Package ‘seqsetvis’

October 24, 2025
Type Package
Title Set Based Visualizations for Next-Gen Sequencing Data
Version 1.29.1

Description seqgsetvis enables the visualization and analysis of sets of
genomic sites in next gen sequencing data.
Although seqsetvis was designed for the comparison of
mulitple ChIP-seq samples, this package is domain-agnostic and allows the
processing of multiple genomic coordinate files (bed-like files) and
signal files (bigwig files pileups from bam file). seqsetvis has multiple
functions for fetching data from regions into a tidy format for analysis in
data.table or tidyverse and visualization via ggplot2.

License MIT + file LICENSE
Encoding UTF-8

Suggests BiocFileCache, BiocManager, BiocStyle, ChIPpeakAnno,
GenomelnfoDDb, covr, knitr, rmarkdown, testthat

Depends R (>=4.3), ggplot2

Imports cowplot, data.table, eulerr, Seqinfo, GenomicAlignments,
GenomicRanges, ggplotify, grDevices, grid, [Ranges, limma,
methods, pbapply, pbmcapply, png, RColorBrewer, Rsamtools,
rtracklayer, S4Vectors, scales, stats, UpSetR

RoxygenNote 7.3.2

Roxygen list(markdown = TRUE)
VignetteBuilder knitr
NeedsCompilation no

biocViews Software, ChIPSeq, MultipleComparison, Sequencing,
Visualization

git_url https://git.bioconductor.org/packages/seqsetvis
git_branch devel

git_last_commit c¢75429d

git_last_commit_date 2025-07-23

Repository Bioconductor 3.22

Date/Publication 2025-10-23

Author Joseph R Boyd [aut, cre] (ORCID:
<https://orcid.org/0000-0002-8969-9676>)

Maintainer Joseph R Boyd <jrboyd@uvm. edu>

https://orcid.org/0000-0002-8969-9676

2 Contents

Contents
segsetvis-package L. e e e e 4
.expand_cigar_dt 4
.expand_cigar_dt_recursive Lo 4
IM_dUPES e e e e e e e 5
am_dupesPE . ..o 5
add_cluster_annotation e 6
append_ynormo e e e e e e e e 7
applyMoOVINGAVerage e e e 8
applySpline e e 9
assemble_heatmap_cluster_bars L 10
Beell_peaks e 11
calc_norm_factors e e 11
centerAtMax L. e e e e e e e e e e 12
centerFixedSizeGRanges L. e 13
centerGRangesAtMax L 14
chromHMM_demo_bw_states_gr 15
chromHMM_demo_chain_url 15
chromHMM _demo_data i 16
chromHMM_demo_overlaps_gr 17
chromHMM_demo_segmentation_url, 17
chromHMM_demo_state_colors v v v i e e 18
chromHMM_demo_state_total_widths 18
clusteringKmeans 19
clusteringKmeansNestedHclust00 oL 19
colZhex e e e 21
collapse_gr e e e 21
convert_collapsed_coord 22
copy_clust_infoo 23
crossCortByRle oL 24
CTCF_in_10a_bigWig_urls. 25
CTCF.in_10a_data e 25
CTCF_in_l10a_narrowPeak_grs. i 26
CTCF _in_10a_narrowPeak urls o 26
CTCF_in_10a_overlaps_gr o 27
CTCF_in_10a_profiles_dt e e 27
CTCF_in_10a_profiles_gr e 28
easyLoad_bed L 28
easyLoad_broadPeak 29
easyLoad_FUN e 30
easyLoad_IDRmerged 30
easyLoad_narrowPeak 31
easyLoad_seacr 32
expandCigar e 33
fetchBam e e e 33
findMaxPos e e e 34
fraglen_calcStranded 35
fraglen_fromMacs2XlIs 36
getReadLength 37
get_mapped_reads e e 37

ggellipse L e e 38

Contents

Index

3

harmonize_seqlengths 39
make_clustering_matrixo 40
merge_clusters e 41
prepare_fetch_ GRanges 42
prepare_fetch_GRanges_names 43
prepare_fetch_GRanges_width oo 44
quantileGRangesWidth L 45
reorder_clusters_hclust 45
reorder_clusters_manual L e 46
reorder_clusters_stepdown Lo e 47
reverse CIUSLErS e e e 48
safeBrew L e e e 50
set_list2memb e e e e 50
shift_anchor e 51
split_cluster L e 51
ssvAnnotateSubjectGRanges 52
ssvConsensusIntervalSets L o 54
ssvFactorizeMembTable L oo 55
ssvFeatureBars L 56
ssvFeatureBinaryHeatmap 57
ssvFeatureEuler L 58
ssvFeaturePie oL 59
ssvFeatureUpset e e e 59
ssvFeatureVenn L 60
ssvFetchBam 62
ssvFetchBam.single 64
ssvFetchBamPE 65
ssvFetchBamPE.RNA 67
ssvFetchBamPE.single 69
ssvRetchBigwig e 70
ssvFetchBigwig.single 72
ssvFetchGRanges 73
ssvFetchSignal 74
ssvMakeMembTable 76
ssvOverlaplntervalSets L 77
ssvSignalBandedQuantiles oL 78
ssvSignalClustering e 80
ssvSignalHeatmap e 82
ssvSignalHeatmap.ClusterBars 0oL, 84
ssvSignalLineplot 86
ssvSignalLineplotAgg e 88
ssvSignalScatterplot L e 89
ssvomcelapply e e 90
test_peaks L e e e 91
viewGRangesWinSample_dt o 91
viewGRangesWinSummary_dt L L 92
within_clust_sort e e e 94
96

4 .expand_cigar_dt_recursive

segsetvis-package easy awesome peak set vis TESTING segsetvis allows you to...

Description

2 steps ssvOverlapIntervalSets. ssvFetchBigwig. Otherwise refer to the vignettes to see

Author(s)
Maintainer: Joseph R Boyd <jrboyd@uvm. edu> (ORCID)

.expand_cigar_dt Expand intermediate bam fetch by cigar codes

Description

see sam specs for cigar details

Usage
.expand_cigar_dt(cigar_dt, op_2count = c("M", "D", "=", "X"))
Arguments
cigar_dt data.table with 5 required named columns in any order. c("which_label", "seq-
names", "strand", "start", "cigar")
op_2count Cigar codes to count. Default is alignment (M), deletion (D), match (=), and
mismatch (X). Other useful codes may be skipped regions for RNA splicing
(N). The locations of any insterions (I) or clipping/padding (S, H, or P) will be
a single bp immediately before the interval.
Value

data.table with cigar entries expanded

.expand_cigar_dt_recursive
Expand intermediate bam fetch by cigar codes

Description

see sam specs for cigar details

Usage

.expand_cigar_dt_recursive(cigar_dt)

https://orcid.org/0000-0002-8969-9676
https://samtools.github.io/hts-specs/SAMv1.pdf
https://samtools.github.io/hts-specs/SAMv1.pdf

.rm_dupes 5

Arguments
cigar_dt data.table with 5 required named columns in any order. c("which_label", "seq-
names", "strand", "start", "cigar")
Value

data.table with cigar entries expanded

.rm_dupes Remove duplicate reads based on stranded start position. This is an
over-simplification. For better duplicate handling, duplicates must be
marked in bam and flag passed to fetchBam() ... for ScanBamParam

Description

flag = scanBamFlag(isDuplicate = FALSE)

Usage

.rm_dupes(reads_dt, max_dupes)

Arguments
reads_dt data.table of reads as loaded by fetchBam
max_dupes maximum allowed positional duplicates
Value

reads_dt with duplicated reads over max_dupes removed

.rm_dupesPE Remove duplicate paired-end reads based on start and end position.
This is an over-simplification. For better duplicate handling, dupli-
cates must be marked in bam and flag passed to fetchBamPE() ... for
ScanBamParam

Description

flag = scanBamFlag(isDuplicate = FALSE)

Usage

.rm_dupesPE (reads_dt, max_dupes)

Arguments
reads_dt data.table of reads as loaded by fetchBamPE
max_dupes maximum allowed positional duplicates
Value

reads_dt with duplicated reads over max_dupes removed

add_cluster_annotation

add_cluster_annotation

add_cluster_annotation

Description

adds rectangle boxes proportional to cluster sizes of heatmap with optional labels.

Usage

add_cluster_annotation(

cluster_ids,
p = NULL,
xleft = 0,
xright = 1,
rect_colors
text_colors

c("black”, "gray"),
rev(rect_colors),

show_labels = TRUE,
label_angle = 0,
row_ = "id",
cluster_ = "cluster_id"
)
Arguments

cluster_ids

p

xleft

xright

rect_colors

text_colors
show_labels
label_angle

row_

cluster_

Value

Vector of cluster ids for each item in heatmap. Should be sorted by plot order
for heatmap.

Optionally an existing ggplot to add annotation to.
left side of cluster annotation rectangles. Default is 0.
right side of cluster annotation rectangles. Default is 1.

colors of rectangle fill, repeat to match number of clusters. Default is c("black”,
"grayﬂ)‘

colors of text, repeat to match number of clusters. Default is reverse of rect_colors.
logical, shoud rectangles be labelled with cluster identity. Default is TRUE.
angle to add clusters labels at. Default is 0, which is horizontal.

variable name mapped to row, likely id or gene name for ngs data. Default is
"id" and works with ssvFetch* outputs.

variable name to use for cluster info. Default is "cluster_id".

A ggplot with cluster annotations added.

append_ynorm 7

Examples

data(CTCF_in_1Qa_profiles_dt)

#simplest uses
add_cluster_annotation(factor(c(rep("A", 3), "B")))

p = ggplot() + coord_cartesian(xlim = c(0,10))
add_cluster_annotation(factor(c(rep("A", 3), "B")), p)

#intended use with ssvSignalHeatmap
clust_dt = ssvSignalClustering(CTCF_in_1@a_profiles_dt, nclust = 3)
assign_dt = unique(clust_dt[, .(id, cluster_id)])[order(id)]
p_heat = ssvSignalHeatmap(clust_dt, show_cluster_bars = FALSE)
add_cluster_annotation(assign_dt$cluster_id, p_heat,
xleft = -500, xright = -360, rect_colors = rainbow(3), text_colors = "gray")

#when colors are named, the names are used rather that just the order
rect_colors = safeBrew(assign_dt$cluster_id)
text_colors = safeBrew(assign_dt$cluster_id, "greys")
p_clusters = add_cluster_annotation(assign_dt$cluster_id,
rect_colors = rect_colors, text_colors = text_colors)
#specialized use as plot outside of heatmap
p1 = assemble_heatmap_cluster_bars(plots = list(p_clusters, p_heat), rel_widths = c(1, 3))

#when colors are named, the names are used rather that just the order
#these plots will be identical even though order of colors changes.
rect_colors = rect_colors[c(2, 3, 1)]
text_colors = text_colors[c(3, 1, 2)]
p_clusters = add_cluster_annotation(assign_dt$cluster_id,
rect_colors = rect_colors, text_colors = text_colors)
#specialized use as plot outside of heatmap
p2 = assemble_heatmap_cluster_bars(plots = list(p_clusters, p_heat), rel_widths = c(1, 3))

cowplot::plot_grid(p1, p2, ncol = 1)

append_ynorm append_ynorm

Description

see calc_norm_factors for normalization details.

Usage

append_ynorm(
full_dt,
value_ = "y",
cap_value_ = "y_cap_value”,
norm_value_ = "y_norm”,
byl = "id",
by2 = "sample",
aggFUN1 = max,
aggFUN2 = function(x) quantile(x, 0.95),
cap_dt = NULL,

8 applyMovingAverage

do_not_cap = FALSE,
do_not_scaleTol = FALSE,
force_append = FALSE

)

Arguments
full_dt a data.table, as returned by ssvFetch*(..., return_data.table = TRUE).
value_ character, attribute in full_dt to normalzie.
cap_value_ character, new attribute name specifying values to cap to.
norm_value_ character, new attribute name specifying normalized values.
by1 character vector, specifies attributes relevant to step 1.
by2 character vector, specifies attributes relevant to step 1 and 2.
aggFUN1 function called on value_ with by = c(by1, by2) in step 1.
aggFUN2 function called on result of aggFUN1 with by = by2 in step 2.
cap_dt optionally, provide user generated by?2 to cap_value_ mapping
do_not_cap if TRUE, normalized values are not capped to 1. Default is FALSE.

do_not_scaleTol
if TRUE, normalized values are not scaled to 1. Default is FALSE.

force_append if TRUE, any previous cap_value or norm_value is overridden. Default is FALSE.

Value

data.table, full_dt with cap_value_ and norm_value_ values appended.

