.glg
-0 samplexdy.gls samplexdy.glo

samplexdy2.tex This document illustrates how to use the glossaries
package where the location numbers don’t follow a standard
format. This example will only work with xindy. To create the
document do:

pdflatex samplexdy?2
makeglossaries samplexdy?2

pdflatex samplexdy?2

If you can’t use makeglossaries then you need to do:

xindy -L english -C utf8 -I xindy -M samplexdy2
-t samplexdy2.glg -o samplexdyZ2.gls samplexdy2.glo

See Section 11.2 for further details.

16

1 Introduction

sampleutf8.tex This is another example that uses xindy. Unlike
makeindex, xindy can cope with accented or non-Latin char-
acters. This document uses UTF8 encoding. To create the docu-
ment do:

latex sampleutf8
makeglossaries sampleutf$

latex sampleutf8

If you don’t have Perl installed, you will have to call xindy
explicitly instead of using makeglossaries (no line breaks):

xindy -L english -C utf8 -I xindy -M sampleutf8
-t sampleutf8.glg -o sampleutf8.gls sampleutf8.glo

If you remove the xindy option from sampleut £8.tex and do:

latex sampleutf8
makeglossaries sampleutf8

latex sampleutfs8

you will see that the entries that start with a non-Latin character
now appear in the symbols group, and the word “manceuvre”
is now after “manor” instead of before it. If you are unable to
use makeglossaries, the call to makeindex is as follows (no
line breaks):

makeindex —-s sampleutf8.ist -t sampleutf8.glg -o
sampleutf8.gls sampleutf8.glo

sampleaccsupp.tex This document uses the experimental glossaries-
accsupp package. The symbol is set to the replacement text.
Note that some PDF viewers don’t use the accessibility support.
Information about the glossaries-accsupp package can be found
in Section 18.

17

1 Introduction

1.2 Multi-Lingual Support

As from version 1.17, the glossaries package can now be used with
xindy as well as makeindex. If you are writing in a language that
uses accented characters or non-Latin characters it is recommended
that you use xindy as makeindex is hard-coded for Latin languages.
This means that you are not restricted to the A, ..., Z letter groups.
If you want to use xindy, remember to use the xindy package option.
For example:

\documentclass|[frenchb] {article}
\usepackage [utf8] {inputenc}
\usepackage [T1] {fontenc}
\usepackage{babel}
\usepackage[xindy] {glossaries}

Note that although an accented character, such as é, looks like a
plain character in your tex file, it’s actually a macro and can there-
fore cause problems.

1. If you use an accented (or other expandable) character at the
start of an entry name, you must place it in a group, or it will
cause a problem for commands that convert the first letter to
uppercase (e.g. \G1s) due to expansion issues. For example:

\newglossaryentry{elite} {name={{é}lite},
description={select group or class}}

. If you use an accented (or other expandable) character in an
entry name and you haven’t switched off the name key san-
itization, you must use commands like \glsentrytext or
\glstext instead of \glsentryname or \glsname or you
will end up with strange looking characters in your docu-
ment.

If you use the inputenc package, makeglossaries will pick up the
encoding from the auxiliary file. If you use xindy explicitly instead
of via makeglossaries, you may need to specify the encoding us-
ing the —C option. Read the xindy manual for further details.

1.2.1 Changing the Fixed Names

As from version 1.08, the glossaries package now has limited multi-
lingual support, thanks to all the people who have sent me the rele-
vant translations either via email or via comp . text .tex. However

18

1 Introduction

you must load babel or polyglossia before glossaries to enable this. Note
that if babel is loaded and the translator package is detected on TgX’s
path, then the translator package will be loaded automatically. How-
ever, it may not pick up on the required languages so, if the prede-
fined text is not translated, you may need to explicitly load the trans-
lator package with the required languages. For example:

\usepackage [spanish] {babel}
\usepackage [spanish] {translator}
\usepackage{glossaries}

Alternatively, specify the language as a class option rather than a
package option. For example:

\documentclass[spanish] {report}

\usepackage {babel}
\usepackage{glossaries}

If you want to use ngerman or german instead of babel, you will need
to include the translator package to provide the translations. For ex-
ample:

\documentclass[ngerman] {article}
\usepackage{ngerman}
\usepackage{translator}
\usepackage{glossaries}

The languages are currently supported by the glossaries package
are listed in table 1.1. Please note that (apart from spelling mistakes)
I don’t intend to change the default translations as it will cause com-
patibility problems.

The language dependent commands and translator keys used by the
glossaries package are listed in table 1.2.

Due to the varied nature of glossaries, it’s likely that the prede-
fined translations may not be appropriate. If you are using the babel
package and do not have the translator package installed, you need
to be familiar with the advice given in http://www.tex.ac.uk/
cgi-bin/texfag2html?label=latexwords. If you have the
translator package installed, then you can provide your own dictio-
nary with the necessary modifications (using \deftranslation)
and load it using \usedictionary

Note that the dictionaries are loaded at the beginning of the doc-
ument, so it won’t have any effect if you put \deftranslation

in the preamble. It should be put in your personal dictionary in-
stead (as in the example below). See the translator documentation
for further details. (Now with beamer documentation.)

19

http://www.tex.ac.uk/cgi-bin/texfaq2html?label=latexwords
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=latexwords

1 Introduction

Table 1.1: Supported Languages

Language As from version
Brazilian Portuguese 1.17
Danish 1.08
Dutch 1.08
English 1.08
French 1.08
German 1.08
Irish 1.08
Italian 1.08
Hungarian 1.08
Polish 1.13
Serbian 2.06
Spanish 1.08

Your custom dictionary doesn’t have to be just a translation from
English to another language. You may prefer to have a dictionary for
a particular type of document. For example, suppose your institu-
tion’s in-house reports have to have the glossary labelled as “Nomen-
clature” and the page list should be labelled “Location”, then you can
create a file called, say;

myinstitute—-glossaries—-dictionary-English.dict
that contains the following:

\ProvidesDictionary{myinstitute-glossaries—-dictionary}{English}
\deftranslation{Glossary}{Nomenclature}
\deftranslation{Page List (glossaries) }{Location}

You can now load it using:

\usedictionary{myinstitute-glossaries—-dictionary}

(Make sure thatmyinstitute—glossaries—dictionary-English.dict
can be found by TgX.) If you want to share your custom dictionary,
you can upload it to CTAN.
If you are using babel and don’t want to use the translator interface,
you can suppress it using the package option translate=false, and either
load glossaries-babel after glossaries or specify you're own translations.
For example:

\documentclass [british] {article}

20

http://www.ctan.org/

Table 1.2: Customised Text

Command Name

\glossaryname

\acronymname

\entryname

\descriptionname

\symbolname

\pagelistname

1 Introduction

Translator Key
Word
Glossary
Acronyms

Notation
(glossaries)

Description
(glossaries)

Symbol
(glossaries)

Page List
(glossaries)

\glssymbolsgroupname Symbols

(glossaries)

\glsnumbersgroupname Numbers

(glossaries)

21

Purpose

Title of the main glossary.
Title of the list of acronyms
(when used with package
option acronym).

Header for first column in
the glossary (for 2, 3 or 4
column glossaries that
support headers).
Header for second column
in the glossary (for 2, 3 or 4
column glossaries that
support headers).
Header for symbol column
in the glossary for glossary
styles that support this
option.
Header for page list
column in the glossary for
glossaries that support this
option.

Header for symbols section
of the glossary for glossary
styles that support this
option.
Header for numbers
section of the glossary for
glossary styles that support
this option.

