library(tidytof)
library(dplyr)
library(ggplot2)
count <- dplyr::count
Often, high-dimensional cytometry experiments collect tens or hundreds or millions of cells in total, and it can be useful to downsample to a smaller, more computationally tractable number of cells - either for a final analysis or while developing code.
To do this, {tidytof}
implements the tof_downsample()
verb, which allows downsampling using 3 methods: downsampling to an integer number of cells, downsampling to a fixed proportion of the total number of input cells, or downsampling to a fixed cellular density in phenotypic space.
tof_downsample()
Using {tidytof}
’s built-in dataset phenograph_data
, we can see that the original size of the dataset is 1000 cells per cluster, or 3000 cells in total:
data(phenograph_data)
phenograph_data |>
dplyr::count(phenograph_cluster)
#> # A tibble: 3 × 2
#> phenograph_cluster n
#> <chr> <int>
#> 1 cluster1 1000
#> 2 cluster2 1000
#> 3 cluster3 1000
To randomly sample 200 cells per cluster, we can use tof_downsample()
using the “constant” method
:
phenograph_data |>
# downsample
tof_downsample(
group_cols = phenograph_cluster,
method = "constant",
num_cells = 200
) |>
# count the number of downsampled cells in each cluster
count(phenograph_cluster)
#> # A tibble: 3 × 2
#> phenograph_cluster n
#> <chr> <int>
#> 1 cluster1 200
#> 2 cluster2 200
#> 3 cluster3 200
Alternatively, if we wanted to sample 50% of the cells in each cluster, we could use the “prop” method
:
phenograph_data |>
# downsample
tof_downsample(
group_cols = phenograph_cluster,
method = "prop",
prop_cells = 0.5
) |>
# count the number of downsampled cells in each cluster
count(phenograph_cluster)
#> # A tibble: 3 × 2
#> phenograph_cluster n
#> <chr> <int>
#> 1 cluster1 500
#> 2 cluster2 500
#> 3 cluster3 500
And finally, we might also be interested in taking a slightly different approach to downsampling that reduces the number of cells not to a fixed constant or proportion, but to a fixed density in phenotypic space. For example, the following scatterplot demonstrates that there are certain areas of phenotypic density in phenograph_data
that contain more cells than others along the cd34
/cd38
axes:
rescale_max <-
function(x, to = c(0, 1), from = range(x, na.rm = TRUE)) {
x / from[2] * to[2]
}
phenograph_data |>
# preprocess all numeric columns in the dataset
tof_preprocess(undo_noise = FALSE) |>
# plot
ggplot(aes(x = cd34, y = cd38)) +
geom_hex() +
coord_fixed(ratio = 0.4) +
scale_x_continuous(limits = c(NA, 1.5)) +
scale_y_continuous(limits = c(NA, 4)) +
scale_fill_viridis_c(
labels = function(x) round(rescale_max(x), 2)
) +
labs(
fill = "relative density"
)
To reduce the number of cells in our dataset until the local density around each cell in our dataset is relatively constant, we can use the “density” method
of tof_downsample
:
phenograph_data |>
tof_preprocess(undo_noise = FALSE) |>
tof_downsample(method = "density", density_cols = c(cd34, cd38)) |>
# plot
ggplot(aes(x = cd34, y = cd38)) +
geom_hex() +
coord_fixed(ratio = 0.4) +
scale_x_continuous(limits = c(NA, 1.5)) +
scale_y_continuous(limits = c(NA, 4)) +
scale_fill_viridis_c(
labels = function(x) round(rescale_max(x), 2)
) +
labs(
fill = "relative density"
)
Thus, we can see that the density after downsampling is more uniform (though not exactly uniform) across the range of cd34
/cd38
values in phenograph_data
.
