Package ‘immApex’
November 1, 2025

Title Tools for Adaptive Immune Receptor Sequence-Based Machine and
Deep Learning

Version 1.4.0

Description A set of tools to for machine and deep learning in R from amino acid and nucleotide se-
quences focusing on adaptive immune receptors. The package includes pre-processing of se-
quences, unifying gene nomenclature usage, encoding sequences, and combining mod-
els. This package will serve as the basis of future immune receptor sequence func-
tions/packages/models compatible with the scRepertoire ecosystem.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.2

biocViews Software, InmunoOncology, SingleCell, Classification,
Annotation, Sequencing, MotifAnnotation

Depends R (>=4.3.0)

Imports hash, httr, Matrix, matrixStats, methods, Rcpp, rvest,
SingleCellExperiment, stats, stringr, utils

Suggests BiocStyle, dplyr, ggraph, ggplot2, igraph, knitr, markdown,
Peptides, randomForest, rmarkdown, scRepertoire, spelling,
testthat, tidygraph, viridis

SystemRequirements Python (via basilisk)
LinkingTo Rcpp

VignetteBuilder knitr

Language en-US

URL https://github.com/BorchLab/immApex/

BugReports https://github.com/BorchLab/immApex/issues
git_url https://git.bioconductor.org/packages/immApex
git_branch RELEASE_3_22

git_last_commit b2a3afb

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2025-10-31

Author Nick Borcherding [aut, cre]

Maintainer Nick Borcherding <ncborch@gmail . com>

1

https://github.com/BorchLab/immApex/
https://github.com/BorchLab/immApex/issues

2 immApex-package

Contents
immApex-package e 2
ace_richness L e 3
adjacencyMatrix L. 4
amino.acids L 4
buildNetwork 5
calculateEntropy e e e 6
calculateFrequency L 7
calculateGeneUsage L 8
calculateMotif L 9
calculateProperty 10
chaol _richness e 11
d50_dom e 12
dxx_dom e e 12
formatGenes 13
GENETAESEQUENCES . « « v v v v v e e e e e e e e e e e e e e e e e e 14
getIMGT e 15
getlR . . e e 16
gini_coef L e e 16
GINI_SIMPSON oo bt et e e e e e e e e e e 17
hilLg e 18
immapex_blosum.pam.matrices e e e 19
immapex_example.data L. L 19
immapex_gene.list L. L e 20
inferCDR e 20
INV_SIMPSON o v v ot et e e e e e 21
MUEAESEQUENCES v v v v e e e e e e e e e e e e e e e e e e 22
NOTMN_ENIIOPY .+« o v v v v v e 23
PIElOU_EVeNNessS e e e e e e e e e 24
positionalEncoder oL 24
probabilityMatriX e e 25
scaleMatriX L. 26
sequenceDecoder L 27
sequenceEncoder L L 29
shannon_entropy e e e e e e e 31
summaryMatrix e 32
tokenizeSequences e 33
variationalSequenceso e 34

Index 35

immApex-package immApex: Tools for Adaptive Immune Receptor Sequence-Based Ma-
chine and Deep Learning
Description

A set of tools to for machine and deep learning in R from amino acid and nucleotide sequences
focusing on adaptive immune receptors. The package includes pre-processing of sequences, unify-
ing gene nomenclature usage, encoding sequences, and combining models. This package will serve
as the basis of future immune receptor sequence functions/packages/models compatible with the
scRepertoire ecosystem.

ace_richness 3

Author(s)

Maintainer: Nick Borcherding <ncborch@gmail.com>

See Also
Useful links:

* https://github.com/BorchLab/immApex/
* Report bugs at https://github.com/BorchLab/immApex/issues

ace_richness ACE Richness Estimator

Description
Calculates the Abundance-based Coverage Estimator (ACE) of species richness. This metric is
particularly useful for datasets with a large number of rare species.

Usage

ace_richness(cnt)

Arguments
cnt Numeric vector of non-negative counts (one entry per clone/ residue/OTU). Zero
counts are ignored.
Details

Srare + Fl 'che
Cace Cace

Sace = Sabund +

where the classification of rare and abundant species is based on a threshold of 10 individuals, *F*1
is the count of singletons, *S*rare is the number of rare species, and *C*ace is the sample coverage
for rare species.

Value
A single numeric value representing the estimated total number of species. The estimate is con-
strained to be at least the number of observed species.

References
Chao, A., & Lee, S.-M. (1992). *Estimating the number of classes via sample coverage*. Journal
of the American Statistical Association, 87(417), 210-217.

Examples

counts <- rpois(50, lambda=1.5)
ace_richness(counts)

https://github.com/BorchLab/immApex/
https://github.com/BorchLab/immApex/issues

4 amino.acids

adjacencyMatrix Adjacency Matrix From Amino Acid or Nucleotide Sequences

Description

Calculate frequency of adjacency between residues along a set of biological sequences.

Usage

adjacencyMatrix(
input.sequences,
normalize = TRUE,
sequence.dictionary = amino.acids,
directed = FALSE

Arguments
input.sequences
Character vector of sequences (amino acid or nucleotide)
normalize Return the values as a normalized frequency (TRUE) or raw counts (FALSE).
sequence.dictionary
The letters to use in the matrix (defaults to a standard 20 amino acids).
directed Logical; if FALSE (default) the matrix is symmetrised.

Value

An adjacency matrix.

Examples

new.sequences <- generateSequences(prefix.motif = "CAS",
suffix.motif = "YF",
number.of . sequences = 100,
min.length = 8,
max.length = 16)

adj.matrix <- adjacencyMatrix(new.sequences,

#
#
#
#
#
#
#
normalize = TRUE)

amino.acids Standard 20 amino acids

Description

Vector of one-letter codes for the 20 standard amino acids.

