Package ‘LegATo’

October 30, 2025

Title LegATo: Longitudinal mEtaGenomic Analysis Toolkit
Version 1.5.0

Description LegATo is a suite of open-source software tools for
longitudinal microbiome analysis. It is extendable to several
different study forms with optimal ease-of-use for researchers.
Microbiome time-series data presents distinct challenges including
complex covariate dependencies and variety of longitudinal study
designs. This toolkit will allow researchers to determine which
microbial taxa are affected over time by perturbations such as onset
of disease or lifestyle choices, and to predict the effects of these
perturbations over time, including changes in composition or stability
of commensal bacteria.

License MIT + file LICENSE
URL https://wejlab.github.io/LegATo-docs/

BugReports https://github.com/wejlab/LegATo/issues
Depends R (>=4.4.0)

Imports animalcules, data.table, dplyr, ggplot2, magrittr,
MultiAssayExperiment, plyr, rlang, S4Vectors, stringr,
SummarizedExperiment, tibble, tidyr, tidyselect

Suggests BiocStyle, broom, broom.mixed, circlize, ComplexHeatmap,
emmeans, geepack, ggalluvial, ggeffects, grDevices, knitr,
Ime4, ImerTest, methods, RColorBrewer, rmarkdown, spelling,
TBSignatureProfiler, testthat (>= 3.0.0),
TreeSummarizedExperiment, usethis, vegan

VignetteBuilder knitr

BiocType Software

biocViews MicrobiomeData, ReproducibleResearch, SequencingData
Config/testthat/edition 3

Encoding UTF-8

Language en-US

LazyData FALSE

https://wejlab.github.io/LegATo-docs/
https://github.com/wejlab/LegATo/issues

RoxygenNote 7.3.2

git_url https://git.bioconductor.org/packages/LegATo
git_branch devel

git_last_commit e6be75b

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2025-10-30

Author Aubrey Odom [aut, cre] (ORCID: <https://orcid.org/0000-0001-7113-7598>),
Yilong Zhang [ctb] (Author of NMIT functions),
Jared Pincus [csl] (ORCID: <https://orcid.org/0000-0001-6708-5262>,
other: Naming consultant of package),
Jordan Pincus [art] (Artist of LegATo icon)

Maintainer Aubrey Odom <aodom@bu.edu>

Contents

LegATo-package e
clean MAE e
create_formatted MAE
distinctColors L
filter_animalcules MAE
filter MAE e
get_long data L
get_stacked_data L
get_summary_table L L
QL IOP_taXa e e e e e
NMIT . . .
parse. MAE_SE
plot_alluvial e
plot_heatmap
plot_spaghetti
plot_stacked_area
plot_stacked_bar
run_gee_model L
run_Imm_model
run_Im_model
test_hotelling_t2
TSCOT . . v v it e e e e e e e e e e

Index

Contents

https://orcid.org/0000-0001-7113-7598
https://orcid.org/0000-0001-6708-5262

LegATo-package 3

LegATo-package LegATo: LegATo: Longitudinal mEtaGenomic Analysis Toolkit

Description

LegATo is a suite of open-source software tools for longitudinal microbiome analysis. It is ex-
tendable to several different study forms with optimal ease-of-use for researchers. Microbiome
time-series data presents distinct challenges including complex covariate dependencies and variety
of longitudinal study designs. This toolkit will allow researchers to determine which microbial taxa
are affected over time by perturbations such as onset of disease or lifestyle choices, and to pre-
dict the effects of these perturbations over time, including changes in composition or stability of
commensal bacteria.

Author(s)

Maintainer: Aubrey Odom <aodom@bu. edu> (ORCID)

Other contributors:

* Yilong Zhang <elong@527@gmail.com> (Author of NMIT functions) [contributor]
¢ Jared Pincus <pincus@bu.edu> (ORCID) (Naming consultant of package) [consultant]

* Jordan Pincus <pincus@bu.edu> (Artist of LegATo icon) [artist]

See Also
Useful links:

* https://wejlab.github.io/LegATo-docs/
* Report bugs at https://github.com/wejlab/LegATo/issues

clean_MAE Clean up taxon names in a MultiAssayExperiment

Description

This functional is an optional method for fixing up taxon names in a MultiAssayExperiment to
be run before filter_MAE. Specifically, it removes brackets from species names, replaces species
labeled as "others" with "sp." and finally replaces underscores with spaces.

Usage

clean_MAE(dat, which_experiment = NULL, which_assay = NULL)

https://orcid.org/0000-0001-7113-7598
https://orcid.org/0000-0001-6708-5262
https://wejlab.github.io/LegATo-docs/
https://github.com/wejlab/LegATo/issues

4 create_formatted MAE

Arguments

dat A MultiAssayExperiment object specially formatted as an animalcules output.
which_experiment
Character string. If type = "MAE", then this is the name of the experiment to be
accessed. If NULL, will default to the first available experiment.

which_assay Character string. Regardless of whether type = "MAE” or "SE", this is the name
of the selected SummarizedExperiment object. If NULL, defaults to first listed.

Value
An animalcules-formatted MultiAssayExperiment object with cleaned-up taxonomy nomencla-
ture.

Examples

in_dat <- system.file("extdata/MAE_small.RDS", package = "LegATo") |> readRDS()
clean_MAE(in_dat)

create_formatted_MAE Create a formatted MultiAssayExperiment compatible with LegATo

Description

This function takes either a counts_dat, tax_dat, and metadata_dat input OR a TreeSummarized-
Experiment input and creates a specifically-formatted MAE object that is compatible for use with
LegATo and animalcules. Checks are performed on inputs to ensure that they can be integrated

properly.

