MinelCA: Independent component analysis of transcriptomic data

Anne Biton, Andrei Zinovyev, Emmanuel Barillot, Francois Radvanyi.

October 7, 2025

Abstract

MinelCA supplies a framework for the storage and the study of a decomposition resulting from
the application of independent component analysis (ICA) to transcriptomic data. It allows to integrate
additional data associated with the samples (other molecular data, as well as clinical and pathological
data) and data associated with the genes. It defines a new class IcaSet extending the class eSet of the
package Biobase, which allows to store the inputs (genomic dataset and sample information) and outputs
(mixing and source matrix) of ICA. MinelCA helps the biological interpretation of the components by
studying their association with variables (e.g sample annotations) and biological processes, and enables
the comparison of components from different datasets using correlation-based graph. In practice, by
creating interactive summarization of the results and comprehensive plots, MineICA makes much easier
the interpretation of the numerous data resulting from the application of ICA to transcriptomic data.

1 Introduction

Unlike ICA, clustering methods and PCA are routinely applied to perform unsupervised analysis of genomic
high-throughput data. Several studies highlighted the outperformance of ICA over PCA and clustering-
based methods in obtaining a more realistic decomposition of the expression data into consistent patterns
of coexpressed and coregulated genes Lee and Batzoglou| [2003]], Saidi et al.|[2004], Frigyesi et al.| [2006]],
"Teschendorff et al.| [2007]] associated with the studied phenotypes, like histological grade or estrogen recep-
tor status in breast cancer [Teschendortt et al.[|[2007]. Unlike PCA, ICA does not impose an orthogonality
constraints between the independent components (ICs). The less frequent use of ICA analysis in bioinfor-
matics studies may be explained by the non-trivial interpretation of its outputs. The aim of MinelCA is to
make the most of the ICA by making available methods to make easier the interpretation of its results.

Several ICA algorithms exist and generally rely on random initializations and compute non-unique solu-
tions. The analysis of the reproducibility of the components across datasets is thus a crucial point in the anal-
ysis by for example enabling the selection of components that do not arise from a local minima. MinelCA
implements the study of the component reproducibility among different data sets through correlation-based
graphs.

ICA provides a decomposition of the expression matrix X = AS, where A, the mixing matrix, contains
the activity of the components on the samples (e.g tumor samples) and S, the source matrix, provides the
contribution of each feature (e.g genes) to the components. The source matrix S is thus used to biologically
interpret the components by studying their contributing genes, and the matrix A is used to associate the
component with sample features by studying the distribution of the samples on the components according
to their characteristics (e.g clinical or molecular variables).

2 Software features

MinelCA offers the following functionalities:

Storage of the ICA results MineICA implements the class IcaSet whose aim is to contain and describe an
ICA decomposition of high-throughput data.

Storage of analysis parameters Mine/CA implements the class MinelCAParams which aims at containing
parameters required for the analysis of the ICA results.

Association with variables MineICA proposes functions to test whether qualitative and quantitative vari-
ables (e.g sample annotations) are differently distributed on the components or differently distributed
among clusters defined on the components.

Annotation of the features The package also provides functions to easily describe feature (e.g gene) an-
notations using biomaRt. The resulting annotation being displayed in HTML files.

Association with gene sets MinelCA provides functions to run enrichment analysis of the contributing
genes using package GOstats.

Visualization MinelCA provides functions to visualize heatmaps of the contributing features, distribution
of the variables on the components, or correlation graph between different ICA.

3 Case study

Using microarray-based gene expression data of 200 breast cancer tumors stored in the package breastCancerMAINZ
Schmidt et al.|[2008]], this vignette shows how MinelCA can be used to study an ICA-based decomposition.

3.1 Loading the library and the data

We first load some dependent libraries :

library (Biobase)
library (plyr)
library (ggplot2)
library (foreach)
library (xtable)
library (biomaRt)
library (GOstats)
library (cluster)
library (
library (mclust)

(

(

(

(

(

(

marray)

library (RColorBrewer)
library (igraph)
library (Rgraphviz)
library (graph)
library (colorspace)

V V.V V V V V V V V V V V V VYV

library (annotate)

> library(scales)
> library(gtools)

We then load the MinelCA package by typing or pasting the following codes in R command line:

> library (MineICA)

3.2 Creation of an IcaSet object

Class IcaSet extends eSet class of package Biobase. The eSet class won’t be described here, please refer

to the documentation for details about the attributes of the class http://www.bioconductor.org/
packages/2.12/bioc/vignettes/Biobase/inst/doc/Qviews.pdf. Reading the documen-

tation of expressionSet class, another subclass of eSef, may also be very useful http://www.
bioconductor.org/packages/release/bioc/vignettes/Biobase/inst/doc/ExpressionSetInt:
pdf.

Beside including slots of eSet class, IcaSet class includes additionnal slots in order to contain the ICA
outputs Aand S (slotsA, S, SByGene) and information regarding the components (slots compNames, indComp,
...). You can get an overview of the structure and available methods by reading the help page:

> help (IcaSet)

IcaSet class proposes two levels of storage for the data, the “feature” and “gene” levels. The slots S
(source matrix) and dat (original data) refer to the feature level, while the slots SByGene (source matrix
indexed by genes) and datByGene (data indexed by genes) refer to the gene level. It allows to store at
the same time the results of ICA applied to the original data indexed by features, these features speaking
generally not for themselves (eg, probe set IDs), and the data indexed by annotations of these features into
a more comprehensive ID (e.g gene ids).

By default, in MinelCA, the second level of annotation is called the “gene” level but it may in fact corre-
spond to any other annotation (e.g, isoforms, exons, ...).

In addition to the demands of the eSet class for object validity, validity method for IcaSet enforces that
the sample, feature, and gene names of the slot elements are identical. For example, the row names of the
phenoData (the sample annotations) and mixing matrix A must be similar to the column names of dat
and datByGene. Similarly, row names of S and SByGene must be similar to row names of dat and
datByGene. The number of components must also be consistent between A and S.

3.2.1 load an example of expression data

We load the eSet mainz included in the data package breastCancerMAINZ.

load Mainz expression data and sample annotations.
library (breastCancerMAINZ)
data (mainz)

vV V V V

show (mainz)

http://www.bioconductor.org/packages/2.12/bioc/vignettes/Biobase/inst/doc/Qviews.pdf
http://www.bioconductor.org/packages/2.12/bioc/vignettes/Biobase/inst/doc/Qviews.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/Biobase/inst/doc/ExpressionSetIntroduction.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/Biobase/inst/doc/ExpressionSetIntroduction.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/Biobase/inst/doc/ExpressionSetIntroduction.pdf

ExpressionSet (storageMode: lockedEnvironment)

assaybData: 22283 features, 200 samples
element names: exprs

protocolData: none

phenoData
sampleNames: MAINZ_BC6001 MAINZ_BC6002 ... MAINZ_BC6232 (200 total)
varLabels: samplename dataset ... e.os (21 total)
varMetadata: labelDescription

featureData
featureNames: 1007_s_at 1053_at ... AFFX-TrpnX-M_at (22283 total)
fvarLabels: probe Gene.title ... GO.Component.l (22 total)

fvarMetadata: labelDescription
experimentData: use 'experimentData (object)'
pubMedIds: 18593943
Annotation: hgul33a

> ## we restrict the data to the 10,000 probe sets with the highest IQR
> mainz <— selectFeatures_IQR(mainz,10000)