1 Introduction

\usepackage{babel}
\usepackage[translate=false] {glossaries}
\usepackage{glossaries—-babel}

or:

\documentclass [british] {article}

\usepackage{babel}
\usepackage [translate=false] {glossaries}

\addto\captionsbritish{%
\renewcommand~*{\glossaryname}{List of Terms}%
\renewcommand+ { \acronymname} {List of Acronyms}$%
\renewcommand= { \entryname} {Notation}%
\renewcommand+ {\descriptionname} {Description}%
\renewcommandx { \symbolname} {Symbol}%
\renewcommand~ { \pagelistname}{Page List}%
\renewcommand~* {\glssymbolsgroupname} {Symbols}%
\renewcommand= { \glsnumbersgroupname} { Numbers}%

If you are using polyglossia instead of babel, glossaries-polyglossia will
automatically be loaded unless you specify the package option trans-
late=false.

Note that xindy provides much better multi-lingual support than
makeindex, so it’s recommended that you use xindy if you have
glossary entries that contain diacritics or non-Roman letters. See Sec-
tion 11 for further details.

1.3 Generating the Associated Glossary Files

In order to generate a sorted glossary with compact location lists, it is
necessary to use an external indexing application as an intermediate
step. It is this application that creates the file containing the code
that typesets the glossary. If this step is omitted, the glossaries will
not appear in your document. The two indexing applications that
are most commonly used with ETgX are makeindex and xindy. As
from version 1.17, the glossaries package can be used with either of
these applications. Previous versions were designed to be used with
makeindex only. Note that xindy has much better multi-lingual
support than makeindex, so xindy is recommended if you're not
writing in English. Commands that only have an effect when xindy
is used are described in Section 11.

The glossaries package comes with the Perl script makeglossaries
which will run makeindex or xindy on all the glossary files us-
ing a customized style file (which is created by \makeglossaries).

22

1 Introduction

See Section 1.3.1 for further details. Perl is stable, cross-platform,
open source software that is used by a number of TgX-related applica-
tions. Further information is available at http://www.perl.org/
about .html. The advantages of using makeglossaries:

* It automatically detects whether to use makeindex or xindy
and sets the relevant application switches.

® One call of makeglossaries will run makeindex/xindy for
each glossary type.

e If things go wrong, makeglossaries will scan the messages
from makeindex or xindy and attempt to diagnose the prob-
lem in relation to the glossaries package. This will hopefully pro-
vide more helpful messages in some cases. If it can’t diagnose
the problem, you will have to read the relevant transcript file
and see if you can work it out from the makeindex or xindy
messages.

There is also a Java GUI alternative called makeglossariesqgui,
distributed separately, that has diagnostic tools.

Whilst it is strongly recommended that you use themakeglossaries
script or makeglossariesqgui, it is possible to use the glossaries
package without using either application. However, note that some
commands and package options have no effect if you don’t use

makeglossaries or makeglossariesgui. These are listed in ta-
ble 1.3.

If you are choosing not to use makeglossaries because you
don’t want to install Perl, you will only be able to use makeindex

as xindy also requires Perl.

Note that if any of your entries use an entry that is not ref-
erenced outside the glossary, you will need to do an additional
makeglossaries, makeindex or xindy run, as appropriate. For
example, suppose you have defined the following entries:

\newglossaryentry{citrusfruit}{name={citrus fruit},
description={fruit of any citrus tree. (See also
\gls{orange}) }}

\newglossaryentry{orange} {name={orange},
description={an orange coloured fruit.}}

2As from v3.01 \gls is no longer fragile and doesn’t need protecting.

23

http://www.perl.org/about.html
http://www.perl.org/about.html

1 Introduction

and suppose you have \gls{citrusfruit} in your document but
don’t reference the orange entry, then the orange entry won't ap-
pear in your glossary until you first create the glossary and then do
another run of makeglossaries, makeindex or xindy. For exam-
ple, if the document is called myDoc . tex, then you must do:

latex myDoc
makeglossaries myDoc
latex myDoc
makeglossaries myDoc
latex myDoc

Likewise, an additional makeglossaries and KIEX run may be
required if the document pages shift with re-runs. For example, if the
page numbering is not reset after the table of contents, the insertion
of the table of contents on the second ETEX run may push glossary
entries across page boundaries, which means that the number lists in
the glossary may need updating.

The examples in this document assume that you are accessing
makeglossaries, xindy or makeindex via a terminal. Windows
users can use the MSDOS Prompt which is usually accessed via the
Start — All Programs menu or Start — All Programs — Accessories menu.

Alternatively, your text editor may have the facility to create a func-
tion that will call the required application. The article “Glossaries,
Nomenclature, List of Symbols and Acronyms” in the IXIEX Commu-
nity’s® Know How section describes how to do this for TeXnicCen-
ter, and the thread “Executing Glossaries” makeindex from a WinEdt
macro” on the comp.text.tex newsgroup describes how to do it
for WinEdt. For other editors see the editor’s user manual for further
details.

If any problems occur, remember to check the transcript files (e.g.
.glgor .alg) for messages.

1.3.1 Using the makeglossaries Perl Script

The makeglossaries script picks up the relevant information from
the auxiliary (.aux) file and will either call xindy or makeindex,
depending on the supplied information. Therefore, you only need to
pass the document’s name without the extension tomakeglossaries.
For example, if your document is called myDoc . tex, type the follow-
ing in your terminal:

3http ://www.latex-community.org/

24

http://www.latex-community.org/index.php?option=com_content&view=article&id=263:glossaries-nomenclature-lists-of-symbols-and-acronyms&catid=55:latex-general&Itemid=114
http://www.latex-community.org/index.php?option=com_content&view=article&id=263:glossaries-nomenclature-lists-of-symbols-and-acronyms&catid=55:latex-general&Itemid=114
http://groups.google.com/group/comp.text.tex/browse_thread/thread/edd83831b81b0759?hl=en
http://groups.google.com/group/comp.text.tex/browse_thread/thread/edd83831b81b0759?hl=en
http://www.latex-community.org/

1 Introduction

Table 1.3: Commands and package options that have no effect when
using xindy or makeindex explicitly

Command or Package Option makeindex xindy

order=letter use -1 use -M ord/letorder
order=word default default
xindy={language=(lang), codename=(code)} N/A use —L (lang) —C (code)
\GlsSetxdyLanguage {(lang)} N/A use -L (lang)
\GlsSetXdyCodePage { (code) } N/A use —C (code)

latex myDoc
makeglossaries myDoc
latex myDoc

You may need to explicitly load makeglossaries into Perl:
perl makeglossaries myDoc

There is a batch file called makeglossaries.bat which does this
for Windows users, but you must have Perl installed to be able to use
it. You can specify in which directory the .aux, .glo etc files are
located using the —d switch. For example:

pdflatex -output-directory myTmpDir myDoc
makeglossaries —-d myTmpDir myDoc

The makeglossaries script contains POD (Plain Old Documen-
tation). If you want, you can create a man page formakeglossaries
using pod2man and move the resulting file onto the man path. Al-
ternatively do makeglossaries --help for a list of all options or
makeglossaries —--version for the version number.

When upgrading the glossaries package, make sure you also up-

grade your version of makeglossaries. The current version is
2.07.