Examples

data(CTCF_in_1Qa_profiles_dt)
append_ynorm(CTCF_in_10@a_profiles_dt)
append_ynorm(CTCF_in_1@a_profiles_dt,

aggFUNT = mean, aggFUN2 = function(x)quantile(x, .5))

applyMovingAverage applyMovingAverage

Description

http://www.cookbook-r.com/Manipulating_data/Calculating_a_moving_average/

Usage
applyMovingAverage(
dt,
n’
centered = TRUE,
x_ = "x",
y-="y",

by_ = c("id"”, "sample"),
maFun = movingAverage

applySpline

Arguments

dt
n
centered

maFun

Value

a tidy data.table containing two-dimensional data
the number of samples centered: if FALSE, then average

current sample and previous (n-1) samples if TRUE, then average symmetrically
in past and future. (If n is even, use one more sample from future.)

the variable name of the x-values
the variable name of the y-values

optionally, any variables that provide grouping to the data. default is none. see
details.

a function that accepts X, y, and n as arguments and returns a list of length 2 with
named elements x and y.

a newly derived data.table where a movingAverage has been applied.

Examples

data(CTCF_in_1Qa_profiles_dt)

agg_dt =

CTCF_in_1@a_profiles_dt[, list(y = mean(y)), by = list(sample, x)]

ggplot(agg_dt) +
geom_line(aes(x = x, y =y, color = sample))

ma_smooth = applyMovingAverage(agg_dt, n = 5,

y_ =

'y', by_ = c('sample'))

ggplot(ma_smooth) +
geom_line(aes(x = x, y =y, color = sample))

ma_smooth$method = "moving_average"”

agg_dt$method = "none”

ggplot(rbind(ma_smooth, agg_dt)) +
geom_line(aes(x = x, y =y, color = method)) +
facet_wrap(~sample)

applySpline applies a spline smoothing to a tidy data.table containing x and y val-
ues.
Description
applySpline Is intended for two-dimensional tidy data.tables, as retured by ssvFetchBigwig
Usage
applySpline(
dt,
n ’
X_ = IIXII ,
y_ = llyll ,
by_ = c("id"”, "sample"),
splineFun = stats::spline

10 assemble_heatmap_cluster_bars

Arguments
dt a tidy data.table containing two-dimensional data
n the number of interpolation points to use per input point, see ?spline. n must
be > 1.
X_ the variable name of the x-values
y_ the variable name of the y-values
by_ optionally, any variables that provide grouping to the data. default is none. see
details.
splineFun a function that accepts X, y, and n as arguments and returns a list of length 2 with
named elements x and y. stats::spline by default. see stats::spline for
details.
Details

by_ is quite powerful. If by_ =c('gene_id"', 'sample_id"), splines will be calculated individu-
ally for each gene in each sample. alternatively if by_ = c('gene_id")

Value

a newly derived data.table that is n times longer than original.

See Also

ssvFetchBigwig

Examples

data(CTCF_in_1@a_profiles_dt)

#data may be blockier than we'd like

ggplot (CTCF_in_10@a_profiles_dt[, list(y = mean(y)), by = list(sample, x)1) +
geom_line(aes(x = x, y =y, color = sample))

#can be smoothed by applying a spline (think twice about doing so,
#it may look prettier but may also be deceptive or misleading)

splined_smooth = applySpline(CTCF_in_10a_profiles_dt, n = 10,
y_ ="y', by_ = c('id"', 'sample'))

ggplot(splined_smooth[, list(y = mean(y)), by = list(sample, x)1) +
geom_line(aes(x = x, y =y, color = sample))

assemble_heatmap_cluster_bars
assemble_heatmap_cluster_bars

Description

assemble_heatmap_cluster_bars

Usage

assemble_heatmap_cluster_bars(plots, ...)

Bcell_peaks 11

Arguments
plots list of plots as returned from ssvSignalHeatmap.ClusterBars when return_unassembled_plots
=TRUE
arguments passed to cowplot::plot_grid
Value

A grob produced by cowplot::plot_grid

Examples

data(CTCF_in_1@a_profiles_gr)
plots = ssvSignalHeatmap.ClusterBars(CTCF_in_10a_profiles_gr, return_unassembled_plots = TRUE)
assemble_heatmap_cluster_bars(plots)

Bcell_peaks 4 random peaks for paired-end data

Description

matches system. file("extdata/Bcell_PE.mm10.bam", package = "seqsetvis")

Format

GRanges length 4

Details

this is included only for testing ssvFetchBamPE functions.

Value

GRanges length 4

calc_norm_factors calc_norm_factors

Description

Calculate normalization factors in a two step process:

Usage

calc_norm_factors(
full_dt,
value_ = "y",
cap_value_ = "y_cap_value”,
byl = "id",
by2 = "sample",
aggFUN1 = max,
aggFUN2 = function(x) quantile(x, 0.95)

12 centerAtMax

Arguments
full_dt a data.table, as returned by ssvFetch*(..., return_data.table. = TRUE)
value_ character, attribute in full dt to normalzie.
cap_value_ character, new attribute name specifying values to cap to.
by1 character vector, specifies attributes relevant to step 1.
by2 character vector, specifies attributes relevant to step 1 and 2.
aggFUN1 function called on value_ with by = c(by1, by2) in step 1.
aggFUN2 function called on result of aggFUN1 with by = by2 in step 2.
Details

1. summarize every region for each sample (default summary function is max)
2. caclulate a value to cap each sample to based on regions (default is 95th quantile).

The uderlying assumption here is that meaningful enrichment is present at the majority of regions
provided. If prevalence varies by a specific factor, say ChIP-seq targets with different character-
istics - ie. when analyzing TSSes for H3K4me3 and an infrequent transcription factor it is more
appropriate to specify appropriate quantile cutoffs per factor.

Value

data.table mapping by2 to cap_value_.

Examples

data(CTCF_in_1@a_profiles_dt)
calc_norm_factors(CTCF_in_1@a_profiles_dt)
calc_norm_factors(CTCF_in_1Qa_profiles_dt,

aggFUNT = mean, aggFUN2 = function(x)quantile(x, .5))

centerAtMax centers profile of x and y. default is to center by region but across all
samples.

Description

centerAtMax locates the coordinate x of the maximum in y and shifts x such that it is zero at max
y.

Usage
centerAtMax(
dt,
x_ = "x",
y- ="y",
by_ = "id",

view_size = NULL,
trim_to_valid = TRUE,
check_by_dupes = TRUE,
X_precision = 3,
replace_x = TRUE

centerFixedSizeGRanges 13

Arguments

dt

view_size

trim_to_valid

check_by_dupes

X_precision

replace_x

Details

data.table
the variable name of the x-values. default is ’x’
the variable name of the y-values default is ’y’

optionally, any variables that provide grouping to the data. default is none. see
details.

the size in x_ to consider for finding the max of y_. if length(view_size) == 1,
range will be c(-view_size, view_size). if length(view_size) > 1, range will be
range(view_size). default value of NULL uses complete range of x.

valid x_ values are those with a set y_ value in all by_ combinations

default assumption is that there should be on set of x_ for a by_ instance. if this
is not the case and you want to disable warnings about set this to FALSE.

numerical precision of x, default is 3.

logical, default TRUE. if TRUE x_ will be replaced with position relative to
summit. if FALSE x_ will be preserved and x_summitPosition added.

character. by_ controls at the level of the data centering is applied. If by_is "" or NULL, a single
max position will be determined for the entire dataset. If by is "id" (the default) then each region
will be centered individually across all samples.

Value

data.table with x (or xnew if replace_x is FALSE) shifted such that x = 0 matches the maximum
y-value define by by_ grouping

Examples

data(CTCF_in_10a_
centerAtMax (CTCF_

profiles_gr)
in_1Qa_profiles_gr, y_ ="y', by_ = 'id',

check_by_dupes = FALSE)
#it's a bit clearer what's happening with trimming disabled

#but results are

centerAtMax (CTCF_

check_by_dupes

less useful for heatmaps etc.
in_10a_profiles_gr, y_ = "'y', by_ = 'id',
= FALSE, trim_to_valid = FALSE)

#specify view_size to limit range of x values considered, prevents
#excessive data trimming.

centerAtMax (CTCF_

check_by_dupes =

in_1Qa_profiles_gr, y_ = 'y', view_size = 100, by_ = 'id',
FALSE)

centerFixedSizeGRanges

Transforms set of GRanges to all have the same size.

Description

centerFixedSizeGRanges First calculates the central coordinate of each GRange in grs and ex-
tends in both direction by half of fixed_size

14 centerGRangesAtMax

Usage

centerFixedSizeGRanges(grs, fixed_size = 2000)

Arguments
grs Set of GRanges with incosistent and/or incorrect size
fixed_size The final width of each GRange returned.

Value

Set of GRanges after resizing all input GRanges, either shortened or lengthened as required to match
fixed_size

Examples

library(GenomicRanges)

grs = GRanges("chr1”, IRanges(1:10+100, 1:10%3+100))
centered_grs = centerFixedSizeGRanges(grs, 10)
width(centered_grs)

centerGRangesAtMax Centers query GRanges at maximum signal in prof_dt.

Description

Centers query GRanges at maximum signal in prof_dt.

Usage
centerGRangesAtMax (
prof_dt,
qgr,
x_ = "x",
y-="y",
by_ = "id",
width = 1,
view_size = NULL
)
Arguments
prof_dt a GRanges or data.table as returned by ssvFetch*.
qgr the GRanges used to query ssvFetch* as the qgr argument.
X_ positional variable. Should almost always be the default, "x".
y_ the signal value variable. Likely the default value of "y" but could be "y_norm"
if append_ynorm was applied to data.
by_ region identifier variable. Should almost always be the default, "id".
width Desired width of final regions. Default is 1.
view_size the size in x_ to consider for finding the max of y_. if length(view_size) == 1,

range will be c(-view_size, view_size). if length(view_size) > 1, range will be
range(view_size). default value of NULL uses complete range of x.

chromHMM_demo_bw._states_gr 15

Value

a GRanges with same mcols as qgr that has been centered based on signal in prof_dt and with
regions of specified width.

Examples

data(CTCF_in_1@a_overlaps_gr)
data(CTCF_in_1Qa_profiles_gr)
data(CTCF_in_1@a_profiles_dt)
centerGRangesAtMax (CTCF_in_10a_profiles_dt, CTCF_in_1@a_overlaps_gr)
centerGRangesAtMax (CTCF_in_10@a_profiles_gr, CTCF_in_10@a_overlaps_gr)

centerGRangesAtMax (CTCF_in_10a_profiles_gr, CTCF_in_1@a_overlaps_gr, view_size = 100)

chromHMM_demo_bw_states_gr
MCF10A CTCF profiles at 20 windows per chromHMM state, hg38.

Description

MCF10A CTCF profiles at 20 windows per chromHMM state, hg38.

Format

a GRanges object of length 4000 with 5 metadata columns sufficient for use with ggplot2

Details

part of chromHMM_demo_data

the result of ssvFetchBigwig() on the MCF10A_CTCF_FE.bw near 20 randomly selected windows
per chromHMM state.

Value

a GRanges object of length 4000 with 5 metadata columns sufficient for use with ggplot2

chromHMM_demo_chain_url
URL to download hg19ToHg38 liftover chain from UCSC

Description

URL to download hg19ToHg38 liftover chain from UCSC

Format

a character containing a URL

16 chromHMM_demo_data

Details

file is gzipped .txt

part of chromHMM_demo_data

Value

a character containing a URL

chromHMM_demo_data chromHMM state segmentation in the MCF7 cell line

Description

Vignette data for seqsetvis was downloaded directly from GEO series GSE57498. This data is the
state segmentation by chromHMM in the MCF7 cell line. chromHMM creates a hidden markov
model by integrating several ChIP-seq samples, in this case:

MCF7_H3K27ac_ChIP-Seq

MCF7_H3K27me3_ChIP-Seq

MCF7_H3K4mel_ChIP-Seq

MCF7_H3K4me3_ChIP-Seq

MCF7_RNApollIp_ChIP-Seq

Data from GEO series GSE57498 is from the publication Taberlay PC et al. 2014

Details

Contains:

e chromHMM_demo_overlaps_gr

* chromHMM_demo_bw_states_gr

e chromHMM_demo_state_total_widths
e chromHMM_demo_state_colors

e chromHMM_demo_segmentation_url

e chromHMM_demo_chain_url

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57498
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57498
https://www.ncbi.nlm.nih.gov/pubmed/24916973

chromHMM_demo_overlaps_gr 17

chromHMM_demo_overlaps_gr
overlap of MCF10A CTCF with MCF7 chromHMM states, hg38.

