Package ‘bluster’

October 12, 2025

Version 1.18.0
Date 2024-09-05
Title Clustering Algorithms for Bioconductor

Description Wraps common clustering algorithms in an easily extended S4 framework.
Backends are implemented for hierarchical, k-means and graph-based clustering.
Several utilities are also provided to compare and evaluate clustering results.

Imports stats, methods, utils, cluster, Matrix, Rcpp, igraph,
S4Vectors, BiocParallel, BiocNeighbors

Suggests knitr, rmarkdown, testthat, BiocStyle, dynamicTreeCut,
scRNAseq, scuttle, scater, scran, pheatmap, viridis, mbkmeans,
kohonen, apcluster, DirichletMultinomial, vegan, fastcluster

biocViews ImmunoOncology, Software, GeneExpression, Transcriptomics,
SingleCell, Clustering

LinkingTo Rcpp, assorthead

Collate AllClasses.R AllGenerics.R AgnesParam.R approxSilhouette.R
bluster-package.R DbscanParam.R DianaParam.R AffinityParam.R
BlusterParam.R bootstrapStability.R ClaraParam.R clusterRMSD.R
clusterSweep.R compareClusterings.R DmmParam.R
FixedNumberParam.R HclustParam.R HierarchicalParam.R
KmeansParam.R linkClusters.R makeSNNGraph.R MbkmeansParam.R
mergeCommunities.R neighborPurity.R nestedClusters.R
NNGraphParam.R pairwiseModularity.R pairwiseRand.R PamParam.R
ReppExports.R SomParam.R TwoStepParam.R utils.R

License GPL-3

NeedsCompilation yes

VignetteBuilder knitr

SystemRequirements C++17

RoxygenNote 7.3.2

Encoding UTF-8

git_url https://git.bioconductor.org/packages/bluster
git_branch RELEASE_3_21

git_last_commit d958b33
git_last_commit_date 2025-04-15
Repository Bioconductor 3.21
Date/Publication 2025-10-12

Author Aaron Lun [aut, cre],
Stephanie Hicks [ctb],
Basil Courbayre [ctb],
Tuomas Borman [ctb],
Leo Lahti [ctb]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

Contents

bluster-package
.defaultScalarArguments
AffinityParam-class oL o
AgnesParam-class L
approxSilhouette
BlusterParam-class
bootstrapStability
ClaraParam-class e
clusterRMSD e
clusterRows e
clusterSweep
compareClusteringso e
DbscanParam-class
DianaParam-class
DmmParam-class
FixedNumberParam-class
HclustParam-class e
HierarchicalParam-class
KmeansParam-class,
HnKCIusters o e
makeSNNGraph
MbkmeansParam-class
mergeCommunitieso
neighborPurity o
nestedClusters e
NNGraphParam-class
pairwiseModularity
pairwiseRand
PamParam-class
SomParam-class
TwoStepParam-class

Index

Contents

bluster-package 3

bluster-package bluster: Clustering Algorithms for Bioconductor

Description

Wraps common clustering algorithms in an easily extended S4 framework. Backends are imple-
mented for hierarchical, k-means and graph-based clustering. Several utilities are also provided to
compare and evaluate clustering results.

Author(s)

Maintainer: Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

Other contributors:

* Stephanie Hicks [contributor]
* Basil Courbayre [contributor]
¢ Tuomas Borman [contributor]

¢ Leo Lahti [contributor]

.defaultScalarArguments
Define the default arguments

Description
Provide a consistent mechanism to handle specification of default arguments to the underlying clus-
tering functions.

Usage

.defaultScalarArguments(x)
.showScalarArguments(object)

.extractScalarArguments(x)

Arguments

X, object A BlusterParam object.

Details

The idea is to simplify the derivation of new BlusterParam objects, by allowing developers to in-
dicate that the underlying function default should be used for particular arguments. This avoids
duplication of the default arguments in the object constructor; instead, default arguments can be
indicated as such by setting them to NULL, in which case they will not be explicitly passed to the
underlying clustering function.

4 AffinityParam-class

Value

For .defaultScalarArguments, a named character vector is returned. Each entry corresponds
to an argument to the clustering function - the name is the argument name, and the value is the
argument type.

For .extractScalarArguments, a named list of non-default scalar arguments is returned. Any
arguments set to their default values are omitted from the list.

For . showScalarArguments, the values of the arguments are printed to screen. Default values are
marked with [default].

Author(s)

Aaron Lun

Examples

.defaultScalarArguments(PamParam(10))
.extractScalarArguments(PamParam(10))
.extractScalarArguments(PamParam(10, variant="faster"))

AffinityParam-class Affinity propogation

Description

Use affinity propagation from the apcluster package to cluster observations. Note that this requires
the installation of the apcluster package.

Usage

AffinityParam(
s = NULL,
p = NA,
q = NA,
maxits = 1000,
convits = 100,
lam = 0.9,
nonoise = FALSE

)

S4 method for signature 'ANY,AffinityParam'
clusterRows(x, BLUSPARAM, full = FALSE)

AffinityParam-class 5

Arguments
s A function that accepts a matrix of observations by dimensions and returns a
similarity matrix. If NULL, defaults to the output of negDistMat with r=2.
P, q Numeric scalars controlling the input preference, i.e., the resolution of the clus-
tering. These are passed to the apcluster function, where values of NA are the
default.

maxits, convits, lam, nonoise
Further arguments to pass to the apcluster function.

X A numeric matrix-like object where rows represent observations and columns
represent variables.

BLUSPARAM A AffinityParam object.

full Logical scalar indicating whether the full affinity propagation statistics should

be returned.

Details

To modify an existing AffinityParam object x, users can simply call x[[i]] or x[[i]] <- value
where i is any argument used in the constructor.

Setting g (and less typically, p) allows us to tune the resolution of the clustering. In particular, when
p=NA, it is computed based on the setting of q:

* If the specified q lies in [0, 1], p is defined as the g-quantile of the finite similarities across all
pairs of observations. When g=NA, it defaults to 0.5.

* If gisnegative, p is defined as the M + abs (M) * g where M is the smallest finite similarity across
all pairs. This yields smaller p values while still responding to the scale of the similarities.

The resulting value is used as the self-preference, i.e., the diagonal of the availability matrix. Larger
values yield more clusters as each data point is more inclined to form its own cluster.
Value

The AffinityParam constructor will return a AffinityParam object with the specified parameters.

The clusterRows method will return a factor of length equal to nrow(x) containing the cluster
assignments. If full=TRUE, a list is returned with clusters (the factor, as above) and objects (a
list containing similarity, the similarity matrix; and apcluster, the direct output of apcluster).

Author(s)

Aaron Lun

See Also

apcluster from the apcluster package, which does all of the heavy lifting.

Examples

AgnesParam-class

clusterRows(iris[,1:4], AffinityParam())
clusterRows(iris[,1:4], AffinityParam(q=0.9))
clusterRows(iris[,1:4], AffinityParam(s=apcluster::expSimMat()))

AgnesParam-class

Agglomerative nesting

Description

Run the agnes function on a distance matrix within clusterRows.

Usage
AgnesParam(
metric =

NULL,
stand = NULL,

method = NULL,
par.method = NULL,

cut.fun =

NULL,
cut.dynamic
cut.params

FALSE,

list()

S4 method for signature 'ANY,AgnesParam'
clusterRows(x, BLUSPARAM, full = FALSE)

Arguments

metric, stand, method, par.method

cut.fun

cut.dynamic

cut.params

X

BLUSPARAM
full

Further arguments to pass to agnes.

Function specifying the method to use to cut the dendrogram. The first argument
of this function should be the output of hclust, and the return value should be an
atomic vector specifying the cluster assignment for each observation. Defaults
to cutree if cut.dynamic=FALSE and cutreeDynamic otherwise.

Logical scalar indicating whether a dynamic tree cut should be performed using
the dynamicTreeCut package.

Further arguments to pass to cut. fun.

A numeric matrix-like object where rows represent observations and columns
represent variables.

A HclustParam object.

Logical scalar indicating whether the hierarchical clustering statistics should be
returned.

approxSilhouette 7

Details

To modify an existing AgnesParam object x, users can simply call x[[i]] or x[[i]] <- value
where i is any argument used in the constructor.

If cut. fun=NULL, cut.dynamic=FALSE and cut.params does not have h or k, clusterRows will
automatically set h to half the tree height when calling cutree.
Value

The AgnesParam constructor will return a AgnesParam object with the specified parameters.

The clusterRows method will return a factor of length equal to nrow(x) containing the cluster
assignments. If full=TRUE, a list is returned with clusters (the factor, as above) and objects
(a list containing agnes, the function output; dist, the dissimilarity matrix; and hclust, a hclust
object created from agnes).

Author(s)

Aaron Lun

See Also

agnes, which actually does all the heavy lifting.

HclustParam, for the more commonly used implementation of hierarchical clustering.

Examples

clusterRows(iris[,1:4], AgnesParam())
clusterRows(iris[,1:4], AgnesParam(method="ward"))

approxSilhouette Approximate silhouette width

Description

Given a clustering, quickly compute an approximate silhouette width for each observation.

Usage

approxSilhouette(x, clusters)

Arguments
X A numeric matrix-like object containing observations in rows and variables in
columns.
clusters Vector of length equal to ncol(x), specifying the cluster assigned to each ob-

servation.

8 approxSilhouette

Details

The silhouette width is a general-purpose method for evaluating the separation between clusters
but requires calculating the average distance between pairs of observations within or between clus-
ters. This function instead approximates the average distance with the root-mean-squared-distance,
which can be computed very efficiently for large datasets. The approximated averages are then used
to compute the silhouette width using the usual definition.

Value
A DataFrame with one row per observation in x and the columns:
* cluster, the assigned cluster for each observation in x.

* other, the closest cluster other than the one to which the current observation is assigned.

* width, a numeric field containing the approximate silhouette width of the current cell.

Row names are defined as the row names of x.

Author(s)

Aaron Lun

See Also

silhouette from the cluster package, for the exact calculation.

neighborPurity, for another method of evaluating cluster separation.

Examples

m <- matrix(rnorm(10000), ncol=10)

clusters <- clusterRows(m, BLUSPARAM=KmeansParam(5))
out <- approxSilhouette(m, clusters)
boxplot(split(out$width, clusters))

Mocking up a stronger example:
centers <- matrix(rnorm(30), nrow=3)
clusters <- sample(1:3, 1000, replace=TRUE)

y <- centers[clusters,]
y <=y + rnorm(length(y), sd=0.1)

out2 <- approxSilhouette(y, clusters)
boxplot(split(out2$width, clusters))

BlusterParam-class 9

BlusterParam-class The BlusterParam class

Description
The BlusterParam class is a virtual base class controlling S4 dispatch in clusterRows and friends.
Concrete subclasses specify the choice of clustering algorithm, while the slots of an instance of
such a subclass represent the parameters for that algorithm.

