Package ‘flowGraph’

February 19, 2026

Type Package

Title Identifying differential cell populations in flow cytometry data
accounting for marker frequency

Version 1.18.0

Description Identifies maximal differential cell populations in flow cytometry data taking into ac-
count dependencies between cell populations; flowGraph calculates and plots SpecEnr abun-
dance scores given cell population cell counts.

Date 2019-11-30
License Artistic-2.0
VignetteBuilder knitr
Depends R (>=4.1)

Imports effsize, furrr, future, purrr, ggiraph, ggrepel, ggplot2,
igraph, Matrix, matrixStats, stats, utils, visNetwork,
htmlwidgets, grDevices, methods, stringr, stringi, Rdpack,
data.table (>= 1.9.5), gridExtra,

Suggests BiocStyle, dplyr, knitr, rmarkdown, testthat (>= 2.1.0)
biocViews FlowCytometry, StatisticalMethod, ImmunoOncology, Software,
CellBasedAssays, Visualization

BugReports https://github.com/aya49/flowGraph/issues

URL https://github.com/aya49/flowGraph
RoxygenNote 7.1.1

RdMacros Rdpack

LazyData no

git_url https://git.bioconductor.org/packages/flowGraph
git_branch RELEASE_3_22

git_last_commit 5889¢7a
git_last_commit_date 2025-10-29

Repository Bioconductor 3.22
Date/Publication 2026-02-18

Author Alice Yue [aut, cre]

Maintainer Alice Yue <aya43@sfu.ca>

https://github.com/aya49/flowGraph/issues
https://github.com/aya49/flowGraph

2 Contents

Contents
cell_ type layers 3
extract._ markers L . L e e 4
fg_add_feature 4
fg_add_summary L. e 6
fg_clean_phen L 7
fg_clear_features 8
fg_clear_summary L e 9
fg_data_fca e e 9
fg_data_pos2 e e 10
fg_data_pos30 L 11
fg_extract_phenotypes 11
fg_extract_raw 12
fg_extract_samples L. e e 13
fg_feat_cumsumo 14
fg feat_edge_prop 15
fg_feat_edge_specenr 16
fg_feat_mean_class e 17
fg_feat_node_prop e 18
fg_feat_node_specenr L 19
fg_get feature L 20
fg_get feature_desc 21
fg_get_feature_means e 21
fg_get_graph 23
fg get_markers 23
fg getmeta 24
fg_get_summary e 25
fg_get_summary_desc e 27
fg_get_summary_index 28
fg_get_summary_tables 29
fg_gsub_ids 30
fg_gsub_markers 31
fg load e 32
fg merge 32
fg_merge_samples 34
fg plot. . . o e e 35
fg_ plot_boxX e e 37
fg plot_pVSdiff 39
fg plot_qq. . - - o o e 41
fg_ replace_meta. L 43
fg_rm_feature L e e 44
fg_rm_summary oL e 45
fg save . . . L 46
fg_save_plots e 47
fg_set_layout e e e 49
fg_summary e e e e 50
flowGraph e 52
flowGraph-class 55
flowGraphSubset 58
flowGraphSubset_summary_adjust 60

flowGraphSubset_summary_pars 60

cell type_layers 3

fpurrr_map 61
get_child e 61
GELLEPTOD « v v v o e e e e e e e e e e e e e e e e 62
GELPATEN Lo e e 63
get_phen_list 63
get_phen_meta e e 64
ggdf . e e 65
loop_ind_f. e e 66
mean_diff L L 66
IMS_CIEAE« v . v o v e e e e e e e e e e 67
MS_PSIZ . . o o e 68
pPlot_gr. . . . 68
set_layout_graph L 70
summary_table 71
TESE C v v o e e e e e e e s 71
tMEe_OULPUL o ot e e e 72
] 3 72
Index 73
cell_type_layers Determines the layer on which a phenotype resides.
Description

Determines the layer on which the given phenotypes reside.

Usage
cell

_type_layers(phen)

Arguments

phen

Details

A string vector of phenotype or cell population name labels.

Given a vector of phenotypes, returns an equal length vector of the number of markers in each
phenotype.

Value

A nu

See Also

get_

Example

meric vector with the same length as phen indicating which layer each phenotype resides on.

phen_list get_phen_meta

S

phen <- c('A+B+C-D++', 'A+B-', '', 'B++D-E+')
cell_type_layers(phen)

4 fg_add_feature

extract_markers Extracts markers from cell population phenotypes

Description

Extracts all unique markers from cell population phenotypes

Usage

extract_markers(phen)

Arguments

phen A vector of cell population phenotypes.

Value

A vector of unique markers

See Also

str_split

fg_add_feature Adds a feature.

Description

Adds a feature created using feat_fun from fg OR m into a given flowGraph object. Only use this
function if you cannot generate the desired features using the existing flowGraph functions starting
with fg_feat_<feature name>.

Usage

fg_add_feature(
fg,
type = "node”,
feature,
m = NULL,
feat_fun = NULL,
overwrite = FALSE,

fg_add_feature 5

Arguments

fg flowGraph object.

type A string specifying the type of the feature being added i.e. 'node’ or edge’.

feature A string indicating the unique name of the feature added.

m A numeric matrix with feature values; it should contain the same sample id’s
on row names as in fg_get_meta(fg)$id and node or edge names as col-
umn names (i.e. if m is a node feature, it would have the same column names
as those in fg_get_graph(fg)vphenotype; if it is an edge feature, its col-
umn names should be the same as paste@(fg_get_graph(fg)efrom, '_",
fg_get_graph(fg)eto)).

feat_fun A function that ouputs a feature matrix as in m given fg and other optional pa-
rameters.

overwrite A logical variable indicating whether or not the function should replace the ex-
isting feature with the same name if one is already in fg.

Other parameters that would be used as input into feat_fun.
Details

fg_add_feature adds the given new feature matrix to the given flowGraph object fg updating slots
feat and feat_desc. See flowGraph-class slot feat and feat_desc for what should be in these
slots. We do not recommend users to directly use this method unless there is a clear understanding
on how the row and column names should be specified. Instead, we recommend users to use the
functions listed in the "See also" sections prefixed with "fg_feat_".

Value

flowGraph object.

See Also

flowGraph-class fg_feat_node_prop fg_feat_node_specenr fg_get_feature fg_rm_feature
fg_get_feature_desc

Examples

no_cores <- 1

data(fg_data_pos30)

fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos3@$metas$class,
prop=FALSE, specenr=FALSE,
no_cores=no_cores)

fg_get_feature_desc(fg)

fg <- fg_add_feature(fg, type="node", feature="count_copy",
m=fg_data_pos30$count)
fg_get_feature_desc(fg)

6 fg_add_summary

fg_add_summary Adds a feature summary.

Description

Adds a feature summary into a given flowGraph object. Only use this function if your summary
statistic cannot be calcuated using the fg_summary function.

Usage

fg_add_summary (
fg,
type = "node",
summary_meta = NULL,
p = NULL,
summ_fun = NULL,
overwrite = FALSE,

)
Arguments
fg flowGraph object.
type A string indicating feature type the summary was created for; "node’ or "edge’.

summary_meta The user must provide type and summary_meta.

summary_meta is a list containing feature (feature name), test_name (sum-
mary statistic name), class (class), labell, and label2 (class labels com-
pared). See fg_get_summary_desc for details.

p A list containing summary values; this list contains elements: values (a vector
containing summary statistics e.g. p-values; this vector should be named by their
associated phenotype or edge name), test_custom (a function of the statistical
test used), and adjust_custom (a function of the p-value correction method
used). This list must contain the values element.

summ_fun A function that ouputs a feature summary matrix as in p given fg and other
optional parameters.

overwrite A logical variable indicating whether or not the function should replace the ex-
isting feature summary with the same name if one is already in fg.

Other parameters that would be used as input into summ_fun.

Details

fg_add_summary adds the given feature summary list p or the output of the given function summ_fun
to the given flowGraph object g updating slots summary and summary_desc. See flowGraph-class
slot summary and summary_desc for what should be in these slots. We do not recommend users di-
rectly use this function unless what is required is duly in the above slots is well understood — note
these slots are used in plotting functions e.g. fg_plot. We instead recommend users to use the
fg_summary function.

fg_clean_phen 7

Value

flowGraph object.

See Also

flowGraph-class fg_summary fg_get_summary fg_rm_summary fg_get_summary_desc fg_add_feature

Examples

no_cores <- 1

data(fg_data_pos30)

fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos30$metas$class,
no_cores=no_cores)

get samples that we are going to compare

m <- fg_get_feature(fg, type="node"”, feature="prop")

ml_ <- m[fg_data_pos30$meta$class=="control”, drop=FALSE]
m2_ <- m[fg_data_pos30$meta$class=="exp", ,drop=FALSE]

define test or summary function to conduct comparison

test_custom <- function(x,y)
tryCatch(stats::t.test(x,y)$p.value, error=function(e) 1)

values_p <- sapply(seq_len(ncol(m)), function(j)
test_custom(mi_[,j1, m2_[,3j]1))

values_p <- p.adjust(values_p , method="BY")

n.n

the user can choose to fill either parameter "p" or "summ_fun”,

the latter of which must output a list with the same elements as "p”.

see documentation for ?flowGraph-class, slot "summary" for

details on what should be in "p".

p <- list(values=values_p, test_fun=test_custom, adjust_fun="BY")

fg <- fg_add_summary(fg, type="node"”, summary_meta=list(
feature="prop"”, test_name="wilcox_BY",

class="class", labell="control”, label2="exp"), p=p)

fg_get_summary_desc(fg)

fg_clean_phen Reformats phenotype

Description

Reformats cell population phenotypes into flowGraph format

Usage
fg_clean_phen(phen, markers = NULL)

Arguments

phen Vector of cell population phenotype names as character strings.

markers markers extracted from phen.

8 fg_clear_features

Value
Vector with the same length as phen containing reformatted and not necessarily changed cell popu-
lation phenotype names.

See Also

str_extract,str_split

Examples

fg_clean_phen(c("A+_B+","B+_notC","A-_C"))

fg_clear_features Clears all featuresin a flowGraph object.

Description

Returns a flowGraph object with only the count feature.

Usage

fg_clear_features(fg)

Arguments

fg flowGraph object.

Value

flowGraph object with only the count node feature.

See Also

flowGraph-class

Examples

no_cores <- 1

data(fg_data_pos30)

fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos30$metas$class,
no_cores=no_cores)

fg <- fg_clear_features(fg)
fg_get_summary_desc(fg)

fg_clear_summary

fg_clear_summary Removes all summary statistics.

Description

Removes all summary statistics in a flowGraph object; we recommend doing this to save space.

Usage

fg_clear_summary(fg)

Arguments

fg flowGraph object.

Value

flowGraph object with an empty summary slot.

See Also

flowGraph-class fg_summary

Examples

no_cores <- 1
data(fg_data_pos30)
fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos3@$metas$class,
prop=FALSE, specenr=FALSE,
no_cores=no_cores, node_features="count")
fg_get_summary_desc(fg)

fg <- fg_clear_summary(fg)
fg_get_summary_desc(fg)

fg_data_fca fe_data_fca

Description

fg_data_fca

Usage

fg_data_fca

10 fg data_pos2

Format

A list containing the following elements derived from the flowCAP-II AML data set for cell popu-
lations up to layer 3.

e count: A numeric sample x cell population node matrix with cell count values.
* meta: A data frame containing meta information on samples in count; it contains columns:

— class: a string indicating whether a sample is from a "control" or "aml" subject.
— id: a string containing sample id’s.
— train: alogical variable indicating whether a sample is from the train or test set.

— subject: a numeric variable containing the id of the subject from whom the sample came
from.

— tube: the tube or panel number; all samples in this data set is analyzed under the 6th
panel.

Source

Aghaeepour N, Finak G, Hoos H, Mosmann TR, Brinkman R, Gottardo R, Scheuermann RH, Con-
sortium F, Consortium DREAM, others (2013). “Critical assessment of automated flow cytometry
data analysis techniques.” Nature methods, 10(3), 228-238.

fg_data_pos2 fe_data_pos2

Description

fg_data_pos2

Usage

fg_data_pos2

Format

A list containing the following elements for a positive control data set with markers A, B, C, D.
This is a positive control data set where node A+B+C+ increased by 50
e count: A numeric sample x cell population node matrix with cell count values
* meta: A data frame containing meta information on samples in count; it contains columns:
— 1id: a string containing sample id’s.

— class: a string indicating whether a sample is from a "control" or "exp" (experiment)
subject.

fg_data_pos30

11

fg_data_pos3@ fe_data_pos30

Description

fg_data_pos30

Usage
fg_data_pos30

Format

A list containing the following elements for a positive control data set with markers A, B, C, D;
note it was made with two and three thresholds for markers A and B to test functions with multiple

thresholds (this is a positive control data set where nodes A+..B+..C+ increased by 50

e count: A numeric sample x cell population node matrix with cell count values

* meta: A data frame containing meta information on samples in count; it contains columns:

— 1id: a string containing sample id’s.

— class: a string indicating whether a sample is from a "control" or "exp" (experiment)

subject.

fg_extract_phenotypes Extracts a set of phenotypes from a flowGraph object.

Description

Extracts or removes a specified set of phenotypes from a flowGraph object.

Usage

fg_extract_phenotypes(fg, phenotypes)

Arguments

fg flowGraph object.

phenotypes A string vector of phenotype or cell population name labels.
Details

The summary in fg will not be modified; we recommend users recalculate them.

