Package ‘CNORfeeder’

October 15, 2025

Type Package

Title Integration of CellNOptR to add missing links

Version 1.48.0

Author Federica Eduati [aut, cre]

Maintainer Attila Gabor <attila.gabor@uni-heidelberg.de>

Description This package integrates literature-constrained and data-driven methods
to infer signalling networks from perturbation experiments. It permits to extends a
given network with links derived from the data via various inference methods and
uses information on physical interactions of proteins to guide and validate the
integration of links.

License GPL-3

Encoding UTF-8

LazyData true

Date 2022-05-11

Enhances MEIGOR

Suggests minet, Rgraphviz, RUnit, BiocGenerics, igraph
Depends R (>=4.0.0), graph

Imports CellNOptR (>= 1.4.0)

biocViews CellBasedAssays, CellBiology, Proteomics, NetworkInference
LazyLoad yes

RoxygenNote 7.1.2

git_url https://git.bioconductor.org/packages/CNORfeeder
git_branch RELEASE_3_21

git_last commit 8b86d80

git_last_commit_date 2025-04-15

Repository Bioconductor 3.21

Date/Publication 2025-10-15

2 CNORfeeder-package

Contents
CNORfeeder-package e 2
Binference 4
buildFeederObjectDynamic 5
CnoliSt 6
database L 7
feederObject L L e e 7
gaBinaryTIW o oL 8
identifyMisfitIndices 10
INdices e 11
integratedModelo 12
integrateLinks L. e 12
linksRanking 13
makeBTables 14
mapBTables2model 16
mapDDN2model 17
Mlinference L e 18
model 19
PPINigraph e 20
runDynamicFeeder 20
simData 22
UniprotIDdream e e e 22
weighting L e e e 23

Index 26

CNORfeeder-package R package to integrate literature-constrained and data-driven methods
to infer signalling networks from perturbation experiments
Description

CNORfeeder permits to extend a network derived from literature with links derived strictly from the
data via various inference methods using information on physical interactions of proteins to guide
and validate the integration of links. The package is designed to be integrated with CelINOptR.

Details

Package: CNORfeeder

Type: Package
Version: 1.0.0.
Date: 2012-11-22

License: GPLv2
LazyLoad: yes

CNORfeeder-package 3

Author(s)

F. Eduati Maintainer: F. Eduati <eduati @ebi.ac.uk>

References

F. Eduati, J. De Las Rivas, B. Di Camillo, G. Toffolo, J. Saez-Rodriguez. Integrating literature-
constrained and data-driven inference of signalling networks. Bioinformatics, 28(18):2311-2317,
2012.

Examples

library(CNORfeeder)
this is an example of the main steps of the integrated CellNOptR - CNORfeeder pipeline

load the data already formatted as CNOlist
data(CNOlistDREAM, package="CellNOptR")

load the model (PKN) already in the CNO format
data(DreamModel, package="CellNOptR")

see CellNOptR documentation to import other data/PKNs)

A. INFERENCE - CNORfeeder
FEED inference: codified in Boolean Tables
BTable <- makeBTables(CNOlist=CNOlistDREAM, k=2, measErr=c(0.1, 0))

B. COMPRESSION - CellNOptR
preprocessing step
model<-CellNOptR: :preprocessing(data=CNOl1istDREAM, model=DreamModel)

C. INTEGRATION - CNORfeeder

integration with the compressed model

modelIntegr <- mapBTables2model (BTable=BTable,model=model,allInter=TRUE)
see example in ?MapDDN2Model to use other reverse-engineering methods

D. WEGHTING - CNORfeeder

integrated links are weighted more according to the integratin factor integrFac

modelIntegrWeight <- weighting(modelIntegr=modelIntegr, PKNmodel=DreamModel,
CNOlist=CNOlistDREAM, integrFac=10)

E. TRAINING - CellNOptR

initBstring<-rep(1,length(modelIntegr$reacID))

training to data using genetic algorithm (run longer to obtain better results)
DreamT1opt<-gaBinaryT1W(

CNO1list=CNOlistDREAM,

model=modelIntegrWeight,

maxGens=2,

popSize=5,

verbose=FALSE)

4 Binference

Binference Bayesian network inference

Description

This function uses data (CNOlist) to infer a Bayesian network using the catnet package.

