Package ‘timeOmics’

October 22, 2025

Title Time-Course Multi-Omics data integration
Version 1.21.0

Description timeOmics is a generic data-driven framework to integrate
multi-Omics longitudinal data measured on the same biological samples and select
key temporal features with strong associations within the same sample group.
The main steps of timeOmics are:
1. Plaform and time-specific normalization and filtering steps;
2. Modelling each biological into one time expression profile;
3. Clustering features with the same expression profile over time;
4. Post-hoc validation step.

License GPL-3
Encoding UTF-8
LazyData true

Imports dplyr, tidyr, tibble, purrr, magrittr, ggplot2, stringr,
ggrepel, Imtest, plyr, checkmate

biocViews Clustering,FeatureExtraction, TimeCourse,DimensionReduction,Software,
Sequencing, Microarray, Metabolomics, Metagenomics, Proteomics,
Classification, Regression, ImmunoOncology, GenePrediction,
MultipleComparison

Depends mixOmics, R (>=4.0)
RoxygenNote 7.3.1
VignetteBuilder knitr

Suggests BiocStyle, knitr, rmarkdown, testthat, snow, tidyverse,
igraph, gplots

Remotes cran/Imms

BugReports https://github.com/abodein/timeOmics/issues
git_url https://git.bioconductor.org/packages/timeOmics
git_branch devel

git_last_commit 5587dad

git_last_commit_date 2025-04-15

Repository Bioconductor 3.22

Date/Publication 2025-10-21

https://github.com/abodein/timeOmics/issues

dmatrix.spearman.dissimilarity

Author Antoine Bodein [aut, cre],
Olivier Chapleur [aut],
Kim-Anh Le Cao [aut],
Arnaud Droit [aut]

Maintainer Antoine Bodein <antoine.bodein.1@ulaval.ca>

Contents
dmatrix.spearman.dissimilarityo o 2
getCluster 3
GetNCOMD L o e e e 4
getSilhouette L e e e 5
getUpDownCluster e 6
get_demo_cluster L 6
get_demo_silhouette 7
Imms.filterlines 7
plotLong e 9
proportionality 10
remove.Jow.Cv L e 11
tuneCluster.block.spls 12
tuneClUSIer.SPCa« o o e e e e 14
tuneCluster.spls oL L 15
unscale ..o oL e e 16

Index 18

dmatrix.spearman.dissimilarity

dmatrix.spearman.dissimilarity

Description

Compute the spearman dissimilarity distance.

Usage

dmatrix.spearman.dissimilarity(X)

Arguments

X

Value

A numeric matrix with feature in colnames

Return a dissimilarity matrix of size PxP.

getCluster 3

getCluster Get variable cluster from (s)PCA, (s)PLS or block.(s)PLS

Description

This function returns the cluster associated to each feature from a mixOmics object.

Usage

getCluster(X, user.block = NULL, user.cluster = NULL)

Arguments
X an object of the class: pca, spca, pls, spls, block.pls or block.spls
user.block a vector to filter the result and return the features of the specified blocks.

user.cluster avector to filter the result and return only the features of the specified clusters

Details

For each feature, the cluster is assigned according to the maximum contribution on a component
and the sign of that contribution.

Value

A data.frame containing the name of feature, its assigned cluster and other information such as
selected component, contribution, sign, ...

See Also

selectVar

Examples

demo <- suppressWarnings(get_demo_cluster())
pca.cluster <- getCluster(demo$pca)

spca.cluster <- getCluster(demo$spca)

pls.cluster <- getCluster(demo$pls)

spls.cluster <- getCluster(demo$spls)
block.pls.cluster <- getCluster(demo$block.pls)
block.spls.cluster <- getCluster(demo$block.spls)

4 getNcomp

getNcomp Get optimal number of components

Description

Compute the average silhouette coefficient for a given set of components on a mixOmics result.
Foreach given ncomp, the mixOmics method is performed with the sames arguments and the given
‘ncomp‘. Longitudinal clustering is performed and average silhouette coefficient is computed.

