
Package ‘treeclimbR’
October 22, 2025

Type Package

Title An algorithm to find optimal signal levels in a tree

Version 1.5.1

Date 2025-07-18

Description The arrangement of hypotheses in a hierarchical structure appears
in many research fields and often indicates different resolutions at which
data can be viewed. This raises the question of which resolution level
the signal should best be interpreted on. treeclimbR provides a flexible
method to select optimal resolution levels (potentially different levels
in different parts of the tree), rather than cutting the tree at an
arbitrary level. treeclimbR uses a tuning parameter to generate candidate
resolutions and from these selects the optimal one.

License Artistic-2.0

Encoding UTF-8

biocViews StatisticalMethod, CellBasedAssays

Depends R (>= 4.4.0)

Imports TreeSummarizedExperiment (>= 1.99.0), edgeR, methods,
SummarizedExperiment, S4Vectors, dirmult, dplyr, tibble, tidyr,
ape, diffcyt, ggnewscale, ggplot2 (>= 3.4.0), viridis, ggtree,
stats, utils, rlang

Suggests knitr, rmarkdown, scales, testthat (>= 3.0.0), BiocStyle,
GenomeInfoDb

RoxygenNote 7.3.2

VignetteBuilder knitr

URL https://github.com/csoneson/treeclimbR

BugReports https://github.com/csoneson/treeclimbR/issues

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/treeclimbR

git_branch devel

git_last_commit 88e3b05

git_last_commit_date 2025-07-18

Repository Bioconductor 3.22

Date/Publication 2025-10-21

1

https://github.com/csoneson/treeclimbR
https://github.com/csoneson/treeclimbR/issues

2 treeclimbR-package

Author Ruizhu Huang [aut] (ORCID: <https://orcid.org/0000-0003-3285-1945>),
Charlotte Soneson [aut, cre] (ORCID:

<https://orcid.org/0000-0003-3833-2169>)

Maintainer Charlotte Soneson <charlottesoneson@gmail.com>

Contents
treeclimbR-package . 2
aggDS . 3
buildTree . 4
edgerWrp . 7
evalCand . 8
fdr . 11
findChild . 12
findExcl . 13
getCand . 14
getData . 16
getLevel . 18
infoCand . 19
isConnect . 20
medianByClusterMarker . 21
nodeResult . 23
parEstimate . 24
runDA . 25
runDS . 27
selNode . 29
simData . 31
topNodes . 34
tpr . 35
TreeHeatmap . 36
treeScore . 41

Index 44

treeclimbR-package treeclimbR

Description

The arrangement of hypotheses in a hierarchical structure appears in many research fields and often
indicates different resolutions at which data can be viewed. This raises the question of which
resolution level the signal should best be interpreted on. treeclimbR provides a flexible method
to select optimal resolution levels (potentially different levels in different parts of the tree), rather
than cutting the tree at an arbitrary level. treeclimbR uses a tuning parameter to generate candidate
resolutions and from these selects the optimal one.

Author(s)

Ruizhu Huang

Charlotte Soneson

https://orcid.org/0000-0003-3285-1945
https://orcid.org/0000-0003-3833-2169

aggDS 3

See Also

Useful links:

• https://github.com/csoneson/treeclimbR

• Report bugs at https://github.com/csoneson/treeclimbR/issues

aggDS Aggregate observed data based on a tree

Description

Aggregate observed values based on a column (sample) tree, e.g. for differential state analysis. The
returned object will contain one abundance matrix for each node in the tree, with columns corre-
sponding to sample IDs and rows corresponding to the same features as the rows of the input object.
The nodes correspond to either the original sample clusters, or larger metaclusters encompassing
several of the original clusters (defined by the provided column tree).

Usage

aggDS(
TSE,
assay = "counts",
sample_id = "sample_id",
group_id = "group_id",
cluster_id = "cluster_id",
FUN = sum,
message = FALSE

)

Arguments

TSE A TreeSummarizedExperiment object. Rows represent variables (e.g., genes)
and columns represent observations (e.g., cells). The object must contain a col-
umn tree, whose tips represent initial cell clusters (the cluster_id annotation
indicates which of these clusters a cell belongs to). The internal nodes represent
increasingly coarse partitions of the cells obtained by successively merging the
original clusters according to the provided column tree.

assay The name or index of the assay from TSE to aggregate values from.

sample_id A character scalar indicating the column of colData(TSE) that corresponds to
the sample ID. These will be the columns of the output object.

group_id A character scalar indicating the column of colData(TSE) that corresponds to
the group/condition. This information will be propagated to the aggregated ob-
ject.

cluster_id A character scalar indicating the column of colData(TSE) that corresponds to
the initial cluster ID for each cell.

FUN The aggregation function.

message A logical scalar, indicating whether progress messages should be printed to the
console.

https://github.com/csoneson/treeclimbR
https://github.com/csoneson/treeclimbR/issues

4 buildTree

Value

A SummarizedExperiment object. Each assay represents the aggregated values for one node in the
tree.

Author(s)

Ruizhu Huang, Charlotte Soneson

Examples

suppressPackageStartupMessages({
library(TreeSummarizedExperiment)
library(ape)
library(ggtree)

})

set.seed(1L)
tr <- rtree(3, tip.label = LETTERS[seq_len(3)])
ggtree(tr) +

geom_text(aes(label = node), hjust = -1, vjust = 1) +
geom_text(aes(label = label), hjust = -1, vjust = -1)

cc <- matrix(rpois(60, 10), nrow = 6)
rownames(cc) <- paste0("gene", seq_len(6))
colnames(cc) <- paste0("cell", seq_len(10))
cd <- data.frame(sid = rep(seq_len(2), each = 5),

gid = rep(letters[seq_len(2)], each = 5),
cid = sample(LETTERS[seq_len(3)], size = 10,

replace = TRUE),
stringsAsFactors = FALSE)

tse <- TreeSummarizedExperiment(assays = list(counts = cc),
colTree = tr,
colNodeLab = cd$cid,
colData = cd)

out <- aggDS(TSE = tse, assay = "counts", sample_id = "sid",
group_id = "gid", cluster_id = "cid")

Aggregated counts for the node 5
SummarizedExperiment::assay(out, "alias_5")
This is equal to the sum of the counts from nodes 1 and 2
SummarizedExperiment::assay(out, "alias_1")
SummarizedExperiment::assay(out, "alias_2")

buildTree Tree versions of diffcyt functions

Description

A collection of functions from the diffcyt package have been generalized to work with data pro-
vided in a tree structure. The tree represents increasingly coarse clustering of the cells, and the
leaves are the clusters from an initial, high-resolution clustering generated by diffcyt. Note that
diffcyt represents data using SummarizedExperiment objects with cells in rows and features in
columns.

buildTree 5

Usage

buildTree(d_se, dist_method = "euclidean", hclust_method = "average")

calcMediansByTreeMarker(d_se, tree)

calcTreeCounts(d_se, tree)

calcTreeMedians(d_se, tree, message = FALSE)

Arguments

d_se A SummarizedExperiment object, with cells as rows and features as columns.
This should be the output from generateClusters. The colData is assumed
to contain a factor named marker_class.

dist_method The distance measure to be used. This must be one of "euclidean", "maximum",
"manhattan", "canberra", "binary" or "minkowski". Any unambiguous substring
can be given. Please refer to method in dist for more information.

hclust_method The agglomeration method to be used. This should be (an unambiguous ab-
breviation of) one of "ward.D", "ward.D2", "single", "complete", "average" (=
UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (=
UPGMC). Please refer to method in hclust for more information.

tree A phylo object from buildTree.

message A logical scalar indicating whether progress messages should be printed.

Details

The data object is assumed to contain a factor marker_class in the column meta-data (see prepareData),
which indicates the protein marker class for each column of data ("type", "state", or "none").

Variables id_type_markers and id_state_markers are saved in the metadata slot of the output
object. These can be used to identify the ’cell type’ and ’cell state’ markers in the list of assays
in the output TreeSummarizedExperiment object, which is useful in later steps of the ’diffcyt’
pipeline.

• buildTree applies hierarchical clustering to build a tree starting from the high-resolution
clustering created by generateClusters. The function calculates the median abundance for
each (ID type) marker and cluster, and uses this data to further aggregate the initial clusters
using hierarchical clustering.

• calcTreeCounts calculates the number of cells per cluster-sample combination (referred to
as cluster cell ’counts’, ’abundances’, or ’frequencies’. This is a tree version of calcCounts.

• calcMediansByTreeMarker calculates the median value for each cluster-marker combination.
A cluster is represented by a node on the tree. This is a tree version of calcMediansByClusterMarker.

• calcTreeMedians calculates the median expression for each cluster-sample-marker combi-
nation. This is a tree version of calcMedians.

Value

• For buildTree, a phylo object representing the hierarchical clustering of the initial high-
resolution clusters.

• For calcTreeCounts, a TreeSummarizedExperiment object, with clusters (nodes of the tree)
in rows, samples in columns and abundances (counts) in an assay.

6 buildTree

• For calcMediansByTreeMarker, a TreeSummarizedExperiment object with clusters (nodes
of the tree) in rows and markers in columns. The marker expression values are in the assay.