Value

flowGraph object.

See Also

flowGraph-class fg_get_feature_desc fg_merge fg_extract_samples fg_merge_samples

12 fg_extract_raw

Examples

no_cores <- 1

data(fg_data_pos30)

fgd <- flowGraph(fg_data_pos30$count, class=fg_data_pos30$metas$class,
prop=FALSE, specenr=FALSE,
no_cores=no_cores)

fg_get_feature_desc(fgo)

fg <- fg_extract_phenotypes(fgo, fg_get_graph(fgd)s$vsphenotypel1:10])
fg_get_feature_desc(fg)

fg_extract_raw Clears all features and feature summaries in a flowGraph object.

Description

Returns a flowGraph object with only the count feature and meta data. This function clears all
other features and feature summaries to save space.

Usage

fg_extract_raw(fg)

Arguments

fg flowGraph object.

Value

flowGraph object with all summary statistics and feature values removed except for the node count
feature.

See Also

flowGraph-class

Examples

no_cores <- 1

data(fg_data_pos30)

fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos30$metas$class,
no_cores=no_cores)

fg <- fg_extract_raw(fg)
show(fg)

fg_extract_samples

13

fg_extract_samples Extracts a set of samples from a flowGraph object.

Description

Extracts or removes a specified set of samples from a flowGraph object.

Usage

fg_extract_samples(fg, sample_ids, rm_summary = TRUE)

Arguments
fg flowGraph object.
sample_ids A string vector of sample id’s that the user wants to keep in fg.
rm_summary A logical indicating whether or not to clear summary.

Details

The summaries in fg will not be modified; we recommend the user recalculates them.

Value

flowGraph object.

See Also

flowGraph-class fg_get_feature_desc fg_merge fg_extract_phenotypes

Examples

no_cores <- 1

data(fg_data_pos30)

fgd <- flowGraph(fg_data_pos30$count, class=fg_data_pos30$metas$class,
prop=FALSE, specenr=FALSE,
no_cores=no_cores)

fg_get_feature_desc(fgo)

fg <- fg_extract_samples(fgo, fg_get_meta(fgd)$id[1:5])
fg_get_feature_desc(fg)

14 fg_feat_cumsum

fg_feat_cumsum Converts cell counts into cumulated cell counts.

Description

Converts the cell counts in a flowGraph object into cumulated cell counts; this is optional and can be
done only for there is more than one threshold for one or more markers. This should also only be ran
when initializing a flowGraph object as converting back and forth is computationally expensive. If
the user is interested in seeing non- and cumulated counts, we recommend keeping two flowGraph
objects, one for each version. This function simply converts e.g. the count of A+ or A++ into the
sum of count of A+, A++, and A+++ or A++, and A+++.

Usage

fg_feat_cumsum(fg, no_cores)

Arguments

fg flowGraph object.

no_cores An integer indicating how many cores to parallelize on.

Details

fg_feat_cumsum returns the given flowGraph object with an adjusted count feature. As in our
example,

Value

flowGraph object with cumulated counts.

See Also

flowGraph-class Matrix

Examples

no_cores <- 1

data(fg_data_pos30)

fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos30$meta$class,
prop=FALSE, specenr=FALSE,
no_cores=no_cores)

fg <- flowGraph:::fg_feat_cumsum(fg, no_cores=no_cores)

fg feat _edge_prop 15

fg_feat_edge_prop Generates the proportion edge feature.

Description

Generates the proportion edge feature and returns it inside the flowGraph object.

Usage

fg_feat_edge_prop(fg, no_cores = 1, overwrite = FALSE)

Arguments
fg flowGraph object.
no_cores An integer indicating how many cores to parallelize on.
overwrite A logical variable indicating whether to overwrite the existing proportion edge
feature if it exists.
Details

Given a flowGraph object, fg_feat_edge_prop returns the same flowGraph object with an addi-
tional proportions prop edge feature and its meta data. The proportions feature is made using the
node count feature and is the cell count of each cell population (e.g. A+B+) over the cell count of
its parent (e.g. A+); each edge then corresponds with such a relationship. The edge feature matrix
has column names <from>_<to> e.g. A+_A+B+.

Value

flowGraph object containing the proportion edge feature.

See Also

flowGraph-class fg_feat_node_prop fg_feat_node_specenr fg_add_feature fg_get_feature
fg_rm_feature fg_get_feature_desc

Examples

no_cores <- 1

data(fg_data_pos30)

fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos3@$metasclass,
prop=FALSE, specenr=FALSE,
no_cores=no_cores)

fg <- fg_feat_edge_prop(fg)

16 fg_feat_edge_specenr

fg_feat_edge_specenr Generates the SpecEnr edge feature.

Description

Generates the SpecEnr edge feature and returns it inside the flowGraph object.

Usage

fg_feat_edge_specenr(fg, no_cores = 1, overwrite = FALSE)

Arguments
fg flowGraph object.
no_cores An integer indicating how many cores to parallelize on.
overwrite A logical variable indicating whether to overwrite the existing proportion edge
feature if it exists.
Details

Given a flowGraph object, fg_feat_edge_SpecEnr returns the same flowGraph object with an
additional SpecEnr and expected proportions expect_prop edge feature and its meta data. The
expected proportions edge feature is calculated by taking the ratio of the child nodes’ (e.g. A+B+)
expected proportion value over its parent nodes’ (e.g. A+) actual proportion value. The SpecEnr
feature is the actual over expected proportion ratio, logged. The edge feature matrix has column
names <from>_<to>e.g. A+_A+B+.

Value

flowGraph object containing the proportion edge feature.

See Also

flowGraph-class fg_feat_node_prop fg_feat_node_specenr fg_add_feature fg_get_feature
fg_rm_feature fg_get_feature_desc

Examples

no_cores <- 1

data(fg_data_pos30)

fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos30$metas$class,
prop=FALSE, specenr=FALSE,
no_cores=no_cores)

fg <- fg_feat_edge_specenr(fg)

fg_feat_mean_class

17

fg_feat_mean_class Normalizes all features for class.

Description

For each class label in column class of meta, fg_feat_mean_class takes the column mean of the
rows in the given feature matrices (as specified in node_features and edge_features) associated
with that class; it then takes the difference point by point between these means and the original rows

for that class.

FUNCTION_DESCRIPTION

Usage

fg_feat_mean_class(

fg,

class,
no_cores = 1,
node_features
edge_features

Arguments

fg
class

no_cores

node_features

edge_features

Details

= NULL,
= NULL

PARAM_DESCRIPTION

a column name in fg_get_meta(fg) indicating the meta data that should be
used as the class label of each sample while conudcting normalization.

An integer indicating how many cores to parallelize on.

A string vector indicating the node features to perform normalization on; set as
NULL to normalize all.

A string vector indicating the edge features to perform normalization on; set as
NULL to normalize all.

For all features in the given flowGraph object and for each class label in column class of meta,
fg_feat_mean_class. It takes the column mean of the rows in the given feature matrices (as spec-
ified in node_features and edge_features) associated with that class; it then takes the difference
point by point between these means and the original rows for that class. fg_feat_mean_class

Value

A numeric matrix whose dimensions equate to that of the input and whose values are normalized

per class.

flowGraph object with normalized features.

See Also

flowGraph-class

18 fg_feat_node_prop

Examples

no_cores <- 1

data(fg_data_pos30)

fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos3@$metasclass,
prop=FALSE, specenr=FALSE,
no_cores=no_cores)

fg <- fg_feat_mean_class(fg, class="class", node_features="count"”,
no_cores=no_cores)

fg_feat_node_prop Generates the proportion node feature.

Description

Generates the proportion node feature and returns it inside the returned flowGraph object.

Usage
fg_feat_node_prop(fg, overwrite = FALSE)

Arguments
fg flowGraph object.
overwrite A logical variable indicating whether to overwrite the existing proportion node
feature if it exists.
Details

Given a flowGraph object, fg_feat_node_prop returns the same flowGraph object, inside of which
is an additional proportions prop node feature and its meta data. The proportions feature is made
using the node count feature and is the cell count of each cell population over the total cell count.

Value

flowGraph object containing the proportion node feature.

See Also

flowGraph-class fg_feat_node_specenr fg_add_feature fg_get_feature fg_rm_feature
fg_get_feature_desc

Examples

no_cores <- 1

data(fg_data_pos30)

fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos30@$metasclass,
prop=FALSE, specenr=FALSE,
no_cores=no_cores)

fg <- fg_feat_node_prop(fg)

fg_feat_node_specenr 19

fg_feat_node_specenr Generates the SpecEnr node feature.

Description

Generates the SpecEnr node feature and returns it inside the returned flowGraph object.

Usage
fg_feat_node_specenr(fg, no_cores = 1, feature = "prop”, overwrite = FALSE)
Arguments
fg flowGraph object
no_cores An integer indicating how many cores to parallelize on.
feature A string indicating feature name; this is the feature SpecEnr will be calculated
on.
overwrite A logical variable indicating whether to overwrite the existing SpecEnr node
feature if it exists.
Details

Given a flowGraph object, fg_feat_node_specenr returns the same flowGraph object with an
additional SpecEnr and expect_prop node feature and its meta data. The expected proportions
feature is made using the prop node and edge features; therefore, the returned flowGraph will also
contain these two features. For details on how these feature is calculated.

Value

flowGraph object containing the SpecEnr node feature.

References

Yue A, Chauve C, Libbrecht M, Brinkman R (2019). “Identifying differential cell populations in
flow cytometry data accounting for marker frequency.” BioRxiv, 837765.

See Also

flowGraph-class fg_feat_node_prop fg_add_feature fg_get_feature fg_rm_feature fg_get_feature_desc

Examples

no_cores <- 1

data(fg_data_pos30)

fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos3@$metasclass,
prop=FALSE, specenr=FALSE,
no_cores=no_cores)

SpeckEnr is by default calculated based on proportions
fg <- fg_feat_node_specenr(fg, no_cores=no_cores)

SpecEnr can be calculated for other feature values too

20 fg_get feature

fg <- fg_feat_node_specenr(fg, feature="count")

show(fg)

fg_get_feature Retrieves a feature matrix.

Description

Retrieves a feature matrix from a given flowGraph object, the feature type, and feature name.

Usage

fg_get_feature(fg, type = "node”, feature = "count")

Arguments
fg flowGraph object.
type A string indicating feature type 'node’ or "edge’.
feature A string indicating feature name;

Details

Returns NULL if the requested feature does not exist.

Value

A numeric matrix of the specified feature values.

See Also

flowGraph-class fg_get_feature_desc fg_add_feature fg_rm_feature fg_get_summary

Examples

data(fg_data_pos30)

fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos30$metas$class,
prop=FALSE, specenr=FALSE,
no_cores=1)

feature_matrix <- fg_get_feature(fg, type='node', feature='count')

fg_get_feature_desc 21

fg_get_feature_desc Retrieves and/or recalculates a feature description table.

Description

Retrieves and/or recalculates a feature description table for a given flowGraph object.

Usage

fg_get_feature_desc(fg, re_calc = FALSE)

Arguments
fg flowGraph object.
re_calc A logical variable specifying whether or not a feature summary should be re-
calculated or directly retrieved from fg.
Value

A data frame where each row contains information on a feature from the given flowGraph object;
its columns is as in the feat_desc slot of flowGraph-class.
See Also

flowGraph-class fg_get_feature fg_add_feature fg_rm_feature fg_get_summary_desc

Examples

no_cores <- 1
data(fg_data_pos30)

fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos30$meta$class,
no_cores=no_cores)

fg_get_feature_desc(fg, re_calc=TRUE)

fg_get_feature_means Retrieves feature summaries.

Description

Retrieves a feature summary (e.g. colMeans) for samples specified by sample id’s id OR class label
label for class class given a feature specified by type and feat.

22

fg_get_feature_means

Usage
fg_get_feature_means(
fg,
type = c("node”, "edge"),
feature = "count”,
class = NULL,
label = NULL,
id = NULL,

summary_fun

colMeans

)
Arguments

fg flowGraph object.

type A string indicating feature type the summary was created for 'node’ or ’edge’.

feature A string indicating feature name the summary was created for;

class A string corresponding to a column name of the meta slot of fg whose values
represent the class label of each sample on which the summary was created to
compare or analyze;

label A string indicating a class label.

id A string vector containing the sample id’s corresponding to the id column of the

summary_fun

Value

meta slot of fg.

A function that takes in a matrix and outputs a vector the same length as the
number of columns this matrix has.

A list containing two numeric vectors calculated using the summary_fun function on the subset of
samples specified by sample id’s id OR class label label for class class from a feature matrix
specified by type and feat.

See Also

flowGraph-class fg_get_summary_desc fg_add_summary fg_rm_summary fg_get_summary

Examples

no_cores <- 1

data(fg_data_pos30)

fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos30$metas$class,
no_cores=no_cores)

fg <- fg_summary(fg, no_cores=no_cores, class="class", labell="control"”,
overwrite=FALSE, test_name="t", diminish=FALSE)

show(fg)

feat_mean <- fg_get_feature_means(fg, type="node"”, feature="count”,

class="class"”, label="control”)

fg_get_graph 23

fg_get_graph Retrieves a graph list from a given flowGraph object.

Description

Retrieves a graph list from a given flowGraph object.

Usage

fg_get_graph(fg)

Arguments

fg flowGraph object.

Value

A list containing two data frames (v and]Jcodee) from the graph slot of the given flowGraph object
containing information on the cell populations phenotype nodes and edges representing relation
between cell populations.