Usage

amino.acids

buildNetwork 5

Format

An object of class character of length 20.

buildNetwork Build Edit Distance Network

Description

Build Edit Distance Network

Usage

buildNetwork(
input.data = NULL,
input.sequences = NULL,
seq_col = NULL,
v_col = NULL,
j_col = NULL,
threshold = 2,
filter.v = FALSE,
filter.j = FALSE,

ids = NULL,
output = c("edges"”, "sparse"),
weight = c("dist"”, "binary")
)
Arguments
input.data ‘data.frame‘/‘tibble‘ with sequence & metadata (optional - omit if you supply

‘sequences” directly).

input.sequences
Character vector of sequences **or** column name inside ‘input.data‘. Ignored
when ‘NULL* and ‘seq_col‘ is non-‘NULL".

seq_col, v_col, j_col
Column names to use when ‘input.data‘ is given. By default the function looks
for common AIRR names (‘junction_aa‘, ‘cdr3‘, ‘v_call‘, ‘j_call®).

threshold >= 1 for absolute distance **or** 0 < x <=1 for relative.
filter.v, filter.j
Logical; require identical V/J when “TRUE".

ids Optional character labels; recycled from row-names if missing.

o

output edges"* (default) or “"sparse"* - return an edge-list ‘data.frame* **or** a sym-

metric ‘Matrix::dgCMatrix* adjacency matrix.

ne

weight “"dist"‘ (store the edit distance) **or** ‘"binary

ne

nored when ‘output = "edges"".

(all edges get weight 1). Ig-

Value

edge-list ‘data.frame‘ **or** sparse adjacency ‘dgCMatrix*

6 calculateEntropy

Examples

data(immapex_example.data)

Build Edge List
edges <- buildNetwork(input.data = immapex_example.datal[["AIRR"]],

seq_col = "junction_aa",
threshold = 0.9,
filter.v. = TRUE)
calculateEntropy Positional Entropy / Diversity Biological Sequences

Description

Computes residue-wise diversity for a set of aligned (right-padded) CDR3 amino-acid sequences
using *any* supported diversity estimator in **immApex**. The following metrics are recognized:

#*Shannon entropy: ** shannon_entropy * **Inverse Simpson: inv_simpson * **Gini—Simpson
index:** gini_simpson * **Normalized entropy:** norm_entropy * **Pielou evenness: ** pielou_evenness
* % #*Hjll numbers** (orders 0, 1, 2): hill_q(@), hill_q(1), hill_q(2)

You may also supply a **custom function** to ‘method‘; it must take a numeric vector of clone
counts and return a single numeric value.

Usage

calculateEntropy(
input.sequences,
max.length = NULL,
method = c("shannon”, "inv.simpson”, "gini.simpson"”, "norm.entropy”, "pielou”, "hille",
"hill1", "hill2"),

padding.symbol = ".
)

Arguments
input.sequences
‘character()‘. Vector of CDR3 AA strings.
max.length ‘integer(1)°. Target length to align / pad to. *Default* = ‘max(nchar(sequences))‘.

o ne n ne <n

method Either the name of a built-in metric (‘"shannon"‘, “"inv.simpson"*, ‘"gini.simpson"*,
“"norm.entropy"‘, ‘"pielou"‘, ‘"hill0"‘, “"hill1"*, *"hill2") **or** a custom func-
tion as described above.

padding.symbol Symbol to use for padding at the end of sequences.

Value

Named ‘numeric() vector of diversity scores, one value per position (Pos1 ... Pos*L*).

Examples

seqs <- c("CASSLGQDTQYF", "CASSIRSSYNEQFF", "CASSTGELFF")
calculateEntropy (segs, method = "shannon")

calculateFrequency 7

calculateFrequency Relative Residue Frequencies at Every Position

Description

Quickly computes the per-position relative frequency of each symbol (amino-acid or nucleotide)
in a set of biological sequences. Variable-length strings are padded to a common width so the
calculation is entirely vectorized (one logical comparison + one ‘colSums()* per residue).

Usage

calculateFrequency(
input.sequences,
max.length = NULL,
sequence.dictionary = amino.acids,

n o n

padding.symbol = ".",

summary.fun = c("proportion”, "count”, "percent"),
tidy = FALSE
)
Arguments

input.sequences

Character vector of sequences (amino acid or nucleotide)
max.length Integer. Pad/trim to this length. Defaults to ‘max(nchar(sequences))°.
sequence.dictionary

Vector of valid residue symbols that should be tracked (defaults to the 20 canon-
ical amino acids; supply ‘c("A","C","G","T","N")‘ etc. for nucleotides).

padding.symbol Single character used for right-padding. **Must not** be present in ‘sequence.dictionary‘.

summary . fun Character string choosing the summary statistic: * “"proportion"* (default) —
each cell sums to 1 over the table. * “"count"‘ — raw counts. * ‘"percent"‘ —
proportion x 100.

tidy Logical; if ‘TRUE* a long-format ‘data.frame‘ is returned instead of a matrix

(useful for plotting with *ggplot2*).

Value

Either
* A numeric matrix of dimension ‘length(sequence.dictionary)‘ x ‘max.length‘, whose columns
sum to 1, **or**

* A ‘data.frame‘ with columns *position*, *residue*, *frequency* when ‘tidy = TRUE".

Examples

Amino Acid example

seqs <- c("CASSLGQGAETQYF", "CASSPGQGDYEQYF", "CASSQETQYF")
rel.freq <- calculateFrequency(seqgs)

head(rel.freq[, 1:5])

8 calculateGeneUsage

Nucleotide example

dna <- c("ATGCC", "ATGAC", "ATGGC")

calculateFrequency(dna,
sequence.dictionary = c("A","C","G","T"),
padding.symbol = "-",
tidy = TRUE)

calculateGeneUsage Quantifcation of Gene-Locus Usage

Description

Computes either the **counts**, **proportions** (default), or **percentages** of one locus *or*
a locus pair that are already present as columns in ‘input.data‘. No external dependencies.

Usage
calculateGeneUsage(
input.data,
loci,
levels = NULL,
summary.fun = c("proportion”, "count”, "percent")
)
Arguments
input.data A data.frame whose rows are sequences / clones and whose columns named in
‘loci‘ contain gene identifiers.
loci Character vector of length 1 or 2 giving the column names.
levels Optional list of length 1 or 2 with the full set of factor levels to include. Missing
levels are filled with zeros. If ‘NULL‘ (default) only observed levels appear.
summary . fun Character string choosing the summary statistic: * “"proportion"* (default) —
each cell sums to 1 over the table. * ‘"count"‘ — raw counts. * ‘"percent"‘ —
proportion x 100.
Value

Named numeric **vector** (single locus) or numeric **matrix** (paired loci). For ‘"proportion"*
and ‘"percent"* results sum to 1 or 100.