Available methods
In the following code snippets, x is a BlusterParam object or one of its subclasses.

* x[[i]] will return the value of the parameter i. Refer to the documentation for each concrete
subclass for more details on the available parameters.

e x[[1]1] <- value will set the value of the parameter i to value.
* show(x) will print some information about the class instance.

Author(s)

Aaron Lun

See Also

HclustParam, KmeansParam and NNGraphParam for some examples of concrete subclasses.

bootstrapStability Assess cluster stability by bootstrapping

Description

Generate bootstrap replicates and recluster on them to determine the stability of clusters with respect
to sampling noise.

Usage

bootstrapStability(
X,
FUN = clusterRows,
clusters = NULL,
iterations = 20,
average = c("median”, "mean"),
compare = NULL,
mode = "ratio”,
adjusted = TRUE,
transposed = FALSE

10 bootstrapStability

Arguments

X A numeric matrix-like object containing observations in the rows and variables
in the columns. If transposed=TRUE, observations are assumed to be in the
columns instead.

FUN A function that takes x as its first argument and returns a vector or factor of
cluster identities.

clusters A vector or factor of cluster identities equivalent to that obtained by calling
FUN(x, ...). This is provided as an additional argument in the case that the
clusters have already been computed, in which case we can save a single round
of computation.

iterations A positive integer scalar specifying the number of bootstrap iterations.

average String specifying the method to use to average across bootstrap iterations.
Further arguments to pass to FUN to control the clustering procedure.

compare A function that accepts the original clustering and the bootstrapped clustering,

and returns a numeric vector or matrix containing some measure of similarity
between them - see Details.

mode, adjusted Further arguments to pass to pairwiseRand when compare=NULL.
transposed Logical scalar indicating that resampling should be done on the columns instead.

Details

Bootstrapping is conventionally used to evaluate the precision of an estimator by applying it to an
in silico-generated replicate dataset. We can (ab)use this framework to determine the stability of
the clusters given the original dataset. We sample observations with replacement from x, perform
clustering with FUN and compare the new clusters to clusters.

For comparing clusters, we compute the ratio matrix from pairwiseRand and average its values
across bootstrap iterations. High on-diagonal values indicate that the corresponding cluster remains
coherent in the bootstrap replicates, while high off-diagonal values indicate that the corresponding
pair of clusters are still separated in the replicates. If a single value is necessary, we can instead
average the adjusted Rand indices across iterations with mode="index".

We use the ratio matrix by default as it is more interpretable than a single value like the ARI or
the Jaccard index (see the fpc package). It focuses on the relevant differences between clusters,
allowing us to determine which aspects of a clustering are stable. For example, A and B may be
well separated but A and C may not be, which is difficult to represent in a single stability measure
for A. If our main interest lies in the A/B separation, we do not want to be overly pessimistic about
the stability of A, even though it might not be well-separated from all other clusters.

Value

If compare=NULL and mode="ratio", a numeric matrix is returned with upper triangular entries set
to the ratio of the adjusted observation pair counts (see ?pairwiseRand) for each pair of clusters in
clusters. Each ratio is averaged across bootstrap iterations as specified by average.

If compare=NULL and mode="1index", a numeric scalar containing the average ARI between clusters
and the bootstrap replicates across iterations is returned.

If compare is provided, a numeric array of the same type as the output of compare is returned,
containing the average statistic(s) across bootstrap replicates.

bootstrapStability 11

Using another comparison function

We can use a different method for comparing clusterings by setting compare. This is expected to
be a function that takes two arguments - the original clustering first, and the bootstrapped clustering
second - and returns some kind of numeric scalar, vector or matrix containing statistics for the
similarity or difference between the original and bootstrapped clustering. These statistics are then
averaged across all bootstrap iterations.

Any numeric output of compare is acceptable as long as the dimensions are only dependent on the
levels of the original clustering - including levels that have no observations, due to resampling! -
and thus do not change across bootstrap iterations.

Statistical note on bootstrap comparisons

Technically speaking, some mental gymnastics are required to compare the original and bootstrap
clusters in this manner. After bootstrapping, the sampled observations represent distinct entities
from the original dataset (otherwise it would be difficult to treat them as independent replicates)
for which the original clusters do not immediately apply. Instead, we assume that we perform label
transfer using a nearest-neighbors approach - which, in this case, is the same as using the original
label for each observation, as the nearest neighbor of each resampled observation to the original
dataset is itself.

Needless to say, bootstrapping will only generate replicates that differ by sampling noise. Real
replicates will differ due to composition differences, variability in expression across individuals,
etc. Thus, any stability inferences from bootstrapping are likely to be overly optimistic.

Author(s)

Aaron Lun

See Also

clusterRows, for the default clustering function.

pairwiseRand, for the calculation of the ARL

Examples

m <- matrix(runif(10000), ncol=10)

BLUSPARAM just gets passed to the default FUN=clusterRows:
bootstrapStability(m, BLUSPARAM=KmeansParam(4), iterations=10)

Defining your own clustering function:
kFUN <- function(x) kmeans(x, 2)$cluster
bootstrapStability(m, FUN=kFUN)

Using an alternative comparison, in this case the Rand index:
bootstrapStability(m, FUN=kFUN, compare=pairwiseRand)

12 ClaraParam-class

ClaraParam-class Clustering Large Applications

Description

Run the CLARA algorithm, an extension of the PAM method for large datasets.

Usage

ClaraParam(
centers,
metric = NULL,
stand = NULL,
samples = NULL,
sampsize = NULL

)

S4 method for signature 'ANY,ClaraParam'
clusterRows(x, BLUSPARAM, full = FALSE)

Arguments

centers An integer scalar specifying the number of centers. Alternatively, a function that
takes the number of observations and returns the number of centers.

metric, stand, samples, sampsize
Further arguments to pass to clara. Set to the function defaults if not supplied.

X A numeric matrix-like object where rows represent observations and columns
represent variables.

BLUSPARAM A ClaraParam object.
full Logical scalar indicating whether the full PAM statistics should be returned.
Details

This class usually requires the user to specify the number of clusters beforehand. However, we can
also allow the number of clusters to vary as a function of the number of observations. The latter is
occasionally useful, e.g., to allow the clustering to automatically become more granular for large
datasets.

To modify an existing ClaraParam object x, users can simply call x[[i]] or x[[i]] <- value where
i is any argument used in the constructor.

Note that clusterRows will always use rngR=TRUE, for greater consistency with other algorithms
of the FixedNumberParam class; and pamLike=TRUE, for consistency with the PAM implementation
from which it was derived.

clusterRMSD 13

Value

The ClaraParam constructor will return a ClaraParam object with the specified parameters.

The clusterRows method will return a factor of length equal to nrow(x) containing the cluster
assignments. If full=TRUE, a list is returned with clusters (the factor, as above) and objects (a
list containing clara, the direct output of clara).

Author(s)

Aaron Lun

See Also

clara, which actually does all the heavy lifting.
PamParam, for the original PAM algorithm.

Examples

clusterRows(iris[,1:4], ClaraParam(centers=4))
clusterRows(iris[,1:4], ClaraParam(centers=4, sampsize=50))
clusterRows(iris[,1:4], ClaraParam(centers=sqrt))

clusterRMSD Compute the RMSD per cluster

Description

Compute the root mean-squared deviation (RMSD) for each cluster.

Usage

clusterRMSD(x, clusters, sum = FALSE)

Arguments
X Numeric matrix containing observations in rows and variables in columns.
clusters Vector containing the assigned cluster for each observation.
sum Logical scalar indicating whether to compute the sum of squares.

Details

The RMSD for each cluster is a measure of its dispersion; clusters with large internal heterogeneity
will have high RMSDs and are good candidates for further subclustering.
Value

Numeric vector of RMSD values per cluster. If sum=TRUE, a numeric vector of the sum of squares
per cluster is returned instead.

14 clusterRows

Author(s)

Aaron Lun

Examples

x <= matrix(rnorm(10000), ncol=10)
kout <- kmeans(x, 5)
clusterRMSD(x, kout$cluster)

clusterRows Cluster rows of a matrix

Description

Cluster rows of a matrix-like object with a variety of algorithms.

Usage

clusterRows(x, BLUSPARAM, full = FALSE)

Arguments
X A numeric matrix-like object where rows represent observations and columns
represent variables.
BLUSPARAM A BlusterParam object specifying the algorithm to use.
full Logical scalar indicating whether the full clustering statistics should be returned
for each method.
Details

This generic allows users to write agile code that can use a variety of clustering algorithms. By sim-

ply changing BLUSPARAM, we can tune the clustering procedure in analysis workflows and package
functions.

Value

By default, a factor of length equal to nrow(x) containing cluster assignments for each row of x.

If full=TRUE, a list is returned containing clusters, a factor as described above; and objects, an
arbitrary object containing algorithm-specific statistics or intermediate objects.

Author(s)

Aaron Lun

See Also

HclustParam, KmeansParam and NNGraphParam for some examples of values for BLUSPARAM.

clusterSweep 15

Examples

m <- matrix(runif(10000), ncol=10)

clusterRows(m, KmeansParam(10L))
clusterRows(m, HclustParam())
clusterRows(m, NNGraphParam())

clusterSweep Clustering parameter sweeps

Description

Perform a sweep across combinations of parameters to obtain different clusterings from the same
algorithm.

Usage

clusterSweep(
X’
BLUSPARAM,

full = FALSE,
BPPARAM = SerialParam(),
args = list()

)
Arguments
X A numeric matrix-like object where rows represent observations and columns
represent variables.
BLUSPARAM A BlusterParam object specifying the algorithm to use.
e Named vectors or lists specifying the parameters to sweep over.
full Logical scalar indicating whether the full clustering statistics should be returned
for each method.
BPPARAM A BiocParallelParam specifying how the sweep should be parallelized.
args A named list of additional arguments to use with This is provided in case
there is a name conflict with the existing arguments in this function signature.
Details

This function allows users to conveniently test out a range of clustering parameters in a single
call. The name of each argument in . .. should be a legitimate argument to x[[i]], and will be
used to modify any existing values in BLUSPARAM to obtain a new set of parameters. (For all other
parameters, the existing values in BLUSPARAM are used.) If multiple arguments are provided, all
combinations are tested.

16 clusterSweep

We attempt to create a unique name for each column based on its parameter combination. This
has the format of <NAME1>.<VALUE1>_<NAME2>.<VALUE2>_. .. based on the parameter names and
values. Note that any non-atomic values are simply represented by the name of their class; no
attempt is made to convert these into a compact string.