1.3.2 Using xindy explicitly

Xindy comes with TeXLive, but not with MiKTeX. However MikTeX
users can install it. There is a thread in the Makeindex section of the

25

http://www.latex-community.org/forum/viewtopic.php?f=51&t=5383

1 Introduction

ISTEX Community* that describes how to do this.
If you want to use xindy to process the glossary files, you must
make sure you have used the xindy package option:

\usepackage [xindy] {glossaries}

This is required regardless of whether you use xindy explicitly or
whether it’s called implicitly viamakeglossaries ormakeglossariesgui.
This causes the glossary entries to be written in raw xindy format, so
you need to use -I xindy not -I tex.
To run xindy type the following in your terminal (all on one line):

xindy -L (language) —-C (encoding) -I xindy -M (style) -t (base).glg
—-o (base).gls (base).glo

where (language) is the required language name, (encoding) is the en-
coding, (base) is the name of the document without the . tex exten-
sion and (style) is the name of the xindy style file without the . xdy
extension. The default name for this style file is (base) . xdy but can
be changed via \setStyleFile{(style)}. You may need to specify
the full path name depending on the current working directory. If
any of the file names contain spaces, you must delimit them using
double-quotes.

For example, if your document is called myDoc.tex and you are
using UTF8 encoding in English, then type the following in your ter-
minal:

xindy -L english -C utf8 -I xindy -M myDoc -t myDoc.glg
-0 myDoc.gls myDoc.glo

Note that this just creates the main glossary. You need to do the
same for each of the other glossaries (including the list of acronyms if
you have used the acronym package option), substituting .glg, .gls
and . glo with the relevant extensions. For example, if you have used
the acronym package option, then you would need to do:

xindy -L english -C utf8 -I xindy -M myDoc -t myDoc.alg
—o myDoc.acr myDoc.acn

For additional glossaries, the extensions are those supplied when you
created the glossary with \newglossary.

Note that if you use makeglossaries instead, you can replace all
those calls to xindy with just one call to makeglossaries:

4http ://www.latex-community.org/

26

http://www.latex-community.org/

1 Introduction

makeglossaries myDoc

Note also that some commands and package options have no effect if
you use xindy explicitly instead of using makeglossaries. These
are listed in table 1.3.

1.3.3 Using makeindex explicitly

If you want to use makeindex explicitly, you must make sure that
you haven’t used the xindy package option or the glossary entries will
be written in the wrong format. To run makeindex, type the follow-
ing in your terminal:

makeindex -s (style).ist -t (base).glg —o (base).gls (base).glo

where (base) is the name of your document without the . tex exten-
sion and (style) . ist is the name of the makeindex style file. By de-
fault, thisis (base) . i st, butmay be changed via \setStyleFile{(style)}.
Note that there are other options, such as -1 (letter ordering). See the
makeindex manual for further details.

For example, if your document is called myDoc . tex, then type the
following at the terminal:

makeindex -s myDoc.ist -t myDoc.glg —-o myDoc.gls myDoc.glo

Note that this only creates the main glossary. If you have additional
glossaries (for example, if you have used the acronym package option)
then you must call makeindex for each glossary, substituting .glg,
.gls and .glo with the relevant extensions. For example, if you
have used the acronym package option, then you need to type the fol-
lowing in your terminal:

makeindex -s myDoc.ist -t myDoc.alg -o myDoc.acr myDoc.acn
For additional glossaries, the extensions are those supplied when you
created the glossary with \newglossary.

Note that if you use makeglossaries instead, you can replace all
those calls to makeindex with just one call to makeglossaries:

makeglossaries myDoc

Note also that some commands and package options have no effect
if you use makeindex explicitly instead of using makeglossaries.

27

\@newglossary

\Q@istfilename

\@Qglsorder

\@xdylanguage
\@gls@codepage

1 Introduction
These are listed in table 1.3.

1.3.4 Note to Front-End and Script Developers

The information needed to determine whether to use xindy or
makeindex and the information needed to call those applications is
stored in the auxiliary file. This information can be gathered by a
front-end, editor or script to make the glossaries where appropriate.
This section describes how the information is stored in the auxiliary
file.

The file extensions used by each defined glossary are given by

\@newglossary{(label)} { (log)} { (out-ext) } { (in-ext) }

where (in-ext) is the extension of the indexing application’s input file
(the output file from the glossaries package’s point of view), (out-ext)
is the extension of the indexing application’s output file (the input file
from the glossaries package’s point of view) and (log) is the extension
of the indexing application’s transcript file. The label for the glossary
is also given for information purposes only, but is not required by the
indexing applications. For example, the information for the default
main glossary is written as:

\@newglossary{main}{glg}{gls}{glo}

The indexing application’s style file is specified by

\@istfilename {(filename)}

The file extension indicates whether to use makeindex (.ist) or
xindy (.xdy). Note that the glossary information is formatted dif-
ferently depending on which indexing application is supposed to be
used, so it’s important to call the correct one.

Word or letter ordering is specified by:

\Q@glsorder {(order)}

where (order) can be either word or letter.
If xindy should be used, the language and code page for each glos-
sary is specified by

\@xdylanguage { (label) } { (language) }
\@gls@codepage { (label)} { (code) }

28

1 Introduction

where (label) identifies the glossary, (language) is the root language
(e.g. english) and (code) is the encoding (e.g. ut£8). These com-
mands are omitted if makeindex should be used.

29

2 Package Options

This section describes the available glossaries package options.

2.1 General Options

nowarn This suppresses all warnings generated by the glossaries
package.

nomain This suppresses the creation of the main glossary. Note that if
you use this option, you must create another glossary in which
to put all your entries (either via the acronym package option
described in Section 2.5 or via \newglossary described in Sec-
tion 12).

sanitize Thisisa (key)=(value) option whose value is also a (key)=(value)

list. By default, the glossaries package sanitizes the values of the
name, description, symbol and sort keys used when defining a new
glossary entry. This means that you can use fragile commands
in those keys, but it may lead to unexpected results if you try to
display these values within the document text. This sanitization
can be switched off using the sanitize package option. For exam-
ple, to switch off the sanitization for the description and name
keys, but not for the symbol key, do:

\usepackage [sanitize={name=false,description=false, %
symbol=true}] {glossaries}

You can use sanitize=none as a shortcut for
sanitize={name=false,description=false,symbol=false}. Note that this

shortcut doesn’t change the sort sanitization. That one needs to
be switched off explicitly:

\usepackage[sanitize=none,sanitize={sort=false}]{glossaries}

30

2 Package Options

Note: this sanitization only applies to the name, description,
symbol and sort keys. It doesn’t apply to any of the other
keys so fragile commands contained in the value of the other

keys must always be protected using \protect. Since the
value of the text key is obtained from the name key, you will
still need to protect fragile commands in the name key if you
don’t use the text key.

savewrites This is a boolean option to minimises the number of
write registers used by the glossaries package. (Default is
savewrites=false.) There are only a limited number of write reg-
isters, and if you have a large number of glossaries or if you are
using a class or other packages that create a lot of external files,
you may exceed the maximum number of available registers. If
savewrites is set, the glossary information will be stored in token
registers until the end of the document when they will be writ-
ten to the external files. If you run out of token registers, you
can use etex.

This option can significantly slow document compilation. As
an alternative, you can use the scrwfile package (part of the
KOMA-Script bundle) and not use this option.

If you want to use TgX’s \writel8 mechanism to
call makeindex or xindy from your document and
use savewrites, you must create the external files with

\glswritefiles before you call makeindex/xindy.
Also set \glswritefiles tonothing or \relax before the
end of the document to avoid rewriting the files. For exam-

ple:

\glswritefiles

\writel8{makeindex -s \istfilename\space
-t \jobname.glg -o \jobname.gls \Jjobname}
\let\glswritefiles\relax

translate This is a boolean option. The default is true if babel, polyglos-
sia or translator have been loaded, otherwise the default value is
false.