Usage

create_formatted_MAE(
counts_dat = NULL,
tax_dat = NULL,
metadata_dat = NULL,
tree_SE = NULL

)
Arguments
counts_dat A matrix, data.table, or data.frame consisting of microbial raw counts data. The
colnames should be sample names and the rownames should be in the same
order as the tax_dat entries. Not required if tree_SE is passed in.
tax_dat A matrix, data.table, or data.frame of hierarchical taxonomic data. Should have

non non

columns such as "family", "genus", "species" with each row uniquely delineat-
ing a different taxon. The rows should be in the same order as the rows of
counts_dat. Not required if tree_SE is passed in.

distinctColors 5

metadata_dat A metadata table with rownames equivalent to the samples that are the colnames
of the counts_dat. Not required if tree_SE is passed in.

tree_SE A TreeSummarizedExperiment object with counts, taxonomy, and metadata.

Value

A MultiAssayExperiment object.

Examples

nsample <- ntaxa <- 3

counts_dat <- data.frame(
"X123" = runif(ntaxa, 0, 500),
"X456" = runif(ntaxa, @, 500),
"X789" = runif(ntaxa, 0, 500)

)
tax_dat <- data.frame(
"class” = c("rand1”, "rand2”, "rand3"),
"species” = c("rand4", "rand5", "rand6")
) 1>

as.data.frame()
Set rownames as lowest unique taxonomic level
rownames(tax_dat) <- tax_dat$species
rownames (counts_dat) <- tax_dat$species
metadata <- data.frame(
Sample = c("X123", "X456", "X789"),
Group = c("A", "B", "A"),
Var = rnorm(nsample)
)
rownames (metadata) <- metadata$Sample
out_MAE <- create_formatted_MAE(counts_dat, tax_dat, metadata)

TreeSummarizedExperiment

tse <- TreeSummarizedExperiment: :TreeSummarizedExperiment
assays = list(counts = counts_dat),
colData = metadata,
rowData = tax_dat

)
out_MAE_2 <- create_formatted_MAE(tree_SE = tse)
out_MAE_2
distinctColors Generate a distinct palette for coloring different clusters.
Description

Create a distinct palette for coloring different heatmap clusters. The function returns colors for
input into ComplexHeatmap:Heatmap(). The "grDevices" package is required to use this function.

6 filter_animalcules. MAE

Usage

distinctColors(
n?
hues = c("red”, "cyan”, "orange”, "blue”, "yellow”, "purple”, "green”, "magenta"),
saturation.range = c(0.7, 1),
value.range = c(0.7, 1)

)
Arguments
n an integer describing the number of colors to generate. Required.
hues a vector of character strings indicating the R colors available from the colors()

function. These will be used as the base colors for the clustering scheme. Differ-

ent saturations and values (i.e. darkness) will be generated for each hue. Default

isc("red”, "cyan", "orange","blue”, "yellow"”, "purple”, "green", "magenta”)
saturation.range

a numeric vector of length 2 with values between 0 and 1 giving the range of
saturation. The default is c(0.25, 1).

value.range a numeric vector of length 2 with values between 0 and 1 giving the range of
values. The defaultis c(0.5, 1).

Value

A vector of distinct colors that have been converted to HEX from HSV.

Examples

distinctColors(10)

filter_animalcules_MAE

Filter a MultiAssayExperiment to a top percentage of taxa and label
the rest as "Other"

Description

This function takes an animalcules-formatted MultiAssayExperiment (MAE) object and identifies
all taxa at the "genus" level that represent <filter_prop average relative abundance across all
samples in the MAE. After identification at the genus level, taxa across the genus and species levels
are then consolidated into the category "Other".

Usage

filter_animalcules_MAE(dat, filter_prop = 0.001)

filter MAE 7

Arguments
dat A MultiAssayExperiment object specially formatted as an animalcules output.
filter_prop A double strictly between 0 and 1, representing the proportion of relative abun-
dance at which to filter. Default is 0.001.
Value

An animalcules-formatted MultiAssayExperiment object with appropriate filtration.

Examples

in_dat <- system.file("extdata/MAE_small.RDS", package = "LegATo") |> readRDS()
filter_animalcules_MAE(in_dat, 0.01)

filter_MAE Filter a MultiAssayExperiment object to keep a top percentage of taxa

Description

This function takes an animalcules-formatted MultiAssayExperiment (MAE) object and identifies
all taxa at the OTU level of choice that exhibit a relative abundance greater than or equal to a
relative abundance percent threshold, relabu_threshold, in at least occur_pct_cutoff% of the
total samples. After filtration, taxa across the specified OTU level and all downstream levels are
then consolidated into the category "Other".

Usage

filter_MAE(
dat,
relabu_threshold = 3,
occur_pct_cutoff = 5,

taxon_level = "genus"”
)
Arguments
dat A MultiAssayExperiment object specially formatted as an animalcules output.

relabu_threshold
A double(percentage) between 0 and 100, representing the relative abundance
criterion that all OTUs should meet to be retained. The smaller the threshold,
the fewer the OTUs will be retained. Default is 3%.

occur_pct_cutoff
A double (percentage) between 0 and 100 representing the percent cutoff for
how many OTUs must meet the relabu_threshold across the samples to be
retained. It is wise to keep the number of samples in mind when setting this
parameter. Default is 5%.