Usage

Binference(CNOlist, mode="AIC", tempCheckOrders=10,
maxIter=100, filename="BAYESIAN")

Arguments
CNOlist a CNOlist structure, as produced by makeCNOlist
mode a character, optimization network selection criterion such as "AIC" and "BIC",
to be used in cnSearchSA
tempCheckOrders
an integer, the number of iteration, orders to be searched, with constant temper-
ature, to be used in cnSearchSA
maxIter an integer, the total number of iterations, thus orders, to be processed, to be used
in cnSearchSA
filename name of the sif file saved, default BAYESIAN
Details

This function transforms the data in a format compatible with catnet package, infers the network
using the Stochastic Network Search as implemented in catnet (see cnSearchSA), computes the con-
sensus model of the models returned by cnSearchSA considering only links that have a frequency
of appearence greater than 0.1 and returns the model in the sif format.

Value

sif the inferred data-driven network in sif format

Author(s)

F.Eduati

See Also

mapDDN2model

buildFeederObjectDynamic 5

Examples

Not run:

data(CNOlistDREAM, package="CellNOptR")

DDN<-Binference (CNOlistDREAM, tempCheckOrders=10, maxIter=100,
filename="BAYESIAN")

End(Not run)

buildFeederObjectDynamic
Building Feeder-Object for the integration to the PKN

Description

This function estimates the possible mechanisms of interactions to be added to the PKN from a
database of interactions for improving the fitting cost.

Usage

buildFeederObjectDynamic(model = model, cnolist = cnolist, indices = indices, database = NULL, DDN = TRL

Arguments

model a model as returned by readSIF. Alternatively, the filename can also be provided

cnolist a cnolist structure, as produced by makeCNOlist

indices a list of indices of poorly fitted measurements as returned from identifyMis-
fitIndices

database a database of interactions which can be optionally provided as an interaction
matrix with 3 or 4 colums (source of interaction, sign of interaction, target of
interaction and optionally a weight value from 0O to 1 indicating the significance
of that interaction in the database). Default: database=NULL

DDN a parameter indicating whether integrating links inferred from the Data-Driven
FEED approach. Default: DDN = TRUE

pathLength a path length parameter for the maximal path length of additional interactions to
search for in the database. Default: pathLength =2

k a parameter that determine the threshold of significancy of the effect of stimuli
and inhibitors, default to 2

measErr a 2 value vector (errl, err2) defining the error model of the data as sd*2 = err1/2
+ (err2*data)”2, default to c(0.1, 0)

timePoint time-points to be considered. By default set to NA, which means that the func-

tion will search for poorly fitted measurements at each time-point.

6 cnolist

Details

The function identifies and proposes the new links to integrate in the PKN either either by means of
the data-driven method from the FEED algorithm or from the provided database of interactions or
from both of them.

Value

this function returns a list with fields:
Original PKN the original PKN
Feed mechanisms
the list of proposed interactions to integrate to the PKN (if both the database

and the data-driven method are considered by the user, the last mechanism cor-
responds to the data-driven approach)

Author(s)

E.Gjerga

Examples

data(ToyModel_Gene, package="CNORfeeder")
data(CNOlistToy_Gene, package="CNORfeeder")
data(simData_toy, package="CNORfeeder")

model <- CellNOptR: :preprocessing(data=CNOlistToy_Gene, model=model)

indices = identifyMisfitIndices(cnolist = CNOlistToy_Gene, model = model,
simData = simData, mseThresh = 0.05)

feederObject = buildFeederObjectDynamic(model = model, cnolist = CNOlistToy_Gene,
indices = indices, database = NULL,
DDN = TRUE, pathLength = 2)

cnolist CNOlist

Description

CNOlist object containing the perturbation experimental data.

Usage

cnolist

Format

cnolist is the object which contains the data in the MIDAS file.

database

Source

This object is generated from the dynamic-feeder example

database OmniPath PPI

Description

Data-frame containing signed and directed interactions from Omnipath.

Usage

database

Format

database is the object which contains new interactions which can potentially be integrated.

Source

This object is generated from the dynamic-feeder example

feederObject Feeder Object

Description

Object list as obtained from the buildFeederObjectDynamic() function.

Usage

feederObject

Format

feederObject is a list containing interactions suggested to be added in the PKN.

