Package 'supraHex'

October 17, 2024

Type Package

Title supraHex: a supra-hexagonal map for analysing tabular omics data

Version 1.42.0

Date 2021-5-24

Author Hai Fang and Julian Gough

Maintainer Hai Fang <hfang@well.ox.ac.uk>

Depends R ($> = 3.6$), hexbin

Imports ape, MASS, grDevices, graphics, stats, readr, tibble, tidyr, dplyr, stringr, purrr, magrittr, igraph, methods

Description A supra-hexagonal map is a giant hexagon on a 2-dimensional grid seamlessly consisting of smaller hexagons. It is supposed to train, analyse and visualise a highdimensional omics input data. The supraHex is able to carry out gene clustering/metaclustering and sample correlation, plus intuitive visualisations to facilitate exploratory analysis. More importantly, it allows for overlaying additional data onto the trained map to explore relations between input and additional data. So with supraHex, it is also possible to carry out multilayer omics data comparisons. Newly added utilities are advanced heatmap visualisation and tree-based analysis of sample relationships. Uniquely to this package, users can ultrafastly understand any tabular omics data, both scientifically and artistically, especially in a sample-specific fashion but without loss of information on large genes.

URL <http://suprahex.r-forge.r-project.org>

Collate sPipeline.r sHexGrid.r sTopology.r sInitial.r sTrainology.r sTrainSeq.r sTrainBatch.r sBMH.r sNeighDirect.r sNeighAny.r sHexDist.r sDistance.r sDmat.r sDmatMinima.r sDmatCluster.r sCompReorder.r sWriteData.r sMapOverlay.r visHexPattern.r visHexGrid.r visHexMapping.r visHexComp.r visColormap.r visColorbar.r visVp.r visHexMulComp.r visHexAnimate.r visCompReorder.r visDmatCluster.r visKernels.r visColoralpha.r visHeatmap.r visHeatmapAdv.r visTreeBootstrap.r visTreeBSclust.r visDmatHeatmap.r visHexBarplot.r sHexPolygon.r sHexGridVariant.r

License GPL-2

biocViews Software, Clustering, Visualization, GeneExpression

Contents

git_url https://git.bioconductor.org/packages/supraHex git_branch RELEASE_3_19 git_last_commit 7ffe698 git_last_commit_date 2024-04-30 **Repository** Bioconductor 3.19 Date/Publication 2024-10-16

Contents

 $\overline{2}$

Fang 3

Fang *Human embryo gene expression dataset from Fang et al. (2010)*

Description

Human embryo dataset contains gene expression levels (5441 genes and 18 embryo samples) from Fang et al. (2010).

Usage

data(Fang)

Value

- Fang: a gene expression matrix of 5441 genes x 18 samples, involving six successive stages, each with three replicates.
- Fang.sampleinfo: a matrix containing the information of the 18 samples for the expression matrix *Fang*. The three columns correspond to the sample information: "Name", "Stage" and "Replicate".
- Fang.geneinfo: a matrix containing the information of the 5441 genes for the expression matrix *Fang*. The three columns correspond to the gene information: "AffyID", "EntrezGene" and "Symbol".

References

Fang et al. (2010). Transcriptome analysis of early organogenesis in human embryos. *Developmental Cell*, 19(1):174-84.

Golub *Leukemia gene expression dataset from Golub et al. (1999)*

Description

Leukemia dataset (learning set) contains gene expression levels (3051 genes and 38 patient samples) from Golub et al. (1999). This dataset has been pre-processed: capping into floor of 100 and ceiling of 16000; filtering by exclusion of genes with $max/min \leq 5$ or $max - min \leq 500$, where max and min refer respectively to the maximum and minimum intensities for a particular gene across mRNA samples; 2-base logarithmic transformation.

Usage

data(Golub)

Value

• Golub: a gene expression matrix of 3051 genes x 38 samples. These samples include 11 acute myeloid leukemia (AML) and 27 acute lymphoblastic leukemia (ALL) which can be further subtyped into 19 B-cell ALL and 8 T-cell ALL.

References

Golub et al. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring, *Science*, Vol. 286:531-537.

Description

sBMH is supposed to identify the best-matching hexagons/rectangles (BMH) for the input data.

Usage

```
sBMH(sMap, data, which_bmh = c("best", "worst", "all"))
```
Arguments

Value

a list with following components:

- bmh: the requested BMH matrix of dlen x length(which_bmh), where dlen is the total number of rows of the input data
- qerr: the corresponding matrix of quantization errors (i.e., the distance between the input data and their BMH), with the same dimensions as "bmh" above
- mqe: the mean quantization error for the "best" BMH
- call: the call that produced this result

sCompReorder 5

Note

"which_bmh" upon request can be a vector consisting of any integer values from [1, nHex]

See Also

[sPipeline](#page-25-1)

Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
# 2) from this input matrix, determine nHex=5*sqrt(nrow(data))=50,
# but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid
sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")
# 3) initialise the codebook matrix using "uniform" method
sI <- sInitial(data=data, sTopol=sTopol, init="uniform")
# 4) define trainology at "rough" stage
sT_rough <- sTrainology(sMap=sI, data=data, stage="rough")
# 5) training at "rough" stage
sM_rough <- sTrainBatch(sMap=sI, data=data, sTrain=sT_rough)
# 6) define trainology at "finetune" stage
sT_finetune <- sTrainology(sMap=sI, data=data, stage="finetune")
# 7) training at "finetune" stage
sM_finetune <- sTrainBatch(sMap=sM_rough, data=data, sTrain=sT_rough)
# 8) find the best-matching hexagons/rectangles for the input data
response <- sBMH(sMap=sM_finetune, data=data, which_bmh="best")
```
sCompReorder *Function to reorder component planes*

Description

sCompReorder is supposed to reorder component planes for the input map/data. It returns an object of class "sReorder". It is realized by using a new map grid (with sheet shape consisting of a rectangular lattice) to train component plane vectors (either column-wise vectors of codebook/data matrix or the covariance matrix thereof). As a result, similar component planes are placed closer to each other. It is highly recommend to use trained map (i.e. codebook matrix) as input if data matrix is hugely big to save computational costs.

Usage

```
sCompReorder(
sMap,
xdim = NULL,ydim = NULL,
amplifier = NULL,
metric = c("none", "pearson", "spearman", "kendall", "euclidean",
"manhattan", "cos",
"mi"),
init = c("linear", "uniform", "sample"),
seed = 825,
algorithm = c("sequential", "batch"),alphaType = c("invert", "linear", "power"),
neighKernel = c("gaussian", "bubble", "cutgaussian", "ep", "gamma"),
finetuneSustain = TRUE
)
```
Arguments

finetuneSustain

logical to indicate whether sustain the "finetune" training. If true, it will repeat the "finetune" stage until the mean quantization error does get worse. By default, it sets to TRUE

Value

an object of class "sReorder", a list with following components:

- nHex: the total number of rectanges in the grid
- xdim: x-dimension of the grid
- ydim: y-dimension of the grid
- uOrder: the unique order/placement for each component plane that is reordered to the "sheet" shape grid with rectangular lattice
- coord: a matrix of nHex x 2, with each row corresponding to the coordinates of each "uOrder" rectangle in the 2D map grid
- call: the call that produced this result

Note

All component planes are uniquely placed within a "sheet"-shape rectangle grid:

- Each component plane mapped to the "sheet"-shape grid with rectangular lattice is determinied iteratively in an order from the best matched to the next compromised one.
- If multiple compoments are hit in the same rectangular lattice, the worse one is always sacrificed by moving to the next best one till all components are placed somewhere exclusively on their own.

The size of "sheet"-shape rectangle grid depends on the input arguments:

- How the input parameters are used to determine nHex is taken priority in the following order: "xdim & ydim" > "nHex" > "data".
- If both of xdim and ydim are given, $nHex = xdim * ydim$.
- If only data is input, $nHex = 5 * sqrt(dlen)$, where dlen is the number of rows of the input data.
- After nHex is determined, xy-dimensions of rectangle grid are then determined according to the square root of the two biggest eigenvalues of the input data.

See Also

[sTopology](#page-28-1), [sPipeline](#page-25-1), [sBMH](#page-3-1), [sDistance](#page-7-1), [visCompReorder](#page-41-1)

Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
colnames(data) <- paste(rep('S',10), seq(1:10), sep="")
```
2) get trained using by default setup

```
sMap <- sPipeline(data=data)
# 3) reorder component planes in different ways
# 3a) directly using column-wise vectors of codebook matrix
sReorder <- sCompReorder(sMap=sMap, amplifier=2, metric="none")
# 3b) according to covariance matrix of pearson correlation of codebook matrix
sReorder <- sCompReorder(sMap=sMap, amplifier=2, metric="pearson")
# 3c) according to covariance matrix of pearson correlation of input matrix
sReorder <- sCompReorder(sMap=data, amplifier=2, metric="pearson")
```
sDistance *Function to compute the pairwise distance for a given data matrix*

Description

sDistance is supposed to compute and return the distance matrix between the rows of a data matrix using a specified distance metric

Usage

```
sDistance(
data,
metric = c("pearson", "spearman", "kendall", "euclidean", "manhattan",
"cos", "mi",
"binary")
)
```
Arguments

Value

• dist: a symmetric distance matrix of nRow x nRow, where nRow is the number of rows of input data matrix

Note

The distance metrics are supported:

- "pearson": Pearson correlation. Note that two curves that have identical shape, but different magnitude will still have a correlation of 1
- "spearman": Spearman rank correlation. As a nonparametric version of the pearson correlation, it calculates the correlation between the ranks of the data values in the two vectors (more robust against outliers)

sDistance 9

- "kendall": Kendall tau rank correlation. Compared to spearman rank correlation, it goes a step further by using only the relative ordering to calculate the correlation. For all pairs of data points (x_i, y_i) and (x_j, y_j) , it calls a pair of points either as concordant (Nc in total) if $(x_i - x_j) * (y_i - y_j) > 0$, or as discordant (Nd in total) if $(x_i - x_j) * (y_i - y_j) < 0$. Finally, it calculates gamma coefficient $(Nc - Nd)/(Nc + Nd)$ as a measure of association which is highly resistant to tied data
- "euclidean": Euclidean distance. Unlike the correlation-based distance measures, it takes the magnitude into account (input data should be suitably normalized
- "manhattan": Cityblock distance. The distance between two vectors is the sum of absolute value of their differences along any coordinate dimension
- "cos": Cosine similarity. As an uncentered version of pearson correlation, it is a measure of similarity between two vectors of an inner product space, i.e., measuring the cosine of the angle between them (using a dot product and magnitude)
- "mi": Mutual information (MI). MI provides a general measure of dependencies between variables, in particular, positive, negative and nonlinear correlations. The caclulation of MI is implemented via applying adaptive partitioning method for deriving equal-probability bins (i.e., each bin contains approximately the same number of data points). The number of bins is heuristically determined (the lower bound): $1 + log2(n)$, where n is the length of the vector. Because MI increases with entropy, we normalize it to allow comparison of different pairwise clone similarities: $2 * MI/[H(x) + H(y)]$, where $H(x)$ and $H(y)$ stand for the entropy for the vector x and y , respectively
- "binary": asymmetric binary (Jaccard distance index). the proportion of bits in which the only one divided by the at least one

See Also

[sDmatCluster](#page-10-1)

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
# 2) calculate distance matrix using different metric
sMap <- sPipeline(data=data)
# 2a) using "pearson" metric
dist <- sDistance(data=data, metric="pearson")
# 2b) using "cos" metric
# dist <- sDistance(data=data, metric="cos")
# 2c) using "spearman" metric
# dist <- sDistance(data=data, metric="spearman")
# 2d) using "kendall" metric
# dist <- sDistance(data=data, metric="kendall")
# 2e) using "euclidean" metric
# dist <- sDistance(data=data, metric="euclidean")
# 2f) using "manhattan" metric
# dist <- sDistance(data=data, metric="manhattan")
# 2g) using "mi" metric
# dist <- sDistance(data=data, metric="mi")
```
10 sDmatrix and the state of the state o

```
# 2h) using "binary" metric
# dist <- sDistance(data=data, metric="binary")
```
sDmat *Function to calculate distance matrix in high-dimensional input space but according to neighborhood relationships in 2D output space*

Description

sDmat is supposed to calculate distance (measured in high-dimensional input space) to neighbors (defined by based on 2D output space) for each of hexagons/rectangles

Usage

```
sDmat(sMap, which_neigh = 1, distMeasure = c("median", "mean", "min",
"max"))
```
Arguments

Value

• dMat: a vector with the length of nHex. It stores the distance a hexaon/rectangle is away from its output-space-defined neighbors in high-dimensional input space

Note

"which_neigh" is defined in output 2D space, but "distMeasure" is defined in high-dimensional input space

See Also

[sNeighAny](#page-23-1)

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
# 2) get trained using by default setup
sMap <- sPipeline(data=data)
# 3) calculate "median" distances in INPUT space to different neighbors in 2D OUTPUT space
```
sDmatCluster 11

```
# 3a) using direct neighbors in 2D OUTPUT space
dMat <- sDmat(sMap=sMap, which_neigh=1, distMeasure="median")
# 3b) using no more than 2-topological neighbors in 2D OUTPUT space
# dMat <- sDmat(sMap=sMap, which_neigh=2, distMeasure="median")
```
sDmatCluster *Function to partition a grid map into clusters*

Description

sDmatCluster is supposed to obtain clusters from a grid map. It returns an object of class "sBase".