See Also

flowGraph-class fg_plot ggdf plot_gr

Examples

no_cores <- 1

data(fg_data_pos30)

fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos30$metas$class,
prop=FALSE, specenr=FALSE,
Nno_cores=no_cores)

gr <- fg_get_graph(fg)

head(grs$v)

head(grs$e)

fg_get_markers Retrieves the markers from a given flowGraph object.

Description

Retrieves the markers from a given flowGraph object.

Usage
fg_get_markers(fg)

Arguments

fg flowGraph object.

24 fg_get_meta

Value

A character vector containing the markers used in a flowGraph object.

See Also

flowGraph-class

Examples

no_cores <- 1

data(fg_data_pos30)

fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos3@$metas$class,
prop=FALSE, specenr=FALSE,
no_cores=no_cores)

fg_get_markers(fg)

fg_get_meta Retrieves sample meta.

Description

Retrieves sample meta from a given flowGraph object.

Usage
fg_get_meta(fg)

Arguments

fg flowGraph object.

Value

A data frame containing sample meta data.

See Also

flowGraph-class fg_replace_meta

Examples

no_cores <- 1

data(fg_data_pos30)

fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos30$metas$class,
prop=FALSE, specenr=FALSE,
no_cores=no_cores)

head(fg_get_meta(fg))

fg get summary 25

fg_get_summary Retrieves a summary statistic.

Description

Retrieves a summary statistic from a given flowGraph object; while fg is required, the user can
choose to input parameters summary_meta, index, or all of type, feat, test_name, class, labell,
and label2. See fg_get_summary_desc for details.

Usage
fg_get_summary(
fg,
type = "node",
index = NULL,
summary_meta = NULL,
adjust_custom = "bylLayer",

SpecEnr_filt = TRUE,
summary_fun = colMeans,
adjust@_lim = c(-0.1, 0.1),
filter_adjusto = 1,
filter_es = 0,
filter_btwn_tpthres = 0.05,
filter_btwn_es = 0.5,
default_p_thres = 1

)
Arguments
fg flowGraph object.
type A string indicating feature type the summary was created for ‘node’ or "edge’.
index The user must provide type and additionally, one of summary_meta or index.

index is an integer indicating the row in fg_get_summary_desc(<flowGraph>)
of the corresponding type and summary the user would like to retrieve.

summary_meta The user must provide type and additionally, one of summary_meta or index.
summary_meta is a list containing feat (feature name), test_name (summary
statistic name), class (class), label1, and 1abel2 (class labels compared). See
fg_get_summary_desc for details.

adjust_custom A function or a string indicating the test adjustment method to use. If a string is
provided, it should be one of c("holm”, "hochberg"”, "hommel"”, "bonferroni”,
"BH", "BY", "fdr", "none") (see p.adjust.methods). If a function is pro-
vided, it should take as input a numeric vector and output the same vector ad-
justed.

SpecEnr_filt A logicle indicating whether or not to filter p-values for SpecEnr.

summary_fun A function that takes in a matrix and outputs a vector the same length as the
number of columns this matrix has. Set to NULL to not calculate this summary
(i.e. returned list will not contain m1 and m2). See fg_get_feature_means.

adjust@_lim A vector of two numeric values indicating a range around 0, default set to -0.1
and 0.1.

26

fg_get_summary

filter_adjust@ A numeric variable indicating what percentage of SpecEnr values compared

(minimum) should be not close to 0. Set to 1 to not conduct filtering. Origi-
nal p-values stored in values_original.

filter_es A numeric variable between 0 and 1 indicating what the Cohen’s D value of the

nodes/edges in question must be greater or equal to, to be significant.

filter_btwn_tpthres

A numeric variable between 0 and 1 indicating the unadjusted T-test p-value
threshold used to test whether the actual and expected feature values used to
calculate the specified SpecEnr feature are significantly different for each sam-
ple class. Note this only needs to be specified for SpecEnr features. Combined
with filter_btwn_es, we conduct three tests to understand if there is an actual
large difference between actual and expected features: (1,2) T-test of signifi-
cance between the actual and expected raw feature value (e.g. proportion) for
samples in each of the compared classes, (3) and the T-test of significance be-
tween the differences of actual and expected feature values of the two classes.
If any two of the three tests come out as insignificant, we set the p-value for the
associated node/edge to 1.

filter_btwn_es A numeric variable between O and 1 indicating what the Cohen’s D value of

the nodes/edges in question must be greater or equal to, to be significant — see
filter_btwn_tpthres.

default_p_thres

Value

A numeric variable indicating the p-value threshold user is using. Currently,
all nodes/edges not passing the filter criterion will be defaulted to 1; if this
parameter is set, then all of these nodes/edges will be set to a minimum of
default_p_thres.

A list containing elements on feature summary retrieved by the user as in the summary slot of
flowGraph-class. If summary_fun is not NULL, this list also includes:

m1: a numeric vector the same length as values; this is a summary of the samples compared
e.g. mean.

m2: a numeric vector the same length as values; this is a summary of the samples compared
e.g. mean.

cohensd: a numberic vector indicating cohen’s d values considering effect size.

cohensd_size: a factor vector interpreting cohen’s d values.

adjust@: a numeric vector indicating the percentage of samples that have a SpecEnr value in
the range of adjust@_lim around O; if there are two classes of samples being compared, we
output the smaller percentage between the two classes.

btwn: a data frame containing columns:

tpv1: unadjusted p-value calculated between the actual and expected raw feature values
of class 1.

tpv2: unadjusted p-value calculated between the actual and expected raw feature values
of class 2.

cd1: Cohen’s D between the actual and expected raw feature values of class 1.
cd2: Cohen’s D between the actual and expected raw feature values of class 2.

btp: unadjusted p-value calculated between the difference between actual and expected
raw feature of the two classes.

fg_get_summary_desc 27

— bed: Cohen’s D calculated between the difference between actual and expected raw fea-
ture of the two classes.

— btp_: unadjusted p-value calculated between the log ratio between actual and expected
raw feature of the two classes.

— bcd_: Cohen’s D calculated between the log ratio between actual and expected raw fea-
ture of the two classes.

See Also

flowGraph-class fg_get_feature_means fg_get_summary_desc fg_add_summary fg_rm_summary
fg_get_feature

Examples

no_cores <- 1

data(fg_data_pos30)

fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos3@$metas$class,
no_cores=no_cores)

set features to NULL to apply summary statistic to all features.

fg <- fg_summary(fg, no_cores=no_cores, class="class"”, labell="control”,
overwrite=FALSE, test_name="t", diminish=FALSE,
node_features=NULL, edge_features=NULL)

show(fg)

feat_summ <- fg_get_summary(fg, type="node", summary_meta=list(
feature="SpeckEnr"”, test_name="t", class="class"”,
labell="control”, label2="exp"))

fg_get_summary_desc Retrieves a feature summary description table.

Description

Retrieves a feature summary description table for a given flowGraph object.

Usage
fg_get_summary_desc(fg)

Arguments

fg flowGraph object.

Value
A data frame where each row contains information on a feature summary from fg:
* type: feature type (i.e. 'node’ or ’edge’).
» feat: feature name.

* test_name: summary name.

28 fg_get_summary_index

* class: class or the column name of fg_get_meta(fg) whose values represent the class label
of each sample on which the summary was created for.

* labell: A string from the class column of the meta slot indicating the label of samples
compared.

e label2: A string from the class column of the meta slot indicating the label of samples
compared.
See Also

flowGraph-class fg_get_summary fg_add_summary fg_rm_summary fg_get_feature_desc

Examples

no_cores <- 1

data(fg_data_pos30)

fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos3@$metas$class,
no_cores=no_cores)

fg_get_summary_desc(fg)

fg_get_summary_index Retrieves the index of the requested summary.

Description

Retrieves the index of the requested summary from a given flowGraph object.

Usage
fg_get_summary_index(fg, type = "node"”, index = NULL, summary_meta = NULL)

Arguments
fg flowGraph object.
type A string indicating feature type the summary was created for ‘node’ or "edge’.
index The user must provide type and additionally, one of summary_meta or index.

index is an integer indicating the row in fg_get_summary_desc(<flowGraph>)
of the corresponding type and summary the user would like to retrieve.

summary_meta The user must provide type and additionally, one of summary_meta or index.
summary_meta is a list containing type (feature type: node or edge), feature

(feature name), test_name (summary statistic name), class (class), lablel,
and label?2 (class labels compared). See fg_get_summary_desc for details.

Value

An integer analagous to index. If both index and summary_meta are NULL, returns 1.

See Also

flowGraph-class fg_get_summary_desc fg_add_summary fg_rm_summary fg_plot

fg_get_summary_tables 29

Examples

no_cores <- 1

data(fg_data_pos30)

fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos3@$metas$class,
no_cores=no_cores)

set features to NULL to apply summary statistic to all features.

fg <- fg_summary(fg, no_cores=no_cores, class="class"”, labell="control"”,
overwrite=FALSE, test_name="t", diminish=FALSE,
node_features=NULL, edge_features=NULL)

show(fg)

index <- flowGraph:::fg_get_summary_index(

fg, type="node"”, summary_meta=list(
feature="SpecEnr"”, test_name="t", class="class",
label1="control”, label2="exp"))

fg_get_summary_tables Retrieves a table containing all node or edge summary statistics.

Description

Retrieves a table containing all node or edge summary statistics given a flowGraph object.

Usage

fg_get_summary_tables(fg, type = "node")

Arguments
fg flowGraph object.
type A string indicating feature type the summaries the user wants to retrieve were
created for, ‘node’ or "edge’.
Value

A list; this output is the same as that of function fg_get_graph with additional columns. These
columns contain summary statistics from the summary slot of the flowGraph object. These columns
are named: <feature type: node/edge>.<feature>.<summary name>.<class>.<class labels>.

See Also

flowGraph-class fg_get_feature_means fg_get_summary_desc fg_add_summary fg_rm_summary
fg_get_summary fg_get_feature

30 fg gsub_ids

Examples

no_cores <- 1

data(fg_data_pos30)

fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos3@$metasclass,
no_cores=no_cores)

fg <- fg_summary(fg, no_cores=no_cores, class="class"”, labell1="control"”,
overwrite=FALSE, test_name="t", diminish=FALSE)
show(fg)

feat_summ_table_node <- fg_get_summary_tables(fg, type="node")
head(feat_summ_table_node)

fg_gsub_ids Replace sample id’s.

Description

Replace sample id’s in a flowGraph object.

Usage
fg_gsub_ids(fg, ids_new, ids_old = NULL)

Arguments
fg flowGraph object.
ids_new A string vector of new sample id’s; if ids_old is set to NULL, each id in ids_new
should correspond to each id in fg_get_meta(fg)$id.
ids_old A string vector of old sample id’s the user wants to replace; these marker names
corresponding to those in fg_get_meta(fg) $id with the same length as ids_new.
If ids_old=NULL, ids_new should be the same length as fg_get_meta(fg)$id.
Value

flowGraph object with sample id’s replaced.

See Also

flowGraph-class fg_get_feature_desc fg_gsub_markers

Examples

no_cores <- 1

data(fg_data_pos30)

fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos3@$metas$class,
prop=FALSE, specenr=FALSE,
no_cores=no_cores)

n

fg <- fg_gsub_ids(fg, ids_new=paste@(fg_get_meta(fg)$id, "_new"))

fg_gsub_markers 31

fg_gsub_markers Replace marker names.

Description

Replace marker names in a flowGraph object.

Usage

fg_gsub_markers(fg, markers_new, markers_old = NULL)

Arguments
fg flowGraph object.
markers_new A string vector of new marker names; if markers_old is set to NULL, each
marker in markers_new should correspond to each marker in the markers slot
of the flowGraph object.
markers_old A string vector of old marker names user wants to replace; these marker names
corresponding to those in fg_get_markers(fg) with the same length as markers_new.
If markers_old=NULL, markers_new should be the same length as fg_get_markers(fg).
Value

flowGraph object with marker names replaced.

See Also

flowGraph-class fg_gsub_ids

Examples

no_cores <- 1

data(fg_data_pos30)

fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos30@$metasclass,
prop=FALSE, specenr=FALSE,
no_cores=no_cores)

fg <- fg_gsub_markers(fg, c("Anew”, "Bnew”, "Cnew”, "Dnew"))
fg_get_feature_desc(fg)

32 fg _merge

fg_load Load a flowGraph object from a specified folder path.

Description

Load a flowGraph object from a specified folder path.

Usage
fg_load(folder_path)

Arguments
folder_path A string indicating the folder path to where a flowGraph object was saved using
the fg_save function.
Details

see function fg_save

Value

flowGraph object

See Also

fg_save

Examples

no_cores <- 1

data(fg_data_pos2)

fg <- flowGraph(fg_data_pos2%$count, class=fg_data_pos2$metas$class,
no_cores=no_cores)

fg_save(fg, "tmp")
fg <- fg_load("tmp")

fg_merge Merges two flowGraph objects together.

Description

Merges two flowGraph objects together.

Usage
fg_merge(
fg1,
fg2,
method_sample = c("union”, "intersect”, "setdiff”, "none"),
method_phenotype = c("intersect”, "setdiff"”, "none")

fg_merge 33

Arguments
fgi flowGraph object.
fg2 flowGraph object.

method_sample A string indicating how samples from flowGraph objects should be merged:
* union: keep all samples from both flowGraph objects; in this case method_phenotype
must be intersect.
e intersect: keep only samples that exist in both fg1 and fg2.
* setdiff: keep only samples that exist in fg1 and not in fg2.
* none: keep all samples in fg1.
method_phenotype
A string indicating how phenotypes from flowGraph objects should be merged:
* intersect: keep only phenotypes that exist in both fg1 and fg2.
* setdiff: keep only phenotypes that exist in fg1 and not in fg2.
* none: keep all phenotypes in fg1.