Usage
getNcomp(object, max.ncomp = NULL, X, Y = NULL, indY = NULL, ...)
Arguments
object A mixOmics object of the class ‘pca‘, ‘spca‘, ‘mixo_pls*, ‘mixo_spls‘, ‘block.pls®,
‘block.spls*
max . ncomp integer, maximum number of component to include. If no argument is given,
‘max.ncomp=object$ncomp*
X a numeric matrix/data.frame or a list of data.frame for block.pls
Y (only for pls, optional for block. spls) a numeric matrix, with the same nrow
as X
indY (optional and only for block.pls, if Y is not provided), an integer which indi-
cates the position of the matrix response in the list X
Other arguments to be passed to methods (pca, pls, block.pls)
Value

getNcomp returns a list with class "ncomp.tune.silhouette” containing the following components:

ncomp a vector containing the tested ncomp
silhouette a vector containing the average silhouette coefficient by ncomp
dmatrix the distance matrix used to compute silhouette coefficient

See Also

getCluster, silhouette, pca, pls, block.pls

Examples

random input data
demo <- suppressWarnings(get_demo_cluster())

pca

pca.res <- mixOmics::pca(X=demo$X, ncomp = 5)

res.ncomp <- getNcomp(pca.res, max.ncomp = 4, X = demo$X)
plot(res.ncomp)

pls
pls.res <- mixOmics::pls(X=demo$X, Y=demo$Y)

getSilhouette 5

res.ncomp <- getNcomp(pls.res, max.ncomp = 4, X = demo$X, Y=demo$Y)
plot(res.ncomp)

block.pls
block.pls.res <- suppressWarnings(mixOmics: :block.pls(X=1ist(X=demo$X, Z=demo$Z), Y=demo$Y))
res.ncomp <- suppressWarnings(getNcomp(block.pls.res, max.ncomp = 4,

X=list(X=demo$X, Z=demo$Z), Y=demo$Y))
plot(res.ncomp)

getSilhouette Get Silhouette Coefficient from (s)PCA, (s)PLS or block.(s)PLS clus-
ters

Description

getSilhouette is a generic function that compute silhouette coefficient for an object of the type
pca, spca, pls, spls, block.pls, block.spls.

Usage

getSilhouette(object)

Arguments

object a mixOmics object of the class pca, spca, pls, spls, block.pls, block.spls

Details

This method extract the componant contribution depending on the object, perform the clustering
step, and compute the silhouette coefficient.

Value

silhouette coefficient

Examples

demo <- suppressWarnings(get_demo_cluster())
getSilhouette(object = demo$pca)
getSilhouette(object = demo$spca)
getSilhouette(object = demo$pls)
getSilhouette(object = demo$spls)
getSilhouette(object = demo$block.pls)
getSilhouette(object = demo$block.spls)

6 get_demo_cluster

getUpDownCluster Up-Down clustering

Description

Performs a clustering based on the signs of variation between 2 timepoints. Optionally, if the
difference between 2 timepoints is lower than a given threshold, the returned difference will be 0.

Usage
getUpDownCluster (X, diff_threshold = 0)

Arguments

X a dataframe or list of dataframe with the same number of rows.

diff_threshold a number (optional, default 0), if the difference between 2 values is lower than
the threshold, the returned sign will be O (no variation).

Examples

demo <- suppressWarnings(get_demo_cluster())
X <- list(X = demo$X, Y = demo$Y, Z = demo$Z)
res <- getUpDownCluster(X)

class(res)

getCluster(res)

X <- demo$X

res <- getUpDownCluster(X)

res <- getUpDownCluster (X, diff_threshold = 15)
res_cluster <- getCluster(res)

get_demo_cluster get_demo_cluster

Description

Generates random data to be used in examples.

Usage

get_demo_cluster()

Value
a list containg:

data.frame
Y data.frame
data.frame

pca a mixOmics pca result

get_demo_silhouette 7

spca a mixOmics spca result

pls a mixOmics pls result

spls a mixOmics spls result

block.pls a mixOmics block.pls result

block.spls a mixOmics block.spls result
Examples

Random data could lead to "The SGCCA algorithm did not converge” warning which is not important for a demo
demo <- suppressWarnings(get_demo_cluster())

get_demo_silhouette Get data for silhouette demo

Description

Get data for silhouette demo

Usage

get_demo_silhouette()

Value

A matrix of expression profile, sample in raws, time in columns.

Examples

data <- get_demo_silhouette()

Imms.filter.lines Filter Linear Profiles from Linear Mixed Model output

Description

This function filters linear models with highly heterogeneous variability within residues. From an
"Imms" output, 2 parameters are tested:

Usage

Imms.filter.lines(
data,
1mms.obj,
time,
homoskedasticity = TRUE,
MSE.filter = TRUE,
homoskedasticity.cutoff = 0.05

8 Immes.filter.lines

Arguments

data a data.frame used in the Imms: : ImmSpline command

1mms.obj a Immspline object

time a numeric vector containing the sample time point information.

homoskedasticity
a logical whether or not to test for homoscedasticity with the Breusch-Pagan
test.

