Alternative CDF environments

Laurent Gautier

October 29, 2025

Contents

1 Introduction 1

2 The class CdfEnvAffy 2

3 Reading sequence information in FASTA connections 2

4 Creating an alternative mapping from sequences in a FASTA file 3
4.1 Select the constituting elements . . . . . .. .. ... ... 3
4.2 analyzing the matches . . . . . . . . ... . ... oL 4

5 Always up-to-date 7

J

5.1 Casual checking of genes . . . . . . . ... ..o

1 Introduction

On short oligonuleotide arrays, several probes are designed to match a target transcript,
and probes matching the same target transcript can be grouped in a probe set. Between
the time the probes for a given short oligonucleotide chip were designed, and the time an
analysis is made, the knowledge of expected transcripts for a given organism might have
changed. Unless one includes the latest development in transcripts into an analysis, the
analysis could suffer from what we like to call a Dorian Gray' effect. The chip itself
does not change, which means that the probes and their respective sequences remain
the same, while the knowledge of the transcripts, and eventually their sequence, might
evolve, and in time the immobility of the probe and probe sets give an uglier picture of
the biological phenomena to study. Being able to easily modify or replace the grouping
of probes in probe sets gives the opportunity to minimize this effect.

The package is directly usable with Affymetriz GeneChip short oligonucleotide arrays,
and can be adapted or extended to other platforms.

'From the novel ‘The Picture of Dorian Gray’ by Oscar Wilde.



The bibliographic reference associated with the package is given by the command:

citation(package="altcdfenvs")

Alternative mapping of probes to genes for Affymetrix chips Laurent Gautier,
Morten Mooller, Lennart Friis-Hansen, Steen Knudsen BMC Bioinformatics
2004, 5:111

If you use it, consider citing it, and if you cite it consider citing as well other packages
it depends on.
To start we will first load the package:

> library(altcdfenvs)

2 The class CdfEnvAffy

Each instance of this class contains a way to group probes in probe sets. Different
instances, describing different ways to group probes in probe sets, can co-exist for a
given chip type.

When experimenting, it is highly recommended to use the functions validCdfEnvAffy
and validAffyBatch to make sure that a given instance is a valid one.

3 Reading sequence information in FASTA connec-
tions

The package contains simple functions to read R connections in the FASTA format.
Typically, collections of sequences are stored in FASTA files, which can be significantly
large, one can wish to read and process sequences one after the other. This can be done
by opening the file in ‘r’ mode:

> fasta.filename <- system.file("exampleData", "sample.fasta",
+ package="altcdfenvs")
> con <- file(fasta.filename, open="r")

Reading the sequences one after another, and printing information about them in
turn goes like:

> fasta.seq <- read.FASTA.entry(con)

> while(! is.null(fasta.seq$header)) {
+ print(fasta.seq)

+ fasta.seq <- read.FASTA.entry(con)
+ }



$header
[1] ">gnl|UG|Hs#S1730546 membrane-spanning 4-domains, subfamily A, member 2; Fc epsilor

$sequence
[1] "AACCCATTTCAACTGCCTATTCAGAGCATGCAGTAAGAGGAAATCCACCAAGTCTCAATATAATAATATTCTTTATTCCTGC

attr(,"class")

[1] "FASTA"

$header

[1] ">gi|28626515|ref |NM_007257.3| Homo sapiens paraneoplastic antigen MA2 (PNMA2), mRM

$sequence
[1] "GGTCATTTGTCCAGAAAACTTTGTGACTGTCTTTGAGTGACCTAGTCTGGGACCCATTCATTGGTGGGTTCTAAGGTTAGA!

attr(,"class")

[1] "FASTA"

$header

[1] ">gil31377729|ref|NM_020143.2| Homo sapiens putatative 28 kDa protein (LOC56902), n

$sequence
[1] "TGGCTTCTGCGTGGTGCAGCTGCGCACGTGTTTCAGCCGGCAGCGCTTTAAGATTTCCGGGGATGGAATCCGAAATGGAAAC

attr(,"class")
[1] "FASTA"

> close(con)

One can foresee that the matching of a set of reference sequences against all the
probes can be parallelized easily: the reference sequences can simply be distributed
across different processors/machines. When working with all the reference sequences in
a single large FASTA file, the option skip can let one implement a poor man’s parallel
sequence matching very easily.