8 get_long_data

taxon_level Character string indicating the level of taxonomy to aggregate the counts data.
Must be the name of a column in MultiAssayExperiment: :rowData(dat).

Value

An animalcules-formatted MultiAssayExperiment object with major OTUs retained.

Examples
in_dat <- system.file("extdata/MAE_small.RDS", package = "LegATo") |>
readRDS ()
filter_MAE(in_dat, relabu_threshold = 3, occur_pct_cutoff = 5,
taxon_level = "genus")
get_long_data Create a long data.frame from a MultiAssayExperiment counts object
Description

This function takes a MultiAssayExperiment object and a specified taxon level of interest and
creates a long data. frame that can be used more easily for plotting counts data.

Usage

get_long_data(dat, taxon_level, log = FALSE, counts_to_CPM = FALSE)

Arguments
dat A MultiAssayExperiment object specially formatted as an animalcules output.
taxon_level Character string indicating the level of taxonomy to aggregate the counts data.
Must be the name of a column in MultiAssayExperiment: :rowData(dat).
log logical. Indicate whether an assay returned should be the log of whichever assay

is specified in "output_name”. If counts_to_CPM = TRUE as well, then a log
CPM assay will also be created. Default is FALSE.

counts_to_CPM logical. This argument only applies if the input_type is a counts assay. If TRUE,
then the output assays will include a normalized CPM assay. If log = TRUE as
well, then a log CPM assay will also be created. Default is TRUE.

Value

A data. frame consisting of the counts data, taxa, and metadata.

Examples

in_dat <- system.file("extdata/MAE_small.RDS", package = "LegATo") |> readRDS()
out <- get_long_data(in_dat, "genus"”, log = TRUE, counts_to_CPM = TRUE)
head(out)

get_stacked_data 9

get_stacked_data Create a long data.frame with grouped abundances from a MultiAs-
sayExperiment counts object

Description

This function takes a MultiAssayExperiment object and a specified taxon level of interest and
creates a long data.frame that can be used more easily for plotting counts data in a stacked bar
plot or a stacked area chart. The function groups taxa and computes relative abundance within taxa

strata.
Usage
get_stacked_data(dat, taxon_level = "genus", covariate_1, covariate_time)
Arguments
dat A MultiAssayExperiment object specially formatted as an animalcules output.
taxon_level Character string indicating the level of taxonomy to aggregate the counts data.
Must be the name of a column in MultiAssayExperiment: :rowData(dat).
covariate_1 Character string, the name of the covariate in ‘dat® by which to color and group

samples. Default is NULL.

covariate_time Character string giving the name of the discrete time-based covariate in the
metadata to group abundances by.

Value

A data. frame consisting of the counts data, taxa, and metadata.

Examples

in_dat <- system.file("extdata/MAE_small.RDS", package = "LegATo") |> readRDS()

get_stacked_data(in_dat, "genus"”, covariate_1 = "Sex”, covariate_time = "Month")
get_summary_table Create a table summarizing reads aggregated by grouping variables
on a unit
Description

This function takes a MultiAssayExperiment of microbial read counts and aggregates them by one
or more grouping vars within a unit.

10 get_top_taxa

Usage

get_summary_table(dat, group_vars = NULL)

Arguments
dat A MultiAssayExperiment object specially formatted as an animalcules output.
group_vars A character string or character vector of covariates found in colData(dat) to
use in grouping counts. The variables should be listed in order of desired group-
ing. Default is NULL, which does not rely on a grouping variable and instead
produces statistics for the entirety of the data.
Value

A data. frame of the grouping columns, mean_reads, sd_reads, min_reads, max_reads and num_total.

Examples

in_dat <- system.file("extdata/MAE_small.RDS", package = "LegATo") |> readRDS()
out <- get_summary_table(in_dat, c("Group”, "Subject"))
head(out)

get_top_taxa Obtain a data.frame of ordered taxa abundances at a given level

Description

This function takes a MultiAssayExperiment object and returns a data.frame of the present taxa at
a user-supplied taxonomy level, and outputs the average abundances of the taxa.

Usage

get_top_taxa(dat, taxon_level = "genus")

Arguments
dat A MultiAssayExperiment object specially formatted as an animalcules output.
taxon_level Character string indicating the level of taxonomy to aggregate the counts data.
Must be the name of a column in MultiAssayExperiment: :rowData(dat).
Value

A data.frame

NMIT

Examples

11

in_dat <- system.file("extdata/MAE_small.RDS", package = "LegATo") |> readRDS()
out <- get_top_taxa(in_dat, "genus")

out

NMIT

Nonparametric Microbial Interdependence Test (NMIT)

Description

An R-based implementation of the NMIT, a multivariate distance-based test for group comparisons
of microbial temporal interdependence. The NMIT test provides a comprehensive way to evaluate
the association between key phenotypic variables and microbial interdependence. This function
is recommended for use after a filtering step using filter_MAE. Note, the "ComplexHeatmap"
package is required to use the plotting features of the function. The function requires the "vegan"

package.

Usage

NMIT(
dat,
unit_var,
fixed_cov,

covariate_time,

method = "kendall”,
dist_type = "F",
heatmap = TRUE,
classify = FALSE,
fill_na = 0,

Arguments

dat
unit_var
fixed_cov

covariate_time

method

dist_type

A MultiAssayExperiment object specially formatted as an animalcules output.
a numeric vector of subject.
A character vector of the names of covariates of interest found in dat.