MSE.filter whether or not to test for low dispersion with a cutoff on the MSE.

homoskedasticity.cutoff
a numeric scalar between 0 and 1, p-value threshold for B-P test.

Details

* homo-sedasticity of the residues with a Breusch-Pagan test * low dispersion with a cutoff on the
MSE (mean squared error)

Value

a list containing the following items

filtering.summary
a data.frame with the different tests per features (passed = TRUE, failed =

FALSE)
to.keep features which passed all the tests
filtered the filtered data.frame

See Also

bptest

Examples

data and lmms output
data(timeOmics.simdata)

data <- timeOmics.simdata$sim

Imms.output <- timeOmics.simdata$lmms.output
time <- timeOmics.simdata$time

filter
filter.res <- lmms.filter.lines(data = data, lmms.obj = Imms.output, time = time)

plotLong

plotLong

Plot Longitudinal Profiles by Cluster

Description

This function provides a expression profile representation over time and by cluster.

Usage

plotLong(
object,
time = NULL,
plot = TRUE,
center = TRUE,
scale = TRUE,
title = "Time-course Expression”,
X.label = NULL,
Y.label = NULL,

legend = FALSE,
legend.title = NULL,
legend.block.name = NULL

Arguments
object
time

plot
center
scale

title
X.label
Y.label
legend
legend.title

a mixOmics result of class (s)pca, (s)pls, block.(s)pls.
(optional) a numeric vector, the same size as ncol (X), to change the time scale.

a logical, if TRUE then a plot is produced. Otherwise, the data.frame on which
the plot is based on is returned.

a logical value indicating whether the variables should be shifted to be zero
centered.

a logical value indicating whether the variables should be scaled to have unit
variance before the analysis takes place.

character indicating the title plot.

X axis titles.

y axis titles.

a logical, to display or not the legend.

if legend is provided, title of the legend.

legend.block.name

Value

a character vector corresponding to the size of the number of blocks in the
mixOmics object.

a data.frame (gathered form) containing the following columns:

time

molecule

X axis values

names of features

10 proportionality

value y axis values
cluster assigned clusters
block name of ’blocks’
See Also
getCluster
Examples

demo <- suppressWarnings(get_demo_cluster())
X <- demo$X
Y <- demo$Y
Z <- demo$Z

(s)pca

pca.res <- mixOmics::pca(X, ncomp = 3)

plotLong(pca.res)

spca.res <- mixOmics::spca(X, ncomp =2, keepX = c(15, 10))
plotLong(spca.res)

(s)pls

pls.res <- mixOmics::pls(X,Y)

plotLong(pls.res)

spls.res <- mixOmics::spls(X,Y, keepX = c(15,10), keepY=c(5,6))
plotLong(spls.res)

(s)block.spls
block.pls.res <- mixOmics::block.pls(X=1list(X=X,Z=Z), Y=Y)
plotLong(block.pls.res)
block.spls.res <- mixOmics::block.spls(X=1list(X=X,Z=Z), Y=Y,
keepX = list(X = c(15,10), Z = c(5,6)),
keepY = ¢(3,6))
plotLong(block.spls.res)

proportionality Proportionality Distance

Description

proportionality is a wrapper that compute proportionality distance for a clustering result (pca,
spca, pls, spls, block.pls, block.spls). and it performs a u-test to compare the median within
a cluster to the median of the entire background set.

Usage
proportionality(X)

Arguments

X an object of the class: pca, spca, pls, spls, block.pls or block.spls

remove.low.cv

Value

Return a list containing the following components:

propr.distance Square matrix with proportionality distance between pairs of features

propr.distance.w.cluster

pvalue

References

distance between pairs with cluster label

11

Wilcoxon U-test p-value comparing the medians within clusters and with the
entire background set

Lovell, D., Pawlowsky-Glahn, V., Egozcue, J. J., Marguerat, S., Béhler, J. (2015). Proportional-
ity: a valid alternative to correlation for relative data. PLoS Comput. Biol. 11, e1004075. doi:
10.1371/journal.pcbi.1004075

Quinn, T. P, Richardson, M. F,, Lovell, D., Crowley, T. M. (2017). propr: an r-package for identi-
fying proportionally abundant features using compositional data analysis. Sci. Rep. 7, 16252. doi:
10.1038/s41598-017-16520-0

Examples

demo <- suppressWarnings(get_demo_cluster())

pca

X <- demo$pca

propr.res <- proportionality(X)
plot(propr.res)

pls

X <- demo$spls

propr.res <- proportionality(X)
plot(propr.res)

block.pls

X <- demo$block.spls

propr.res <- proportionality(X)
plot(propr.res)

remove. low.cv

Remove features with low variation

Description

remove. low.cv that removes variables with low variation. From a matrix/data.frame (samples in
rows, features in columns), it computes the coefficient of variation for every features (columns)
and return a filtered data.frame with features for which the coefficient of variation is above a given

threshold.