Details

fg_merge is a generic function that merges the samples and phenotypes of two flowGraph objects.
Note that if method_sample="union” then method_phenotype must be set to "intersect".

Value

flowGraph object.

See Also

flowGraph-class fg_extract_samples fg_extract_phenotypes fg_merge_samples

Examples

no_cores <- 1

data(fg_data_pos30)

fgd <- flowGraph(fg_data_pos30$count, class=fg_data_pos30$metas$class,
prop=FALSE, specenr=FALSE,
no_cores=no_cores)

fgl <- fg_extract_samples(fg0d, fg_get_meta(fg0d)$id[1:5]1)
fg2 <- fg_extract_samples(fg0d, fg_get_meta(fgd)$id[4:7])
fg <- fg_merge(fgl, fg2, method_sample="intersect”,

method_phenotype="intersect")
fg_get_feature_desc(fg)

34 fg _merge_samples

fg_merge_samples Merges the samples from two flowGraph objects.

Description

Merges the samples from two flowGraph objects together; we recommend removing all summary
statistics from the new flowGraph object as those won’t be adjusted: fg_clear_summary.

Usage

fg_merge_samples(fgl, fg2)

Arguments
fgl flowGraph object.
fg2 flowGraph object.
Details

Appends the samples from fg2 onto those in fg1. This function requires that the two flowGraph
objects must have the same phenotypes. Therefore, we recommend users to use, instead, fg_merge.

Value

flowGraph object.

See Also

flowGraph-class fg_get_feature_desc fg_merge fg_extract_samples

Examples

no_cores <- 1

data(fg_data_pos30)

fgod <- flowGraph(fg_data_pos30$count, class=fg_data_pos30$meta$class,
prop=FALSE, specenr=FALSE,
no_cores=no_cores)

fgl <- fg_extract_samples(fgd, fg_get_meta(fg@)$id[1:5]1)
fg2 <- fg_extract_samples(fg0d, fg_get_meta(fgd)$id[4:7])
fg <- fg_merge_samples(fgl, fg2)

fg_get_feature_desc(fg)

fg_plot 35

fg_plot Creates a cell hierarchy plot.

Description

Creates a cell hierarchy plot given a flowGraph object. If a path is not provided for fg_plot to save
the plot, please use plot_gr to view plot given the output of fg_plot.

Usage
fg_plot(
fg,
type = "node"”,
index = 1,
summary_meta = NULL,
adjust_custom = "bylLayer",

show_nodes_edges = NULL,
label_max = 30,

p_thres = 0.05,
filter_adjusto = 1,
filter_es = 0,
filter_btwn_tpthres = 1,
filter_btwn_es = 0,
node_labels = c("prop”, "expect_prop”),
summary_fun = colMeans,
layout_fun = NULL,
show_bgedges = TRUE,

main = NULL,
interactive = FALSE,
visNet_plot = TRUE,
path = NULL,
width = 9,
height = 9
)
Arguments
fg flowGraph object.
type A string indicating feature type the summary was created for 'node’ or ’edge’.
index The user must provide type and additionally, one of summary_meta or index.

index is an integer indicating the row in fg_get_summary_desc(<flowGraph>)
of the corresponding type and summary the user would like to retrieve.

summary_meta The user must provide type and additionally, one of summary_meta or index.

summary_meta is a list containing feature (feature name), test_name (sum-
mary statistic name), class (class), labell, and label2 (class labels com-
pared). See fg_get_summary_desc for details.

adjust_custom A function or a string indicating the test adjustment method to use. If a string is
provided, it should be one of c("holm”, "hochberg"”, "hommel"”, "bonferroni”

36

fg_plot

"BH", "BY", "fdr", "none") (see p.adjust.methods). If a function is pro-
vided, it should take as input a numeric vector and output the same vector ad-

justed.

show_nodes_edges

label_max

p_thres

filter_adjuste

filter_es

A logical vector indicating which nodes/edges (type) to show in the plot; if this
is not specified, only nodes/edges with significant summary statistics will be
shown.

An integer specifying the maximum number of nodes to label.

A double indicating a summary statistic threshold e.g. if we are plotting a T test
summary statistic, we can set the threshold to .05; nodes with a p-value greater
than .05 will not be plotted.

A numeric variable indicating what percentage of SpecEnr values compared
(minimum) should be not close to 0. Set to 1 to not conduct filtering.

A numeric variable between 0 and 1 indicating what the Cohen’s D value of the
nodes/edges in question must be greater or equal to, to be significant.

filter_btwn_tpthres

filter_btwn_es

node_labels

summary_fun

layout_fun

show_bgedges

main

interactive

visNet_plot

path

A numeric variable between 0 and 1 indicating the unadjusted T-test p-value
threshold used to test whether the actual and expected feature values used to
calculate the specified SpecEnr feature are significantly different for each sam-
ple class. Note this only needs to be specified for SpecEnr features. Combined
with filter_btwn_es, we conduct three tests to understand if there is an actual
large difference between actual and expected features: (1,2) T-test of signifi-
cance between the actual and expected raw feature value (e.g. proportion) for
samples in each of the compared classes, (3) and the T-test of significance be-
tween the differences of actual and expected feature values of the two classes.
If any two of the three tests come out as insignificant, we set the p-value for the
associated node/edge to 1.

A numeric variable between 0 and 1 indicating what the Cohen’s D value of
the nodes/edges in question must be greater or equal to, to be significant — see
filter_btwn_tpthres.

A string vector indicating which node feature(s) should be used to label a node.
We recommend keeping the length of this vector to below 2. Set to "NONE" if
no p-value labels are needed.

A function that takes in a matrix and outputs a vector the same length as the
number of columns this matrix has; see fg_summary.

A string representing a function from the igraph package that indicates what
layout should be used if a cell hierarchy is to be ploted; all such functions have
prefix layout_. Only specify if different from the default one already calculated
in the fg flowGraph object given.

A logical variable indicating whether or not edges not specified for plotting
should be plotted as light grey in the background.

A string or the title of the plot; if left as NULL, a default title will be applied.

A logical variable indicating whether the plot should be an interactive plot; see
package ggiraph.

A logical variable indicating if an interactive plot is chosen, if function should
output a visNetwork plot; if set to FALSE, ggplot’s girafe will be used instead.

A string indicating the path to where the function should save the plot; leave as
NULL to not save the plot. Static plots are saved as PNG, interactive plots are
saved as HTML.

fg_plot_box 37

width A numeric variable specifying, in inches, what the plot width should be.
height A numeric variable specifying, in inches, what the plot height should be.
Details

fg_plot takes a flowGraph object as input and returns the graph slot of the given object with addi-
tional columns to serve as input into plot_gr for plotting using functions in the ggplot2 package.
Users can choose to save a PNG version of the plot by filling out the path parameter with a full
path to the PNG plot. In addition to specifying columns added from ggdf, fg_plot also adds label
column(s) whose values serve as labels in the interactive version of the plot.

Value

A list of nodes and edges for plotting with the plot_gr function. Other elements in this list include
show_bgedges, which has the same value as parameter show_bgedges, and main, the title of the
plot.

See Also

flowGraph-class get_phen_meta ggdf plot_gr fg_get_feature fg_get_summary

Examples

no_cores <- 1

data(fg_data_pos2)

fg <- flowGraph(fg_data_pos2$count, class=fg_data_pos2$metas$class,
Nno_cores=no_cores)

gr <- fg_plot(fg, type="node", index=1, label_max=30,
show_nodes_edges=NULL, p_thres=.01, node_labels=c("prop”, "expect_prop"”),
path=NULL) # set path to a full path to save plot as a PNG

plot_gr(gr)

fg_plot_box Creates a boxplot of the values of one node/edge

Description

Creates a boxplot comparing the features of samples belonging to different classes corresponding
to an existing summary statistic using ggplot2.

Usage

fg_plot_box(
fg,
type = "node”,
index = 1,
summary_meta = NULL,
node_edge = 1,
adjust_custom = "bylLayer",

p_thres = 0.05,

38 fg plot_box

filter_adjust@® = 0.5,
filter_es = 0.5,
filter_btwn_tpthres = 0.05,
filter_btwn_es = 0.5,
paired = FALSE,

dotplot = TRUE,

outlier = TRUE,

all_labels = FALSE,
show_mean = TRUE,

main = NULL,
path = NULL
)
Arguments
fg flowGraph object.
type A string indicating feature type the summary was created for ‘node’ or "edge’.
index The user must provide type and additionally, one of summary_meta or index.

index is an integer indicating the row in fg_get_summary_desc(<flowGraph>)

of the corresponding type and summary the user would like to retrieve.
summary_meta The user must provide type and additionally, one of summary_meta or index.

summary_meta is a list containing feature (feature name), test_name (sum-

mary statistic name), class (class), labell, and label2 (class labels com-
pared). See fg_get_summary_desc for details.

node_edge An integer/index of or a string of the cell population (node) / edge name (edge)
the user wants to plot.

adjust_custom A function or a string indicating the test adjustment method to use. If a string is
provided, it should be one of c("holm”, "hochberg”, "hommel”, "bonferroni”,
"BH", "BY", "fdr", "none") (see p.adjust.methods). If a function is pro-
vided, it should take as input a numeric vector and output the same vector ad-
justed.

p_thres A numeric variable indicating a p-value threshold

filter_adjust@ A numeric variable indicating what percentage of SpecEnr values compared
(minimum) should be not close to 0. Set to 1 to not conduct filtering.

filter_es A numeric variable between 0 and 1 indicating what the Cohen’s D value of the
nodes/edges in question must be greater or equal to, to be significant.

filter_btwn_tpthres
A numeric variable between 0 and 1 indicating the unadjusted T-test p-value
threshold used to test whether the actual and expected feature values used to
calculate the specified SpecEnr feature are significantly different for each sam-
ple class. Note this only needs to be specified for SpecEnr features. Combined
with filter_btwn_es, we conduct three tests to understand if there is an actual
large difference between actual and expected features: (1,2) T-test of signifi-
cance between the actual and expected raw feature value (e.g. proportion) for
samples in each of the compared classes, (3) and the T-test of significance be-
tween the differences of actual and expected feature values of the two classes.
If any two of the three tests come out as insignificant, we set the p-value for the
associated node/edge to 1.

filter_btwn_es A numeric variable between 0 and 1 indicating what the Cohen’s D value of
the nodes/edges in question must be greater or equal to, to be significant — see
filter_btwn_tpthres.

fg plot_pVSdiff 39

paired A logical indicating whether the summary is paired.

dotplot A logical indicating whether or not to plot sample points.

outlier A logical indicating whether or not outliers should be plotted.

all_labels A logical indicating whether or not to plot samples of all classes outside of just
those used in the summary statistic test.

show_mean A logical indicating whether or not to label the mean.

main A string or the title of the plot; if left as NULL, a default title will be applied.

path A string indicating the path to where the function should save the plot; leave as

NULL to not save the plot. Static plots are saved as PNG.

Details
The plot is made using the ggplot2 package. The interactive version is the same as the static
version, it is only here to support the shiny app.

Value

A static boxplot.

See Also
flowGraph-class fg_plot plot_gr fg_get_feature fg_get_summary fg_plot_qq

Examples

no_cores <- 1

data(fg_data_pos2)

fg <- flowGraph(fg_data_pos2$count, class=fg_data_pos2$metas$class,
no_cores=no_cores)

fg_plot_box(fg, type="node", summary_meta=NULL, adjust_custom="byLayer”, index=1, node_edge=10)

fg_plot_pVSdiff Creates a p value vs feature difference plot

Description

Creates a p value vs feature difference plot where the difference is that of the features of samples
belonging to different classes corresponding to an existing summary statistic.

Usage
fg_plot_pVSdiff(
fg,
type = "node”,
index = 1,
summary_meta = NULL,
adjust_custom = "bylLayer",

logged = TRUE,
label_max = 5,

40 fg plot_pVSdiff

p_thres = 0.05,
filter_adjusto = 1,
filter_es = 0,
filter_btwn_tpthres = 1,
filter_btwn_es = 0,
shiny_plot = FALSE,
nodes_max = 30,

main = NULL,
interactive = FALSE,
path = NULL
)
Arguments
fg flowGraph object.
type A string indicating feature type the summary was created for 'node’ or ’edge’.
index The user must provide type and additionally, one of summary_meta or index.

index is an integer indicating the row in fg_get_summary_desc(<flowGraph>)
of the corresponding type and summary the user would like to retrieve.

summary_meta The user must provide type and additionally, one of summary_meta or index.

summary_meta is a list containing feature (feature name), test_name (sum-
mary statistic name), class (class), labell, and label2 (class labels com-
pared). See fg_get_summary_desc for details.

adjust_custom A function or a string indicating the test adjustment method to use. If a string is
provided, it should be one of c("holm”, "hochberg”, "hommel”, "bonferroni”,
"BH", "BY", "fdr", "none") (see p.adjust.methods). If a function is pro-
vided, it should take as input a numeric vector and output the same vector ad-

justed.

logged A logical indicating whether or not to log the summary statistic p value.

label_max An integer indicating the maximum number of max difference and/or min p
value nodes/edges that should be labelled.

p_thres A numeric variable indicating a p-value threshold; a line will be plotted at this
threshold.

filter_adjust@ A numeric variable indicating what percentage of SpecEnr values compared
(minimum) should be not close to 0. Set to 1 to not conduct filtering.

filter_es A numeric variable between 0 and 1 indicating what the Cohen’s D value of the
nodes/edges in question must be greater or equal to, to be significant.

filter_btwn_tpthres

A numeric variable between 0 and 1 indicating the unadjusted T-test p-value
threshold used to test whether the actual and expected feature values used to
calculate the specified SpecEnr feature are significantly different for each sam-
ple class. Note this only needs to be specified for SpecEnr features. Combined
with filter_btwn_es, we conduct three tests to understand if there is an actual
large difference between actual and expected features: (1,2) T-test of signifi-
cance between the actual and expected raw feature value (e.g. proportion) for
samples in each of the compared classes, (3) and the T-test of significance be-
tween the differences of actual and expected feature values of the two classes.
If any two of the three tests come out as insignificant, we set the p-value for the
associated node/edge to 1.

fg_plot_qq

filter_btwn_es

shiny_plot

nodes_max

main

interactive

path

Details

41

A numeric variable between 0 and 1 indicating what the Cohen’s D value of
the nodes/edges in question must be greater or equal to, to be significant — see
filter_btwn_tpthres.