If an entry of . .. is a named list of vectors, we expand those to generate all possible combinations
of values. For example, if we passed:

blah.args = list(a = 1:5, b = LETTERS[1:3])
This would be equivalent to manually specifying:
blah.args = list(list(a =1, b = "A"), list(a =1, b = "B"), ...)

The auto-expansion mechanism allows us to conveniently test parameter combinations when those
parameters are stored inside x as a list. The algorithm is recursive so any internal named lists
containing vectors are similarly expanded. Expansion can be disabled by wrapping vectors in I, in
which case they are passed verbatim. No expansion is performed for non-vector arguments.

Value
A List containing:
* clusters, a DataFrame with number of rows equal to that of x, where each column corre-
sponds to (and is named after) a specific combination of clustering parameters.

* parameters, another DataFrame with number of rows equal to the number of columns in the
previous clusters DataFrame. Each row contains the specific parameter combination for
each column of clusters.

» If full=TRUE, objects is an additional list of length equal to the number of rows in clusters.
This contains the objects produced by each run.

Author(s)

Aaron Lun

See Also

clusterRows, which manages the dispatch to specific methods based on BLUSPARAM.

BlusterParam, which determines which algorithm is actually used.

Examples

out <- clusterSweep(iris[,1:4], KmeansParam(10),
centers=4:10, algorithm=c("Lloyd"”, "Hartigan-Wong"))

out$clusters[,1:5]

out$parameters

out <- clusterSweep(iris[,1:4], NNGraphParam(), k=c(5L, 10L, 15L, 20L),
cluster.fun=c("louvain”, "walktrap"))
out$clusters[,1:5]

compareClusterings 17

out$parameters

Combinations are automatically expanded inside named lists:

out <- clusterSweep(iris[,1:4], NNGraphParam(), k=c(5L, 10L, 15L, 20L),
cluster.args=list(steps=3:4))

out$clusters[,1:5]

out$parameters

compareClusterings Compare pairs of clusterings

Description
Compute the adjusted Rand index between all pairs of clusterings, where larger values indicate a
greater similarity between clusterings.

Usage

compareClusterings(clusters, adjusted = TRUE)

Arguments
clusters A list of factors or vectors where each entry corresponds to a clustering. All
vectors should be of the same length. The list itself should usually be named
with a suitable label for each clustering.
adjusted Logical scalar indicating whether the adjusted Rand index should be returned.
Details

The aim of this function is to allow us to easily determine the relationships between clusterings.
For example, we might use this to determine which parameter settings have the greatest effect in a
sweep by clusterSweep. Alternatively, we could use this to obtain an “ordering” of clusterings for
visualization, e.g., with clustree.

This function does not provide any insight into the relationships between individual clusters. A large
Rand index only means that two clusterings are similar but does not specify the corresponding set
of clusters across clusterings. For that task, we suggest using the 1inkClusters function instead.

Value

A symmetric square matrix of pairwise (adjusted) Rand indices between all pairs of clusters.

Aaron Lun

See Also

linkClusters, which identifies relationships between individual clusters across clusterings.

pairwiseRand, for calculation of the pairwise Rand index.

18 DbscanParam-class

Examples

clusters <- list(
nngraph = clusterRows(iris[,1:4], NNGraphParam()),
hclust = clusterRows(iris[,1:4], HclustParam(cut.dynamic=TRUE)),
kmeans = clusterRows(iris[,1:4], KmeansParam(20))

)

aris <- compareClusterings(clusters)

Visualizing the relationships between clusterings.

Here, k-means is forced to be least similar to the others.

ari.as.graph <- igraph::graph.adjacency(aris, mode="undirected”, weighted=TRUE)
plot(ari.as.graph)

Obtain an ordering of clusterings, using the eigenvector
as a 1-dimensional summary of the matrix:

evl <- eigen(aris)$vectors[,1]

o <- order(evl)

rownames (aris)[o]

DbscanParam-class Density-based clustering with DBSCAN

Description

Perform density-based clustering with a fast re-implementation of the DBSCAN algorithm.

Usage

DbscanParam(
eps = NULL,
min.pts = 5,
core.prop = 0.5,
chunk.size = 1000,
BNPARAM = KmknnParam(),
num.threads = 1,
BPPARAM = NULL

S4 method for signature 'ANY,DbscanParam'
clusterRows(x, BLUSPARAM, full = FALSE)
Arguments

eps Numeric scalar specifying the distance to use to define neighborhoods. If NULL,
this is determined from min.pts and core.prop.

DbscanParam-class 19

min.pts Integer scalar specifying the minimum number of neighboring observations re-
quired for an observation to be a core point.

core.prop Numeric scalar specifying the proportion of observations to treat as core points.
This is only used when eps=NULL, see Details.

chunk.size Integer scalar specifying the number of points to process per chunk.

BNPARAM A BiocNeighborParam object specifying the algorithm to use for the neigh-
bor searches. This should be able to support both nearest-neighbor and range
queries.

num. threads Integer scalar specifying the number of threads to use.

BPPARAM Deprecated and ignored, use num. threads instead.

X A numeric matrix-like object where rows represent observations and columns

represent variables.

BLUSPARAM A BlusterParam object specifying the algorithm to use.
full Logical scalar indicating whether additional statistics should be returned.
Details

DBSCAN operates by identifying core points, i.e., observations with at least min.pts neighbors
within a distance of eps. It identifies which core points are neighbors of each other, one chunk.size
at a time, forming components of connected core points. All non-core points are then connected
to the closest core point within eps. All groups of points that are connected in this manner are
considered to be part of the same cluster. Any unconnected non-core points are treated as noise and
reported as NA.

As a suitable value of eps may not be known beforehand, we can automatically determine it from
the data. For all observations, we compute the distance to the kth neighbor where £ is defined
as round(min.pts * core.prop). We then define eps as the core.prop quantile of the distances
across all observations. The default of core.prop=0.5 means that around half of the observations
will be treated as core points.

Larger values of eps will generally result in fewer observations classified as noise, as they are more
likely to connect to a core point. It may also promote agglomeration of existing clusters into larger
entities if they are connected by regions of (relatively) low density. Conversely, larger values of
min.pts will generally increase the number of noise points and may fragment larger clusters into
subclusters.

To modify an existing DbscanParam object x, users can simply call x[[i]] or x[[i]] <- value
where i is any argument used in the constructor.

Value

The DbscanParam constructor will return a DbscanParam object with the specified parameters.

The clusterRows method will return a factor of length equal to nrow(x) containing the cluster
assignments. Note that this may contain NA values corresponding to noise points. If full=TRUE,
a list is returned with clusters (the factor, as above) and objects (a list containing the eps and
min.pts used in the analysis).

20 DianaParam-class

Author(s)

Aaron Lun

References

Ester M et al. (1996). A density-based algorithm for discovering clusters in large spatial databases
with noise. Proceedings of the Second International Conference on Knowledge Discovery and Data
Mining, 226-231.

Examples

clusterRows(iris[,1:4], DbscanParam())
clusterRows(iris[,1:4], DbscanParam(core.prop=0.8))

DianaParam-class Divisive analysis clustering

Description

Use the diana function to perform divisive analysis clustering.

Usage

DianaParam(
metric = NULL,
dist.fun = NULL,
stand = NULL,
cut.fun = NULL,
cut.dynamic = FALSE,
cut.params = list()

)

S4 method for signature 'ANY,DianaParam'
clusterRows(x, BLUSPARAM, full = FALSE)

Arguments
metric String specifying the distance metric to use in diana. If NULL, the default metric
isused. If dist. fun is supplied, metric is passed to that function instead.
dist.fun Function specifying the function to use to compute the distance matrix. The

function should accept a data matrix and a method= string (used to acceptmetric)
and return a dissimilarity matrix of type dist. If NULL, the stats: :dist function
is used by default.

stand Further arguments to pass to diana.

DianaParam-class

cut.fun

cut.dynamic

cut.params

X

BLUSPARAM
full

Details

21

Function specifying the method to use to cut the dendrogram. The first argument
of this function should be the output of hclust, and the return value should be an
atomic vector specifying the cluster assignment for each observation. Defaults
to cutree if cut.dynamic=FALSE and cutreeDynamic otherwise.

Logical scalar indicating whether a dynamic tree cut should be performed using
the dynamicTreeCut package.

Further arguments to pass to cut. fun.

A numeric matrix-like object where rows represent observations and columns
represent variables.

A HclustParam object.

Logical scalar indicating whether the hierarchical clustering statistics should be
returned.

To modify an existing DianaParam object x, users can simply call x[[i]] or x[[i]] <- value
where i is any argument used in the constructor.

If cut. fun=NULL, cut.dynamic=FALSE and cut.params does not have h or k, clusterRows will
automatically set h to half the tree height when calling cutree.

Value

The DianaParam constructor will return a DianaParam object with the specified parameters.

The clusterRows method will return a factor of length equal to nrow(x) containing the cluster
assignments. If full=TRUE, a list is returned with clusters (the factor, as above) and objects
(a list containing diana, the function output; dist, the dissimilarity matrix; and hclust, a hclust
object created from diana).

Author(s)

Aaron Lun

See Also

diana, which actually does all the heavy lifting.

HclustParam, for the more commonly used implementation of hierarchical clustering.

Examples

clusterRows(iris[,1:4], DianaParam())
clusterRows(iris[,1:4], DianaParam(metric="manhattan"))

22

DmmParam-class

DmmParam-class

Dirichlet multinomial mixture clustering

Description

Apply the Dirichlet multinomial mixture (DMM) algorithm from the DirichletMultinomial pack-
age. This is commonly used in microbial ecology and in analyses of metagenomic and 16S rRNA

count data.

Usage

DmmParam(k = 1:3, type = "laplace"”, seed = NULL, BPPARAM = SerialParam())

S4 method for signature 'ANY,DmmParam'
clusterRows(x, BLUSPARAM, full = FALSE)

Arguments

k

type

seed

BPPARAM

BLUSPARAM
full

Details

An integer vector indicating the number of clusters to create with the DMM
algorithm. A vector containing two or more values will instruct clusterRows
to perform clustering on each number, and choose the optimal number of clusters
based on type.

A string specifying the method to use to find the optimal number of clusters.
Must be equal to "laplace”, "AIC" or "BIC”. Only used when k contains
multiple values.

Integer scalar specifying the seed to use. If NULL, a random value is used on
each invocation of clusterRows.

A BiocParallelParam object indicating how multiple clusterings should be par-
allelized. Only relevant if k contains multiple values.

A numeric matrix-like object where rows represent observations and columns
represent variables. Values are expected to be counts.

A BlusterParam object specifying the algorithm to use.

Logical scalar indicating whether the full clustering statistics should be returned
for each method.

To modify an existing DmmParam object x, users can simply call x[[i]] or x[[i]] <- value
where i is any argument used in the constructor.