• For calcTreeMedians, a TreeSummarizedExperiment object with median marker expres-
sion for each cluster (each node of the tree) and each sample for each cluster (node of the tree).
Each node is represented as a separate assay, with the number of columns equal to the number
of samples. The metadata slot contains variables id_type_markers and id_state_markers.

Author(s)

Ruizhu Huang

Examples

For a complete workflow example demonstrating each step in the 'diffcyt'
pipeline, please see the diffcyt vignette.
suppressPackageStartupMessages({

library(diffcyt)
library(TreeSummarizedExperiment)

})

Helper function to create random data (one sample)
d_random <- function(n = 20000, mean = 0, sd = 1, ncol = 20, cofactor = 5) {

d <- sinh(matrix(rnorm(n, mean, sd), ncol = ncol)) * cofactor
colnames(d) <- paste0("marker", sprintf("%02d", seq_len(ncol)))
d

}

Create random data (without differential signal)
set.seed(123)
d_input <- list(

sample1 = d_random(), sample2 = d_random(),
sample3 = d_random(), sample4 = d_random()

)

experiment_info <- data.frame(
sample_id = factor(paste0("sample", seq_len(4))),
group_id = factor(c("group1", "group1", "group2", "group2"))

)

marker_info <- data.frame(
channel_name = paste0("channel", sprintf("%03d", seq_len(20))),
marker_name = paste0("marker", sprintf("%02d", seq_len(20))),
marker_class = factor(c(rep("type", 10), rep("state", 10)),

levels = c("type", "state", "none"))
)

Prepare data
d_se <- diffcyt::prepareData(d_input, experiment_info, marker_info)

Transform data
d_se <- diffcyt::transformData(d_se)

Generate clusters
d_se <- diffcyt::generateClusters(d_se)

Build a tree

edgerWrp 7

tr <- buildTree(d_se)

Calculate abundances for nodes in each sample
d_counts_tree <- calcTreeCounts(d_se = d_se, tree = tr)

Calculate medians (by cluster and marker)
d_medians_by_cluster_marker <-

calcMediansByTreeMarker(d_se = d_se, tree = tr)

Calculate medians (by cluster, sample and marker)
d_medians_tree <- calcTreeMedians(d_se = d_se, tree = tr)

edgerWrp Wrapper applying an edgeR differential analysis workflow

Description

edgerWrp is a wrapper using functions from the edgeR package (Robinson et al. 2010, Bioinfor-
matics; McCarthy et al. 2012, Nucleic Acids Research) to fit models and perform a moderated test
for each entity.

Usage

edgerWrp(
count,
lib_size = NULL,
option = c("glm", "glmQL"),
design,
contrast = NULL,
normalize = TRUE,
normalize_method = "TMM",
...

)

Arguments

count A matrix with features (e.g., genes or microbes) in rows and samples in columns.

lib_size A numeric vector with library sizes for each sample. If NULL (default), the col-
umn sums of count are used.

option Either "glm" or "glmQL". If "glm", glmFit and glmLRT are used; otherwise,
glmQLFit and glmQLFTest are used. Details about the difference between the
two options can be found in the help pages of glmQLFit.

design A numeric design matrix, e.g. created by model.matrix. Please refer to design
in glmQLFit and glmFit for more details.

contrast A numeric vector specifying one contrast of the linear model coefficients to be
tested. Its length must equal the number of columns of design. If NULL, the last
coefficient will be tested. Please refer to contrast in glmQLFTest and glmLRT
for more details.

normalize A logical scalar, specifying whether normalization factors should be calculated
(using calcNormFactors).

8 evalCand

normalize_method

Normalization method to be used. Please refer to method in calcNormFactors
for more details.

... More arguments to pass to glmFit (if option = "glm" or glmQLFit (if option
= "glmQL").

Details

The function performs the following steps:

• Create a DGEList object. If lib_size is given, set the library sizes to these values, otherwise
use the column sums of the count matrix.

• If normalize is TRUE, estimate normalization factors using calcNormFactors.

• Estimate dispersions with estimateDisp.

• Depending on the value of option, apply either the LRT or QLF edgeR workflows (i.e., either
glmFit + glmLRT or glmQLFit + glmQLFTest), testing for the specified contrast.

Value

The output of glmQLFTest or glmLRT depending on the specified option.

Author(s)

Ruizhu Huang

Examples

suppressPackageStartupMessages({
library(TreeSummarizedExperiment)

})
Read example data
x <- readRDS(system.file("extdata/da_sim_100_30_18de.rds",

package = "treeclimbR"))

Run differential abundance analysis
out <- edgerWrp(count = assay(x), option = "glm",

design = model.matrix(~ group, data = colData(x)),
contrast = c(0, 1))

The output is an edgeR DGELRT object
class(out)

evalCand Evaluate candidate levels and select the optimal one

Description

Evaluate all candidate levels proposed by getCand and select the one with best performance. For
more details about how the scoring is done, see Huang et al (2021): https://doi.org/10.1186/s13059-
021-02368-1.

evalCand 9

Usage

evalCand(
tree,
type = c("single", "multiple"),
levels,
score_data = NULL,
node_column,
p_column,
sign_column,
feature_column = NULL,
method = "BH",
limit_rej = 0.05,
use_pseudo_leaf = FALSE,
message = FALSE

)

Arguments

tree A phylo object.

type A character scalar indicating whether the evaluation is for a DA-type workflow
(set type="single") or a DS-type workflow (set type="multiple").

levels A list of candidate levels that are returned by getCand. If type = "single",
elements in the list are candidate levels, and are named by the value of the tuning
parameter. If type = "multiple", a nested list is required and the list should
be named by the feature (e.g., genes). In that case, each element is a list of
candidate levels for that feature.

score_data A data.frame (type = "single") or a list of data.frames (type = "multiple").
Each data.frame must have at least one column containing the node IDs (de-
fined by node_column), one column with p-values (defined by p_column), one
column with the direction of change (defined by sign_column) and one optional
column with the feature (feature_column, for type="multiple").

node_column The name of the column that contains the node information.

p_column The name of the column that contains p-values of nodes.

sign_column The name of the column that contains the direction of the (estimated) change.

feature_column The name of the column that contains information about the feature ID.

method method The multiple testing correction method. Please refer to the argument
method in p.adjust. Default is "BH".

limit_rej The desired false discovery rate threshold.
use_pseudo_leaf

A logical scalar. If FALSE, the FDR is calculated on the leaf level of the tree;
If TRUE, the FDR is calculated on the pseudo-leaf level. The pseudo-leaf level
is the level on which entities have sufficient data to run analysis and the that is
closest to the leaf level.

message A logical scalar, indicating whether progress messages should be printed.

Value

A list with the following components:

candidate_best The best candidate level

10 evalCand

output Node-level information for best candidate level

candidate_list A list of candidates

level_info Summary information of all candidates

FDR The specified FDR level

method The method to perform multiple test correction.

column_info A list with the specified node, p-value, sign and feature column names

More details about the columns in level_info:

• t The thresholds.

• r The upper limit of t to control FDR on the leaf level.

• is_valid Whether the threshold is in the range to control leaf FDR.

• limit_rej The specified FDR.

• level_name The name of the candidate level.

• rej_leaf The number of rejections on the leaf level.

• rej_pseudo_leaf The number of rejected pseudo-leaf nodes.

• rej_node The number of rejections on the tested candidate level (leaves or internal nodes).

Author(s)

Ruizhu Huang

Examples

suppressPackageStartupMessages({
library(TreeSummarizedExperiment)
library(ggtree)

})

Generate example tree and assign p-values and signs to each node
data(tinyTree)
ggtree(tinyTree, branch.length = "none") +

geom_text2(aes(label = node)) +
geom_hilight(node = 13, fill = "blue", alpha = 0.5) +
geom_hilight(node = 18, fill = "orange", alpha = 0.5)

set.seed(1)
pv <- runif(19, 0, 1)
pv[c(seq_len(5), 13, 14, 18)] <- runif(8, 0, 0.001)

fc <- sample(c(-1, 1), 19, replace = TRUE)
fc[c(seq_len(3), 13, 14)] <- 1
fc[c(4, 5, 18)] <- -1
df <- data.frame(node = seq_len(19),

pvalue = pv,
logFoldChange = fc)

Propose candidates
ll <- getCand(tree = tinyTree, score_data = df,

node_column = "node",
p_column = "pvalue",
sign_column = "logFoldChange")

fdr 11

Evaluate candidates
cc <- evalCand(tree = tinyTree, levels = ll$candidate_list,

score_data = ll$score_data, node_column = "node",
p_column = "pvalue", sign_column = "logFoldChange",
limit_rej = 0.05)

Best candidate
cc$candidate_best

Details for best candidate
cc$output

fdr Calculate false discovery rate (FDR) on a tree structure

Description

Calculate the false discovery rate on a tree structure, at either leaf or node level.