Usage

```
sDmatCluster(
sMap,
which_neigh = 1,
distMeasure = c("mean", "median", "min", "max"),
constraint = TRUE,
clusterLinkage = c("average", "complete", "single", "bmh"),
reindexSeed = c("hclust", "svd", "none")
)
```
Arguments

Value

an object of class "sBase", a list with following components:

- seeds: the vector to store cluster seeds, i.e., a list of local minima (in 2D output space) of distance matrix (in input space). They are represented by the indexes of hexagons/rectangles
- bases: the vector with the length of nHex to store the cluster memberships/bases, where nHex is the total number of hexagons/rectanges in the grid
- ig: an igraph object storing neighbor relations between bases, with node attributes 'name' (base), 'index', 'xcoord' and 'ycoord' (based on seeds)
- hclust: a hclust object storing tree-like relations between bases (based on seed model vectors)
- call: the call that produced this result

Note

The first item in the return "seeds" is the first cluster, whose memberships are those in the return "bases" that equals 1. The same relationship is held for the second item, and so on

See Also

[sPipeline](#page-25-1), [sDmatMinima](#page-11-1), [sBMH](#page-3-1), [sNeighDirect](#page-24-1), [sDistance](#page-7-1), [visDmatCluster](#page-43-1)

Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
# 2) get trained using by default setup
sMap <- sPipeline(data=data)
# 3) partition the grid map into clusters based on different criteria
# 3a) based on "bmh" criterion
# sBase <- sDmatCluster(sMap=sMap, which_neigh=1, distMeasure="median", clusterLinkage="bmh")
# 3b) using region-growing algorithm with linkage "average"
sBase <- sDmatCluster(sMap=sMap, which_neigh=1, distMeasure="median",
clusterLinkage="average")
# 4) visualise clusters/bases partitioned from the sMap
visDmatCluster(sMap,sBase)
```
sDmatMinima *Function to identify local minima (in 2D output space) of distance matrix (in high-dimensional input space)*

Description

sDmatMinima is supposed to identify local minima of distance matrix (resulting from [sDmat](#page-9-1)). The criterion of being local minima is that the distance associated with a hexagon/rectangle is always smaller than its direct neighbors (i.e., 1-neighborhood)

sDmatMinima 13

Usage

```
sDmatMinima(
sMap,
which_neigh = 1,
distMeasure = c("median", "mean", "min", "max"),
constraint = TRUE
)
```
Arguments

Value

• minima: a vector to store a list of local minima (represented by the indexes of hexogans/rectangles

Note

Do not get confused by "which_neigh" and the criteria of being local minima. Both of them deal with 2D output space. However, "which_neigh" is used to assist in the calculation of distance matrix (so can be 1-neighborhood or more); instead, the criterion of being local minima is only 1-neighborhood in the strictest sense

See Also

[sDmat](#page-9-1), [sNeighAny](#page-23-1)

Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
# 2) get trained using by default setup
sMap <- sPipeline(data=data)
```
3) identify local minima of distance matrix based on "median" distances and direct neighbors minima <- sDmatMinima(sMap=sMap, which_neigh=1, distMeasure="median")

sHexDist is supposed to calculate euclidian distances between each pair of hexagons/rectangles in a 2D grid of input "sTopol" or "sMap" object. It returns a symmetric matrix containing pairwise distances.

Usage

sHexDist(sObj)

Arguments

sObj an object of class "sTopol" or "sInit" or "sMap"

Value

• dist: a symmetric matrix of nHex x nHex, containing pairwise distances, where nHex is the total number of hexagons/rectanges in the grid

Note

The return matrix has rows/columns ordered in the same order as the "coord" matrix of the input object does.

See Also

[sTopology](#page-28-1), [sInitial](#page-19-1)

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
# 2) from this input matrix, determine nHex=5*sqrt(nrow(data))=50,
# but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid
sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")
# 3) initialise the codebook matrix using "uniform" method
sI <- sInitial(data=data, sTopol=sTopol, init="uniform")
# 4) calculate distances between hexagons/rectangles in a 2D grid based on different objects
# 4a) based on an object of class "sTopol"
dist <- sHexDist(sObj=sTopol)
# 4b) based on an object of class "sMap"
dist <- sHexDist(sObj=sI)
```


sHexGrid is supposed to define a supra-hexagonal map grid. A supra-hexagon is a giant hexagon, which seamlessly consists of smaller hexagons. Due to the symmetric nature, it can be uniquely determined by specifying the radius away from the grid centroid. This function takes input the grid radius (or the number of hexagons in the grid, but will be adjusted to meet the definition of supra-hexagon), and returns a list (see 'Value' below) containing: the grid radius, the total number of hexagons in the grid, the 2D coordinates of the grid centroid, the step for each hexogan away from the grid centroid, and the 2D coordinates of all hexagons in the grid.

Usage

 $shexGrid(r = NULL, nHex = NULL)$

Arguments

Value

an object of class "sHex", a list with following components:

- r: the grid radius
- nHex: the total number of hexagons in the grid. It may differ from the input value; actually it is always no less than the input one to ensure a supra-hexagonal grid exactly formed
- centroid: the 2D coordinates of the grid centroid
- stepCentroid: a vector with the length of nHex. It stores how many steps a hexagon is awawy from the grid centroid ('1' for the centroid itself). Starting with the centroid, it orders outward. Also, for those hexagons of the same step, it orders from the rightmost in an anti-clock wise
- angleCentroid: a vector with the length of nHex. It stores the angle a hexagon is in terms of the grid centroid ('0' for the centroid itself). For those hexagons of the same step, it orders from the rightmost in an anti-clock wise
- coord: a matrix of nHex x 2 with each row specifying the 2D coordinates of a hexagon in the grid. The order of rows is the same as 'centroid' above
- call: the call that produced this result

Note

The relationships among return values:

- $nHex = 1 + 6 * r * (r 1)/2$
- centroid = $coord[1,]$
- $stepCentroid[1] = 1$
- stepCentroid[2 : $nHex$] = unlist(sapply(2 : r, function(x)(c((1 + 6 * x * (x 1)/2 - $6*(x-1)+1$: $(1+6*x*(x-1)/2)) >= 1)*x)$

See Also

[sPipeline](#page-25-1)

Examples

```
# The supra-hexagonal grid is exactly determined by specifying the radius.
sHex <- sHexGrid(r=2)
```

```
# The grid is determined according to the number of input hexagons (after being adjusted).
# The return res$nHex is always no less than the input one.
# It ensures a supra-hexagonal grid is exactly formed.
sHex <- sHexGrid(nHex=12)
# Ignore input nHex if r is also given
sHex <- sHexGrid(r=3, nHex=100)
# By default, r=3 if no parameters are specified
sHex <- sHexGrid()
```
sHexGridVariant *Function to define a variant of a supra-hexagonal grid*

Description

sHexGridVariant is supposed to define a variant of a supra-hexagonal map grid. In essence, it is the subset of the supra-hexagon.

Usage

```
sHexGridVariant(
r = NULL,nHex = NULL,
shape = c("suprahex", "triangle", "diamond", "hourglass", "trefoil",
"ladder",
"butterfly", "ring", "bridge")
)
```
Arguments

shape the grid shape, either "suprahex" for the suprahex itself, or its variants (including "triangle" for the triangle-shaped variant, "diamond" for the diamondshaped variant, "hourglass" for the hourglass-shaped variant, "trefoil" for the trefoil-shaped variant, "ladder" for the ladder-shaped variant, "butterfly" for the butterfly-shaped variant, "ring" for the ring-shaped variant, and "bridge" for the bridge-shaped variant)

Value

an object of class "sHex", a list with following components:

- r: the grid radius
- nHex: the total number of hexagons in the grid. It may differ from the input value; actually it is always no less than the input one to ensure a supra-hexagonal grid exactly formed
- centroid: the 2D coordinates of the grid centroid
- stepCentroid: a vector with the length of nHex. It stores how many steps a hexagon is awawy from the grid centroid ('1' for the centroid itself). Starting with the centroid, it orders outward. Also, for those hexagons of the same step, it orders from the rightmost in an anti-clock wise
- angleCentroid: a vector with the length of nHex. It stores the angle a hexagon is in terms of the grid centroid ('0' for the centroid itself). For those hexagons of the same step, it orders from the rightmost in an anti-clock wise
- coord: a matrix of nHex x 2 with each row specifying the 2D coordinates of a hexagon in the grid. The order of rows is the same as 'centroid' above
- call: the call that produced this result

Note

none

See Also

[sHexGrid](#page-14-1)

Examples

```
# For "supraHex" shape itself
sHex <- sHexGridVariant(r=6, shape="suprahex")
```
Not run: library(ggplot2)

#geom_polygon(color="black", fill=NA)

```
# For "supraHex" shape itself
sHex <- sHexGridVariant(r=6, shape="suprahex")
df_polygon <- sHexPolygon(sHex)
df_coord <- data.frame(sHex$coord, index=1:nrow(sHex$coord))
gp_suprahex <- ggplot(data=df_polygon, aes(x,y,group=index)) +
geom_polygon(aes(fill=factor(stepCentroid%%2))) +
```
18 sHexGridVariant

```
coord_fixed(ratio=1) + theme_void() + theme(legend.position="none") +
geom_text(data=df_coord, aes(x,y,label=index), color="white", size=3) +
labs(title="suprahex (r=6; xdim=ydim=11)") +
theme(plot.title=element_text(hjust=0.5,size=8))
# For "triangle" shape
sHex <- sHexGridVariant(r=6, shape="triangle")
df_polygon <- sHexPolygon(sHex)
df_coord <- data.frame(sHex$coord, index=1:nrow(sHex$coord))
gp_triangle <- ggplot(data=df_polygon, aes(x,y,group=index)) +
geom_polygon(aes(fill=factor(stepCentroid%%2))) +
coord_fixed(ratio=1) + theme_void() + theme(legend.position="none") +
geom_text(data=df_coord, aes(x,y,label=index), color="white", size=3) +
labs(title="triangle (r=6; xdim=ydim=6)") +
theme(plot.title=element_text(hjust=0.5,size=8))
# For "diamond" shape
sHex <- sHexGridVariant(r=6, shape="diamond")
df_polygon <- sHexPolygon(sHex)
df_coord <- data.frame(sHex$coord, index=1:nrow(sHex$coord))
gp_diamond <- ggplot(data=df_polygon, aes(x,y,group=index)) +
geom_polygon(aes(fill=factor(stepCentroid%%2))) +
coord_fixed(ratio=1) + theme_void() + theme(legend.position="none") +
geom_text(data=df_coord, aes(x,y,label=index), color="white", size=3) +
labs(title="diamond (r=6; xdim=6, ydim=11)") +
theme(plot.title=element_text(hjust=0.5,size=8))
# For "hourglass" shape
sHex <- sHexGridVariant(r=6, shape="hourglass")
df_polygon <- sHexPolygon(sHex)
df_coord <- data.frame(sHex$coord, index=1:nrow(sHex$coord))
gp_hourglass <- ggplot(data=df_polygon, aes(x,y,group=index)) +
geom_polygon(aes(fill=factor(stepCentroid%%2))) +
coord_fixed(ratio=1) + theme_void() + theme(legend.position="none") +
geom_text(data=df_coord, aes(x,y,label=index), color="white", size=3) +
labs(title="hourglass (r=6; xdim=6, ydim=11)") +
theme(plot.title=element_text(hjust=0.5,size=8))
# For "trefoil" shape
sHex <- sHexGridVariant(r=6, shape="trefoil")
df_polygon <- sHexPolygon(sHex)
df_coord <- data.frame(sHex$coord, index=1:nrow(sHex$coord))
gp_trefoil <- ggplot(data=df_polygon, aes(x,y,group=index)) +
geom_polygon(aes(fill=factor(stepCentroid%%2))) +
coord_fixed(ratio=1) + theme_void() + theme(legend.position="none") +
geom_text(data=df_coord, aes(x,y,label=index), color="white", size=3) +
labs(title="trefoil (r=6; xdim=ydim=11)") +
theme(plot.title=element_text(hjust=0.5,size=8))
# For "ladder" shape
sHex <- sHexGridVariant(r=6, shape="ladder")
df_polygon <- sHexPolygon(sHex)
df_coord <- data.frame(sHex$coord, index=1:nrow(sHex$coord))
```
sHexPolygon 19

```
gp_ladder <- ggplot(data=df_polygon, aes(x,y,group=index)) +
geom_polygon(aes(fill=factor(stepCentroid%%2))) +
coord_fixed(ratio=1) + theme_void() + theme(legend.position="none") +
geom_text(data=df_coord, aes(x,y,label=index), color="white", size=3) +
labs(title="ladder (r=6; xdim=11, ydim=6)") +
theme(plot.title=element_text(hjust=0.5,size=8))
# For "butterfly" shape
sHex <- sHexGridVariant(r=6, shape="butterfly")
df_polygon <- sHexPolygon(sHex)
df_coord <- data.frame(sHex$coord, index=1:nrow(sHex$coord))
gp_butterfly <- ggplot(data=df_polygon, aes(x,y,group=index)) +
geom_polygon(aes(fill=factor(stepCentroid%%2))) +
coord_fixed(ratio=1) + theme_void() + theme(legend.position="none") +
geom_text(data=df_coord, aes(x,y,label=index), color="white", size=3) +
labs(title="butterfly (r=6; xdim=ydim=11)") +
theme(plot.title=element_text(hjust=0.5,size=8))
# For "ring" shape
sHex <- sHexGridVariant(r=6, shape="ring")
df_polygon <- sHexPolygon(sHex)
df_coord <- data.frame(sHex$coord, index=1:nrow(sHex$coord))
gp_ring <- ggplot(data=df_polygon, aes(x,y,group=index)) +
geom_polygon(aes(fill=factor(stepCentroid%%2))) +
coord_fixed(ratio=1) + theme_void() + theme(legend.position="none") +
geom_text(data=df_coord, aes(x,y,label=index), color="white", size=3) +
labs(title="ring (r=6; xdim=ydim=11)") +
theme(plot.title=element_text(hjust=0.5,size=8))
# For "bridge" shape
sHex <- sHexGridVariant(r=6, shape="bridge")
df_polygon <- sHexPolygon(sHex)
df_coord <- data.frame(sHex$coord, index=1:nrow(sHex$coord))
gp_bridge <- ggplot(data=df_polygon, aes(x,y,group=index)) +
geom_polygon(aes(fill=factor(stepCentroid%%2))) +
coord_fixed(ratio=1) + theme_void() + theme(legend.position="none") +
geom_text(data=df_coord, aes(x,y,label=index), color="white", size=3) +
labs(title="bridge (r=6; xdim=11, ydim=6)") +
theme(plot.title=element_text(hjust=0.5,size=8))
# combined visuals
library(gridExtra)
grid.arrange(grobs=list(gp_suprahex, gp_ring, gp_diamond, gp_trefoil,
gp_butterfly, gp_hourglass, gp_ladder, gp_bridge, gp_triangle),
layout_matrix=rbind(c(1,1,2,2,3),c(1,1,2,2,3),c(4,4,5,5,6),c(4,4,5,5,6),c(7,7,8,8,9)),
nrow=5, ncol=5)
```
End(Not run)

sHexPolygon is supposed to extract polygon location per hexagon within a supra-hexagonal grid

Usage