Description

overlap of MCF10A CTCF with MCF7 chromHMM states, hg38.

Format

a GRanges object of length 98 with 10 logical metadata columns, 1 per state.

Details

part of chromHMM_demo_data

the result of ssvOverlapIntervalSets() on MCF10A CTCF peaks and MCF7 chromHMM states with
use_first = TRUE

first (the MCF10A peaks) and no_hit columns have been removed each remaining column repre-
sents MCF10A peaks overlapping with a state.

Value

a GRanges object of length 98 with 10 logical metadata columns, 1 per state.

chromHMM_demo_segmentation_url
URL to download hg19 MCF7 chromHMM segmentation

Description

URL to download hg19 MCF7 chromHMM segmentation

Format

a character containing a URL

Details

file is gzipped bed with name, score, itemRgb and thick meta columns

part of chromHMM_demo_data

Value

a character containing a URL

18 chromHMM_demo_state_total_widths

chromHMM_demo_state_colors
original state name to color mappings stored in segmentation bed

Description

original state name to color mappings stored in segmentation bed

Format

a named character vector mapping states to hex colors

Details

part of chromHMM_demo_data

Value

a named character vector mapping states to hex colors

chromHMM_demo_state_total_widths
state name to total width mappings, hg38

Description

state name to total width mappings, hg38

Format

named numeric of total widths per state

Details

part of chromHMM_demo_data

Value

named numeric of total widths per state

clusteringKmeans 19

clusteringKmeans perform kmeans clustering on matrix rows and return reordered ma-
trix along with order matched cluster assignments. clusters are sorted
using hclust on centers

Description
perform kmeans clustering on matrix rows and return reordered matrix along with order matched
cluster assignments. clusters are sorted using hclust on centers

Usage

clusteringKmeans(mat, nclust, centroids = NULL, iter.max = 30)

Arguments
mat numeric matrix to cluster.
nclust the number of clusters.
centroids optional matrix with same columns as mat and one centroid per row to base
clusters off of. Overrides any setting to nclust. Default of NULL results in
randomly initialized k-means.
iter.max Number of max iterations to allow for k-means. Default is 30.
Value

data.table with group__ variable indicating cluster membership and id__ variable that is a factor
indicating order based on within cluster similarity

Examples

data(CTCF_in_1@a_profiles_dt)

dt = data.table::copy(CTCF_in_1Qa_profiles_dt)

mat = data.table::dcast(dt, id ~ sample + x, value.var = "y")
rn = mat$id

mat = as.matrix(mat[,-11)

rownames(mat) = rn

clust_dt = clusteringKmeans(mat, nclust = 3)

dt = merge(dt, clust_dt[, .(id = id__, group = group__)1)
dt$id = factor(dt$id, levels = clust_dt$id)

dtlorder(id)]

clusteringKmeansNestedHclust
perform kmeans clustering on matrix rows and return reordered ma-
trix along with order matched cluster assignments clusters are sorted
using hclust on centers the contents of each cluster are sorted using
hclust

20 clusteringKmeansNestedHclust

Description

perform kmeans clustering on matrix rows and return reordered matrix along with order matched
cluster assignments clusters are sorted using hclust on centers the contents of each cluster are sorted
using hclust

Usage

clusteringKmeansNestedHclust(
mat,
nclust,
within_order_strategy = valid_sort_strategies[2],
centroids = NULL,
manual_mapping = NULL,
iter.max = 30

)

Arguments
mat A wide format matrix
nclust the number of clusters

within_order_strategy
one of "hclust”, "sort", "right", "left", "reverse". If "hclust", hierarchical clus-
tering will be used. If "sort", a simple decreasing sort of rosSums. If "left",
will atttempt to put high signal on left ("right" is opposite). If "reverse" reverses
existing order (should only be used after meaningful order imposed).

centroids optional matrix with same columns as mat and one centroid per row to base
clusters off of. Overrides any setting to nclust. Default of NULL results in
randomly initialized k-means.

manual_mapping optional named vector manually specififying cluster assignments. names should
be item ids and values should be cluster names the items are assigned to. Default
of NULL allows clustering to proceed.

iter.max Number of max iterations to allow for k-means. Default is 30.

Value

data.table with 2 columns of cluster info. id__ column corresponds with input matrix rownames
and is sorted within each cluster using hierarchical clusering group__ column indicates cluster as-
signment

Examples

data(CTCF_in_1@a_profiles_dt)

dt = data.table::copy(CTCF_in_10@a_profiles_dt)

mat = data.table::dcast(dt, id ~ sample + x, value.var = "y")
rn = mat$id

mat = as.matrix(mat[,-1])

rownames(mat) = rn

clust_dt = clusteringKmeansNestedHclust(mat, nclust = 3)
clust_dt

col2hex 21

col2hex converts a valid r color name ("black”, "red", "white", etc.) to a hex
value

Description

converts a valid r color name ("black"”, "red", "white", etc.) to a hex value

Usage

col2hex(color_name)

Arguments

color_name character. one or more r color names.

Value

hex value of colors coded by colors()

Examples

col2hex(c("red”, "green", "blue"))
col2hex(c("lightgray”, "gray"”, "darkgray"))

collapse_gr collapse_gr

Description

collapse non-contiguous regions (i.e. exons) into a contiguous coordinate starting at 1. this is strand
sensitive and intended for use with all exons of a single gene.

Usage

collapse_gr(genome_gr)

Arguments
genome_gr a GRanges of regions on a single chromosome. Regions are intended to be non-
contiguous and may even overlap.
Value

a new GRanges object with same mcols as input with all intervals starting at 1 and no empty space
between syntenic regions.

22 convert_collapsed_coord

Examples

library(data.table)

library(GenomicRanges)

dev_dat = data.table(segnames = "chrTest",
transcript_id = c(1, 1, 2, 2, 3, 3, 3),
start = c(5, 30, 8, 30, 2, 30, 40),
end = c(10, 35, 15, 38, 7, 35, 45),
strand = "+")

genome_gr = GRanges(dev_dat)
collapse_gr(genome_gr)

neg_gr = genome_gr
strand(neg_gr) = "-"
collapse_gr(neg_gr)

convert_collapsed_coord
convert_collapsed_coord

Description

(preliminary implementation, sub-optimal)

Usage

convert_collapsed_coord(genome_gr, Xx)

Arguments

genome_gr non-contiguous regions to collapse a la collapse_gr

X numeric, positions within genome_gr to convert to collapsed coordinates.
Details

see collapse_gr for explanation of intended uses. this function translates all values of x from
original genomic coordinates to new coordinate space created by collapse_gr.

Value

numeric, positions of every value of x within collapse coordinates. values outside of collapsed
regions (an intron or outside range) will be NA.

Examples

library(data.table)

library(GenomicRanges)

dev_dat = data.table(segnames = "chrTest”,
transcript_id = c(1, 1, 2, 2, 3, 3, 3),
start = c(5, 30, 8, 30, 2, 30, 40),
end = c(10, 35, 15, 38, 7, 35, 45),
strand = "+"

copy_clust_info 23

genome_gr = GRanges(dev_dat)
convert_collapsed_coord(genome_gr, start(genome_gr))
convert_collapsed_coord(genome_gr, end(genome_gr))

copy_clust_info copy_clust_info

Description

copy_clust_info

Usage
copy_clust_info(target, to_copy, row_ = "id", cluster_ = "cluster_id")
Arguments
target A data.table or GRanges returned from ssvFetch*, the target to which cluster
info will be added.
to_copy A data.table or GRanges returned from ssvSignalClustering, from which to copy
cluster if.
row_ variable name mapped to row, likely id or gene name for ngs data. Default is
"id" and works with ssvFetch* output.
cluster_ variable name to use for cluster info. Default is "cluster_id".
Value

data.table or GRanges (whichever target is) containing row order and cluster assignment derived
from to_copy. Suitable for ssvSignalHeatmap and related functions.

Examples

data(CTCF_in_10@a_narrowPeak_grs)
data(CTCF_in_1@a_overlaps_gr)
data(CTCF_in_1Qa_profiles_dt)
#this takes cluster info from signal and applies to peak hits to
#create a heatmap of peak hits clustered by signal.
clust_dt1 = ssvSignalClustering(CTCF_in_10a_profiles_dt)
peak_hit_gr = ssvFetchGRanges(
CTCF_in_1@a_narrowPeak_grs,
qgr = CTCF_in_1Qa_overlaps_gr
)
peak_hit_gr.clust = copy_clust_info(peak_hit_gr, clust_dt1)
peak_hit_gr.clust$hit = peak_hit_gr.clust$y > 0
ssvSignalHeatmap(peak_hit_gr.clust, fill_ = "hit") +
scale_fill_manual(values = c("FALSE" = "gray9e", "TRUE" = "black"))

24 crossCorrByRle

crossCorrByRle Calculate cross correlation by using shiftApply on read coverage Rle

Description

Calculate cross correlation by using shiftApply on read coverage Rle

Usage

crossCorrByRle(
bam_file,
query_gr,
max_dupes = 1,
fragment_sizes = 50:300,
read_length = NULL,
flip_strand = FALSE,

)

Arguments
bam_file character. Path to .bam file, must have index at .bam.bai.
query_gr GRanges. Regions to calculate cross correlation for.
max_dupes integer. Duplicate reads above this value will be removed.

fragment_sizes integer. fragment size range to search for maximum correlation.

read_length integer. Any values outside fragment_range that must be searched. If not sup-
plied will be determined from bam_file. Set as NA to disable this behavior.

flip_strand boolean. if TRUE strands that reads align to are swapped. This is typically
only necessary if there was a mismatch between library chemistry and aligner
settings. Default is FALSE.

arguments passed to ScanBamParam

Value

named list of results

Examples

data(CTCF_in_1Qa_overlaps_gr)
bam_f = system.file("extdata/test.bam"”,
package = "seqgsetvis"”, mustWork = TRUE)
query_gr = CTCF_in_1@a_overlaps_gr[1:2]
crossCorrByRle(bam_f, query_gr[1:2], fragment_sizes = seq(50, 300, 50))

CTCF _in_10a_bigWig urls 25

CTCF_in_10a_bigWig_urls
FTP URL path for vignette data.

Description

FE bigWig tracks for CTCF ChIP-seq in a MCF10A progression model. See GEO series GSE98551
for details.

Format

named character vector of length 3

Details

part of CTCF_in_10a_data

CTCF_in_10a_data CTCF ChIP-seq in breast cancer cell lines

Description

Vignette data for seqsetvis was downloaded directly from GEO series GSE98551. This data is
CTCF ChIP-seq from a model of breast cancer progression derived from the MCF10A cell line.

Data from GEO series GSE98551 is from the publication Fritz AJ et al. 2018

Details

Contains:

e CTCF_in_1@a_overlaps_gr
* CTCF_in_10@a_profiles_dt
* CTCF_in_10a_bigWig_urls

e CTCF_in_10@a_narrowPeak_urls

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE98551
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE98551
https://www.ncbi.nlm.nih.gov/pubmed/28504305

26 CTCF _in_10a_narrowPeak_urls

CTCF_in_10a_narrowPeak_grs
list of GRanges that results in 100 random subset when overlapped

Description

list of GRanges that results in 100 random subset when overlapped

Format

named list of GRanges of length 3

Details

part of CTCF_in_10a_data

Value

named list of GRanges of length 3

CTCF_in_1@a_narrowPeak_urls
FTP URL path for vignette data. from

Description

macs?2 peak calls for CTCF ChIP-seq in a MCF10A progression model. See GEO series GSE98551
for details.

Format

named character vector of length 3

Details

part of CTCF_in_10a_data

CTCF _in_10a_overlaps_gr 27

CTCF_in_10a_overlaps_gr
100 randomly selected regions from overlapping CTCF peaks in 10a
cell ChIP-seq

Description
MACS2 narrowPeak calls on pooled biological replicates at pval le-5 and then 0.05 IDR filtered.
IDR cutoffs determined by comparing top 150,000 pvalue sorted peak in replicates.

Format

GenomicRanges with 3 metadata columns of membership table

Details

See GEO series GSE98551 for details.
part of CTCF_in_10a_data

CTCF_in_1Qa_profiles_dt
Profiles for 100 randomly selected regions from overlapping CTCF
peaks in 10a cell ChIP-seq Results from fetching bigwigs with
CTCF _in_I0a_overlaps_gr.

Description

A tidy data.table at window size 50 bp within 350 bp of peak center The variables are as follows:

Format

A tidy data.table of 2100 rows and 9 columns

Details
part of CTCF_in_10a_data

. seqnames. chromosome for GRanges compatibility
. start. start of interval

. end. end of interval

. width. width of interval

. strand. leftover from GRanges.