Usage

fdr(tree, truth, found, only.leaf = TRUE)

Arguments

tree A phylo object.

truth True signal nodes (e.g., nodes that are truly differentially abundant between
experimental conditions). Note: when the FDR is requested at the leaf level
(only.leaf = TRUE), the descendant leaves of the given nodes will be found
and the FDR will be estimated on the leaf level.

found Detected signal nodes (e.g., nodes that have been found to be differentially abun-
dant via a statistical testing procedure). Note: when the FDR is requested at the
leaf level (only.leaf = TRUE), the descendant leaves of the given nodes will be
found out and the FDR will be estimated on the leaf level.

only.leaf A logical scalar. If TRUE, the false discovery rate is calculated at the leaf (tip)
level; otherwise it is calculated at the node level.

Value

The estimated false discovery rate.

Author(s)

Ruizhu Huang

12 findChild

Examples

suppressPackageStartupMessages({
library(ggtree)
library(TreeSummarizedExperiment)

})

data(tinyTree)

Two branches are truly differential
ggtree(tinyTree, branch.length = "none") +

geom_text2(aes(label = node)) +
geom_hilight(node = 16, fill = "orange", alpha = 0.3) +
geom_hilight(node = 13, fill = "blue", alpha = 0.3)

FDR at the leaf level if nodes 14 and 15 are called differential (1/8)
fdr(tree = tinyTree, truth = c(16, 13),

found = c(15, 14), only.leaf = TRUE)

FDR at the node level if nodes 14 and 15 are called differential (2/14)
fdr(tree = tinyTree, truth = c(16, 13),

found = c(15, 14), only.leaf = FALSE)

findChild Find the children of an internal node in a tree

Description

Find the direct children of an internal node in a tree.

Usage

findChild(tree, node, use.alias = FALSE)

Arguments

tree A phylo object.

node Either the node number or node label of an internal node of tree.

use.alias A logical scalar. If FALSE (default), the node label is used to name the output;
otherwise, the alias of the node label is used. The alias of the node label is
created by adding a prefix "alias_" to the node number.

Value

A vector of nodes. The numeric value is the node number, and the vector name is the corresponding
node label. If a node has no label, it would have NA as name when use.alias = FALSE, and have
the alias of the node label as name when use.alias = TRUE.

Author(s)

Ruizhu Huang, Charlotte Soneson

findExcl 13

Examples

suppressPackageStartupMessages({
library(ggtree)
library(TreeSummarizedExperiment)

})

data(tinyTree)
ggtree(tinyTree, branch.length = "none") +

geom_text2(aes(label = node), color = "darkblue",
hjust = -0.5, vjust = 0.7) +

geom_text2(aes(label = label), color = "darkorange",
hjust = -0.1, vjust = -0.7)

Specify node numbers
findChild(tree = tinyTree, node = c(17, 12))

Name return values using aliases
findChild(tree = tinyTree, node = c(17, 12), use.alias = TRUE)

Specify node labels
findChild(tree = tinyTree, node = c("Node_17", "Node_12"))

Tips have no children
findChild(tree = tinyTree, node = "t4")

findExcl Find branches that are non-overlapping with specified branches in a
tree

Description

Find all branches whose leaves do not overlap with those of the specified branches.

Usage

findExcl(tree, node, use.alias = FALSE)

Arguments

tree A phylo object.

node A numeric or character vector specifying the nodes.

use.alias A logical scalar. If TRUE, the alias name is used to name the output vector.

Value

A vector of node numbers

Author(s)

Ruizhu Huang

14 getCand

Examples

suppressPackageStartupMessages({
library(ggtree)
library(TreeSummarizedExperiment)

})

data(tinyTree)
ggtree(tinyTree, branch.length = "none") +

geom_text2(aes(label = node)) +
geom_hilight(node = 17, fill = "blue", alpha = 0.3) +
geom_hilight(node = 13, fill = "orange", alpha = 0.3)

Find branches whose leaves do not overlap with the two colored branches.
The returned branches are represented at the highest tree level
possible without including any of the forbidden branches.
findExcl(tree = tinyTree, node = c(17, 13))

getCand Generate candidates for different thresholds

Description

Generate candidates for different thresholds (t). A candidate consists of a disjoint collection of
leaves and internal branches, that collectively cover all leaves in the tree, and represents a specific
aggregation pattern along the tree.

Usage

getCand(
tree,
t = NULL,
score_data,
node_column,
p_column,
sign_column,
threshold = 0.05,
pct_na = 0.5,
message = FALSE

)

Arguments

tree A phylo object.

t A vector of threshold values used to search for candidates, in the range [0, 1].
The default (NULL) uses a sequence c(seq(0, 0.04, by = 0.01), seq(0.05,
1, by = 0.05))

score_data A data.frame including at least one column with node IDs (specified with the
node_column argument), one column with p-values (specified with the p_column
argument) and one column with directions of change (specified with the sign_column
argument).

getCand 15

node_column The name of the column of score_data that contains the node information.

p_column The name of the column of score_data that contains p-values for nodes.

sign_column The name of the column of score_data that contains the direction of change
(e.g., the log-fold change). Only the sign of this column will be used.

threshold Numeric scalar; any internal node where the value of the p-value column is
above this value will not be returned. The default is 0.05. The aim of this
threshold is to avoid arbitrarily picking up internal nodes without true signal.

pct_na Numeric scalar. In order for an internal node to be eligible for selection, more
than pct_na of its direct child nodes must have a valid (i.e., non-missing) value
in the p_column column. Hence, increasing this number implies a more strict
selection (in terms of presence of explicit values).

message A logical scalar, indicating whether progress messages should be printed to the
console.

Value

A list with two elements: candidate_list and score_data. condidate_list is a list of can-
didates obtained for the different thresholds. score_data is a data.frame that includes columns
from the input score_data and additional columns with q-scores for different thresholds.

Author(s)

Ruizhu Huang

Examples

suppressPackageStartupMessages({
library(TreeSummarizedExperiment)
library(ggtree)

})

data(tinyTree)
ggtree(tinyTree, branch.length = "none") +

geom_text2(aes(label = node)) +
geom_hilight(node = 13, fill = "blue", alpha = 0.3) +
geom_hilight(node = 18, fill = "orange", alpha = 0.3)

Simulate p-values and directions of change for nodes
(Nodes 1, 2, 3, 4, 5, 13, 14, 18 have a true signal)
set.seed(1)
pv <- runif(19, 0, 1)
pv[c(seq_len(5), 13, 14, 18)] <- runif(8, 0, 0.001)

fc <- sample(c(-1, 1), 19, replace = TRUE)
fc[c(seq_len(3), 13, 14)] <- 1
fc[c(4, 5, 18)] <- -1
df <- data.frame(node = seq_len(19),

pvalue = pv,
logFoldChange = fc)

ll <- getCand(tree = tinyTree, score_data = df,
t = c(0.01, 0.05, 0.1, 0.25, 0.75),
node_column = "node", p_column = "pvalue",
sign_column = "logFoldChange")

16 getData

Candidates
ll$candidate_list

Score table
ll$score_data

getData Extract data from a TreeHeatmap

Description

Extract different elements of the data shown in a figure generated with TreeHeatmap, such as the
heatmap itself, or the row and column names.

Usage

getData(
tree_hm,
type = c("heatmap", "row_name", "column_name", "title", "column_anno", "column_order",

"column_split")
)

Arguments

tree_hm The output of TreeHeatmap.

type A character scalar indicating the type of information to extract. Should be one of
"heatmap", "row_name", "column_name","title", "column_anno", "column_order".

Value

A data.frame (if type is not "column_order"), or a vector of column names (if type is "col-
umn_order").

Author(s)

Ruizhu Huang

Examples

suppressPackageStartupMessages({
library(TreeSummarizedExperiment)
library(ggtree)
library(ggplot2)
library(scales)
library(dplyr)
library(ggnewscale)

})

Load example data (tiny tree with corresponding count matrix)
tse <- readRDS(system.file("extdata", "tinytree_counts.rds",

package = "treeclimbR"))

getData 17

Aggregate counts for each of the highlighted subtrees
tseagg <- aggTSE(

tse,
rowLevel = c(13, 18,

setdiff(showNode(tinyTree, only.leaf = TRUE),
unlist(findDescendant(tinyTree, node = c(13, 18),

only.leaf = TRUE)))))
ct <- SummarizedExperiment::assay(tseagg, "counts")
col_split <- ifelse(colnames(ct) %in% paste0("S", seq_len(5)), "A", "B")
names(col_split) <- colnames(ct)

Prepare the tree figure
tree_fig <- ggtree(tinyTree, branch.length = "none",

layout = "rectangular") +
geom_hilight(node = 18, fill = "orange", alpha = 0.3) +
geom_hilight(node = 13, fill = "blue", alpha = 0.3)

fig <- TreeHeatmap(
tree = tinyTree, tree_fig = tree_fig, hm_data = ct,
cluster_column = TRUE, column_split = col_split,
column_anno = col_split, column_anno_gap = 0.6,
column_anno_color = c(A = "red", B = "blue"),
show_colnames = TRUE, colnames_position = "bottom",
colnames_angle = 90, colnames_size = 2, colnames_offset_y = -0.2,
show_title = TRUE, title_offset_y = 1.5, title_color = "blue"

)
fig

Extract data for heatmap
df_hm <- getData(tree_hm = fig, type = "heatmap")

Generate data to add a column annotation
ct <- df_hm |>

dplyr::select(x, width, variable) |>
dplyr::distinct()

set.seed(1)
ann <- matrix(sample(LETTERS[seq_len(2)], size = 3 * ncol(df_hm),

replace = TRUE),
nrow = 3)

rownames(ann) <- paste0("g", seq_len(3))
colnames(ann) <- ct$variable
ann <- data.frame(ann) |>

mutate(y = min(df_hm$y) - seq_len(nrow(ann)),
label = rownames(ann))

df_ann <- tidyr::pivot_longer(
ann, names_to = "variable",
values_to = "value", cols = -c("y", "label")) |>
left_join(ct)

Add new column annotation
fig +

new_scale_fill() +
geom_tile(data = df_ann, aes(x, y-0.5,

width = width, fill = value)) +
scale_fill_viridis_d() +
geom_text(data = df_ann, aes(x = min(x) - 1, y = y - 0.5,

label = label))

18 getLevel

getLevel Search for a target level on the tree via a specified score

Description

Search for the target level of the tree via a specified score. The score value needs to be provided for
each node of the tree.