```
sHexPolygon(sObj, area.size = 1)
```
Arguments

Value

a tibble of 7 columns ('index','x','y','node','edge','stepCentroid','angleCentroid') storing polygon location per hexagon. 'node' for nodes (including n1,n2,n3,n4,n5,n6), and 'edge' for a list-column where each is a tibble with a single column 'edge' containing two rows (such as edges 'e12' and 'e16' for the node 'n1').

Note

None

See Also

[sHexGridVariant](#page-15-1), [sPipeline](#page-25-1)

Examples

```
sObj <- sTopology(xdim=4, ydim=4, lattice="hexa", shape="suprahex")
df_polygon <- sHexPolygon(sObj, area.size=1)
```


Function to initialise a sInit object given a topology and input data

Description

sInitial is supposed to initialise an object of class "sInit" given a topology and input data. As a matter of fact, it initialises the codebook matrix (in input high-dimensional space). The return object inherits the topology information (i.e., a "sTopol" object from sTopology), along with initialised codebook matrix and method used.

sInitial 21

Usage

```
sInitial(data, sTopol, init = c("linear", "uniform", "sample"), seed =
825)
```
Arguments

Value

an object of class "sInit", a list with following components:

- nHex: the total number of hexagons/rectanges in the grid
- xdim: x-dimension of the grid
- ydim: y-dimension of the grid
- r: the hypothetical radius of the grid
- lattice: the grid lattice
- shape: the grid shape
- coord: a matrix of nHex x 2, with each row corresponding to the coordinates of a hexagon/rectangle in the 2D map grid
- init: an initialisation method
- codebook: a codebook matrix of nHex x ncol(data), with each row corresponding to a prototype vector in input high-dimensional space
- call: the call that produced this result

Note

The initialisation methods include:

- "uniform": the codebook matrix is uniformly initialised via randomly taking any values within the interval [min, max] of each column of input data
- "sample": the codebook matrix is initialised via randomly sampling/selecting input data
- "linear": the codebook matrix is linearly initialised along the first two greatest eigenvectors of input data

See Also

[sTopology](#page-28-1)

Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
# 2) from this input matrix, determine nHex=5*sqrt(nrow(data))=50,
# but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid
sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")
# 3) initialise the codebook matrix using different mehtods
# 3a) using "uniform" method
sI_uniform <- sInitial(data=data, sTopol=sTopol, init="uniform")
# 3b) using "sample" method
# sI_sample <- sInitial(data=data, sTopol=sTopol, init="sample")
# 3c) using "linear" method
# sI_linear <- sInitial(data=data, sTopol=sTopol, init="linear")
```
sMapOverlay *Function to overlay additional data onto the trained map for viewing the distribution of that additional data*

Description

sMapOverlay is supposed to overlay additional data onto the trained map for viewing the distribution of that additional data. It returns an object of class "sMap". It is realised by first estimating the hit histogram weighted by the neighborhood kernel, and then calculating the distribution of the additional data over the map (similarly weighted by the neighborhood kernel). The final overlaid distribution of additional data is normalised by the hit histogram.

Usage

sMapOverlay(sMap, data = NULL, additional)

Arguments

Value

an object of class "sMap", a list with following components:

- nHex: the total number of hexagons/rectanges in the grid
- xdim: x-dimension of the grid
- ydim: y-dimension of the grid

sMapOverlay 23

- r: the hypothetical radius of the grid
- lattice: the grid lattice
- shape: the grid shape
- coord: a matrix of nHex x 2, with rows corresponding to the coordinates of all hexagons/rectangles in the 2D map grid
- ig: the igraph object
- polygon: a tibble of 7 columns ('x','y','index','node','edge','stepCentroid','angleCentroid') storing polygon location per hexagon
- init: an initialisation method
- neighKernel: the training neighborhood kernel
- codebook: a codebook matrix of nHex x ncol(additional), with rows corresponding to overlaid vectors
- hits: a vector of nHex, each element meaning that a hexagon/rectangle contains the number of input data vectors being hit wherein
- mqe: the mean quantization error for the "best" BMH
- data: an input data matrix
- response: a tibble of 3 columns ('did' for rownames of input data matrix, 'index', and 'qerr' (quantization error; the distance to the "best" BMH))
- call: the call that produced this result

Note

Weighting by neighbor kernel is to avoid rigid overlaying by only focusing on the best-matching map nodes as there may exist several closest best-matching nodes for an input data vector.

See Also

[sPipeline](#page-25-1), [sBMH](#page-3-1), [sHexDist](#page-13-1), [visHexMulComp](#page-64-1)

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
colnames(data) \leq paste(rep('S',10), seq(1:10), sep="")
```

```
# 2) get trained using by default setup
sMap <- sPipeline(data=data)
```

```
# 3) overlay additional data onto the trained map
# here using the first two columns of the input "data" as "additional"
# codebook in "sOverlay" is the same as the first two columns of codebook in "sMap"
sOverlay <- sMapOverlay(sMap=sMap, data=data, additional=data[,1:2])
```

```
# 4) viewing the distribution of that additional data
visHexMulComp(sOverlay)
```


sNeighAny is supposed to calculate any neighbors for each hexagon/rectangle in a regular 2D grid. It returns a matrix with rows for the self, and columns for its any neighbors.

Usage

sNeighAny(sObj)

Arguments

sObj an object of class "sTopol" or "sInit" or "sMap"

Value

• aNeigh: a matrix of nHex x nHex, containing distance info in terms of any neighbors, where nHex is the total number of hexagons/rectanges in the grid

Note

The return matrix has rows for the self, and columns for its neighbors. The non-zeros mean the distance away from its neighbors, and the zeros for the self-self. It has rows/columns ordered in the same order as the "coord" matrix of the input object does.

See Also

[sNeighDirect](#page-24-1)

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
# 2) from this input matrix, determine nHex=5*sqrt(nrow(data))=50,
# but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid
sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")
# 3) initialise the codebook matrix using "uniform" method
sI <- sInitial(data=data, sTopol=sTopol, init="uniform")
# 4) calculate any neighbors based on different objects
# 4a) based on an object of class "sTopol"
aNeigh <- sNeighAny(sObj=sTopol)
# 4b) based on an object of class "sMap"
# aNeigh <- sNeighAny(sObj=sI)
```


sNeighDirect is supposed to calculate direct neighbors for each hexagon/rectangle in a regular 2D grid. It returns a matrix with rows for the self, and columns for its direct neighbors.

Usage

```
sNeighDirect(sObj)
```
Arguments

sObj an object of class "sTopol" or "sInit" or "sMap"

Value

• dNeigh: a matrix of nHex x nHex, containing presence/absence info in terms of direct neighbors, where nHex is the total number of hexagons/rectanges in the grid

Note

The return matrix has rows for the self, and columns for its direct neighbors. The "1" means the presence of direct neighbors, "0" for the absence. It has rows/columns ordered in the same order as the "coord" matrix of the input object does.

See Also

[sHexDist](#page-13-1)

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
# 2) from this input matrix, determine nHex=5*sqrt(nrow(data))=50,
# but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid
sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")
# 3) initialise the codebook matrix using "uniform" method
sI <- sInitial(data=data, sTopol=sTopol, init="uniform")
# 4) calculate direct neighbors based on different objects
# 4a) based on an object of class "sTopol"
dNeigh <- sNeighDirect(sObj=sTopol)
# 4b) based on an object of class "sMap"
# dNeigh <- sNeighDirect(sObj=sI)
```


sPipeline is supposed to finish ab inito training for the input data. It returns an object of class "sMap".

Usage

```
sPipeline(
data,
xdim = NULL,
ydim = NULL,
nHex = NULL,
lattice = c("hexa", "rect"),shape = c("suprahex", "sheet", "triangle", "diamond", "hourglass",
"trefoil",
"ladder", "butterfly", "ring", "bridge"),
scaling = 5,
init = c("linear", "uniform", "sample"),
seed = 825,
algorithm = c("batch", "sequential"),
alphaType = c("invert", "linear", "power"),
neighKernel = c("gaussian", "bubble", "cutgaussian", "ep", "gamma"),
finetuneSustain = FALSE,
verbose = TRUE
)
```
Arguments

sPipeline 27

Value

an object of class "sMap", a list with following components:

- nHex: the total number of hexagons/rectanges in the grid
- xdim: x-dimension of the grid
- ydim: y-dimension of the grid
- r: the hypothetical radius of the grid
- lattice: the grid lattice
- shape: the grid shape
- coord: a matrix of nHex x 2, with rows corresponding to the coordinates of all hexagons/rectangles in the 2D map grid
- ig: the igraph object
- polygon: a tibble of 7 columns ('x','y','index','node','edge','stepCentroid','angleCentroid') storing polygon location per hexagon
- init: an initialisation method
- neighKernel: the training neighborhood kernel
- codebook: a codebook matrix of nHex x ncol(data), with rows corresponding to prototype vectors in input high-dimensional space
- hits: a vector of nHex, each element meaning that a hexagon/rectangle contains the number of input data vectors being hit wherein
- mqe: the mean quantization error for the "best" BMH
- data: an input data matrix (with rownames and colnames added if NULL)
- response: a tibble of 3 columns ('did' for rownames of input data matrix, 'index', and 'qerr' (quantization error; the distance to the "best" BMH))
- call: the call that produced this result

Note

The pipeline sequentially consists of:

- i) [sTopology](#page-28-1) used to define the topology of a grid (with "suprahex" shape by default) according to the input data;
- ii) [sInitial](#page-19-1) used to initialise the codebook matrix given the pre-defined topology and the input data (by default using "uniform" initialisation method);
- iii) [sTrainology](#page-33-1) and [sTrainSeq](#page-35-1) or [sTrainBatch](#page-31-1) used to get the grid map trained at both "rough" and "finetune" stages. If instructed, sustain the "finetune" training until the mean quantization error does get worse;
- iv) [sBMH](#page-3-1) used to identify the best-matching hexagons/rectangles (BMH) for the input data, and these response data are appended to the resulting object of "sMap" class.

References

Hai Fang and Julian Gough. (2014) supraHex: an R/Bioconductor package for tabular omics data analysis using a supra-hexagonal map. *Biochemical and Biophysical Research Communications*, 443(1), 285-289.

See Also

[sTopology](#page-28-1), [sInitial](#page-19-1), [sTrainology](#page-33-1), [sTrainSeq](#page-35-1), [sTrainBatch](#page-31-1), [sBMH](#page-3-1), [visHexMulComp](#page-64-1)

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
colnames(data) <- paste(rep('S',10), seq(1:10), sep="")
## Not run:
# 2) get trained using by default setup but with different neighborhood kernels
# 2a) with "gaussian" kernel
sMap <- sPipeline(data=data, neighKernel="gaussian")
# 2b) with "bubble" kernel
# sMap <- sPipeline(data=data, neighKernel="bubble")
# 2c) with "cutgaussian" kernel
# sMap <- sPipeline(data=data, neighKernel="cutgaussian")
# 2d) with "ep" kernel
# sMap <- sPipeline(data=data, neighKernel="ep")
# 2e) with "gamma" kernel
# sMap <- sPipeline(data=data, neighKernel="gamma")
```
sTopology 29

```
# 3) visualise multiple component planes of a supra-hexagonal grid
visHexMulComp(sMap, colormap="jet", ncolors=20, zlim=c(-1,1),
gp=grid::gpar(cex=0.8))
# 4) get trained using by default setup but using the shape "butterfly"
sMap <- sPipeline(data=data, shape="trefoil",
algorithm=c("batch","sequential")[2])
visHexMulComp(sMap, colormap="jet", ncolors=20, zlim=c(-1,1),
gp=grid::gpar(cex=0.8))
library(ggraph)
ggraph(sMap$ig, layout=sMap$coord) + geom_edge_link() +
geom_node_circle(aes(r=0.4),fill='white') + coord_fixed(ratio=1) +
geom_node_text(aes(label=name), size=2)
## End(Not run)
```
sTopology *Function to define the topology of a map grid*

Description

sTopology is supposed to define the topology of a 2D map grid. The topological shape can be either a supra-hexagonal grid or a hexagonal/rectangle sheet. It returns an object of "sTopol" class, containing: the total number of hexagons/rectangles in the grid, the grid xy-dimensions, the grid lattice, the grid shape, and the 2D coordinates of all hexagons/rectangles in the grid. The 2D coordinates can be directly used to measure distances between any pair of lattice hexagons/rectangles.