31

2 Package Options

translate=true If babel has been loaded and the translator pack-
age is installed, translator will be loaded and the trans-
lations will be provided by the translator package inter-
face. You can modify the translations by providing your
own dictionary. If the translator package isn’t installed
and babel is loaded, the glossaries-babel package will be
loaded and the translations will be provided using babel’s
\addto\capt ion(language) mechanism. If polyglossia has
been loaded, glossaries-polyglossia will be loaded.

translate=false Don’t provide translations, even if babel or poly-
glossia has been loaded. You can then provide you're own
translations or explicitly load glossaries-babel or glossaries-
polyglossia.

See Section 1.2.1 for further details.

hyperfirst This is a boolean option that specifies whether each term
has a hyperlink on first use. The default is hyperfirst=true (terms
on first use have a hyperlink, unless explicitly suppressed using
starred versions of commands such as \glsx).

nohypertypes Use this option if you have multiple glossaries and you
want to suppress the entry hyperlinks for a particular glossary
or glossaries. The value of this option should be a comma-
separated list of glossary types where \gls etc shouldn’t have
hyperlinks by default. Make sure you enclose the value in
braces if it contains any commas. Example:

\usepackage [acronym, nohypertypes={acronym, notation}] {glossaries}
\newglossary[nlg] {notation}{not}{ntn} {Notation}

The values must be fully expanded, so don’t try nohypertypes=\acronymtype.
See Section 6 for further details.

savenumberlist This is a boolean option that specifies whether or not
to gather and store the number list for each entry. The de-
fault is savenumberlist=false. (See \glsentrynumberlist and
\glsdisplaynumberlist in Section 9.)

2.2 Sectioning, Headings and TOC Options
toc Add the glossaries to the table of contents. Note that an extra

IETEX run is required with this option. Alternatively, you can
switch this function on and off using

32

\glstoctrue

\glstocfalse

\setglossarysection

\glossarymark

2 Package Options

\glstoctrue

and

\glstocfalse

numberline When used with toc, this will add \numberline{} in

the final argument of \addcontentsline. This will align the
table of contents entry with the numbered section titles. Note
that this option has no effect if the toc option is omitted. If toc is
used without numberline, the title will be aligned with the section
numbers rather than the section titles.

section This is a (key)=(value) option. Its value should be the name of

a sectional unit (e.g. chapter). This will make the glossaries ap-
pear in the named sectional unit, otherwise each glossary will
appear in a chapter, if chapters exist, otherwise in a section. Un-
numbered sectional units will be used by default. Example:

\usepackage [section=subsection] {glossaries}
You can omit the value if you want to use sections, i.e.
\usepackage[section] {glossaries}

is equivalent to

\usepackage[section=section] {glossaries}

You can change this value later in the document using

\setglossarysection{(name)}

where (name) is the sectional unit.

The start of each glossary adds information to the page header
via

\glossarymark { (glossary title) }

This defaults to \@mkboth unless memoir is loaded, but you
may need to redefine it. For example, to only change the right
header:

\renewcommand{\glossarymark} [1] {\markright {#1}}

33

2 Package Options

or to prevent it from changing the headers:

\renewcommand{\glossarymark} [1]{}

If you want \glossarymark to use \MakeUppercase in the
header, use the ucmark option described below.

Occasionally you may find that another package defines
\cleardoublepage when it is not required. This may cause
an unwanted blank page to appear before each glossary. This
can be fixed by redefining \glsclearpage:

\renewcommand~*{\glsclearpage}{\clearpage}

ucmark This is a boolean option (default: ucmark=false). If set,
\glossarymark is defined to use \MakeUppercase

numberedsection The glossaries are placed in unnumbered sectional
units by default, but this can be changed using numberedsection.
This option can take three possible values: false (no number, i.e.
use starred form), nolabel (numbered, i.e. unstarred form, but
not labelled) and autolabel (numbered with automatic labelling).
If numberedsection=autolabel is used, each glossary is given a label
that matches the glossary type, so the main (default) glossary is
labelled main, the list of acronyms is labelled acronym' and
additional glossaries are labelled using the value specified in
the first mandatory argument to \newglossary. For example,
if you load glossaries using;:

\usepackage[section, numberedsection=autolabel] {glossaries}

then each glossary will appear in a numbered section, and can
be referenced using something like:

The main glossary is in section~\ref{main} and the list of
acronyms is in section~\ref{acronym}.

If you can’t decide whether to have the acronyms in the main
glossary or a separate list of acronyms, you can use \acronymtype
which is set to main if the acronym option is not used and is set

to acronym if the acronym option is used. For example:

The list of acronyms is in section~\ref{\acronymtype}.

As from version 1.14, you can add a prefix to the label by re-
defining

\glsautoprefix \glsautoprefix

Lif the acronym option is used, otherwise the list of acronyms is the main glossary

34

2 Package Options

For example:
\renewcommand~* {\glsautoprefix}{glo:}

will add glo: to the automatically generated label, so you can
then, for example, refer to the list of acronyms as follows:

The list of acronyms is in
section~\ref{glo:\acronymtype}.

Or, if you are undecided on a prefix:

The list of acronyms is in
section~\ref{\glsautoprefix\acronymtype}.

2.3 Glossary Appearance Options

entrycounter This is a boolean option. (Default is entrycounter=false.)
If set, each main (level 0) glossary entry will be numbered
when using the standard glossary styles. This option creates
glossaryentry the counter glossaryentry.

If you use this option, you can reference the entry number
within the document using

\glsrefentry \glsrefentry{(label)}

where (label) is the label associated with that glossary entry.

If you use \glsrefentry, you must run IKIEX twice
after creating the glossary files using makeglossaries,

makeindex or xindy to ensure the cross-references are up-
to-date.

counterwithin This is a (key)=(value) option where (value) is the name
of a counter. If used, this option will automatically set en-
trycounter=true and the glossaryentry counter will be reset every
time (value) is incremented.

\glsresetentrycounter

35

2 Package Options

The glossaryentry counter isn’t automatically reset at the
start of each glossary, except when glossary section num-
bering is on and the counter used by counterwithin is the
same as the counter used in the glossary’s sectioning com-
mand. If you want the counter reset at the start of each
glossary, you can redefine \glossarypreamble to use
\glsresetentrycounter, which sets glossaryentry to zero:

\renewcommand{\glossarypreamble}{%
\glsresetentrycounter

}

or if you want a different preamble per glossary, use
\setglossarypreamble.Forexanqﬂe

\setglossarypreamble [acronym] {%
\glsresetentrycounter
The preamble text here for the list of acronyms
}
\setglossarypreamble{%
\glsresetentrycounter
The preamble text here for the main glossary.

}

subentrycounter This is a boolean option. (Default is subentrycounter=false.)