Usage

getLevel(
tree,
score_data,
drop,
score_column,
node_column,
get_max,
parent_first = TRUE,
message = FALSE

)

Arguments

tree A phylo object.

score_data A data.frame providing scores for all nodes in the tree. The data frame should
have at least 2 columns, one with information about nodes (the node number)
and the other with the score for each node.

drop A logical expression indicating elements or rows to keep. Missing values are
taken as FALSE.

score_column The name of the column of score_data that contains the original scores of the
nodes.

node_column The name of the column of score_data that contains the node numbers.

get_max A logical scalar. If TRUE, search for nodes that has higher score value than
its descendants; otherwise, search for nodes that has lower score value than its
descendants.

parent_first A logical scalar. If TRUE, the parent node is selected if tied values occur on the
parent node and some of the children nodes.

message A logical scalar indicating whether progress messages should be printed.

Value

A data.frame similar to score_data but with an additional column named keep indicating which
nodes to retain.

Author(s)

Ruizhu Huang

infoCand 19

Examples

suppressPackageStartupMessages({
library(TreeSummarizedExperiment)
library(ggtree)

})

data(tinyTree)
ggtree(tinyTree, branch.length = "none") +

geom_text2(aes(label = node), color = "darkblue",
hjust = -0.5, vjust = 0.7) +

geom_text2(aes(label = label), color = "darkorange",
hjust = -0.1, vjust = -0.7) +

geom_hilight(node = 13, fill = "blue", alpha = 0.3) +
geom_hilight(node = 16, fill = "orange", alpha = 0.3)

Generate score for each node
pv <- rep(0.1, 19)
pv[c(16, 13, 17)] <- c(0.01, 0.05, 0.005)
out <- data.frame(node = 1:19, pvalue = pv)

Search nodes
final <- getLevel(tree = tinyTree,

score_data = out,
drop = pvalue > 0.05,
score_column = "pvalue",
node_column = "node",
get_max = FALSE,
parent_first = TRUE,
message = FALSE)

Nodes to keep
final$node[final$keep]

infoCand Get information of candidates

Description

Extract information about candidates.

Usage

infoCand(object)

Arguments

object An output object from evalCand.

Value

A data.frame with information about candidates.

20 isConnect

Author(s)

Ruizhu Huang

Examples

suppressPackageStartupMessages({
library(TreeSummarizedExperiment)
library(ggtree)

})

Simulate some data
data(tinyTree)
ggtree(tinyTree, branch.length = "none") +

geom_text2(aes(label = node)) +
geom_hilight(node = 13, fill = "blue", alpha = 0.3) +
geom_hilight(node = 18, fill = "orange", alpha = 0.3)

set.seed(1)
pv <- runif(19, 0, 1)
pv[c(seq_len(5), 13, 14, 18)] <- runif(8, 0, 0.001)

fc <- sample(c(-1, 1), 19, replace = TRUE)
fc[c(seq_len(3), 13, 14)] <- 1
fc[c(4, 5, 18)] <- -1
df <- data.frame(node = seq_len(19),

pvalue = pv,
logFoldChange = fc)

Get candidates
ll <- getCand(tree = tinyTree, score_data = df,

node_column = "node",
p_column = "pvalue",
sign_column = "logFoldChange")

Evaluate candidates
cc <- evalCand(tree = tinyTree, levels = ll$candidate_list,

score_data = df, node_column = "node",
p_column = "pvalue", sign_column = "logFoldChange",
limit_rej = 0.05)

Get summary info about candidates
out <- infoCand(object = cc)
out

isConnect Check whether nodes are contained in the same path from a leaf to the
root in a tree

Description

Perform an elementwise check of whether two vectors of nodes are "connected" in specific ways in
a tree. A pair of nodes are considered to be connected if they are part of the same path from a leaf
to the root of the tree. They are considered directly connected if one node is the parent of the other,
and indirectly connected otherwise.

medianByClusterMarker 21

Usage

isConnect(tree, node_a, node_b, connect = "any")

Arguments

tree A phylo object.
node_a, node_b The two vectors of nodes (either node numbers or node labels) to check for

connections. The vectors should have the same length (if not, the shorter one
will be recycled), as the check for connectivity is done elementwise.

connect One of "any", "direct", "indirect", the type of connections to search for.

Value

A logical vector of the same length as node_a and node_b, where each element indicates whether
the corresponding elements of node_a and node_b are connected in the specified way.

Author(s)

Ruizhu Huang, Charlotte Soneson

Examples

suppressPackageStartupMessages({
library(ggtree)
library(TreeSummarizedExperiment)

})

data(tinyTree)
ggtree(tinyTree, branch.length = "none") +

geom_text2(aes(label = node))

node_a <- c(4, 18, 19, 2)
node_b <- c(4, 5, 6, 3)

isConnect(tree = tinyTree, node_a = node_a,
node_b = node_b, connect = "any")

medianByClusterMarker Calculate median values of markers for each cluster

Description

Calculate median value of each marker in each cluster.

Usage

medianByClusterMarker(
SE,
assay = 1,
marker_in_column = TRUE,
column_cluster = "cluster_id",
use_marker = NULL

)

22 medianByClusterMarker

Arguments

SE A SummarizedExperiment object.

assay A numeric index or assay name indicating with assay of SE to use to calculate
medians.

marker_in_column

A logical scalar, indicating whether markers (genes, features) are in the columns
of SE or not.

column_cluster The name of the column of colData(SE) that contains the cluster assignment
of each sample.

use_marker A logical or numeric vector such that SE[use_marker,] (if marker_in_column
= FALSE) or SE[, use_marker] (if marker_in_column = TRUE) subsets SE to
the markers that should be retained. If NULL (default), all markers are used.

Value

A SummarizedExperiment object containing the median value of each marker in each cluster.

Author(s)

Ruizhu Huang, Charlotte Soneson

Examples

suppressPackageStartupMessages({
library(SummarizedExperiment)

})

Simulate data with 100 cells and 10 markers (5 type, 5 state markers)
set.seed(1)
count <- matrix(rpois(n = 1000, lambda = 10), nrow = 100)
colnames(count) <- paste0("mk", 1:10)
rowD <- data.frame("cluster" = sample(seq_len(6), 100, replace = TRUE))
colD <- data.frame(type_marker = rep(c(FALSE, TRUE), each = 5))

SE with markers in columns
d_se <- SummarizedExperiment(assays = list(counts = count),

rowData = rowD,
colData = colD)

medianByClusterMarker(SE = d_se, marker_in_column = TRUE,
column_cluster = "cluster",
use_marker = colData(d_se)$type_marker)

SE with markers in rows
d_se <- SummarizedExperiment(assays = list(counts = t(count)),

rowData = colD,
colData = rowD)

medianByClusterMarker(SE = d_se, marker_in_column = FALSE,
column_cluster = "cluster",
use_marker = rowData(d_se)$type_marker)

nodeResult 23

nodeResult Extract table with node-level DA/DS results

Description

Extract a table with the top-ranked nodes from a DA/DS analysis output (generated by runDA or
runDS).

Usage

nodeResult(
object,
n = 10,
type = c("DA", "DS"),
adjust_method = "BH",
sort_by = "PValue",
p_value = 1

)

Arguments

object The output from runDA or runDS.

n An integer indicating the maximum number of entities to return.

type Either "DA" (for object from runDA) or "DS" (for object from runDS).

adjust_method A character string specifying the method used to adjust p-values for multiple
testing. See p.adjust for possible values.

sort_by A character string specifying the sorting method. This will be passed to topTags.
Possibilities are "PValue" for p-value, "logFC" for absolute log-fold change or
"none" for no sorting.

p_value A numeric cutoff value for adjusted p-values. This will be passed to topTags.
Only entities with adjusted p-values equal or lower than specified are returned.