A logical indicating whether this plot is made for shiny; users don’t need to
change this.

An integer indicating maximum number of nodes to plot; this limit is set for
interactive plots only.

A string or the title of the plot; if left as NULL, a default title will be applied.

A logical variable indicating whether the plot should be an interactive plot; see
package ggiraph.

A string indicating the path to where the function should save the plot; leave as
NULL to not save the plot. Static plots are saved as PNG.

The interactive plot is made using the ggiraph package.

Value

A static or interactive p value vs difference plot.

See Also

flowGraph-class fg_plot plot_gr fg_get_feature fg_get_summary fg_plot_qq

Examples

no_cores <- 1

data(fg_data_pos2)
fg <- flowGraph(fg_data_pos2$count, class=fg_data_pos2$metas$class,

no_cores=no_cores)

gp <- fg_plot_pVSdiff(fg, type="node"”, summary_meta=NULL,

adjust_custom="byLayer", index=1, label_max=10)

fg_plot_qq

Creates a QQ plot of a summary statistic.

Description

Creates a QQ plot of a summary statistic.

Usage
fg_plot_qaq(
fg,
type = "node”
index = 1,

summary_meta

’

= NULL,

adjust_custom = "bylLayer",

42

fg_plot_qq

logged = TRUE,

p_thres = 0.05,
filter_adjusto = 1,
filter_es = 0,
filter_btwn_tpthres = 1,
filter_btwn_es = 0,
shiny_plot = FALSE,

main = NULL,

interactive = FALSE,
path = NULL

Arguments

fg
ty
in

Su

ad

lo
p—

fi

fi

fi

fi

flowGraph object.

pe A string indicating feature type the summary was created for node’ or ’edge’.

dex The user must provide type and additionally, one of summary_meta or index.
index is an integer indicating the row in fg_get_summary_desc(<flowGraph>)
of the corresponding type and summary the user would like to retrieve.

mmary_meta The user must provide type and additionally, one of summary_meta or index.
summary_meta is a list containing feature (feature name), test_name (sum-
mary statistic name), class (class), labell, and label2 (class labels com-
pared). See fg_get_summary_desc for details.

just_custom A function or a string indicating the test adjustment method to use. If a string is

provided, it should be one of c("holm”, "hochberg”, "hommel”, "bonferroni”,

"BH", "BY", "fdr", "none"”) (see p.adjust.methods). If a function is pro-
vided, it should take as input a numeric vector and output the same vector ad-

justed.
gged A logical indicating whether or not to log the summary statistic p value.
thres A double indicating a summary statistic threshold e.g. if we are plotting a T-test

summary statistic, we can set the threshold to .05; nodes with a p-value greater
than .05 will not be plotted.

lter_adjust@ A numeric variable indicating what percentage of SpecEnr values compared
(minimum) should be not close to 0. Set to 1 to not conduct filtering.

lter_es A numeric variable between 0 and 1 indicating what the Cohen’s D value of the
nodes/edges in question must be greater or equal to, to be significant.
lter_btwn_tpthres

A numeric variable between 0 and 1 indicating the unadjusted T-test p-value
threshold used to test whether the actual and expected feature values used to
calculate the specified SpecEnr feature are significantly different for each sam-
ple class. Note this only needs to be specified for SpecEnr features. Combined
with filter_btwn_es, we conduct three tests to understand if there is an actual
large difference between actual and expected features: (1,2) T-test of signifi-
cance between the actual and expected raw feature value (e.g. proportion) for
samples in each of the compared classes, (3) and the T-test of significance be-
tween the differences of actual and expected feature values of the two classes.
If any two of the three tests come out as insignificant, we set the p-value for the
associated node/edge to 1.

lter_btwn_es A numeric variable between 0 and 1 indicating what the Cohen’s D value of

the nodes/edges in question must be greater or equal to, to be significant — see
filter_btwn_tpthres.

fg_replace_meta

shiny_plot

main

interactive

path

Details

43

A logical indicating whether this plot is made for shiny; users don’t need to
change this.

A string or the title of the plot; if left as NULL, a default title will be applied.

A logical indicating whether or not plot should be an interactive ggiraph plot as
opposed to a static plot.

A string indicating the path to where the function should save the plot; leave as
NULL to not save the plot. Static plots are saved as PNG, interactive plots are
saved as HTML.

The interactive plot is made using the ggiraph package.

Value

A static or interactive qq plot.

See Also

flowGraph-class fg_plot plot_gr fg_get_feature fg_get_summary

Examples

no_cores <- 1

data(fg_data_pos2)
fg <- flowGraph(fg_data_pos2$count, class=fg_data_pos2$metas$class,

no_cores=no_cores)

fg_plot_qq(fg, type="node", summary_meta=NULL, adjust_custom="bylLayer”, index=1,
interactive=TRUE, logged=FALSE)

fg_plot_qq(fg, type="node", summary_meta=NULL, adjust_custom="bylLayer”, index=1,
interactive=FALSE, logged=FALSE)

fg_replace_meta

Replaces sample meta.

Description

Replaces sample meta in a given flowGraph object.

Usage

fg_replace_meta(fg, meta)

Arguments

fg
meta

flowGraph object.

A data frame containing meta data; see details in flowGraph-class.

44 fg_rm_feature

Value

A flowGraph object with an updated sample meta.

See Also

flowGraph-class fg_get_meta

Examples

no_cores <- 1

data(fg_data_pos30)

fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos3@$metas$class,
prop=FALSE, specenr=FALSE,
no_cores=no_cores)

head(fg_get_meta(fg))

new_df <- fg_data_pos30$meta
new_df$id[1] <- "newID”

fg <- fg_replace_meta(fg, new_df)
head(fg_get_meta(fg))

fg_rm_feature Removes a feature.

Description

Removes a feature from a given flowGraph object.

Usage

fg_rm_feature(fg, type = "node”, feature = NULL)

Arguments
fg flowGraph object.
type A string specifying the type of the feature being removed i.e. 'node’ or edge’.
feature A string indicating the unique name of the feature removed; note we cannot
remove the "node’ ’count’ feature type.
Details

fg_rm_feature removes a specified feature matrix from the given flowGraph object fg updating
slots feat and feat_desc. See flowGraph-class slot feat and feat_desc for what should be in
these slots.

Value

flowGraph object with specified feature removed.

fg_rm_summary 45

See Also

flowGraph-class fg_add_feature fg_get_feature fg_get_feature_desc fg_rm_summary

Examples

no_cores <- 1

data(fg_data_pos30)

fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos30@$metasclass,
no_cores=no_cores)

fg_get_feature_desc(fg)

fg <- fg_rm_feature(fg, type="node", feature="prop")
fg_get_feature_desc(fg)

fg_rm_summary Removes a feature summary.

Description

Removes a feature summary from a given flowGraph object; while fg is required, the user can
choose to input parameters summary_meta, index, or all of type, feat, test_name, class, labell,
and label2. See fg_get_summary_desc for details.

Usage

fg_rm_summary(fg, type = "node”, index = NULL, summary_meta = NULL)

Arguments
fg flowGraph object.
type A string indicating feature type the summary was created for; 'node’ or "edge’.
index The user must provide type and additionally, one of summary_meta or index.

index is an integer indicating the row in fg_get_summary_desc(<flowGraph>)
of the corresponding type and summary the user would like to retrieve.

summary_meta The user must provide type and additionally, one of summary_meta or index.

summary_meta is a list containing feat (feature name), test_name (summary
statistic name), class (class), label1, and 1abel?2 (class labels compared). See
fg_get_summary_desc for details.

Value

flowGraph object.

See Also

flowGraph-class fg_get_summary fg_add_summary fg_get_summary_desc fg_rm_feature

46

Examples

no_cores <- 1

fg_save

data(fg_data_pos30)
fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos3@$metasclass,

prop=FALSE, specenr=FALSE,
no_cores=no_cores)

fg <- fg_summary(fg, no_cores=no_cores, class="class", labell1="control"”,

overwrite=FALSE, test_name="wilcox_bylLayer”, diminish=FALSE,
node_features=NULL, edge_features=NULL)

fg_get_summary_desc(fg)

fg <- fg_rm_summary(fg, summary_meta=c(
feature="count"”, test_name="wilcox_bylLayer"”,
class="class"”, labell="control”, label2="exp"))
fg_get_summary_desc(fg)

fg_save

Saves flowGraph object to a specified path.

Description

Saves flowGraph object to a specified path.

Usage

fg_save(fg, folder_path = NULL, save_plots = TRUE, paired = FALSE, ...)
Arguments

fg flowGraph object to save.

folder_path

save_plots

paired

Details

A string indicating the folder path to where the flowGraph object should save
its elements; if this is the first time the object is being saved, this folder should
be empty or if it is not yet created, the function will create it. If the object has
previously been saved before and this parameter is set to NULL, the function will
save the object into the save folder it was previously saved in.

A logical indicating whether or not to save plots.
A logical indicating whether the summary is paired; used in function fg_plot_box.

Other parameters for the fg_save_plots function.

See generated README.md file.

Value

TRUE if flowGraph object successfully saved.

See Also

length,c("nrow”, "nrow”) ,NULL map

fg_save_plots 47

Examples

no_cores <- 1

data(fg_data_pos2)

fg <- flowGraph(fg_data_pos2$count, class=fg_data_pos2$metas$class,
no_cores=no_cores)

fg_save(fg, "tmp")

fg_save_plots Saves numerous plots for all summary statistics to a folder.

Description

Saves numerous plots for all summary statistics in a given flowGraph object to a user specified
folder.

Usage
fg_save_plots(
fg,
plot_path,

plot_types = "node”,
interactive = FALSE,
adjust_custom = "bylLayer",
label_max = 10,

box_no = 20,

paired = FALSE,

logged = FALSE,
filter_adjusto = 1,
filter_es = 0,
filter_btwn_tpthres = 1,
filter_btwn_es = 0,
overwrite = TRUE,
node_labels = "NONE",

)
Arguments
fg flowGraph object.
plot_path A string indicating the folder path to where the function should save the plots.
plot_types A string or a vector of strings indicating what feature types and their summaries

the function should plot for: *node’ or "edge’.

interactive A logical indicating whether the QQ plot, p-value vs difference plot, and the cell
hierarchy plots should be interactive; see functions fg_plot and fg_plot_qq.

adjust_custom A function or a string indicating the test adjustment method to use. If a string is
provided, it should be one of c("holm”, "hochberg”, "hommel”, "bonferroni”,
"BH", "BY", "fdr", "none") (see p.adjust.methods). If a function is pro-
vided, it should take as input a numeric vector and output the same vector ad-
justed.

48 fg save_plots

label_max An integer indicating how many labels should be shown in the functions fg_plot_pVSdiff
and fg_plot.

box_no An integer indicating the maximum number of boxplots to save; used in function
fg_plot_box.

paired A logical indicating whether the summary is paired; used in function fg_plot_box.

logged A logical indicating whether or not to log the summary statistic p value in the
qq plots.

filter_adjust® A numeric variable indicating what percentage of SpecEnr values compared
(minimum) should be not close to 0. Set to 1 to not conduct filtering. This
parameter is used for the QQ and the pVSdifference plots.

filter_es A numeric variable between 0 and 1 indicating what the Cohen’s D value of the
nodes/edges in question must be greater or equal to, to be significant.

filter_btwn_tpthres
A numeric variable between 0 and 1 indicating the unadjusted T-test p-value
threshold used to test whether the actual and expected feature values used to
calculate the specified SpecEnr feature are significantly different for each sam-
ple class. Note this only needs to be specified for SpecEnr features. Combined
with filter_btwn_es, we conduct three tests to understand if there is an actual
large difference between actual and expected features: (1,2) T-test of signifi-
cance between the actual and expected raw feature value (e.g. proportion) for
samples in each of the compared classes, (3) and the T-test of significance be-
tween the differences of actual and expected feature values of the two classes.
If any two of the three tests come out as insignificant, we set the p-value for the
associated node/edge to 1.

filter_btwn_es A numeric variable between 0 and 1 indicating what the Cohen’s D value of
the nodes/edges in question must be greater or equal to, to be significant — see
filter_btwn_tpthres.

overwrite A logical variable indicating whether or not to replace old plots if they exist
under the same folder name.

node_labels Parameter for the fg_plot function.

Other parameters for the fg_plot function.