If set, each level 1 glossary entry will be numbered when using

the standard glossary styles. This option creates the counter
glossarysubentry glossarysubentry. The counter is reset with each main (level 0)

entry. Note that this package option is independent of en-

trycounter. You can reference the number within the document

using \glsrefentry { (label) } where (label) is the label associ-

ated with the sub-entry.

style This is a (key)=(value) option. (Default is style=list.) Its value
should be the name of the glossary style to use. This key
may only be used for styles defined in glossary-list, glossary-long,
glossary-super or glossary-tree. (See Section 15.)

nolong This prevents the glossaries package from automatically load-
ing glossary-long (which means that the longtable package also
won’t be loaded). This reduces overhead by not defining un-
wanted styles and commands. Note that if you use this option,
you won't be able to use any of the glossary styles defined in
the glossary-long package.

nosuper This prevents the glossaries package from automatically load-

36

2 Package Options

ing glossary-super (which means that the supertabular package
also won’t be loaded). This reduces overhead by not defining
unwanted styles and commands. Note that if you use this op-
tion, you won't be able to use any of the glossary styles defined
in the glossary-super package.

nolist This prevents the glossaries package from automatically load-
ing glossary-list. This reduces overhead by not defining un-
wanted styles. Note that if you use this option, you won’t be
able to use any of the glossary styles defined in the glossary-list
package. Note that since the default style is list, you will also
need to use the style option to set the style to something else.

notree This prevents the glossaries package from automatically load-
ing glossary-tree. This reduces overhead by not defining un-
wanted styles. Note that if you use this option, you won’t be
able to use any of the glossary styles defined in the glossary-tree
package.

nostyles This prevents all the predefined styles from being loaded.
If you use this option, you need to load a glossary style pack-
age (such as glossary-mcols). Also if you use this option, you
can’t use the style package option. Instead you must either use
\glossarystyle{(style)} or the style key in the optional ar-
gument to \printglossary. Example:

\usepackage [nostyles] {glossaries}
\usepackage{glossary-mcols}
\glossarystyle{mcoltree}

nonumberlist This option will suppress the associated number lists in
the glossaries (see also Section 5).

seeautonumberlist If you suppress the number lists with nonumberlist,
described above, this will also suppress any cross-referencing
information supplied by the see key in \newglossaryentry
or \glssee. If you use seeautonumberlist, the see key will auto-
matically implement nonumberlist=false for that entry. (Note this
doesn’t affect \glssee.) For further details see Section 8.

counter This is a (key)=(value) option. (Default is counter=page.) The
value should be the name of the default counter to use in the
number lists (see Section 5).

nopostdot This is a boolean option. If no value is specified, true is
assumed. When set to t rue, this option suppresses the default

37

2 Package Options

post description dot used by some of the predefined styles. The
default setting is nopostdot=false.

nogroupskip This is a boolean option. If no value is specified, t rue is
assumed. When set to t rue, this option suppresses the default
vertical gap between groups used by some of the predefined
styles. The default setting is nogroupskip=false.

2.4 Sorting Options

sort This is a (key)=(value) option where the option can only have
one of the following values:

* standard : entries are sorted according to the value of the
sort key used in \newglossaryentry (if present) or the
name key (if sort key is missing);

* def : entries are sorted in the order in which they were de-
fined (the sort key in \newglossaryentry is ignored);

* use: entries are sorted according to the order in which they
are used in the document (the sort key in \newglossaryentry
is ignored).

The default is sort=standard.

order This may take two values: word or letter. The default is word
ordering.

Note that the order option has no effect if you don’t use
makeglossaries.

makeindex (Default) The glossary information and indexing style file
will be written in make index format. If you usemakeglossaries,
it will automatically detect that it needs to call makeindex. If
you don’t use makeglossaries, you need to remember to use
makeindex not xindy. The indexing style file will been given
a .ist extension.

xindy The glossary information and indexing style file will be writ-
ten in xindy format. If you use makeglossaries, it will au-
tomatically detect that it needs to call xindy. If you don’t use
makeglossaries, you need to remember to use xindy not
makeindex. The indexing style file will been given a . xdy ex-
tension.

38

2 Package Options

The xindy package option may additionally have a value that is
a (key)=(value) comma-separated list to override the language
and codepage. For example:

\usepackage [xindy={language=english, codepage=utf8}] {glossaries}

You can also specify whether you want a number group in the
glossary. This defaults to true, but can be suppressed. For ex-
ample:

\usepackage [xindy={glsnumbers=false}] {glossaries}

See Section 11 for further details on using xindy with the glos-
saries package.

2.5 Acronym Options

acronym This creates a new glossary with the label acronym. This is
equivalent to:

\newglossary[alg] {acronym}{acr}{acn} {\acronymname}

If the acronym package option is used, \acronymtype is set to
acronym otherwise it is set to main.” Entries that are defined
using \newacronym are placed in the glossary whose label is
given by \acronymtype, unless another glossary is explicitly
specified.

acronymlists By default, only the \acronymtype glossary is consid-
ered to be a list of acronyms. If you have other lists of acronyms,
you can specify them as a comma-separated list in the value of
acronymlists. For example, if you use the acronym package op-
tion but you also want the main glossary to also contain a list
of acronyms, you can do:

\usepackage [acronym, acronymlists={main}]{glossaries}

No check is performed to determine if the listed glossaries exist,
so you can add glossaries you haven’t defined yet. For example:

\usepackage [acronym, acronymlists={main, acronym2}]{glossaries}
\newglossary[alg2] {acronym2}{acr2}{acn2}{Statistical Acronyms}

2AC’cually it sets \acronymtype to \glsdefaulttype if the acronym package op-
tion is not used, but \glsdefaulttype usually has the value main.

39

2 Package Options

description This option changes the definition of \newacronymto al-
low a description. This option has no effect if you defined your
own custom acronym style. See Section 13 for further details.

footnote This option changes the definition of \newacronymand the
way that acronyms are displayed. This option has no effect if
you defined your own custom acronym style. See Section 13 for
further details.

smallcaps This option changes the definition of \newacronym and
the way that acronyms are displayed. This option may have
no effect if you defined your own custom acronym style. See
Section 13 for further details.

smaller This option changes the definition of \newacronym and the
way that acronyms are displayed. If you use this option, you
will need to include the relsize package or otherwise define
\textsmaller or redefine \acronymfont. This option may
have no effect if you defined your own custom acronym style.
See Section 13 for further details.

dua This option changes the definition of \newacronym so that
acronyms are always expanded. This option has no effect if you
defined your own custom acronym style. See Section 13 for fur-
ther details.

shortcuts This option provides shortcut commands for acronyms.
See Section 13 for further details.

40

3 Setting Up

The command

\makeglossaries \makeglossaries

must be placed in the preamble in order to create the customised
makeindex (.ist) or xindy (.xdy) style file and to ensure that
glossary entries are written to the appropriate output files. If you
omit \makeglossaries none of the glossaries will be created.

Note that some of the commands provided by the glossaries pack-
age must be placed before \makeglossaries as they are re-
quired when creating the customised style file. If you attempt to

use those commands after \makeglossaries you will generate
an error.

Similarly, there are some commands that must be used after
\makeglossaries.

You can suppress the creation of the customised xindy ormakeindex
style file using

\noist \noist

Note that this command must be used before \makeglossaries.

Note that if you have a custom . xdy file created when using glos-
saries version 2.07 or below, you will need to use the compatible-2.07

package option with it.

The default name for the customised style file is given by \ jobname . ist
(for makeindex) or \ jobname . xdy (for xindy). This name may be
changed using;:

\setStyleFile \setStyleFile{ (name)}

where (name) is the name of the style file without the extension. Note
that this command must be used before \makeglossaries.

41

\glsSetCompositor

\glsSetAlphaCompositor

3 Setting Up

Each glossary entry is assigned a number list that lists all the lo-
cations in the document where that entry was used. By default, the
location refers to the page number but this may be overridden using
the counter package option. The default form of the location number
assumes a full stop compositor (e.g. 1.2), but if your location numbers
use a different compositor (e.g. 1-2) you need to set this using

\glsSetCompositor {(symbol)}

For example:

\glsSetCompositor{-}

Note that this command must be used before \makeglossaries.
If you use xindy, you can have a different compositor for page
numbers starting with an uppercase alphabetical character using;:

\glsSetAlphaCompositor {(symbol)}

Note that this command has no effect if you haven’t used the xindy
package option. For example, if you want number lists containing a
mixture of A-1 and 2.3 style formats, then do:

\glsSetCompositor{.}\glsSetAlphaCompositor{-}

See Section 5 for further information about number lists.