3.2.2 RunICA
We now run the JADE algorithm to compute an ICA decomposition of the Mainz data.

library (JADE)

Features are mean-centered before ICA computation

exprs (mainz) <- t(apply(exprs(mainz),1,scale,scale=FALSE))

colnames (exprs (mainz)) <- sampleNames (mainz)

run ICA-JADE

resJade <- runICA (X=exprs (mainz), nbComp=5, method = "JADE", maxit=10000)

vV V.V V V V

Another ICA algorithm, fast ICA, is implemented in R and may be run with function runICA. Fas-
tICA relies on random initializations and the estimated components may vary between iterations. A way to
alleviate this problem is to run fast ICA several times, cluster the estimates, and use as the final estimates
the centrotypes of the clusters. This strategy is proposed in the matlab package icassoJohan Himberg et al.|
[2004]. The function clusterFastICARuns implements this strategy and can be used to estimate the
components:

> library (fastICA)

> ## Random initializations are used for each iteration of FastICA

> ## Estimates are clustered using hierarchical clustering with average linkage

> res <- clusterFastICARuns (X=exprs (mainz), nbComp=5, alg.type="deflation", nbIt=I1(
+ funClus="hclust", method="average")

The returned estimates are ranked according to their /¢ indices which measure the compactness of the
clusters and are defined as the differences between the intra-cluster similarity and the extra-cluster similiarity
Johan Himberg et al.| [2004].

3.2.3 Create a Minel CAParams object, function buildMineICAParams

Before building an IcaSet instance, we need to create a MinelCAParams instance that will contain a few
parameters used during the analysis of the ICA decomposition.

You need to specify the directory where you would like to put the outputs of the analysis (slot resPath),
the threshold applied to the projection values used to select the contributing elements (slot selCutoff),
and the threshold you would like to use for statistical significance (slot pvalCutoff):

> ## build params

> params <- buildMineICAParams (resPath="mainz/", selCutoff=3, pvalCutoff=0

If the original data and the ICA outputs A and S were stored in files, the file names would have been
included in slots annotfile, Sfile, Afile,anddatfile.

3.2.4 Create an IcaSet instance, function buildIcaSet

Mainz data and the corresponding ICA results have now to be stored in an IcaSet object. This task is made
easier thanks to the function buildIcaSet.

Before building the IcaSet object, several information (corresponding to IcaSet slots) regarding the
feature and gene ids remain to be defined.

annotation: This slot contains the name of an annotation package for the data, if available.
The Mainz data are from HG-U133A microarrays and are indexed by Affymetrix probe set ids. The corre-
sponding annotation package is hgul33a . db and must be loaded:

> ## load annotation package
> library (hgul33a.db)

attribute typeID: The slot typeID of an IcaSet object includes the types of ids to be used for the
annotation of the features, and the description of the feature and/or gene ids.
typeID encompasses three elements to be defined:

genelID_annotation: defines the object supported by the annotation package (if provided) needed
to annotate the features into genes. To see the list of the available objects in the given package:

> ls("package:hgul33a.db")

[1] "hgul33a" "hgul33a.db" "hgul33aACCNUM"
[4] "hgul33aALIAS2PROBE" "hgul33aCHR" "hgul33aCHRLENGTHS"
[7] "hgul33aCHRLOC" "hgul33aCHRLOCEND" "hgul33aENSEMBL"
[10] "hgul33aENSEMBL2PROBE" "hgul33aENTREZID" "hgul33aENZYME"
[13] "hgul33aENZYME2PROBE" "hgul33aGENENAME" "hgul33aGO"
[16] "hgul33aGO2ALLPROBES" "hgul33aGO2PROBE" "hgul33aMAP"
[19] "hgul33aMAPCOUNTS" "hgul33aOMIM" "hgul33aORGANISM"

.05)

[22] "hgul33aORGPKG" "hgul33aPATH" "hgul33aPATH2PROBE"
[25] "hgul33aPFAM" "hgul33aPMID" "hgul33aPMID2PROBE"
[28] "hgul33aPROSITE" "hgul33aREFSEQ" "hgul33aSYMBOL"
[31] "hgul33aUNIPROT" "hgul33a_dbInfo" "hgul33a_dbconn"
[34] "hgul33a_dbfile" "hgul33a_dbschema”

Here we will use "SYMBOL" for Gene Symbols. If no annotation package is provided, this element is not
useful and biomaRt is used to perform the annotation if required.

The two following elements are the IDs used to query biomaRt. A database of interest first needs to be
specified. Here we use Ensembl for human.

> mart <- useMart (biomart="ensembl", dataset="hsapiens_gene_ensembl")

geneID_biomart: specifies the type of gene id, and is used for the description of the genes and
features if no annotation package is provided. It must be one of the IDs available in the filters of the mart
object:

> listFilters (mart) [120:125,]

name description
120 with_affy_hg_ul33_plus_2 With AFFY HG U133 Plus 2 probe ID(s)
121 with_affy_hg_u95a With AFFY HG U95A probe ID(s)
122 with_affy_hg_ u95av2 With AFFY HG U95AvV2 probe ID(s)
123 with_affy_hg_u95b With AFFY HG U95B probe ID(s)
124 with_affy_hg u95c With AFFY HG U95C probe ID(s)
125 with_affy_hg_u95d With AFFY HG U95D probe ID(s)

Here we will use geneID_biomart="hgnc_symbol"' for Gene Symbols.

featureID_biomart: specifies the type of feature ID, must be one of the attributes available in
mart:

> listAttributes (mart) [grep(x=listAttributes (mart) [,1],pattern="affy") [1:5],]

name description page
106 affy_hc_gllo0 AFFY HC G110 probe feature_page
107 affy _hg_focus AFFY HG Focus probe feature_page
108 affy_hg_ul33a_2 AFFY HG Ul33A 2 probe feature_page
109 affy_hg_ul33b AFFY HG Ul33B probe feature_page

110 affy_hg ul33_plus_2 AFFY HG Ul33 Plus 2 probe feature_page

HG-U133A probe sets correspond to affy_hg_ul33a.

The function buildIcaSet encompasses the step of feature annotation. During the annotation step
(either performed using the annotation package or biomaRt) if several features are available for a same gene,
the median value across those features is attributed to the gene.

Data can also be provided at the final annotation level (e.g dat and S are already indexed by gene ids),
in that case please use alreadyAnnot=TRUE in the function buildIcaSet so that no annotation will
be performed.

We can now build the object icaSetMainz with help of function buildIcaSet:

Define typelID, Mainz data originate from affymetrix HG-Ul33a microarray

and are indexed by probe sets.

The probe sets are annotated into Gene Symbols

typelIDmainz <- c(genelID_annotation="SYMBOL", genelID_biomart="hgnc_symbol",

featurelID_biomart="affy_hg_ ul33a")

define the reference samples if any, here no normal sample is available

refSamplesMainz <- character (0)

resBuild <- buildIcaSet (params=params, A=data.frame (resJade$A), S=data.frame (res.
dat=exprs (mainz), pData=pData(mainz), refSamples=refSamp!
annotation="hgul33a.db", typelD= typelDmainz,
chipManu = "affymetrix", mart=mart)

icaSetMainz <- resBuild$icaSet

params <- resBuildS$Sparams

vV V + + + V V V + V V V V

3.2.5 IcaSet basics

An instance of IcaSet has been built, we now explore some of the basic operations.