Character string giving the name of the discrete time-based covariate in the
metadata to group abundances by.

an option of the correlation method ("pearson”, "kendall", "spearman"). The
default method is "kendall".

A character string specifying the type of matrix norm to be computed. The
default is "F". * "M" or "m" specifies the maximum modulus of all the elements

in x; ¥ "0", "o" or "1" specifies the one norm, (maximum absolute column

12 parse_ MAE_SE

nin

sum); * "I" or "i" specifies the infinity norm (maximum absolute row sum); *
"F" or "f" specifies the Frobenius norm (the Euclidean norm of x treated as if
it were a vector)

heatmap A logical value indicating whether to draw heatmap. The default is TRUE.
classify A logical value indicating whether to draw a classifier tree. The default is FALSE.
fill_na A number between 0 and 1 to fill NA values. The default value is 0.

Additional arguments to be passed to ComplexHeatmap: :Heatmap().

Value

This function returns an analysis of variance (ANOVA) table showing sources of variation, degrees
of freedom, sequential sums of squares, mean squares, F statistics, partial R-squared and P values,
based on 999 permutations.

Author(s)
Yilong Zhang, Huilin Li, Aubrey Odom

Examples
dat <- system.file("extdata/MAE_small.RDS", package = "LegATo") |> readRDS()
NMIT(dat, unit_var = "Subject”, fixed_cov = "Group"”, covariate_time = "Month")
parse_MAE_SE Parse a MultiExperimentAssay object and extract the elements as
data.frames
Description

This function takes an animalcules-formatted MultiAssayExperiment object and parses it to ex-
tract a named assay alongside the taxonomy and metadata.

Usage
parse_MAE_SE(dat, which_experiment = NULL, which_assay = NULL, type = "MAE")

Arguments

dat Either aMultiAssayExperiment or a SummarizedExperiment object.
which_experiment
Character string. If type = "MAE", then this is the name of the experiment to be
accessed. If NULL, will default to the first available experiment.

which_assay Character string. Regardless of whether type = "MAE" or "SE", this is the name
of the selected SummarizedExperiment object. If NULL, defaults to first listed.

type One of "MAE" denoting aMultiAssayExperiment or "SE" denoting a SummarizedExperiment.

plot_alluvial 13

Value

Returns a list of 3 named data.frame elements, ‘counts®, ‘sam°, and ‘tax‘ denoting the counts data,
sample metadata table, and taxonomy table, respectively.

Examples

in_dat <- system.file("extdata/MAE_small.RDS", package = "LegATo") |> readRDS()
out <- parse_MAE_SE(in_dat)

head (out$tax)

head (out$sam)

head(out$counts)

out2 <- parse_MAE_SE(in_dat[["MicrobeGenetics”]1],
which_assay = "MGX", type = "SE")

plot_alluvial Plot an alluvial diagram of microbial relative abundance

Description

This function takes a MultiAssayExperiment object and returns a alluvial diagram of microbe
relative abundances. The function takes a single covariate as an optional variable by which to create
a grid of multiple plots. Note, the ggalluvial package is required to use this function.

Usage

plot_alluvial(
dat,
taxon_level,
covariate_1 = NULL,
covariate_time,
palette_input = NULL,
title = paste(”"Relative abundance at", taxon_level, "level"),
subtitle = NULL

)
Arguments
dat A MultiAssayExperiment object specially formatted as an animalcules output.
taxon_level Character string indicating the level of taxonomy to aggregate the counts data.
Must be the name of a column in MultiAssayExperiment: :rowData(dat).
covariate_1 Character string giving the name of a column inMultiAssayExperiment: :colData(dat)

on which to create multiple plots. The default is NULL.

covariate_time Character string giving the name of the discrete time-based covariate in the
metadata to group abundances by.

14 plot_heatmap

palette_input A character vector of colors that is at minimum the same length of the number of
taxa (specified with taxon_level). The default is NULL and relies on ggplot2’s
default scheme.

title A character string providing the plot title.
subtitle A character string providing the plot subtitle. The default is NULL.
Details

If further manipulation of specific parameters is desired, users can add ggplot2 function calls to
the output of the function.

Value

A ggplot?2 plot.

Examples

in_dat <- system.file("extdata/MAE_small.RDS", package = "LegATo") |> readRDS()
plot_alluvial(in_dat, taxon_level = "family"”, covariate_1 = "Group”, covariate_time = "Month"”,
palette_input = rainbow(25))

plot_heatmap Plot a ComplexHeatmap.

Description

This function takes an arbitrary dataset as an input and returns a ComplexHeatmap plot of samples
based on similarity of microbial abundances. The function takes arguments listed here as well as
any others to be passed on to ComplexHeatmap: :Heatmap(). Note, the "circlize" and "Complex-
Heatmap" packages are required to use this function.