42

\newglossaryentry

\nopostdesc

4 Defining Glossary Entries

All glossary entries must be defined before they are used, so it is bet-
ter to define them in the preamble to ensure this.! However only
those entries that occur in the document (using any of the commands
described in Section 6, Section 7 or Section 8) will appear in the glos-
sary. Each time an entry is used in this way, a line is added to an as-
sociated glossary file (. g1o), which then needs to be converted into a
corresponding . g1s file which contains the typeset glossary which is
inputby \printglossary or \printglossaries. The Perl script
makeglossaries canbe used to call makeindex or xindy, using a
customised indexing style file, for each of the glossaries that are de-
fined in the document. Note that there should be no need for you to
explicitly edit or input any of these external files.” See Section 1.3
for further details.
New glossary entries are defined using the command:

\newglossaryentry { (label)} { (key-val list)}

The first argument, (label), must be a unique label with which to iden-
tify this entry. The second argument, (key-val list), is a (key)=(value)
list that supplies the relevant information about this entry. There are
two required fields: description and either name or parent. Available
fields are listed below:

name The name of the entry (as it will appear in the glossary). If this
key is omitted and the parent key is supplied, this value will be
the same as the parent’s name.

description A brief description of this term (to appear in the glossary).
Within this value, you can use

\nopostdesc

1Theonb/pnmnﬂﬂereﬁﬁcﬁon(nl\newglossaryentryand.\newacronym\Nas
removed in version 1.13, but the restriction remains for \1loadglsentries.

2Except possibly the style file but then you’ll need to use \noist to prevent your
changes from being overwritten.

43

\glspar

4 Defining Glossary Entries

to suppress the description terminator for this entry. For exam-
ple, if this entry is a parent entry that doesn’t require a descrip-
tion, you can do description={\nopostdesc}. If you want
a paragraph break in the description use

\glspar

However, note that not all glossary styles support multi-line
descriptions. If you are using one of the tabular-like glossary
styles that permit multi-line descriptions, use \newline not \\
if you want to force a line break.

parent The label of the parent entry. Note that the parent entry must
be defined before its sub-entries. See Section 4.3 for further de-
tails.

descriptionplural The plural form of the description (as passed to
\glsdisplay and \glsdisplayfirst by \glspl, \Glspl
and \GLSpl). If omitted, the value is set to the same as the
description key. (Note that if you want the description to ap-
pear in the main body of the document, you must switch off
the description sanitization using the sanitize package option de-
scribed in Section 2.1.)

text How this entry will appear in the document text when using
\gls (or one of its uppercase variants). If this field is omitted,
the value of the name key is used.

first How the entry will appear in the document text on first use with
\gls (or one of its uppercase variants). If this field is omitted,
the value of the text key is used. Note that if you use \glspl,
\Glspl, \GLSpl, \glsdisp before using \gls, the firstplural
value won't be used with \gls.

plural How the entry will appear in the document text when using
\glspl (or one of its uppercase variants). If this field is omit-
ted, the value is obtained by appending \glspluralsuffix

to the value of the text field. The default value of \glspluralsuffix

is the letter “s”.

firstplural How the entry will appear in the document text on first
use with \glspl (or one of its uppercase variants). If this field
is omitted, the value is obtained from the plural key, if the first
key is omitted, or by appending \glspluralsuffix to the
value of the first field, if the first field is present. Note that if you

44

4 Defining Glossary Entries

use \gls, \Gls, \GLS, \glsdisp before using \glspl, the
firstplural value won't be used with \glspl.

Note: prior to version 1.13, the default value of firstplural was
always taken by appending “s” to the first key, which meant that
you had to specify both plural and firstplural, even if you hadn’t

used the first key.

symbol This field is provided to allow the user to specify an asso-
ciated symbol. If omitted, the value is set to \relax. Note
that not all glossary styles display the symbol. (If you want the
symbol to appear in the main body of the document, you must
switch off the symbol sanitization using the sanitize package op-
tion described in Section 2.1.)

symbolplural This is the plural form of the symbol (as passed to
\glsdisplay and \glsdisplayfirst by \glspl, \Glspl
and \GLSpl). If omitted, the value is set to the same as the
symbol key.

sort This value indicates how makeindex or xindy should sort this
entry. If omitted, the value is given by the name field. In gen-
eral, it’s best to use the sort key if the name contains commands
(e.g. \ensuremath{\alpha}). Note that the package options
sort=def and sort=use override the sortkey in \newglossaryentry
(see Section 2.4).

type This specifies the label of the glossary in which this entry
belongs. If omitted, the default glossary is assumed unless
\newacronym is used (see Section 13).

user1, ..., useré Six keys provided for any additional information the
user may want to specify. (For example an associated dimen-
sion or an alternative plural or some other grammatical con-
struct.)

nonumberlist A boolean key. If the value is missing or is true, this
will suppress the number list just for this entry. Conversely, if
you have used the package option nonumberlist, you can activate
the number list just for this entry with nonumberlist=false. (See
Section 5.)

see Cross-reference another entry. Using the see key will automati-
cally add this entry to the glossary, but will not automatically
add the cross-referenced entry. The referenced entry should be
supplied as the value to this key. If you want to override the
“see” tag, you can supply the new tag in square brackets before

45

4 Defining Glossary Entries

the label. For example see=[see also]{anotherlabel}.
Note that if you have suppressed the number list, the cross-
referencing information won’t appear in the glossary. You
can override this for individual glossary entries using nonum-
berlist=false (see above). Alternatively, you can use the seeauton-
umberlist package option. For further details, see Section 8.

\makeglossaries must be used before any occurrence of
\newglossaryentry that contains the see key.

The following keys are reserved for \newacronym (see Section 13):
long, longplural, short and shortplural.

Note that if the name starts with an accented letter or non-Roman
character, you must group the character, otherwise it will cause a
problem for commands like \G1s and \G1lspl. For example:

\newglossaryentry{elite} {name={{\’e}lite},
description={select group or class}}

Note that the same applies if you are using the inputenc package:

\newglossaryentry{elite} {name={{é}lite},
description={select group or class}}

Note that in both of the above examples, you will also need to supply
the sort key if you are using makeindex whereas xindy is usually
able to sort accented letters correctly.

4.1 Plurals

You may have noticed from above that you can specify the plural
form when you define a term. If you omit this, the plural will be
obtained by appending

\glspluralsuffix \glspluralsuffix

“_ 7
S

to the singular form. This command defaults to the letter “s”. For

example:

\newglossaryentry{cow} {name=cow,description={a fully grown
female of any bovine animal}}

defines a new entry whose singular form is “cow” and plural form
is “cows”. However, if you are writing in archaic English, you may

46

4 Defining Glossary Entries

want to use “kine” as the plural form, in which case you would have
to do:

\newglossaryentry{cow} {name=cow,plural=kine,
description={a fully grown female of any bovine animal}}

If you are writing in a language that supports multiple plurals (for
a given term) then use the plural key for one of them and one of the
user keys to specify the other plural form. For example:

\newglossaryentry{cow} {name=cow,description={a fully grown
female of any bovine animal (plural cows, archaic plural kine)},
userl={kine}}

You can then use \glspl{cow} toproduce “cows” and \glsuseri{cow}
to produce “kine”. You can, of course, define an easy to remember
synonym. For example:

\let\glsaltpl\glsuseri

Then you don’t have to remember which key you used to store the
alternative plural.