"ne

Examples

df <- data.frame(V = c("TRBV7-2","TRBV7-2","TRBV5-1"),

J = c("TRBJ2-3","TRBJ2-5","TRBJ2-3"))
calculateGeneUsage(df, "V", summary = "count")
calculateGeneUsage(df, c("V","J"), summary = "percent”)

calculateMotif 9

calculateMotif Motif Enumeration and Counting

Description

Rapidly enumerates and quantifies **contiguous** (and, optionally, single-gap discontinuous) amino-
acid motifs across a set of sequences.

Usage

calculateMotif(
input.sequences,
motif.lengths = 2:5,
min.depth = 3,
discontinuous = FALSE,
discontinuous.symbol = ".",
nthreads = 1

Arguments

input.sequences
Character vector of sequences (amino acid or nucleotide)

motif.lengths Integer vector of motif sizes (>= 1). **Default:*¥* ‘2:5°.

min.depth Minimum count a motif must reach to be retained in the output (‘>= 1°). **De-
fault:** <3¢,

discontinuous Logical; include single-gap motifs as well? **Default:** ‘FALSE".

discontinuous.symbol
Single character representing the gap when ‘discontinuous = TRUE®. **De-
fault:** <"."*,

nthreads Integer number of OpenMP threads to use. ‘1° forces serial execution. **De-
fault:** “1°.

Details

For every input sequence the algorithm slides windows of length *k* (‘motif.lengths‘) and incre-
ments a motif counter (‘unordered_map°). If ‘discontinuous = TRUE®, each window is additionally
copied *k* times, substituting one position at a time with ‘discontinuous.symbol‘ (default *"."*),
yielding gapped motif patterns such as “"C.S".

Value

A ‘data.frame* with two columns:

motif Motif string (contiguous or gapped).

frequency Integer occurrence count across all sequences.

10

calculateProperty

Examples

seqs <- c("CASSLGQDTQYF", "CASSAGQDTQYF", "CASSLGEDTQYF")
calculateMotif(seqs, motif.lengths = 3, min.depth = 2)

calculateProperty Position-wise Amino-Acid Property Profiles

Description

Computes a range of summary statistics for property values of one or more AA property scales
at every residue position of a set of protein (or peptide) sequences. The function is entirely vec-
torized: it first calls [‘calculateFrequency()‘] to obtain a residue-by-position **frequency** matrix
F (each column sums to 1) and then performs a single matrix product.

Usage

calculateProperty(

input.sequences,

property.set = "atchleyFactors”,
summary.fun = "mean”,

transform = "none”,

max.length = NULL,
padding.symbol = ".",

tidy = FALSE

Arguments

input.sequences

property.set Character string (one of the supported names) Defaults to

summary . fun Character string (

transform Character string controlling a *post-summary* transformation. One of

Character vector of amino-acid strings.

o

atchleyFactors"*, but
includes: ‘"crucianiProperties"*, ‘"FASGAI"*, "kideraFactors"*, ‘"MSWHIM"",
“"ProtFP"*, “"stScales"*, ‘"tScales"*, ‘"VHSE"‘, ‘"zScales"*

o Mo an_ s 1

mean"‘, ‘"median"‘, ‘"sum"‘, ‘"min"‘, “"max"‘), **or** a
function accepting a numeric vector and returning length-1 numeric. Defaults to

il ne

mean .

o

3 llnonell 3
" (row-wise).

(default), “"sqrt", ‘"loglp", *"zscore"* (row-wise), or ‘"minmax

ne

max.length Integer. Pad/trim to this length (‘max(nchar(sequences))‘ by default).

padding.symbol Single character used for right-padding. Must not be one of the 20 canonical

residues.

tidy Logical; if ‘TRUE®, return a long-format ‘data.frame*

Value

A numeric matrix (*k* x *L*) **or** a tidy data.frame with columns scale, position, value.

chaol richness 11

Examples

set.seed(1)
seqs <- c("CASSLGQGAETQYF", "CASSPGQGDYEQYF", "CASSQETQYF")
aa.Atchley <- calculateProperty(seqs, property.set = "atchleyFactors")

chaol_richness Chaol Richness Estimator

Description

Calculates the Chaol non-parametric estimator of species richness.

Usage

chaol_richness(cnt)

Arguments
cnt Numeric vector of non-negative counts (one entry per clone/ residue/OTU). Zero
counts are ignored.
Details

The bias-corrected formula is used:

Fi(F; —1)

Sc ao :Sos+
haol b 2(F2+].)

where *S*obs is the number of observed species, *F*1 is the count of singletons, and *F*2 is the
count of doubletons.

If the conditions for the formula are not met (*F*1 <= 1 or *F*2 = (), the function returns the
observed richness (*S*obs).
Value

A single numeric value representing the estimated total number of species.

References

Chao, A. (1984). *Nonparametric estimation of the number of classes in a population*. Scandina-
vian Journal of Statistics, 11(4), 265-270.

Examples

Sample with singletons and doubletons
counts <- c(rep(1, 10), rep(2, 5), 5, 8, 12)
chaol_richness(counts)

Sample without doubletons returns observed richness
chaol_richness(c(rep(1, 5), 3, 4, 5))

12 dxx_dom

d50_dom D50 Dominance Index

Description
A convenience wrapper for ‘dxx_dom(cnt, 50)‘. Calculates the minimum number of top clones
required to constitute 50

Usage
d50_dom(cnt)

Arguments
cnt Numeric vector of non-negative counts (one entry per clone/ residue/OTU). Zero
counts are ignored.
Value

The smallest number of categories whose cumulative abundance is at least 50

Examples

d50_dom(c(100, 50, 20, 10, 5, rep(1, 5)))

dxx_dom Dxx Dominance Index

Description
Calculates the minimum number of top clones/sequences (ranked by abundance) that constitute a
specified percentage of the total dataset. This function allows the user to designate the percentage.
Usage

dxx_dom(cnt, pct)

Arguments

cnt Numeric vector of non-negative counts.

pct A numeric value (0-100) for the target percentage.
Value

The smallest number of categories whose cumulative abundance is at least ‘pct‘ percent of the total
abundance.