Usage

```
sTopology(
data = NULL,xdim = NULL,
ydim = NULL,
nHex = NULL,
lattice = c("hexa", "rect"),shape = c("suprahex", "sheet", "triangle", "diamond", "hourglass",
"trefoil"
"ladder", "butterfly", "ring", "bridge"),
scaling = 5\lambda
```
Arguments

Value

an object of class "sTopol", a list with following components:

- nHex: the total number of hexagons/rectanges in the grid. It is not always the same as the input nHex (if any); see "Note" below for the explaination
- xdim: x-dimension of the grid
- ydim: y-dimension of the grid
- r: the hypothetical radius of the grid
- lattice: the grid lattice
- shape: the grid shape
- coord: a matrix of nHex x 2, with each row corresponding to the coordinates of a hexagon/rectangle in the 2D map grid
- ig: the igraph object
- call: the call that produced this result

Note

The output of nHex depends on the input arguments and grid shape:

- How the input parameters are used to determine nHex is taken priority in the following order: "xdim & ydim" > "nHex" > "data"
- If both of xdim and ydim are given, $nHex = xdim * ydim$ for the "sheet" shape, $r =$ $(min(xdim, ydim) + 1)/2$ for the "suprahex" shape
- If only data is input, $nHex = scaling * sqrt(dlen)$, where dlen is the number of rows of the input data, and scaling can be 5 (big map), 3 (median map) and 1 (normal map)
- With nHex in hand, it depends on the grid shape:
	- For "sheet" shape, xy-dimensions of sheet grid is determined according to the square root of the two biggest eigenvalues of the input data
	- For "suprahex" shape, see [sHexGrid](#page-14-1) for calculating the grid radius r. The xdim (and ydim) is related to r via $xdim = 2*r - 1$

sTopology 31

See Also

[sHexGrid](#page-14-1), [visHexMapping](#page-62-1)

```
# For "suprahex" shape
sTopol <- sTopology(xdim=3, ydim=3, lattice="hexa", shape="suprahex")
# Error: "The suprahex shape grid only allows for hexagonal lattice"
# sTopol <- sTopology(xdim=3, ydim=3, lattice="rect", shape="suprahex")
# For "sheet" shape with hexagonal lattice
sTopol <- sTopology(xdim=3, ydim=3, lattice="hexa", shape="sheet")
# For "sheet" shape with rectangle lattice
sTopol <- sTopology(xdim=3, ydim=3, lattice="rect", shape="sheet")
# By default, nHex=19 (i.e., r=3; xdim=ydim=5) for "suprahex" shape
sTopol <- sTopology(shape="suprahex")
# By default, xdim=ydim=5 (i.e., nHex=25) for "sheet" shape
sTopol <- sTopology(shape="sheet")
# Determine the topolopy of a supra-hexagonal grid based on input data
# 1) generate an iid normal random matrix of 100x10
data <- matrix(rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
# 2) from this input matrix, determine nHex=5*sqrt(nrow(data))=50,
# but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid
sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")
# sTopol <- sTopology(data=data, lattice="hexa", shape="trefoil")
# do visualisation
visHexMapping(sTopol,mappingType="indexes")
## Not run:
library(ggplot2)
# another way to do visualisation
df_polygon <- sHexPolygon(sTopol)
df_coord <- data.frame(sTopol$coord, index=1:nrow(sTopol$coord))
gp \leftarrow ggplot(data=df_polygon, aes(x,y,group=index)) +geom_polygon(aes(fill=factor(stepCentroid%%2))) +
coord_fixed(ratio=1) + theme_void() + theme(legend.position="none") +
geom_text(data=df_coord, aes(x,y,label=index), color="white")
library(ggraph)
ggraph(sTopol$ig, layout=sTopol$coord) + geom_edge_link() +
geom_node_circle(aes(r=0.4),fill='white') + coord_fixed(ratio=1) +
geom_node_text(aes(label=name), size=2)
## End(Not run)
```
sTrainBatch is supposed to perform batch training algorithm. It requires three inputs: a "sMap" or "sInit" object, input data, and a "sTrain" object specifying training environment. The training is implemented iteratively, but instead of choosing a single input vector, the whole input matrix is used. In each training cycle, the whole input matrix first land in the map through identifying the corresponding winner hexagon/rectangle (BMH), and then the codebook matrix is updated via updating formula (see "Note" below for details). It returns an object of class "sMap".

Usage

```
sTrainBatch(sMap, data, sTrain, verbose = TRUE)
```
Arguments

Value

an object of class "sMap", a list with following components:

- nHex: the total number of hexagons/rectanges in the grid
- xdim: x-dimension of the grid
- ydim: y-dimension of the grid
- r: the hypothetical radius of the grid
- lattice: the grid lattice
- shape: the grid shape
- coord: a matrix of nHex x 2, with each row corresponding to the coordinates of a hexagon/rectangle in the 2D map grid
- ig: the igraph object
- init: an initialisation method
- neighKernel: the training neighborhood kernel
- codebook: a codebook matrix of nHex x ncol(data), with each row corresponding to a prototype vector in input high-dimensional space
- call: the call that produced this result

sTrainBatch 33

Note

Updating formula is: $m_i(t+1) = \frac{\sum_{j=1}^{dlen} h_{wi}(t)x_j}{\sum_{l=1}^{dlen} h_{mi}(t)}$ $\frac{\sum_{j=1}^{i} h_{wi}(t)x_j}{\sum_{j=1}^{dlen} h_{wi}(t)},$ where

- \bullet *t* denotes the training time/step
- x_j is an input vector j from the input data matrix (with $dlen$ rows in total)
- i and w stand for the hexagon/rectangle i and the winner BMH w, respectively
- $m_i(t + 1)$ is the prototype vector of the hexagon i at time $t + 1$
- $h_{wi}(t)$ is the neighborhood kernel, a non-increasing function of i) the distance d_{wi} between the hexagon/rectangle i and the winner BMH w, and ii) the radius δ_t at time t. There are five kernels available:
	- For "gaussian" kernel, $h_{wi}(t) = e^{-d_{wi}^2/(2 * \delta_t^2)}$
	- For "cutguassian" kernel, $h_{wi}(t) = e^{-d_{wi}^2/(2*\delta_t^2)} * (d_{wi} \le \delta_t)$
	- For "bubble" kernel, $h_{wi}(t) = (d_{wi} < \delta_t)$
	- $\text{– For "ep" Kernel, } h_{wi}(t) = (1 d_{wi}^2 / \delta_t^2) * (d_{wi} ≤ δ_t)$
	- For "gamma" kernel, $h_{wi}(t) = 1/\Gamma(d_{wi}^2/(4 * \delta_t^2) + 2)$

See Also

[sTrainology](#page-33-1), [visKernels](#page-68-1)

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
# 2) from this input matrix, determine nHex=5*sqrt(nrow(data))=50,
# but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid
sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")
# 3) initialise the codebook matrix using "uniform" method
sI <- sInitial(data=data, sTopol=sTopol, init="uniform")
# 4) define trainology at "rough" stage
sT_rough <- sTrainology(sMap=sI, data=data, stage="rough")
# 5) training at "rough" stage
sM_rough <- sTrainBatch(sMap=sI, data=data, sTrain=sT_rough)
# 6) define trainology at "finetune" stage
sT_finetune <- sTrainology(sMap=sI, data=data, stage="finetune")
# 7) training at "finetune" stage
```
sTrainology is supposed to define the train-ology (i.e., the training environment/parameters). The trainology here refers to the training algorithm, the training stage, the stage-specific parameters (alpha type, initial alpha, initial radius, final radius and train length), and the training neighbor kernel used. It returns an object of class "sTrain".

Usage

```
sTrainology(
sMap,
data,
algorithm = c("batch", "sequential"),
stage = c("rough", "finetune", "complete"),
alphaType = c("invert", "linear", "power"),
neighKernel = c("gaussian", "bubble", "cutgaussian", "ep", "gamma")
)
```
Arguments

Value

an object of class "sTrain", a list with following components:

- algorithm: the training algorithm
- stage: the training stage
- alphaType: the alpha type
- alphaInitial: the initial alpha
- radiusInitial: the initial radius
- radiusFinal: the final radius
- neighKernel: the neighbor kernel
- call: the call that produced this result

sTrainology 35

Note

Training stage-specific parameters:

- "radiusInitial": it depends on the grid shape and training stage
	- For "sheet" shape: it equals $max(1, ceiling(max(xdim, ydim)/8))$ at "rough" or "complete" stage, and $max(1, ceiling(max(xdim, ydim)/32))$ at "finetune" stage
	- For "suprahex" shape: it equals $max(1, ceiling(r/2))$ at "rough" or "complete" stage, and $max(1, ceiling(r/8))$ at "finetune" stage
- "radiusFinal": it depends on the training stage
	- At "rough" stage, it equals $radiusInitial/4$
	- At "finetune" or "complete" stage, it equals 1
- "trainLength": how many times the whole input data are set for training. It depends on the training stage and training algorithm
	- At "rough" stage, it equals $max(1, 10 * trainDepth)$
	- At "finetune" stage, it equals $max(1, 40 * trainDepth)$
	- At "complete" stage, it equals $max(1, 50 * trainDepth)$
	- When using "batch" algorithm and the trainLength equals 1 according to the above equation, the trainLength is forced to be 2 unless radiusInitial equals radiusFinal
	- Where $trainDepth$ is the training depth, defined as $nHex/den$, i.e., how many hexagons/rectanges are used per the input data length (here dlen refers to the number of rows)

See Also

[sInitial](#page-19-1)

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
# 2) from this input matrix, determine nHex=5*sqrt(nrow(data))=50,
# but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid
sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")
# 3) initialise the codebook matrix using "uniform" method
sI <- sInitial(data=data, sTopol=sTopol, init="uniform")
# 4) define trainology at different stages
# 4a) define trainology at "rough" stage
sT_rough <- sTrainology(sMap=sI, data=data, stage="rough")
# 4b) define trainology at "finetune" stage
sT_finetune <- sTrainology(sMap=sI, data=data, stage="finetune")
# 4c) define trainology using "complete" stage
sT_complete <- sTrainology(sMap=sI, data=data, stage="complete")
```


sTrainSeq is supposed to perform sequential training algorithm. It requires three inputs: a "sMap" or "sInit" object, input data, and a "sTrain" object specifying training environment. The training is implemented iteratively, each training cycle consisting of: i) randomly choose one input vector; ii) determine the winner hexagon/rectangle (BMH) according to minimum distance of codebook matrix to the input vector; ii) update the codebook matrix of the BMH and its neighbors via updating formula (see "Note" below for details). It also returns an object of class "sMap".

Usage

```
sTrainSeq(sMap, data, sTrain, seed = 825, verbose = TRUE)
```
Arguments

Value

an object of class "sMap", a list with following components:

- nHex: the total number of hexagons/rectanges in the grid
- xdim: x-dimension of the grid
- ydim: y-dimension of the grid
- r: the hypothetical radius of the grid
- lattice: the grid lattice
- shape: the grid shape
- coord: a matrix of nHex x 2, with each row corresponding to the coordinates of a hexagon/rectangle in the 2D map grid
- ig: the igraph object
- init: an initialisation method
- neighKernel: the training neighborhood kernel
- codebook: a codebook matrix of nHex x ncol(data), with each row corresponding to a prototype vector in input high-dimensional space
- call: the call that produced this result
sTrainSeq 37

Note

Updating formula is: $m_i(t + 1) = m_i(t) + \alpha(t) * h_{wi}(t) * [x(t) - m_i(t)]$, where

- \bullet *t* denotes the training time/step
- *i* and w stand for the hexagon/rectangle i and the winner BMH w , respectively
- $x(t)$ is an input vector randomly choosen (from the input data) at time t
- $m_i(t)$ and $m_i(t+1)$ are respectively the prototype vectors of the hexagon i at time t and $t+1$
- $\alpha(t)$ is the learning rate at time t. There are three types of learning rate functions:
	- For "linear" function, $\alpha(t) = \alpha_0 * (1 t/T)$
	- For "power" function, $\alpha(t) = \alpha_0 * (0.005/\alpha_0)^{t/T}$
	- For "invert" function, $\alpha(t) = \alpha_0/(1 + 100 * t/T)$
	- Where α_0 is the initial learing rate (typically, $\alpha_0 = 0.5$ at "rough" stage, $\alpha_0 = 0.05$ at "finetune" stage), T is the length of training time/step (often being set to input data length, i.e., the total number of rows)
- $h_{wi}(t)$ is the neighborhood kernel, a non-increasing function of i) the distance d_{wi} between the hexagon/rectangle i and the winner BMH w, and ii) the radius δ_t at time t. There are five kernels available:
	- For "gaussian" kernel, $h_{wi}(t) = e^{-d_{wi}^2/(2 * \delta_t^2)}$
	- For "cutguassian" kernel, $h_{wi}(t) = e^{-d_{wi}^2/(2*\delta_t^2)} * (d_{wi} \le \delta_t)$
	- For "bubble" kernel, $h_{wi}(t) = (d_{wi} \le \delta_t)$
	- $\text{– For "ep" Kernel, } h_{wi}(t) = (1 d_{wi}^2 / \delta_t^2) * (d_{wi} ≤ δ_t)$
	- For "gamma" kernel, $h_{wi}(t) = 1/\Gamma(d_{wi}^2/(4 * \delta_t^2) + 2)$

See Also

[sTrainology](#page-33-0), [visKernels](#page-68-0)

Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
# 2) from this input matrix, determine nHex=5*sqrt(nrow(data))=50,
# but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid
sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")
# 3) initialise the codebook matrix using "uniform" method
sI <- sInitial(data=data, sTopol=sTopol, init="uniform")
# 4) define trainology at "rough" stage
sT_rough <- sTrainology(sMap=sI, data=data, algorithm="sequential",
stage="rough")
# 5) training at "rough" stage
sM_rough <- sTrainSeq(sMap=sI, data=data, sTrain=sT_rough)
# 6) define trainology at "finetune" stage
```

```
sT_finetune <- sTrainology(sMap=sI, data=data, algorithm="sequential",
stage="finetune")
# 7) training at "finetune" stage
sM_finetune <- sTrainSeq(sMap=sM_rough, data=data, sTrain=sT_rough)
```


Function to write out the best-matching hexagons and/or cluster bases *in terms of data*

Description

sWriteData is supposed to write out the best-matching hexagons and/or cluster bases in terms of data.

Usage

```
sWriteData(sMap, data, sBase = NULL, filename = NULL, keep.data =
FALSE)
```
Arguments

Value

a data frame with following components:

- ID: ID for data. It inherits the rownames of data (if exists). Otherwise, it is sequential integer values starting with 1 and ending with dlen, the total number of rows of the input data
- Hexagon_index: the index for best-matching hexagons
- Qerr_distance: the quantification error (distance) for best-matching hexagons
- Cluster_base: optional, it is only appended when sBase is given. It stores the cluster memberships/bases
- data: optional, it is only appended when keep.data is true

Note

If "filename" is not NULL, a tab-delimited text file will be also written out. If "sBase" is not NULL and comes from the "sMap" partition, then cluster bases are also appended. if "keep.data" is true, the data will be part of output.

visColoralpha 39

See Also

[sBMH](#page-3-0)

Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
# 2) get trained using by default setup
sMap <- sPipeline(data=data)
# 3) write data's BMH hitting the trained map
output <- sWriteData(sMap=sMap, data=data, filename="sData_output.txt")
# 4) partition the grid map into cluster bases
sBase <- sDmatCluster(sMap=sMap, which_neigh=1,
distMeasure="median", clusterLinkage="average")
# 5) write data's BMH and cluster bases
output <- sWriteData(sMap=sMap, data=data, sBase=sBase,
filename="sData_base_output.txt")
```
visColoralpha *Function to add transparent (alpha) into colors*

Description

visColoralpha is supposed to add transparent (alpha) into colors.