Source

This object is generated from the dynamic-feeder example

gaBinaryTIW

gaBinaryT1W

Genetic algorithm used to optimise a model differently weighting links

Description

This function is the genetic algorithm to be used to optimise a model by fitting to data containing
one time point. It is the function gaBinaryT1 of CelINOptR modified in orter to differently weights
for the integrated links

Usage

gaBinaryT1W(CNOlist, model, initBstring=NULL, sizeFac = 1e-04,

NAFac =

stallGenMax

1, popSize = 50, pMutation = 0.5, maxTime = 60, maxGens = 500,

= 100, selPress = 1.2, elitism = 5, relTol = 0.1, verbose=TRUE,

priorBitString=NULL, maxSizeHashTable=5000)

Arguments

CNOlist

model

initBstring

sizeFac
NAFac
popSize
pMutation
maxTime
maxGens

stallGenMax

selPress

elitism

relTol

verbose

a CNOlist on which the score is based (based on valueSignals[[2]], i.e. data at
time 1)

a model structure, as created by readSIF, normally pre-processed but that is
not a requirement of this function. If the linksWeight field is provided in model
structure, all links are weighted according to that.

an initial bitstring to be tested, should be of the same size as the number of
reactions in the model above (model$reacID). Default is all ones.

the scaling factor for the size term in the objective function, default to 0.0001
the scaling factor for the NA term in the objective function, default to 1

the population size for the genetic algorithm, default set to 50

the mutation probability for the genetic algorithm, default set to 0.5

the maximum optimisation time in seconds, default set to 60

the maximum number of generations in the genetic algorithm, default set to 500

the maximum number of stall generations in the genetic algorithm, default to
100

the selective pressure in the genetic algorithm, default set to 1.2

the number of best individuals that are propagated to the next generation in the
genetic algorithm, default set to 5

the relative tolerance for the best bitstring reported by the genetic algorithm, i.e.,
how different from the best solution, default set to 0.1

logical (default to TRUE) do you want the statistics of each generation to be
printed on the screen?

gaBinaryTIW 9

priorBitString At each generation, the GA algorithm creates a population of bitstrings that
will be used to perform the optimisation. If the user knows the values of some
bits, they can be used to overwrite bit values proposed by the GA algorithm. If
provided, the priorBitString must have the same length as the initial bitstring
and be made of 0, 1 or NA (by default, this bitstring is set to NULL, which is
equivalent to setting all bits to NA). Bits that are set to O or 1 are used to replace
the bits created by the GA itself (see example).

maxSizeHashTable
a hash table is use to store bitstring and related score. This allows the GA to be
very efficient is the case of small models. The size of the hash table is 5000 by
default, which may be too large for large models.

Details

The whole procedure is described in details in Saez-Rodriguez et al. (2009). The basic principle
is that at each generation, the algorithm evaluates a population of models based on excluding or
including some gates in the initial pre-processed model (this is encoded in a bitstring with contains
0/1 entries for each gate). The population is then evolved based on the results of the evaluation of
these networks, where the evaluation is obtained by simulating the model (to steady state) under the
various conditions present in the data, and then computing the squared deviation from the data, to
which a penalty is added for size of the model and for species in the model that do not reach steady
state.

Value

This function returns a list with elements:

bString the best bitstring

results a matrix with columns "Generation", "Best_score", "Best_bitString", "Stall_Generation",
"Avg_Score_Gen", "Best_score_Gen", "Best_bit_Gen", "Iter_time"

stringsTol the bitstrings whose scores are within the tolerance

stringsTolScores

the scores of the above-mentioned strings

Author(s)
C. Terfve, T. Cokelaer, F.Eduati

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

See Also

gaBinaryT1

10 identifyMisfitIndices

Examples

data(CNOlistDREAM, package="CellNOptR")
data(DreamModel, package="CellNOptR")
model<-CellNOptR: :preprocessing(data=CNOl1istDREAM, model=DreamModel)

BTable <- makeBTables(CNOlist=CNOlistDREAM, k=2, measErr=c(0.1, 0))
modelIntegr <- mapBTables2model (BTable=BTable,model=model,allInter=TRUE)

modelIntegrWeight <- weighting(modelIntegr=modelIntegr, PKNmodel=DreamModel,
CNO1list=CNOlistDREAM, integrFac=10)

initBstring<-rep(1,length(modelIntegr$reacID))
training to data using genetic algorithm (run longer to obtain better results)
DreamT1opt<-gaBinaryT1W(

CNOlist=CNOlistDREAM,

model=modelIntegrWeight,

initBstring=initBstring,

maxGens=2,

popSize=5,

verbose=FALSE)

identifyMisfitIndices Identifying indices of poorly fitted measurements

Description

This function identifies poorly fitted measurements for specific experimental conditions. It returns
a list of possible indices and mse’s pointing to possible connections to be added during the feeding
process.