For more details, check out the documentation for the 3 underlying members of the tof_downsample_*
function family (which are wrapped by tof_downsample
):
tof_downsample_constant
tof_downsample_prop
tof_downsample_density
sessionInfo()
#> R Under development (unstable) (2024-03-18 r86148)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 22.04.4 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.19-bioc/R/lib/libRblas.so
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: America/New_York
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats4 stats graphics grDevices utils datasets methods
#> [8] base
#>
#> other attached packages:
#> [1] tidyr_1.3.1 stringr_1.5.1
#> [3] HDCytoData_1.23.1 flowCore_2.15.3
#> [5] SummarizedExperiment_1.33.3 Biobase_2.63.0
#> [7] GenomicRanges_1.55.4 GenomeInfoDb_1.39.9
#> [9] IRanges_2.37.1 S4Vectors_0.41.5
#> [11] MatrixGenerics_1.15.0 matrixStats_1.2.0
#> [13] ExperimentHub_2.11.1 AnnotationHub_3.11.3
#> [15] BiocFileCache_2.11.1 dbplyr_2.5.0
#> [17] BiocGenerics_0.49.1 forcats_1.0.0
#> [19] ggplot2_3.5.0 dplyr_1.1.4
#> [21] tidytof_0.99.2
#>
#> loaded via a namespace (and not attached):
#> [1] jsonlite_1.8.8 shape_1.4.6.1 magrittr_2.0.3
#> [4] farver_2.1.1 rmarkdown_2.26 zlibbioc_1.49.3
#> [7] vctrs_0.6.5 memoise_2.0.1 htmltools_0.5.7
#> [10] S4Arrays_1.3.6 curl_5.2.1 SparseArray_1.3.4
#> [13] sass_0.4.9 parallelly_1.37.1 bslib_0.6.2
#> [16] lubridate_1.9.3 cachem_1.0.8 commonmark_1.9.1
#> [19] igraph_2.0.3 mime_0.12 lifecycle_1.0.4
#> [22] iterators_1.0.14 pkgconfig_2.0.3 Matrix_1.7-0
#> [25] R6_2.5.1 fastmap_1.1.1 GenomeInfoDbData_1.2.11
#> [28] future_1.33.1 digest_0.6.35 colorspace_2.1-0
#> [31] AnnotationDbi_1.65.2 irlba_2.3.5.1 RSQLite_2.3.5
#> [34] labeling_0.4.3 filelock_1.0.3 cytolib_2.15.2
#> [37] fansi_1.0.6 yardstick_1.3.1 timechange_0.3.0
#> [40] httr_1.4.7 polyclip_1.10-6 abind_1.4-5
#> [43] compiler_4.4.0 bit64_4.0.5 withr_3.0.0
#> [46] doParallel_1.0.17 viridis_0.6.5 DBI_1.2.2
#> [49] hexbin_1.28.3 highr_0.10 ggforce_0.4.2
#> [52] MASS_7.3-60.2 lava_1.8.0 embed_1.1.4
#> [55] rappdirs_0.3.3 DelayedArray_0.29.9 tools_4.4.0
#> [58] future.apply_1.11.1 nnet_7.3-19 glue_1.7.0
#> [61] grid_4.4.0 Rtsne_0.17 generics_0.1.3
#> [64] recipes_1.0.10 gtable_0.3.4 tzdb_0.4.0
#> [67] class_7.3-22 data.table_1.15.2 hms_1.1.3
#> [70] tidygraph_1.3.1 utf8_1.2.4 XVector_0.43.1
#> [73] RcppAnnoy_0.0.22 markdown_1.12 ggrepel_0.9.5
#> [76] BiocVersion_3.19.1 foreach_1.5.2 pillar_1.9.0
#> [79] RcppHNSW_0.6.0 splines_4.4.0 tweenr_2.0.3
#> [82] lattice_0.22-6 survival_3.5-8 bit_4.0.5
#> [85] RProtoBufLib_2.15.1 tidyselect_1.2.1 Biostrings_2.71.5
#> [88] knitr_1.45 gridExtra_2.3 xfun_0.42
#> [91] graphlayouts_1.1.1 hardhat_1.3.1 timeDate_4032.109
#> [94] stringi_1.8.3 yaml_2.3.8 evaluate_0.23
#> [97] codetools_0.2-19 ggraph_2.2.1 tibble_3.2.1
#> [100] BiocManager_1.30.22 cli_3.6.2 uwot_0.1.16
#> [103] rpart_4.1.23 munsell_0.5.0 jquerylib_0.1.4
#> [106] Rcpp_1.0.12 globals_0.16.3 png_0.1-8
#> [109] parallel_4.4.0 ellipsis_0.3.2 gower_1.0.1
#> [112] readr_2.1.5 blob_1.2.4 listenv_0.9.1
#> [115] glmnet_4.1-8 viridisLite_0.4.2 ipred_0.9-14
#> [118] ggridges_0.5.6 scales_1.3.0 prodlim_2023.08.28
#> [121] purrr_1.0.2 crayon_1.5.2 rlang_1.1.3
#> [124] KEGGREST_1.43.0