Usage

```
visColoralpha(col, alpha)
```
Arguments

Value

a vector of colors (after transparent being added)

Note

none

See Also

[visColormap](#page-40-0)

Examples

```
# 1) define "blue-white-red" colormap
palette.name <- visColormap(colormap="bwr")
# 2) use the return function "palette.name" to generate 10 colors spanning "bwr"
col <- palette.name(10)
# 3) add transparent (alpha=0.5)
cols <- visColoralpha(col, alpha=0.5)
```
visColorbar *Function to define a colorbar*

Description

visColorbar is supposed to define a colorbar

Usage

```
visColorbar(
colormap = c("bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow", "wb"),
ncolors = 40,
zlim = c(0, 1),gp = grid::gpar())
```


visColormap 41

Value

invisibly

Note

none

See Also

[visColormap](#page-40-0), [visHexMulComp](#page-64-0), [visCompReorder](#page-41-0)

Examples

```
# draw "blue-white-red" colorbar
visColorbar(colormap="bwr")
```
visColormap *Function to define a colormap*

Description

visColormap is supposed to define a colormap. It returns a function, which will take an integer argument specifying how many colors interpolate the given colormap.

Usage

```
visColormap(
colormap = c("bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow", "wb",
"heat",
"terrain", "topo", "cm")
)
```
Arguments

colormap short name for the colormap. It can also be a function of 'colorRampPalette'

Value

• palette.name: a function that takes an integer argument for generating that number of colors interpolating the given sequence

42 visCompReorder

The input colormap includes:

- "jet": jet colormap
- "bwr": blue-white-red
- "gbr": green-black-red
- "wyr": white-yellow-red
- "br": black-red
- "yr": yellow-red
- "wb": white-black
- "rainbow": rainbow colormap, that is, red-yellow-green-cyan-blue-magenta
- Alternatively, any hyphen-separated HTML color names, e.g. "blue-black-yellow", "royalbluewhite-sandybrown", "darkblue-lightblue-lightyellow-darkorange", "darkgreen-white-darkviolet", "darkgreen-lightgreen-lightpink-darkred". A list of standard color names can be found in <http://html-color-codes.info/color-names>

See Also

[visColoralpha](#page-38-0)

Examples

```
# 1) define "blue-white-red" colormap
palette.name <- visColormap(colormap="bwr")
```

```
# 2) use the return function "palette.name" to generate 10 colors spanning "bwr"
palette.name(10)
```


Description

visCompReorder is supposed to visualise multiple component planes reorded within a sheet-shape rectangle grid

Usage

```
visCompReorder(
sMap,
sReorder,
margin = rep(0.1, 4),
height = 7,
title.rotate = 0,
```
visCompReorder 43

```
title.xy = c(0.45, 1),
colormap = c("bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow", "wb"),ncolors = 40,
zlim = NULL,
border.color = "transparent",
gp = grid::gpar(),
newpage = TRUE
\mathcal{L}
```
Arguments

Value

invisible

Note

none

See Also

[visVp](#page-76-0), [visHexComp](#page-59-0), [visColorbar](#page-39-0), [sCompReorder](#page-4-0)

Examples

```
# 1) generate data with an iid matrix of 1000 x 9
data \le cbind(matrix(rnorm(1000\star3, mean=0, sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=0.5,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=-0.5,sd=1), nrow=1000, ncol=3))
colnames(data) <- c("S1","S1","S1","S2","S2","S2","S3","S3","S3")
# 2) sMap resulted from using by default setup
sMap <- sPipeline(data=data, shape=c("suprahex","trefoil")[2])
# 3) reorder component planes
sReorder <- sCompReorder(sMap=sMap, amplifier=2, metric="none")
# 4) visualise multiple component planes reorded within a sheet-shape rectangle grid
visCompReorder(sMap=sMap, sReorder=sReorder, margin=rep(0.1,4),
height=7,
title.rotate=0, title.xy=c(0.45, 1), colormap="gbr", ncolors=10,
zlim=c(-1,1),border.color="transparent")
```
visDmatCluster *Function to visualise clusters/bases partitioned from a suprahexagonal grid*

Description

visDmatCluster is supposed to visualise clusters/bases partitioned from a supra-hexagonal grid

Usage

```
visDmatCluster(
sMap,
sBase,
height = 7,
margin = rep(0.1, 4),
area.size = 1,
gp = grid::gpar(cex = 0.8, font = 2, col = "black"),border.color = "transparent",
fill.color = NULL,
lty = 1,
1wd = 1,
lineend = "round",
linejoin = "round",
colormap = c("rainbow", "jet", "bwr", "gbr", "wyr", "br", "yr", "wb"),clip = c("on", "inherit", "off"),newpage = TRUE)
```
visDmatCluster 45

Arguments

Value

invisible

Note

none

See Also

[sDmatCluster](#page-10-0), [sDmat](#page-9-0), [visColormap](#page-40-0), [visHexGrid](#page-60-0)

Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
## Not run:
# 2) get trained using by default setup
sMap <- sPipeline(data=data)
# 3) partition the grid map into clusters using region-growing algorithm
sBase <- sDmatCluster(sMap=sMap, which_neigh=1,
distMeasure="median", clusterLinkage="average")
# 4) visualise clusters/bases partitioned from the sMap
visDmatCluster(sMap,sBase)
# 4a) also, the area size is proportional to the hits
visDmatCluster(sMap,sBase, area.size=log2(sMap$hits+1))
# 4b) also, the area size is inversely proportional to the map distance
dMat <- sDmat(sMap)
visDmatCluster(sMap,sBase, area.size=-1*log2(dMat))
# 5) customise the fill color and line type
my_color <-
visColormap(colormap="PapayaWhip-pink-Tomato")(length(sBase$seeds))[sBase$bases]
my_lty <- (sBase$bases %% 2)
visDmatCluster(sMap,sBase, fill.color=my_color, lty=my_lty,
border.color="black", lwd=2, area.size=0.9)
# also, the area size is inversely proportional to the map distance
visDmatCluster(sMap,sBase, fill.color=my_color, lty=my_lty,
border.color="black", lwd=2, area.size=-1*log2(dMat))
```
End(Not run)

visDmatHeatmap *Function to visualise gene clusters/bases partitioned from a suprahexagonal grid using heatmap*

Description

visDmatHeatmap is supposed to visualise gene clusters/bases partitioned from a supra-hexagonal grid using heatmap

Usage

```
visDmatHeatmap(
sMap,
data,
sBase,
base.color = "rainbow",
base.separated.arg = NULL,
```

```
base.legend.location = c("none", "bottomleft", "bottomright", "bottom",
"left",
"topleft", "top", "topright", "right", "center"),
reorderRow = c("none", "hclust", "svd"),
keep.data = FALSE,
...
\mathcal{L}
```
Arguments

Value

a data frame with following components:

- ID: ID for data. It inherits the rownames of data (if exists). Otherwise, it is sequential integer values starting with 1 and ending with dlen, the total number of rows of the input data
- Hexagon_index: the index for best-matching hexagons
- Cluster_base: optional, it is only appended when sBase is given. It stores the cluster memberships/bases
- data: optional, it is only appended when keep.data is true

Note: the returned data has rows in the same order as visualised in the heatmap

A list of parameters in "base.separated.arg":

- "lty": the line type. Line types can either be specified as an integer (0=blank, 1=solid (default), 2=dashed, 3=dotted, 4=dotdash, 5=longdash, 6=twodash) or as one of the character strings "blank","solid","dashed","dotted","dotdash","longdash","twodash", where "blank" uses 'invisible lines' (i.e., does not draw them)
- "lwd": the line width
- "col": the line color

See Also

[sDmatCluster](#page-10-0), [visHeatmapAdv](#page-50-0)

Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
## Not run:
# 2) get trained using by default setup
sMap <- sPipeline(data=data)
# 3) partition the grid map into clusters using region-growing algorithm
sBase <- sDmatCluster(sMap=sMap, which_neigh=1,
distMeasure="median", clusterLinkage="average")
# 4) heatmap visualisation
output <- visDmatHeatmap(sMap, data, sBase,
base.legend.location="bottomleft", labRow=NA)
```
End(Not run)

visHeatmap *Function to visualise input data matrix using heatmap*

Description

visHeatmap is supposed to visualise input data matrix using heatmap. Note: this heatmap displays matrix in a bottom-to-top direction

Usage

```
visHeatmap(
data,
scale = c("none", "row", "column"),row.metric = c("none", "pearson", "spearman", "kendall", "euclidean",
"manhattan",
```
visHeatmap 49

```
"cos", "mi"),
row.method = c("ward", "single", "complete", "average", "mcquitty",
"median",
"centroid"),
column.metric = c("none", "pearson", "spearman", "kendall",
"euclidean", "manhattan",
"cos", "mi"),
column.method = c("ward", "single", "complete", "average", "mcquitty",
"median",
"centroid"),
colormap = c("bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow", "wb"),
ncolors = 64,zlim = NULL,
row.cutree = NULL,
row.colormap = c("rainbow"),
column.cutree = NULL,
column.colormap = c("rainbow"),
...
\lambda
```


Value

invisible

Note

The clustering methods are provided:

- "ward": Ward's minimum variance method aims at finding compact, spherical clusters
- "single": The single linkage method (which is closely related to the minimal spanning tree) adopts a 'friends of friends' clustering strategy
- "complete": The complete linkage method finds similar clusters
- "average","mcquitty","median","centroid": These methods can be regarded as aiming for clusters with characteristics somewhere between the single and complete link methods. Two methods "median" and "centroid" are not leading to a monotone distance measure, or equivalently the resulting dendrograms can have so called inversions (which are hard to interpret)

See Also

[visHeatmap](#page-47-0)

Examples

```
# 1) generate data with an iid matrix of 100 x 9
data <- cbind(matrix(rnorm(100*3,mean=0,sd=1), nrow=100, ncol=3),
matrix(rnorm(100*3,mean=0.5,sd=1), nrow=100, ncol=3),
matrix(rnorm(100*3,mean=-0.5,sd=1), nrow=100, ncol=3))
colnames(data) <- c("S1","S1","S1","S2","S2","S2","S3","S3","S3")
```
2) prepare colors for the column sidebar

visHeatmapAdv 51

```
lvs <- unique(colnames(data))
lvs_color <- visColormap(colormap="rainbow")(length(lvs))
my_ColSideColors <- sapply(colnames(data), function(x)
lvs_color[x==lvs])
# 3) heatmap with row dendrogram (with 10 color-coded groups)
visHeatmap(data, row.metric="euclidean", row.method="average",
colormap="gbr", zlim=c(-2,2),
ColSideColors=my_ColSideColors, row.cutree=10, row.colormap="jet",
labRow=NA)
```


visHeatmapAdv *Function to visualise input data matrix using advanced heatmap*

Description

visHeatmapAdv is supposed to visualise input data matrix using advanced heatmap. It allows for adding multiple sidecolors in both columns and rows. Besides, the sidecolor can be automatically added via cutting histogram into groups. Note: this heatmap displays matrix in a top-to-bottom direction

Usage

```
visHeatmapAdv(
data,
scale = c("none", "row", "column"),Rowv = TRUE,Colv = TRUE,dendrogram = c("both", "row", "column", "none"),
dist.metric = c("euclidean", "pearson", "spearman", "kendall",
"manhattan", "cos",
"mi"),
linkage.method = c("complete", "ward", "single", "average", "mcquitty",
"median",
"centroid"),
colormap = c("bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow", "wb"),
ncolors = 64,
zlim = NULL,
RowSideColors = NULL,
row.cutree = NULL,
row.colormap = c("jet").ColSideColors = NULL,
column.cutree = NULL,
column.colormap = c("jet"),
...
\mathcal{L}
```


- row.colormap short name for the colormap to color-code the row groups (i.e. sidebar colors used to annotate the rows) ColSideColors NULL or a matrix of $ncol(x)$ X "numColsidebars", where "numColsidebars" stands for the number of sidebars annotating the columns of x. This matrix contains the color names for horizontal sidebars. By default, it sets to NULL. In this case, sidebars in columns can still be enabled by cutting the column dendrogram into several clusters (see the next two parameters) column.cutree an integer scalar specifying the desired number of groups being cut from the
- column dendrogram. Note, this optional is only enabled when the column dengrogram is built

column.colormap

short name for the colormap to color-code the column groups (i.e. sidebar colors used to annotate the columns)

... additional graphic parameters. For most parameters, please refer to [https://](https://www.rdocumentation.org/packages/gplots/topics/heatmap.2) www.rdocumentation.org/packages/gplots/topics/heatmap.2. For example, the parameters "srtRow" and "srtCol" to control the angle of row/column labels (in degrees from horizontal: 45 degrees for the column, 0 degrees for the row, by default), i.e. string rotation. The parameters "offsetRow" and "offsetCol" to indicate the number of character-width spaces to place between row/column labels and the edge of the plotting region. Unique to this function, there are two parameters "RowSideWidth" and RowSideLabelLocation, to respectively indicate the fraction of the row side width and the location (either bottom or top) of the row side labelling; the other two parameters "ColSideHeight" and "ColSideLabelLocation" for the column side height and the location (either left or right) of the column side labelling; and two parameters "RowSideBox" and "ColSideBox" to indicate whether there are boxes outside.