Usage

remove.low.cv(X, cutoff = 0.5)

12 tuneCluster.block.spls

Arguments
X a matrix/data.frame
cutoff a numeric value
Value

a data.frame/matrix

Examples

mat <- matrix(sample(1:3, size = 200, replace = TRUE), ncol=20)
remove.low.cv(mat, 0.4)

tuneCluster.block.spls
Feature Selection Optimization for block (s)PLS method

Description

This function identify the number of feautures to keep per component and thus by cluster in mixOmics: :block. spls
by optimizing the silhouette coefficient, which assesses the quality of clustering.

Usage

tuneCluster.block.spls(
X,
Y = NULL,
indY = NULL,
ncomp = 2,
test.list.keepX = NULL,
test.keepY = NULL,

Arguments

X list of numeric matrix (or data.frame) with features in columns and samples in
rows (with samples order matching in all data sets).

Y (optional) numeric matrix (or data.frame) with features in columns and samples
in rows (same rows as X).

indY integer, to supply if Y is missing, indicates the position of the matrix response
in the list X.

ncomp integer, number of component to include in the model

test.list.keepX
list of integers with the same size as X. Each entry corresponds to the different
keepX value to test for each block of X.

test.keepY only if Y is provideid. Vector of integer containing the different value of keepY
to test for block Y.

other parameters to be included in the spls model (see mixOmics: :block. spls)

tuneCluster.block.spls

Details

13

For each component and for each keepX/keepY value, a spls is done from these parameters. Then
the clustering is performed and the silhouette coefficient is calculated for this clustering.

We then calculate "slopes" where keepX/keepY are the coordinates and the silhouette is the inten-
sity. A z-score is assigned to each slope. We then identify the most significant slope which indicates
a drop in the silhouette coefficient and thus a deterioration of the clustering.

Value

silhouette
ncomp
test.keepX
test.keepY
block

slopes

choice.keepX

choice.keepY

See Also

silhouette coef. computed for every combinasion of keepX/keepY
number of component included in the model

list of tested keepX

list of tested keepY

names of blocks

"slopes" computed from the silhouette coef. for each keepX and keepY, used to
determine the best keepX and keepY

best keepX for each component

best keepY for each component

block.spls, getCluster, plotLong

Examples

demo <- suppressWarnings(get_demo_cluster())
X <- list(X = demo$X, Z = demo$Z)

Y <- demo$Y

test.list.keepX <- list("X" = c¢(5,10,15,20), "Z" = c(2,4,6,8))
test.keepY <- c(2:5)

tuning

tune.block.spls <- tuneCluster.block.spls(X= X, Y=Y,

test.list.keepX= test.list.keepX,
test.keepY= test.keepY,
mode= "canonical”)

keepX <- tune.block.spls$choice.keepX
keepY <- tune.block.spls$choice.keepY

final model

block.spls.res <- mixOmics::block.spls(X= X, Y=Y, keepX = keepX,

keepY = keepY, ncomp = 2, mode = "canonical")

get clusters and plot longitudinal profile by cluster
block.spls.cluster <- getCluster(block.spls.res)

14 tuneCluster.spca

tuneCluster.spca Feature Selection Optimization for sPCA method

Description

This function identify the number of feautures to keep per component and thus by cluster in mixOmics: : spca
by optimizing the silhouette coefficient, which assesses the quality of clustering.

Usage

tuneCluster.spca(X, ncomp = 2, test.keepX = rep(ncol(X), ncomp), ...)
Arguments

X numeric matrix (or data.frame) with features in columns and samples in rows

ncomp integer, number of component to include in the model

test.keepX vector of integer containing the different value of keepX to test for block X.

other parameters to be included in the spls model (see mixOmics: : spca)

Details

For each component and for each keepX value, a spls is done from these parameters. Then the
clustering is performed and the silhouette coefficient is calculated for this clustering.

We then calculate "slopes" where keepX are the coordinates and the silhouette is the intensity. A
z-score is assigned to each slope. We then identify the most significant slope which indicates a drop
in the silhouette coefficient and thus a deterioration of the clustering.