4 Creating an alternative mapping from sequences in

a FASTA file

4.1 Select the constituting elements

e Chip type: For this tutorial we decide to work with the Affymetrix chip HG-U133A.

e Target sequences: The set of target sequences we use for this tutorial is in the
exemplar FASTA file:



## first, count the number of FASTA entries in our file
con <- file(fasta.filename, open="r")

n <- countskip.FASTA.entries(con)

close(con)

## read all the entries

con <- file(fasta.filename, open="r")

my.entries <- read.n.FASTA.entries.split(con, n)
close(con)

V V.V V V Vv V.YV

matching the probes

The package Biostrings and the probe data package for HG-U133A are required to
perform the matching. The first step is to load them:

> library(hgul33aprobe)
>

The matching is done simply (one can refer to the documentation for the package
Biostrings for further details):

> targets <- my.entries$sequences

> names (targets) <- sub(">.+\\[(Hs\\#|NM_) ([~[:blank:I\\[]+).+",
+ "\\1\\2", my.entries$headers)

> m <- matchAffyProbes(hgul33aprobe, targets, "HG-U133A")

>

>

4.2 analyzing the matches

When the position of the match between probes and target sequences does not matter,
the association can be represented as a bipartite graph.

The method toHypergraph will transform an instance of AffyProbesMatch into an
Hypergraph.

> hg <- toHypergraph (m)

Currently, there are not many functions implemented around hypergraphs, so we
convert it to a more common graph.

> gn <- toGraphNEL (hg)

Since this is now a regular graph, all of probes and targets are regular nodes on that
graph. Node name-based rules can be applied to identify whether a node is a target
sequence or a probe.



targetNodes <- new.env(hash=TRUE, parent=emptyenv())

for (i in seq(along=targets)) {
targetNodes [[names (targets) [i]]] <- 1

}

Since the graph is relatively small, we can plot it, and see that one probe is common

to both probe sets:

vV + + v VvV VvV VvV VYV

library(Rgraphviz)
tShapes <- rep("ellipse", length=length(targets))
names (tShapes) <- names (targets)
tColors <- rep("ivory", length=length(targets))
names (tColors) <- names(targets)
nAttrs <- list(shape = tShapes, fillcolor = tColors)
gAttrs <- list(node = list(shape = "rectangle", fixedsize = FALSE))
plot(gn, "neato",
nodeAttrs = nAttrs,
attrs = gAttrs)



ZT

H

641-217

o

=
)
N
w
(&)
Mg

575I-331

132-9000-b95)\ | [ 7=
/30/ 431-337

657-643
230 Hs#S1730546. )3-415

39764+ 593-391
541136/ @1\3“9
J § N1 636-29
629-1145-6391 -39
] _ . 161
60b-aaal-253 37-23
360=%09
g9-515
205419567/ 377
—543
34354 \% 5 16423—315
68-241 l Y/ 507

7—
2% NM_9072i3/f§5( o
1
43/3—/3;3[ . m§§5—683
5

: R S P
660356117 630-403 6adl36E I TP
46-539 283 P01
T \ il
NUT

409 'ﬁd—ﬁl\ﬂ_ozoms.z 27

508-4283-1871 H\ 5‘-64& 567
Aty

414665 O
701F%T /I 9-p09

255 —g% 13

~

Whenever a large number oftarget sequences are involved, counting the degrees will
be more efficient than plotting.
The package contains a function to create a CdfEnv from the matches:

> alt.cdf <-
+  buildCdfEnv.biostrings(m, nrow.chip = 712, ncol.chip = 712)
>

Note that the size for chip must be specified. This is currently a problem with cdfenvs
as they are created by the package makecdfenv. The class CdfEnv suggests a way to
solve this (hopefully this will be integrated in makecdfenv in the near future). When
this happens, the section below will be replaced by something more intuitive. But in
the meanwhile, here is the current way to use our shiny brand new class CdfEnv:

## say we have an AffyBatch of HG-U133A chips called 'abatch'

## summary checks to avoid silly mistakes
validAffyBatch(abatch, alt.cdf)



## it is ok, so we proceed...

## get the environment out of it class
alt.cdfenv <- alt.cdf@envir

abatch@cdfName <- "alt.cdfenv"

From now on, the object abatch will use our ‘alternative mapping’ rather than the
one provided by the manufacturer of the chip:

print(abatch)

5 Always up-to-date

Even if alternative mapping is not used upstream of the analysis, it can still be interesting
to verify probesets highlighted during data analysis.

The biomaRt package makes withdrawing up-to-date sequences very easy, and those
sequences can be matched against the probes.

First, we create a mart:

library(biomaRt)
mart <- useMart("ensembl",dataset="hsapiens_gene_ensembl")

(refer to the documentation for the biomaRt for further information).

5.1 Casual checking of genes

In this example, we assume that for one reason or an other a researcher would like to
know more about the probes matching the SLAMF genes.

> geneSymbols <- c("SLAMF1", "SLAMF3", "SLAMF6", "SLAMF7", "SLAMF8", "SLAMF9")

The vector geneSymbols defined can easily be replaced by your favorite genes; the
example below should still work.

We then write a convenience function getSeq to extract the sequences. This func-
tion appenda a -<number> to the HUGO symbol (as there might be several sequences
matching).

> getSeq <- function(name) {

+ seq <- getSequence(id=name, type="hgnc_symbol",
+ seqType="cdna", mart = mart)
+



targets <- seq$cdna
if (is.null(targets))
return(character(0))
names (targets) <- paste(seq$hgnc_symbol, 1:nrow(seq), sep="-")
return(targets)

+ + + + + +

}
The function let us obtain the target sequences very easily:

targets <- unlist(lapply(geneSymbols,
getSeq))

The targets are matched as seen previously:
> m <- matchAffyProbes (hgul33aprobe, targets, "HG-U133A")

A colorful graph can be made in order to visualize how matching probes are dis-
tributed:

hg <- toHypergraph (m)
gn <- toGraphNEL (hg)
library(RColorBrewer)
col <- brewer.pal(length(geneSymbols)+1, "Setl1")
tColors <- rep(col[length(col)], length=numNodes (gn))
names (tColors) <- nodes(gn)
for (col_i in 1:(length(col)-1)) {
node_i <- grep(paste("~", geneSymbols[col_i],
"ot sep=""),
names (tColors))
tColors[node_i] <- col[col_i]
}
nAttrs <- list(fillcolor = tColors)
plot(gn, "twopi", nodeAttrs=nAttrs)

vVV+ 4+ + + + VVVVV VYV



ST
W

e Watch for SLAMF6 and SLAMF7

e The second sequence in SLAMF8 can potentially has specific probes (the rest of
the probes are matching both SLAMFS8 sequences)

Comparison with the official mapping can be made (not so simply, a future version
should address this)

library("hgul33a.db")

affyTab <- toTable(hgul33aSYMBOL)

slamf_i <- grep("~SLAMF", affyTab$symbol)

pset_id <- affyTab$probe_id[slamf_i]

library("hgul33acdf")

countProbes <- lapply(pset_id, function(x) nrow(hgul33acdf[[x]]))
names (countProbes) <- affyTab$symbol[slamf_i]

countProbes

V V.V V Vv Vv VvV



$SLAMF1
[1] 11

$SLAMF7
[1] 11

$SLAMFS
(1] 11

$SLAMF8
[1] 11

The results do not appear in complete agreement with the matching just performed.

10