Value

The DmmParam constructor will return a DmmParam object with the specified parameters.

The clusterRows method will return a factor of length equal to nrow(x) containing the cluster
assignments. If ful1=TRUE, a list is returned with clusters (the factor, as above) and objects; the
latter is a list containing:

FixedNumberParam-class 23

* dmm, a list containing the output of dmn for each value of k.
* best, an integer scalar specifying the best choice of k according to the method of type.

* prob, a matrix array of probabilities where each row is an observation and each column is a
cluster. The number of columns is set to the best number of clusters in best.

* seed, an integer scalar specifying the seed used for clustering.

Author(s)

Basil Courbayre

References

Holmes I, Harris K and Quince C (2012). Dirichlet multinomial mixtures: generative models for
microbial metagenomics. PLoS ONE, 7(2), 1-15

Examples

Mocking up a small example.

nfeatures <- 50

outl <- matrix(rpois(20 * nfeatures, lambda = rgamma(nfeatures, 5)), ncol=nfeatures, byrow=TRUE)
out2 <- matrix(rpois(20 * nfeatures, lambda = rgamma(nfeatures, 5)), ncol=nfeatures, byrow=TRUE)
out <- rbind(outl, out2)

clusterRows(out, DmmParam())

FixedNumberParam-class
The FixedNumberParam class

Description

The FixedNumberParam is a virtual subclass of the BlusterParam class. It causes clusterRows to
dispatch to clustering algorithms that rely on a pre-specified number of clusters, e.g., KmeansParam.

Available methods

centers(x, n=NULL) will return the specified number of centers in a FixedNumberParam x. This
can be an positive integer, or a function that accepts the number of observations and returns a
positive number. If a function and n is supplied, the function is called on n and the result is rounded
to obtain an integer.

centers(x) <- value will replace the specified number of centers in x with an integer scalar or
function value. The function should accept a single argument and return a positive integer.

Author(s)

Aaron Lun

24

See Also

HclustParam-class

KmeansParam, for the archetypal example of a concrete subclass.

HclustParam-class

Hierarchical clustering

Description

Run the base hclust function on a distance matrix within clusterRows.

Usage
HclustParam(

clust.fun = NULL,
metric = NULL,
dist.fun = NULL,
method = NULL,
cut.fun = NULL,
cut.dynamic = FALSE,
cut.height = NULL,
cut.number = NULL,
cut.params = list(),

)

S4 method for signature 'ANY,HclustParam'

clusterRows(x,

Arguments

clust. fun

metric

dist.fun

method

cut.fun

BLUSPARAM, full = FALSE)

Function specifying the function to use to do the clustering. The function should
apply a hierarchical clustering algorithm and take a data matrix as input. If NULL,
the stats: :hclust function is used by default.

String specifying the distance metric to use in dist.fun. If NULL, the default
method of dist. fun is used.

Function specifying the function to use to compute the distance matrix. The
function should accept a data matrix and a method= string (used to acceptmetric)
and return a dissimilarity matrix of type dist. If NULL, the stats: :dist function
is used by default.

String specifying the agglomeration method to use in hclust.

Function specifying the method to use to cut the dendrogram. The first argument
of this function should be the output of hclust, and the return value should be an
atomic vector specifying the cluster assignment for each observation. Defaults
to cutree if cut.dynamic=FALSE and cutreeDynamic otherwise.

HclustParam-class 25

cut.dynamic Logical scalar indicating whether a dynamic tree cut should be performed using
the dynamicTreeCut package.

cut.height, cut.number
Deprecated, use h and k in cut. params instead.

cut.params Further arguments to pass to cut. fun.
Deprecated, more arguments to add to cut.params.

X A numeric matrix-like object where rows represent observations and columns
represent variables.

BLUSPARAM A HclustParam object.
full Logical scalar indicating whether the hierarchical clustering statistics should be
returned.
Details

To modify an existing HclustParam object x, users can simply call x[[i]] or x[[i]] <- value
where i is any argument used in the constructor.

If cut. fun=NULL, cut.dynamic=FALSE and cut.params does not have h or k, clusterRows will
automatically set h to half the tree height when calling cutree.

Value

The HclustParam constructor will return a HclustParam object with the specified parameters.

The clusterRows method will return a factor of length equal to nrow(x) containing the cluster
assignments. If full=TRUE, a list is returned with clusters (the factor, as above) and objects (a
list containing dist, the distance matrix; and hclust, the output of hclust).

Author(s)

Aaron Lun

See Also

dist, hclust and cutree, which actually do all the heavy lifting.

cutreeDynamic, for an alternative tree cutting method to use in cut. fun.

Examples

clusterRows(iris[,1:4], HclustParam())

clusterRows(iris[,1:4], HclustParam(method="ward.D2"))

clusterRows(iris[,1:4], HclustParam(metric = "canberra”, dist.fun = vegan::vegdist))
clusterRows(iris[,1:4], HclustParam(clust.fun=fastcluster::hclust))

26 KmeansParam-class

HierarchicalParam-class
The HierarchicalParam class

Description

The HierarchicalParam is a virtual subclass of the BlusterParam class. It causes clusterRows to
dispatch to clustering algorithms that produce a dissimilarity matrix and a dendrogram.

Available slots

The virtual class provides metric, the choice of distance metric. This is conventionally passed to
dist and defaults to a Euclidean distance in most subclasses. The distance function can be changed
with the parameter dist. fun.

It also provides a number of slots to manage the final tree cut:
e cut.fun, a function that takes a hclust object as its first argument and returns a vector of
cluster assignments. If NULL, the choice of function is determined from cut.dynamic.

* cut.dynamic, a logical scalar indicating whether a dynamic tree cut should be performed by
cutreeDynamic. Otherwise cutree is used. Ignored if cut. fun is not NULL.

* cut.params, further arguments to pass to the tree cut function specified by the previous argu-
ments.
Return value

The contract is that, when full=TRUE, the objects field of the clusterRows return value will
always contain at least the following elements:

* dist, a dist object containing a dissimilarity matrix, usually a distance matrix.

* hclust, a hclust object containing a dendrogram.

See Also

HclustParam, for the archetypal example of a concrete subclass.

KmeansParam-class K-means clustering

Description

Run the base kmeans function with the specified number of centers within clusterRows.

KmeansParam-class 27

Usage

KmeansParam(centers, iter.max = NULL, nstart = NULL, algorithm = NULL)

S4 method for signature 'ANY,KmeansParam'
clusterRows(x, BLUSPARAM, full = FALSE)

Arguments

centers An integer scalar specifying the number of centers. Alternatively, a function that
takes the number of observations and returns the number of centers.

iter.max, nstart, algorithm
Further arguments to pass to kmeans. Set to the kmeans defaults if not supplied.

X A numeric matrix-like object where rows represent observations and columns
represent variables.
BLUSPARAM A KmeansParam object.
full Logical scalar indicating whether the full k-means statistics should be returned.
Details

This class usually requires the user to specify the number of clusters beforehand. However, we can
also allow the number of clusters to vary as a function of the number of observations. The latter is
occasionally useful, e.g., to allow the clustering to automatically become more granular for large
datasets.

To modify an existing KmeansParam object x, users can simply call x[[i]] or x[[i]] <- value
where i is any argument used in the constructor.
Value

The KmeansParam constructor will return a KmeansParam object with the specified parameters.
The clusterRows method will return a factor of length equal to nrow(x) containing the cluster
assignments. If full=TRUE, a list is returned with clusters (the factor, as above) and objects (a
list containing kmeans, the direct output of kmeans).

Author(s)

Aaron Lun

See Also

kmeans, which actually does all the heavy lifting.

MbkmeansParam, for a faster but more approximate version of the k-means algorithm.

Examples

clusterRows(iris[,1:4], KmeansParam(centers=4))
clusterRows(iris[,1:4], KmeansParam(centers=4, algorithm="Lloyd"))
clusterRows(iris[,1:4], KmeansParam(centers=sqrt))

28 linkClusters

linkClusters Create a graph between different clusterings

Description

Create a graph that links together clusters from different clusterings, e.g., generated using different
parameter settings or algorithms. This is useful for identifying corresponding clusters between
clusterings and to create meta-clusters from multiple clusterings.

Usage
linkClusters(clusters, prefix = TRUE, denominator = c("union”, "min”, "max"))
linkClustersMatrix(x, y, denominator = c("union"”, "min”, "max"))
Arguments
clusters A list of factors or vectors where each entry corresponds to a clustering. All
vectors should be of the same length. The list itself should usually be named
with a suitable label for each clustering.
prefix Logical scalar indicating whether the cluster levels should be prefixed with its
clustering. If clusters is not named, numeric prefixes are used instead.
denominator String specifying how the strength of the correspondence between clusters should
be computed.
X,y Factor or vector specifying a clustering of the same cells.
Details

Links are only formed between clusters from different clusterings, e.g., between clusters X in
clustering 1 and Y in clustering 2. The edge weight of each link is set to the strength of the corre-
spondence between the two clusters; this is defined from the number of cells with those two labels
in their respective clusterings. A larger number of cells indicates that X and Y are corresponding
clusters.

Of course, the number of cells also depends on the total number of cells in each cluster. To account
for this, we normalize the strength by a function of the total number of cells in the two clusters. The
choice of function is determined by denominator and determines how the strength is adjusted for
dissimilar cluster sizes.

» For "min", the number of shared cells is divided by the smaller of the totals between the two
clusters.
* For "max”, the number of shared cells is divided by the larger of the totals.

» For "union”, the number of shared cells is divided by the size of the union of cells in the two
clusters. The result is equivalent to the Jaccard index.

linkClusters 29

In situations where X splits into multiple smaller clusters Y1, Y2, etc. in another clustering,
denominator="min" will report strong links between X and its constituent subclusters while "max"
and "union” will report weak links. Conversely, denominator="max" and "union” can only form
strong links when there is a 1:1 mapping between clusters in different clusterings. This usually
yields simpler correspondences between clusterings at the cost of orphaning some of the smaller
subclusters. denominator="union"” is most stringent as it will penalize the presence of non-shared
cells in both clusters, whereas "max” only does so for the larger cluster.

The general idea is to use the graph returned by this function in visualization routines or for
community-based clustering, to identify “clusters of clusters” that can inform about the relation-
ships between clusterings.

Value

For linkClusters, a graph object where each node is a cluster level in one of the clusterings
in clusters. Edges are weighted by the strength of the correspondence between two clusters in
different clusterings.

For 1inkClustersMatrix, a matrix is returned where each row and column corresponds to a cluster
in x and y, respectively. Entries represent the strength of the correspondence between the associ-
ated clusters; this is equivalent to a submatrix of the adjacency matrix from the graph returned by
linkClusters.