Value
silhouette silhouette coef. computed for every combinasion of keepX/keepY
ncomp number of component included in the model
test.keepX list of tested keepX
block names of blocks
slopes "slopes" computed from the silhouette coef. for each keepX and keepY, used to

determine the best keepX and keepY

choice.keepX best keepX for each component

Examples

demo <- suppressWarnings(get_demo_cluster())
X <- demo$X

tuning

tune.spca.res <- tuneCluster.spca(X = X, ncomp = 2, test.keepX = c(2:10))
keepX <- tune.spca.res$choice.keepX

plot(tune.spca.res)

final model
spca.res <- mixOmics::spca(X=X, ncomp = 2, keepX = keepX)
plotLong(spca.res)

tuneCluster.spls

15

tuneCluster.spls

Feature Selection Optimization for sPLS method

Description

This function identify the number of feautures to keep per component and thus by cluster in mixOmics
by optimizing the silhouette coefficient, which assesses the quality of clustering.

Usage

tuneCluster.spls(

X,
Y7
ncomp = 2,
test.keepX
test.keepY

Arguments

X
Y

ncomp
test.keepX
test.keepY

Details

rep(ncol(X), ncomp),
rep(ncol(Y), ncomp),

numeric matrix (or data.frame) with features in columns and samples in rows

numeric matrix (or data.frame) with features in columns and samples in rows
(same rows as X)

integer, number of component to include in the model
vector of integer containing the different value of keepX to test for block X.
vector of integer containing the different value of keepY to test for block Y.

other parameters to be included in the spls model (see mixOmics: : spls)

For each component and for each keepX/keepY value, a spls is done from these parameters. Then
the clustering is performed and the silhouette coefficient is calculated for this clustering.

We then calculate "slopes" where keepX/keepY are the coordinates and the silhouette is the inten-
sity. A z-score is assigned to each slope. We then identify the most significant slope which indicates
a drop in the silhouette coefficient and thus a deterioration of the clustering.

Value

silhouette
ncomp
test.keepX
test.keepY
block

slopes

choice.keepX

choice.keepY

silhouette coef. computed for every combinasion of keepX/keepY
number of component included in the model

list of tested keepX

list of tested keepY

names of blocks

"slopes" computed from the silhouette coef. for each keepX and keepY, used to
determine the best keepX and keepY

best keepX for each component

best keepY for each component

::spls

16 unscale

See Also

spls, getCluster, plotLong

Examples

demo <- suppressWarnings(get_demo_cluster())
X <- demo$X
Y <- demo$Y

tuning

tune.spls <- tuneCluster.spls(X, Y, ncomp= 2, test.keepX=c(5,10,15,20), test.keepY=c(2,4,6))
keepX <- tune.spls$choice.keepX

keepY <- tune.spls$choice.keepY

final model
spls.res <- mixOmics::spls(X, Y, ncomp= 2, keepX= keepX, keepY= keepY)

get clusters and plot longitudinal profile by cluster
spls.cluster <- getCluster(spls.res)
plotLong(spls.res)

unscale Unscales a scaled data.frame

Description
unscale is a generic function that unscale and/or uncenter the columns of a matrix generated by
the scale base function

Usage

unscale(x)

Arguments

X A numeric matrix.

Details

unscale uses attributes added by the scale function "scaled:scale" and "scaled:center" and use these
scaling factor to retrieve the initial matrix. It first unscales and then uncenters.

Value

Return a matrix, uncenterd and unscaled. Attributes "scaled:center" and "scaled:scale" are removed.

See Also

scale

unscale

Examples

X <- matrix(1:9, ncol = 3)
X.scale <- scale(X, center =
X.unscale <- unscale(X.scale)
all(X == X.unscale)

TRUE, scale

TRUE)

17

Index

block.pls, 4
block.spls, 13
bptest, 8

dmatrix.spearman.dissimilarity, 2

get_demo_cluster, 6
get_demo_silhouette, 7
getCluster, 3,4, 10, 13, 16
getNcomp, 4
getSilhouette, 5
getUpDownCluster, 6

Imms.filter.lines, 7

pca, 4
plotLong, 9, 13, 16
pls, 4
proportionality, 10

remove.low.cv, 11

scale, 16
selectVvar, 3
silhouette, 4
spls, 16

tuneCluster.block.spls, 12
tuneCluster.spca, 14
tuneCluster.spls, 15

unscale, 16

18

	dmatrix.spearman.dissimilarity
	getCluster
	getNcomp
	getSilhouette
	getUpDownCluster
	get_demo_cluster
	get_demo_silhouette
	lmms.filter.lines
	plotLong
	proportionality
	remove.low.cv
	tuneCluster.block.spls
	tuneCluster.spca
	tuneCluster.spls
	unscale
	Index