. id. unique identifier

. y. fold-enrichment over input.

. X. bp relative to center

O 0 9 N L A W N =

. sample. name of originating sample

28 easyLoad_bed

CTCF_in_1Qa_profiles_gr
Profiles for 100 randomly selected regions from overlapping CTCF
peaks in 10a cell ChIP-seq Results from CTCF_in_10a_overlaps_gr

Description

A tidy GRanges at window size 50 bp within 350 bp of peak center The variables are as follows:

Format

A tidy GRanges of 2100 rows and 4 metadata columns

Details
part of CTCF_in_10a_data

1. id. unique identifier
2. y. fold-enrichment over input.
3. x. bp relative to center

4. sample. name of originating sample

easylLoad_bed easyLoad_bed takes a character vector of file paths to bed plus files
and returning named list of GRanges.

Description

Mainly a utility function for loading MACS?2 narrowPeak and broadPeak.

Usage

easylLoad_bed(
file_paths,
file_names = NULL,
extraCols = character(),
n_cores = getOption(”"mc.cores”, 1)

)
Arguments
file_paths character vector of paths to narrowPeak files. If named, those names will be
used in output unless overriden by providing file_names.
file_names character vector of names for output list. If not NULL will override any existing
names for file_paths. Default is NULL.
extraCols named character vector of classes. passed to rtracklayer::import for format =

"BED". default is character().

n_cores number of cores to use, uses mc.cores option if set or 1.

easyLoad_broadPeak 29

Value

a named list of GRanges loaded from file_paths

Examples

bed_f = system.file("extdata/test_loading.bed",
package = "seqsetvis"”, mustWork = TRUE)
easylLoad_bed(bed_f, "my_bed")

easylLoad_broadPeak easyLoad_broadPeak takes a character vector of file paths to narrow-
Peak files from MACS?2 and returns a named list of GRanges.

Description

easyLoad_broadPeak takes a character vector of file paths to narrowPeak files from MACS2 and
returns a named list of GRanges.

Usage

easyload_broadPeak(
file_paths,
file_names = NULL,
n_cores = getOption("mc.cores”, 1)

)
Arguments
file_paths character vector of paths to narrowPeak files. If named, those names will be
used in output unless overriden by providing file_names.
file_names character vector of names for output list. If not NULL will override any existing
names for file_paths. Default is NULL.
n_cores number of cores to use, uses mc.cores option if set or 1.
Value

a named list of GRanges loaded from file_paths

Examples

bp_f = system.file("extdata/test_loading.broadPeak",
package = "seqgsetvis"”, mustWork = TRUE)
easylLoad_broadPeak (bp_f, "my_broadPeak")

30 easyLoad_IDRmerged

easylLoad_FUN easyLoad_FUN takes a character vector of file paths run an arbitrary
function defined in load_FUN

Description

easyLoad_FUN takes a character vector of file paths run an arbitrary function defined in load_FUN

Usage

easylLoad_FUN(
file_paths,
load_FUN,
file_names = NULL,
n_cores = getOption("mc.cores”, 1),

)
Arguments
file_paths character vector of paths to narrowPeak files. If named, those names will be
used in output unless overriden by providing file_names.
load_FUN Arbitrary function that takes at least a file path as argument. May take other
arguments that should be set in call to easyLoad_FUN.
file_names character vector of names for output list. If not NULL will override any existing
names for file_paths. Default is NULL.
n_cores number of cores to use, uses mc.cores option if set or 1.
extra parameters passed to load_FUN
Value

a named list of results from load_FUN

Examples

bed_f = system.file("extdata/test_loading.bed",
package = "seqsetvis”, mustWork = TRUE)
easylLoad_bed(bed_f, "my_bed")

easyLoad_IDRmerged easyLoad_IDRmerged loads "overlapped-peaks.txt" from IDR.

Description

easyLoad_IDRmerged loads "overlapped-peaks.txt" from IDR.

easyLoad_narrowPeak 31

Usage

easyLoad_IDRmerged(
file_paths,
file_names = NULL,
n_cores = getOption("mc.cores”, 1),
max_idr = 0.05

)
Arguments
file_paths character vector of paths to narrowPeak files. If named, those names will be
used in output unless overriden by providing file_names.
file_names character vector of names for output list. If not NULL will override any existing
names for file_paths. Default is NULL.
n_cores number of cores to use, uses mc.cores option if set or 1.
max_idr maximum IDR value allowed
Value

named list of GRanges

Examples

idr_file = system.file("extdata/test_idr.overlapped-peaks.txt”,
package = "seqgsetvis"”, mustWork = TRUE)

easyLoad_IDRmerged(idr_file)

easylLoad_IDRmerged(idr_file, max_idr = .01)

easylLoad_narrowPeak easyLoad_narrowPeak takes a character vector of file paths to nar-
rowPeak files from MACS2 and returns a named list of GRanges.

Description

easyLoad_narrowPeak takes a character vector of file paths to narrowPeak files from MACS2 and
returns a named list of GRanges.

Usage

easyLoad_narrowPeak(
file_paths,
file_names = NULL,
n_cores = getOption("mc.cores”, 1)

)
Arguments
file_paths character vector of paths to narrowPeak files. If named, those names will be
used in output unless overriden by providing file_names.
file_names character vector of names for output list. If not NULL will override any existing

names for file_paths. Default is NULL.

n_cores number of cores to use, uses mc.cores option if set or 1.

32 easyLoad_seacr

Value

a named list of GRanges loaded from file_paths

Examples

np_f = system.file("extdata/test_loading.narrowPeak”,
package = "seqsetvis"”, mustWork = TRUE)
easylLoad_narrowPeak(np_f, "my_narrowPeak")

easylLoad_seacr easyLoad_seacr takes a character vector of file paths to seacr output
bed files and returns a named list of GRanges.

Description

easyLoad_seacr takes a character vector of file paths to seacr output bed files and returns a named
list of GRanges.

Usage

easylLoad_seacr(
file_paths,
file_names = NULL,
n_cores = getOption("mc.cores”, 1)

)
Arguments
file_paths character vector of paths to seacr bed files. If named, those names will be used
in output unless overriden by providing file_names.
file_names character vector of names for output list. If not NULL will override any existing
names for file_paths. Default is NULL.
n_cores number of cores to use, uses mc.cores option if set or 1.
Value

a named list of GRanges loaded from file_paths

Examples

bed_f = system.file("extdata/test_loading.seacr.bed”,
package = "seqgsetvis"”, mustWork = TRUE)
easylLoad_seacr(bed_f, "my_seacr")

expandCigar 33

expandCigar Expand cigar codes to GRanges

Description

see sam specs for cigar details

Usage
expandCigar(
cigar_dt,
Op_zcount = C(”M”’ HDH’ ”:H’ HX”)’
return_data.table = FALSE
)
Arguments
cigar_dt data.table with 5 required named columns in any order. c("which_label", "seq-
names", "strand", "start", "cigar")
op_2count Cigar codes to count. Default is alignment (M), deletion (D), match (=), and

mismatch (X). Other useful codes may be skipped regions for RNA splicing
(N). The locations of any insterions (I) or clipping/padding (S, H, or P) will be
a single bp immediately before the interval.

return_data. table
if TRUE, a data.table is returned, else a GRanges. Default is FALSE.

Value

data.table with cigar entries expanded

Examples

data(CTCF_in_1@a_overlaps_gr)

ggr = CTCF_in_10a_overlaps_gr[1:5]

bam_file = system.file("extdata/test.bam”, package = "seqgsetvis”, mustWork = TRUE)
raw_dt = ssvFetchBam(bam_file, qgr, return_unprocessed = TRUE)

expandCigar (raw_dt)

fetchBam fetch a bam file pileup with the ability to consider read extension to
fragment size (fragLen)

Description

fetch a bam file pileup with the ability to consider read extension to fragment size (fraglen)

https://samtools.github.io/hts-specs/SAMv1.pdf

34 findMaxPos
Usage
fetchBam(

bam_f,

qer,

fraglen = NULL,

target_strand = c("x", "+", "-")[1],

max_dupes = Inf,

splice_strategy = c("none”, "ignore"”, "add", "only", "splice_count”)[1],

flip_strand

= FALSE,

return_unprocessed = FALSE,

Arguments
bam_f

qgr
fraglLen

target_strand

max_dupes

splice_strategy

flip_strand

character or BamFile to load
GRanges regions to fetchs

numeric, NULL, or NA. if numeric, supplied value is used. if NULL, value is
calculated with fraglen_calcStranded (default) if NA, raw bam pileup with no
cross strand shift is returned.

non

character. if one of "+" or "-", reads are filtered to match. ignored if any other
value.

numeric >= 1. duplicate reads by strandd start position over this number are
removed, Default is Inf.

non

character, one of c¢("none", "ignore", "add", "only"). Default is "none" and split
read alignments are asssumed not present. fragl.en must be NA for any other
value to be valid. "ignore" will not count spliced regions. "add" counts spliced
regions along with others, "only" will only count spliced regions and ignore
others.

if TRUE, strand alignment is flipped prior to fraglen extension. Default is
FALSE.

return_unprocessed

Value

boolean. if TRUE returns read alignment in data.table. Default is FALSE.

passed to ScanBamParam(), can’t be which or what.

GRanges containing tag pileup values in score meta column. tags are optionally extended to frag-
ment length (fraglen) prior to pile up.

findMaxPos

findMaxPos

Description

findMaxPos

fraglen_calcStranded 35

Usage
findMaxPos(prof_dt, qgr, x_ = "x", y_ = "y", by_ = "id", width = 1)
Arguments
prof_dt a GRanges or data.table as returned by ssvFetch*.
qgr the GRanges used to query ssvFetch* as the qgr argument.
X_ positional variable. Should almost always be the default, "x".
y_ the signal value variable. Likely the default value of "y" but could be "y_norm"
if append_ynorm was applied to data.
by_ region identifier variable. Should almost always be the default, "id".
width Desired width of final regions. Default is 1.
Value

data.table of relative x position from center per id

Examples

data(CTCF_in_1@a_overlaps_gr)
data(CTCF_in_1@a_profiles_gr)
data(CTCF_in_1Qa_profiles_dt)
findMaxPos (CTCF_in_1@a_profiles_dt, CTCF_in_1Qa_overlaps_gr)
findMaxPos (CTCF_in_1@a_profiles_gr, CTCF_in_1@a_overlaps_gr)

fraglen_calcStranded calculate fragLen from a bam file for specified regions

Description

calculate fraglen from a bam file for specified regions

Usage

fraglLen_calcStranded(
bam_f,
qgr,
n_regions = 100,
include_plot_in_output = FALSE,
test_fraglen = seq(100, 400, 5),
flip_strand = FALSE,

36

Arguments

bam_f

qgr

n_regions

fragLen_fromMacs2Xls

character or BamFile. bam file to read from. .bai index file must be in same
directory

GRanges. used as which for ScanBamParam. Can be NULL if it’'s REALLY
important to load the entire bam, force_no_which = TRUE also required.

numeric (integer) it’s generally overkill to pull all regions at this stage and will
slow calculation down. Default is 100.

include_plot_in_output

test_fraglLen
flip_strand

Value

if TRUE ouptut is a list of fraglen and a ggplot showing values considered by
calculation. Default is FALSE.

numeric. The set of fragment lenghts to gather strand cross correlation for.

boolean. if TRUE strands that reads align to are swapped. This is typically
only necessary if there was a mismatch between library chemistry and aligner
settings. Default is FALSE.

passed to Rsamtools::ScanBamParam, can’t be which or what.

numeric fragment length

Examples

data(CTCF_in_1Qa_overlaps_gr)
bam_file = system.file("extdata/test.bam"”,
package = "seqsetvis”)

ggr = CTCF_in_10a_overlaps_gr[1:5]
fraglLen_calcStranded(bam_file, qgr)
#if plot is included, a list is returned, item 2 is the plot
fraglLen_calcStranded(bam_file, qgr,

include_plot_in_output = TRUE)[[2]]

fraglen_fromMacs2X1ls parse fragLen from MACS?2 output

Description

parse fraglen from MACS2 output

Usage

fraglLen_fromMacs2X1s(macs2xls_file)

Arguments

macs2xls_file

Value

character. an xIs file output by MACS2 to parse frag length from

numeric fragment length

getReadLength 37

Examples

xls_file = system.file("extdata/test_peaks.xls",
package = "seqsetvis”)
fraglLen_fromMacs2X1ls(xls_file)

getReadLength determine the most common read length for input bam_file. uses 50
randomly selected regions from query_gr. If fewer than 20 reads are
present, loads all of query_gr.