If you are using a language that usually forms plurals by ap-
pending a different letter, or sequence of letters, you can redefine
\glspluralsuffix asrequired. However, this must be done before
the entries are defined. For languages that don’t form plurals by sim-
ply appending a suffix, all the plural forms must be specified using
the plural key (and the firstplural key where necessary).

4.2 Other Grammatical Constructs

You can use the six user keys to provide alternatives, such as partici-
ples. For example:

\let\glsing\glsuseri
\let\glsd\glsuserii

\newcommandx {\ingkey}{userl}
\newcommandx { \edkey} {user2}

\newcommandx* { \newterm} [3] []1{%
\newglossaryentry{#2}{%
name={#2}, %
description={#3},%
\edkey={#2ed}, %
\ingkey={#2ing}, #1%

}%

47

4 Defining Glossary Entries

With the above definitions, I can now define terms like this:

\newterm{play}{to take part in activities for enjoyment}
\newterm[\edkey={ran}, \ingkey={running}] {run}{to move fast using
the legs}

and use them in the text:

Peter is \glsing{play} in the park today.
Jane \glsd{play} in the park yesterday.

Peter and Jane \glsd{run} in the park last week.

4.3 Sub-Entries

As from version 1.17, it is possible to specify sub-entries. These may
be used to order the glossary into categories, in which case the sub-
entry will have a different name to its parent entry, or it may be used
to distinguish different definitions for the same word, in which case
the sub-entries will have the same name as the parent entry. Note that
not all glossary styles support hierarchical entries and may display
all the entries in a flat format. Of the styles that support sub-entries,
some display the sub-entry’s name whilst others don’t. Therefore you
need to ensure that you use a suitable style. (See Section 15 for a list
of predefined styles.) As from version 3.0, level 1 sub-entries are au-
tomatically numbered in the predefined styles if you use the suben-
trycounter package option (see Section 2.3 for further details).

Note that the parent entry will automatically be added to the glos-
sary if any of its child entries are used in the document. If the parent
entry is not referenced in the document, it will not have a number
list. Note also that makeindex has a restriction on the maximum
sub-entry depth.

4.3.1 Hierarchical Categories

To arrange a glossary with hierarchical categories, you need to first
define the category and then define the sub-entries using the relevant
category entry as the value of the parent key. For example, suppose I
want a glossary of mathematical symbols that are divided into Greek
letters and Roman letters. Then I can define the categories as follows:

\newglossaryentry{greekletter}{name={Greek letters},
description={\nopostdesc}}

\newglossaryentry{romanletter}{name={Roman letters},
description={\nopostdesc}}

48

4 Defining Glossary Entries

Note that in this example, the category entries don’t need a de-
scription so I have set the descriptions to \nopostdesc. This gives
a blank description and suppresses the description terminator.

I can now define my sub-entries as follows:

\newglossaryentry{pi}{name={\ensuremath{\pi}},sort={pi},
description={ratio of the circumference of a circle to
the diameter},

parent=greekletter}

\newglossaryentry{C} {name={\ensuremath{C}},sort={C},
description={Euler’s constant},
parent=romanletter}

4.3.2 Homographs

Sub-entries that have the same name as the parent entry, don’t need
to have the name key. For example, the word “glossary” can mean
a list of technical words or a collection of glosses. In both cases the
plural is “glossaries”. So first define the parent entry:

\newglossaryentry{glossary}{name=glossary,
description={\nopostdesc},
plural={glossaries}}

Again, the parent entry has no description, so the description termi-
nator needs to be suppressed using \nopostdesc.
Now define the two different meanings of the word:

\newglossaryentry{glossarylist}{
description={list of technical words},
sort={1},

parent={glossary}}

\newglossaryentry{glossarycol}{
description={collection of glosses},
sort={2},

parent={glossary}}

Note that if I reference the parent entry, the location will be added to
the parent’s number list, whereas if I reference any of the child entries,
the location will be added to the child entry’s number list. Note also
that since the sub-entries have the same name, the sort key is required
unless you are using the sort=use or sort=def package options. You can
use the subentrycounter package option to automatically number the
first-level child entries. See Section 2.3 for further details.

In the above example, the plural form for both of the child entries
is the same as the parent entry, so the plural key was not required for

49

\loadglsentries

4 Defining Glossary Entries

the child entries. However, if the sub-entries have different plurals,
they will need to be specified. For example:

\newglossaryentry{bravo} {name={bravo},
description={\nopostdesc}}

\newglossaryentry{bravocry}{description={cry of approval
(pl.\ bravos)},

sort={1},

plural={bravos},

parent=bravo}

\newglossaryentry{bravoruffian}{description={hired
ruffian or killer (pl.\ bravoes)},

sort={2},

plural={bravoes},

parent=bravo}

4.4 Loading Entries From a File

You can store all your glossary entry definitions in another file and
use:

\loadglsentries [(type)] { (filename) }

where (filename) is the name of the file containing all the \newglossaryentry
commands. The optional argument (fype) is the name of the glos-

sary to which those entries should belong, for those entries where

the type key has been omitted (or, more specifically, for those entries

whose type has been specified by \glsdefaulttype, which is what
\newglossaryentry uses by default). For example, suppose I have

a file called myentries.tex which contains:

\newglossaryentry{perl} {type=main,
name={Perl},
description={A scripting language}}

\newglossaryentry{tex}{name={\TeX},
description={A typesetting language}, sort={TeX}}

\newglossaryentry{html} {type=\glsdefaulttype,
name={html},
description={A mark up language}}

and suppose in my document preamble I use the command:

\loadglsentries[languages] {myentries}

50

4 Defining Glossary Entries

then this will add the entries tex and html to the glossary whose
type is given by languages, but the entry perl will be added to the
main glossary, since it explicitly sets the type to main.

Note: if you use \newacronym (see Section 13) the type is set as
type=\acronymtype unless you explicitly override it. For example,
if my file myacronyms . tex contains:

\newacronym{aca}{aca}{a contrived acronym}
then (supposing I have defined a new glossary type called altacronym)
\loadglsentries[altacronym] {myacronyms}

will add aca to the glossary type acronym, if the package option
acronym has been specified, or will add aca to the glossary type
altacronym, if the package option acronym is not specified.’

If you have used the acronym package option, there are two possible
solutions to this problem:

1. Change myacronyms.tex so that entries are defined in the
form:

\newacronym[type=\glsdefaulttype] {aca}{aca}{a
contrived acronym}

and do:
\loadglsentries[altacronym] {myacronyms}

2. Temporarily change \acronymtype to the target glossary:

\let\orgacronymtype\acronymtype
\def\acronymtype{altacronym}
\loadglsentries{myacronyms }
\let\acronymtypelorgacronymtype

Note that only those entries that have been used in the text will

appear in the relevant glossaries. Note also that \1oadglsentries
may only be used in the preamble.

4.5 Moving Entries to Another Glossary

As from version 3.02, you can move an entry from one glossary to
another using:

51

4 Defining Glossary Entries

\glsmoveentry | \glsmoveentry {(label)} {(target glossary label)}

where (label) is the unique label identifying the required entry and
(target glossary label) is the unique label identifying the glossary in
which to put the entry.

Note that no check is performed to determine the existence of the
target glossary. This means that you can, for example, move an entry
to an undefined glossary so you can use the entry in the document
text but not have it listed in any of the glossaries. (Maybe you have
an acronym so common it doesn’t need listing.)