Value

invisible

Note

The clustering/linkage methods are provided:

- "ward": Ward's minimum variance method aims at finding compact, spherical clusters
- "single": The single linkage method (which is closely related to the minimal spanning tree) adopts a 'friends of friends' clustering strategy
- "complete": The complete linkage method finds similar clusters
- "average","mcquitty","median","centroid": These methods can be regarded as aiming for clusters with characteristics somewhere between the single and complete link methods. Two methods "median" and "centroid" are not leading to a monotone distance measure, or equivalently the resulting dendrograms can have so called inversions (which are hard to interpret)

See Also

[visHeatmapAdv](#page-50-0)

Examples

```
# 1) generate data with an iid matrix of 100 x 9
data <- cbind(matrix(rnorm(100*3,mean=0,sd=1), nrow=100, ncol=3),
matrix(rnorm(100*3,mean=0.5,sd=1), nrow=100, ncol=3),
matrix(rnorm(100*3,mean=-0.5,sd=1), nrow=100, ncol=3))
colnames(data) <-
c("S1_R1","S1_R2","S1_R3","S2_R1","S2_R2","S2_R3","S3_R1","S3_R2","S3_R3")
# 2) heatmap after clustering both rows and columns
# 2a) shown with row and column dendrograms
visHeatmapAdv(data, dendrogram="both", colormap="gbr", zlim=c(-2,2),
KeyValueName="log2(Ratio)",
add.expr=abline(v=(1:(ncol(data)+1))-0.5,col="white"),
lmat=rbind(c(4,3), c(2,1)), lhei=c(1,5), lwid=c(1,3))# 2b) shown with row dendrogram only
visHeatmapAdv(data, dendrogram="row", colormap="gbr", zlim=c(-2,2))
# 2c) shown with column dendrogram only
visHeatmapAdv(data, dendrogram="column", colormap="gbr", zlim=c(-2,2))
# 3) heatmap after only clustering rows (with 2 color-coded groups)
visHeatmapAdv(data, Colv=FALSE, colormap="gbr", zlim=c(-2,2),
row.cutree=2, row.colormap="jet", labRow=NA)
# 4) prepare colors for the column sidebar
# color for stages (S1-S3)
stages <- sub("_.*","",colnames(data))
sta_lvs <- unique(stages)
sta_color <- visColormap(colormap="rainbow")(length(sta_lvs))
col_stages <- sapply(stages, function(x) sta_color[x==sta_lvs])
# color for replicates (R1-R3)
replicates <- sub(".*_","",colnames(data))
rep_lvs <- unique(replicates)
rep_color <- visColormap(colormap="rainbow")(length(rep_lvs))
col_replicates <- sapply(replicates, function(x) rep_color[x==rep_lvs])
# combine both color vectors
ColSideColors <- cbind(col_stages,col_replicates)
colnames(ColSideColors) <- c("Stages","Replicates")
# 5) heatmap without clustering on rows and columns but with the two sidebars in columns
visHeatmapAdv(data, Rowv=FALSE, Colv=FALSE, colormap="gbr",
zlim=c(-2,2),
density.info="density", tracecol="yellow", ColSideColors=ColSideColors,
ColSideHeight=0.5, ColSideLabelLocation="right")
# 6) legends
legend(0,0.8, legend=rep_lvs, col=rep_color, lty=1, lwd=5, cex=0.6,
box.col="transparent", horiz=FALSE)
legend(0,0.6, legend=sta_lvs, col=sta_color, lty=1, lwd=5, cex=0.6,
```
box.col="transparent", horiz=FALSE)

Description

visHexAnimate is supposed to animate multiple component planes of a supra-hexagonal grid. The output can be a pdf file containing a list of frames/images, a mp4 video file or a gif file. To support video output file, the software 'ffmpeg' must be first installed (also put its path into the system PATH variable; see Note). To support gif output file, the software 'ImageMagick' must be first installed (also put its path into the system PATH variable; see Note).

Usage

```
visHexAnimate(
sMap,
which.components = NULL,
filename = "visHexAnimate",
filetype = c("pdf", "mp4", "gif"),
image-type = c("jpg", "png"),sec_per_frame = 1,
margin = rep(0.1, 4),
height = 7,
title.rotate = 0,
title.xy = c(0.45, 1),
colormap = c("bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow", "wb"),
ncolors = 40,
zlim = NULL,
border.color = "transparent",
gp = grid::gpar())
```


Value

If specifying the output file name (see argument 'filename' above), the output file is either 'filename.pdf' or 'filename.mp4' or 'filename.gif' in the current working directory. If no output file name specified, by default the output file is either 'visHexAnimate.pdf' or 'visHexAnimate.mp4' or 'visHexAnimate.gif'

Note

When producing mp4 video, this function requires the installation of the software 'ffmpeg' at <https://www.ffmpeg.org>. Shell command lines for ffmpeg installation in Terminal (for both Linux and Mac) are:

- 1) wget -O ffmpeg.tar.gz http://www.ffmpeg.org/releases/ffmpeg-2.7.1.tar.gz
- 2) mkdir ~/ffmpeg | tar xvfz ffmpeg.tar.gz -C ~/ffmpeg --strip-components=1
- 3) cd ffmpeg
- 4a) # Assuming you want installation with a ROOT (sudo) privilege: ./configure --disable-yasm
- 4b) # Assuming you want local installation without ROOT (sudo) privilege: ./configure --disable-yasm --prefix=\$HOME/ffmpeg
- \bullet 5) make
- 6) make install

visHexAnimate 57

- 7) # add the system PATH variable to your ~/.bash_profile file if you follow 4b) route: export PATH=\$HOME/ffmpeg:\$PATH
- 8) # make sure ffmpeg has been installed successfully: ffmpeg -h

When producing gif file, this function requires the installation of the software 'ImageMagick' at <http://www.imagemagick.org>. Shell command lines for ImageMagick installation in Terminal are:

- 1) wget http://www.imagemagick.org/download/ImageMagick.tar.gz
- 2) mkdir ~/ImageMagick | tar xvzf ImageMagick.tar.gz -C ~/ImageMagick --strip-components=1
- 3) cd ImageMagick
- 4) ./configure --prefix=\$HOME/ImageMagick
- \cdot 5) make
- 6) make install
- 7) # add the system PATH variable to your ~/.bash_profile file. For Linux: export MAGICK_HOME=\$HOME/ImageMagick export PATH=\$MAGICK_HOME/bin:\$PATH export LD_LIBRARY_PATH=\${LD_LIBRARY_PATH:+\$LD_LIBRARY_PATH:}\$MAGICK_HOME/lib For Mac: export MAGICK_HOME=\$HOME/ImageMagick export PATH=\$MAGICK_HOME/bin:\$PATH export DYLD_LIBRARY_PATH=\$MAGICK_HOME/lib/
- 8a) # check configuration: convert -list configure
- 8b) # check image format supported: identify -list format
- Tips:

Prior to 4), please make sure libjpeg and libpng are installed. If NOT, for Mac try this: brew install libjpeg libpng To check whether ImageMagick does work, please get additional information from: identify -list format convert -list configure On details, please refer to [http://www.imagemagick.org/script/advanced-unix-install](http://www.imagemagick.org/script/advanced-unix-installation.php)ation. [php](http://www.imagemagick.org/script/advanced-unix-installation.php)

See Also

[visHexMulComp](#page-64-0)

Examples

```
# 1) generate data with an iid matrix of 1000 x 3
data <- cbind(matrix(rnorm(1000*3,mean=0,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=0.5,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=-0.5,sd=1), nrow=1000, ncol=3))
```

```
colnames(data) <- c("S1","S1","S1","S2","S2","S2","S3","S3","S3")
## Not run:
# 2) sMap resulted from using by default setup
sMap <- sPipeline(data=data)
# 3) animate sMap
# output as a <a href="visHexAnimate.pdf">pdf</a> file
visHexAnimate(sMap, filename="visHexAnimate", filetype="pdf")
# output as a <a href="visHexAnimate.mp4">mp4</a> file
visHexAnimate(sMap, filename="visHexAnimate", filetype="mp4")
# output as a <a href="visHexAnimate.gif">gif</a> file
visHexAnimate(sMap, filename="visHexAnimate", filetype="gif")
```

```
## End(Not run)
```
visHexBarplot *Function to visualise codebook matrix using barplot for all hexagons or a specific one*

Description

visHexBarplot is supposed to visualise codebook matrix using barplot for all hexagons or a specific one

Usage

```
visHexBarplot(
sObj,
which.hexagon = NULL,
which.hexagon.highlight = NULL,
height = 7,
margin = rep(0.1, 4),
colormap = c("customized", "bwr", "jet", "gbr", "wyr", "br", "yr",
"rainbow", "wb"),
customized.color = "red",
zeropattern.color = "gray",
gp = grid::gpar(cex = 0.7, font = 1, col = "black"),bar.text.cex = 0.8bar.text.srt = 90,
newpage = TRUE)
```


which.hexagon.highlight an integer vector specifying which hexagons are labelled. If NULL, all hexagons will be labelled height a numeric value specifying the height of device margin margins as units of length 4 or 1 colormap short name for the predifined colormap, and "customized" for custom input (see the next 'customized.color'). The predifined colormap can be one of "jet" (jet colormap), "bwr" (blue-white-red colormap), "gbr" (green-black-red colormap), "wyr" (white-yellow-red colormap), "br" (black-red colormap), "yr" (yellow-red colormap), "wb" (white-black colormap), and "rainbow" (rainbow colormap, that is, red-yellow-green-cyan-blue-magenta). Alternatively, any hyphen-separated HTML color names, e.g. "blue-black-yellow", "royalblue-white-sandybrown", "darkgreen-white-darkviolet". A list of standard color names can be found in <http://html-color-codes.info/color-names> customized.color the customized color for pattern visualisation zeropattern.color the color for zero horizental line gp an object of class "gpar". It is the output from a call to the function "gpar" (i.e., a list of graphical parameter settings) bar.text.cex a numerical value giving the amount by which bar text should be magnified relative to the default (i.e., 1) bar.text.srt a numerical value giving the angle by which bar text should be orientated newpage logical to indicate whether to open a new page. By default, it sets to true for opening a new page

Value

invisible

Note

none

See Also

[sPipeline](#page-25-0), [visColormap](#page-40-0)

Examples

```
# 1) generate data with an iid matrix of 1000 x 9
data <- cbind(matrix(rnorm(1000*3,mean=0,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=0.5,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=-0.5,sd=1), nrow=1000, ncol=3))
colnames(data) <- c("S1","S1","S1","S2","S2","S2","S3","S3","S3")
```
2) sMap resulted from using by default setup sMap <- sPipeline(data=data)

```
# 3) plot codebook patterns using different types
# 3a) for all hexagons
visHexBarplot(sMap)
# 3b) only for the first hexagon
visHexBarplot(sMap, which.hexagon=1)
```
visHexComp *Function to visualise a component plane of a supra-hexagonal grid*

Description

visHexComp is supposed to visualise a supra-hexagonal grid in the context of viewport

Usage

```
visHexComp(
sMap,
comp,
margin = rep(0.6, 4),
area.size = 1,
colormap = c("bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow", "wb"),
ncolors = 40,
zlim = c(\emptyset, 1),
border.color = "transparent",
newpage = TRUE\mathcal{L}
```


visHexGrid 61

Value

invisible

Note

none

See Also

[visColormap](#page-40-0), [visHexGrid](#page-60-0)

Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
colnames(data) <- paste(rep('S',10), seq(1:10), sep="")
```
2) sMap resulted from using by default setup sMap <- sPipeline(data=data)

```
# 3) visualise the first component plane with a supra-hexagonal grid
visHexComp(sMap, comp=sMap$codebook[,1], colormap="jet", ncolors=100,
zlim=c(-1,1))
```
visHexGrid *Function to visualise a supra-hexagonal grid*

Description

visHexGrid is supposed to visualise a supra-hexagonal grid

Usage

```
visHexGrid(
hbin,
area.size = 1,
border.color = NULL,
fill.color = NULL,
lty = 1,
1wd = 1,
lineend = "round",
linejoin = "round"
)
```
Arguments

Value

invisible

Note

none

See Also

[visHexComp](#page-59-0)

Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
colnames(data) <- paste(rep('S',10), seq(1:10), sep="")
# 2) sMap resulted from using by default setup
sMap <- sPipeline(data=data)
# 3) create an object of "hexbin" class from sMap
dat <- data.frame(sMap$coord)
xdim <- sMap$xdim
ydim <- sMap$ydim
hbin <- hexbin::hexbin(dat$x, dat$y, xbins=xdim-1,
shape=sqrt(0.75)*ydim/xdim)
# 4) visualise hbin object
vp <- hexbin::hexViewport(hbin)
```

```
visHexGrid(hbin)
```
Description

visHexMapping is supposed to visualise various mapping items within a supra-hexagonal grid