See Also
[d50_dom()]

formatGenes 13

Examples

counts <- c(100, 50, 20, 10, 5, rep(1, 5))
dxx_dom(counts, 80)

formatGenes Ensure clean gene nomenclature using IMGT annotations

Description

This function will format the genes into a clean nomenclature using the IMGT conventions.

Usage
formatGenes(
input.data,
region = "v”,
technology = NULL,
species = "human”,
simplify.format = TRUE
)
Arguments
input.data Data frame of sequencing data or scRepertoire outputs
region Sequence gene loci to access - "v", "d", "j", or "c" or a combination using c("v",
lld”, Hj”)
technology The sequencing technology employed - *TenX’, ""Adaptive’, or ’AIRR’
species One or two word designation of species. Currently supporting: "human", "mouse",

" "

rat", "rabbit", "rhesus monkey", "sheep", "pig", "platypus", "alpaca", "dog",
"chicken", and "ferret"

simplify.format
If applicable, remove the allelic designation (TRUE) or retain all information
(FALSE)

Value

A data frame with the new columns of formatted genes added.

Examples

data(immapex_example.data)
formatGenes (immapex_example.data[["TenX"1],

region = "v",
technology = "TenX")

14 generateSequences

generateSequences Randomly Generate Amino Acid Sequences

Description

Use this to make synthetic amino acid sequences for purposes of testing code, training models, or
providing noise.

Usage

generateSequences(
prefix.motif = NULL,
suffix.motif = NULL,
number.of .sequences = 100,
min.length = 1,
max.length = 10,
verbose = TRUE,
sequence.dictionary = amino.acids

Arguments

prefix.motif A defined amino acid/nucleotide sequence to add to the start of the generated
sequences.

suffix.motif A defined amino acid/nucleotide sequence to add to the end of the generated
sequences.

number.of . sequences
The number of sequences to generate.

min.length The minimum length of the final sequence. If this value is too short to fit the
motifs, it will be automatically increased.

max.length The maximum length of the final sequence. If it is less than the final ‘min.length‘,
it will also be adjusted.

verbose Logical. If TRUE, prints messages when arguments like ‘min.length‘ or ‘max.length*
are automatically adjusted.

sequence.dictionary
A character vector of the letters to use in random sequence generation.

Value

A character vector of generated sequences.

Examples

generateSequences(prefix.motif = "CAS",
suffix.motif = "YF",
number.of.sequences = 100,
min.length = 8,
max.length = 16)

getIMGT

15

getIMGT

Get IMGT Sequences for Specific Loci

Description

Use this to access the ImMunoGeneTics (IMGT) sequences for a specific species and gene loci.
More information on IMGT can be found at imgt.org.

Usage
getIMGT(
species = "human”,
chain = "TRB",
sequence.type = "aa",
frame = "inframe”,
region = "v",

max.retries = 3,
verbose = TRUE

Arguments
species
chain
sequence. type
frame
region
max.retries

verbose

Value

One or two-word common designation of species.

Sequence chain to access, e.g., TRB or IGH.

Type of sequence - aa (amino acid) or nt (nucleotide).

Designation for all, inframe, or inframe+gap.
Gene loci to access.
Number of attempts to fetch data in case of failure.

Print messages corresponding to the processing step.

A list of allele sequences.

Examples

Not run:

TRBV_aa <- getIMGT(species = "human”,

End(Not run)

chain = "TRB",

frame = "inframe”,
region = "v",
sequence.type = "aa",

max.retries = 3)

https://www.imgt.org/

16 gini_coef

getIR Extract Immune Receptor Sequences

Description

Use this to extract immune receptor sequences from a Single-Cell Object or the output of combi-
neTCR and combineBCR.

Usage

getIR(
input.data,
chains,
sequence.type = c("aa", "nt"),
group.by = NULL,
as.list = FALSE

)
Arguments
input.data Single-cell object or the output of combineTCR and combineBCR from scReper-
toire
chains Immune Receptor chain to use - TRA, TRB, IGH, or IGL

sequence.type Extract amino acid (aa) or nucleotide (nt) sequences

group. by Optional metadata column (e.g., "sample.id") to group and return results as a
named list by that variable.

as.list Logical; if TRUE, returns a list split by chain. If group.by is also provided,
returns a nested list Default is FALSE.

Value

A data frame, list of data frames, or nested list of immune receptor sequences depending on as. list
and group.by. Each entry includes CDR3 sequence, V(D)J gene segments, and associated bar-
codes.

gini_coef Gini Coefficient of Abundance Inequality

Description

Calculates the Gini coefficient, a measure of inequality, for a vector of clone/sequence counts. It
ranges from O (perfect equality) to nearly 1 (maximal inequality).

Usage

gini_coef(cnt)

gini_simpson 17

Arguments
cnt Numeric vector of non-negative counts (one entry per clone/ residue/OTU). Zero
counts are ignored.
Details

S (2= S5 —1)ny
52?:1 g

where *n*i are the counts of each of the *S* categories, sorted in non-decreasing order.

G:

Value

A numeric value in [0, 1]. Returns ‘0° if there is only one category.

See Also

[gini_simpson()]

Examples

High inequality
gini_coef(c(100, 1, 1, 1))
Perfect equality
gini_coef(c(10, 10, 10, 10))

gini_simpson Gini—Simpson Diversity

Description
Computes the complement of Simpson’s index (also called the Gini—Simpson index or probability
of interspecific encounter):

Usage

gini_simpson(cnt)

Arguments
cnt Numeric vector of non-negative counts (one entry per clone/ residue/OTU). Zero
counts are ignored.
Details
1-A=1- Z p?
i
Value

Value in the interval [0, 1]. Higher numbers indicate greater heterogeneity.