Usage

identifyMisfitIndices(cnolist = cnolist, model = model, simData = NULL, mseThresh = 0)

Arguments
cnolist a cnolist structure, as produced by makeCNOlist
model a model as returned by readSIF. Alternatively, the filename can also be provided.
simData a matrix of simulated data values for a specific model as returned by plotLBod-
eFitness (default set to NULL in which case users do not need to do an initial fit
of the model and the FEED algorithm will search for new links indiscriminately)
mseThresh thrreshold parameter for minimal misfit to be considered - if the initial fit (mse)

for a node in a specific condition is larger/wrose than the threshold value, it will
be considered as poorly fitted (mseThresh = 0 by default)

indices 11

Details

This function computes the misfits (MSE values) between the actual measured data points and the
data values for a specific set of inferred model parameters. Once the MSE values are calculated
for each of the measurements over each experimental condition, the poorly fitted measurements are
then identify. A measurement is considered as poorly fitted if the corresponding inferred MSE value
is higher than the specified MSE threshold value (mseThresh).

Value

this function returns a list with fields:

indices alist of indices pointing to the poorly fitted measurements and the corresponding
ms value
use a matrix of use values indicating the mismatch between model simulations and

data for each measurement at each experimental condition

Author(s)

E.Gjerga

Examples

data(ToyModel_Gene, package="CNORfeeder")
data(CNOlistToy_Gene, package="CNORfeeder")
data(indices,package="CNORfeeder")
data(database, package="CNORfeeder")
data(simData_toy, package="CNORfeeder")

indices = identifyMisfitIndices(cnolist = CNOlistToy_Gene, model = model,
simData = simData, mseThresh = 0.05)

indices Mis-fit indices

Description

Simulation data as obtained from the identifyMisfitIndices() function.

Usage
indices
Format

indices is a list of poorly predicted measurements.

Source

This object is generated from the dynamic-feeder example

12

integrateLinks

integratedModel

Integrated Model

Description

PKNIist object as obtained from the integrateLinks() function.

Usage

integratedModel

Format

integratedModel is the model we obtain after the integration of the new links.

Source

This object is generated from the dynamic-feeder example

integratelinks

Integrating the new links to the PKN

Description

This function integrates the new links inferred via the FEED method or from the database to the

original PKN.

Usage

integratelLinks(feederObject = feederObject, cnolist = cnolist, database = NULL)

Arguments

feederObject
cnolist
database

Details

a feederObject structure, as produced by buildFeederObjectDynamic

a cnolist structure, as produced by makeCNOlist

a database of interactions which can be optionally provided as an interaction
matrix with 3 or 4 colums (source of interaction, sign of interaction, target of
interaction and optionally a weight value from O to 1 indicating the significance
of that interaction in the database). Default: database=NULL

This function integrates the new links inferred via the FEED method or from the database to the
original PKN. Moreover it indicates which are the integrated links and if a weighted database has
been used it also shows the weights assigned to each integrated link. Links that are present in the
original PKN are assigned a database weight of 0, integrated links that have been inferred via the
FEED method and are not present in the database are assigned a database penalty of Inf, while
integrated links present in the database take values between 0 and 1.

linksRanking 13

Value

this function returns a list with fields:

model the integrated model

integlinksIdx indices pointing towards the newly integrated links of the model
integSpeciesIdx
indices pointing towards the newly integrated species of the model

databaseWeight weights assigned based on the presence of links in the database

Author(s)

E.Gjerga

Examples

data(feederObject_toy, package="CNORfeeder")
data(CNOlistToy_Gene, package="CNORfeeder")
data(CNOlistToy_Gene, package="CNORfeeder")

integratedModel = integrateLinks(feederObject = feederObject, cnolist = CNOlistToy_Gene,
database = NULL)

linksRanking Ranking of links inferred from data

Description
This function uses data (CNOlist) to rank links based on measurement error model as used by FEED
method to reverse-engineer the network.

Usage

linksRanking(CNOlist, measErr=c(@.1, @), savefile=FALSE)

Arguments
CNOlist a CNOlist structure, as produced by makeCNOlist
measErr a 2 value vector (errl, err2) defining the error model of the data as sd*2 = err1"2

+ (err2*data)”2, default to ¢(0.1, 0)
savefile TRUE to save the file in txt format, FALSE not. Default is FALSE.

14 makeBTables

Details

This function is similar to the fist step of FEED to reverse engineer the network strictly from data,
i.e. the inference of Boolean tables, as described in (Eduati et al., PLoS ONE, 2010) and imple-
mented in makeBTables. Links are ranked according to the upper limit value of parameterk allowing
the presence of the link, where k is the parameter which is multiplied by the measurement error in
order to assess the relevance of a link. The function returs link in decreasing order of importance and
associate to each link a value (maximum value of k allowing the presence of the link) quantifying
its relevance.
Value

this function returns a list with fields:
Lrank a matrix in which each link is associated with a numerical value, links are or-
dered in decreasing order of reliability)
Author(s)
F.Eduati

References
F. Eduati, A. Corradin, B. Di Camillo, G. Toffolo. A Boolean approach to linear prediction for
signaling network modeling. PLoS ONE; 5(9): €12789.