Description
determine the most common read length for input bam_file. uses 50 randomly selected regions from
query_gr. If fewer than 20 reads are present, loads all of query_gr.

Usage

getReadlLength(bam_file, query_gr)

Arguments

bam_file indexed bam file

query_gr GRanges to read from bam file
Value

numeric of most common read length.

Examples

data(CTCF_in_1Qa_overlaps_gr)

ggr = CTCF_in_10a_overlaps_gr[1:5]

bam_file = system.file("extdata/test.bam”, package = "seqgsetvis”, mustWork = TRUE)
getReadlLength(bam_file, qgr)

get_mapped_reads get_mapped_reads

Description

get_mapped_reads

Usage

get_mapped_reads(bam_files)

Arguments

bam_files Path to 1 or more bam files. Must be indexed.

38

Value

ggellipse

the total mapped reads in each bam file as a named numeric vector.

Examples

bam_file = system.file("extdata/test.bam”, package = "seqgsetvis", mustWork = TRUE)
get_mapped_reads(bam_file)

ggellipse

ggellipse

Description

returns a ggplot with ellipses drawn using specified parameters used by ssvFeatureVenn and ssvFea-

tureEuler

Usage

ggellipse(
xcentres,
ycentres,
r,
r2=r,

phi = rep(0@, length(xcentres)),

circle_colors

= NULL,

group_names = LETTERS[seq_along(xcentres)],

line_alpha
fill_alpha
line_width

n_points

Arguments

xcentres
ycentres
r

r2

phi

circle_colors

group_names
line_alpha
fill_alpha
line_width

n_points

numeric x-coord of centers of ellipses
numeric y-coord of centers of ellipses, must have same length as xcentres
numeric radius1 of ellipse, must have length of 1 or match length of xcentres

numeric radius2 of ellipse, must have length of 1 or match length of xcentres.
same as r by default.

numeric phi of ellipse, must have length of 1 or match length of xcentres. O by
default.

character of rcolors or hex colors or NULL. if null safeBrew of Dark?2 is used
character/factor names of color/fill groups. capital letters by default.

numeric value from O to 1. alpha of lines, 1 by default

numeric value from 0 to 1. alpha of fill, .3 by default.

numeric > 0. passed to size. 2 by default

integer > 1. number of points to approximate circle with. 200 by default

harmonize_seqlengths 39

Details

uses eulerr’s non-exported ellipse drawing coordinate function

Value

a ggplot containing ellipses

Examples

ggellipse(xcentres = c(1, 1, 2),
ycentres = c(2, 1, 1),
r=c(, 2, 1))
ggellipse(xcentres = c(1, 1, 2),
ycentres = c(2, 1, 1),
r=c(, 2, 1),
fill_alpha = 0,
group_names = paste(”"set”, 1:3))
ggellipse(xcentres = c(1, 1, 2),
ycentres = c(2, 1, 1),
r=c(, 2, 1)),
circle_colors = c("red"”, "orange”, "yellow"),
line_alpha = 0,
group_names = paste(”"set”, 1:3))

harmonize_seqlengths harmonize_seqlengths

Description

ensures compatibility between seqlength of gr and bam_file based on header

Usage

harmonize_seqlengths(query_gr, bam_file, force_fix = FALSE)

Arguments
query_gr GRanges, object to harmonize seqlengths for
bam_file character, a path to a valid bam file
force_fix Logical, if TRUE incompatible seqnames are removed from the query_gr. De-
fault is FALSE.
Value

GRanges with seqlengths matching bam_file

40

Examples

make_clustering_matrix

library(GenomicRanges)

query_gr = GRanges("chr1”, IRanges(1, 100))

#seqlengths has not been set

seqlengths(query_gr)

bam = system.file("extdata/test.bam”, package = "segsetvis")
gr2 = harmonize_seqlengths(query_gr, bam)

#seqlengths now set

seqlengths(gr2)

make_clustering_matrix

make_clustering_matrix

Description

Create a wide matrix from a tidy data.table more suitable for clustering methods

Usage
make_clustering_matrix(
tidy_dt,
row_ = "id",
column_ = "x",
fill_ = "y",
facet_ = "sample”,

max_rows = 500,
max_cols = 100,
clustering_col_min = -Inf,

clustering_col_max

Inf,

dcast_fill = NA,

fun.aggregate

Arguments

tidy_dt

row_
column_
fill_
facet_
max_rows

max_cols

= "mean”

the tidy data.table to covert to a wide matrix. Must have entries for variables
specified by row_, column_, fill_, and facet_.

variable name mapped to row, likely peak id or gene name for ngs data
varaible mapped to column, likely bp position for ngs data

numeric variable to map to fill

variable name to facet horizontally by

for speed rows are sampled to 500 by default, use Inf to plot full data
for speed columns are sampled to 100 by default, use Inf to plot full data

clustering_col_min

numeric minimum for col range considered when clustering, default in -Inf

clustering_col_max

dcast_fill

numeric maximum for col range considered when clustering, default in Inf

value to supply to dcast fill argument. default is NA.

merge_clusters 41

fun.aggregate Function to aggregate when multiple values present for facet_, row_, and col-
umn_. The function should accept a single vector argument or be a character
string naming such a function.

Value

A wide matrix version of input tidy data.table

Examples

data(CTCF_in_1Qa_profiles_dt)
mat = make_clustering_matrix(CTCF_in_10a_profiles_dt)

mat[1:5, 1:5]
merge_clusters merge_clusters
Description

merge_clusters

Usage
merge_clusters(
clust_dt,
to_merge,
row_ = "id",
cluster_ = "cluster_id",
reapply_cluster_names = TRUE
)
Arguments
clust_dt data.table output from ssvSignalClustering
to_merge Clusters to merge. Must be items in clust_dt variable defined by cluster_ param-
eter.
row_ variable name mapped to row, likely id or gene name for ngs data. Default is
"id" and works with ssvFetch* output.
cluster_ variable name to use for cluster info. Default is "cluster_id".

reapply_cluster_names

If TRUE, clusters will be renamed according to new order instead of their origi-
nal names. Default is TRUE.

Value

data.table as output from ssvSignalClustering

42 prepare_fetch_ GRanges

Examples

data(CTCF_in_1Qa_profiles_dt)
set.seed(0)
clust_dt = ssvSignalClustering(CTCF_in_1@a_profiles_dt, nclust = 6)
ssvSignalHeatmap(clust_dt)
agg_dt = clust_dt[, list(y = mean(y)), list(x, cluster_id, sample)]
ggplot(agg_dt, aes(x = x, y =y, color = sample)) +

geom_path() +

facet_grid(cluster_id~.)

to_merge = c(2, 3, 5)

debug(merge_clusters)

new_dt = merge_clusters(clust_dt, c(2, 3, 5), reapply_cluster_names = FALSE)
new_dt.relabel = merge_clusters(clust_dt, c(2, 3, 5), reapply_cluster_names = TRUE)
new_dt.relabel.sort = within_clust_sort(new_dt.relabel, within_order_strategy = "sort")

table(clust_dt$cluster_id)
table(new_dt$cluster_id)

cowplot::plot_grid(
ssvSignalHeatmap(clust_dt) + labs(title = "original"”),
ssvSignalHeatmap(new_dt) + labs(title = "2,3,5 merged”),
ssvSignalHeatmap(new_dt.relabel) + labs(title = "2,3,5 merged, renumbered”),
ssvSignalHeatmap(new_dt.relabel.sort) + labs(title = "2,3,5 merged, renumbered and sorted”)

)

prepare_fetch_GRanges prepares GRanges for windowed fetching.

Description

Deprecated and renamed as prepare_fetch_GRanges_width

Usage

prepare_fetch_GRanges(
qgr,
win_size,
min_quantile = 0.75,
target_size = NULL,
skip_centerFix = FALSE

)

Arguments
qgr GRanges to prepare
win_size numeric window size for fetch

min_quantile numeric value from 0 to 1. Lowest possible quantile value. Only relevant if
target_size is not specified.

prepare_fetch GRanges_names 43

target_size numeric final width of qgr if known. Default of NULL leads to quantile based
determination of target_size.

skip_centerFix boolean, if FALSE (default) all regions will be resized GenomicRanges::resize(x,
w, fix = "center") to a uniform size based on min_quantile to a width divisible
by win_size.

Details

output GRanges parallels input with consistent width evenly divisible by win_size. Has warning if
GRanges needed resizing, otherwise no warning and input GRanges is returned unchanged.

Value

GRanges, either identical to qgr or with suitable consistent width applied.

Examples

data(CTCF_in_1@a_overlaps_gr)

#use prepare_fetch_GRanges_width instead:

ggr = prepare_fetch_GRanges_width(CTCF_in_1@a_overlaps_gr, win_size = 50)
#no warning if qgr is already valid for windowed fetching
prepare_fetch_GRanges_width(qgr, win_size = 50)

prepare_fetch_GRanges_names
Creates a named version of input GRanges using the same method
seqsetvis uses internally to ensure consistency.

Description

If $id is set, that value is used as name and duplicates are checked for.

Usage

prepare_fetch_GRanges_names(qgr, include_id = FALSE)

Arguments
qgr input GRanges object the set/check names on
include_id if TRUE, $id is retained. Default is FALSE.
Value

and named GRanges based on input qgr.

44 prepare_fetch_ GRanges_width

Examples

data(CTCF_in_1@a_overlaps_gr)

ggr = CTCF_in_1Qa_overlaps_gr

names(qgr) = NULL

#default is to paste "region_" and iteration along length of qgr
prepare_fetch_GRanges_names(qggr)

#id gets used is already set

ggr$id = paste@("peak_ ", rev(seqg_along(qgr)), "_of_", length(qggr))
prepare_fetch_GRanges_names(qggr)

"

prepare_fetch_GRanges_width
prepares GRanges for windowed fetching.

Description

output GRanges parallels input with consistent width evenly divisible by win_size. Has warning if
GRanges needed resizing, otherwise no warning and input GRanges is returned unchanged.

Usage

prepare_fetch_GRanges_width(
agr,
win_size,
min_quantile = 0.75,
target_size = NULL,
skip_centerFix = FALSE

)

Arguments
qgr GRanges to prepare
win_size numeric window size for fetch

min_quantile numeric value from 0 to 1. Lowest possible quantile value. Only relevant if
target_size is not specified.

target_size numeric final width of qgr if known. Default of NULL leads to quantile based
determination of target_size.

skip_centerFix boolean, if FALSE (default) all regions will be resized GenomicRanges::resize(x,
w, fix = "center") to a uniform size based on min_quantile to a width divisible
by win_size.

Value

GRanges, either identical to qgr or with suitable consistent width applied.

Examples

data(CTCF_in_1Qa_overlaps_gr)

ggr = prepare_fetch_GRanges_width(CTCF_in_10a_overlaps_gr, win_size = 50)
#no warning if qgr is already valid for windowed fetching
prepare_fetch_GRanges_width(ggr, win_size = 50)

quantileGRangesWidth

45

quantileGRangesWidth Quantile width determination strategy

Description

Returns the lowest multiple of win_size greater than min_quantile quantile of width(qgr)

Usage

quantileGRangesWidth(qgr, min_quantile = 0.75, win_size = 1)

Arguments

qgr GRanges to calculate quantile width for
min_quantile numeric value from O to 1. The minimum quantile of width in qgr

win_size numeric/integer >=1, returned value will be a multiple of this

Value

numeric that is >= min_quantile and evenly divisible by win_size

Examples

data(CTCF_in_1@a_overlaps_gr)

gr = CTCF_in_1Qa_overlaps_gr

quantileGRangesWidth(gr)

quantileGRangesWidth(gr, min_quantile = .5, win_size = 100)

reorder_clusters_hclust
reorder_clusters_hclust

Description

Applies hierarchical clustering to centroids of clusters to reorder.

Usage
reorder_clusters_hclust(

clust_dt,
hclust_result = NULL,
row_ = "id",
column_ = "x",
fill_ = "y",
facet_ = "sample”,
cluster_ = "cluster_id",

reapply_cluster_names = TRUE,
return_hclust = FALSE

46

Arguments

clust_dt

hclust_result

row_

column_

fill_

facet_

cluster_

reorder_clusters_manual

data.table output from ssvSignalClustering

hclust result returned by a previous call of this function with identical paramters
when return_hclust = TRUE.

variable name mapped to row, likely id or gene name for ngs data. Default is
"id" and works with ssvFetch* output.

varaible mapped to column, likely bp position for ngs data. Default is "x" and
works with ssvFetch* output.

nen

numeric variable to map to fill. Default is "y" and works with ssvFetch* output.

variable name to facet horizontally by. Default is "sample" and works with
ssvFetch* output. Set to "" if data is not facetted.

variable name to use for cluster info. Default is "cluster_id".

reapply_cluster_names

return_hclust

Value

If TRUE, clusters will be renamed according to new order instead of their origi-
nal names. Default is TRUE.