When printed, a brief summary of the contents of the object, based on the one available in class eSet, is
displayed:

> icaSetMainz

Number of components: 5

Component labels: 1 2 3 4 5

IcaSet (storageMode: lockedEnvironment)

assaybData: 10000 features, 200 samples
element names: dat

protocolData: none

phenoData
sampleNames: MAINZ_BC6001 MAINZ_BC6002 ... MAINZ_BC6232 (200 total)
varLabels: samplename dataset ... e.os (21 total)

varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData (object)'
Annotation: hgul33a.db

Accessing A number of accessor functions are available to extract data from an IcaSet instance. We will
describe the most common accessor functions, most of them being inherited from class eSet.
You can access the phenotype data using pData:

> annot <- pData(icaSetMainz)

The columns of the phenotype data, are called the variables. The variable labels can be retrieved using
the function varLabels and one variable can be accessed using $:

> varlLabels (icaSetMainz) [1:5]

[1] "samplename" "dataset"” "series" "ig" "filename"

> icaSetMainz$grade[1:5]

[1] 2 3 3 2 2

The feature names and their annotations (called “genes” by default), such as the sample names can
respectively be retrieved using the functions featureNames, geneNames, and sampleNames:

> featureNames (icaSetMainz) [1:5] # probe set ids

[1] "1255_g_at" "1320_at" "1405_1i_at"™ "1431_at" "1438_at"

> geneNames (icaSetMainz) [1:5] #gene symbols

[1] "GUCALIA" "PTPNZ21" "CCL5" "CYPZ2E1" "EPHB3"

> sampleNames (icaSetMainz) [1:5]

[1] "MAINZ_BC6001"™ "MAINZ_BC6002" "MAINZ_BC6003" "MAINZ_BC6004" "MAINZ_BC6005"

The data ICA was applied to and its annotation into genes (if available) can be accessed using the
functions dat and datByGene

> head (dat (icaSetMainz)) #probe set level
> head (datByGene (icaSetMainz)) #gene level

An ICA decomposition consists of two matrices, the mixing matrix A containing the sample contri-
butions and the source matrix .S containing the feature projections. They can be retrieved from an IcaSet
object using the methods of the same name: A and S. The method S returns matrix .S at the feature level
(e.g, containing projection of the features), while SByGene returns the projection values at the gene level:

> A(icaSetMainz)
> S (icaSetMainz)
> SByGene (icaSetMainz)

The number of components computed by ICA, but also their labels and indices can be extracted with
nbComp, compNames, and indComp:

> nbComp (icaSetMainz)
> compNames (icaSetMainz)
> indComp (icaSetMainz)

For graphical purpose, an IcaSet object includes a slot witGenes containing either one gene id per
component (or whatever is refered as the level “gene”), or one feature id per component if the IcaSet object
has only one level of annotation. Each “witness” is a contributor of the component and is used to denote the
direction of the expression according to the direction of the component. These witnesses can be automaticall
selected with the function selectWitnessGenes and are automatically defined when an IcaSet object
is created through buildIcaSet. By default, for a given component, a witness gene corresponds to an
individual having an absolute scaled projection value larger than se1Cutoff in at most one IC. Its sign of
contribution should be the same than the majority of the selected contributing genes.

> witGenes (icaSetMainz) [1:5]

1 2 3 4 5
"IGLV3-10" "GABRP" "CDCAS8" "PICALM" "COLI1A1"

> ## We can for example modify the second contributing gene
> witGenes (icaSetMainz) [2] <— "KRT1lo6"

Accessing slots in different data formats Slots 2, S, and SByGene are data.frame objects. A
common need is to extract these data.frame in the form of a list where row names are preserved. It can be
done using the functions Alist, Slist,and S1istByGene.

Setting The names of the accession functions described above, can also be used for setting the slots of an
IcaSet object by adding operator <— and the new value. For example:

> compNames (icaSetMainz) <- paste("IC",l:nbComp (icaSetMainz), sep="")

Subsetting Subsetting an IcaSet is very similar to subsetting the expression matrix that is contained within
the IcaSet to a subset of features/genes (first argument) and samples (second argument), except for a third
argument that allows to subsets the components.

vV V.V V V V V V

select tumor samples of grade 3

keepSamples <- sampleNames (icaSetMainz) [icaSetMainzS$grade=="3"]

Subset icaSetMainz to the grade-3 samples

icaSetMainz [, keepSamples]

Subset icaSetMainz to the grade-3 samples and the first five components
icaSetMainz [, keepSamples, 1:5]

Subset icaSetMainz to the first 10 features

icaSetMainz [featureNames (icaSetMainz) [1:10], keepSamples]

Useful basic functions Other functions which allow to extract data from an IcaSet object are available.

Select the contributing features or genes: When applying ICA decomposition to genomic data, for

example here gene expression data, the distribution of the gene projections on the ICs is expected to be
super-Gaussian: a large portion of genes follows a (super-)Gaussian centered at zero and a small portion
belongs to an outgrowth located on the right and/or on the left of the distribution. In order to select the
elements belonging to this outgrowth, we used the conventional way based on a threshold. The thresholds
can typically be 3 or 4 standard deviations from the mean. We refer to the resulting selected genes as the
“contributing genes”.

Here is the histogram of the projection values for the first component.
The function selectContrib allows to select the contributing elements from a list of projection

values.

> ## Extract the contributing genes

> contrib <- selectContrib (icaSetMainz, cutoff=3, level="genes")

> ## Show the first contributing genes of the first and third components
> sort (abs (contrib[[1]]),decreasing=TRUE) [1:10]

IGLV3-10 IGKV4-1 IGKV1OR2-108 IGKV1-17 IGHM IGK

8.680915 8.248369 8.239027 6.648162 6.456526 6.441281
NKG7 TNFRSFE17 IGLV2-14 IGHV1-69

6.265528 6.169336 6.158455 5.635064

sort (abs (contrib[[3]]),decreasing=TRUE) [1:10]

MMP 1 CDCAS8 OGN ELN SCGB1DZ2 MEFAP4 CDC45 ACKR1

.709138 5.469925 5.363834 5.217331 5.184911 5.154323 5.132752 5.034230

KRT14 CENPN

.930798 4.606611

One can also want to apply different cutoffs depending on the components
for example using the first 4 components:
contrib <- selectContrib (icaSetMainz[,,1:4], cutoff=c(4,4,4,3), level="genes")

10

Distribution of feature projection on the first component

00¢T 000T 008 009 ooy 00¢ 0

Aouanbalg

projection values

11

Extract data of a specific component: The function get Comp allows to extract the projection values
and sample contribution of a specific component:

extract sample contributions and gene projections of the second component
comp?2 <- getComp (icaSetMainz, level="genes", ind=2)

access the sample contributions

comp2S$contrib[1:5]

vV V V V

MAINZ_BC6001 MAINZ_BC6002 MAINZ_BC6003 MAINZ_BC6004 MAINZ_BC6005
-0.14515901 0.32744737 -0.09054997 0.10447404 0.23829698

> ## access the gene projections
> comp2S$proj[1l:5]

GUCA1A PTPN21 CCL5 CYP2EL EPHB3
0.2597079 -0.3093280 0.6065123 0.2421738 -2.5130176

3.3 Run global analysis

The function runAn enables to study an IcaSet object by calling all the functions dedicated to the analysis of
an ICA decomposition in the package MinelCA. The outputs are written in the path resPath (params),
each sub-directory containing the outputs of a specific analysis.