See Also
makeCNOlist, makeBTables

Examples

data(CNOlistDREAM, package="CellNOptR")
Lrank <- linksRanking(CNOlist=CNOlistDREAM, measErr=c(@.1, 0))

makeBTables Make Boolean tables

Description

This function uses data (CNOlist) to infer a Boolean table for each measured protein, codifying if a
particular stimulus inhibitor combination affects the protein. A stimulus or an inhibitor significantly
affects an output protein if it is able to modify its activity level of a quantity that exceeds the
uncertainty associated with its measurement.

Usage

makeBTables(CNOlist, k=2, measErr=c(@0.1, @), timePoint=NA)

makeBTables

Arguments

CNOlist
k

measkErr

timePoint

Details

15

a CNOlist structure, as produced by makeCNOlist

a parameter that determine the threshold of significancy of the effect of stimuli
and inhibitors, default to 2

a 2 value vector (errl, err2) defining the error model of the data as sd*2 = err1/2
+ (err2*data)”2, default to c(0.1, 0)

the time point to be considered for the inference of the Boolean tables (i.e. "t1"
or "t2"), if not specified all time points are consideres

This function computes the fist step of FEED to reverse engineer the network strictly from data, i.e.
the inference of Boolean tables, as described in (Eduati et al., PLoS ONE, 2010). For each protein,
a Boolean table is inferred having one columns for each stimulus and one row for each inhibitor. If
a stimulus produces a significant effect on the activity level of the protein this is codified with a 1 in
the corresponding column, if also the inhibitor affects the protein there is a 2 in the corresponding
cell. The sign of the regulation is coded in separate tables.

Value

this function returns a list with fields:

namesSignals
tables

NotMatStim

NotMatInhib

Author(s)
F.Eduati

References

a vector of names of signals

a list with one Boolean table for each protein codifying the effect of stimuli
(columns) and inhibitors (rows), 1 if the stimulus affect the protein, 2 if also the
inhibior does

has the same format as tables but just contains a 1 if the regulation has a negative
effect, and O otherwise
has the same format as tables but just contains a 1 if the regulation has a negative
effect, and 0 otherwise

F. Eduati, A. Corradin, B. Di Camillo, G. Toffolo. A Boolean approach to linear prediction for
signaling network modeling. PLoS ONE; 5(9): €127809.

See Also

makeCNOlist, mapBTables2model

Examples

data(CNOlistDREAM, package="CellNOptR")
BTable <- makeBTables(CNOlist=CNOlistDREAM, k=2, measErr=c(0.1, 0))

16 mapBTables2model

mapBTables2model Integrate Boolean tables with the model

Description
This function infers the network from the Boolean tables and integrates it with the network encoded
in the model (generally derived from prior knowledge), adding links that are missing.

Usage
mapBTables2model (BTable,model,optimRes=NA,allInter=TRUE, compressed=TRUE)

Arguments
BTable a BTable list, as created by makeBTables
model a model list, as created by readSif
optimRes a bit string with the reaction of the model to be considered, default considers all
reactions
alllnter one new link in the network can correspond to more links in the model, set it to
TRUE if you want to add all possible links, FALSE to add only one link, default
is TRUE
compressed this argument is used to decede how to deal with unmeasured and unperturbed
nodes (white nodes). As general guideline, it should be set to TRUE if the PKN
has been compressed in the preprocessing step, FALSE otherwise. Default is
TRUE.
Details

The function receive as input the Boolean Tables, infers the data-driven network form them (as
descibed in (Eduati et al., PLoS ONE, 2010)) and integrates it with the model, returning a new
model with the integrated links. If the Model is not given as input (Model=NULL), the data-driven
network is returned as model.