18 hill_q

Examples

gini_simpson(c(1@, 5, 5))

hill_q Hill-Number Generator

Description

Returns a *function* that computes the Hill diversity of order *q* (also called the “effective number
of species”):

Usage
hill_q(a)
Arguments
q Numeric order of diversity. Common values: *0* (richness), *1* (exp(*H*)),
2% (inverse Simpson).
Details

1/(1-q)
qD-(E:ﬁ) , q#1

For *q = 1* the formula is undefined; the limit is

!
1D:6H

Value

A **closure**: ‘hill_q(q)‘ returns a function that takes a vector of counts and yields the corre-
sponding *gD. The returned function is vectorised over its input.

References

Hill, M. O. (1973) *Diversity and Evenness: A Unifying Notation and its Consequences.* Ecology
#E54¥% (2), 427-432.

Examples

1
—_

hilll <- hill_q(1) # q
hilll(c(5, 1, 1, 1))

hill2 <- hill_q(2) # q
hill2(c(5, 1, 1, 1))

2, inverse-Simpson

immapex_blosum.pam.matrices 19

immapex_blosum.pam.matrices
List of amino acid substitution matrices

Description

A list of amino acid substitution matrices, using the Point Accepted Matrix (PAM) and BLOck
SUbstitution Matrix (BLOSUM) approaches. A discussion and comparison of these matrices are
available at PMID: 21356840.

* BLOSUM45
* BLOSUMS50
* BLOSUM62
* BLOSUMS0
* BLOSUMI100
* PAM30

* PAM40

* PAM70

* PAM120

* PAM250

Usage

data("immapex_blosum.pam.matrices”)

Value

List of 10 substitution matrices

immapex_example.data Example contig data for Apex

Description

Contains a collection of bulk or paired TCR sequences in the respective formats in the form of a list
from the following sources:

e TenX: 10k_Human_DTC_Melanoma_5p_nextgem_Multiplex from 10x Website.
¢ AIRR: Human_colon_16S8157851 from PMID: 37055623.
* Adaptive: Adaptive_2283_DO0 from PMID: 36220826.

More information on the data formats are available: AIRR, Adaptive, and TenX.

Usage

data(”immapex_example.data”)

Value

List of 3 example data sets for 10x, AIRR and Adaptive contigs.

https://pubmed.ncbi.nlm.nih.gov/21356840/
https://www.10xgenomics.com/datasets/10k-human-dtc-melanoma-NextGEM-5p
https://pubmed.ncbi.nlm.nih.gov/37055623/
https://pubmed.ncbi.nlm.nih.gov/36220826/
https://docs.airr-community.org/en/stable/
https://clients.adaptivebiotech.com/assets/downloads/immunoSEQ_AnalyzerManual.pdf
https://www.10xgenomics.com/support/single-cell-immune-profiling

20 inferCDR

immapex_gene.list A list of IMGT gene names by genes, loci, and species

Description

A list of regularized gene nomenclature to use for converting for data for uniformity. Data is orga-
nize by gene region, loci and species. Not all species are represented in the data and pseudogenes
have not been removed.

Usage

data(”immapex_gene.list")

Value

List of gene nomenclature by region, loci, and species.

inferCDR Infer CDR-loop segments from V-gene calls

Description

Use this isolate sequences from the CDR loop using the V gene annotation. When there are multiple
V gene matches for a single gene, the first allelic sequence is used.

Usage

inferCDR(
input.data,
reference,
chain = "TRB",
technology = c("TenX", "AIRR", "Adaptive”, "Omniscope”),
sequence.type = c("aa”, "nt"),
sequences = c("CDR1", "CDR2"),
verbose = TRUE

)
Arguments
input.data Data frame output of formatGenes
reference IMGT reference sequences from getIMGT
chain Sequence chain to access, like TRB or IGH
technology The sequencing technology employed - TenX, Adaptive, or AIRR

sequence.type Type of sequence - aa for amino acid or nt for nucleotide
sequences The specific regions of the CDR loop to get from the data, such as CDRI1.
verbose Logical. If “‘TRUE* (default), prints a progress message.

inv_simpson 21

Value

A data frame with the new columns of CDR sequences added.

Examples

Not run:

Getting the Sequence Reference
data(immapex_example.data)

TRBV_aa <- getIMGT(species = "human”,

chain = "TRB",

frame = "inframe”,
region = "v",
sequence. type = "aa")

Ensuring sequences are formatted to IMGT
TenX_formatted <- formatGenes(immapex_example.datal[["TenX"1],

region = "v",
technology = "TenX")

Inferring CDR loop elements

TenX_formatted <- inferCDR(TenX_formatted,
chain = "TRB",
reference = TRBV_aa,
technology = "TenX",
sequence.type = "aa",
sequences = c("CDR1", "CDR2"))

End(Not run)

inv_simpson Inverse Simpson Diversity

Description

Computes the inverse of Simpson’s concentration index, sometimes written as *1/D*. This metric
emphasizes dominant categories.

Usage

inv_simpson(cnt)

Arguments
cnt Numeric vector of non-negative counts (one entry per clone/ residue/OTU). Zero
counts are ignored.
Details

22 mutateSequences

Value

Numeric value >= 1. Equals 1 when all observations belong to a single category.

Examples

inv_simpson(c(10, 5, 1))

mutateSequences Randomly Mutate Sequences of Amino Acids

Description

Use this to mutate or mask sequences for purposes of testing code, training models, or noise.

Usage

mutateSequences(
input.sequences,
number.of .sequences = 1,
mutation.rate = 0.01,
position.start = NULL,
position.end = NULL,
sequence.dictionary = amino.acids

Arguments

input.sequences
The amino acid or nucleotide sequences to use

number.of . sequences
The number of mutated sequences to return

mutation.rate The rate of mutations to introduce into sequences

position.start The starting position to mutate along the sequence Default = NULL will start
the random mutations at position 1

position.end The ending position to mutate along the sequence Default = NULL will end the
random mutations at the last position

sequence.dictionary
The letters to use in sequence mutation (default are all amino acids)

Value

A vector of mutated sequences

norm_entropy 23

Examples

sequences <- generateSequences(prefix.motif = "CAS",
suffix.motif = "YF",
number.of.sequences = 100,
min.length = 8,
max.length = 16)

mutated_sequences <- mutateSequences(sequences,
number.of.sequences = 1,
position.start = 3,
position.end = 8)

norm_entropy Normalised Shannon Entropy

Description

Shannon entropy scaled to the interval [0, 1] by its maximum possible value given *S* observed
categories:

Usage

norm_entropy(cnt)

Arguments
cnt Numeric vector of non-negative counts (one entry per clone/ residue/OTU). Zero
counts are ignored.
Details
H/
H = —
InS

(also known as “Shannon evenness”).