Details

The interactive plots are made using the ggiraph package.

Value

No return; plots are saved to file.

See Also

flowGraph-class fg_plot plot_gr fg_get_feature fg_get_summary fg_plot_qq fg_plot_pVSdiff
fg_plot_box

Examples

no_cores <- 1

data(fg_data_pos2)

fg <- flowGraph(fg_data_pos2$count,
class=fg_data_pos2$metas$class,

fg_set_layout 49

no_cores:no_cores)

fg_save_plots(fg, "temp")

fg_set_layout Determines cell hierarchy layout.

Description

Determines cell hierarchy layout and returns the X, Y coordinate of each cell population. This
function is a wrapper for set_layout_graph.

Usage

fg_set_layout(fg, layout_fun = "layout.reingold.tilford")

Arguments
fg flowGraph object.
layout_fun A string version of a function name from the igraph package that indicates what
layout should be used if a cell hierarchy is to be ploted; all such functions have
prefix layout_ e.g. layout_fun="layout.reingold.tilford".
Details

Given a flowGraph object, modifies the graph slot such that it contains X, Y axes for each node in
accordance to a user specified layout.

Value

flowGraph object with coordinate meta data on cell populations and edges for plotting use.

Examples

no_cores <- 1

data(fg_data_pos30)

fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos30$metasclass,
prop=FALSE, specenr=FALSE,
no_cores=no_cores)

fg <- fg_set_layout(fg)
head(fg_get_graph(fg)$v)

50 fg summary

fg_summary Calculates feature summary statistics.

Description

Calculates feature summary statistics for flowGraph features; users can choose from a list of sta-
tistical significance tests/adjustments or define custom summary functions. For special cases, see
example in function fg_add_summary on how to manually calculate summary statistics without
using this function.

Usage
fg_summary (
fg,
no_cores = 1,
class = "class",

labell = NULL,
label2 = NULL,
class_labels = NULL,

node_features = "SpecEnr",
edge_features = "NONE",
test_name = "t_diminish”,

diminish = TRUE,
p_thres = 0.05,

p_rate = 2,

test_custom = "t",
effect_size = TRUE,
adjust@ = TRUE,
adjust@_lim = c(-0.1, 0.1),
btwn = TRUE,
btwn_test_custom = "t",
save_functions = FALSE,
overwrite = FALSE

)
Arguments
fg flowGraph object.
no_cores An integer indicating how many cores to parallelize on.
class A string corresponding to the column name or index of fg_get_meta(fg) whose
values represent the class label of each sample.
label1 A string from the class column of the meta slot indicating one of the labels

compared to create the summary statistic. If you would like to compare all other
class labels against one label, set 1abel2 to NULL. If you would like to compare
all labels against all labels, set 1abell and label2 to NULL.

label2 A string from the class column of the meta slot indicating one of the labels
compared to create the summary statistic.

class_labels A list of vectors, each containing two strings represeting labels to compare;
this parameter is an alternative to parameters labell and label?2 that supports
multiple label pairings.

fg_summary

node_features

edge_features

test_name

diminish

p_thres

p_rate

test_custom

effect_size

adjusto

adjusto_lim

btwn

51

A string vector indicating which node feature(s) to perform summary statistics
on; set to NULL or "NONE" and the function will perform summary statistics on
all or no node features.

A string vector indicating which edge feature(s) to perform summary statistics
on; set to NULL or "NONE" and the function will perform summary statistics on
all or no edge features.

A string with the name of the test you are performing.

A logical variable indicating whether to use diminishing summary statistics; if
TRUE, a summary statistic for a node or edge will only be done if at least one of
its parent node or edge is significant. Otherwise, the test will be performed on
all nodes or edges.

A double indicating the summary statistic threshold; if the result of a statistical
test is greater than p_thres, then it is insignificant.

A double; if diminish=TRUE, then p_rate needs to be specified. to determine
whether or not a node or edge’s parent is significant, we use p_thres. However,
the higher the layer on which a node resides or to which an edge points to,
the less stringent this p_thres should be. Therefore, we set p_thres as the
threshold for the parent node or edge of the last layer and multiply p_thres
by p_rate for each increasing layer e.g. given default values and 4 layers, the
thresholds for layers 1 through 4 would be .4, .2, .1, and .05.

A function or a string indicating the statistical test to use. If a string is pro-
vided, it should be one of c("t","wilcox","ks","var","chisqg"); these cor-
respond to statistical tests stats: :t.test, stats: :wilcox.test, and so on. If
a function is provided, it should take as input two numeric vectors and output a

numeric variable.

A logical variable indicating whether or not to calculate effect size statistic (co-
hen’s d) for this set of class labels; later used for plotting.

A logical variable indicating whether or not to calculate the minimum percent-
age of values from samples of each class label that falls within the range of
adjust@_lim. This is only done for SpecEnr values as p-values become unsta-
ble when comparing near O values.

A vector of two numeric values indicating a range around 0, default set to -0.1
and 0.1.

A logical variable indicating whether or not to calculate the btwn data frame
given in the fg_get_summary function.

btwn_test_custom

Same as test_custom but for btwn.

save_functions A logical variable indicating whether to save test and adjust functions.

overwrite

Details

A logical variable indicating whether to overwrite the existing summary statis-
tics if it exists.

fg_summary calculates a summary statistic as specified by the user in parameters test_name,
diminish (p_thres, p_rate), and test_custom. The test is done for a node or edge feature of in-
terest within a given flowGraph object as specified by parameters node_features, edge_features.
It then returns information on the summary statistic inside the same flowGraph object and returns it
to the user. See flowGraph-class slot summary for details on the contents.

52 flowGraph

Value

flowGraph object containing claculated summary statistics.

See Also

flowGraph-class fg_clear_summary

Examples

no_cores <- 1

data(fg_data_pos30)

fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos30$meta$class,
prop=FALSE, specenr=FALSE,
no_cores=no_cores)

fg_get_summary_desc(fg)

fg <- fg_summary(fg, no_cores=no_cores, class="class"”, labell="control"”,
overwrite=FALSE, test_name="t", diminish=FALSE,
node_features="count”, edge_features="NONE")
fg_get_summary_desc(fg)

flowGraph flowGraph object constructor.

Description

Initializes a flowGraph object given the cell counts for one or more flow cytometry sample(s).
The flowGraph object returned holds meta data for each sample, each cell population node, edges
representing how each cell population node relate to one another, and features for these nodes and
edges.

Usage
flowGraph(
input_,
meta = NULL,
class = "class",

no_cores = 1,

markers = NULL,

layout_fun = "layout.reingold.tilford”,
max_layer = NULL,

cumsumpos = FALSE,

prop = TRUE,

specenr = TRUE,

path = NULL,
calculate_summary = TRUE,
node_features = "SpecEnr",
edge_features = "NONE",
test_name = "t_diminish”,
test_custom = "t",

diminish = TRUE,

flowGraph

label1
label2

53

NULL,
NULL,

save_plots = FALSE

)

Arguments

input_

meta

class

no_cores
markers
layout_fun

max_layer

cumsumpos

prop

specenr

path

Any of the following:

¢ anumeric matrix or vector of the cell counts; its column/names must be the
phenotype names and its rownames must be sample ID’s.

All input samples should have the same markers and partitionsPerMarker.

A data frame with meta data for each Phenotypes or sample; One of its column
names should be "id" whose values correspond to the name of each Phenotypes
object. We also recommend for it to have a column named "class" where one of
its unique values is "control".

A string corresponding to the column name or index of meta whose values rep-
resent the class label of each sample; OR a vector the same length as the the
number of samples in input_ specifiying the class of each given sample — this
vector will be appended to meta under column name class.

An integer indicating how many cores to parallelize on.
A string vector of marker names used in input_.

A string of a function from the igraph package that indicates what layout should
be used if a cell hierarchy is to be ploted; all such functions have prefix layout_.
This is defaulted to e.g. layout_fun="layout.reingold.tilford".

And integer indicating the maximum layer in the cell hierarchy to analyze; set
to ‘NULL to analyze all layers.

A logical variable indicating whether or not to cumulate cell counts; this applies
only when partitionsPerMarker > 3 and will convert e.g. the count of A+ or
A++ into the sum of the counts of A+, A++, A+++, ..., or A++, A+++,

A logical variable indicating whether or not to calculate the proportion feature;
this can be done later on with flowGraph_prop.

logical variable: whether or not to calculate the SpecEnr feature, Default: T

A string indicating the folder path to where the flowGraph object should save its
elements, Default = NULL (don’t save).

calculate_summary

node_features

edge_features

test_name
test_custom

diminish

A logical variable indicating whether or not to calculate the summary statistics
for SpecEnr based on default parameters using the fg_summary summary func-
tion on class specified in parameter class.

A string vector indicating which node feature(s) to perform summary statistics
on; set to NULL or "NONE"” and the function will perform summary statistics on
all or no node features.

A string vector indicating which edge feature(s) to perform summary statistics
on; set to NULL or "NONE" and the function will perform summary statistics on
all or no edge features.

A string with the name of the test you are performing.
See fg_summary.

A logical variable; applicable if calculate_summary is TRUE; see fg_summary.

54 flowGraph

labell A string indicating a class label in fg_get_meta(fg)[,class]; set to NULL if
you would like to compare all classes aganst all classes; applicable if calculate_summary
is TRUE.
label?2 A string indicating a class label in fg_get_meta(fg)[,class]; applicable if
calculate_summary is TRUE.
save_plots A logical indicating whether or not to save plots.
Details

flowGraph is the constructor for the flowGraph object. The user can choose to input as input_
a vector, a Phenotypes object (meaning there is only one sample), a matrix, or a Phenotypes
object list. If the user is also inputting a sample meta data frame, it must contain a id column
corresponding to sample names.

Value

flowGraph object

See Also

flowGraph-class fg_get_feature fg_get_feature_desc fg_get_summary fg_get_summary_desc
fg_add_feature fg_rm_feature fg_add_summary fg_rm_summary fg_gsub_markers fg_gsub_ids

fg_merge_samples fg_extract_samples fg_extract_phenotypes fg_merge registerDoParallel
Matrix

Examples

no_cores <- 1

samplen <- 10

meta_file <- data.frame(
id=1:samplen,
class=append(rep(”control”, samplen/2), rep("exp”, samplen/2)),
stringsAsFactors=FALSE

using the constructor -----------------——--—-
data(fg_data_pos30)

input: vector of load-able Phenotypes paths
fg <- flowGraph(fg_data_pos3@$count[1,], no_cores=no_cores)

input: matrix + vector of class corresponding to samples

fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos3@$metas$class,
no_cores=no_cores)

- save to file directly

fg <- flowGraph(fg_data_pos30@$count, class=fg_data_pos30$metas$class,

no_cores=no_cores, path="path_to_folder)

H

input: matrix + meta data frame
fg <- flowGraph(fg_data_pos30$count, meta=fg_data_pos30$meta,
no_cores=no_cores)

H+

flowGraph-class 55

flowGraph-class ‘flowGraph’: A class for storing cell count feature values for the Phe-

notype class.

Description

"flowGraph’: A class for storing cell count feature values for the Phenotype class.

Usage

S4 method for signature 'flowGraph'
show(object)

Arguments

object

Value

A flowGraph object.

a flowGraph object.

Methods (by generic)

¢ show: show method

Slots

feat A list containing elements node and edge, each containing a list with feature values; each
element in this list is named by the feature name and contains a numeric matrix with the
sample id’s as row names and cell populations phenotype labels or edge labels as column
names. Column names for edge features are labelled as <from>_<to> e.g. A+_A+B+.

feat_desc A list containing elements node and edge, each containing a data frame describing the
features in the feat slot with columns:

L]

summary
list;

feat: feature name.

nrow: number of samples.

ncol: number of nodes or edges.

inf: number of infinite values in the matrix.
neginf: number of negative infinite values in the matrix.
na: number of NA values in the matrix.

nan: number of NaN values in the matrix.
neg: number of negative values in the matrix.
pos: number of positive values in the matrix.
zero: number of 0’s in the matrix.

max: The maximum value in the matrix.

min: The minimum value in the matrix.

A list containing elements node and edge, each containing a list with a feature summary
each feature summary in this list contains elements:

values: a numeric vector the same length as the number of nodes or edges.

56

summary_

flowGraph-class

test_custom: a function or a string name of the summary test method used.

desc A list containing elements node and edge, each containing a data frame describing

the features in feat with columns:

feat: A string indicating feature name the summary was created for.
test_name: A string containing the name of the summary.

class: A string corresponding to the column name of the meta slot whose values rep-
resent the class label of each sample on which the summary was created to compare or
analyze.

labell: A string from the class column of the meta slot indicating one of the labels
compared to create the summary statistic.

label2: A string from the class column of the meta slot indicating one of the labels
compared to create the summary statistic.

meta A data frame containing the column(s) id (sample id’s corresponding to row names of fea-
tures in the feat slot) and any other meta data pertaining to samples being analyzed.

markers

A character vector containing markers used.

edge_list A list containing elements child and parent. These elements contain an edge list
from child to parent and vice versa.

graph A list containing data frames v and e with information on cell population nodes and edges.
v contains columns:

phenotype: The cell population node label names e.g. A+B+C+.

phenocode: A string of "0", "1", "2", ... indicating the whether each marker is expressed
on a cell population.

phenolayer: The layer on which a cell population resides i.e. the numer of markers in
its phenotype label.

phenogroup: The markers used the make up the phenotype.

plot_layout A string indicating the name of the igraph layout function used to layout the cell
population nodes for plotting.

etc A list containing other information (see fg_get_summary for other things stored in this slot):

L]

cumsumpos: A logical indicating whether cell counts in flowGraph object contains cumu-
lated cell counts; this is optional and can be done only for there is more than one threshold
for one or more markers. This should also only be ran when initializing a f1owGraph ob-
ject as converting back and forth is computationally expensive. If the user is interested in
seeing non- and cumulated counts, we recommend keeping two flowGraph objects, one
for each version. This function simply converts e.g. the count of A+ or A++ into the sum
of count of A+, A++, and A+++ or A++, and A+++.

class_mean_normalized: A logical indicating whether the features in the flowGraph
object has been normalized according to some sample meta e.g. subject.

save: A list containing a string indicating the save ID of the object and a string indicating
path where the object is saved — used in function save_fg to identify whether or not to
save to the same folder.