If TRUE, return the result of hclust instead of the reordered clustering data.table.
Default is FALSE. Ignored if hclust_result is supplied.

data.table as output from ssvSignalClustering

Examples

data(CTCF_in_1Qa_profiles_dt)
clust_dt = ssvSignalClustering(CTCF_in_1@a_profiles_dt, nclust = 10)
new_dt = reorder_clusters_hclust(clust_dt)
cowplot::plot_grid(
ssvSignalHeatmap(clust_dt),
ssvSignalHeatmap(new_dt)

reorder_clusters_manual

reorder_clusters_manual

Description

Manually applies a new order (top to bottom) for cluster using the result of ssvSignalClustering.

Usage

reorder_clusters_manual(

clust_dt,

manual_order,
row_ = "id",

cluster_ = "cluster_id",
reapply_cluster_names = TRUE

reorder_clusters_stepdown 47

Arguments

clust_dt data.table output from ssvSignalClustering

manual_order New order for clusters Does not need to include all clusters. Any colors not
included will be at the bottom in their original order.

row_ variable name mapped to row, likely id or gene name for ngs data. Default is
"id" and works with ssvFetch* output.

cluster_ variable name to use for cluster info. Default is "cluster_id".

reapply_cluster_names

If TRUE, clusters will be renamed according to new order instead of their origi-
nal names. Default is TRUE.

Value

data.table as output from ssvSignalClustering

Examples

data(CTCF_in_1Qa_profiles_dt)
clust_dt = ssvSignalClustering(CTCF_in_1@a_profiles_dt, nclust = 3)
new_dt = reorder_clusters_manual(clust_dt = clust_dt, manual_order = 2)
cowplot::plot_grid(

ssvSignalHeatmap(clust_dt),

ssvSignalHeatmap(new_dt)

reorder_clusters_stepdown
reorder_clusters_stepdown

Description

Attempts to reorder clusters so that rows with highest signal on the left relative to the right appear
at the top. Signal should have a roughly diagonal pattern in a "stepdown" pattern.

Usage

reorder_clusters_stepdown(
clust_dt,
row_ = "id",
column_ = "x",
fill_ = "y",
facet_ = "sample”,
cluster_ = "cluster_id",
reapply_cluster_names = TRUE,
step_by_column = TRUE,
step_by_facet = FALSE

48

Arguments

clust_dt

row_

column_

fill_

facet_

cluster_

reverse_clusters

data.table output from ssvSignalClustering

variable name mapped to row, likely id or gene name for ngs data. Default is
"id" and works with ssvFetch* output.

varaible mapped to column, likely bp position for ngs data. Default is "x" and
works with ssvFetch* output.

nen

numeric variable to map to fill. Default is "y" and works with ssvFetch* output.

variable name to facet horizontally by. Default is "sample" and works with
ssvFetch* output. Set to "" if data is not facetted.

variable name to use for cluster info. Default is "cluster_id".

reapply_cluster_names

step_by_column

step_by_facet

Details

If TRUE, clusters will be renamed according to new order instead of their origi-
nal names. Default is TRUE.

If TRUE, column is considered for left-right cluster balance. Default is TRUE.
If TRUE, facet is considered for left-right cluster balance. Default is FALSE.

This can be down by column (step_by_column = TRUE) which averages across facets. By facet

(step_by_column =

FALSE, step_by_facet = TRUE) which averages all columns per facet. Or both

column and facet (step_by_column = TRUE, step_by_facet = TRUE), which does no averaging so
it looks at the full matrix as plotted.

Value

data.table as output from ssvSignalClustering

Examples

data(CTCF_in_1Qa_profiles_dt)
clust_dt = ssvSignalClustering(CTCF_in_1@a_profiles_dt, nclust = 10)
new_dt = reorder_clusters_stepdown(clust_dt)
cowplot::plot_grid(
ssvSignalHeatmap(clust_dt),
ssvSignalHeatmap(new_dt)

reverse_clusters

reverse_clusters

Description

reverse_clusters

reverse_clusters

Usage

49

reverse_clusters(

clust_

dt,

row_ = "id",

column
fill_

— nyn
_ =X
no,n

=Y,

’

facet_ = "sample”,

cluster_ = "cluster_id",
reverse_rows_within = TRUE,
reapply_cluster_names = TRUE

Arguments

clust_dt

row_

column_

fill_

facet_

cluster_

data.table output from ssvSignalClustering

variable name mapped to row, likely id or gene name for ngs data. Default is
"id" and works with ssvFetch* output.

varaible mapped to column, likely bp position for ngs data. Default is "x" and
works with ssvFetch* output.

nen

numeric variable to map to fill. Default is "y" and works with ssvFetch* output.

variable name to facet horizontally by. Default is "sample" and works with
ssvFetch* output. Set to "" if data is not facetted.

variable name to use for cluster info. Default is "cluster_id".

reverse_rows_within

If TRUE, rows within clusters will be reversed as well. Default is TRUE.

reapply_cluster_names

Value

If TRUE, clusters will be renamed according to new order instead of their origi-
nal names. Default is TRUE.

data.table as output from ssvSignalClustering

Examples

data(CTCF_in_1@a_profiles_dt)
set.seed(0)

clust_dt

ssvSignalClustering(CTCF_in_1Qa_profiles_dt, nclust = 3)

rev_dt = reverse_clusters(clust_dt)
rev_dt.no_relabel = reverse_clusters(clust_dt, reapply_cluster_names = FALSE)
rev_dt.not_rows = reverse_clusters(clust_dt, reverse_rows_within = FALSE)
cowplot::plot_grid(nrow = 1,

ssvSignalHeatmap(clust_dt) + labs(title = "original"”),

ssvSignalHeatmap(rev_dt) + labs(title = "reversed"),
ssvSignalHeatmap(rev_dt.no_relabel) + labs(title = "reversed, no relabel"”),
ssvSignalHeatmap(rev_dt.not_rows) + labs(title = "reversed, not rows")

50

set_list2memb

safeBrew

safeBrew

Description

Allows RColorBrew to handle n values less than 3 and greater than 8 without warnings and return
expected number of colors.

Usage

safeBrew(n, pal = "Dark2")

Arguments

n

pal

Details

integer value of number of colors to make palette for. Alternatively a character
or factor, in which case palette will be generated for each unique item or factor
level repsectively.

palette recognized by RColorBrewer

For convenience, instead of the number n requested, n may be a character or factor vector and
outputs will be appropriately named for use with scale_color/fill_manual.

Additionally, accepts pal as "gg

same way.

Value

non

ggplot", or '

'ggplot2" to reproduce default ggplot colors in the

a character vector of hex coded colors of length n from the color brewer palette pal. If n is supplied
as character or factor, output will be named accordingly.

Examples

plot(1
plot(1
plot(1
plot(1

:2, rep(o, 2),

:12, rep(0, 12),
:12, rep(0, 12),
:12, rep(0, 12),

col = safeBrew(2, "dark2"), pch = 16, cex = 6)

col =
col =
col

safeBrew(12,
safeBrew(12,
safeBrew(12,

"set1"), pch = 16, cex = 6)
"set2"), pch = 16, cex = 6)
"set3"), pch = 16, cex = 6)

set_list2memb

convert a list of sets,

noting items in sets

each list item should be a character vector de-

Description

convert a list of sets, each list item should be a character vector denoting items in sets

Usage

set_list2memb(set_list)

shift_anchor 51

Arguments

set_list a list of character vectors. default names will be added if missing

Value

converts list of characters/numeric to membership table matrix

shift_anchor orients the relative position of x’s zero value and extends ranges to be
contiguous

Description

orients the relative position of x’s zero value and extends ranges to be contiguous

Usage

shift_anchor(score_dt, window_size, anchor)

Arguments

score_dt data.table, GRanges() sufficient

window_size numeric, window size used to generate score_dt

anchor character, one of c¢("center", "center_unstranded", "left", "left_unstranded")
Value

score_dt with x values shifted appropriately and start and end extended to make ranges contiguous

split_cluster split_cluster

Description

Splits one specified cluster in number of new clusters determined by nclust

Usage

split_cluster(
clust_dt,
to_split,
nclust = 2,
row_ = "id",
column_ = "x",
fill_ = "y",
facet_ = "sample”,
cluster_ = "cluster_id",

reapply_cluster_names = TRUE

52 ssvAnnotateSubjectGRanges

Arguments

clust_dt data.table output from ssvSignalClustering

to_split Cluster to split.

nclust Number of new clusters to create.

row_ variable name mapped to row, likely id or gene name for ngs data. Default is
"id" and works with ssvFetch* output.

column_ varaible mapped to column, likely bp position for ngs data. Default is "x" and
works with ssvFetch* output.

fill_ numeric variable to map to fill. Default is "y" and works with ssvFetch* output.

facet_ variable name to facet horizontally by. Default is "sample" and works with
ssvFetch* output. Set to "" if data is not facetted.

cluster_ variable name to use for cluster info. Default is "cluster_id".

reapply_cluster_names

If TRUE, clusters will be renamed according to new order instead of their origi-
nal names. Default is TRUE.

Value

data.table as output from ssvSignalClustering

Examples

data(CTCF_in_1@a_profiles_dt)
set.seed(0)
clust_dt = ssvSignalClustering(CTCF_in_1@a_profiles_dt, nclust = 3)
split_dt = split_cluster(clust_dt, to_split = 2, nclust = 3)
split_dt.no_rename = split_cluster(
clust_dt,
to_split = 2,
nclust = 3,
reapply_cluster_names = FALSE
)
cowplot::plot_grid(nrow = 1,
ssvSignalHeatmap(clust_dt),
ssvSignalHeatmap(split_dt),
ssvSignalHeatmap(split_dt.no_rename)

)

ssvAnnotateSubjectGRanges
ssvAnnotateSubjectGRanges

Description

ssvAnnotateSubjectGRanges

ssvAnnotateSubjectGRanges 53

Usage

ssvAnnotateSubjectGRanges(
annotation_source,
subject_gr,
annotation_name = NULL,
multi_resolver_FUN = "default”

S4 method for signature 'GRanges'
ssvAnnotateSubjectGRanges(
annotation_source,
subject_gr,
annotation_name = NULL,
multi_resolver_FUN = "default”

S4 method for signature 'list'
ssvAnnotateSubjectGRanges(
annotation_source,
subject_gr,
annotation_name = NULL,
multi_resolver_FUN = "default”

S4 method for signature 'GRangeslList'
ssvAnnotateSubjectGRanges(
annotation_source,
subject_gr,
annotation_name = NULL,
multi_resolver_FUN = "default”

Arguments

annotation_source
A single GRanges, a list of GRanges, or a GRangesList

subject_gr The base GRanges to add annotation mcols to.

annotation_name
Optional name for single GRanges. Required for list inputs if list does not have
names.

multi_resolver_FUN
Optional function to resolve multiple overlapping annotation source regions per
subject region. This function must accept 2 arguments. x is the values in a single
mcol attribute and variable.name is the name of variable. A single value must
be returned or an error will be generated. The default of "default" can handle
numeric, logical, character, and factor types.

Value

GRanges with the same regions as subject_gr but with addtional mcols added from annota-
tion_source.

ssvConsensusIntervalSets

Examples

library(GenomicRanges)

data(CTCF_in_10@a_narrowPeak_grs)

np_grs = CTCF_in_1@a_narrowPeak_grs

olap_gr = ssvOverlapIntervalSets(np_grs)

annotating with a signle GRanges is OK

ssvAnnotateSubjectGRanges(np_grs$MCF10A_CTCF, olap_gr)

provide a name if that's useful

ssvAnnotateSubjectGRanges (np_grs$MCF10A_CTCF, olap_gr,
annotation_name = "MCF10A")

a named list adds each annotation

ssvAnnotateSubjectGRanges(np_grs, olap_gr)

overriding list names is an option

ssvAnnotateSubjectGRanges(np_grs, olap_gr, LETTERS[1:3])

GRangelList are handled like a standard list

ssvAnnotateSubjectGRanges(GRangesList(np_grs), olap_gr, LETTERS[1:3])

ssvConsensusIntervalSets
Intersect a list of GRanges to create a single GRanges object of merged
ranges including metadata describing overlaps per input GRanges.