Author(s)

Aaron Lun

See Also

The clustree package, which provides another method for visualizing relationships between clus-
terings.

compareClusterings, which computes similarities between the clusterings themselves.

Examples

clusters <- list(
nngraph = clusterRows(iris[,1:4], NNGraphParam()),
hclust = clusterRows(iris[,1:4], HclustParam(cut.dynamic=TRUE)),
kmeans = clusterRows(iris[,1:4], KmeansParam(5))

)

g <- linkClusters(clusters)
plot(g)

igraph::cluster_walktrap(g)

Results as a matrix, for two clusterings:
linkClustersMatrix(clusters[[1]], clusters[[2]], denominator="union")

30 makeSNNGraph

makeSNNGraph Build a nearest-neighbor graph

Description

Build a shared or k-nearest-neighbors graph of observations for downstream community detection.

Usage

makeSNNGraph (
X,
k =10,
type = c("rank”, "number”, "jaccard"),
BNPARAM = KmknnParam(),
num.threads = 1,
BPPARAM = SerialParam()

)
makeKNNGraph (
X7
k =10,

directed = FALSE,

BNPARAM = KmknnParam(),

num. threads = 1,

BPPARAM = SerialParam()
)

neighborsToSNNGraph(
indices,
type = c("rank”, "number"”, "jaccard"),
num. threads = 1

)

neighborsToKNNGraph(indices, directed = FALSE)

Arguments

X A matrix-like object containing expression values for each observation (row)
and dimension (column).

k An integer scalar specifying the number of nearest neighbors to consider during
graph construction.

type A string specifying the type of weighting scheme to use for shared neighbors.

BNPARAM A BiocNeighborParam object specifying the nearest neighbor algorithm.

num. threads Integer scalar specifying the number of threads to use.

BPPARAM Deprecated, use num. threads instead.

makeSNNGraph 31

directed A logical scalar indicating whether the output of buildKNNGraph should be a
directed graph.
indices An integer matrix where each row corresponds to an observation and contains

the indices of the k nearest neighbors (by increasing distance and excluding self)
from that observation.

Details

The makeSNNGraph function builds a shared nearest-neighbour graph using observations as nodes.
For each observation, its k nearest neighbours are identified using the findKNN function, based on
distances between their expression profiles (Euclidean by default). An edge is drawn between all
pairs of observations that share at least one neighbour, weighted by the characteristics of the shared
nearest neighbors - see “Weighting Schemes” below.

The aim is to use the SNN graph to perform clustering of observations via community detection
algorithms in the igraph package. This is faster and more memory efficient than hierarchical clus-
tering for large numbers of observations. In particular, it avoids the need to construct a distance
matrix for all pairs of observations. Only the identities of nearest neighbours are required, which
can be obtained quickly with methods in the BiocNeighbors package.

The choice of k controls the connectivity of the graph and the resolution of community detection
algorithms. Smaller values of k will generally yield smaller, finer clusters, while increasing k will
increase the connectivity of the graph and make it more difficult to resolve different communities.
The value of k can be roughly interpreted as the anticipated size of the smallest subpopulation. If
a subpopulation in the data has fewer than k+1 observations, bui1dSNNGraph and buildKNNGraph
will forcibly construct edges between observations in that subpopulation and observations in other
subpopulations. This increases the risk that the subpopulation will not form its own cluster as it is
more interconnected with the rest of the observations in the dataset.

The makeKNNGraph method builds a simpler k-nearest neighbour graph. Observations are again
nodes, and edges are drawn between each observation and its k-nearest neighbours. No weighting
of the edges is performed. In theory, these graphs are directed as nearest neighour relationships may
not be reciprocal. However, by default, directed=FALSE such that an undirected graph is returned.

The neighborsToSNNGraph and neighborsToKNNGraph functions operate directly on a matrix of
nearest neighbor indices, obtained using functions like findKNN. This may be useful for construct-
ing a graph from precomputed nearest-neighbor search results. Note that the user is responsi-
ble for ensuring that the indices are valid, i.e., range(indices) is positive and no greater than
max(indices).

Value

A graph where nodes are cells and edges represent connections between nearest neighbors. For
buildSNNGraph, these edges are weighted by the number of shared nearest neighbors. For bui 1dKNNGraph,
edges are not weighted but may be directed if directed=TRUE.

Shared neighbor weighting schemes

If type="rank", the weighting scheme defined by Xu and Su (2015) is used. The weight between
two nodes is k — r/2 where r is the smallest sum of ranks for any shared neighboring node. For
example, if one node was the closest neighbor of each of two nodes, the weight between the two
latter nodes would be £ — 1. For the purposes of this ranking, each node has a rank of zero in

32

makeSNNGraph

its own nearest-neighbor set. More shared neighbors, or shared neighbors that are close to both
observations, will generally yield larger weights.

If type="number”, the weight between two nodes is simply the number of shared nearest neighbors
between them. The weight can range from zero to k + 1, as the node itself is included in its own
nearest-neighbor set. This is a simpler scheme that is also slightly faster but does not account for
the ranking of neighbors within each set.

If type="jaccard”, the weight between two nodes is the Jaccard similarity between the two sets
of neighbors for those nodes. This weight can range from zero to 1, and is a monotonic transfor-
mation of the weight used by type="number”. It is provided for consistency with other clustering
algorithms such as those in seurat.

Tehcnically, edges with zero weights are assigned a nominal small positive weight of the order of
1e-6. This is done only to satisfy the requirements for positive weights in many igraph clustering
algorithms. We do not just remove these edges as that might lead to the situation where some
observations have no edges at all and thus form single-observation clusters.

Note that the behavior of k for type="rank" is slightly different from that used in the original SNN-
Cliq implementation by Xu and Su. The original implementation considers each observation to be
its first nearest neighbor that contributes to k. Here, the k nearest neighbours refers to the number
of other observations.

Author(s)

Aaron Lun, with KNN code contributed by Jonathan Griffiths.

References

Xu C and Su Z (2015). Identification of cell types from single-cell transcriptomes using a novel
clustering method. Bioinformatics 31:1974-80

See Also

See make_graph for details on the graph output object.

See cluster_walktrap, cluster_louvain and related functions in igraph for clustering based on
the produced graph.

Also see findKNN for specifics of the nearest-neighbor search.

Examples

m <- matrix(rnorm(10000), ncol=10)

g <- makeSNNGraph(m)
clusters <- igraph::cluster_fast_greedy(g)$membership
table(clusters)

Any clustering method from igraph can be used:
clusters <- igraph::cluster_walktrap(g)$membership

table(clusters)

Smaller 'k' usually yields finer clusters:

MbkmeansParam-class 33

g <- makeSNNGraph(m, k=5)
clusters <- igraph::cluster_walktrap(g)$membership
table(clusters)

MbkmeansParam-class Mini-batch k-means clustering

Description

Run the mini-batch k-means mbkmeans function with the specified number of centers within clusterRows.
This sacrifices some accuracy for speed compared to the standard k-means algorithm. Note that this
requires installation of the mbkmeans package.

Usage

MbkmeansParam(
centers,
batch_size = NULL,
max_iters = 100,
num_init = 1,
init_fraction = NULL,
initializer = "kmeans++",
calc_wcss = FALSE,
early_stop_iter = 10,
tol = 1e-04,
BPPARAM = SerialParam()

S4 method for signature 'ANY,MbkmeansParam'
clusterRows(x, BLUSPARAM, full = FALSE)

Arguments

centers An integer scalar specifying the number of centers. Alternatively, a function that
takes the number of observations and returns the number of centers.
batch_size, max_iters, num_init, init_fraction, initializer, calc_wcss,
early_stop_iter, tol, BPPARAM
Further arguments to pass to mbkmeans.

X A numeric matrix-like object where rows represent observations and columns
represent variables.

BLUSPARAM A MbkmeansParam object.

full Logical scalar indicating whether the full mini-batch k-means statistics should
be returned.

34 mergeCommunities

Details

This class usually requires the user to specify the number of clusters beforehand. However, we can
also allow the number of clusters to vary as a function of the number of observations. The latter is
occasionally useful, e.g., to allow the clustering to automatically become more granular for large
datasets.

To modify an existing MbkmeansParam object x, users can simply call x[[11] or x[[i]] <- value
where i is any argument used in the constructor.

For batch_size and init_fraction, a value of NULL means that the default arguments in the
mbkmeans function signature are used. These defaults are data-dependent and so cannot be specified
during construction of the MbkmeansParam object, but instead are defined within the clusterRows
method.

Value

The MbkmeansParam constructor will return a MbkmeansParam object with the specified parame-
ters.

The clusterRows method will return a factor of length equal to nrow(x) containing the cluster
assignments. If full=TRUE, a list is returned with clusters (the factor, as above) and objects (a
list containing mbkmeans, the direct output of mbkmeans).

Author(s)
Stephanie Hicks

See Also

mbkmeans from the mbkmeans package, which actually does all the heavy lifting.

KmeansParam, for dispatch to the standard k-means algorithm.

Examples

clusterRows(iris[,1:4], MbkmeansParam(centers=3))
clusterRows(iris[,1:4], MbkmeansParam(centers=3, batch_size=10))
clusterRows(iris[,1:4], MbkmeansParam(centers=3, init_fraction=0.5))

mergeCommunities Merge communities from graph-based clustering

Description
Adjust the resolution of a graph-based community detection algorithm by greedily merging clusters
together. At each step, the pair of clusters that yield the highest modularity are merged.

Usage

mergeCommunities(graph, clusters, number = NULL, steps = NULL)

neighborPurity 35

Arguments
graph A graph object from igraph, usually where each node represents an observation.
clusters Factor specifying the cluster identity for each node.
number Integer scalar specifying the number of clusters to obtain. Ignored if steps is
specified.
steps Integer scalar specifying the number of merge steps.
Details

This function is similar to the cut_at function from the igraph package, but works on clusters
that were not generated by a hierarchical algorithm. The aim is to facilitate rapid adjustment of
the number of clusters without having to repeat the clustering - or, even worse, repeating the graph
construction, e.g., in makeSNNGraph.

Value
A vector or factor of the same length as clusters, containing the desired number of merged clus-
ters.

Author(s)

Aaron Lun

See Also

cut_at, for a faster and more natural adjustment when using a hierarchical community detection
algorithm.

NNGraphParam, for a one-liner to generate graph-based clusters.

Examples

output <- clusterRows(iris[,1:4], NNGraphParam(k=5), full=TRUE)
table(output$clusters)

merged <- mergeCommunities(output$objects$graph, output$clusters, number=3)
table(merged)

neighborPurity Compute neighborhood purity

Description

Use a hypersphere-based approach to compute the “purity” of each cluster based on the number of
contaminating observations from different clusters in its neighborhood.