Usage

```
visHexMapping(
sObj,
mappingType = c("indexes", "hits", "dist", "antidist", "bases",
"customized"),
labels = NULL,
height = 7,
margin = rep(0.1, 4),
area.size = 1,
gp = grid::gpar(cex = 0.7, font = 1, col = "black"),border.color = NULL,
fill.color = "transparent",
lty = 1,1wd = 1,
lineend = "round",
linejoin = "round",
clip = c("on", "inherit", "off"),
newpage = TRUE
\mathcal{L}
```


Value

invisible

Note

The mappingType includes:

- "indexes": the index of hexagons in a supra-hexagonal grid
- "hits": the number of input data vectors hitting the hexagons
- "dist": distance (in high-dimensional input space) to neighbors (defined in 2D output space)
- "antidist": the oppose version of "dist"
- "bases": clusters partitioned from the sMap
- "customized": displaying input "labels"

See Also

[sDmat](#page-9-0), [sDmatCluster](#page-10-0), [visHexGrid](#page-60-0)

Examples

```
# 1) generate data with an iid matrix of 1000 x 9
data \leq cbind(matrix(rnorm(1000*3,mean=0,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=0.5,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=-0.5,sd=1), nrow=1000, ncol=3))
colnames(data) <- c("S1","S1","S1","S2","S2","S2","S3","S3","S3")
# 2) sMap resulted from using by default setup
sMap <- sPipeline(data=data)
# 3) visualise supported mapping items within a supra-hexagonal grid
# 3a) for indexes of hexagons
visHexMapping(sMap, mappingType="indexes", fill.color="transparent")
# 3b) for the number of input data vectors hitting the hexagons
visHexMapping(sMap, mappingType="hits", fill.color=NULL)
# 3c) for distance (in high-dimensional input space) to neighbors (defined in 2D output space)
visHexMapping(sMap, mappingType="dist")
# 3d) for clusters/bases partitioned from the sMap
visHexMapping(sMap, mappingType="bases")
```


Description

visHexMulComp is supposed to visualise multiple component planes of a supra-hexagonal grid

Usage

```
visHexMulComp(
sMap,
which.components = NULL,
rect.grid = NULL,
margin = rep(0.1, 4),
height = 7,
title.rotate = 0,
title.xy = c(0.45, 1),
colormap = c("bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow", "wb"),
ncolors = 40,
zlim = NULL,
border.color = "transparent",
gp = grid::gpar(),
newpage = TRUE
\mathcal{L}
```


Value

invisible

Note

none

See Also

[visVp](#page-76-0), [visHexComp](#page-59-0), [visColorbar](#page-39-0)

Examples

```
# 1) generate data with an iid matrix of 1000 x 3
data <- cbind(matrix(rnorm(1000*3,mean=0,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=0.5,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=-0.5,sd=1), nrow=1000, ncol=3))
colnames(data) <- c("S1","S1","S1","S2","S2","S2","S3","S3","S3")
# 2) sMap resulted from using by default setup
sMap <- sPipeline(data=data)
# 3) visualise multiple component planes of a supra-hexagonal grid
visHexMulComp(sMap, colormap="jet", ncolors=20, zlim=c(-1,1),
gp=grid::gpar(cex=0.8))
# 3a) visualise only the first 6 component planes
visHexMulComp(sMap, which.components=1:6, colormap="jet", ncolors=20,
zlim=c(-1,1), gp=grid::gpar(cex=0.8))
# 3b) visualise only the first 6 component planes within the rectangle grid of 3 X 2
visHexMulComp(sMap, which.components=1:6, rect.grid=c(3,2),
colormap="jet", ncolors=20, zlim=c(-1,1), gp=grid::gpar(cex=0.8))
```
Description

visHexPattern is supposed to codebook matrix or input patterns within a supra-hexagonal grid.

Usage

```
visHexPattern(
sObj,
plotType = c("lines", "bars", "radars"),
pattern = NULL,
height = 7,
margin = rep(0.1, 4),
colormap = c("customized", "bwr", "jet", "gbr", "wyr", "br", "yr",
"rainbow", "wb"),
customized.color = "red",
alterntive.color = c("transparent", "gray"),
zeropattern.color = "gray",
legend = TRUE,legend.cex = 0.8,
legend.label = NULL,
newpage = TRUE
\mathcal{L}
```


Value

invisible

Note

The "plotType" includes:

- "lines": line plot. If multple colors are given, the points are also plotted. When the pattern involves both positive and negative values, zero horizental line is also shown
- "bars": bar plot. When the pattern involves both positive and negative values, the zero horizental line is in the middle of the hexagon; otherwise at the top of the hexagon for all negative values, and at the bottom for all positive values
- "radars": radar plot. Each radar diagram represents one pattern, wherein each element value is proportional to the distance from the center. Note, it starts on the right and wind counterclockwise around the circle

See Also

[sPipeline](#page-25-0), [visColormap](#page-40-0)

Examples

```
# 1) generate data with an iid matrix of 1000 x 9
data \le cbind(matrix(rnorm(1000*3,mean=0,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=0.5,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=-0.5,sd=1), nrow=1000, ncol=3))
colnames(data) <- c("S1","S1","S1","S2","S2","S2","S3","S3","S3")
# 2) sMap resulted from using by default setup
```

```
sMap <- sPipeline(data=data)
```
visKernels 69

```
# 3) plot codebook patterns using different types
# 3a) line plot
visHexPattern(sMap, plotType="lines")
# 3b) bar plot
visHexPattern(sMap, plotType="bars")
# 3c) radar plot
visHexPattern(sMap, plotType="radars")
# 4) plot user-input patterns using different types
# 4a) generate pattern data with two different groups "S" and "T"
nHex <- sMap$nHex
pattern <- cbind(matrix(runif(nHex*3,min=0,max=1), nrow=nHex, ncol=3),
matrix(runif(nHex*3,min=1,max=2), nrow=nHex, ncol=3))
colnames(pattern) <- c("S1","S2","S3","T1","T2","T3")
# 4b) for line plot
visHexPattern(sMap, plotType="lines", pattern=pattern,
customized.color="red", zeropattern.color="gray")
# 4c) for bar plot
visHexPattern(sMap, plotType="bars", pattern=pattern,
customized.color=rep(c("red","green"),each=3))
visHexPattern(sMap, plotType="bars", pattern=pattern,
customized.color=rep(c("red","green"),each=3), legend.label=c("S","T"))
# 4d) for radar plot
visHexPattern(sMap, plotType="radars", pattern=pattern,
customized.color=rep(c("red","green"),each=3))
visHexPattern(sMap, plotType="radars", pattern=pattern,
customized.color=rep(c("red","green"),each=3), legend.label=c("S","T"))
```


visKernels *Function to visualize neighborhood kernels*

Description

visKernels is supposed to visualize a series of neighborhood kernels, each of which is a nonincreasing functions of: i) the distance d_{wi} between the hexagon/rectangle i and the winner w, and ii) the radius δ_t at time t.

Usage

```
visKernels(newpage = TRUE)
```
Arguments

newpage logical to indicate whether to open a new page. By default, it sets to true for opening a new page

Value

invisible

Note

There are five kernels that are currently supported:

- For "gaussian" kernel, $h_{wi}(t) = e^{-d_{wi}^2/(2 * \delta_t^2)}$
- For "cutguassian" kernel, $h_{wi}(t) = e^{-d_{wi}^2/(2*\delta_t^2)} * (d_{wi} \le \delta_t)$
- For "bubble" kernel, $h_{wi}(t) = (d_{wi} \le \delta_t)$
- For "ep" kernel, $h_{wi}(t) = (1 d_{wi}^2/\delta_t^2) * (d_{wi} \le \delta_t)$
- For "gamma" kernel, $h_{wi}(t) = 1/\Gamma(d_{wi}^2/(4 * \delta_t^2) + 2)$

These kernels above are displayed within a plot for each fixed radius. Three different radii (i.e., 1 and 2) are illustrated.

See Also

[sTrainSeq](#page-35-0), [sTrainBatch](#page-31-0)

Examples

visualise currently supported five kernels visKernels()

visTreeBootstrap *Function to build and visualise the bootstrapped tree*

Description

visTreeBootstrap is supposed to build the tree, perform bootstrap analysis and visualise the bootstrapped tree. It returns an object of class "phylo". For easy downstream analysis, the bootstrapped tree is rerooted either at the internal node with the miminum bootstrap/confidence value or at any customised internal node.

Usage

```
visTreeBootstrap(
data,
algorithm = c("nj", "fastme.ols", "fastme.bal"),
metric = c("euclidean", "pearson", "spearman", "cos", "manhattan",
"kendall", "mi",
"binary"),
num.bootstrap = 100,
consensus = FALSE,
consensus.majority = 0.5,
reroot = "min.bootstrap",
plot.phylo.arg = NULL,
nodelabels.arg = NULL,
visTree = TRUE,
verbose = TRUE,
...
\mathcal{L}
```
Arguments

Value

an object of class "phylo". It can return a bootstrapped tree or a consensus tree (if enabled): When a bootstrapped tree is returned (also visualised by default), the "phylo" object has a list with following components:

- Nnode: the number of internal nodes
- node.label: the labels for internal nodes. Here, each internal node is associated with the bootstrap value
- tip.label: the labels for tip nodes. Tip labels come from the row names of the input matrix, but are not necessarily the same order as they appear in the input matrix
- edge: a two-column matrix describing the links between tree nodes (including internal and tip nodes)
- edge.length: a vector indicating the edge length in the 'edge'
- Note: the tree structure is indexed with 1:Ntip for tip nodes, and $(Ntip+1):(Ntip+Nnode)$ for internal nodes, where $N tip$ is the number of tip nodes and $N node$ for the number of internal nodes. Moreover, $nrow(data) = Ntip = Nnode - 2$.

When a consensus tree is returned (no visualisation), the "phylo" object has a list with following components:

- Nnode: the number of internal nodes
- tip.label: the lables for tip nodes. Tip labels come from the row names of the input matrix, but are not necessarily the same order as they appear in the input matrix
- edge: a two-column matrix describing the links between tree nodes (including internal and tip nodes)

Note

A list of main parameters used in the function "ape::plot.phylo":

- "type": a character string specifying the type of phylogeny to be drawn; it must be one of "phylogram" (the default), "cladogram", "fan", "unrooted", "radial" or any unambiguous abbreviation of these
- "direction": a character string specifying the direction of the tree. Four values are possible: "rightwards" (the default), "leftwards", "upwards", and "downwards"
- "lab4ut": (= labels for unrooted trees) a character string specifying the display of tip labels for unrooted trees: either "horizontal" where all labels are horizontal (the default), or "axial" where the labels are displayed in the axis of the corresponding terminal branches. This option has an effect only if type = "unrooted"
- "edge.color": a vector of mode character giving the colours used to draw the branches of the plotted phylogeny. These are taken to be in the same order than the component edge of phy. If fewer colours are given than the length of edge, then the colours are recycled
- "edge.width": a numeric vector giving the width of the branches of the plotted phylogeny. These are taken to be in the same order than the component edge of phy. If fewer widths are given than the length of edge, then these are recycled
- "edge.lty": same than the previous argument but for line types; 1: plain, 2: dashed, 3: dotted, 4: dotdash, 5: longdash, 6: twodash
- "font": an integer specifying the type of font for the labels: 1 (plain text), 2 (bold), 3 (italic, the default), or 4 (bold italic)
- "cex": a numeric value giving the factor scaling of the tip and node labels (Character EXpansion). The default is to take the current value from the graphical parameters
- "adj": a numeric specifying the justification of the text strings of the labels: 0 (left-justification), 0.5 (centering), or 1 (right-justification). This option has no effect if type="unrooted". If NULL (the default) the value is set with respect of direction (see details)
visTreeBootstrap 73

- "srt": a numeric giving how much the labels are rotated in degrees (negative values are allowed resulting in clock-like rotation); the value has an effect respectively to the value of direction (see Examples). This option has no effect if type="unrooted"
- "no.margin": a logical. If TRUE, the margins are set to zero and the plot uses all the space of the device
- "label.offset": a numeric giving the space between the nodes and the tips of the phylogeny and their corresponding labels. This option has no effect if type="unrooted"
- "rotate.tree": for "fan", "unrooted", or "radial" trees: the rotation of the whole tree in degrees (negative values are accepted

A list of main parameters used in the function "ape::nodelabels":

- "text": a vector of mode character giving the text to be printed. By default, the labels for internal nodes (see "node.label"), that is, the bootstrap values associated with internal nodes
- "node": a vector of mode numeric giving the numbers of the nodes where the text or the symbols are to be printed. By default, indexes for internal nodes, that is, $(Ntip+1):(Ntip+Nnode)$, where $Ntip$ is the number of tip nodes and $Nnode$ for the number of internal nodes
- "adj": one or two numeric values specifying the horizontal and vertical, respectively, justification of the text or symbols. By default, the text is centered horizontally and vertically. If a single value is given, this alters only the horizontal position of the text
- "frame": a character string specifying the kind of frame to be printed around the text. This must be one of "rect" (the default), "circle", "none", or any unambiguous abbreviation of these
- "cex": a numeric value giving the factor scaling of the tip and node labels (Character EXpansion). The default is to take the current value from the graphical parameters
- "font": an integer specifying the type of font for the labels: 1 (plain text), 2 (bold), 3 (italic, the default), or 4 (bold italic)
- "col": a character string giving the color to be used for the text or the plotting symbols; this is eventually recycled
- "bg": a character string giving the color to be used for the background of the text frames or of the plotting symbols if it applies; this is eventually recycled. It can be one of "jet" (jet colormap), "bwr" (blue-white-red colormap), "gbr" (green-black-red colormap), "wyr" (white-yellow-red colormap), "br" (black-red colormap), "yr" (yellow-red colormap), "wb" (white-black colormap), and "rainbow" (rainbow colormap, that is, red-yellow-green-cyanblue-magenta). Alternatively, any hyphen-separated HTML color names, e.g. "blue-blackyellow", "royalblue-white-sandybrown", "darkgreen-white-darkviolet". A list of standard color names can be found in <http://html-color-codes.info/color-names>