Description

In constrast to ssvOverlapIntervalSets, only regions where a consensus of input grs are present are
preserved and annotated.

ssvConsensusIntervalSets(

Usage
grs,
ext = 0,
min_number =

min_fraction

Arguments

grs
ext

min_number
min_fraction

preserve_mcols

2,
= 0.5
preserve_mcols = F

ALSE,

A list of GRanges

An integer specifying how far to extend ranges before merging. in effect, ranges
withing 2*ext of one another will be joined during the merge

An integer number specifying the absloute minimum of input grs that must over-
lap for a site to be considered consensus.

A numeric between 0 and 1 specifying the fraction of grs that must overlap to
be considered consensus.

Controls carrying forward mcols metadata from input list of GRanges. If TRUE,
all mcols will be carried forward with the item name appended. If a charac-
ter vector, only those attributes will be carried and all must be present in all
GRanges. The default of FALSE will carry nothing forward and only member-
ship table will be generated. ssvAnnotateSubjectGRanges is used internally.

ssvFactorizeMembTable 55

arguments passed to IRanges::findOverlaps, i.e. maxgap, minoverlap, type, se-
lect, invert.

Details

Only the most stringent of min_number or min_fraction will be applied.

Value

GRanges with metadata columns describing consensus overlap of input grs.

Examples

library(GenomicRanges)

a = GRanges("chr1”, IRanges(1:7x10, 1:7%10))
b = GRanges("chr1”, IRanges(5:10%10, 5:10%10))
ssvConsensusIntervalSets(list(a, b))

ssvFactorizeMembTable Convert any object accepted by ssvMakeMembTable to a factor To
avoid ambiguity,

Description

see ssvMakeMembTable

Usage

ssvFactorizeMembTable(object)

Arguments

object a valid object for conversion to a membership table and then factor

Value

a 2 column ("id" and "group") data.frame. "id" is factor of item names if any or simply order of
items. "group" is a factor of set combinations

Examples

data(CTCF_in_1@a_overlaps_gr)
ssvFactorizeMembTable(CTCF_in_10a_overlaps_gr)
ssvFactorizeMembTable(list(1:4, 2:3, 4:6))

56 ssvFeatureBars

ssvFeatureBars bar plots of set sizes

Description

bar plots of set sizes

Usage

ssvFeatureBars(
object,
show_counts = TRUE,
bar_colors = NULL,
counts_text_colors = NULL,
return_data = FALSE,
count_label_size = 8

Arguments

object passed to ssvMakeMembTable for conversion to membership table
show_counts logical. should counts be displayed at the center of each bar. default is TRUE

bar_colors character. rcolor or hex colors. default of NULL uses RColorBrewer Dark?2.
Will repeat to match number of samples.

counts_text_colors
character. rcolor or hex colors. default of NULL uses RColorBrewer Dark2.
Will repeat to match number of samples.

return_data logical. If TRUE, return value is no longer ggplot and is instead the data used to
generate that plot. Default is FALSE.

count_label_size
Font size bar count labels. Default is 8.

Value

ggplot of bar plot of set sizes

Examples

data(CTCF_in_1Qa_overlaps_gr)
ssvFeatureBars(list(1:3, 2:6))
ssvFeatureBars(CTCF_in_1@a_overlaps_gr, count_label_size = 10)
ssvFeatureBars(S4Vectors: :mcols(CTCF_in_10@a_overlaps_gr)[,2:3])

ssvFeatureBinaryHeatmap 57

ssvFeatureBinaryHeatmap
ssvFeatureBinaryHeatmap

Description

Outputs a ggplot binary heatmap, where color indicates TRUE and the other indicates FALSE in a
membership table. The heatmap is sorted, TRUE at the top, by column left to right. Changes to
column order can reveal different patterns.

Usage

ssvFeatureBinaryHeatmap(
object,
raster_approximation = TRUE,
true_color = "black”,
false_color = "#EFEFEF",
raster_width_min = 1000,
raster_height_min = 1000,
return_data = FALSE

Arguments

object passed to ssvMakeMembTable
raster_approximation

If TRUE, instead of standard ggplot, write temporary raster png image and re-
draw that as plot background. default is FALSE

true_color character. rcolor or hex color used for TRUE values. default is "black".
false_color character. rcolor or hex color used for TRUE values. default is "#EFEFEF", a
gray.

raster_width_min

raster width will be minimum multiple of number of columns over this number.
ignored if raster_approximation is FALSE.

raster_height_min

raster height will be minimum multiple of number of rows over this number
ignored if raster_approximation is FALSE

return_data logical. If TRUE, return value is no longer ggplot and is instead the data used to
generate that plot. Default is TRUE

Details
As a svg output, the final plot can be unwieldy. The default of raster_approximation = TRUE is
easier to work with, especially for larger membership tables.

Value

ggplot using geom_tile of membership table sorted from left to right.

58 ssvFeatureEuler

Examples

data(CTCF_in_1@a_overlaps_gr)

ssvFeatureBinaryHeatmap(list(1:3, 2:6))

horizontal version

ssvFeatureBinaryHeatmap(list(1:3, 2:6)) + coord_flip() +
theme(axis.text.x = element_blank(), axis.text.y = element_text())

ssvFeatureBinaryHeatmap(CTCF_in_10a_overlaps_gr)

ssvFeatureBinaryHeatmap(S4Vectors: :mcols(CTCF_in_1@a_overlaps_gr)[,2:3])

ssvFeatureBinaryHeatmap(S4Vectors: :mcols(CTCF_in_1@a_overlaps_gr)[,3:2])

ssvFeatureEuler Try to load a bed-like file and convert it to a GRanges object

Description

Try to load a bed-like file and convert it to a GRanges object

Usage

ssvFeatureEuler(
object,
line_width = 2,
shape = c("circle”, "ellipse”)[1],
n_points = 200,
fill_alpha = 0.3,
line_alpha = 1,
circle_colors = NULL,
return_data = FALSE

)
Arguments
object A membership table
line_width numeric, passed to size aesthetic to control line width
shape shape argument passed to eulerr::euler
n_points number of points to use for drawing ellipses, passed to eulerr:::ellipse
fill_alpha numeric value from O to 1. Alpha value for circle fill
line_alpha numeric value from O to 1. Alpha value for circle line

circle_colors colors to choose from for circles. passed to ggplot2 color scales.

return_data logical. If TRUE, return value is no longer ggplot and is instead the data used to

generate that plot. Default is FALSE.

Value

ggplot of venneuler results

Examples

data(CTCF_in_1@a_overlaps_gr)

ssvFeatureEuler(list(1:3, 2:6))

ssvFeatureEuler (CTCF_in_10@a_overlaps_gr)
ssvFeatureEuler(S4Vectors: :mcols(CTCF_in_1Qa_overlaps_gr)[,2:3])

ssvFeaturePie 59

ssvFeaturePie ssvFeaturePie

Description

Generate a ggplot pie plot of set sizes.

Usage

ssvFeaturePie(object, slice_colors = NULL, return_data = FALSE)

Arguments
object object that ssvMakeMembTable can convert to logical matrix membership

slice_colors colors to use for pie slices

return_data logical. If TRUE, return value is no longer ggplot and is instead the data used to
generate that plot. Default is FALSE.

Value

ggplot pie graph of set sizes

Examples

data(CTCF_in_1Qa_overlaps_gr)

ssvFeaturePie(list(1:3, 2:6))
ssvFeaturePie(CTCF_in_10a_overlaps_gr)
ssvFeaturePie(S4Vectors: :mcols(CTCF_in_10a_overlaps_gr)[,2:31)

ssvFeatureUpset ssvFeatureUpset

Description

Uses the UpSetR package to create an UpSetR::upset plot of region overlaps.

Usage

ssvFeatureUpset(
object,
return_UpSetR = FALSE,
nsets = NULL,
nintersects = 15,
order.by = "freq”,

60

Arguments

object
return_UpSetR

nsets
nintersects

order.by

Value

ssvFeature Venn

will be passed to ssvMakeMembTable for conversion to membership matrix

If TRUE, return the UpSetR object, The default is FALSE and results in a gg-
plotified version compatible with cowplot etc.

Number of sets to look at
Number of intersections to plot. If set to NA, all intersections will be plotted.

How the intersections in the matrix should be ordered by. Options include fre-
quency (entered as "freq"), degree, or both in any order.

Additional parameters passed to upset in the UpSetR package.

ggplot version of UpSetR plot

Examples

data(CTCF_in_1Qa_overlaps_gr)

ssvFeatureUpset(list(1:3, 2:6))

ssvFeatureUpset (CTCF_in_10a_overlaps_gr)

ssvFeatureUpset (S4Vectors: :mcols(CTCF_in_10a_overlaps_gr)[,2:31)

ssvFeatureVenn

ssvFeatureVenn

Description

ggplot implementation of vennDiagram from limma package. Currently limited at 3 sets. ssvFea-
tureUpset and ssvFeatureBinaryHeatmap are good options for more than 3 sets. ssvFeatureEuler
can work too but can take a very long time to run for more than 5 or so.

Usage

ssvFeatureVenn(

object,

group_names = NULL,
counts_txt_size = 5,

counts_as_labels = FALSE,
show_outside_count = FALSE,
line_width = 3,
circle_colors = NULL,

fill_alpha = 0.3,
line_alpha = 1,
counts_color = NULL,

counts_as_percent = FALSE,
percentage_digits = 1,
percentage_suffix = "%",
n_points = 200,
return_data = FALSE

ssvFeature Venn 61

Arguments
object will be passed to ssvMakeMembTable for conversion to membership matrix
group_names useful if names weren’t provided or were lost in creating membership matrix

counts_txt_size

font size for count numbers
counts_as_labels

if TRUE, geom_label is used instead of geom_text. can be easier to read.
show_outside_count

if TRUE, items outside of all sets are counted outside. can be confusing.

line_width uses size aesthetic to control line width of circles.

circle_colors colors to use for circle line colors. Uses Dark2 set from RColorBrewer by de-

fault.
fill_alpha alpha value to use for fill, defaults to .3.
line_alpha numeric value from 0 to 1. Alpha value for circle line

counts_color character. single color to use for displaying counts
counts_as_percent

if TRUE, convert counts to percentages in plots.
percentage_digits

The number of digits to round percentages to, default is 1.
percentage_suffix

The character to append to percentages, default is "%".

n_points integer. number of points to approximate circle with. default is 200.

return_data logical. If TRUE, return value is no longer ggplot and is instead the data used to
generate that plot. Default is FALSE.

Value

ggplot venn diagram

Examples

data(CTCF_in_1@a_overlaps_gr)

ssvFeatureVenn(list(1:3, 2:6))
ssvFeatureVenn(CTCF_in_10a_overlaps_gr)
ssvFeatureVenn(S4Vectors: :mcols(CTCF_in_10@a_overlaps_gr)[,2:3])

ssvFeatureVenn(list(1:3, 2:6),
counts_as_percent = TRUE,
percentage_digits = 2)

ssvFeatureVenn(list(1:3, 2:6),
counts_as_percent = TRUE,
percentage_digits = 0,
percentage_suffix = " %",
counts_txt_size = 12)

62 ssvFetchBam

ssvFetchBam Iterates a character vector (ideally named) and calls
ssvFetchBam.single on each. Appends grouping variable to
each resulting data.table and uses rbindlist to efficiently combine
results

Description

ssvFetchBam iteratively calls fetchWindowedBam.single. See ssvFetchBam.single for more
info.

Usage

ssvFetchBam(
file_paths,
qgr,
unique_names = NULL,
names_variable = "sample”,
file_attribs = NULL,
win_size = 50,

win_method = c("sample”, "summary")[1],

summary_FUN = stats::weighted.mean,

fraglLens = "auto”,

target_strand = c("*", "+", "=-" "both")[1],

flip_strand = FALSE,

anchor = c("left”, "left_unstranded”, "center”, "center_unstranded”)[3],

return_data.table = FALSE,

max_dupes = Inf,

splice_strategy = c("none", "ignore"”, "add"”, "only", "splice_count”)[1],
n_cores = getOption("mc.cores”, 1),

n_region_splits = 1,

return_unprocessed = FALSE,

force_skip_centerFix = FALSE,

)
Arguments
file_paths character vector of file_paths to load from. Alternatively, file_paths can be a
data.frame or data.table whose first column is a character vector of paths and
additial columns will be used as metadata.
qgr Set of GRanges to query. For valid results the width of each interval should be

identical and evenly divisible by win_size.
unique_names names to use in final data.table to designate source bigwig. Default is ’sample’
names_variable The column name where unique_names are stored.

file_attribs optional data.frame/data.table with one row per item in file paths. Each column
will be a variable added to final tidy output.

win_size The window size that evenly divides widths in qgr.

non

win_method character. one of c("sample", "summary"). Determines if viewGRangesWinSample_dt
or viewGRangesWinSummary_dt is used to represent each region in qgr.

ssvFetchBam

summary_FUN

fraglLens

target_strand

flip_strand

anchor

63

function. only relevant if win_method is "summary". passed to viewGRangesWinSummary_dt.

numeric. The fragment length to use to extend reads. The default value "auto"
causes an automatic calculation from 100 regions in qgr. NA causes no extension
of reads to fragment size.

character. One of c("", "+", "-"). Controls filtering of reads by strand. Default
of "" combines both strands.
boolean. if TRUE strands are flipped.