We apply the function runAn to the object icaSetMainz:

> ## select the annotations of interest
> varlLabels (icaSetMainz)

[1] "samplename" "dataset" "series" "ig"
[5] "filename" "size" "age" "er"
[9] "grade" "pgr" "her2" "brca.mutation"
[13] "e.dmfs" "t.dmfs" "node" "t.rfs"
[17] "e.rfs" "treatment" "tissue" "t.os"
[21] "e.os"
> # restrict the phenotype data to the variables of interest
> keepVar <- c("age","er", "grade")
> # specify the variables that should be treated as character
> jicaSetMainzS$Ser <— c("QO"="ER-","1"="ER+") [as.character (icaSetMainz$er)]
> icaSetMainz$grade <- as.character (icaSetMainz$grade)

Run the analysis of the ICA decomposition

only enrichment in KEGG gene sets are tested

runAn (params=params, icaSet=icaSetMainz, writeGenesByComp = TRUE,
keepVar=keepVar, dbGOstats = "KEGG")

+ VvV V V

12

The resulting plots and data are located in the main results path, which here is the “mainz/” current
directory:

> resPath (params)

[1] "mainz/"

The sub-directories automatically created by the function runAn are the following:
ProjByComp/: contains the annotations of the features or genes, one file per component;

varAnalysisOnA/: contains two directories: 'qual/” and ’quant/” which respectively contain the results of
the association between components and qualitative and/or quantitative variables;

Heatmaps/: contains the heatmaps (one pdf file per component) of the contributing genes by component;

varOnSampleHist/: contains the histograms of the sample contributions superimposed with the histograms
of the groups of samples defined by the variables of interest (e.g tumor grade).

3.4 Run analysis by calling individual functions

The functions implicitely called by runAn can be run individually. In this section, we will provide examples
of each of these functions.

3.4.1 Write description of contributing genes or features, function writeProjByComp

Each component is a direction in the space where axis are the samples and points are genes whose locations
are defined by their expression profiles across samples. In matrix S, each component is thus defined by a
vector of gene projection values. When applying ICA to gene expression data, each component is typically
triggered by a group of genes co-expressed on a subset of samples. These genes responsible for the existence
of the component will typically have high projections, we call them the contributing genes.

The first way to study a component is to look at its contributing genes. The function writePro jByComp
allows to describe genes with a projection value higher than a given threshold on each component.

As in PCA, the components computed by ICA are defined up to their sign. On a given component, genes
with opposite projection signs are elements whose expressions are anti-correlated on the samples distributed
at both ends of the component. The function writeProjByComp therefore orders genes by absolute
projection values.

This function creates a HTML file per component containing the description of the contributing features
or genes, and a file containing the projection values of each feature or gene across all components.

The needed information are queried through biomaRt. By default, the descriptors used to annotate the
gene ids are their Gene Symbols, Ensembl IDs, biological description and genomic locations. If you would
like to add descriptors, please fill argument t ypeRetrieved. Here we will content ourselves with the
defaults ones. You can change the threshold used to select the genes to be described using the argument
selCutoffWrite.

Here we are interested in the description of the projection values at the gene level (level="genes”).

13

> resW <- writeProjByComp (icaSet=icaSetMainz, params=params, mart=mart,
+ level="genes', selCutoffWrite=2.5)
> ## the description of the contributing genes of each component is contained
> ## in res$listAnnotComp which contains the gene id, its projection value, the nur
> ## the indices of the components on which it exceeds the threshold, and its desc:
> head (resW$listAnnotComp[[1]])
hgnc_symbol scaled_proj nbOcc_forThreshold:3 comp_forThreshold:3
157 IGLV3-10 8.681 1 1
153 IGKV4-1 8.248 1 1
152 IGKV1OR2-108 8.239 1 1
147 IGKV1-17 6.648 1 1
148 IGKV1-17 6.648 1 1
137 IGHM 6.457 1 1
157 immunoglobulin lambda variable 3-10 [Source:HGNC Symbol; Ac
153 immunoglobulin kappa variable 4-1 [Source:HGNC Symbol; Ac
152 immunoglobulin kappa variable 1/0R2-108 (non-functional) [Source:HGNC Symbol; Ac
147 immunoglobulin kappa variable 1-17 [Source:HGNC Symbol; Ac
148 immunoglobulin kappa variable 1-17 [Source:HGNC Symbol; Ac
137 immunoglobulin heavy constant mu [Source:HGNC Symbol; Ac
chromosome_name start_position end_position band strand ensembl_gene_id
157 22 22811747 22812281 gll.22 1 ENSG00000211669
153 2 88885397 88886153 pll.2 1 ENSG00000211598
152 2 113406396 113406872 gl4d.1 1 ENSG00000231292
147 2 89117342 89117844 pll.2 -1 ENSG00000240382
148 HG2290_PATCH 226168 226670 -1 ENSG00000281978
137 14 105851705 105856218 g32.33 -1 ENSG00000211899

> ## The number of components a gene contributes to is available

> ## in res$nbOccInComp

> head (resW$nbOccInComp)

gene nbOcc components

S100A7 S100A7
SCGB1D2 SCGB1D2
CpB1 CPB1
IGLV3-10 IGLV3-10
GRIAZ2 GRIAZ2
MMP 1 MMP 1

5
S100A7 -1.394
SCGB1D2 -0.4833
CPB1 0.9012

2

NN

sd_expr

2,4 3.86750
3 3.43860

1 2.77680

1 2.76230
1,2 2.76040
3,5 2.64700

14

1 2
0.2359 -4.897
-1.283 2.066
-3.644 2.674

8.133 -0.4562
-2.948 3.552
2.705 -0.9315

3

0.961
-5.184
-0.8729
0.1163
-0.2685
5.79

0.

4
3.699
0.4333
1.339
002175
0.166
0.3799

IGLV3-10 -0.7973
GRIAZ2 -0.8901
MMP 1 3.053

> ## The output HTML files are located in the path:

> genesPath (params)

[1] "mainz/ProjByComp/"

3.4.2 Plot heatmaps of the contributing elements, function plot_heatmapsOnSel

A way to visualize the pattern captured by a component is to draw the heatmap of its contributing fea-
tures/genes. The function plot_heatmapsOnSel enables to plot the heatmaps of the contributing genes
for each component. On those heatmap, features and samples are either ranked by their contribution value

to the component, or clustered with hierarchical clustering.

Here we choose to study the data at the gene level (level="genes"), and a threshold of 3 is used for

the selection of the contributing genes.

> ## selection of the variables we want to display on the heatmap

> keepVar <- c("er","grade")

> ## For the second component, select contributing genes using a threshold of 3

> ## on the absolute projection values,

> ## heatmap with dendrogram

> resH <- plot_heatmapsOnSel (icaSet = icaSetMainz, selCutoff = 3, level = "genes",
+ keepVar = keepVar,

+ doSamplesDendro = TRUE, doGenesDendro = TRUE, keepComy
+ heatmapCol = maPalette(low = "blue", high = "red", mic
+ file = "heatmapWithDendro", annot2col=annot2col (param:
> ## heatmap where genes and samples are ordered by contribution values

> resH <- plot_heatmapsOnSel (icaSet = icaSetMainz, selCutoff = 3, level = "genes",
+ keepVar = keepVar,

+ doSamplesDendro = FALSE, doGenesDendro = FALSE, keepCc
+ heatmapCol = maPalette(low = "blue", high = "red", mic
+ file = "heatmapWithoutDendro", annot2col=annot2col (pa:
>

The heatmap where samples are ranked by sample contributions shows a group of tumors distributed at
the left/negative end of the IC that strongly under-express and over-express sone of the contributing genes
of the component, and whose pattern of expression is strongly anticorrelated with the tumors distributed at
the opposite end of the component (Figure [T)). According to the second row of the top panel displaying the
tumor annotations, these tumors are preferentially ER negative.