Value

Numeric value in [0, 1]; ‘O when all observations are in a single category.

Examples

norm_entropy(c(40, 10, 10, 10))

24 positionalEncoder

pielou_evenness Pielou’s Evenness

Description

Convenience wrapper for normalized Shannon entropy (*E* = *H* / In *S*).

Usage

pielou_evenness(cnt)

Arguments
cnt Numeric vector of non-negative counts (one entry per clone/ residue/OTU). Zero
counts are ignored.
Value

Numeric evenness measure in [0, 1].

Examples

pielou_evenness(c(3, 3, 3))

positionalEncoder Generate Sinusoidal Positional Encodings

Description

Creates a matrix of sinusoidal positional encodings as described in the "Attention Is All You Need"
paper. This provides a way to inject information about the relative or absolute position of tokens in
a sequence.

Usage

positionalEncoder(
max.length = NULL,
d.model = NULL,
input.sequences = NULL,
base = 10000,
position.offset = 1L

probabilityMatrix 25

Arguments
max.length The maximum sequence length (number of positions) to encode. This is the
primary way to specify the output size.
d.model The dimensionality of the embedding. Must be an even number.

input.sequences
Optional. A character vector of sequences. If provided, ‘max.length is au-
tomatically determined from the longest sequence, unless ‘max.length® is also
explicitly set to a larger value.

base The base for the geometric progression of frequencies. The default is 10000, as
used in the original paper.

position.offset
An integer offset for position numbering. Defaults to 1 (1-based indexing com-
mon in R). Set to O for 0-based indexing.

Value

A matrix of shape ‘max.length‘ x ‘d.model‘ containing the positional encodings.

Details

The implementation uses the standard formulas: ‘PE(pos, 2i) = sin(pos / base”(2i / d.model))*
‘PE(pos, 2i+1) = cos(pos / base(2i / d.model))‘ where ‘pos‘ is the position, ‘i‘ is the dimension
pair, ‘d.model" is the embedding dimension, and ‘base‘ is a user-definable base, typically 10000.

Examples

pos_encoding <- positionalEncoder(max.length = 50,
d.model = 64)

my_sequences <- c("SEQVENCE"”, "ANOTHERSEQ")
pos_enc_auto <- positionalEncoder(input.sequences = my_sequences,
d.model = 32)

probabilityMatrix Position Probability Matrix for Amino Acid or Nucleotide Sequences

Description

Generates a position-probability (PPM) or position-weight (PWM) matrix from a set of biological
sequences.

Usage

probabilityMatrix(
input.sequences,
max.length = NULL,
convert.PWM = FALSE,
background. frequencies = NULL,
sequence.dictionary = amino.acids,
pseudocount = 1,
padding.symbol = "."

26 scaleMatrix

Arguments

input.sequences
Character vector of sequences.

max.length Integer; sequences will be right-padded to this length. If NULL (default), pads
to the length of the longest sequence in the input.

convert.PWM Logical; if TRUE, converts the matrix into a PWM.

background. frequencies
Named vector of background frequencies for PWM calculation. If NULL, a
uniform distribution is assumed. Names must correspond to characters in ‘se-
quence.dictionary .

sequence.dictionary
Character vector of residues to include in the matrix.

pseudocount A small number added to raw counts for PWM calculation to avoid zero proba-
bilities. Defaults to 1.

padding.symbol Single character for right-padding. Must not be in ‘sequence.dictionary®.

Value

A matrix with position-specific probabilities (PPM) or weights (PWM).

Examples

new.sequences <- generateSequences(prefix.motif = "CAS",
suffix.motif = "YF",
number.of.sequences = 100,
min.length = 8,
max.length = 16)

PPM.matrix <- probabilityMatrix(new.sequences)

scaleMatrix Fast Matrix Scaling or Transformation

Description

Applies a chosen transformation to every row *or* column of a numeric matrix without altering its
dimensions. Designed for lightweight pre-processing pipelines ahead of machine-learning models.

Usage
scaleMatrix(
X,
method = c("minmax”, "z", "robust_z", "unit_var”, "12", "11", "sqrt", "loglp"”, "log2”,

"log1@", "arcsinh”, "none"),
margin = 2,
range = c(0, 1),
offset = 1e-08,
cofactor = 5,
na.rm = TRUE

sequenceDecoder 27
Arguments
X Numeric matrix (coerced with as.matrix()).
method Character scalar. One of:
e "minmax" —rescale linearly to [range].
e "z" —mean 0/ sd 1 (per margin).
e "robust_z" —median 0 / MAD 1 (outlier-resistant).
e "unit_var” —divide by sd (keep mean shifts).
e "12","11" — divide by Euclidean / L1 norm.
e "sqgrt"” — element-wise square-root.
e "loglp" — element-wise logip(x + offset).
e "log2", "1log10" —logs with small offset.
e "arcsinh” —asinh(x / cofactor) (Flow/CyTOF).
* "none"” — return unchanged.
margin 1 = operate row-wise, 2 = column-wise (default 2).
range Numeric length-2 vector for method = "minmax".
offset Non-negative scalar added before logs / sqrt (ignored otherwise). Default 1e-8.
cofactor Numeric > 0 for method = "arcsinh” (default 5).
na.rm Logical; drop NAs when computing summaries.
Value

Matrix of identical dimension (dimnames preserved).

Examples

m <- matrix(rnorm(20), 4, 5,

dimnames = list(paste@("g"”, 1:4), paste@("s", 1:5)))
scaleMatrix(m, "minmax")
scaleMatrix(m, "robust_z", margin = 1)
scaleMatrix(m, "12")
scaleMatrix(abs(m), "arcsinh”, cofactor = 150)

sequenceDecoder

Decode Amino Acid or Nucleotide Sequences

Description

Transforms one-hot or property-encoded sequences back into their original character representation.
This function serves as the inverse to ‘sequenceEncoder*.