See Also

[visTreeBootstrap](#page-69-0)

Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
\text{colnames}(\text{data}) \leq \text{paste}(\text{rep}('S', 10), \text{seq}(1:10), \text{sep}="")data \leftarrow t(data)
```

```
## Not run:
# 2) build neighbor-joining tree with bootstrap values and visualise it by default
visTreeBootstrap(data)
# 3) only display those internal nodes with bootstrap values > 30
# 3a) generate the bootstrapped tree (without visualisation)
tree_bs <- visTreeBootstrap(data, visTree=FALSE)
# 3b) look at the bootstrap values and ordered row names of input matrix
# the bootstrap values
tree_bs$node.label
# ordered row names of input matrix
tree_bs$tip.label
# 3c) determine internal nodes that should be displayed
Ntip <- length(tree_bs$tip.label) # number of tip nodes
Nnode <- length(tree_bs$node.label) # number of internal nodes
flag <- which(as.numeric(tree_bs$node.label) > 30 |
!is.na(tree_bs$node.label))
text <- tree_bs$node.label[flag]
node <- Ntip + (1:Nnode)[flag]
visTreeBootstrap(data, nodelabels.arg=list(text=text,node=node))
# 4) obtain the consensus tree
tree_cons <- visTreeBootstrap(data, consensus=TRUE, num.bootstrap=10)
```
End(Not run)

visTreeBSclust *Function to obtain clusters from a bootstrapped tree*

Description

visTreeBSclust is supposed to obtain clusters from a bootstrapped tree.

Usage

```
visTreeBSclust(
tree_bs,
bootstrap.cutoff = 80,
max.fraction = 1,
min.size = 3,
visTree = TRUE,
plot.phylo.arg = NULL,
nodelabels.arg = NULL,
verbose = TRUE,
...
\mathcal{L}
```


visTreeBSclust 75

Arguments

Value

a data frame following components:

- Samples: the labels for tip nodes (samples)
- Clusters: the clusters each tip node belongs to; unassigned tip nodes will be the cluster called 'C0'
- Clans: the internal node id for each cluster

Note

A list of main parameters used in the function "ape::plot.phylo":

- "type": a character string specifying the type of phylogeny to be drawn; it must be one of "phylogram" (the default), "cladogram", "fan", "unrooted", "radial" or any unambiguous abbreviation of these
- "direction": a character string specifying the direction of the tree. Four values are possible: "rightwards" (the default), "leftwards", "upwards", and "downwards"
- "lab4ut": (= labels for unrooted trees) a character string specifying the display of tip labels for unrooted trees: either "horizontal" where all labels are horizontal (the default), or "axial" where the labels are displayed in the axis of the corresponding terminal branches. This option has an effect only if type = "unrooted"
- "edge.color": a vector of mode character giving the colours used to draw the branches of the plotted phylogeny. These are taken to be in the same order than the component edge of phy. If fewer colours are given than the length of edge, then the colours are recycled
- "edge.width": a numeric vector giving the width of the branches of the plotted phylogeny. These are taken to be in the same order than the component edge of phy. If fewer widths are given than the length of edge, then these are recycled
- "edge.lty": same than the previous argument but for line types; 1: plain, 2: dashed, 3: dotted, 4: dotdash, 5: longdash, 6: twodash
- "font": an integer specifying the type of font for the labels: 1 (plain text), 2 (bold), 3 (italic, the default), or 4 (bold italic)
- "cex": a numeric value giving the factor scaling of the tip and node labels (Character EXpansion). The default is to take the current value from the graphical parameters
- "adj": a numeric specifying the justification of the text strings of the labels: 0 (left-justification), 0.5 (centering), or 1 (right-justification). This option has no effect if type="unrooted". If NULL (the default) the value is set with respect of direction (see details)
- "srt": a numeric giving how much the labels are rotated in degrees (negative values are allowed resulting in clock-like rotation); the value has an effect respectively to the value of direction (see Examples). This option has no effect if type="unrooted"
- "no.margin": a logical. If TRUE, the margins are set to zero and the plot uses all the space of the device
- "label.offset": a numeric giving the space between the nodes and the tips of the phylogeny and their corresponding labels. This option has no effect if type="unrooted"
- "rotate.tree": for "fan", "unrooted", or "radial" trees: the rotation of the whole tree in degrees (negative values are accepted

A list of main parameters used in the function "ape::nodelabels":

- "text": a vector of mode character giving the text to be printed. By default, the labels for internal nodes (see "node.label"), that is, the bootstrap values associated with internal nodes
- "node": a vector of mode numeric giving the numbers of the nodes where the text or the symbols are to be printed. By default, indexes for internal nodes, that is, $(Ntip+1):(Ntip+Nnode)$, where $N tip$ is the number of tip nodes and $N node$ for the number of internal nodes
- "adj": one or two numeric values specifying the horizontal and vertical, respectively, justification of the text or symbols. By default, the text is centered horizontally and vertically. If a single value is given, this alters only the horizontal position of the text
- "frame": a character string specifying the kind of frame to be printed around the text. This must be one of "rect" (the default), "circle", "none", or any unambiguous abbreviation of these
- "cex": a numeric value giving the factor scaling of the tip and node labels (Character EXpansion). The default is to take the current value from the graphical parameters
- "font": an integer specifying the type of font for the labels: 1 (plain text), 2 (bold), 3 (italic, the default), or 4 (bold italic)
- "col": a character string giving the color to be used for the text or the plotting symbols; this is eventually recycled
- "bg": a character string giving the color to be used for the background of the text frames or of the plotting symbols if it applies; this is eventually recycled. It can be one of "jet" (jet colormap), "bwr" (blue-white-red colormap), "gbr" (green-black-red colormap), "wyr" (white-yellow-red colormap), "br" (black-red colormap), "yr" (yellow-red colormap), "wb" (white-black colormap), and "rainbow" (rainbow colormap, that is, red-yellow-green-cyanblue-magenta). Alternatively, any hyphen-separated HTML color names, e.g. "blue-blackyellow", "royalblue-white-sandybrown", "darkgreen-white-darkviolet". A list of standard color names can be found in <http://html-color-codes.info/color-names>

vis Vp 77

See Also

[visTreeBootstrap](#page-69-0)

Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
colnames(data) <- paste(rep('S',10), seq(1:10), sep="")
data \leftarrow t(data)
```

```
## Not run:
# 2) build neighbor-joining tree with bootstrap values and visualise it by default
tree_bs <- visTreeBootstrap(data)
```

```
# 3) obtain clusters from a bootstrapped tree
res <- visTreeBSclust(tree_bs, bootstrap.cutoff=80)
## hide tip labels and modify the font of internal node labels
res <- visTreeBSclust(tree_bs, bootstrap.cutoff=80,
nodelabels.arg=list(cex=0.4), show.tip.label=FALSE)
```
End(Not run)

visVp *Function to create viewports for multiple supra-hexagonal grids*

Description

visVp is supposed to create viewports, which describe rectangular regions on a graphics device and define a number of coordinate systems for each of supra-hexagonal grids.

Usage

```
visVp(
height = 7,
xdim = 1,
ydim = 1,
colNum = 1,
rowNum = 1,
gp = grid::gpar(),
newpage = TRUE
)
```
Arguments

Value

vpnames an R object of "viewport" class

Note

none

See Also

[visHexMulComp](#page-64-0), [visCompReorder](#page-41-0)

Examples

```
# 1) create 5x5 viewports
vpnames <- visVp(colNum=5, rowNum=5)
```
2) look at names of these viewports vpnames

Xiang *Arabidopsis embryo gene expression dataset from Xiang et al. (2011)*

Description

Arabidopsis embryo dataset contains gene expression levels (3625 genes and 7 embryo samples) from Xiang et al. (2011). This dataset has been pre-processed: capping into floor of intensity 777.6; 2-base logarithmic transformation; row/gene centering; and keeping genes with at least 2 fold changes (in any stage) as compared to the average over embryo stages.

Usage

```
data(Xiang)
```
Value

• Xiang: a gene expression matrix of 3625 genes x 7 stage samples. These embryo stages are: zygote, quadrant, globular, heart, torpedo, bent, and mature.

Xiang 2008 - 2008 - 2008 - 2008 - 2008 - 2008 - 2008 - 2008 - 2008 - 2008 - 2008 - 2008 - 2008 - 2008 - 2008 -

References

Xiang et al. (2011) Genome-wide analysis reveals gene expression and metabolic network dynamics during embryo development in Arabidopsis. *Plant Physiol*, 156(1):346-356.

Index

∗ datasets Fang, [3](#page-2-0) Golub, [3](#page-2-0) Xiang, [78](#page-77-0) Fang, [3](#page-2-0) Golub, [3](#page-2-0) sBMH, [4,](#page-3-0) *[7](#page-6-0)*, *[12](#page-11-0)*, *[23](#page-22-0)*, *[28](#page-27-0)*, *[39](#page-38-0)* sCompReorder, [5,](#page-4-0) *[43](#page-42-0)* sDistance, *[6,](#page-5-0) [7](#page-6-0)*, [8,](#page-7-0) *[12](#page-11-0)* sDmat, [10,](#page-9-0) *[12,](#page-11-0) [13](#page-12-0)*, *[45](#page-44-0)*, *[64](#page-63-0)* sDmatCluster, *[9](#page-8-0)*, [11,](#page-10-0) *[45](#page-44-0)*, *[48](#page-47-0)*, *[64](#page-63-0)* sDmatMinima, *[12](#page-11-0)*, [12](#page-11-0) sHexDist, [14,](#page-13-0) *[23](#page-22-0)*, *[25](#page-24-0)* sHexGrid, [15,](#page-14-0) *[17](#page-16-0)*, *[30,](#page-29-0) [31](#page-30-0)* sHexGridVariant, [16,](#page-15-0) *[20](#page-19-0)* sHexPolygon, [19](#page-18-0) sInitial, *[14](#page-13-0)*, [20,](#page-19-0) *[28](#page-27-0)*, *[35](#page-34-0)* sMapOverlay, [22](#page-21-0) sNeighAny, *[10](#page-9-0)*, *[13](#page-12-0)*, [24](#page-23-0) sNeighDirect, *[12](#page-11-0)*, *[24](#page-23-0)*, [25](#page-24-0) sPipeline, *[5](#page-4-0)*, *[7](#page-6-0)*, *[12](#page-11-0)*, *[16](#page-15-0)*, *[20](#page-19-0)*, *[23](#page-22-0)*, [26,](#page-25-0) *[59](#page-58-0)*, *[68](#page-67-0)* sTopology, *[7](#page-6-0)*, *[14](#page-13-0)*, *[21](#page-20-0)*, *[28](#page-27-0)*, [29](#page-28-0) sTrainBatch, *[28](#page-27-0)*, [32,](#page-31-0) *[70](#page-69-1)* sTrainology, *[28](#page-27-0)*, *[33](#page-32-0)*, [34,](#page-33-0) *[37](#page-36-0)* sTrainSeq, *[28](#page-27-0)*, [36,](#page-35-0) *[70](#page-69-1)* sWriteData, [38](#page-37-0) visColoralpha, [39,](#page-38-0) *[42](#page-41-1)* visColorbar, [40,](#page-39-0) *[43](#page-42-0)*, *[66](#page-65-0)* visColormap, *[40,](#page-39-0) [41](#page-40-0)*, [41,](#page-40-0) *[45](#page-44-0)*, *[59](#page-58-0)*, *[61](#page-60-0)*, *[68](#page-67-0)* visCompReorder, *[7](#page-6-0)*, *[41](#page-40-0)*, [42,](#page-41-1) *[78](#page-77-0)* visDmatCluster, *[12](#page-11-0)*, [44](#page-43-0) visDmatHeatmap, [46](#page-45-0) visHeatmap, [48,](#page-47-0) *[50](#page-49-0)* visHeatmapAdv, *[48](#page-47-0)*, [51,](#page-50-0) *[53](#page-52-0)* visHexAnimate, [55](#page-54-0) visHexBarplot, [58](#page-57-0)

visHexComp, *[43](#page-42-0)*, [60,](#page-59-0) *[62](#page-61-0)*, *[66](#page-65-0)* visHexGrid, *[45](#page-44-0)*, *[61](#page-60-0)*, [61,](#page-60-0) *[64](#page-63-0)* visHexMapping, *[31](#page-30-0)*, [63](#page-62-0) visHexMulComp, *[23](#page-22-0)*, *[28](#page-27-0)*, *[41](#page-40-0)*, *[57](#page-56-0)*, [65,](#page-64-1) *[78](#page-77-0)* visHexPattern, [67](#page-66-0) visKernels, *[33](#page-32-0)*, *[37](#page-36-0)*, [69](#page-68-0) visTreeBootstrap, [70,](#page-69-1) *[73](#page-72-0)*, *[77](#page-76-0)* visTreeBSclust, [74](#page-73-0) visVp, *[43](#page-42-0)*, *[66](#page-65-0)*, [77](#page-76-0)

Xiang, [78](#page-77-0)