15

Component IC2, cutoff = 3

(a)

Component IC2, cutoff = 3

mmm%%
I A

(b

Figure 1: Heatmap of component 2. The expression matrix is restricted to the contributing genes with an

absolute scaled projection exceeding 3, and each gene expression profile is centered. In heatmap (a), genes
and samples are ranked by their contribution to the IC.

16

3.4.3 Gene enrichment analysis, function runEnrich

To obtain a biological interpretation of the component, it can be useful to study the association of its con-
tributing genes with gene sets grouping genes involved in a same biological processes or sharing a same
factor of regulation. In order to identify the gene sets which are enriched in the list of selected (contributing)
genes, the function runEnrich uses R GOstats package [Falcon and Gentleman| [2007]] which makes use
of a hypergeometric distribution to test the over-representation of a gene set in a given list of genes.

> ## run enrichment analysis on the first three components of icaSetMainz,

> ## using gene sets from the ontology 'Biological Process' (BP) of Gene Ontology
> resEnrich <- runEnrich (params=params, icaSet=icaSetMainz[,,1:3],

+ dbs=c ("GO"), ontos="BP")

The output resEnrich is a list whose each element contains results obtained on each database for ev-
ery component tested. For each component, three enrichment results are available, depending on how con-
tributing genes are selected: on the absolute projection values (“both”), on the positive projection (“pos”),
and on the negative projection (‘“neg”).

We can see that the first component is associated with immune reaction, the second component with
epiderm development, and the third component with cell cycle:

> ## Access results obtained for GO/BP for the first three components
> # First component, when gene selection was based on the negative projection value
> head (resEnrichS$GOSBP[[1]]S1left)

GOBPID Pvalue OddsRatio ExpCount Count Size
1 GO:0006955 4.133986e-16 16.11393 2.180819 21 185
2 GO:0002694 3.535657e-14 10.23999 3.246918 23 199
3 GO:0050867 1.059836e-11 10.34766 2.382161 18 146
4 G0O:0002429 2.104749e-11 13.19753 1.566352 15 96
5 GO:0050863 2.964082e-11 14.54225 1.337114 14 85
6 GO:0051251 3.414818e—-11 14.36465 1.350438 14 85
Term
1 immune response
2 regulation of leukocyte activation
3 positive regulation of cell activation
4 immune response—activating cell surface receptor signaling pathway
5 regulation of T cell activation
6 positive regulation of lymphocyte activation
1 cb7,MS4A1,CD27,CTSW, GZMA, HLA-DOB, IGHD, IGHM, IGJ, IL2RG, CXCL10, LTB, LY9, CXCI
2 AIF1,CD2,CD3D,CD3G,CD247,CD27,CD37,CD38,HLA-DQOB1, LCK,PTPRC,CCL5,CCL19,XCL1,EBI3,]
3 AIF1,CD2,CD3D,CD3G,CD247,CD27,CD38, HLA-DQB1, LCK, PTPI
4 CD3D, CD3G,CD247,CD38, HLA-DQB1, IGHG1, IGKC,
5 AIF1,CD3D,CD3G,CD247,HLA-DQB1, PTI
6 AIF1,CD3D,CD3G,CD247,CD38, HLA-DQF

17

o U w N \4 o U W N o U1 W N o Uk W N Vv

o U w N

Second component

head (resEnrichSGOSBP [[2]]Sboth, n=5)

GOBPID Pvalue OddsRatio ExpCount Count
GO:0045104 2.160448e-05 19.682018 0.36675127 5
GO:0031581 6.046162e-05 26.782609 0.23730964 4
GO:0030318 3.943872e-04 14.405351 0.36675127 4
GO:0070488 4.615930e-04 Inf 0.04314721 2
GO:0072602 4.615930e-04 Inf 0.04314721 2
GO:0034329 1.079591e-03 4.298411 2.09263959 8

Term
intermediate filament cytoskeleton organization
hemidesmosome assembly
melanocyte differentiation
neutrophil aggregation
interleukin-4 secretion
cell junction assembly
In_geneSymbols
DST,KRT14,KRT16,PKP1, SYNM
DST,COL17A1, KRT5,KRT14
EDN3,KIT, SOX10,MLPH
S100A8,S100A9
GATA3,VTCN1
DST,CDH3,COL17A1, GPM6B, KRT5,KRT14, SFRP1, UGTS

Third component,

when gene selection was based

head (resEnrich$GOSBP[[3]]$both)

GOBPID
0048285
0051301
0007067
0007076
0000086
0006271

GO:
GO:
GO:
GO:
GO:
GO:

DNA strand

BIRC5,BUB1, CCNA2,CDK1,CDC20,CDC25A,CENPE, IGF1,KIFC1,MYBL2, NEK2, AURKA, CCNB2, KIF23,

Pvalue OddsRatio ExpCount Coun
2.180659%9e-24 16.848654 3.18165337 3
7.647658e-16 14.529070 2.14748665 2
4.855310e-12 17.087428 1.18268701 1
9.304760e-06 Inf 0.06363307
1.957014e-05 8.181957 1.18781726
5.656494e-05 27.266751 0.23332125

Term

organelle fission

cell division

mitosis

mitotic chromosome condensation

G2/M transition of mitotic cell cycle
elongation involved in DNA replication

18

t
2
1
4
3
8
4

Size
17
11
17

2
2
97

on the absolute projection valt

Size
150
107

65

3
56
11

BUB1, CCNAZ2, CDK1,

o U w N

The function runEnrich also writes these enrichment results in HTML files located in the sub-
directory "GOstatsEnrichAnalysis" of the result path.

3.4.4 Association with sample variables

Recall that a component is a direction in the gene space whose axis are defined by the samples. The mixing
matrix A contains the coordinates of the components on the sample axis, we call these values the sample
contributions.

The association of qualitative variables (e.g sample characteristics like tumor grade) with the compo-
nents can be studied by comparing the contributions of the groups of samples they define. Depending on the
number of groups formed by a given variable, their distribution can be compared either using a Wilcoxon
(two groups) or a Kruskall-Wallis test (at least three groups). The function qualVarAnalysis tests
whether the groups of samples formed by the qualitative variables are differently distributed on the compo-
nents in terms of contribution value and plots the corresponding densities or boxplots using ggplot2.

If the levels of some variables in the phenoData of your IcaSet object are ordered (e.g, increasing
tumor stage T1 T2 T3...), we advise you to declare these variables as factors whose levels are correctly
ordered.

> ### Qualitative variables

> ## Compute Wilcoxon and Kruskall-Wallis tests to compare the distribution
> ## of the samples according to their grade and ER status on all components.
> resQual <- qualVarAnalysis (params=params, icaSet=icaSetMainz,

+ keepVar=c ("er", "grade"),

+ adjustBy="none", typePlot="boxplot",

+ path="qualVarAnalysis/", filename="qualVar")

[1] "Plot distribution of samples on components according to variable er"
[1] "Comp 1"

[1] "Comp 2"

[1] "Comp 3"

[1] "Comp 5"

[1] "Plot distribution of samples on components according to variable grade"
[1] "Comp 1"

[1] "Comp 2"

[1] "Comp 3"

[1] "Comp 5"

The function creates an HTML file "qualVarAnalysis/qualVar.htm", containing p-values and links toward
boxplots. If you would like to plot densities rather than boxplots, please use 't ypePlot=density".