Value

A data frame with results for all nodes passing the imposed thresholds. The columns logFC,
logCPM, PValue, FDR, F (or LR) are from (the output table of) topTags. The node column
stores the node number for each entity. Note: FDR is corrected over all features and nodes when
the specified type = "DS".

Author(s)

Ruizhu Huang, Charlotte Soneson

Examples

suppressPackageStartupMessages({
library(TreeSummarizedExperiment)

})

lse <- readRDS(system.file("extdata", "da_sim_100_30_18de.rds",
package = "treeclimbR"))

24 parEstimate

tse <- aggTSE(lse, rowLevel = showNode(tree = rowTree(lse),
only.leaf = FALSE))

dd <- model.matrix(~ group, data = colData(tse))
out <- runDA(TSE = tse, feature_on_row = TRUE,

assay = "counts", option = "glmQL",
design = dd, contrast = NULL,
normalize = TRUE)

Top 10 nodes with DA
nodeResult(out, n = 10)

parEstimate Parameter estimation for Dirichlet-multinomial distribution

Description

parEstimate is a wrapper of the function dirmult with default settings for init, initscalar,
epsilon, trace and mode. It allows the input obj to be either a matrix or a TreeSummarizedExperiment
and outputs the estimated values of pi and theta.

Usage

parEstimate(obj, assay = NULL)

Arguments

obj A matrix or TreeSummarizedExperiment, with samples in the columns and
entities in the rows.

assay If obj is a TreeSummarizedExperiment, the name or index of the assay to use
to estimate Dirichlet multinomial parameters. If NULL, the first assay will be
used.

Value

A list including the estimates of pi (a vector with one element per row in obj) and theta (a scalar).

Author(s)

Ruizhu Huang, Charlotte Soneson

Examples

suppressPackageStartupMessages({
library(TreeSummarizedExperiment)

})

set.seed(1L)
y <- matrix(rnbinom(200, size = 1, mu = 10), nrow = 10)
colnames(y) <- paste("S", seq_len(20), sep = "")
rownames(y) <- tinyTree$tip.label
toy_tse <- TreeSummarizedExperiment(rowTree = tinyTree,

assays = list(y))

runDA 25

res <- parEstimate(obj = toy_tse)
metadata(res)$assays.par

runDA Test for differential abundance using edgeR

Description

Test for differential abundance of entities using functions from the edgeR package. This adapts
edgerWrp to accept input as a TreeSummarizedExperiment (TSE) object instead of a matrix.
Features could be represented in either rows or columns. By default, features are in the rows.
Then, samples are in columns and the sample information is in colData. The tree that stores the
hierarchical information about features is in rowTree. Each row of the assays can be mapped
to a node of the tree. Data on rows that are mapped to internal nodes is generated from data on
leaf nodes. Normalization for samples is automatically performed by edgeR and the library size is
calculated using features that are mapped to leaf nodes.

Usage

runDA(
TSE,
feature_on_row = TRUE,
assay = NULL,
option = c("glm", "glmQL"),
design = NULL,
contrast = NULL,
filter_min_count = 10,
filter_min_total_count = 15,
filter_large_n = 10,
filter_min_prop = 0.7,
normalize = TRUE,
normalize_method = "TMM",
group_column = "group",
design_terms = "group",
...

)

Arguments

TSE A TreeSummarizedExperiment object.

feature_on_row A logical scalar. If TRUE (default), features or entities (e.g. genes, OTUs) are in
rows of the assays tables, and samples are in columns; otherwise, it’s the other
way around.

assay A numeric index or assay name to specify which assay from assays is used for
analysis.

option Either "glm" or "glmQL". If "glm", glmFit and glmLRT are used; otherwise,
glmQLFit and glmQLFTest are used. Details about the difference between two
options are in the help page of glmQLFit.

design A numeric design matrix. If NULL, all columns of the sample annotation will be
used to create the design matrix.

26 runDA

contrast A numeric vector specifying one contrast of the linear model coefficients to be
tested equal to zero. Its length must equal to the number of columns of design.
If NULL, the last coefficient will be tested equal to zero.

filter_min_count

A numeric value, passed to min.count of filterByExpr.
filter_min_total_count

A numeric value, passed to min.total.count of filterByExpr.

filter_large_n A numeric value, passed to large.n of filterByExpr.
filter_min_prop

A numeric value, passed to min.prop of filterByExpr.

normalize A logical scalar indicating whether to estimate normalization factors (using
calcNormFactors).

normalize_method

Normalization method to be used. See calcNormFactors for more details.

group_column The name of the column in the sample annotation providing group labels for
samples (currently not used).

design_terms The names of columns from the sample annotation that will be used to generate
the design matrix. This is ignored if design is provided.

... More arguments to pass to glmFit (option = "glm" or glmQLFit (option =
"glmQL").

Details

The experimental design is specified by a design matrix and provided via the argument design.
More details about the calculation of normalization factor could be found from calcNormFactors.

Value

A list with entries edgeR_results, tree, and nodes_drop.

edgeR_results The output of glmQLFTest or glmLRT depending on the specified option.

tree The hierarchical structure of entities that was stored in the input TSE.

nodes_drop A vector storing the alias node labels of entities that are filtered before analysis due to
low counts.

Author(s)

Ruizhu Huang

Examples

suppressPackageStartupMessages({
library(TreeSummarizedExperiment)

})

Load example data set
lse <- readRDS(system.file("extdata", "da_sim_100_30_18de.rds",

package = "treeclimbR"))

Aggregate counts on internal nodes
nodes <- showNode(tree = tinyTree, only.leaf = FALSE)
tse <- aggTSE(x = lse, rowLevel = nodes)

runDS 27

dd <- model.matrix(~ group, data = colData(tse))
out <- runDA(TSE = tse, feature_on_row = TRUE,

assay = 1, option = "glmQL",
design = dd, contrast = NULL,
normalize = TRUE, filter_min_count = 2)

names(out)
out$nodes_drop
edgeR::topTags(out$edgeR_results, sort.by = "PValue")

runDS Test for differential state using edgeR

Description

Test for differential state of entities using functions from the edgeR package. This adapts edgerWrp
to accept input as a SummarizedExperiment (SE) object instead of matrix. Each assay should
correspond to data for one node of the tree. Samples are in columns and features are in rows. The
sample information is in colData. The tree that stores the hierarchical relation between the assays
is provided via the argument tree.

Usage

runDS(
SE,
tree,
option = c("glm", "glmQL"),
design = NULL,
contrast = NULL,
filter_min_count = 1,
filter_min_total_count = 15,
filter_large_n = 10,
filter_min_prop = 1,
min_cells = 10,
normalize = TRUE,
normalize_method = "TMM",
group_column = "group_id",
design_terms = "group_id",
message = TRUE,
...

)

Arguments

SE A SummarizedExperiment object, typically generated by aggDS.

tree A phylo object. Each assay of SE stores data for one node of the tree.

option Either "glm" or "glmQL". If "glm", glmFit and glmLRT are used; otherwise,
glmQLFit and glmQLFTest are used. Details about the difference between two
options are in the help page of glmQLFit.

28 runDS

design A numeric design matrix. If NULL, all columns of the sample annotation will be
used to create the design matrix.

contrast A numeric vector specifying one contrast of the linear model coefficients to be
tested equal to zero. Its length must equal to the number of columns of design.
If NULL, the last coefficient will be tested equal to zero.

filter_min_count

A numeric value, passed to min.count of filterByExpr.
filter_min_total_count

A numeric value, passed to min.total.count of filterByExpr.

filter_large_n A numeric value, passed to large.n of filterByExpr.
filter_min_prop

A numeric value, passed to min.prop of filterByExpr.

min_cells A numeric scalar specifying the minimal number of cells in a node required to
include a node in the analysis. The information about the number of cells per
node and sample should be available in metadata(SE)$n_cells. A node is
retained if at least half of the samples have at least min_cells cells belonging
to the node.

normalize A logical scalar indicating whether to estimate normalization factors (using
calcNormFactors).

normalize_method

Normalization method to be used. See calcNormFactors for more details.

group_column The name of the column in the sample annotation providing group labels for
samples. This annotation is used for filtering.

design_terms The names of columns from the sample annotation that will be used to generate
the design matrix. This is ignored if design is provided.

message A logical scalar, indicating whether progress messages should be printed.

... More arguments to pass to glmFit (option = "glm" or glmQLFit (option =
"glmQL").

Value

A list with entries edgeR_results, tree, and nodes_drop.

edgeR_results A list. Each of the elements contains the output of glmQLFTest or glmLRT for one
node, depending on the specified option.

tree The hierarchical structure of entities that was stored in the input SE.

nodes_drop A vector storing the alias node labels of entities that are filtered before analysis due to
low counts.