Usage

sequenceDecoder (
encoded.object,

mode = c("onehot”, "property"”),
property.set = NULL,
property.matrix = NULL,
call.threshold = 0.5,

28 sequenceDecoder

sequence.dictionary = amino.acids,
n n

padding.symbol = ".",
remove.padding = TRUE

Arguments

encoded.object A ‘list‘ object produced by ‘sequenceEncoder’, or a numeric ‘matrix‘ (flattened
2D) or ‘array‘ (3D cube) from it.

ne

mode The encoding mode used for decoding: ‘"onehot"‘ or “"property"‘. This is typi-
cally inferred if ‘encoded.object® is a list from ‘sequenceEncoder*.

ne o

property.set For ‘mode = "property"‘, a character vector of property names (e.g., ‘"atchley-
Factors"*) that were used for the original encoding. See ‘?sequenceEncoder*.
This is ignored if ‘property.matrix* is supplied.

property.matrix
For ‘mode = "property"‘, the exact numeric matrix (with dimensions 20 x P*)
that was used for encoding. This overrides ‘property.set’.

ne

call.threshold A numeric confidence threshold for making a call. - In “"onehot"* mode, this is

the minimum required value in the vector (e.g., ‘0.9°). - In “"property"‘ mode,

this is the maximum allowable Euclidean distance. Positions with scores not
meeting the threshold are assigned the ‘padding.symbol®.

sequence.dictionary

A character vector of the alphabet (e.g., amino acids). Must match the one used
during encoding.

padding.symbol The single character used to represent padding or low-confidence positions.

remove.padding Logical. If “TRUE®, trailing padding symbols are removed from the end of the
decoded sequences.
Value

A character vector of the decoded sequences.

Examples

Example sequences
aa.sequences <- c("CAR", "YMD", "ACAC")

Encode the sequences
encoded.onehot <- sequenceEncoder(aa.sequences,

mode = "onehot")
encoded.prop <- sequenceEncoder(aa.sequences,
mode = "property”,

property.set = "atchleyFactors")

Decode the sequences

1. Decode from the full list object

decoded.1 <- sequenceDecoder(encoded.onehot,
mode = "onehot")

2. Decode from just the 3D cube array
decoded.2 <- sequenceDecoder (encoded.prop$cube,
mode = "property”,
property.set = "atchleyFactors")

sequenceEncoder 29

sequenceEncoder Universal Amino-acid Sequence Encoder

Description

‘sequenceEncoder()‘ is a high-level function that converts a character vector of amino-acid se-
quences into one of three representations: 1. **one-hot**: A binary representation for each amino
acid position. 2. **property-based**: A numerical representation based on amino acid properties
(e.g., atchleyFactors, kideraFactors, etc). 3. **geometric**: A fixed-length 20-dimensional vector
for each sequence, derived from a substitution matrix and geometric rotation.

Usage

sequenceEncoder(
input.sequences,
mode = c("onehot"”, "property”, "geometric"),
property.set = NULL,
property.matrix = NULL,
method = "BLOSUM62",
theta = pi/3,
sequence.dictionary = amino.acids,

n o n

padding.symbol = ".",

summary.fun = "",

max.length = NULL,

nthreads = parallel::detectCores(),

verbose = TRUE,

)

onehotEncoder(..., mode = "onehot")

propertyEncoder(..., mode = "property")

geometricEncoder(..., mode = "geometric")
Arguments

input.sequences
‘character* vector. Sequences (uppercase single-letter code).

mode Either “"onehot"‘, “"property"‘, or ‘"geometric"*.

property.set Character string (one of the supported names) Defaults to “"atchleyFactors"*, but
includes: ‘"crucianiProperties"*, ‘"FASGAI"*, ‘"kideraFactors"*, ‘"MSWHIM"*,
“"ProtFP"*, “"stScales"‘, ‘"tScales"‘, “"VHSE"*, “"zScales"* Ignored if ‘prop-
erty.matrix‘ is supplied.

property.matrix
QOptional numeric matrix (‘20 x P)*. Overrides ‘property.set* in ‘"property"*
mode.

30 sequenceEncoder

method *(For geometric mode)* Character key for a built-in substitution matrix (e.g.,
"BLOSUMG62"), or a 20x20 numeric matrix itself.
theta *(For geometric mode)* Rotation angle in radians (default ‘pi/3°).

sequence.dictionary
Character vector of the alphabet (default = 20 standard amino acids).

padding.symbol Single character for right-padding (non-geometric modes).

summary . fun For property mode only: ‘"mean"‘ or ‘""* (none).

max.length Integer for truncation/padding. If ‘NULL® (default), the longest sequence sets
the maximum. Not used in geometric mode.

nthreads Number of threads for C++ backend. Not used in geometric mode.

verbose Logical. If “TRUE* (default), prints a progress message.

Additional arguments passed to ‘sequenceEncoder()* when using wrapper func-
tions (‘onehotEncoder’, ‘propertyEncoder, ‘geometricEncoder).

Details

The function acts as a wrapper for either the C++ backend (for one-hot and property modes) or the
R-based geometric transformation.

Value

A named ‘list* containing the encoded data and metadata.

‘cube‘ 3D Numeric array. ‘NULL‘ in geometric mode.
‘flattened‘ 2D Numeric matrix. ‘NULL" in geometric mode.

‘summary‘ 2D Numeric matrix containing sequence-level representations. This is the primary
output for geometric mode.

... Other metadata related to the encoding process.

Property Mode

If you supply ‘property.matrix directly, it **must™* be a numeric matrix whose **rows correspond
to the 20 canonical amino acids in the order of ‘sequence.dictionary ‘** and whose columns are the
property scales.

Geometric Mode

This mode projects sequences into a 20D space. It calculates the average vector for each sequence
using a substitution matrix (e.g., "BLOSUMG62") and then applies a planar rotation to the resulting
vector.