Usage

plot_heatmap(
inputData,
annotationData = NULL,
plot_title = NULL,
name = "Input data”,
plottingColNames,
annotationColNames = NULL,
colList = list(),
scale = FALSE,
showColumnNames = TRUE,
showRowNames = TRUE,
colorSets = c("Set1"”, "Set2", "Set3", "Pastell”, "Pastel2"”, "Accent"”, "Dark2",

"Paired"),

plot_heatmap 15

choose_color = c("blue”, "gray95", "red"),
split_heatmap = "none”,
annotationplotting = NULL,

column_order = NULL,

Arguments

inputData an input data object. It should either be of the class SummarizedExperiment and
contain the data and annotation data as columns in the colData, or alternatively
be of the classes data.frame or matrix and contain only the plotting data.
Required.

annotationData adata.frame or matrix of annotation data, with one column. Only required if
inputData is a data.frame or matrix of plotting data. The row names must
equal those of the inputData column names. Default is NULL.

plot_title a character string with the plot title of the heatmap. The default is NULL.

name a character string with the name of the data to be displayed. Default is "Input
data”.

plottingColNames

a vector of the column names in colData that contain the plotting data. Only

required if inputData is a SummarizedExperiment object.
annotationColNames

a vector of the column names in colData that contain the annotation data. Only

required if inputData is a SummarizedExperiment. Default is NULL.

collList anamed list of named vectors specifying custom color information to pass to
ComplexHeatmap: :Heatmap(). The list should have as many elements as there
are annotation columns, and each element name should correspond exactly with
the name of each annotation column. The colors in the vector elements should be
named according to the levels of the factor in that column’s annotation data if the
annotation is discrete, or it should be produced with circlize: :colorRamp2 if
the annotation is continuous. By default, ColorBrewer color sets will be used.
See the the parameter colorSets for additional details.

scale logical. Setting scale = TRUE scales the plotting data. The default is FALSE.
showColumnNames
logical. Setting showColumnNames = TRUE will show the column names (i.e.
sample names) on the heatmap. The default is TRUE.

showRowNames logical. Setting showColumnNames = TRUE will show the row names (i.e. plot-
ting names) on the heatmap. The default is TRUE.

colorSets a vector of names listing the color sets in the order that they should be used
in creating the heatmap. By default, this function will use the color sets in the
order listed in Usage for annotation information. You may replace the default
with the same collection of sets in order that you want to use them, or provide
custom color sets with the colList parameter.

choose_color a vector of color names to be interpolated for the heatmap gradient, or a colorRamp
function produced by circlize: :colorRamp2. The defaultis c("blue”, "gray95"”,
n r,ed n) 3

16 plot_heatmap

split_heatmap a character string either giving the column title of annotationplotting con-
taining annotation data for which to split the heatmap rows, or "none” if no split
is desired.

annotationplotting
a data.frame or matrix with information to be used in splitting the heatmap.
The first column should plotting names. The column of annotation information
should be specified in split_heatmap. Other columns will be ignored. The
default is sigAnnotData.

column_order a vector of character strings indicating the order in which to manually arrange
the heatmap columns. Default is NULL, such that column order is automatically
determined via clustering.

Additional arguments to be passed to ComplexHeatmap: :Heatmap().

Details

If both annotationData = NULL and annotationColNames = NULL, no annotation bar will be drawn
on the heatmap.

Code was adapted from the TBSignatureprofiler R package.

Value

A ComplexHeatmap plot.

Author(s)
David Jenkins, Aubrey Odom

Examples

library(SummarizedExperiment)

Example with a Summarized Experiment data object

dat <- system.file("extdata/MAE_small.RDS", package = "LegATo") |> readRDS()
input_SE <- dat[["MicrobeGenetics"]]

Creating a continuous color ramp annot col list

Hairrange <- range(colData(input_SE)[, "HairLength"1)

color2 <- circlize::colorRamp2(c(Hairrange[1], Hairrange[2]), c("blue”, "red"))
color.list <- list("HairLength” = color2)

Create plot

plot_heatmap(
inputData = input_SE,
name = "Microbe abundances”,
plot_title = "Example Heatmap"”,
plottingColNames = colnames(input_SE),
annotationColNames = "HairlLength”,
colList = color.list,
scale = TRUE,
showColumnNames = TRUE,
showRowNames = FALSE,

plot_spaghetti 17

colorSets =
c(”set1”, "Set2”, "Set3", "Pastell”, "Pastel2”, "Accent”, "Dark2”,
"Paired"),
choose_color = c("blue”, "gray95", "red"),
split_heatmap = "none”,
column_order = NULL

Artificial data example - matrix input
mat_testdata <- rbind(matrix(c(rnorm(80), rnorm(8@) + 5), 16, 10,
dimnames = list(paste@("Taxon"”, seq_len(16)),
paste@("sample”, seq_len(10)))),
matrix(rnorm(1000), 100, 10,
dimnames = list(paste@("Taxon@"”, seq_len(100)),
paste@("sample”, seq_len(10)))))
cov_mat <- data.frame(sample = c(rep("down”, 5), rep("up”, 5))) |>
magrittr::set_rownames(paste@("sample”, seq_len(10)))

Example using custom colors for the annotation information
color2 <- stats::setNames(c("purple”, "black"), c("down”, "up"))
color.list <- list("sample” = color2)

plot_heatmap(
inputData = mat_testdata,
annotationData = cov_mat,
name = "Data”,
plot_title = "Example”,
plottingColNames = NULL,
annotationColNames = NULL,
colList = color.list,
scale = FALSE,
showColumnNames = TRUE,
showRowNames = FALSE,
colorSets = c("Set1", "Set2", "Set3", "Pastell”, "Pastel2”, "Accent"”, "Dark2",

"Paired"),

choose_color = c("blue”, "gray95”, "red"),

split_heatmap = "none”,

column_order = NULL

)
plot_spaghetti Plot a spaghetti volatility plot of microbial abundance for a given
taxon
Description

This function takes a MultiAssayExperiment object and returns a spaghetti plot of microbial abun-
dance delineated by a unit, such as a subject.