Author(s)

Ruizhu Huang

Examples

suppressPackageStartupMessages({
library(TreeSummarizedExperiment)

})
Load example data
ds_tse <- readRDS(system.file("extdata", "ds_sim_20_500_8de.rds",

selNode 29

package = "treeclimbR"))
ds_se <- aggDS(TSE = ds_tse, assay = "counts", sample_id = "sample_id",

group_id = "group", cluster_id = "cluster_id", FUN = sum)
Information about the number of cells is provided in the metadata
S4Vectors::metadata(ds_se)$n_cells

ds_res <- runDS(SE = ds_se, tree = colTree(ds_tse), option = "glmQL",
group_column = "group", contrast = c(0, 1),
filter_min_count = 0, filter_min_total_count = 1,
design = model.matrix(~ group, data = colData(ds_se)),
filter_min_prop = 0, min_cells = 5, message = FALSE)

Top differential features (across nodes)
nodeResult(ds_res, type = "DS")

selNode Select branches meeting certain criteria

Description

Select branches in a tree meeting the specified criteria in terms of number of leaves and the count
proportion. Note that only internal branch nodes are considered - no individual leaves will be
returned.

Usage

selNode(
pr = NULL,
obj = NULL,
assay = 1,
data = NULL,
tree = NULL,
minTip = 0,
maxTip = Inf,
minPr = 0,
maxPr = 1,
skip = NULL,
all = FALSE

)

Arguments

pr A named numeric vector to provide proportions of entities. If this is provided,
obj and data will be ignored.

obj A TreeSummarizedExperiment object. Only used if pr is NULL.

assay The index or name of the assay of obj to use for estimating node count propor-
tions. Only used if obj is not NULL.

data Either a count table with entities in rows and samples in columns, or a list with
pi and theta estimates (the output of parEstimate). Only used if pr and obj
are NULL.

30 selNode

tree A phylo object. If obj is used as input, the tree will be extracted from the
rowTree of obj.

minTip the minimum number of leaves in the selected branch.

maxTip The maximum number of leaves in the selected branch.

minPr The minimum count proportion of the selected branch in a sample. A value
between 0 and 1.

maxPr The maximum count proportion of the selected branch in a sample. A value
between 0 and 1.

skip A character vector of node labels. These nodes can not be descendants or the
ancestors of the selected branch.

all A logical scalar. If FALSE (default), the branch node of a single branch, which
meets the requirements and has the minimum count proportion of branches
meeting the requirements, is returned; otherwise branch nodes of all branches
meeting the requirements are returned.

Value

A data.frame with node information for the selected internal node(s).

Author(s)

Ruizhu Huang, Charlotte Soneson

Examples

suppressPackageStartupMessages({
library(TreeSummarizedExperiment)

})

Generate example data
set.seed(1)
data(tinyTree)
toyTable <- matrix(rnbinom(40, size = 1, mu = 10), nrow = 10)
colnames(toyTable) <- paste(rep(LETTERS[seq_len(2)], each = 2),

rep(seq_len(2), 2), sep = "_")
rownames(toyTable) <- tinyTree$tip.label

Estimate entity proportions from count matrix under a Dirichlet
Multinomial framework, and use this as the input for selNode
dat <- parEstimate(obj = toyTable)
selNode(tree = tinyTree, data = dat, all = TRUE)
selNode(tree = tinyTree, data = dat,

minTip = 4, maxTip = 9, minPr = 0, maxPr = 0.8, all = TRUE)

Alternatively, directly provide the proportions vector
selNode(tree = tinyTree, pr = dat$pi, all = TRUE)

Return only branch with lowest proportion among valid ones
selNode(tree = tinyTree, pr = dat$pi, all = FALSE)

Start instead from a TreeSummarizedExperiment object
lse <- TreeSummarizedExperiment(rowTree = tinyTree,

assays = list(counts = toyTable))
selNode(obj = lse, assay = "counts", all = TRUE)

simData 31

Don't allow node 1 to be included
selNode(obj = lse, assay = "counts", skip = 1, all = TRUE)

simData Simulate different scenarios of abundance change in entities

Description

Simulate a data set with different abundance patterns for entities under different conditions. These
entities have their corresponding nodes on a tree.

Usage

simData(
tree = NULL,
data = NULL,
obj = NULL,
assay = NULL,
scenario = "BS",
from.A = NULL,
from.B = NULL,
minTip.A = 0,
maxTip.A = Inf,
minTip.B = 0,
maxTip.B = Inf,
minPr.A = 0,
maxPr.A = 1,
ratio = 4,
adjB = NULL,
pct = 0.6,
nSam = c(50, 50),
mu = 10000,
size = NULL,
n = 1,
FUN = sum,
message = FALSE

)

Arguments

tree A phylo object. Only used when obj is NULL.

data A count matrix with entities corresponding to tree leaves in the rows and samples
in the columns. Only used when obj is NULL.

obj A TreeSummarizedExperiment object with observed data to use as the input
for the simulation. If NULL, data and \ tree must be provided instead.

assay If obj is not NULL, a numeric index or character scalar indicating which assay of
the object to use as the basis for simulation. If assay is NULL, the first assay in
the object is used.

32 simData

scenario The simulation scenario, either “BS”, “US”, or “SS” (see Details).
from.A, from.B The branch node labels of branches A and B for which the signal will be swapped.

By default, both are NULL, in which case they will be chosen based on the restric-
tions provided (minTip.A, maxTip.A, minTip.B, maxTip.B, minPr.A, maxPr.A,
ratio). Note: If from.A is NULL, from.B is also set to NULL.

minTip.A The minimum number of leaves allowed in branch A.
maxTip.A The maximum number of leaves allowed in branch A.
minTip.B The minimum number of leaves allowed in branch B.
maxTip.B The maximum number of leaves allowed in branch B.
minPr.A A numeric value in [0, 1]. The minimum abundance proportion of leaves in

branch A.
maxPr.A A numeric value in [0, 1]. The maximum abundance proportion of leaves in

branch A.
ratio A numeric value. The proportion ratio of branch B to branch A. This value is

used to select branches(see Details). If there are no branches having exactly this
ratio, the pair with the value closest to ratio will be selected.

adjB A numeric value in [0, 1] (only for scenario “SS”), or NULL. If NULL, branch A
and the selected part of branch B swap their proportions. If a numeric value, e.g.
0.1, then the counts for the selected part of branch B decreases to 10 the original
value, and this decrease is added to branch A. For example, assume there are
two experimental conditions (C1 & C2), branch A has a count of 10 and branch
B has a count of 40 in C1. If adjB is set to 0.1, then in C2 branch B becomes 4
and branch A 46 so that the total count of the two branches stays the same.

pct The percentage of leaves in branch B that have differential abundance under
different conditions (only for scenario “SS”).

nSam A numeric vector of length 2, indicating the sample size for each of the two
simulated conditions.

mu, size The parameters of the Negative Binomial distribution. (see mu and size in
rnbinom). These parameters are used to generate the library size for each sim-
ulated sample. If size is not specified, mu should be a vector of numbers from
which the library size is sampled with replacement.

n A numeric value to specify how many count tables would be generated with the
same settings. The default is 1, i.e., one count table would be obtained at the
end. If greater than 1, the output is a list of matrices.

FUN A function to calculate the aggregated count at each internal node based on its
descendant leaves (e.g., sum, mean). The argument of the function should be a
numeric vector with the counts of an internal node’s descendant leaves.

message A logical scalar, indicating whether progress messages should be printed to the
console.

Details

Simulate a count table for entities which are corresponding to the nodes of a tree. The entities are
in rows and the samples from different groups or conditions are in columns. The library size of
each sample is sampled from a Negative Binomial distribution with mean and size specified by the
arguments mu and size. The counts of entities, that are mapped to the leaf nodes, in a sample are as-
sumed to follow a Dirichlet-Multinomial distribution. The parameters for the Dirichlet-Multinomial
distribution are estimated from a real data set specified by data via the function dirmult (see
dirmult). To generate different abundance patterns under different conditions, we provide three
different scenarios, “BS”, “US”, and “SS” (specified via scenario).

simData 33

• BS: two branches are selected to swap their proportions, and leaves on the same branch have
the same fold change.

• US: two branches are selected to swap their proportions. Leaves in the same branch have
different fold changes but same direction (either increase or decrease).

• SS: two branches are selected. One branch has its proportion swapped with the proportion of
some leaves from the other branch.

Value

a TreeSummarizedExperiment object.

• assays A list of count matrices, with entities in rows and samples in columns. Each row can
be mapped to a node of the tree.

• rowData Annotation data for the rows.

• colData Annotation data for the columns.

• rowTree The tree structure of entities.

• rowLinks The link between rows and nodes on the tree.

• metadata More details about the simulation.

– FC the fold change of entities corresponding to the tree leaves.
– Branch the information about two selected branches.

* A The branch node label (or number) of branch A.

* B The branch node label (or number) of branch B.

* ratio The count proportion ratio of branch B to branch A.

* A_tips The number of leaves on branch A.

* B_tips The number of leaves on branch B.

* A_prop The count proportion of branch A.

* B_prop The count proportion of branch B.