19

An example of boxplot is represented below for the second component and the ER status. As suggested
by the heatmap, the distribution of the samples on this component is strongly associated with their ER status,
the latter coming up at the positive end of the component.

2
Wilcoxon test : 4.216e-17
0.25
er
E3 ER-(38)
g EJ ER+(162)
g 0.00
5 KRT16
(@]
s f o,
Q. -0.25 4
S 3
B
-0.50 - -3

ER- ER+
er

Figure 2: Example of boxplot representing the distribution of ER status on the third component. The
Wilcoxon test p-value is available in the title of the plot. The legend indicates that the ER+ tumors are
represented in beige while ER- are represented in light pink. The number of tumors in each group is given
between brackets. The witness gene is KRT16. Each tumor sample is represented as a square point in the
vertical line at the left end of the boxplots whose color denotes its amount of expression of the KRT16 gene.
The scale of these colors is denoted by a legend at the upper right of the graph.

When a variable is quantitative, its association with a component can be studied by computing its corre-
lation with the sample contributions. The function quantVarAnalysis allows to compute the correlation
tests and to draw the corresponding scatter plots using ggplot2.

Quantitative wvariables

Compute pearson correlations between variable 'age' and the sample contributic

on all components.

We are interested in correlations exceeding 0.3 in absolute value, and plots v

for correlations exceeding this threshold.

resQuant <- quantVarAnalysis (params=params, icaSet=icaSetMainz, keepVar="age",
typeCor="pearson", cutoffOn="cor",

+ V V. V V V V

20

+ cutoff=0.3, adjustBy="none",
+ path="quantVarAnalysis/", filename="quantVar")

[1] "Scatter plot of samples contributions vs variable age"
[1] "Comp 2"

The absolute correlation between age and sample contributions exceeds 0.3 only for the second compo-
nent.

> resQuantS$Scor[2]

[1] 0.3670033

The corresponding scatter plot is available in Figure 3} A tendency of the women whose tumors are
located at the positive end of the component to be younger indeed appears.

The function creates a HTML file "quantVar.htm" containing correlations values, p-values, and links
toward scatter plots.

3.4.5 Clustering of the samples according to each component

Selection of samples associated with a component The selection of the samples associated with a com-
ponent may be needed for experimental needs. ICA provides a continuous signal describing the activity of
the components on the samples through the mixing matrix A. Genes which are contributors on the com-
ponents can also be selected through their projections in matrix S (using an arbitrary threshold). Since the
signal is continuous the selection of the samples contributing to a component rely on some arbitrary choices
regarding:

* the data on which the clustering has to be applied on: clustering in one dimension on columns of A,
or clustering on the expression matrix restricted to the contributing genes of the components?

* the number of clusters to use: two clusters if it is considered as a strictly bimodal signal, or three
clusters if we assume the existence of a group of samples with an average behavior?

* the method of clustering to use: k-means, clustering based on mixture Gaussian modelling, hierarchi-
cal clustering, ...

We recommend to cluster the samples by using their contributions to the component.
If you would like to perform the clustering on the original data restricted to the contributing genes, please
remind that they won’t necessarily represent the whole pattern of expression captured by the component, the
latter having been defined on all the features and not on a subset of them.

Study the bimodality of sample contributions in matrix A The distribution of the sample contributions
on a component (contained in matrix A) is often bimodal, each mode corresponding to samples that over-
or under-express the contributing genes of the component. The sample contributions can be visualized with
histograms, overlaid by Gaussian mixtures computed, in this package, using package mclust [Fraley and
Raftery| [2002, 2006]]. When a strong bimodal distribution is observed, the intersection of the two Gaussian
infered by function Mclust may be used to cluster the tumors. Here is an example by imposing two
Gaussian on every vector of sample contributions:

21

age vs comp 2
pearson cor=0.367, pval=9.023e-08

80-
KRT16
60 - . 6
()
Q 3
0
l 3
40 -
[)
T BE BRIl L 8RN
-0.50 -0.25 0.00 0.25
comp 2

Figure 3: Scatter plot of AGE vs sample contributions. The witness gene is KRT16. At the bottom of the
plot, each sample is represented by a square point whose colour denotes the expression value of the KRT16
gene. The scale of these colors is denoted by a legend at the upper right of the graph. Note that the gene
expression profiles were centered to have mean zero.

22

> resmix <- plotAllMix (A=A (icaSetMainz), nbMix=2, nbBreaks=50)

The position of sub-groups of samples can be plotted in this histogram, in order to see if they are
located at a specific end of the components. The function plotPosAnnot InComp allows to do so. The
samples distributed at one end of component generally have either a strong over- or under-expression of its
contributing genes.

Here is the example of the distribution of the tumors according to their ER status on the second compo-
nent.

plot the positions of the samples on the second component according to their I

>
> ## (in a file "er.pdf")

> plotPosAnnotInComp (icaSet=icaSetMainz, params=params, keepVar=c ("er"),
+ funClus="Mclust")

_ 7.7 7.7
g | BER 64 g | DER+ 64
52 b2
- 4 - 4
o — 2z ° 27
-) s,
F T 22 g 5%
S g - -35 S 2 -35
o o
o - 1 @ g
w w
2 2
n - wn -
o o -
N NN N NN D DR T e . N NN NN NN D D A e, .
T T T T T 1 T T T T T 1
-0.6 -0.4 -0.2 0.0 0.2 0.4 -0.6 -04 -0.2 0.0 0.2 0.4
contributions contributions

Figure 4: Distribution of ER status on the second component.. The histogram of each group is superimposed
on the global histogram including contributions of all tumor samples. Two Gaussians were fitted on the
distribution by mixture modeling using package mclust. The p-value at the top of the histogram provides
the result of a chi-square test of association between each group and the clusters of samples formed by the
two Gaussians.

Again, we can see that the negative end of the IC defines a cluster of tumors almost exclusively consti-
tuted of ER- tumors, while the ER+ tumors are primarily located on its right side. The expression profile
of the gene witness, KRT16, indicates that the negative side corresponds to the over-expression of this gene
and its counterparts compared to the positive side.

Cluster samples, function clusterSamplesByComp The function clusterSamplesByComp al-
lows to cluster the samples using either the mixing matrix A or the original data matrix restricted to the con-
tributing individuals. The clustering can be performed using centroid-based clustering (function kmeans),
hierarchical clustering (through functions hclust and agnes), Gaussian mixture models (using function
Mclust or package mclust), or Partitioning Around Medoids (PAM) (functions pam and pamk).