18 plot_spaghetti

Usage

plot_spaghetti(
dat,
covariate_time,
covariate_1 = NULL,
unit_var,
taxon_level,
which_taxon,
palette_input = NULL,
title = "Spaghetti Plot",
subtitle = NULL

Arguments

dat A MultiAssayExperiment object specially formatted as an animalcules output.

covariate_time Character string giving the name of the discrete time-based covariate in the
metadata to group abundances by.

covariate_1 Character string, the name of the covariate in ‘dat® by which to color and group
samples. Default is NULL.

unit_var Character string, the name of the column delineating the unit on which the mi-
crobial abundances are changing over time. This is likely something akin to a
subject that repeated measurements are made on.

taxon_level Character string indicating the level of taxonomy to aggregate the counts data.
Must be the name of a column in MultiAssayExperiment: :rowData(dat).

which_taxon Character string, the name of the taxon to plot at the specified taxon level.

palette_input A character vector of colors that is at minimum the same length of the number of
taxa (specified with taxon_level). The default is NULL and relies on ggplot2’s
default scheme.

title A character string providing the plot title.
subtitle A character string providing the plot subtitle. The default is NULL.
Details

If further manipulation of specific parameters is desired, users can add ggplot2 function calls to
the output of the function.

Value

A ggplot2 plot.

Examples

in_dat <- system.file("extdata/MAE_small.RDS", package = "LegATo") |> readRDS()

all_taxa <- get_top_taxa(in_dat, "phylum")

plot_spaghetti(in_dat, taxon_level = "phylum”, covariate_1 = "Group”, covariate_time = "Month",
unit_var = "Subject”, which_taxon = all_taxa$taxon[1],

plot_stacked_area 19

palette_input = rainbow(25))

plot_stacked_area Plot a stacked area chart of microbial relative abundance

Description

This function takes a MultiAssayExperiment object and returns a stacked area chart of microbe
relative abundances. The function takes a single covariate as an optional variable by which to create
a grid of multiple plots.

Usage

plot_stacked_area(
dat,
taxon_level,
covariate_1 = NULL,
covariate_time,
palette_input = NULL,
title = paste(”"Relative abundance at”, taxon_level, "level"),
subtitle = NULL

)
Arguments
dat A MultiAssayExperiment object specially formatted as an animalcules output.
taxon_level Character string indicating the level of taxonomy to aggregate the counts data.
Must be the name of a column in MultiAssayExperiment: :rowData(dat).
covariate_1 Character string giving the name of a column inMultiAssayExperiment: :colData(dat)

on which to create multiple plots. The default is NULL.

covariate_time Character string giving the name of the discrete time-based covariate in the
metadata to group abundances by.

palette_input A character vector of colors that is at minimum the same length of the number of
taxa (specified with taxon_level). The default is NULL and relies on ggplot2’s
default scheme.

title A character string providing the plot title.
subtitle A character string providing the plot subtitle. The default is NULL.
Details

If further manipulation of specific parameters is desired, users can add ggplot2 function calls to
the output of the function.

Value

A ggplot2 plot.

20 plot_stacked_bar

Examples

in_dat <- system.file("extdata/MAE_small.RDS", package = "LegATo") |> readRDS()
plot_stacked_area(in_dat, taxon_level = "phylum”, covariate_1 = "Group”,
covariate_time = "Month”,
palette_input = rainbow(25))

plot_stacked_bar Plot a stacked bar chart of microbial relative abundance

Description

This function takes a MultiAssayExperiment object and returns a stacked bar plot of microbe
relative abundances. The function takes a single covariate as an optional variable by which to create
multiple gridded plots.

Usage

plot_stacked_bar(
dat,
taxon_level,
covariate_1 = NULL,
covariate_time,
palette_input = NULL,
title = paste(”"Relative abundance at", taxon_level, "level"),
subtitle = NULL

)
Arguments
dat A MultiAssayExperiment object specially formatted as an animalcules output.
taxon_level Character string indicating the level of taxonomy to aggregate the counts data.
Must be the name of a column in MultiAssayExperiment: :rowData(dat).
covariate_1 Character string giving the name of a column inMultiAssayExperiment: :colData(dat)

on which to create multiple plots. The default is NULL.
covariate_time Character string giving the name of the discrete time-based covariate in the
metadata to group abundances by.

palette_input A character vector of colors that is at minimum the same length of the number of
taxa (specified with taxon_level). The default is NULL and relies on ggplot2’s
default scheme.

title A character string providing the plot title.
subtitle A character string providing the plot subtitle. The default is NULL.
Details

If further manipulation of specific parameters is desired, users can add ggplot2 function calls to
the output of the function.

run_gee_model 21

Value
A ggplot2 plot.
Examples
in_dat <- system.file("extdata/MAE_small.RDS", package = "LegATo") |> readRDS()
plot_stacked_bar(in_dat, taxon_level = "family"”, covariate_1 = "Group”,
covariate_time = "Month",

palette_input = rainbow(25))

run_gee_model Compute Generalized Estimating Equations (GEEs) on longitudinal
microbiome data

Description

This function takes an animalcules-formatted MultiAssayExperiment and runs an independent
GEE model for each taxon. The model predicts taxon log CPM abundance as a product of fixed-
effects covariates conditional on a grouping ID variable, usually the unit on which repeated mea-
surements were taken. This modeling approach works best with small datasets that multiple samples

across many (>40) clusters/units. Note, the "broom", "ggeffects", "broom.mixed", "geepack", "em-
means" packages are required to use this function; all can be installed via CRAN.