Value

a new model with the integrated links and an additional field:

indexIntegr a vector with the indexes of the integrated links

Author(s)
F.Eduati

References

F. Eduati, A. Corradin, B. Di Camillo, G. Toffolo. A Boolean approach to linear prediction for
signaling network modeling. PLoS ONE; 5(9): e12789.

mapDDNZ2model 17

See Also
readSif, readMIDAS, makeBTables

Examples

data(CNOlistDREAM, package="CellNOptR")

data(DreamModel, package="CellNOptR")

model<-CellNOptR: :preprocessing(data=CNOl1istDREAM, model=DreamModel)
BTable <- makeBTables(CNOlist=CNOlistDREAM, k=2, measErr=c(0.1, 0))
modelIntegr <- mapBTables2model (BTable=BTable,model=model,allInter=TRUE)
modelIntegr$reacID[modelIntegr$indexIntegr] to see the integrated links

mapDDN2model Integrate data-drive network with the model

Description
This function integrates the data-driven network (in sif format) with the network encoded in the
model (generally derived from prior knowledge), adding links that are missing.

Usage
mapDDN2model (DDN, model,CNOlist,allInter=TRUE)

Arguments
DDN a sif file encoding a data-driven network, as created by Binference or Mlinfer-
ence
model a model list, as created by readSif
CNOlist a CNOlist, as created by makeCNOlist
alllnter one new link in the network can correspond to more links in the model, set it to
TRUE if you want to add all possible links, FALSE to add only one link, default
is TRUE
Details

The function receives as input a sif file with the data-driven network, as created by Binference or

Mlinference, and integrates it with the model, returning a new model with the integrated links.
Value

a new Model with the integrated links and an additional field:

indexIntegr a vector with the indexes of the integrated links

Author(s)
F.Eduati

18 Mlinference

See Also
readSif, readMIDAS, Binference, Mlinference

Examples

data(CNOlistDREAM, package="CellNOptR")
data(DreamModel, package="CellNOptR")
model<-CellNOptR: :preprocessing(data=CNOlistDREAM, model=DreamModel)

Not run:
DDN<-Binference (CNOlistDREAM, tempCheckOrders=10, maxIter=100,
filename="BAYESIAN")

modelIntegr<-mapDDN2model (DDN=DDN,model=model,CNOlist=CNO1istDREAM)

End(Not run)

MIinference Mutual information based network inference

Description
This function uses data (CNOlist) to infer a data-driven network using the mutual information based
appoaches ARACNe and CLR as implemented in the minet package.

Usage

MIinference(CNOlist, method="ARACNE"”, PKNgraph=NULL,
filename="ARACNE")

Arguments
CNOlist a CNOlist structure, as produced by makeCNOlist
method a character, the name of the method to be used: ARACNE or CLR. Default,
ARACNE
PKNgraph a network to be used for comparison to assess the directionality of some links.
Default is NULL.
filename name of the sif file saved, default ARACNE
Details

This function transforms the data in a format compatible with minet package, infers the network
using aracne or clr as implemented in the minet package and returns the network in the sif format.
It is important to notice that mutual information approaches do not allow for determining the di-
rectionality of the links thus both directions are considered. The function allows to give as input a
network in graph format (graph package, see sif2graph to convert from sif to graph format) to be
used as comparison to assess the directionality of some links, e.g. PKN.

model 19

Value

sif the inferred data-driven network in sif format

Author(s)
F.Eduati

References

P. E. Meyer, F. Lafitte and G. Bontempi (2008). MINET: An open source R/Bioconductor Package
for Mutual Information based Network Inference. BMC Bioinformatics, 9(1), 2008

See Also
mapDDN2model, sif2graph, model2sif

Examples

library(CellNOptR)

library(CNORfeeder)

data(CNOlistDREAM, package="CellNOptR")
data(DreamModel, package="CellNOptR")
PKNgraph<-sif2graph(model2sif (DreamModel))

method="ARACNE"

#method="CLR"

DDN<-MIinference(CNOlist=CNOlistDREAM, method=method,
PKNgraph=PKNgraph, filename=method)

model Prior Knowledge Network

Description

Model object from the dynamic-feeder example.

Usage

model

Format

model is an PKNlist with proteins as nodes and undirected links as physical protein interactions.

Source

This object is generated from the dynamic-feeder example

20 runDynamicFeeder

PPINigraph Protein-protein interaction netwrok

Description

The human protein-protein interaction network was built using a unified PPI dataset obtained as
APID (Prieto,C. and De Las Rivas,J. 2006), by the combination of interactions coming from six
source databases. The starting whole dataset was composed by 68488 human physical protein-
protein interactions validated at least by one experimental method and reported in one article pub-
lished in PubMed. From this dataset we obtained two PPI subsets with increasing confidence: a set
of 28971 interactions validated by at least one binary experimental method (binary as defined in (De
Las Rivas,J. and Fontanillo,C. 2010)); a set 6033 interactions validated by at least two experimental
methods, one of them binary.