Author(s)

Ruizhu Huang, Charlotte Soneson

Examples

suppressPackageStartupMessages({
library(TreeSummarizedExperiment)

})
Generate data to use as the starting point (this would usually be a
real data set)
set.seed(1L)
y <- matrix(rnbinom(120, size = 1, mu = 10), nrow = 10)
colnames(y) <- paste("S", seq_len(12), sep = "")
rownames(y) <- tinyTree$tip.label

toy_lse <- TreeSummarizedExperiment(rowTree = tinyTree,
assays = list(counts = y))

simData(obj = toy_lse, ratio = 2, scenario = "BS", pct = 0.5)

34 topNodes

topNodes Generate a table of top-ranked entities (nodes)

Description

Generate a table of top-ranked nodes from the optimal resolution candidate of entities on a tree.

Usage

topNodes(
object,
n = 10,
sort_by = NULL,
sort_decreasing = FALSE,
sort_by_absolute = FALSE,
p_value = 1

)

Arguments

object An output object from evalCand.

n An integer, the maximum number of entities to return.

sort_by A character string specifying the column of object$output to sort by. Set to
NULL to return without sorting.

sort_decreasing

A logical value indicating whether to sort by decreasing value of the sort_by
column.

sort_by_absolute

A logical value indicating whether to take the absolute value of the sort_by
column before sorting.

p_value A numeric cutoff value for adjusted p-values. Only entities with adjusted p-
values equal or lower than specified are returned.

Value

A data.frame with test results. The node column stores the node number for each entity.

Author(s)

Ruizhu Huang, Charlotte Soneson

Examples

suppressPackageStartupMessages({
library(TreeSummarizedExperiment)
library(ggtree)

})

data(tinyTree)
ggtree(tinyTree, branch.length = "none") +

geom_text2(aes(label = node)) +

tpr 35

geom_hilight(node = 13, fill = "blue", alpha = 0.3) +
geom_hilight(node = 18, fill = "orange", alpha = 0.3)

set.seed(1)
pv <- runif(19, 0, 1)
pv[c(seq_len(5), 13, 14, 18)] <- runif(8, 0, 0.001)

fc <- sample(c(-1, 1), 19, replace = TRUE)
fc[c(seq_len(3), 13, 14)] <- 1
fc[c(4, 5, 18)] <- -1
df <- data.frame(node = seq_len(19),

pvalue = pv,
logFoldChange = fc)

ll <- getCand(tree = tinyTree, score_data = df,
node_column = "node",
p_column = "pvalue",
sign_column = "logFoldChange")

cc <- evalCand(tree = tinyTree, levels = ll$candidate_list,
score_data = df, node_column = "node",
p_column = "pvalue", sign_column = "logFoldChange",
limit_rej = 0.05)

Unsorted result table
topNodes(cc)

Sort by p-value in increasing order
topNodes(cc, sort_by = "pvalue")

tpr Calculate true positive rate (TPR) on a tree structure

Description

Calculate the true positive rate on a tree structure, at either leaf or node level.

Usage

tpr(tree, truth, found, only.leaf = TRUE)

Arguments

tree A phylo object.

truth True signal nodes (e.g., nodes that are truly differentially abundant between
experimental conditions). Note: when the TPR is requested at the leaf level
(only.leaf = TRUE), the descendant leaves of the given nodes will be found
and the TPR will be estimated on the leaf level.

found Detected signal nodes (e.g., nodes that have been found to be differentially abun-
dant via a statistical testing procedure). Note: when the TPR is requested at the
leaf level (only.leaf = TRUE), the descendant leaves of the given nodes will be
found out and the TPR will be estimated on the leaf level.

only.leaf A logical scalar. If TRUE, the false discovery rate is calculated at the leaf (tip)
level; otherwise it is calculated at the node level.

36 TreeHeatmap

Value

The estimated true positive rate.

Author(s)

Ruizhu Huang

Examples

suppressPackageStartupMessages({
library(ggtree)
library(TreeSummarizedExperiment)

})

data("tinyTree")

Two branches are truly differential
ggtree(tinyTree, branch.length = "none") +

geom_text2(aes(label = node)) +
geom_hilight(node = 16, fill = "orange", alpha = 0.3) +
geom_hilight(node = 13, fill = "blue", alpha = 0.3)

TPR at the leaf level if nodes 14 and 15 are called differential (7/8)
tpr(tree = tinyTree, truth = c(16, 13),

found = c(15, 14), only.leaf = TRUE)

TPR at the node level if nodes 14 and 15 are called differential (12/14)
tpr(tree = tinyTree, truth = c(16, 13),

found = c(15, 14), only.leaf = FALSE)

TreeHeatmap Generate a heatmap corresponding to an arbitrary aggregation level
of a tree

Description

Generate a heatmap corresponding to an arbitrary aggregation level of a tree.

Usage

TreeHeatmap(
tree,
tree_fig,
hm_data,
tree_hm_gap = 0,
rel_width = 1,
cell_line_color = NA,
cell_line_size = 0,
column_order = NULL,
column_split = NULL,
column_split_gap = 0.2,
column_split_label = NULL,

TreeHeatmap 37

split_label_fontface = "bold",
split_label_color = "black",
split_label_size = 3,
split_label_angle = 0,
split_label_offset_x = 0,
split_label_offset_y = 2,
split_label_hjust = 0.5,
split_label_vjust = 0,
column_anno = NULL,
column_anno_size = 1,
column_anno_color = NULL,
column_anno_gap = 0.1,
legend_title_hm = "Expression",
legend_title_column_anno = "group",
show_colnames = FALSE,
colnames_position = "top",
colnames_angle = 0,
colnames_offset_x = 0,
colnames_offset_y = 0,
colnames_size = 4,
colnames_hjust = 0.5,
show_rownames = FALSE,
rownames_position = "right",
rownames_angle = 0,
rownames_offset_x = 0,
rownames_offset_y = 0,
rownames_size = 4,
rownames_hjust = 0.5,
rownames_label = NULL,
show_title = FALSE,
title_hm = "First heatmap",
title_fontface = "bold",
title_color = "black",
title_size = 3,
title_angle = 0,
title_offset_x = 0,
title_offset_y = 2,
title_hjust = 0.5,
cluster_column = FALSE,
dist_method = "euclidean",
hclust_method = "ave",
show_row_tree = TRUE

)

Arguments

tree A phylo object.

tree_fig A ggtree object corresponding to tree. This will be used to represent the tree
in the resulting figure.

hm_data A data.frame with the values to show in the heatmap. The row names should
correspond to the nodes of tree.

tree_hm_gap A numeric scalar specifying the gap between the tree and the heatmap.

38 TreeHeatmap

rel_width A numeric scalar specifying the width of heatmap relative to the width of the
tree. For example, if rel_width = 1, the width of the heatmap is the same as the
width of the tree.

cell_line_color

A color for the lines separating cells in the heatmap.

cell_line_size A numeric scalar specifying the line width for lines separating cells in the heatmap.

column_order A character vector specifying the display order of the columns in the heatmap.
Should correspond to the column names of hm_data. Ignored when column_split
is provided.

column_split A named character vector that provides the grouping information used to split
the columns in the heatmap. The names should correspond to the column names
of hm_data.

column_split_gap

A numeric scalar specifying the gap between the groups of split columns in the
heatmap.

column_split_label

A named character vector to label the column split. The names should corre-
spond to the values in column_split.

split_label_fontface

The fontface of the labels of the column split.
split_label_color

The color of the the labels of the column split.
split_label_size

The size of the the labels of the column split.
split_label_angle

The angle of the the labels of the column split.
split_label_offset_x

A numeric value to shift the labels of the column split along the x-axis.
split_label_offset_y

A numeric value to shift the labels of the column split along the y-axis.
split_label_hjust

The horizontal justification for the labels of the column split: e.g. 0 (left aligned);
0.5 (centered); 1 (right aligned).

split_label_vjust

Similar to split_label_hjust, but controls vertical justification.

column_anno A named vector to specify labels that are used to annotate the columns of heatmap.
column_anno_size

A numeric value to specify the size of the annotation bar.
column_anno_color

A named vector to specify colors that are used to annotate the columns of the
heatmap.

column_anno_gap

A numeric value to specify the gap between the column annotation bar and the
heatmap.

legend_title_hm

The legend title of the heatmap.
legend_title_column_anno

The legend title of the column annotation.

TreeHeatmap 39

show_colnames A logical value to specify whether column names should be displayed.
colnames_position

The position of column names, either "top" or "bottom".

colnames_angle A numeric scalar specifying the angle of column names.
colnames_offset_x

A numeric value to shift column names on the x-axis.
colnames_offset_y

A numeric value to shift column names on the y-axis.

colnames_size A numeric value to specify the size of column names.

colnames_hjust The horizontal justification for column names: e.g. 0 (left aligned); 0.5 (cen-
tered); 1 (right aligned).

show_rownames A logical value to specify whether row names should be displayed.
rownames_position

The position of the row names, either "right" or "left".

rownames_angle A numeric value specifying the angle of row names.
rownames_offset_x

A numeric value to shift row names on the x-axis.
rownames_offset_y

A numeric value to shift row names on the y-axis.

rownames_size A numeric value to specify the size of row names.

rownames_hjust The horizontal justification for row names: e.g. 0 (left aligned); 0.5 (centered);
1 (right aligned).

rownames_label A named vector to annotate the rows of the heatmap instead of the row names
of hm_data.

show_title A logical value to specify whether the title should be displayed.

title_hm The title of the heatmap.

title_fontface The fontface of the title.

title_color The color of the title.

title_size The size of the title.

title_angle The angle of the title.

title_offset_x A numeric value to shift the title along the x-axis.

title_offset_y A numeric value to shift the title along the y-axis.

title_hjust The horizontal justification for the title: e.g. 0 (left aligned); 0.5 (centered); 1
(right aligned).

cluster_column A logical scalar, specifying whether columns of the heatmap should be clustered
by similarity. This is ignored when column_order is given.

dist_method See method in dist. The distance method used for clustering columns.

hclust_method See method in hclust. The clustering method used for clustering columns.

show_row_tree A logical scalar (default TRUE). If FALSE, the figure provided in tree_fig is not
shown.