If you move an entry to an undefined glossary and you have
hyperlinked entries, the link will point to an undefined tar-
get. (Unless you identify that glossary using nohypertypes or
\GlsDeclareNoHyperList, as described in Section 6.) Also,

you will get warnings about no file defined for that glossary (un-
less you use the nowarn package option). Unpredictable results
may occur if you move an entry to a different glossary from its
parent or children.

3This is because \acronymtype is set to \glsdefaulttype if the acronym pack-
age option is not used.

52

\glsSetSuffixF

\glsSetSuffixFF

5 Number lists

Each entry in the glossary has an associated number list. By default,
these numbers refer to the pages on which that entry has been used
(using any of the commands described in Section 6 and Section 7).
The number list can be suppressed using the nonumberlist package
option, or an alternative counter can be set as the default using the
counter package option. The number list is also referred to as the loca-
tion list.

Both makeindex and xindy concatenate a sequence of 3 or more
consecutive pages into a range. With xindy you can vary the min-
imum sequence length using \GlsSetXdyMinRangeLength{(n)}
where (1) is either an integer or the keyword none which indicates
that there should be no range formation.

Note that \GlsSetXdyMinRangeLength must be used before
\makeglossaries and has no effect if \noist is used.

With both makeindex and xindy, you can replace the separator
and the closing number in the range using;:

\glsSetSuffixF {(suffix)}

\glsSetSuffixFF {(suffix)}

where the former command specifies the suffix to use for a 2 page list
and the latter specifies the suffix to use for longer lists. For example:

\glsSetSuffixF{f.}
\glsSetSuffixFF{ff.}

Note that if you use xindy, you will also need to set the minimum
range length to 1 if you want to change these suffixes:

\GlsSetXdyMinRangeLength{1l}

Note that if you use the hyperref package, you will need to use
\nohyperpage in the suffix to ensure that the hyperlinks work cor-
rectly. For example:

53

5 Number lists

\glsSetSuffixF{\nohyperpage{f.}}
\glsSetSuffixFF{\nohyperpage{ff.}}

Note that \glsSetSuffixF and \glsSetSuffixFF must be

used before \makeglossaries and have no effect if \noist is
used.

54

6 Links to Glossary Entries

Once you have defined a glossary entry using \newglossaryentry,
you can refer to that entry in the document using one of the com-
mands listed in this section. The text which appears at that point in
the document when using one of these commands is referred to as
the link text (even if there are no hyperlinks). The commands in this
section also add a line to an external file that is used by makeindex
or xindy to generate the relevant entry in the glossary. This informa-
tion includes an associated location that is added to the number list
for that entry. By default, the location refers to the page number. For
further information on number lists, see Section 5.

It is strongly recommended that you don’t use the commands de-
fined in this section in the arguments of sectioning or caption com-

mands or any other command that has a moving argument.

The above warning is particularly important if you are using the
glossaries package in conjunction with the hyperref package. Instead,
use one of the commands listed in Section 9 (such as \glsentrytext)
or provide an alternative via the optional argument to the section-
ing/caption command. Examples:

\chapter{An overview of \glsentrytext{perl}}
\chapter[An overview of Perl]{An overview of \gls{perl}}

If you want the link text to produce a hyperlink to the correspond-
ing entry details in the glossary, you should load the hyperref package
before the glossaries package. That’s what I've done in this document,
so if you see a hyperlinked term, such as link text, you can click on
the word or phrase and it will take you to a brief description in this
document’s glossary.

It may be that you only want terms in a certain glossary to have
links, but not for another glossary. In which case, you can use
the package option nohypertypes to identify the glossary lists that
shouldn’t have hyperlinked link text. For example, suppose your
document contains lots of technical acronyms that the reader might
not know, but it also contains some very common acronyms that most
readers will recognise. So you might want two acronym lists, but only

55

6 Links to Glossary Entries

the technical list will get displayed in your document. The techni-
cal acronyms can be hyperlinked to that list, but common acronyms
shouldn’t have hyperlinks as there’s no target for them. In this case,
identify the common acronym list as having non-hyperlinked entries
using nohypertypes. Example:

\usepackage [acronym, nohypertypes={common}] {glossaries}
\newglossary{common} {cacr}{cacn}{Common Acronyms}

Alternatively, you can use

\GlsDeclareNoHyperList | \GlsDeclareNoHyperList {(type)}

For example:

\usepackage[acronym] {glossaries}
\newglossary{common} {cacr}{cacn}{Common Acronyms}
\GlsDeclareNoHyperList {common}

Note that no check is performed to see if the glossary types listed in
nohypertypes or \GlsDeclareNoHyperList have been defined.

The values must be fully expanded, so don’t try
nohypertypes=\acronymtype or
\GlsDeclareNoHyperList {\acronymtype}. Also, avoid
unnecessary braces. For example,
\GlsDeclareNoHyperList{{acronym}, {common}} won't
work. You do however need an enclosing brace for the whole list

when using the package option. So

\usepackage [nohypertypes={acronym, common}] {glossaries

is correct, but nohypertypes={{acronym}, {common} } won't
work.

You can override the effect of nohypertypes or \G1sDeclareNoHyperList
by explicitly setting the hyper option in commands such as \glslink
or \gls.

The way the link text is displayed depends on

\glstextformat [\glstextformat {(fext)}

For example, to make all link text appear in a sans-serif font, do:

\renewcommand«*{\glstextformat} [1] {\textsf{#1}}

56

\glslink

6 Links to Glossary Entries

Each entry has an associated conditional referred to as the first use
flag. This determines whether \gls, \glspl (and their uppercase
variants) should use the value of the first or text keys. Note that an
entry can be used without affecting the first use flag (for example,
when used with \gls1link). See Section 14 for commands that unset
or reset this conditional.

The command:

\glslink [(options)] {(label)} { (text)}

will place \glstextformat {(text)} in the document at that point
and add a line into the associated glossary file for the glossary entry
given by (label). If hyperlinks are supported, (text) will be a hyperlink
to the relevant line in the glossary. (Note that this command doesn’t
affect the first use flag: use \glsdisp instead.) The optional argu-
ment (options) must be a (key)=(value) list which can take any of the
following keys:

format This specifies how to format the associated location number
for this entry in the glossary. This value is equivalent to the
makeindex encap value, and (as with \ index) the value needs
to be the name of a command without the initial backslash. As
with \index, the characters (and) can also be used to spec-
ify the beginning and ending of a number range. Again as
with \ index, the command should be the name of a command
which takes an argument (which will be the associated loca-
tion). Be careful not to use a declaration (such as bfseries)
instead of a text block command (such as textbf) as the effect
is not guaranteed to be localised. If you want to apply more
than one style to a given entry (e.g. bold and italic) you will
need to create a command that applies both formats, e.g.

\newcommandx { \textbfem} [1] {\textbf{\emph{#1}}}

and use that command.

In this document, the standard formats refer to the standard text
block commands such as \textbf or \emph or any of the com-
mands listed in table 6.1.

57

6 Links to Glossary Entries

If you use xindy instead of makeindex, you must specify
any non-standard formats that you want to use with the for-
mat key using \GlsAddXdyAttribute{(name)}. So if you
use xindy with the above example, you would need to add:

\GlsAddXdyAttribute{textbfem}

See Section 11 for further details.

Note that unlike \ index, you can’t have anything following the
command name, such as an asterisk or arguments. If you want
to cross-reference another entry, either use the see key when you
define the entry or use \glssee (described in Section 8).

If you are using hyperlinks and you want to change the font of
the hyperlinked location, don’t use \hyperpage (provided by
the hyperref package) as the locations may not refer to a page
number. Instead, the glossaries package provides number for-
mats listed in table 6.1.

Table 6.1: Pre