The second component displays a bimodal distribution, we cluster the samples using the vector of sample
contributions:

> ## clustering of the samples in 1-dim using the vector
> ## of sample contributions of the two first components

23

keepComp=:

vV V + V V

and Gaussian mixture modeling
clusl <- clusterSamplesByComp (params=params,
funClus="Mclust",

The obtained clusters are written in the file
cluslSclus[[2]1]1[1:5]

(Mclust)

icaSet=icaSetMainz[,,,1:2],

clusterOn="A", nbClus=2, filenamse
"complMclus.txt" of the result g

MAINZ_BC6001 MAINZ_BC6002 MAINZ_BC6003 MAINZ_BC6004 MAINZ_BC6005

2

2

2

2

2

It is also possible to perform several clusterings, using different algorithms or levels, with function
clusterSamplesOnComp_multiple. We can for example compare the clustering performed with k-
means applied to the vector of sample contributions and to the expression matrix restricted to the contributing

genes:

>
+
+
>
> ## in file
>

"comparKmeans.txt"

nbClus=2,

clus2 <- clusterSamplesByComp_multiple (params=params,
funClus="kmeans", clusterOn=c ("A","S"),

fi

lename="comparKmeans")

> ## Both clustering results are stored in a common data.frame
> head(clus2S$clus)

MAINZ_BC6001
MAINZ_BC6002
MAINZ_BC6003
MAINZ_BC6004
MAINZ_BC6005
MAINZ_BC6006

1_kmeans_onA 2_kmeans_onA 1_kmeans_onS 2_kmeans_onS

> ## Access Rand index
> clus2ScomparClus

1 kmeans_onA
1 _kmeans_onS
2_kmeans_onA
2_kmeans_onS

kmeans_onA

1.
.531
.000
779

o = O

000

1

N e

kmeans_onS
0.531
1.000
0.779
1.000

1

nDNDNDDNDDN

1

L

DN RN

Once a sample clustering has been computed, one can be interested in its association with the qualitative
variables. Function clusVarAnalysis enables to perform the chi-square tests of independence to study
the association between the clustering obtained on each component and the qualitative variables. It also
draws the barplot to show the distribution of the variable levels across the clusters:

24

icaSet=icaSetMainz[,,1:2],

leve

The obtained clusters and their comparison with adjusted Rand indices are writ
of the result path.

Test the association between the clustering obtained by Mclust for the first

component and the variables:

clus2var <- clusVarAnalysis (icaSet=icaSetMainz[,,1:2], params=params,
keepVar=c ("er", "grade"),
resClus=clusl$clus, funClus="Mclust", adjustBy="none'
doPlot=TRUE, path="clus2var/", filename="resChitests-

Look at the filename which contains p-values and links to the barplots

p-values are also contained in the ouput of the function:

clus2var

vV V.V V V + 4+ 4+ V V V

3.4.6 Comparison of IcaSet objects, function runCompareIcaSets

Visualization of the correspondence between independent components with correlation-based graphs
We can study the association between ICs computed on n different datasets using correlation graphs. In
these graphs, each IC is represented as a node whose color indicates the dataset, and the edge thickness is
proportional to the amount of correlation between the two ICs it links.
Hereafter we will denote by Cy ,, the n*" component from dataset M.

The relationship between the components is restricted to correlation maximum: an edge connecting a
component C4 ; to a component C'g ; means that component C' 4 ; is the most correlated component to Cp
among all the components C'y ;/(;7;) from the dataset A. The reciprocity of the link (i.e. the presence of an
edge binding C'g ; to C'4 ;) reinforces the association between the two components.

In R, the graph can be visualized with function t kplot, using the “fruchterman.reingold” layout which
attends to attribute the length of the edge according to one of its attribute, here the absolute correlation
coefficient between the two components it links.

The edge thickness is also attributed according to the absolute correlation value (the higher the absolute
correlation value is, the thicker the edge thickness is).

Highly reproducible components appear in the graph as a subset of n interconnected nodes of different
colors (quasi-cliques). A way to highlight these quasi-cliques is obtained by coloring in black only edges
linking reciprocal node pairs (a node pair is said to be reciprocal if there are edges between them in both
directions). Non-reciprocal edges appear in grey. It allows to highlight the components with a high level of
reproducibility.

Example: Comparison of four IcaSet objects As an example we will compare four ICA decompositions
obtained on four different gene expression datasets of breast tumors (including the Mainz data used above).
We build an instance of IcaSet for each of the three datasets:

load three other breast cancer datasets also based on Affymetrix HG-Ul33a mic
library (breastCancerUPP)

library (breastCancerTRANSBIG)

library (breastCancerVDX)

data (upp)

vV V V V V

25

data (transbig)
data (vdx)
function to build IcaSet instances from these three datasets
treat <- function(es, annot="hgul33a.db") {
es <- selectFeatures_IQR(es,10000)
exprs (es) <- t(apply(exprs(es),l,scale,scale=FALSE))
colnames (exprs(es)) <- sampleNames (es)
resJade <- runlICA (X=exprs (es), nbComp=5, method = "JADE", maxit=10000)
resBuild <- buildIcaSet (params=buildMineICAParams (), A=data.frame (resJadeS$SA),
dat=exprs(es), pData=pData(es), refSamples=character
annotation=annot, typelD= typelDmainz,
chipManu = "affymetrix", mart=mart)
icaSet <- resBuild$icaSet
}
icaSetUpp <- treat (upp, annot="hgul33plus2.db")
icaSetVdx <- treat (vdx)
icaSetTransbig <- treat (transbig)

V VYV 4+ 4+ 4+ 4+ A+ + 4+ + 4+ +VVVV

Each IcaSer was annotated at the gene level using Gene Symbols. We will therefore compute correlation
between gene projection values stored in slot SByGene of each IcaSet.

Pearson correlation is used as a measure of association between the gene projections. The correlation
graph can be build with function runCompareIcaSets:

> resGraph <- runComparelcaSets (icaSets=list (icaSetMainz, icaSetUpp,

+ icaSetTransbig, icaSetVvdx),

+ labAn=c ("Mainz", "Upp","Transbig","vdx"),

+ type.corr="pearson", level="genes",

+ cutoff_zval=0, fileNodeDescr="nodeDescr.txt",
+ fileDataGraph="dataGraph.txt", tkplot=TRUE)

Get the colors attributed to each dataset using the element nodeAttrs of resGraph:

\%

barplot (names.arg=unique (resGraph[[2]]$1labAn), height=rep(1,4),
+ col=unique (resGraph[[2]]1Scol))

The Mainz dataset is represented in blue. Three cliques of four components appear in the correlation-based
graph, they include the first three components of the Mainz dataset. The latter are therefore reproducible
across the four datasets and thus capture coexpression patterns shared across different breast cancer cohorts.
We showed that the first component was associated with the cell cycle, the second with immune reaction,
and the third one with epiderm development. The third component also included EGFR and several keratins
among its contributing genes, and defined a cluster of samples constituted by a subset of the ER- breast
tumors. The latter typically corresponds to the subtype of breast cancer known as "basal-like".

Here we chose to base the correlation on all genes. By modifying the argument cutoff_zval, we
could have chosen to base the correlations on genes with contribution values higher than a given thresh-
old. Using cutoff_zval=1, only the projections whose scaled values are not located within the circle
of radius 1 when considering a pair of components are used to compute the correlation. In practice, the

26

Figure 5: Correlation-based graph representing association between independent components obtained on
four expression data of breast cancer samples. Each node denotes an IC and their colors represent the dataset
they originate from. Edge thickness denotes the amount of correlation between the two ICs it links. Black
edges denote reciprocal nodes.

27

function will be much faster when cutoff_zval=0, since in that case pairs of components are not treated
individually.

Created files nodeDescr.txt and dataGraph.txt may be used as inputs into Cytoscape Melissa S Cline|
[2007]] which could be a way to obtain a more elegant correlation graph.

Intersection and union between contributing genes When cliques appear in the correlation-based graph,
you may want to compare the genes having high projections on the components included in the clique. The
function compareGenes allows to compare components of different icaSets and returns the common
genes ordered by their median rank across the components. Intersection or union of the genes can be
considered.

We study the common contributing genes of the components included in two different cliques of the
graph using compareGenes:

> ## comparison of four components included in the clique of the correlation-based
> # that includes the second component of Mainz.