Creating Objects

Objects can be created using new("”flowFrame”) or the constructor flowGraph, with mandatory
argument input_. Creating objects using new is discouraged.

flowGraph-class 57

Methods

’object’ represents a flowGraph object.

* show(fg): Shows a description of the flowGraph object.
» fg_get_meta: Retrieves the sample meta data from a given flowGraph object. See fg_get_meta.

» fg_get_graph: Retrieves the cell population (v) and edge (¢) meta data from a given flowGraph
object. See fg_get_graph.

o fg_get_feature: Retrieves the numeric feature matrix requested by the user from a given
flowGraph object. See fg_get_feature.

* fg_get_summary: Retrieves the feature summary list requested by the user from a given
flowGraph object. See fg_get_summary.

» fg_get_feature_desc: Retrieves the data frame from the feat_desc slot of a given flowGraph
object. See fg_get_feature_desc.

e fg_get_summary_desc: Retrieves the data frame from the summary_desc slot of a given
flowGraph object. See fg_get_summary_desc.

* fg_add_feature: Adds a feature to a given flowGraph object; we do not recommend users
directly use this method, instead please use wrapper functions e.g. fg_feat_node_prop,
fg_feat_node_specenr, See fg_add_feature.

e fg_rm_feature: Removes a user specified feature from a given flowGraph object. See
fg_rm_feature.

e fg_add_summary: Adds a feature to a given flowGraph object; we do not recommend users
directly use this method, instead please use wrapper function fg_summary.

* fg_clear_summary: Removes all feature summaries from a given flowGraph object. See
fg_clear_summary.

» fg_rm_summary: Removes a user specified feature summaries from a given flowGraph object.
See fg_rm_summary.

e fg_gsub_markers: Substitutes marker names in a given flowGraph object. See fg_gsub_markers.
* fg_gsub_ids: substitutes sample id’s in a flowGraph object See fg_gsub_ids.

* fg_merge_samples: Merges the samples of two flowGraph objects; we recomment users use
the wrapper function fg_merge instead. See fg_merge_samples.

* fg_extract_samples: Extract data for specific samples from a flowGraph object. See fg_extract_samples.

» fg_extract_phenotypes: Extract data for specific cell population nodes from a flowGraph
object. See fg_extract_phenotypes.

* fg_merge: Merges two given flowGraph objects. See fg_merge.
» fg_set_layout: Sets layout for cell population nodes for the purpose of plotting. See fg_set_layout.

* fg_plot: Plots cell hierarchies in the flowGraph object. See fg_plot.

Examples

showClass("flowGraph")

58

flowGraphSubset

flowGraphSubset

SflowGraph object constructor.

Description

Initializes a flowGraph object given the cell counts for one or more flow cytometry sample(s).
The flowGraph object returned holds meta data for each sample, each cell population node, edges
representing how each cell population node relate to one another, and features for these nodes and

edges.
Usage
flowGraphSubset(
input_,
meta = NULL,
class = "class",

no_cores = 1,

markers = NULL,

layout_fun = "layout.reingold.tilford”,
max_layer = NULL,

cumsumpos = FALSE,

path = NULL,

summary_pars = flowGraphSubset_summary_pars(),
summary_adjust = flowGraphSubset_summary_adjust(),

save_plots

Arguments

input_

meta

class

no_cores
markers
layout_fun

max_layer

cumsumpos

TRUE

a numeric matrix of the cell counts; its column/names must be the phenotype
names and its rownames must be sample ID’s.

A data frame with meta data for each Phenotypes or sample; One of its column
names should be "id" whose values correspond to the name of each Phenotypes
object. We also recommend for it to have a column named "class" where one of
its unique values is "control".

A string corresponding to the column name or index of meta whose values rep-
resent the class label of each sample, Default: ’class’

An integer indicating how many cores to parallelize on, Default: 1
A string vector of marker names used in input_, Default: NULL

A string of a function from the igraph package that indicates what layout should
be used if a cell hierarchy is to be ploted; all such functions have prefix layout_.
This is defaulted to e.g. layout_fun="layout.reingold.tilford".

And integer indicating the maximum layer in the cell hierarchy to analyze; set
to ‘NULL to analyze all layers.

A logical variable indicating whether or not to cumulate cell counts; this applies
only when partitionsPerMarker > 3 and will convert e.g. the count of A+ or
A++ into the sum of the counts of A+, A++, A+++, ..., or A++, A+++, ... ,
Default: FALSE

flowGraphSubset 59

path A string indicating the folder path to where the flowGraph object should save its
elements, Default = NULL (don’t save).

summary_pars A list containing parameters for calculating the statistical significance summary
significance that will determine whether to trim out phenotypes for this fast ver-
sion of flowGraph. The lists’ elements are:

* node_feature: "SpecEnr"; this is the feature we will be testing, don’t
change this.

* edge_feature: "NONE"; this unneeded for now.

e test_name: "t_diminish"; this unneeded for now.

* test_custom: "t"; a string or a function indicating the statistical test de-

n o n

sires. These tests can be c("t", "wilcox","ks","var","chisq") corre-
sponding to functions t.test,wilcox. test, ks. test,var.test, chisq. test

* diminish: TRUE; whether or not to continue testing phenotypes whos par-
ent phenotypes are all insignificant.

e class: "class"; the column name in meta that contains class labels you
want to test.

e labels: c("aml", "control") for the flowcap data set; SET THIS!! to the
class labels you want to test using test_custom.

summary_adjust A list of parameters on how to adjust the p-values; this also affects which phe-
notypes are tested. The elements in the list are:

* adjust_custom: "byLayer"; this is a string (corresponding to an option in
p.adjust) or a function used to adjust p-values.

e btwn_test_custom: "t"; see test_custom in summary_pars; this statisti-
cal significance test is used in the filters.

e adjust@_lim: see fg_get_summary.

e filter_adjust@: see fg_get_summary.

e filter_es: see fg_get_summary.

e filter_btwn_tpthres: see fg_get_summary.
e filter_btwn_es: see fg_get_summary.

save_plots A logical indicating whether or not to save plots.

Details

All node and edge features are trimmed such that only the significant phenotypes are left; the origi-
nal input is stored in the slot etc$original_count of the returned flowGraph object.

Value

flowGraph object

Examples

Not run:
if(interactive()){

data(fg_data_pos2)

fg <- flowGraph(fg_data_pos2$count, meta=fg_data_pos2$meta, no_cores=1)
}

End(Not run)

60 flowGraphSubset_summary_pars

flowGraphSubset_summary_adjust
Default for flowGraphSubset’s summary_adjust

Description

Default input for flowGraphSubset’s summary_adjust parameter. ONLY USE THIS OVER flow-
Graph IF: 1) your data set has more than 10,000 cell populations and you want to speed up your
calculation time AND 2) you only have one set of classes you want to test on the SAME SET OF
SAMPLES (e.g. control vs experiment). As flowGraphSubset does not calculate the SpecEnr for
all cell populations, so if you want to test other sets of classes on the same samples, you will not be
able to test all possible cell populations on the new set of classes.

Usage

flowGraphSubset_summary_adjust()

Value

Default list parameter flowGraphSubset’s summary_adjust parameter.

Examples

flowGraphSubset_summary_adjust()

flowGraphSubset_summary_pars
Default for flowGraphSubset’s summary_pars

Description

Default input for flowGraphSubset’s summary_pars parameter.

Usage

flowGraphSubset_summary_pars()

Value

Default list parameter flowGraphSubset’s summary_pars parameter.

Examples

flowGraphSubset_summary_pars()

fpurrr_map 61

fpurrr_map Wrapper for map

Description

Wrapper for purrr: :map and furrr: : future_map to handle parallel-ization

Usage
fpurrr_map(x, f, no_cores = 1, prll = TRUE, ...)
Arguments
X Variable to recurse over; must be indices!
f Function to recurse over.
no_cores Number of cores to use; future must have been ran already.
prll If set to FALSE, forces use of purrr::map instead of furrr::future_map, Default:
TRUE
Other parameters used by f.
Details

Wrapper for purrr: :map and furrr: : future_map to handle parallel-ization easily; note that future
must have been ran already outside of the function and outputs will always be a list.

Value

Unnested named list.

See Also

map future_map

get_child Gets child populations of given cell populations

Description
Gets the child populations of a vector of given cell populations parens and updates pchild the
edge list if edge list doesn’t contain the requested information.

Usage

get_child(parens, pchild, pc_i, ac meta_cell__)

—

62 get_eprop

Arguments
parens Character vector of cell population phenotypes.
pchild Edge list where the name of the list is the cell population and the vector in each
element contains the child cell populations of the named cell population.
pc_i A cell population x marker matrix where the values are 0/1/2/... correspondng
to marker conditions /-/+/... for possible PARENT populations.
ac__ A list where the elements are marker index > "0"/"1"/"2"/... > a logical vector
the same length as the number of cell population phenotypes indicating whether
or not the marker condition exists in them; this is for the possible CHILD cell
populations
meta_cell _ data frame with meta data for cell population phenotypes from the flowGraph
object; this is for the possible CHILD cell populations.
Value

A list containing child populations of parens; also globally updates pchild.

See Also

map,keep

get_eprop Gets edge proportions of a given edge matrix

Description
Gets the edge proportions of the edges in edge matrix edf_ and updates ep edge proportion matrix
if it didn’t contain the requested information.

Usage

get_eprop(edf_, ep, mp_, no_cores = 1)

Arguments
edf_ edge x from&to data frame containing edges and their from and to cell popula-
tion phenotypes.
ep sample x edge (parent_child) matrix with edge proportions.
mp_ sample x phenotype matrix with proportions.
no_cores Number of cores to use, Default: 1
Value

ep with only the specific columns (edges) requested; also updates ep globally.

get_paren 63

get_paren Gets parent populations of given cell populations

Description
Gets the parent populations of a vector of given cell childs and updates pparen the edge list if
edge list doesn’t contain the requested information.

Usage

get_paren(childs, pparen, pc__i, ac_, meta_cell)

Arguments
childs Character vector of cell population phenotypes.
pparen Edge list where the name of the list is the cell population and the vector in each
element contains the parent cell populations of the named cell population.
pc__i A cell population x marker matrix where the values are 0/1/2/... correspondng
to marker conditions /-/+/...; this is for the possible CHILD cell populations.
ac_ A list where the elements are marker index > "0"/"1"/"2"/... > a logical vector
the same length as the number of cell population phenotypes indicating whether
or not the marker condition exists in them; this is for the possible PARENT cell
populations.
meta_cell_ data frame with meta data for cell population phenotypes from the flowGraph
object; this is for the possible PARENT cell populations.
Value

A list containing parent populations of childs; also globally updates pparen.

get_phen_list Creates edge lists.

Description
Creates edge lists indicating relationships between cell populations given meta data on these cell
populations produced by the get_phen_meta function.

Usage
get_phen_list(meta_cell = NULL, phen = NULL, no_cores = 1)

Arguments
meta_cell A data frame containing meta data on cell populations as produced by the get_phen_meta
function.
phen A string vector of phenotype or cell population name labels. Cannot be set to

NULL if meta_cell is set to NULL.

no_cores An integer indicating how many cores to parallelize on.

64 get_phen_meta

Value

A list containing ’pchild’, an edge list indicating where edges point to, *pparen’, an edge list indi-
cating where edges point from, and ’edf’, a data frame where each row contains the nodes an edge
points *from’ and 'to’.

See Also

get_phen_meta cell_type_layers

Examples

phen <- c('A+B-C+', 'A+B-', 'A+')
get_phen_list(phen=phen)

get_phen_meta Genrates phenotype meta data.

Description

Generates phenotype meta data given a vector of phenotypes and optionally phenocodes.

Usage

get_phen_meta(phen, phenocode = NULL)

Arguments

phen A string vector of phenotype or cell population name labels.

phenocode A string vector of phenocodes corresponding to the phenotypes in phen.
Value

A data frame with columns containing meta data on cell poulation nodes with columns:

* phenotype: cell population node label e.g. "A+B+".

* phenocode: a string penocode containing a numeric corresponding to the phenotype column
e.g. "2200".

* phenolayer: a numeric layer on which a cell population resides in e.g. 2.

See Also

get_phen_list cell_type_layers

Examples

phen <- c('A+B+C-D++', 'A+B-', '') 'B++D-E+')
phenc <- c('22130','21000"','00000"', '03012")
get_phen_meta(phen, phenc)

gedf 65

ggdf Prepares a given node and edge graph list for plotting.

Description

Prepares a given node and edge graph list for plotting by function plot_gr; do not use this function
on its own.

Usage
ggdf (gro)

Arguments

gro A list containing data frames e and v.