Value

A ggtree object.

40 TreeHeatmap

Author(s)

Ruizhu Huang

Examples

suppressPackageStartupMessages({
library(TreeSummarizedExperiment)
library(ggtree)
library(ggplot2)
library(scales)

})

Load example data (tiny tree with corresponding count matrix)
tse <- readRDS(system.file("extdata", "tinytree_counts.rds",

package = "treeclimbR"))

Prepare the tree figure
tree_fig <- ggtree(rowTree(tse), branch.length = "none",

layout = "rectangular") +
geom_hilight(node = 18, fill = "orange", alpha = 0.3) +
geom_hilight(node = 13, fill = "blue", alpha = 0.3)

tree_fig

Simple heatmap with tree
TreeHeatmap(tree = rowTree(tse), tree_fig = tree_fig,

hm_data = SummarizedExperiment::assay(tse, "counts"))

Aggregate counts for each of the highlighted subtrees
tseagg <- aggTSE(

tse,
rowLevel = c(13, 18,

setdiff(showNode(tinyTree, only.leaf = TRUE),
unlist(findDescendant(tinyTree, node = c(13, 18),

only.leaf = TRUE)))))

Visualize aggregated heatmap with tree
TreeHeatmap(tree = rowTree(tseagg), tree_fig = tree_fig,

hm_data = SummarizedExperiment::assay(tseagg, "counts"))

Cluster columns
TreeHeatmap(tree = rowTree(tseagg), tree_fig = tree_fig,

hm_data = SummarizedExperiment::assay(tseagg, "counts"),
cluster_column = TRUE)

Split columns
col_split <- ifelse(colnames(tseagg) %in% paste0("S", seq_len(5)), "A", "B")
names(col_split) <- colnames(tseagg)
TreeHeatmap(tree = rowTree(tseagg), tree_fig = tree_fig,

hm_data = SummarizedExperiment::assay(tseagg, "counts"),
cluster_column = TRUE, column_split = col_split)

Annotate columns
col_anno <- col_split
TreeHeatmap(tree = rowTree(tseagg), tree_fig = tree_fig,

hm_data = SummarizedExperiment::assay(tseagg, "counts"),
cluster_column = TRUE, column_split = col_split,

treeScore 41

column_anno = col_anno, column_anno_gap = 1)

Change annotation colors
TreeHeatmap(tree = rowTree(tseagg), tree_fig = tree_fig,

hm_data = SummarizedExperiment::assay(tseagg, "counts"),
cluster_column = TRUE, column_split = col_split,
column_anno = col_anno, column_anno_gap = 1,
column_anno_color = c(A = "red", B = "blue"))

Add column names
TreeHeatmap(tree = rowTree(tseagg), tree_fig = tree_fig,

hm_data = SummarizedExperiment::assay(tseagg, "counts"),
cluster_column = TRUE, column_split = col_split,
column_anno = col_anno, column_anno_gap = 1,
column_anno_color = c(A = "red", B = "blue"),
show_colnames = TRUE, colnames_position = "bottom",
colnames_angle = 90, colnames_size = 2,
colnames_offset_y = -0.4)

Add title
TreeHeatmap(tree = rowTree(tseagg), tree_fig = tree_fig,

hm_data = SummarizedExperiment::assay(tseagg, "counts"),
cluster_column = TRUE, column_split = col_split,
column_anno = col_anno, column_anno_gap = 1,
column_anno_color = c(A = "red", B = "blue"),
show_colnames = TRUE, colnames_position = "bottom",
colnames_angle = 90, colnames_size = 2,
colnames_offset_y = -0.4,
show_title = TRUE, title_offset_y = 2,
title_color = "blue")

Change colors
TreeHeatmap(tree = rowTree(tseagg), tree_fig = tree_fig,

hm_data = SummarizedExperiment::assay(tseagg, "counts"),
cluster_column = TRUE, column_split = col_split,
column_anno = col_anno, column_anno_gap = 1,
column_anno_color = c(A = "red", B = "blue"),
show_colnames = TRUE, colnames_position = "bottom",
colnames_angle = 90, colnames_size = 2,
colnames_offset_y = -0.4,
show_title = TRUE, title_offset_y = 2,
title_color = "blue") +
scale_fill_gradientn(

colours = c("blue", "yellow", "red"),
values = scales::rescale(c(5, 8, 10)),
guide = "colorbar", limits = c(5, 10))

treeScore Generate weighted tree score accounting for the family effect

Description

treeScore takes the tree structure into account when calculating the score for an internal node. If
an internal node A has two children B and C, (A->B, A->C), the new score at node A would be

42 treeScore

calculated as the weighted mean of the scores in the whole family (A, B and C). The weights are
based on the number of descendant leaves. For example, if the node B has 2 descendant leaves,
and C has 3 descendant leaves, then A would have 5. The calculation would be (Score_A ∗ 5 +
Score_B ∗ 2 + Score_C ∗ 3)/10. The generation starts from the leaves and the new generated
scores are used to update those in higher level of the tree until the root is reached.

Usage

treeScore(tree, score_data, node_column, score_column, new_score)

Arguments

tree A phylo object.

score_data A data frame that includes at least two columns. One column stores the number
of the node, and the other stores the original score of the corresponding node.

node_column The name of the column of score_data that contains the numbers of the nodes.

score_column The name of the column of score_data that contains the original scores of the
nodes.

new_score The name of the column that stores the generated score.

Value

A data.frame similar to score_data, but with an extra column (named new_score) containing
the weighted scores.

Author(s)

Ruizhu Huang

Examples

suppressPackageStartupMessages({
library(TreeSummarizedExperiment)
library(ggtree)
library(dplyr)

})

tree
data(tinyTree)
ggtree(tinyTree, branch.length = "none") +

geom_text2(aes(label = node))

score
exScore <- data.frame(nodeNum = seq_len(19), score = (seq_len(19))/10)

Calculate new score based on the tree
newScore <- treeScore(tree = tinyTree, score_data = exScore,

node_column = "nodeNum",
score_column = "score",
new_score = "wScore")

Visualize the result
The original scores are in black texts and the new ones in blue
df <- newScore |>

treeScore 43

rename(node = nodeNum) |>
mutate(score = round(score, 3),

wScore = round(wScore, 3))
ggtree(tinyTree) %<+%

df +
geom_text2(aes(label = score), hjust = -0.05) +
geom_text2(aes(label = wScore, hjust = -1.2),
color = "blue")

Index

∗ internal
treeclimbR-package, 2

aggDS, 3

buildTree, 4, 5

calcCounts, 5
calcMedians, 5
calcMediansByClusterMarker, 5
calcMediansByTreeMarker (buildTree), 4
calcNormFactors, 7, 8, 26, 28
calcTreeCounts (buildTree), 4
calcTreeMedians (buildTree), 4

DGEList, 8
diffcyt, 4
diffcyt_workflow (buildTree), 4
dirmult, 24, 32
dist, 5, 39

edgeR, 7, 25, 27
edgerWrp, 7, 25, 27
estimateDisp, 8
evalCand, 8, 19, 34

fdr, 11
filterByExpr, 26, 28
findChild, 12
findExcl, 13

generateClusters, 5
getCand, 8, 9, 14
getData, 16
getLevel, 18
glmFit, 7, 8, 25–28
glmLRT, 7, 8, 25–28
glmQLFit, 7, 8, 25–28
glmQLFTest, 7, 8, 25–28

hclust, 5, 39

infoCand, 19
isConnect, 20

medianByClusterMarker, 21

model.matrix, 7

nodeResult, 23

p.adjust, 9, 23
parEstimate, 24, 29
prepareData, 5

rnbinom, 32
runDA, 23, 25
runDS, 23, 27

selNode, 29
simData, 31
SummarizedExperiment, 22, 27

topNodes, 34
topTags, 23
tpr, 35
treeclimbR (treeclimbR-package), 2
treeclimbR-package, 2
TreeHeatmap, 16, 36
treeScore, 41
TreeSummarizedExperiment, 25

44

	treeclimbR-package
	aggDS
	buildTree
	edgerWrp
	evalCand
	fdr
	findChild
	findExcl
	getCand
	getData
	getLevel
	infoCand
	isConnect
	medianByClusterMarker
	nodeResult
	parEstimate
	runDA
	runDS
	selNode
	simData
	topNodes
	tpr
	TreeHeatmap
	treeScore
	Index

