MafH5.gnomAD.v3.1.2.GRCh38

September 4, 2024

MafH5.gnomAD.v3.1.2.GRCh38-package

Annotation package for minor allele frequency data from the Genome Aggregation Database

Description

This annotation package stores minor allele frequency (MAF) data derived from the whole genome variant set version 3.1.2 of the Genome Aggregation Database (gnomAD). The data are exposed to the user in the form of a GScores object named after the package. The class definition and methods to access GScores objects are found in the GenomicScores software package. To minimize disk space and memory requirements, MAF values larger or equal than 0.1 are stored using two significant digits, while MAF values smaller than 0.1 are stored using one significant digit. MAF data are stored using a HDF5 backend, which minimizes de main memory footprint but whose performance depends on the hard disk drive (HDD) reading performance. For this reason, this packages will perform faster if it is installed in a local HDD rather than in network drive (e.g., through NFS access).

This package stores MAF values derived from the global AF values (denoted as the AF population) and the maximum MAF value among all the populations in gnomAD (denoted as the AF_allpopmax). The AF_allpopmax MAF values are different from those that could be derived from the gnomAD AF_popmax values in that they do not exclude any population when taking the maximum MAF value; see https://github.com/broadinstitute/gnomad-browser/issues/893#issuecomment-1092142309. If you have any question or request regarding the gnomAD data stored in this package, please open an issue at https://github.com/rcastelo/GenomicScores/issues.

Please consult the gnomAD FAQ page at https://gnomad.broadinstitute.org/help#frequently-asked-questions before you use these data for your own research.

Format

MafH5.gnomAD.v3.1.2.GRCh38 GScores object containing MAF values from gnomAD genomes downloaded on April 2022

Author(s)

R. Castelo

Source

Karczewski et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 581:434-443, 2020.

The Genome Aggregation Database (gnomAD), Cambridge, MA (URL: https://gnomad.broadinstitute.org) [April 2022, accessed]

See Also

GScores-class gscores GenomicScores

Examples

```
library(SNPlocs.Hsapiens.dbSNP149.GRCh38)
library(MafH5.gnomAD.v3.1.2.GRCh38)
ls("package:MafH5.gnomAD.v3.1.2.GRCh38")
mafh5 <- MafH5.gnomAD.v3.1.2.GRCh38
mafh5
citation(mafh5)
populations(mafh5)
## lookup allele frequency for rs1129038, a SNP associated with blue and brown eye colors
## (Eiberg et al., Human Genetics, 2008). Blue eye color in humans may be caused by a
## perfectly associated founder mutation in a regulatory element located within the HERC2
## gene inhibiting OCA2 expression.
snpdb <- SNPlocs.Hsapiens.dbSNP149.GRCh38</pre>
rng <- snpsById(snpdb, ids="rs1129038")</pre>
gscores(mafh5, rng)
gscores(mafh5, GRanges("15:28111713"))
## lookup allele frequency for rs333, a deletion of 32 nucleotides (delta 32) within the CCR5 gene
## associated with resistance to an infection by HIV, the virus that causes AIDS. The homozygous
## state of this delta 32 allele has been reported to be highly protective against HIV-1
## infection (Huang et al., Nature Medicine, 1996) but with no effects on lifespan (Maier et al.,
## bioRxiv, 2019, Gudbjartsson et al., bioRxiv, 2019; Karczewski et al., bioRxiv 2019).
gscores(mafh5, GRanges("3:46373452-46373484"), type="nonsnrs")
```

Index