Usage
PPINigraph

Format

PPINigraph is an igraph with proteins as nodes and undirected links as physical protein interactions.

Source

This network was bult for the analysis performed in (Eduati,F. et al. 2012)

References

1. F. Eduati, J. De Las Rivas, B. Di Camillo, G. Toffolo, J. Saez-Rodriguez. Integrating literature-
constrained and data-driven inference of signalling networks. Bioinformatics, 28(18):2311-
2317, 2012.

2. C. Prieto, J. De Las Rivas. APID: Agile Protein Interaction DataAnalyzer. Nucleic Acids
Res., 34, W298-302, 2006.

3. J. De Las Rivas, C. Fontanillo. Protein-protein interactions essentials: key concepts to building
and analyzing interactome networks. PLoS Comput.Biol., 6, e1000807, 2010.

runDynamicFeeder Modelling the integrated PKN with CNORode

Description

This function evaluates the effects of possible feeder mechanisms which are added to the PKN.

Usage

runDynamicFeeder(cnolist = cnolist, integratedModel = integratedModel, ode_parameters = ode_parameters

runDynamicFeeder 21

Arguments

cnolist a cnolist structure, as produced by makeCNOlist
integratedModel
the integrated model as returned from integrateLinks

ode_parameters a list with the ODEs parameter information.

penFactor_k a penalty factor for the new integrated links obtained from the FEED algorithm
and which are not present in the database (if the database was given). Default:
penFactor_k = 100

penFactor_tau a penalty factor for all the new nodes integrated in the PKN. Default: penFac-
tor_tau =1

penFactorPIN_k apenalty factor for the new integrated links and which are present in the database
(for the cases when the database was given). Default: penFactorPIN_k = 10

paramsSSm a list of SSm parameters. default is the list returned by defaultParametersSSm

Details

This function evaluates the effects of possible feeder mechanisms which are added to the PKN. The
analysis performed is a simple CNORode analysis over the integrated network where the newly
integrated links are supposed to be penalised more than the links present in the original PKN. If
a database of interactions is also provided by the user, than normally the links inferred from the
FEED mechanism and which re not present in the database should be more penalised than the ones
that are. There is also the opportunity to weight database interactions based on their relevance (i.e.
number of resources, etc.).

Value
this function returns a list with fields:

Parameters the inferred optimal ODE parameters
Integrated-Model
the integrated model which was optimised

CNOlist the CNOlist object containing the data

Author(s)

E.Gjerga

Examples

data(integratedModel_toy, package="CNORfeeder")
data(CNOlistToy_Gene, package="CNORfeeder")
data(simData_toy, package="CNORfeeder")

To be run with the recent version of the CNORode package:
https://github.com/saezlab/CNORode

#

library(CNORode)

22 UniprotIDdream

#
paramsSSm=defaultParametersSSm()
#
ode_parameters=createlLBodeContPars(integratedModel$model, LB_n = 1, LB_k = 0,
LB_tau =@, UB_n = 3, UB_k = 1, UB_tau = 1, default_n = 3,
default_k = 0.5, default_tau = 0.01, opt_n = FALSE, opt_k = TRUE,
opt_tau = TRUE, random = TRUE)
#
result = runDynamicFeeder(cnolist = CNOlistToy_Gene, integratedModel = integratedModel,
ode_parameters = ode_parameters, paramsSSm = paramsSSm,
penFactor_k = 2, penFactorPIN_k = 0.1, penFactor_tau = 1)
#
simData CNORode simuation data
Description

Simulation data as obtained from the plotLBodeFitness() function.

Usage

simData

Format

simData is a list containing simulated values for a specific set of ode parameters.

Source

This object is generated from the dynamic-feeder example

UniprotIDdream Uniprot identifiers for proteins in DreamModel

Description

This data object contains the Uniprot identifiers corresponding to DreamModel of CelINOptR pack-
age, in order to associat them with the corresponding nodes in the protein-protein interaction net-
work (PPINigraph).

Usage

UniprotIDdream

weighting 23

Format

UniprotIDdream is a list where each element is a protien of the DreamModel and is associated with
the respective Uniprot identifiers.

Source

This data object is manually derived from the Uniprot database.

References

1. F. Eduati, J. De Las Rivas, B. Di Camillo, G. Toffolo, J. Saez-Rodriguez. Integrating literature-
constrained and data-driven inference of signalling networks. Bioinformatics, 28(18):2311-
2317, 2012.

2. J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt
and P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with
functional analysis of mammalian signal transduction, Molecular Systems Biology, 5:331,
2009.

weighting Weight integrated links.