Usage

run_gee_model (
dat,
taxon_level = "genus"”,
unit_var,
fixed_cov,
corstr = "ar1",
p_adj_method = "fdr",
plot_out = FALSE,
plotsave_loc = ".",
plot_terms = NULL,

)
Arguments
dat A MultiAssayExperiment object specially formatted as an animalcules output.
taxon_level Character string, default is "genus”.
unit_var A character string identifying the unit variable for which there are multiple ob-

servations. Required.

fixed_cov A character vector naming covariates to be tested.

22

corstr

p_adj_method

plot_out

plotsave_loc

plot_terms

Details

run_Imm_model

A character string specifying the correlation structure. The following are per-

s ns on "y sn

mitted: *"independence"’, *"exchangeable"’, *"arl"’, *"unstructured"’.

A character string specifying the correction method. Can be abbreviated. See
details. Default is "fdr".

Logical indicating whether plots should be output alongside the model results.
Default is FALSE.

A character string giving the folder path to save plot outputs. This defaults to
the current working directory.

Character vector. Which terms should be examined in the plot output? Can
overlap with the fixed_cov inputs.

Further arguments passed to ggsave for plot creation.

P-values are adjusted for the model coefficients within each taxon. The following methods are
permitted: c("holm”, "hochberg”, "hommel”, "bonferroni”, "BH", "BY", "fdr", "none")

Value

A data. frame of modeling results.

Examples

in_dat <- system.file("extdata/MAE_small.RDS", package = "LegATo") |>

readRDS ()

out <- run_gee_model(in_dat, taxon_level = "genus”, unit_var = "Subject”,

head(out)

fixed_cov = c("HairLength”, "Age"”, "Group”, "Sex"),
corstr = "ar1")

run_lmm_model

Compute linear mixed-effects models (LMM) on longitudinal micro-
biome data

Description

This function takes an animalcules-formatted MultiAssayExperiment and runs an independent
LMM model for each taxon. The model predicts taxon log CPM abundance as a product of fixed-
effects covariates with a random effect, usually the unit on which repeated measurements were
taken. Note, the broom’, ’ImerTest’, and ’broom.mixed’ packages are required to use this function;
they can be downloaded from CRAN.

run_Imm_model

Usage

run_lmm_model (

dat,

23

taxon_level = "genus"”,

unit_var,
fixed_cov,

p_adj_method = "fdr",
plot_out = FALSE,

plotsave_loc =
NULL,

plot_terms

Arguments

dat
taxon_level
unit_var

fixed_cov
p_adj_method

plot_out
plotsave_loc

plot_terms

Details

n on

A MultiAssayExperiment object specially formatted as an animalcules output.
Character string, default is "genus”.

A character string identifying the unit variable for which there are multiple ob-
servations. Required.

A character vector naming covariates to be tested.

A character string specifying the correction method. Can be abbreviated. See
details. Default is "fdr".

Logical indicating whether plots should be output alongside the model results.
Default is FALSE.

A character string giving the folder path to save plot outputs. This defaults to
the current working directory.

Character vector. Which terms should be examined in the plot output? Can
overlap with the fixed_cov inputs.

Further arguments passed to ggsave for plot creation.

P-values are adjusted for the model coefficients within each taxon. The following methods are
permitted: c("holm”, "hochberg"”, "hommel” "bonferroni”, "BH", "BY", "fdr", "none")

Value

A data. frame of modeling results.

Examples

dat <- system.file("extdata/MAE.RDS", package = "LegATo") |>

readRDS() |>
filter_MAE(Q)

out <- run_lmm_model(dat, taxon_level = "genus”, unit_var = "Subject”,

head(out)

fixed_cov = c("HIVStatus”, "timepoint"))

24 run_Im model

run_lm_model Compute linear models (LM) on microbiome data

Description

This function takes an animalcules-formatted MultiAssayExperiment and runs an independent
linear model for each taxon. The model predicts taxon log CPM abundance as a product of user-
specified covariates. This model can be used for general microbiome analyses without repeated
measures data. Note, the "broom", and "broom.mixed" packages are required to use the testing
functionality of this package; both can be installed via CRAN.

Usage

run_lm_model (
dat,
taxon_level = "genus"”,
fixed_cov,
p_adj_method = "fdr",
plot_out = FALSE,

plotsave_loc = ".",
plot_terms = NULL,

)
Arguments
dat A MultiAssayExperiment object specially formatted as an animalcules output.
taxon_level Character string, default is "genus"”.
fixed_cov A character vector naming covariates to be tested.

p_adj_method A character string specifying the correction method. Can be abbreviated. See
details. Default is "fdr".

plot_out Logical indicating whether plots should be output alongside the model results.
Default is FALSE.

plotsave_loc A character string giving the folder path to save plot outputs. This defaults to
the current working directory.

plot_terms Character vector. Which terms should be examined in the plot output? Can
overlap with the fixed_cov inputs.

Further arguments passed to ggsave for plot creation.

Details

P-values are adjusted for the model coefficients within each taxon. The following methods are
permitted: c("holm”, "hochberg”, "hommel”, "bonferroni”, "BH", "BY", "fdr", "none")

test_hotelling_t2 25

Value

A data. frame of modeling results.