36 neighborPurity
Usage
neighborPurity(
X ’
clusters,
k = 50,
weighted = TRUE,
BNPARAM = KmknnParam(),
num. threads = 1,
BPPARAM = NULL
)
Arguments
X A numeric matrix-like object containing observations in rows and variables in
columns.
clusters Vector of length equal to ncol(x), specifying the cluster assigned to each ob-
servation.
k Integer scalar specifying the number of nearest neighbors to use to determine
the radius of the hyperspheres.
weighted A logical scalar indicating whether to weight each observation in inverse pro-
portion to the size of its cluster. Alternatively, a numeric vector of length equal
to clusters containing the weight to use for each observation.
BNPARAM A BiocNeighborParam object specifying the nearest neighbor algorithm. This
should be an algorithm supported by findNeighbors.
num. threads Integer scalar specifying the number of threads to use for the neighbor search.
BPPARAM Deprecated and ignored, use num. threads instead.
Details

The purity of a cluster is quantified by creating a hypersphere around each observation in the cluster
and computing the proportion of observations in that hypersphere from the same cluster. If all
observations in a cluster have proportions close to 1, this indicates that the cluster is highly pure, i.e.,
there are few observations from other clusters in its region of the coordinate space. The distribution
of purities for each cluster can be used as a measure of separation from other clusters.

In most cases, the majority of observations of a cluster will have high purities, corresponding to
observations close to the cluster center. A fraction of observations will have low values as these
lie at the boundaries of two adjacent clusters. A high degree of over-clustering will manifest as a
majority of observations with purities close to zero. The maximum field in the output can be used
to determine the identity of the cluster with the greatest presence in a observation’s neighborhood,
usually an adjacent cluster for observations lying on the boundary.

The choice of k is used only to determine an appropriate value for the hypersphere radius. We use
hyperspheres as this is robust to changes in density throughout the coordinate space, in contrast to
computing purity based on the proportion of k-nearest neighbors in the same cluster. For example,
the latter will fail most obviously when the size of the cluster is less than k.

neighborPurity 37

Value

A DataFrame with one row per observation in x and the columns:

* purity, a numeric field containing the purity value for the current observation.

e maximum, the cluster with the highest proportion of observations neighboring the current ob-
servation.

Row names are defined as the row names of x.

Weighting by frequency

By default, purity values are computed after weighting each observation by the reciprocal of the
number of observations in the same cluster. Otherwise, clusters with more observations will have
higher purities as any contamination is offset by the bulk of observations, which would compromise
comparisons of purities between clusters. One can interpret the weighted purities as the expected
value after downsampling all clusters to the same size.

Advanced users can achieve greater control by manually supplying a numeric vector of weights
to weighted. For example, we may wish to check the purity of batches after batch correction in
single-cell RNA-seq. In this application, clusters should be set to the batch blocking factor (not
the cluster identities!) and weighted should be set to 1 over the frequency of each combination of
cell type and batch. This accounts for differences in cell type composition between batches when
computing purities.

If weighted=FALSE, no weighting is performed.

Author(s)

Aaron Lun

Examples

m <- matrix(runif(1000), ncol=10)

clusters <- clusterRows(m, BLUSPARAM=NNGraphParam())
out <- neighborPurity(m, clusters)
boxplot(split(out$purity, clusters))

Mocking up a stronger example:

centers <- matrix(rnorm(30), nrow=3)
clusters <- sample(1:3, 1000, replace=TRUE)
y <- centers[clusters, ,drop=FALSE]

y <=y + rnorm(length(y))

out2 <- neighborPurity(y, clusters)
boxplot(split(out2$purity, clusters))

38

nestedClusters

nestedClusters Map nested clusterings

Description

Map an alternative clustering to a reference clustering, where the latter is expected to be nested
within the former.

Usage

nestedClusters(ref, alt)

Arguments
ref A character vector or factor containing one set of groupings, considered to be
the reference.
alt A character vector or factor containing another set of groupings, to be compared
to alt.
Details

This function identifies mappings between two clusterings on the same set of cells where alt is
potentially nested within ref (e.g., as it is computed at higher resolution). To do so, we take each
alt cluster and compute the the proportion of its cells that are derived from each ref cluster. The
corresponding ref cluster is identified as that with the highest proportion, as reported by the which
field in the mapping DataFrame.

The quality of the mapping is determined by max in the output mapping DataFrame. A low value
indicates that alt does not have a clear counterpart in ref, representing loss of heterogeneity. Note
that this is not a symmetrical inference; multiple alt clusters can map to the same ref cluster
without manifesting as a low max. This implicitly assumes that an increase in resolution in alt is
not problematic.

The ref . score value for each cluster ref is formally defined as the probability of randomly picking
a cell that belongs to ref, conditional on the event that the chosen cell belongs to the same alt
cluster as a randomly chosen cell from ref. This probability is equal to unity when ref is an
exact superset of all alt clusters that contain its cells, corresponding to perfect 1:many nesting. In
contrast, if the alt clusters contain a mix of cells from different ref, this probability will be low
and can be used as a diagnostic for imperfect nesting.

Value

A list containing:

* proportions, a matrix where each row corresponds to one of the alt clusters and each col-
umn corresponds to one of the ref clusters. Each matrix entry represents the proportion of
cells in alt that are assigned to each cluster in ref. (That is, the proportions across all ref
clusters should sum to unity for each alt cluster.)

NNGraphParam-class 39

e alt.mapping, a DataFrame with one row per cluster in alt. This contains the columns max, a
numeric vector specifying the maximum value of statistic for that alt cluster; and which,
a character vector specifying the ref cluster in which the maximum value occurs.

* ref.score, a numeric vector of length equal to the number of ref clusters. This represents
the degree of nesting of alt clusters within each ref cluster, see Details.

See Also

linkClusters, to do this in a symmetric manner (i.e., without nesting).

pairwiseRand, for another way of comparing two sets of clusterings.

Examples

m <- matrix(runif(10000), ncol=10)
clustl <- kmeans(m,10)$cluster
clust2 <- kmeans(m,20)$cluster
nestedClusters(clustl, clust2)

The ref.score is 1 in cases of perfect nesting.
nestedClusters(clustl, clustl)$ref.score

nest.clust <- paste@(clustl, sample(letters, length(clust1), replace=TRUE))
nestedClusters(clustl1, nest.clust)$ref.score

In contrast, it is much lower when nesting is bad.
nestedClusters(clustl, sample(clustl))$ref.score

NNGraphParam-class Graph-based clustering

Description

Run community detection algorithms on a nearest-neighbor (NN) graph within clusterRows.

Usage
NNGraphParam(
shared = TRUE,
k =10,

BNPARAM = KmknnParam(),
num.threads = 1,

BPPARAM = NULL,
cluster.fun = "walktrap”,
cluster.args = list()

40

SNNGraphParam(
k =10,
type = "rank”

NNGraphParam-class

’

BNPARAM = KmknnParam(),

num.threads =

1,

BPPARAM = NULL,

cluster.fun =
cluster.args

)

KNNGraphParam(
k =10,

"walktrap”,

= list()

directed = FALSE,
BNPARAM = KmknnParam(),

num.threads =

1,

BPPARAM = NULL,

cluster.fun =
cluster.args

)

"walktrap”,

= list()

S4 method for signature 'ANY,SNNGraphParam'
clusterRows(x, BLUSPARAM, full = FALSE)

S4 method for signature 'ANY,KNNGraphParam'
clusterRows(x, BLUSPARAM, full = FALSE)

Arguments

shared
k

BNPARAM
num. threads
BPPARAM

cluster.fun

cluster.args

type

directed

Logical scalar indicating whether a shared NN graph should be constructed.

An integer scalar specifying the number of nearest neighbors to consider during
graph construction.

Further arguments to pass to SNNGraphParam (if shared=TRUE) or KNNGraphParam
A BiocNeighborParam object specifying the nearest neighbor algorithm.

Integer scalar specifying the number of threads to use.

Deprecated, use num. threads instead.

Function specifying the method to use to detect communities in the NN graph.
The first argument of this function should be the NN graph and the return value
should be a communities object.

Alternatively, this may be a string containing the suffix of any igraph commu-
nity detection algorithm. For example, cluster.fun="louvain"” will instruct
clusterRows to use cluster_louvain. Defaults to cluster_walktrap.

Further arguments to pass to the chosen cluster. fun.
A string specifying the type of weighting scheme to use for shared neighbors.

A logical scalar indicating whether the output of buildKNNGraph should be a
directed graph.

NNGraphParam-class 41

X A matrix-like object containing expression values for each observation (row)
and dimension (column).
BLUSPARAM A NNGraphParam object.
full Logical scalar indicating whether the graph-based clustering objects should be
returned.
Details

The SNNGraphParam and KNNGraphParam classes are both derived from the NNGraphParam
virtual class. This former will perform clustering with a shared nearest-neighbor (SNN) graph while
the latter will use a simpler k-nearest neighbor (KNN) graph - see ?makeSNNGraph for details.

To modify an existing NNGraphParam object x, users can simply call x[[i]] or x[[i]] <- value
where i is any argument used in the constructor. The exception is that of shared, which is not a
valid i as it is implicit in the identity of the class.

Value

The constructors will return a NNGraphParam object with the specified parameters. If shared=TRUE,
this is a SNNGraphParam object; otherwise it is a KNNGraphParam object.

The clusterRows method will return a factor of length equal to nrow(x) containing the cluster
assignments. If full=TRUE, a list is returned with clusters (the factor, as above) and objects; the
latter is a list with graph (the graph) and communities (the output of cluster. fun).

Author(s)

Aaron Lun

See Also

makeSNNGraph and related functions, to build the graph.

cluster_walktrap and related functions, to perform community detection.

Examples

clusterRows(iris[,1:4], NNGraphParam())
clusterRows(iris[,1:4], NNGraphParam(k=5))

Note: cluster_louvain is randomized as of igraph 1.3.0.
set.seed(100)
clusterRows(iris[,1:4], NNGraphParam(cluster.fun="louvain"))

On the plus side, we can finally pass a resolution parameter.

set.seed(100)

clusterRows(iris[,1:4], NNGraphParam(cluster.fun="louvain”,
cluster.args=list(resolution=0.5)))

42

pairwiseModularity

pairwiseModularity Compute pairwise modularity

Description

Calculate the modularity of each pair of clusters from a graph, based on a null model of random
connections between nodes.

Usage

pairwiseModularity(graph, clusters, get.weights = FALSE, as.ratio = FALSE)

Arguments
graph A graph object from igraph, usually where each node represents an observation.
clusters Factor specifying the cluster identity for each node.
get.weights Logical scalar indicating whether the observed and expected edge weights should
be returned, rather than the modularity.
as.ratio Logical scalar indicating whether the log-ratio of observed to expected weights
should be returned.
Details

This function computes a modularity score in the same manner as that from modularity. The
modularity is defined as the (scaled) difference between the observed and expected number of edges
between nodes in the same cluster. The expected number of edges is defined by a null model where
edges are randomly distributed among nodes. The same logic applies for weighted graphs, replacing
the number of edges with the summed weight of edges.