Description

This function weights links integrated in the model using additional penalty and/or information
from protien-protein interactions networks (PINs).

Usage

weighting(modelIntegr,PKNmodel,CNOlist,integrFac,UniprotID,PPI)

Arguments

modelIntegr the integrated model as created by mapDDN2model or mapBTables2model

PKNmodel the model of the original prior-knowledge network

CNOlist a CNOlisi, as created by makeCNOlist

integrFac a number indicating the penalty for integrated links

UniprotID a list with the Uniprot identifiers of proteins in the PKN

PPI an igraph of the PIN to be used, if no network is provided (=NULL) this infor-

mation is not used. Default is NULL.

24 weighting

Details

Integrated links are less reliable than links from the PKN, thus should be penalized in the optimiza-
tion process. This function allows to include a panalty for integrated links (integrFact). Furthermore
links can be differently prioritized based on information derived from pritein interaction networks
(PIN): the basic idea is that if, for a directed link A -> B integrated in the PKN, there is a corre-
sponding path in the PIN, it is more plausible that there is a molecular pathway A -> B. Because
shorter paths are more feasible, as a first approximation the shortest path length between A and
B in the PIN can be used as a reliability score for the integrated link. Since the optimization is
performed on a compressed version of the PKN, one link integrated in the compressed network
generally corresponds to multiple possible links integrated in the PKN and the shortes path of all.
The weight for each integrated link in the compressed network is thus computed as (1 + the inverse
of the sum of the inverse of the corresponding PKN of the shortest paths in the PIN). A high quality
network of known human physical protein-protein interaction assembled from multiple databases
is provided with the package: interactions were included only if validated by at least one binary
experimental method in a published paper and the number of experimental evidences was reported
for each interaction.

Value

modelIntegr the input modellntegr with an additional field: a vector with the weights of the
integrated links

Author(s)
F.Eduati

See Also
mapDDN2model, mapBTables2model, gaBinaryT1W

Examples

data(CNOlistDREAM, package="CellNOptR")
data(DreamModel, package="CellNOptR")
data(UniprotIDdream, package="CNORfeeder")

model<-CellNOptR: :preprocessing(data=CNOlistDREAM, model=DreamModel)

BTable <- makeBTables(CNOlist=CNOlistDREAM, k=2, measErr=c(0.1, 0))
modelIntegr <- mapBTables2model(BTable=BTable,model=model,allInter=TRUE)

modelIntegrWeight <- weighting(modelIntegr=modelIntegr, PKNmodel=DreamModel,
CNOlist=CNOlistDREAM, integrFac=10)

weighting using PPI might take some minutes

Not run:

data(UniprotIDdream, package="CNORfeeder")

data(PPINigraph,package="CNORfeeder")

modelIntegrWeight2 <- weighting(modelIntegr=modelIntegr, PKNmodel=DreamModel,
CNOlist=CNOlistDREAM, integrFac=10, UniprotID=UniprotIDdream,

weighting

PPI=PPINigraph)

End(Not run)

25

Index

x datasets PPINigraph, 20
cnolist, 6
database, 7 readMIDAS, 17, 18
feederObject, 7 readSif, 16-18
indices, 11 runDynamicFeeder, 20
integratedModel, 12)
model. 19 sif2graph, 18, 19
PPINigraph, 20 simData, 22
simData, 22 .
UniprotIDdream, 22 UniprotIDdream, 22
« package weighting, 23

CNORfeeder-package, 2

Binference, 4, 17, 18
buildFeederObjectDynamic, 5, 12

cnolist, 6
CNORfeeder (CNORfeeder-package), 2
CNORfeeder-package, 2

database, 7
feederObject, 7

gaBinaryT1, 8, 9
gaBinaryT1W, 8, 24

identifyMisfitIndices, 5, 10
indices, 11
integratedModel, 12
integratelLinks, 12

linksRanking, 13

makeBTables, /4, 14, 16, 17
makeCNOlist, 4, 5, 10, 12-15,17, 18, 21,23
mapBTables2model, 15, 16, 23, 24
mapDDN2model, 4, 17, 19, 23, 24
MIinference, 17, 18, 18

model, 19

model2sif, 19

26

	CNORfeeder-package
	Binference
	buildFeederObjectDynamic
	cnolist
	database
	feederObject
	gaBinaryT1W
	identifyMisfitIndices
	indices
	integratedModel
	integrateLinks
	linksRanking
	makeBTables
	mapBTables2model
	mapDDN2model
	MIinference
	model
	PPINigraph
	runDynamicFeeder
	simData
	UniprotIDdream
	weighting
	Index