Details

codeggdf adds to the data frames v and e in slot graph from a flowGraph object specifying plotting
options as required by plot_gr:

v

— size: a numeric indicating node size.

— colour: a numeric or string indicating node colour.

— label: a string indicating the label of a node.

— label_long: a string indicating teh long label of a node; used in interactive plots in
plot_gr.

— label_ind: a vector of logical variables indicating which nodes to add a label to in a
static plot.

— v_ind: a vector of logical variables indicating which nodes to plot.

— colour: a numeric or string indicating edge colour.
— e_ind: a vector of logical variables indicating which edges to plot.

Value

A list containing data frames e and v, each with additional meta data column.

See Also

flowGraph-class get_phen_meta plot_gr

Examples

no_cores <- 1

data(fg_data_pos30)

fg <- flowGraph(fg_data_pos30$count, class=fg_data_pos30$metas$class,
prop=FALSE, specenr=FALSE,
no_cores=no_cores)

gr_ <- ggdf(fg_get_graph(fg))

66 mean_diff

head(gr_s$v)
head(gr_s$e)

loop_ind_f Prepares parallel loop indices.

Description

loop_ind_f is a helper function that splits a vector of loop indices into a list of multiple loop indices
for use in parallel processes within the flowGraph package.

Usage
loop_ind_f(x, n)

Arguments

X A vector of loop indices.

n An integer, or the number of vectors to split x into.
Value

list of n vectors with elements from x.

Examples

old_loop_inds <- 1:10@
no_cores <- 5

new_loop_inds <- flowGraph:::loop_ind_f(old_loop_inds, no_cores)
future::plan(future::multisession)
example_indices <- furrr::future_map(new_loop_inds, function(ii) {

purrr::map(ii, function(i) i)
#s})
mean_diff Normalizes matrix values by class.
Description

Used only in the fg_feat_mean_class function; for each class in the classes vector, meandiff
takes the column mean of the rows in the given matrix associated with that class; it then takes the
difference point by point between these means and the original rows for that class.

Usage

mean_diff(m@, classes)

ms_create 67

Arguments

mo A numeric matrix.

classes A vector whose length is equal to the number of rows in the given matrix.
Value

A numeric matrix whose dimensions equate to that of the input and whose values are normalized
per class.

See Also

fg_feat_mean_class

Examples

classes <- append(rep('apples',4), rep('oranges',3))
m@ <- matrix(rnorm(35), nrow=7)
m <- flowGraph:::mean_diff(m@, classes)

ms_create Calcuate SpecEnr from proportion and expected proportion

Description

FUNCTION_DESCRIPTION

Usage

ms_create(mp_, me_)

Arguments

mp_ Numerical sample x cell population matrix w/ proportions.

me_ Numerical sample x cell population matrix w/ expected proportions.
Value

Numerical sample x cell population matrix w/ SpecEnr.

68 plot_gr

ms_psig Determines which phenotypes are statistically significant

Description

Determines which phenotypes are statistically significant based on SpecEnr.

Usage

ms_psig(
ms_,
summary_pars,
summary_adjust,
test_cust,
test_custom,
lyrno,
mp_,
me_

Arguments

ms_ sample x phenotype SpecEnr matrix
summary_pars See flowGraphSubset.

summary_adjust See flowGraphSubset.

test_cust Final significance test function.
test_custom Raw significance test function.
lyrno An integer indicating total number of layers in the cell hierarchy including layer
0.
mp_ sample x phenotype proportion matrix.
me_ sample x phenotype expected proportion matrix.
Value

A logical vector the same length as the number of columns in ms_ indicating whether or not each
phenotype is significant; used only for the fast version of flowGraph to determine whether or not to
keep testing the phenotypes’ children.

plot_gr Plots a cell hierarchy.

Description

Plots a cell hierarchy given the output from fg_plot, a list of nodes and edges.

plot_gr 69

Usage

plot_gr(
gr,
main = NULL,
show_bgedges = TRUE,
colour_palette = NULL,
label_coloured = TRUE,
shiny_plot = FALSE,
interactive = FALSE,
visNet_plot = TRUE,
colour_edges = FALSE,

)
Arguments
gr A list containing data frames e and v.
main A string containing the plot title. If this is set to NULL, the function will look

for a plot title in the main slot of gr; otherwise, this defaults to "".

show_bgedges A logical variable indicating whether or not edges not specified for plotting
should be plotted as light grey in the background. If this is NULL, the func-
tion will look for a show_bgedges in the show_bgedges slot of gr; otherwise,
this defaults to TRUE.

colour_palette A colour palette e.g. the default palette if the user sets this toNULL is c('blue', 'cyan', 'yellow', 'r

label_coloured A logical indicating whether to colour the node labels using the same colours as
the nodes in the non-interactive plot.

shiny_plot A logical indicating whether this plot is made for shiny; users don’t need to
change this.

interactive A logical variable indicating whether the plot should be an interactive plot; see
package ggiraph.

visNet_plot A logical variable indicating if an interactive plot is chosen, if function should

output a visNetwork plot; if set to FALSE, ggplot’s girafe will be used instead.

colour_edges A logical variable indicating whether to colour edges if plotting a node feature
summary.

Other parameters for ggplot if interactive is set to FALSE; other parameters
for plot_ly if interactive is set to TRUE.

Value

A ggplot object if interactive is set to FALSE; a ggiraph object if interactive is set to TRUE.

See Also

flowGraph-class fg_plot get_phen_meta ggdf fg_get_feature fg_get_summary

Examples

no_cores <- 1
data(fg_data_pos2)
fg <- flowGraph(fg_data_pos2$count, class=fg_data_pos2$metas$class,

70 set_layout_graph

no_cores:no_cores)

fg <- fg_summary(fg, no_cores=no_cores, class="class"”, control="control”,
overwrite=FALSE, test_name="t_bylLayer"”, diminish=FALSE)

gr_summary <- fg_plot(
fg, type="node", p_thres=.05, show_bgedges=TRUE,
path=NULL) # set path to a full path to save plot as a PNG

plot_gr(gr_summary, main=gr_summary$main, show_bgedges=TRUE)

plot_gr(gr_summary, main=gr_summary$main, show_bgedges=TRUE, interactive=TRUE)

set_layout_graph Determines cell hierarchy layout.

Description

Determines cell hierarchy layout and returns the X, Y coordinate of each cell population.

Usage

set_layout_graph(gr, layout_fun = "layout.reingold.tilford")

Arguments
gr A list containing data frames e and v.
layout_fun A string of a function from the igraph package that indicates what layout should
be used if a cell hierarchy is to be ploted; all such functions have prefix layout_
e.g. layout_fun="layout.reingold.tilford".
Value

A list containing data frames e and v; each data frame contains an X, Y column or coordinate for
each node and edge.

Examples

no_cores <- 1

data(fg_data_pos30)

fg <- flowGraph(fg_data_pos3@$count, class=fg_data_pos3@$meta$class,
prop=FALSE, specenr=FALSE,
no_cores=no_cores)

head(set_layout_graph(fg_get_graph(fg)))

summary_table

71

summary_table Summarizes a numeric matrix.

Description

Summarizes a numeric matrix.

Usage

summary_table(m, feat_type = "")
Arguments

m A numeric matrix.

feat_type Name of the matrix m.
Value

A data frame containing one row summarizing m; see fg_get_feature_desc.

Examples

summary_table(matrix(rnorm(12),nrow=3), feat_type='random')

test_c Converts input into a significance test function

Description

Converts input into a significance test function

Usage

test_c(test_custom)

Arguments

n o n

test_custom astring c("t"”, "wilcox"”,"ks","var","chisq") or a function.

Value

a statistical significance test function.

See Also

t.test,wilcox. test, ks.test,var.test, chisq.test

72 tstr

time_output Outputs elapsed time.

Description

Given a time, prints the time elapsed from that time until now.

Usage

time_output(start, msg = "")
Arguments

start A time variable of class POSIXct, POSIXt.

msg A string with a message to print out after the elapsed time.
Value

Prints to console, the time from which process started start - ended, and > time elapsed from
start until now.

Examples

start <- Sys.time()
flowGraph:::time_output(start, 'start - now > time elapsed')

tstr Formats time into string.

Description

Formats time into a string HH:MM:SS given time zone.

Usage

tstr(time)

Arguments

time A time variable of class POSIXct, POSIXt.

Value

Time formatted as a string; used in time_output function.

Examples

NOT EXPORTED
flowGraph:::tstr(Sys.time())

Index

+ datasets
fg_data_fca, 9
fg_data_pos2, 10
fg_data_pos30, 11

cell_type_layers, 3, 64
chisq.test, 59, 71

extract_markers, 4

fg_add_feature, 4, 7, 15, 16, 18-21, 45, 54,
57
fg_add_summary, 6, 22, 27-29, 45, 50, 54
fg_clean_phen, 7
fg_clear_features, 8
fg_clear_summary, 9, 34, 52, 57
fg_data_fca, 9
fg_data_pos2, 10
fg_data_pos30, 11
fg_extract_phenotypes, 11, 13, 33, 54, 57
fg_extract_raw, 12
fg_extract_samples, 11, 13, 33, 34, 54, 57
fg_feat_cumsum, 14
fg_feat_edge_prop, 15
fg_feat_edge_specenr, 16
fg_feat_mean_class, 17, 66, 67
fg_feat_node_prop, 5, 15, 16, 18, 19, 57
fg_feat_node_specenr, 5, 15, 16, 18, 19, 57
fg_get_feature, 5, 15, 16, 18, 19, 20, 21, 27,
29,37,39,41,43,45,48, 54, 57, 69
fg_get_feature_desc, 5,11, 13, 15, 16,
18-20, 21, 28, 30, 34,45, 54, 57, 71
fg_get_feature_means, 21, 25, 27, 29
fg_get_graph, 23, 57
fg_get_markers, 23
fg_get_meta, 24, 44, 57
fg_get_summary, 7, 20, 22, 25, 28, 29, 37, 39,
41,43,45,48, 54, 56, 57, 69
fg_get_summary_desc, 6, 7, 21, 22, 25, 27,
27,28, 29, 35, 38,40, 42, 45, 54, 57
fg_get_summary_index, 28
fg_get_summary_tables, 29
fg_gsub_ids, 30, 31, 54, 57
fg_gsub_markers, 30, 31, 54, 57

fg_load, 32
fg_merge, 11, 13, 32, 34, 54, 57
fg_merge_samples, 11, 33,34, 54, 57
fg_plot, 6, 23, 28, 35, 39,41, 43,48, 57, 69
fg_plot_box, 37, 48
fg_plot_pVSdiff, 39, 48
fg_plot_qq, 39,41, 41, 48
fg_replace_meta, 24, 43
fg_rm_feature, 5, 15, 16, 18-21, 44, 45, 54,
57
fg_rm_summary, 7, 22, 27-29, 45, 45, 54, 57
fg_save, 32, 46
fg_save_plots, 47
fg_set_layout, 49, 57
fg_summary, 6, 7, 9, 36, 50, 53, 57
flowGraph, 52
flowGraph-class, 55
flowGraphSubset, 58
flowGraphSubset_summary_adjust, 60
flowGraphSubset_summary_pars, 60
fpurrr_map, 61
future_map, 61

get_child, 61

get_eprop, 62

get_paren, 63
get_phen_list, 3, 63, 64
get_phen_meta, 3, 37, 64, 64, 65, 69
ggdf, 23, 37, 65, 69

keep, 62
ks.test, 59, 71

loop_ind_f, 66

map, 46, 61, 62
Matrix, 14, 54
mean_diff, 66
ms_create, 67
ms_psig, 68

p.adjust, 59
plot_gr, 23,37, 39,41, 43,48, 65, 68

registerDoParallel, 54

74

set_layout_graph, 49, 70

show, flowGraph-method
(flowGraph-class), 55

str_extract, §

str_split, 4,8

summary_table, 71

t.test, 59,71
test_c, 71
time_output, 72
tstr, 72

var.test, 59, 71

wilcox.test, 59, 71

INDEX

	cell_type_layers
	extract_markers
	fg_add_feature
	fg_add_summary
	fg_clean_phen
	fg_clear_features
	fg_clear_summary
	fg_data_fca
	fg_data_pos2
	fg_data_pos30
	fg_extract_phenotypes
	fg_extract_raw
	fg_extract_samples
	fg_feat_cumsum
	fg_feat_edge_prop
	fg_feat_edge_specenr
	fg_feat_mean_class
	fg_feat_node_prop
	fg_feat_node_specenr
	fg_get_feature
	fg_get_feature_desc
	fg_get_feature_means
	fg_get_graph
	fg_get_markers
	fg_get_meta
	fg_get_summary
	fg_get_summary_desc
	fg_get_summary_index
	fg_get_summary_tables
	fg_gsub_ids
	fg_gsub_markers
	fg_load
	fg_merge
	fg_merge_samples
	fg_plot
	fg_plot_box
	fg_plot_pVSdiff
	fg_plot_qq
	fg_replace_meta
	fg_rm_feature
	fg_rm_summary
	fg_save
	fg_save_plots
	fg_set_layout
	fg_summary
	flowGraph
	flowGraph-class
	flowGraphSubset
	flowGraphSubset_summary_adjust
	flowGraphSubset_summary_pars
	fpurrr_map
	get_child
	get_eprop
	get_paren
	get_phen_list
	get_phen_meta
	ggdf
	loop_ind_f
	mean_diff
	ms_create
	ms_psig
	plot_gr
	set_layout_graph
	summary_table
	test_c
	time_output
	tstr
	Index