Whereas modularity returns a modularity score for the entire graph, pairwiseModularity pro-
vides scores for the individual clusters. The sum of the diagonal elements of the output matrix
should be equal to the output of modularity (after supplying weights to the latter, if necessary).
A well-separated cluster should have mostly intra-cluster edges and a high modularity score on the
corresponding diagonal entry, while two closely related clusters that are weakly separated will have
many inter-cluster edges and a high off-diagonal score.

In practice, the modularity may not the most effective metric for evaluating cluster separated-
ness. This is because the modularity is proportional to the number of observations, so larger clus-
ters will naturally have a large score regardless of separation. An alternative approach is to set
as.ratio=TRUE, which returns the ratio of the observed to expected weights for each entry of the
matrix. This adjusts for differences in cluster size and improves resolution of differences between
clusters.

Directed graphs are treated as undirected inputs with mode="each"” in as.undirected. In the rare
case that self-loops are present, these will also be handled correctly.

pairwiseModularity 43

Value

By default, an upper triangular numeric matrix of order equal to the number of clusters is returned.
Each entry corresponds to a pair of clusters and is proportional to the difference between the ob-
served and expected edge weights between those clusters.

If as.ratio=TRUE, an upper triangular numeric matrix is again returned. Here, each entry is equal
to the ratio between the observed and expected edge weights.

If get.weights=TRUE, a list is returned containing two upper triangular numeric matrices. The
observed matrix contains the observed sum of edge weights between and within clusters, while the
expected matrix contains the expected sum of edge weights under the random model.

Author(s)

Aaron Lun

See Also

makeSNNGraph, for one method to construct graph.
modularity, for the calculation of the entire graph modularity.

pairwiseRand, which applies a similar breakdown to the Rand index.

Examples

m <- matrix(runif(10000), ncol=10)

clust.out <- clusterRows(m, BLUSPARAM=NNGraphParam(), full=TRUE)
clusters <- clust.out$clusters

g <- clust.out$objects$graph

Examining the modularity values directly.
out <- pairwiseModularity(g, clusters)
out

Compute the ratio instead, for visualization

(log-transform to improve range of colors).

out <- pairwiseModularity(g, clusters, as.ratio=TRUE)
image (log2(out+1))

This can also be used to construct a graph of clusters,

for use in further plotting, a.k.a. graph abstraction.

(Fiddle with the scaling values for a nicer plot.)

g2 <- igraph::graph_from_adjacency_matrix(out, mode="upper",
diag=FALSE, weighted=TRUE)

plot(g2, edge.width=igraph::E(g2)$weight*10,
vertex.size=sqrt(table(clusters))=*2)

Alternatively, get the edge weights directly:
out <- pairwiseModularity(g, clusters, get.weights=TRUE)
out

44 pairwiseRand

pairwiseRand Compute pairwise Rand indices

Description

Breaks down the Rand index calculation to report values for each cluster and pair of clusters in a
reference clustering compared to an alternative clustering.

Usage
pairwiseRand(ref, alt, mode = c("ratio”, "pairs"”, "index"), adjusted = TRUE)
Arguments
ref A character vector or factor containing one set of groupings, considered to be
the reference.
alt A character vector or factor containing another set of groupings, to be compared
to alt.
mode String indicating whether to return the ratio, the number of pairs or the Rand
index.
adjusted Logical scalar indicating whether the adjusted Rand index should be returned.
Details

Recall that the Rand index calculation consists of four numbers:

a The number of pairs of cells in the same cluster in ref and the same cluster in alt.
b The number of pairs of cells in different clusters in ref and different clusters in alt.
¢ The number of pairs of cells in the same cluster in ref and different clusters in alt.

d The number of pairs of cells in different clusters in ref but the same cluster in alt.

The Rand index is then computed as a + b divided by a 4+ b + ¢ + d, i.e., the total number of pairs.

We can break these numbers down into values for each cluster or pair of clusters in ref. For each
cluster, we compute its value of a, i.e., the number of pairs of cells in that cluster that are also in
the same cluster in alt. Similarly, for each pair of clusters in ref, we compute its value of b, i.e.,
the number of pairs of cells that have one cell in each of those clusters and also belong in different
clusters in alt.

This process provides more information about the specific similarities or differences between ref
and alt, rather than coalescing all the values into a single statistic. For example, it is now possible
to see which specific clusters from ref are not reproducible in alt, or which specific partitions
between pairs of clusters are not reproducible. Such events can be diagnosed by looking for small
(i.e., near-zero or negative) entries in the ratio matrix; on the other hand, large values (i.e., close to
1) indicate that ref is almost perfectly recapitulated by alt.

If adjusted=TRUE, we adjust all counts by subtracting their expected values under a model of
random permutations. This accounts for differences in the number and sizes of clusters within and

pairwiseRand 45

between ref and alt, in a manner that mimics the calculation of adjusted Rand index (ARI). We
subtract expectations on a per-cluster or per-cluster-pair basis for a and b, respectively; we also
redefine the “total” number of cell pairs for each cluster or cluster pair based on the denominator of
the ARL

Value

If mode="ratio", a square numeric matrix is returned with number of rows equal to the number
of unique levels in ref. Each diagonal entry is the ratio of the per-cluster a to the total number
of pairs of cells in that cluster. Each off-diagonal entry is the ratio of the per-cluster-pair b to the
total number of pairs of cells for that pair of clusters. Lower-triangular entries are set to NA. If
adjusted=TRUE, counts and totals are both adjusted prior to computing the ratio.

If mode="pairs", a list is returned containing correct and total, both of which are square nu-
meric matrices of the same arrangement as described above. However, correct contains the actual
numbers a (diagonal) and b (off-diagonal) rather than the ratios, while total contains the total num-
ber of cell pairs in each cluster or pair of clusters. If adjusted=TRUE, both matrices are adjusted by
subtracting the random expectations from the counts.

If mode="1index", a numeric scalar is returned containing the Rand index (or ARI, if adjusted=TRUE).

Author(s)

Aaron Lun

See Also

pairwiseModularity, which applies the same breakdown to the cluster modularity.

compareClusterings, which does this for multiple clusterings.

Examples
m <- matrix(runif(10000), ncol=10)

clustl <- kmeans(m,3)$cluster
clust2 <- kmeans(m,5)$cluster

ratio <- pairwiseRand(clustl, clust2)
ratio

Getting the raw counts:
pairwiseRand(clustl, clust2, mode="pairs")

Computing the original Rand index.
pairwiseRand(clust1l, clust2, mode="index")

46 PamParam-class

PamParam-class Partitioning around medoids

Description

Partition observations into k-medoids as a more robust version of k-means.

Usage

PamParam(
centers,
metric = NULL,
medoids = NULL,
nstart = NULL,
stand = NULL,
do.swap = NULL,
variant = NULL

S4 method for signature 'ANY,PamParam'
clusterRows(x, BLUSPARAM, full = FALSE)

Arguments

centers An integer scalar specifying the number of centers. Alternatively, a function that
takes the number of observations and returns the number of centers.

metric, medoids, nstart, stand, do.swap, variant
Further arguments to pass to pam. Set to the function defaults if not supplied.

X A numeric matrix-like object where rows represent observations and columns
represent variables.

BLUSPARAM A PamParam object.
full Logical scalar indicating whether the full PAM statistics should be returned.
Details

This class usually requires the user to specify the number of clusters beforehand. However, we can
also allow the number of clusters to vary as a function of the number of observations. The latter is
occasionally useful, e.g., to allow the clustering to automatically become more granular for large
datasets.

To modify an existing PamParam object x, users can simply call x[[i]] or x[[i]] <- value where
i is any argument used in the constructor.

SomParam-class 47

Value

The PamParam constructor will return a PamParam object with the specified parameters.

The clusterRows method will return a factor of length equal to nrow(x) containing the cluster
assignments. If full=TRUE, a list is returned with clusters (the factor, as above) and objects (a
list containing pam, the direct output of pam).

Author(s)

Aaron Lun

See Also
pam, which actually does all the heavy lifting.

KmeansParam, for the more commonly used k-means algorithm.

ClaraParam, for a scalable extension to the PAM approach.

Examples

clusterRows(iris[,1:4], PamParam(centers=4))
clusterRows(iris[,1:4], PamParam(centers=4, variant="faster”, do.swap=FALSE))
clusterRows(iris[,1:4], PamParam(centers=sqrt))

SomParam-class Clustering with self-organizing maps

Description

Use the self-organizing map implementation in the kohonen package to cluster observations into
the specified number of nodes. Note that this requires the installation of the kohonen package.

Usage
SomParam(
centers,
dim.ratio = 1,
topo = "rectangular”,

neighbourhood.fct = "bubble”,
toroidal = FALSE,

rlen = 100,

alpha = c(0.05, 0.01),

radius = NULL,

dist.fct = "sumofsquares”

)

S4 method for signature 'ANY,SomParam'
clusterRows(x, BLUSPARAM, full = FALSE)

48

SomParam-class

Arguments

centers An integer scalar specifying the number of centers. Alternatively, a function that
takes the number of observations and returns the number of centers.

dim.ratio A positive numeric scalar in specifying how centers should be distributed be-
tween the x and y dimensions. Defaults to equal distribution, i.e., both dimen-
sions will be of length equal to the square root of centers. Values above 1 will
distribute more nodes to x while values below 1 will distribute mode nodes to y.
topo, neighbourhood. fct, toroidal
Further arguments to pass to the somgrid function in the kohonen package.
rlen, alpha, radius, dist.fct
Further arguments to pass to the som function in the kohonen package.

X A numeric matrix-like object where rows represent observations and columns
represent variables.

BLUSPARAM A SomParam object.

full Logical scalar indicating whether the full SOM statistics should be returned.

Details

This class usually requires the user to specify the number of clusters beforehand. However, we can
also allow the number of clusters to vary as a function of the number of observations. The latter is
occasionally useful, e.g., to allow the clustering to automatically become more granular for large
datasets.

Note that the final number of clusters may not be exactly equal to centers, depending on how
dim.ratio is specified. For example, if centers is a perfect square and dim.ratio=1, we will get
exactly the requested number of points.

To modify an existing SomParam object x, users can simply call x[[i]] or x[[i]] <- value where
i is any argument used in the constructor.

For radius, a value of NULL means that the default argument in the som function signature is used.
This is are data-dependent and so cannot be specified during construction of the SomParam object.