Examples
aa <- c("CARDRST", "YYYGMD", "ACACACAC")
One-hot encoding

enc_onehot <- sequenceEncoder(aa,
mode = "onehot")

Property-based encoding
enc_prop <- sequenceEncoder(aa,

shannon_entropy 31

mode = "property”,
property.set = "atchleyFactors")

Geometric encoding

enc_geo <- sequenceEncoder(aa,
mode = "geometric”,
method = "BLOSUM62")

shannon_entropy Shannon Diversity Index (Entropy)

Description

Calculates Shannon’s information entropy (often denoted *H*) for a set of clone or sequence counts.

Usage

shannon_entropy(cnt)

Arguments
cnt Numeric vector of non-negative counts (one entry per clone/ residue/OTU). Zero
counts are ignored.
Details

s
H = — Zpi In p;
i—1

where *p*_{*i*} = *n*_{*i*} / *N* are the relative frequencies (proportions)
of each of the *S* distinct categories.

Value
A single numeric value (>= 0). When ‘cnt‘ contains exactly one positive entry the function returns
‘0.

See Also

[norm_entropy()], [inv_simpson()]

Examples

counts <- c(A =12, B=4, C =4)
shannon_entropy(counts)

32 summaryMatrix

summaryMatrix Fast Matrix Summaries

Description

Computes a comprehensive panel of univariate statistics for every **row** *or* **column** of a
numeric matrix. It is designed for lightweight feature-engineering pipelines where many summaries
are required up-front (e.g. before modeling).

Usage
summaryMatrix(x, margin = 2, stats = "all”, na.rm = TRUE)
Arguments
X Numeric matrix (will be coerced with as.matrix()).
margin Integer. 1 = operate row-wise; 2 = column-wise (default 2).
stats Character vector naming the statistics to return. Any combination of the follow-
ing (case-insensitive):
e "min”
* "max”
* "mean”
* "median”
e "sd"”
e "var”
* "mad”
e "sum”,
e "igr”
L[] "n”
* "na"
* "mode”
e "all”
na.rm Logical; ignore NAs when calculating statistics default TRUE).
Value

A numeric matrix with one **row per object that was summarised** (rows of the input when
margin = 1, otherwise columns) and one **column per requested statistic**. Row-names (if present)
are preserved; column names are the statistic labels.

Examples

m <- matrix(rnorm(20), 4, 5,
dimnames = list(paste@("g"”, 1:4), paste@("s", 1:5)))

Column-wise summaries (default)
head(summaryMatrix(m))

Row-wise summaries
head(summaryMatrix(m, margin = 1))

tokenizeSequences 33

tokenizeSequences Generate Tokenized Sequences from Amino Acid String

Description

Use this to transform amino acid sequences into tokens in preparing for deep learning models.

Usage

tokenizeSequences(
input.sequences,
add.startstop = TRUE,
start.token = "!",
stop.token = "*",
max.length = NULL,
convert.to.matrix = TRUE,
padding.symbol = NULL,
verbose = TRUE

Arguments

input.sequences
The amino acid or nucleotide sequences to use

add.startstop Add start and stop tokens to the sequence

start. token The character to use for the start token
stop. token The character to use for the stop token
max.length Additional length to pad, NULL will pad sequences to the max length of in-

put.sequences
convert.to.matrix

Return a matrix (TRUE) or a vector (FALSE)
padding.symbol Single character used for right-padding.
verbose Print messages corresponding to the processing step

Value

Integer matrix (rows = sequences, cols = positions) or list of vectors.

Examples

new.sequences <- generateSequences(prefix.motif = "CAS",
suffix.motif = "YF”,
number.of.sequences = 100,
min.length = 8,
max.length = 16)

sequence.matrix <- tokenizeSequences(new.sequences,
add.startstop = TRUE,
start.token = "!"
stop.token =
convert.to.matrix = TRUE)

’
nan
’

34 variationalSequences

variationalSequences Generate Similar Sequences using Variational Autoencoder (Defunct)

Description

This function is defunct and no longer available.

Usage

variationalSequences(...)

Details
This function previously generated synthetic sequences using a variational autoencoder (VAE). It
has been removed for maintenance and clarity.

Value

No return value, called for side effects only.

Index

+ datasets
amino.acids, 4

* internal
immApex-package, 2
variationalSequences, 34

ace_richness, 3
adjacencyMatrix, 4
amino.acids, 4

buildNetwork, 5

calculateEntropy, 6
calculateFrequency, 7
calculateGeneUsage, 8
calculateMotif, 9
calculateProperty, 10
chaol_richness, 11
combineBCR, /6
combineTCR, 16

d50_dom, 12
dxx_dom, 12

formatGenes, 13, 20

generateSequences, 14
geometricEncoder (sequenceEncoder), 29
getIMGT, 15, 20

getlR, 16

gini_coef, 16

gini_simpson, 6, 17

hill_q, 18

hill_q(0), 6
hill_q(1),6
hill_q(2),6

immApex (immApex-package), 2
immApex-package, 2
immapex_blosum.pam.matrices, 19
immapex_example.data, 19
immapex_gene.list, 20
inferCDR, 20

inv_simpson, 6, 21

mutateSequences, 22
norm_entropy, 6, 23
onehotEncoder (sequenceEncoder), 29

pielou_evenness, 6, 24
positionalEncoder, 24
probabilityMatrix, 25
propertyEncoder (sequenceEncoder), 29

scaleMatrix, 26
sequenceDecoder, 27
sequenceEncoder, 29
shannon_entropy, 6, 31
summaryMatrix, 32

tokenizeSequences, 33

variationalSequences, 34

	immApex-package
	ace_richness
	adjacencyMatrix
	amino.acids
	buildNetwork
	calculateEntropy
	calculateFrequency
	calculateGeneUsage
	calculateMotif
	calculateProperty
	chao1_richness
	d50_dom
	dxx_dom
	formatGenes
	generateSequences
	getIMGT
	getIR
	gini_coef
	gini_simpson
	hill_q
	immapex_blosum.pam.matrices
	immapex_example.data
	immapex_gene.list
	inferCDR
	inv_simpson
	mutateSequences
	norm_entropy
	pielou_evenness
	positionalEncoder
	probabilityMatrix
	scaleMatrix
	sequenceDecoder
	sequenceEncoder
	shannon_entropy
	summaryMatrix
	tokenizeSequences
	variationalSequences
	Index