Examples

dat <- system.file("extdata/MAE.RDS", package = "LegATo") |>
readRDS() |>
filter_MAE(Q)
out <- run_lm_model(dat, fixed_cov = c("timepoint”, "HIVStatus"),
plot_out = FALSE)
head(out)

test_hotelling_t2 Conduct a multivariate Hotelling’s T-squared test

Description

This function takes an animalcules-formatted MultiAssayExperiment object and runs a multivari-
ate Hotelling’s T-squared test. The test expects a comparison of two distinct groups, and compares
the abundances of the top microbes at a given taxon level between the groups. This function allows
both paired and unpaired tests. Both test the null hypothesis that the population mean vectors are
equal, with the alternative being that they are unequal.

Usage
test_hotelling_t2(
dat,
test_index = NULL,
taxon_level = "genus"”,
num_taxa,

grouping_var,

paired = FALSE,
pairing_var = NULL,
unit_var = NULL,
save_table_loc =

non

)
Arguments
dat A MultiAssayExperiment object specially formatted as an animalcules output.
test_index Any argument used for subsetting the input dat, can be a character, logical,
integer, list or List vector. Default is NULL.
taxon_level Character string, default is "genus”.
num_taxa The number of most abundant taxa to test. If unpaired, this should be no larger

than the total number of subjects in both groups - 2, or (nl + n2 -2). If paired,
this should be no larger than the total number of pairs - 1, or n - 1. Required.

26

grouping_var

paired

pairing_var

unit_var

save_table_loc

Details

test_hotelling_t2

Character string, the name of a DICHOTOMOUS grouping variable in the meta-
data of dat.

Logical indicating whether a paired test should be conducted. Default is FALSE
for an unpaired test.

Character string giving the variable containing pairing information. The variable
should be in integer form. Must be supplied if paired = TRUE, otherwise the
default is NULL.

Character string giving the variable containing the identifiers for the unit on
which multiple measurements were conducted, e.g. subjects. Default is NULL;
must be supplied if paired = FALSE.

A character string giving the folder path to save t.test results. Note that these are
only conducted if the Hotelling’s T-test value is <0.05. Defaults to the current
working directory.

The Hotelling’s t-squared statistic (t2) is a generalization of Student’s t-statistic that is used in
multivariate hypothesis testing to test the means of different populations.

Note that any entries or pairs with missing values are excluded.

Referenced articles in the implementation of tests:
https://online.stat.psu.edu/stat505/lesson/7/7.1/7.1.14
https://online.stat.psu.edu/stat505/lesson/7/7.1/7.1.15
https://online.stat.psu.edu/stat505/lesson/7/7.1/7.1.4
https://online.stat.psu.edu/stat505/lesson/7/7.1/7.1.9

Value

A list of the elements "df1", "df2", "crit_F", "F_stat" and "pvalue" giving the results of the test.

Examples

dat <- system.file("extdata”, "MAE.RDS", package = "LegATo") |>

readRDS ()

dat_0.05 <- filter_MAE(dat, ©.001, 10, "species")
outl <- test_hotelling_t2(dat = dat_0.05,

outl

out <- test_hotelling_t2(dat

test_index = which(dat_0.05%$MothChild == "Infant” &
dat_0.05%timepoint == @),

taxon_level = "genus”,

Total number of pairs - 1

num_taxa = 9,

paired = TRUE,

grouping_var = "HIVStatus”,

pairing_var = "pairing")

dat_o.05,
test_index = which(dat_0.05%MothChild == "Mother” &

tscor 27

dat_0.05%timepoint == 6),
taxon_level = "genus",
Max is Total number of subjects - 2
Here we use a much smaller number
num_taxa = 6,
grouping_var = "HIVStatus”,
unit_var = "Subject”,
paired = FALSE)
out

tscor Calculate within-subject OTU correlations

Description

This function takes a MultiAssayExperiment and outputs an array of temporal intra-subject cor-
relation matrices.

Usage

tscor(dat, unit_var, method = "kendall”, fill_na = @)

Arguments
dat A MultiAssayExperiment object specially formatted as an animalcules output.
unit_var a numeric vector of subject.
method an option of the correlation method ("pearson”, "kendall", "spearman"). The
default method is "kendall".
fill_na a number between 0 and 1 to fill the missing value. The default value is 0.
Value

An three-dimensional array of temporal correlation matrices for each subject.

Author(s)
Yilong Zhang, Huilin Li, Aubrey Odom

Examples

dat <- system.file("extdata/MAE_small.RDS", package = "LegATo") |> readRDS()
output <- tscor(dat, unit_var = "Subject”, method = "spearman”)
head(output)

Index

* internal
LegATo-package, 3

clean_MAE, 3
create_formatted_MAE, 4

distinctColors, 5

filter_animalcules_MAE, 6
filter_MAE, 7

get_long_data, 8
get_stacked_data, 9
get_summary_table, 9
get_top_taxa, 10

LegATo (LegATo-package), 3
LegATo-package, 3

NMIT, 11

parse_MAE_SE, 12
plot_alluvial, 13
plot_heatmap, 14
plot_spaghetti, 17
plot_stacked_area, 19
plot_stacked_bar, 20

run_gee_model, 21
run_lm_model, 24
run_lmm_model, 22

test_hotelling_t2, 25
tscor, 27

28

	LegATo-package
	clean_MAE
	create_formatted_MAE
	distinctColors
	filter_animalcules_MAE
	filter_MAE
	get_long_data
	get_stacked_data
	get_summary_table
	get_top_taxa
	NMIT
	parse_MAE_SE
	plot_alluvial
	plot_heatmap
	plot_spaghetti
	plot_stacked_area
	plot_stacked_bar
	run_gee_model
	run_lmm_model
	run_lm_model
	test_hotelling_t2
	tscor
	Index