For dist.fct, users can specify any string that can be used in the dist. fcts arguments in som. In
practice, the only real alternative is "manhattan”.

Value

The SomParam constructor will return a SomParam object with the specified parameters.

The clusterRows method will return a factor of length equal to nrow(x) containing the cluster
assignments. If full=TRUE, a list is returned with clusters (the factor, as above) and objects (a
list containing som, the direct output of som).

Author(s)

Aaron Lun

TwoStepParam-class 49

See Also

som from the kohonen package, which does all of the heavy lifting.

FixedNumberParam, the parent of the SomParam class.

Examples

clusterRows(iris[,1:4], SomParam(centers=16))
clusterRows(iris[,1:4], SomParam(centers=12, dim.ratio=3/4))

TwoStepParam-class Two step clustering with vector quantization

Description

For large datasets, we can perform vector quantization (e.g., with k-means clustering) to create
centroids. These centroids are then subjected to a slower clustering technique such as graph-based
community detection. The label for each cell is set to the label of the centroid to which it was
assigned.

Usage
TwoStepParam(first = KmeansParam(centers = sqrt), second = NNGraphParam())

S4 method for signature 'ANY,TwoStepParam'
clusterRows(x, BLUSPARAM, full = FALSE)

Arguments
first A BlusterParam object specifying a fast vector quantization technique.
second A BlusterParam object specifying the second clustering technique on the cen-
troids.
X A numeric matrix-like object where rows represent observations and columns
represent variables.
BLUSPARAM A KmeansParam object.
full Logical scalar indicating whether the clustering statistics from both steps should
be returned.
Details

Here, the idea is to use a fast clustering algorithm to perform vector quantization and reduce the size
of the dataset, followed by a slower algorithm that aggregates the centroids for easier interpretation.
The exact choice of the number of clusters is less relevant to the first clustering step as long as not
too many centroids are generated but the clusters are still sufficiently granular. The second step
can take more care (and computational time) summarizing the centroids into meaningful “meta-
clusters”.

50 TwoStepParam-class

The default choice is to use k-means for the first step, with number of clusters set to the root of
the number of observations; and graph-based clustering for the second step, which automatically
detects a suitable number of clusters. K-means also eliminates density differences in the data that
can introduce variable resolution from graph-based methods.

To modify an existing TwoStepParam object x, users can simply call x[[i]] or x[[i]] <- value
where 1 is any argument used in the constructor.

Value

The TwoStepParam constructor will return a TwoStepParam object with the specified parameters.
The clusterRows method will return a factor of length equal to nrow(x) containing the cluster
assignments. If full=TRUE, a list is returned with a clusters factor and an objects list containing:
» first, a list of objects from the first clustering step. This is equal to the objects list in the
output of clusterRows with the first BlusterParam.
* centroids, a numeric matrix of centroids generated from the first clustering step.

* second, a list of objects from the second clustering step on the centroids. This is equal to the
objects list in the output of clusterRows with the second BlusterParam.

Author(s)

Aaron Lun

Examples

m <- matrix(runif(100000), ncol=10)
stuff <- clusterRows(m, TwoStepParam())
table(stuff)

Index

* internal
bluster-package, 3
.defaultScalarArguments, 3

.defaultScalarArguments, AgnesParam-method

(AgnesParam-class), 6

.defaultScalarArguments,BlusterParam-method

(.defaultScalarArguments), 3

.defaultScalarArguments,ClaraParam-method

(ClaraParam-class), 12

.defaultScalarArguments,DianaParam-method

(DianaParam-class), 20

.defaultScalarArguments,HclustParam-method

(HclustParam-class), 24

BiocParallelParam, 15, 22

bluster (bluster-package), 3
bluster-package, 3
BlusterParam, 3, 9, 14-16, 19, 22, 23, 26, 49
BlusterParam-class, 9
bootstrapStability, 9

centers (FixedNumberParam-class), 23
centers,FixedNumberParam-method
(FixedNumberParam-class), 23
centers<- (FixedNumberParam-class), 23
centers<-,FixedNumberParam-method
(FixedNumberParam-class), 23

.defaultScalarArguments,HierarchicalParam-met®bara, 12, 13

(HierarchicalParam-class), 26

.defaultScalarArguments,PamParam-method

(PamParam-class), 46
.extractScalarArguments
(.defaultScalarArguments), 3
.showScalarArguments
(.defaultScalarArguments), 3
[[,BlusterParam-method
(BlusterParam-class), 9
[[,HclustParam-method
(HclustParam-class), 24
[[<-,BlusterParam-method
(BlusterParam-class), 9

AffinityParam, 5

AffinityParam (AffinityParam-class), 4
AffinityParam-class, 4

agnes, 6, 7

AgnesParam, 7

AgnesParam (AgnesParam-class), 6
AgnesParam-class, 6

apcluster, 5

approxSilhouette, 7

as.undirected, 42

BiocNeighborParam, 19, 30, 36, 40

51

ClaraParam, 12, 13,47
ClaraParam (ClaraParam-class), 12
ClaraParam-class, 12
cluster_louvain, 32, 40
cluster_walktrap, 32, 40, 41
clusterRMSD, 13
clusterRows, 6, 7,9, 11, 14, 16, 21-26, 33,
39, 40, 50
clusterRows,ANY,AffinityParam-method
(AffinityParam-class), 4
clusterRows,ANY, AgnesParam-method
(AgnesParam-class), 6
clusterRows,ANY,ClaraParam-method
(ClaraParam-class), 12
clusterRows, ANY,DbscanParam-method
(DbscanParam-class), 18
clusterRows,ANY,DianaParam-method
(DianaParam-class), 20
clusterRows,ANY,DmmParam-method
(DmmParam-class), 22
clusterRows,ANY,HclustParam-method
(HclustParam-class), 24
clusterRows, ANY,KmeansParam-method
(KmeansParam-class), 26
clusterRows, ANY,KNNGraphParam-method
(NNGraphParam-class), 39

52

clusterRows,ANY,MbkmeansParam-method
(MbkmeansParam-class), 33
clusterRows,ANY, PamParam-method
(PamParam-class), 46
clusterRows,ANY, SNNGraphParam-method
(NNGraphParam-class), 39
clusterRows,ANY, SomParam-method
(SomParam-class), 47
clusterRows,ANY, TwoStepParam-method
(TwoStepParam-class), 49
clusterSweep, 15, 17
communities, 40
compareClusterings, 17, 29, 45
cut_at, 35
cutree, 6, 7,21, 24-26
cutreeDynamic, 6, 21, 24-26

DataFrame, 8, 16, 37, 39
DbscanParam, /9

DbscanParam (DbscanParam-class), 18
DbscanParam-class, 18
diana, 20, 21

DianaParam, 2/

DianaParam (DianaParam-class), 20
DianaParam-class, 20
dist, 20, 24-26

DmmParam, 22

DmmParam (DmmParam-class), 22
DmmParam-class, 22

dmn, 23

findKNN, 31, 32
findNeighbors, 36
FixedNumberParam, /2, 49
FixedNumberParam-class, 23

graph, 29, 31, 35,42

hclust, 6, 7, 21, 24-26
HclustParam, 6, 7, 9, 14, 21, 25, 26
HclustParam (HclustParam-class), 24
HclustParam-class, 24
HierarchicalParam-class, 26

I,16

kmeans, 26, 27
KmeansParam, 9, 14, 23, 24,27, 34,47, 49
KmeansParam (KmeansParam-class), 26
KmeansParam-class, 26

INDEX

KNNGraphParam, 40

KNNGraphParam (NNGraphParam-class), 39

KNNGraphParam-class
(NNGraphParam-class), 39

linkClusters, 17, 28, 39
linkClustersMatrix (linkClusters), 28
List, /16

make_graph, 32

makeKNNGraph (makeSNNGraph), 30
makeSNNGraph, 30, 35, 41, 43
mbkmeans, 33, 34
MbkmeansParam, 27, 33, 34

MbkmeansParam (MbkmeansParam-class), 33
MbkmeansParam-class, 33
mergeCommunities, 34

modularity, 42, 43

negDistMat, 5

neighborPurity, 8, 35
neighborsToKNNGraph (makeSNNGraph), 30
neighborsToSNNGraph (makeSNNGraph), 30
nestedClusters, 38
NNGraphParam, 9, 14, 35, 41

NNGraphParam (NNGraphParam-class), 39
NNGraphParam-class, 39

pairwiseModularity, 42, 45
pairwiseRand, 10, 11, 17, 39, 43,44
pam, 46, 47

PamParam, 13, 46, 47

PamParam (PamParam-class), 46
PamParam-class, 46

show, AffinityParam-method
(AffinityParam-class), 4
show, AgnesParam-method
(AgnesParam-class), 6
show,BlusterParam-method
(BlusterParam-class), 9
show, ClaraParam-method
(ClaraParam-class), 12
show, DbscanParam-method
(DbscanParam-class), 18
show,DianaParam-method
(DianaParam-class), 20
show, DmmParam-method (DmmParam-class),
22

INDEX

show, FixedNumberParam-method
(FixedNumberParam-class), 23

show,HclustParam-method
(HclustParam-class), 24

show,HierarchicalParam-method
(HierarchicalParam-class), 26

show, KmeansParam-method
(KmeansParam-class), 26

show,MbkmeansParam-method
(MbkmeansParam-class), 33

show,NNGraphParam-method
(NNGraphParam-class), 39

show, PamParam-method (PamParam-class),
46

show, SomParam-method (SomParam-class),
47

show, TwoStepParam-method
(TwoStepParam-class), 49

SNNGraphParam, 40

SNNGraphParam (NNGraphParam-class), 39

SNNGraphParam-class
(NNGraphParam-class), 39

som, 48, 49

somgrid, 48

SomParam, 48

SomParam (SomParam-class), 47

SomParam-class, 47

TwoStepParam, 50
TwoStepParam (TwoStepParam-class), 49
TwoStepParam-class, 49

updateObject,HclustParam-method
(HclustParam-class), 24

updateObject,KmeansParam-method
(KmeansParam-class), 26

53

	bluster-package
	.defaultScalarArguments
	AffinityParam-class
	AgnesParam-class
	approxSilhouette
	BlusterParam-class
	bootstrapStability
	ClaraParam-class
	clusterRMSD
	clusterRows
	clusterSweep
	compareClusterings
	DbscanParam-class
	DianaParam-class
	DmmParam-class
	FixedNumberParam-class
	HclustParam-class
	HierarchicalParam-class
	KmeansParam-class
	linkClusters
	makeSNNGraph
	MbkmeansParam-class
	mergeCommunities
	neighborPurity
	nestedClusters
	NNGraphParam-class
	pairwiseModularity
	pairwiseRand
	PamParam-class
	SomParam-class
	TwoStepParam-class
	Index