> inter <- compareGenes (keepCompByIcaSet = c(2,2,2,2),

+ icaSets = list (icaSetMainz, icaSetTransbig, icaSetUpp, icac
+ lab=c("Mainz", "Transbig", "Upp", "Vdx"), cutoff=3,

+ type="intersection", annotate=F)

> head (inter)

min_rank median_rank ranks scaled_proj
IGLG@ 1 1.0 1,1,1,1 -8.9,-9.2,9.2,-9.3
IGKV4-1 2.0 2,2,3,2 -8.4,-8.7,7.9,-8.9
IGLV2-23 3 3.0 3,3,4,3 -7,-8.3,7.7,-8.8
NKG7 2 5.0 5,8,2,5 -6.4,-6.1,8.4,-7.6
IGHM 4 5.5 4,7,9,4 -6.6,-6.5,6.7,-7.7
TNFRSF17 4 6.0 6,4,6,6 -6.3,-7.8,7.1,-7.6
> ## comparison of four components included in the clique of the correlation-based
> # that includes the third component of Mainz.
> inter <- compareGenes (keepCompByIcaSet = c¢(3,3,3,1),
+ icaSets = list (icaSetMainz, icaSetTransbig, icaSetUpp, icac
+ lab=c("Mainz", "Transbig", "Upp", "Vdx"), cutoff=3,
+ type="intersection", annotate=F)
> head(inter)
min_rank median_rank ranks scaled_proj
GABRP 1 1.0 1,1,1,3 7.7,8.7,8.1,7.2
MIA 2 4.0 5,5,3,2 6.3,7.2,7.3,7.3
SERPINBS 5 6.5 7,7,6,5 6.2,7.1,5.9,6.5
KRT14 2 8.5 13,2,4,21 5.7,7.3,7,5.1
KRT16 2 9.5 2,15,15,4 7.3,5.8,5.4,7
KRT81 4 9.5 4,31,12,7 6.3,4.6,5.6,6.2

28

The common contributing genes of the first clique are strongly associated in the immune reaction and
many of them are markers of lymphocytes, while the common contributing genes of the second clique
include several keratins (KRTS5 KRTI4, KRT15, KRT16, KRT17, KRT23, ...) and other known markers of
the basal-like breast subtype.

References

S. Falcon and R. Gentleman. Using GOstats to test gene lists for GO term association. Bioinformat-
ics, 23:257-258, Jan 2007. URL http://biocinformatics.oxfordjournals.org/cgi/
content/full/23/2/257?view=1long&pmid=17098774.

C. Fraley and A. E. Raftery. Model-Based Clustering, Discriminant Analysis and Density Estimation. Jour-
nal of the American Statistical Association, 97:611-631, 2002.

C. Fraley and A. E. Raftery. MCLUST Version 3 for R: Normal Mixture Modeling and Model-Based
Clustering. Technical Report 504, University of Washington, Department of Statistics, 2006. revised
2009.

A. Frigyesi, S. Veerla, D. Lindgren, and M. Hoglund. Independent component analysis reveals new and
biologically significant structures in micro array data. BMC Bioinformatics, 7:290, 2006. URL http:
//www.ncbi.nlm.nih.gov/pubmed/16762055.

Johan Himberg, Aapo Hyvérinen, and Fabrizio Esposito. Validating the independent components of neu-
roimaging time series via clustering and visualization. Neuroimage, 22(3):1214-1222, Jul 2004. doi: 10.
1016/j.neuroimage.2004.03.027. URL http://dx.doi.org/10.1016/j.neuroimage.2004.
03.027.

Su-In Lee and Serafim Batzoglou. Application of independent component analysis to microarrays. Genome
Biol, 4(11):R76, 2003. doi: 10.1186/gb-2003-4-11-r76. URL http://dx.doi.org/10.1186/
gb—-2003-4-11-176!

Melissa S Cline, Michael Smoot, Ethan Cerami, Allan Kuchinsky, Nerius Landys, Chris Workman, Rowan
Christmas, Iliana Avila Campilo, Michael Creech, Benjamin Gross, Kristina Hanspers, Ruth Isserlin,
Ryan Kelley, Sarah Killcoyne, Samad Lotia, Steven Maere, John Morris, Keiichiro Ono, Vuk Pavlovic,
Alexander R Pico, Aditya Vailaya, Peng-Liang Wang, Annette Adler, Bruce R Conklin, Leroy Hood,
Martin Kuiper, Chris Sander, Ilya Schmulevich, Benno Schwikowski, Guy J Warner, Trey Ideker, and
Gary D Bader. Integration of biological networks and gene expression data using Cytoscape. Nat Pro-
toc, 2(10):2366-2382, 2007. doi: 10.1038/nprot.2007.324. URL http://dx.doi.org/10.1038/
nprot.2007.324.

S. A. Saidi, C. M. Holland, D. P. Kreil, D. J. MacKay, D. S. Charnock Jones, C. G. Print, and S. K. Smith.
Independent component analysis of microarray data in the study of endometrial cancer. Oncogene, 23:
6677-6683, Aug 2004.

Marcus Schmidt, Daniel Bohm, Christian von T6rne, Eric Steiner, Alexander Puhl, Henryk Pilch, Hans-
Anton Lehr, Jan G Hengstler, Heinz K&lbl, and Mathias Gehrmann. The humoral immune system has
a key prognostic impact in node-negative breast cancer. Cancer Res, 68(13):5405-5413, Jul 2008.
doi: 10.1158/0008-5472.CAN-07-5206. URL http://dx.doi.org/10.1158/0008-5472.
CAN-07-5206.

29

http://bioinformatics.oxfordjournals.org/cgi/content/full/23/2/257?view=long&pmid=17098774
http://bioinformatics.oxfordjournals.org/cgi/content/full/23/2/257?view=long&pmid=17098774
http://www.ncbi.nlm.nih.gov/pubmed/16762055
http://www.ncbi.nlm.nih.gov/pubmed/16762055
http://dx.doi.org/10.1016/j.neuroimage.2004.03.027
http://dx.doi.org/10.1016/j.neuroimage.2004.03.027
http://dx.doi.org/10.1186/gb-2003-4-11-r76
http://dx.doi.org/10.1186/gb-2003-4-11-r76
http://dx.doi.org/10.1038/nprot.2007.324
http://dx.doi.org/10.1038/nprot.2007.324
http://dx.doi.org/10.1158/0008-5472.CAN-07-5206
http://dx.doi.org/10.1158/0008-5472.CAN-07-5206

A. E. Teschendorff, M. Journee, P. A. Absil, R. Sepulchre, and C. Caldas. Elucidating the altered tran-
scriptional programs in breast cancer using independent component analysis. PLoS Comput. Biol., 3:
el61, Aug 2007. URL http://www.ploscompbiol.org/article/info:doi/10.1371/
journal.pcbi.0030161.

30

http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.0030161
http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.0030161

	Introduction
	Software features
	Case study
	Loading the library and the data
	Creation of an IcaSet object
	load an example of expression data
	Run ICA
	Create a MineICAParams object, function buildMineICAParams
	Create an IcaSet instance, function buildIcaSet
	IcaSet basics

	Run global analysis
	Run analysis by calling individual functions
	Write description of contributing genes or features, function writeProjByComp
	Plot heatmaps of the contributing elements, function plot_heatmapsOnSel
	Gene enrichment analysis, function runEnrich
	Association with sample variables
	Clustering of the samples according to each component
	Comparison of IcaSet objects, function runCompareIcaSets

