## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
    collapse = TRUE,
    comment = "#>",
    crop = NULL ## Related to https://stat.ethz.ch/pipermail/bioc-devel/2020-April/016656.html
)

## ----vignetteSetup, echo=FALSE, warning = FALSE-------------------------------
## Track time spent on making the vignette
startTime <- Sys.time()
## Bib setup
suppressPackageStartupMessages(library("RefManageR"))
## Write bibliography information
bib <- c(
    R = citation(),
    BiocStyle = citation("BiocStyle")[1],
    knitr = citation("knitr")[1],
    RefManageR = citation("RefManageR")[1],
    rmarkdown = citation("rmarkdown")[1],
    sessioninfo = citation("sessioninfo")[1],
    testthat = citation("testthat")[1],
    microSTASIS = citation("microSTASIS")[1]
)

## ----"install", eval = FALSE--------------------------------------------------
#  if (!requireNamespace("BiocManager", quietly = TRUE)) {
#        install.packages("BiocManager")
#    }
#  BiocManager::install("microSTASIS")
#  ## Check that you have a valid Bioconductor installation
#  BiocManager::valid()

## ----"citation"---------------------------------------------------------------
## Citation info
citation("microSTASIS")

## ----"start"------------------------------------------------------------------
## Load the package
library("microSTASIS")

## ----"input"------------------------------------------------------------------
## Show the input data
data(clr)
clr[1:8, 1:6]

## ----"pairedTimes"------------------------------------------------------------
## Subseting the initial data to a list of multiple paired times
times <- pairedTimes(data = clr, sequential = TRUE, common = "_0_")

## ----"TSE"--------------------------------------------------------------------
## Loading the TSE package
suppressPackageStartupMessages(library(TreeSummarizedExperiment))

## ----"makeObject"-------------------------------------------------------------
## Creating a TreeSummarizedExperiment object
ID_common_time <- rownames(clr)
samples <- 1:dim(clr)[1]
metadata <- data.frame(samples, stringr::str_split(ID_common_time, "_", 
                                                   simplify = TRUE))
colnames(metadata)[2:4] <- c("ID", "common", "time_point")
both_tse <- TreeSummarizedExperiment(assays = list(counts = t(clr)), 
                                     colData = metadata)
altExp(both_tse) <- SummarizedExperiment(assays = SimpleList(data = t(clr)), 
                                         colData = metadata)
assayNames(altExp(both_tse)) <- "data"

## ----"pairedTimesTSE"---------------------------------------------------------
## Subseting the data as two different TSE objects to two list of multiple paired times
TSE_times <- pairedTimes(data = both_tse, sequential = TRUE, assay = "counts",
                         alternativeExp = NULL,
                         ID = "ID", timePoints = "time_point")
TSE_altExp_times <- pairedTimes(data = both_tse, sequential = TRUE, 
                                assay = "data", alternativeExp = "unnamed1",
                                 ID = "ID", timePoints = "time_point")

## ----"iterativeClustering"----------------------------------------------------
## Main algorithm applied to the matrix-derived object
mS <- iterativeClustering(pairedTimes = times, common = "_")

## ----"iterativeClusteringTSE"-------------------------------------------------
## Main algorithm applied to the TSE-derived object
mS_TSE <- iterativeClustering(pairedTimes = TSE_times, common = "_")

## ----"visualization"----------------------------------------------------------
## Prepare the result for the later visualization functions
results <- mSpreviz(results = mS, times = times)
## Scatter plot of the stability scores per patient and time
plotmSscatter(results = results, order = "median", times = c("t1_t25", "t25_t26"), 
          gridLines = TRUE, sideScale = 0.2)
## Heatmap of the stability scores per patient and time
plotmSheatmap(results = results, order = "mean", times = c("t1_t25", "t25_t26"), 
          label = TRUE)

## ----"CV"---------------------------------------------------------------------
## Cross validation in a parallelized way with different k values
cv_klist_k2 <- BiocParallel::bpmapply(iterativeClusteringCV, name = names(times), 
                                      k = rep(2L, 3), 
                                      MoreArgs = list(pairedTimes = times, 
                                                      results = mS, 
                                                      common = "_0_"))

## ----"error"------------------------------------------------------------------
## Calculate the mean absolute error after computing the cross validation
MAE_t1_t25 <- mSerrorCV(pairedTime = times$t1_t25, CVklist = cv_klist_k2[[1]],  
                        k = 2L)

## ----"error viz"--------------------------------------------------------------
## Prepare the result for the later visualization functions
MAE <- mSpreviz(results = list(MAE_t1_t25), times = list(t1_t25 = times$t1_t25))
## Heatmap of the mean absolute error values per patient and time
plotmSheatmap(results = MAE, times = c("t1_t25", "t25_t26"), label = TRUE,
          high = 'red2',  low = 'forestgreen', midpoint = 5)

## ----"lines"------------------------------------------------------------------
## Line plot of the stability scores per patient at a given paired times
## Both the proper score after iterative clustering and the cross validation ones
plotmSlinesCV(pairedTime = times$t1_t25, CVklist = cv_klist_k2[[1]], k = 2L)

## ----"metadata"---------------------------------------------------------------
## Create a metadata data frame
metadata <- data.frame(Sample = rownames(clr), age = c(rep("youth", 65), 
                                                       rep("old", 131-65)))
## Modify the metadata to the proper format that match with results
group <- mSmetadataGroups(metadata = metadata, samples = metadata$Sample, 
                          common = "_0_", individuals = results$individual, 
                          variable = "age")
## Boxplot with individual stability scores split by groups
plotmSdynamics(results, groups = group, points = TRUE, linetype = 0)

## ----createVignette, eval=FALSE-----------------------------------------------
#  ## Create the vignette
#  library("rmarkdown")
#  system.time(render("microSTASIS.Rmd", "BiocStyle::html_document"))
#  ## Extract the R code
#  library("knitr")
#  knit("microSTASIS.Rmd", tangle = TRUE)

## ----reproduce1, echo=FALSE---------------------------------------------------
## Date the vignette was generated
Sys.time()

## ----reproduce2, echo=FALSE---------------------------------------------------
## Processing time in seconds
totalTime <- diff(c(startTime, Sys.time()))
round(totalTime, digits = 3)

## ----reproduce3, echo=FALSE-------------------------------------------------------------------------------------------
## Session info
library("sessioninfo")
options(width = 120)
session_info()

## ----vignetteBiblio, results = "asis", echo = FALSE, warning = FALSE, message = FALSE---------------------------------
## Print bibliography
PrintBibliography(bib, .opts = list(hyperlink = "to.doc", style = "html"))