"non

character, one of c¢("center", "center_unstranded", "left", "left_unstranded")

return_data.table

max_dupes

splice_strategy

n_cores

n_region_splits

logical. If TRUE the internal data.table is returned instead of GRanges. Default
is FALSE.

numeric >= 1. duplicate reads by strandd start position over this number are
removed, Default is Inf.

character, one of c("none", "ignore", "add", "only", "splice_count"). Default is
"none" and spliced alignment are asssumed not present. fraglLen will be forced
to be NA for any other value. "ignore" will not count spliced regions. add"
counts spliced regions along with others, "only" will only count spliced regions
and ignore others.

integer number of cores to use. Uses mc.cores option if not supplied.

integer number of splits to apply to qgr. The query GRanges will be split into
this many roughly equal parts for increased parallelization. Default is 1, no split.

return_unprocessed

boolean. if TRUE returns read alignment in data.table. Default is FALSE.

force_skip_centerFix

Details

boolean, if TRUE all query ranges will be used "as is". This is already the
case by default if win_method == "summary" but may have applications where
win_method == "sample".

passed to Rsamtools::ScanBamParam()

if ggr contains the range chrl:1-100 and win_size is 10, values from positions chrl 5,15,25...85,
and 95 will be retrieved from bw_file

Value

A tidy formatted GRanges (or data.table if specified) containing fetched values.

Examples

if(Sys.info()['sysname'] != "Windows"){
data(CTCF_in_1Qa_overlaps_gr)
library(GenomicRanges)
bam_f = system.file("extdata/test.bam"”,
package = "seqsetvis"”, mustWork = TRUE)
bam_files = c("a" = bam_f, "b" = bam_f)
ggr = CTCF_in_1Qa_overlaps_gr[1:5]
bw_gr = ssvFetchBam(bam_files, qgr, win_size = 10)
bw_gr2 = ssvFetchBam(as.list(bam_files), qgr, win_size = 10)

64

ssvFetchBam.single

bw_dt = ssvFetchBam(bam_files, qgr, win_size = 10,
return_data.table = TRUE)

3

ssvFetchBam.single fetch a windowed version of a bam file, returns GRanges

Description

fetch a windowed version of a bam file, returns GRanges

Usage

ssvFetchBam.single(

bam_f,
agr,

win_size = 50,
win_method = c("sample”, "summary”)[1],

summary_FUN =

stats::weighted.mean,

fraglen = NULL,

target_strand = c("%", "+", "-", "both")[1],

anchor = c("left"”, "left_unstranded”, "center”, "center_unstranded”)[3],
return_data.table = FALSE,

max_dupes = Inf,

splice_strategy = c("none”, "ignore”, "add", "only", "splice_count”)[1],
flip_strand = FALSE,

return_unprocessed = FALSE,
force_skip_centerFix = FALSE,

Arguments

bam_f
qgr

win_size

win_method

summary_FUN

fraglLen

target_strand

anchor

character or BamFile to load
GRanges regions to fetchs

numeric >=1. pileup grabbed every win_size bp for win_method sample. If
win_method is summary, this is the number of windows used (confusing, sorry).

non

character. one of c("sample", "summary"). Determines if viewGRangesWinSample_dt
or viewGRangesWinSummary_dt is used to represent each region in qgr.

function. only relevant if win_method is "summary". passed to viewGRangesWinSummary_dt.

numeric, NULL, or NA. if numeric, supplied value is used. if NULL, value
is calculated with fragl.en_calcStranded if NA, raw bam pileup with no cross
strand shift is returned.

non

character. if one of "+" or
value.

, reads are filtered accordingly. ignored if any other

"non

character, one of c¢("center", "center_unstranded", "left", "left_unstranded")

return_data.table

logical. If TRUE the internal data.table is returned instead of GRanges. Default
is FALSE.

ssvFetchBamPE 65

max_dupes numeric >= 1. duplicate reads by strandd start position over this number are
removed, Default is Inf.

splice_strategy
character, one of c¢("none", "ignore", "add", "only", "splice_count"). Default is
"none" and spliced alignment are asssumed not present. fragl.en must be NA
for any other value to be valid. "ignore" will not count spliced regions. add"
counts spliced regions along with others, "only" will only count spliced regions
and ignore others.

flip_strand if TRUE, strand alignment is flipped prior to fragl.en extension. Default is
FALSE.
return_unprocessed
boolean. if TRUE returns read alignment in data.table. Default is FALSE.
force_skip_centerFix
boolean, if TRUE all query ranges will be used "as is". This is already the
case by default if win_method == "summary" but may have applications where
win_method == "sample".

passed to Rsamtools::ScanBamParam()

Value

tidy GRanges (or data.table if specified) with pileups from bam file. pileup is calculated only every

win_size bp.
ssvFetchBamPE ssvFetchBam for paired-end ChIP-seq files. Only concordant reads
are considered, but this has been minimally tested, please verify.
Description

Iterates a character vector (ideally named) and calls ssvFetchBamPE.single on each. Appends
grouping variable to each resulting data.table and uses rbindlist to efficiently combine results

Usage

ssvFetchBamPE (
file_paths,
qgr,
unique_names = NULL,
win_size = 50,
win_method = c("sample”, "summary”)[1],
summary_FUN = stats::weighted.mean,
fraglLens = "not_used”,
anchor = c("left”, "left_unstranded”, "center”, "center_unstranded”)[3],
names_variable = "sample”,
return_data.table = FALSE,
max_dupes = Inf,
n_cores = getOption("mc.cores”, 1),
n_region_splits = 1,
min_isize = 1,
max_isize = Inf,

66 ssvFetchBamPE

return_unprocessed = FALSE,
return_fragSizes = FALSE,
force_skip_centerFix = FALSE,

)
Arguments
file_paths character vector of file_paths to load from. Alternatively, file_paths can be a
data.frame or data.table whose first column is a character vector of paths and
additial columns will be used as metadata.
qgr Set of GRanges to query. For valid results the width of each interval should be

identical and evenly divisible by win_size.
unique_names names to use in final data.table to designate source bigwig. Default is ’sample’
win_size The window size that evenly divides widths in qgr.

non

win_method character. one of c("sample", "summary"). Determines if viewGRangesWinSample_dt
or viewGRangesWinSummary_dt is used to represent each region in qgr.

summary_FUN function. only relevant if win_method is "summary". passed to viewGRangesWinSummary_dt.
fraglLens never used by ssvFetchBamPE Ignore.
anchor character, one of c¢("center", "center_unstranded", "left", "left_unstranded")

names_variable The column name where unique_names are stored.

return_data.table
logical. If TRUE the internal data.table is returned instead of GRanges. Default
is FALSE.

max_dupes numeric >= 1. duplicate reads by strandd start position over this number are
removed, Default is Inf.

n_cores integer number of cores to use.

n_region_splits
integer number of splits to apply to qgr. The query GRanges will be split into
this many roughly equal parts for increased parallelization. Default is 1, no split.

min_isize integer. Read pairs must have an isize greater than or equal to this value. Default
is 1.

max_isize integer. Read pairs must have an isize less than or equal to this value. Default is
Inf.

return_unprocessed
boolean. if TRUE returns read alignment in data.table. Default is FALSE.

return_fragSizes
boolean. if TRUE returns fragment sizes for all reads per region.

force_skip_centerFix
boolean, if TRUE all query ranges will be used "as is". This is already the
case by default if win_method == "summary" but may have applications where
win_method == "sample".

passed to Rsamtools::ScanBamParam() Uses mc.cores option if not supplied.

ssvFetchBamPE.RNA 67

Details

In contrast to ssvFetchBam, extension of reads to estimated fragment size is not an issue as each
read pair represents a fragment of exact size.

ssvFetchBamPE iteratively calls fetchWindowedBam.single. See ssvFetchBamPE.single for
more info.

if ggr contains the range chrl:1-100 and win_size is 10, values from positions chrl 5,15,25...85,
and 95 will be retrieved from bw_file

Value

A tidy formatted GRanges (or data.table if specified) containing fetched values.

Examples

if(Sys.info()['sysname'] != "Windows"){
library(GenomicRanges)
bam_f = system.file("extdata/Bcell_PE.mm10.bam",
package = "seqsetvis"”, mustWork = TRUE)
bam_files = c("a" = bam_f, "b" = bam_f)
data("Bcell_peaks")
ggr = Bcell_peaks
bw_gr = ssvFetchBamPE(bam_files, qgr, win_size = 10)
bw_gr2 = ssvFetchBamPE(as.list(bam_files), qgr, win_size = 10)

bw_dt = ssvFetchBamPE(bam_files, qgr, win_size = 10,
return_data.table = TRUE)
3

ssvFetchBamPE . RNA ssvFetchBamPE.RNA

Description

ssvFetchBamPE.RNA

Usage

ssvFetchBamPE . RNA(
file_paths,
qgr,
unique_names = NULL,
win_size = 50,
target_strand = "both",
absolute_strand = FALSE,

splice_strategy = "ignore”,
return_data.table = FALSE,
win_method = "sample",

max_dupes = Inf,

flip_strand = FALSE,

sum_reads = TRUE,

n_cores = getOption("mc.cores”, 1),

68 ssvFetchBamPE.RNA
force_skip_centerFix = TRUE,
n_region_splits = 1
)
Arguments
file_paths character vector of file_paths to load from. Alternatively, file_paths can be a
data.frame or data.table whose first column is a character vector of paths and
additial columns will be used as metadata.
qgr Set of GRanges to query. For valid results the width of each interval should be

identical and evenly divisible by win_size.
unique_names names to use in final data.table to designate source bigwig. Default is ’sample’
win_size The window size that evenly divides widths in qgr.

n,n non

target_strand character. if one of "+" or
value.

, reads are filtered to match. ignored if any other

absolute_strand
If TRUE, strandedness of qgr will be ignored. This is useful when creating
tracks for similar.

splice_strategy
character, one of c("none", "ignore", "add", "only", "splice_count"). Default is
"none" and spliced alignment are asssumed not present. fragl.en must be NA
for any other value to be valid. "ignore" will not count spliced regions. add"
counts spliced regions along with others, "only" will only count spliced regions
and ignore others.

return_data.table
logical. If TRUE the internal data.table is returned instead of GRanges. Default
is FALSE.

non

win_method character. one of c("sample", "summary"). "sample" selects values at intervals
and "summary" applies a weight mean function to all values in window.

max_dupes numeric >= 1. duplicate reads by strandd start position over this number are
removed, Default is Inf.

flip_strand logical. if TRUE strands are flipped.

sum_reads logical. If true R1 and R2 reads are added together. If FALSE they are returned
separately, identified by the "read" attribute.

n_cores integer number of cores to use. Uses mc.cores option if not supplied.

force_skip_centerFix
boolean, if TRUE all query ranges will be used "as is". This is already the
case by default if win_method == "summary" but may have applications where
win_method == "sample".

n_region_splits
integer number of splits to apply to qgr. The query GRanges will be split into
this many roughly equal parts for increased parallelization. Default is 1, no split.

Value

A tidy formatted GRanges (or data.table if specified) containing fetched values.

ssvFetchBamPE.single 69

Examples

library(GenomicRanges)

pkg_dir = system.file(package = "segsetvis"”, "extdata”, mustWork = TRUE)
bam_files_esr1 = dir(pkg_dir, pattern = "H1.+R1.ESR1_RNA.+bam$", full.names = TRUE)
names(bam_files_esr1) = sub(”"_R.+", "", basename(bam_files_esr1))

query_gr = GenomicRanges: :GRanges("chr6:151656691-152129619:+")

query_gr = GenomicRanges: :GRanges("chr6:152116691-152129619:+")
strand(query_gr) = "+"

prof_dt = ssvFetchBamPE.RNA(bam_files_esrl1, query_gr, return_data.table = TRUE, win_size = 1)
prof_dt

ssvFetchBamPE.single fetch a windowed version of a paired-end bam file, returns GRanges
In contrast to ssvFetchBam, extension of reads to estimated fragment
size is not an issue as each read pair represents a fragment of exact
size.

Description

fetch a windowed version of a paired-end bam file, returns GRanges In contrast to ssvFetchBam,
extension of reads to estimated fragment size is not an issue as each read pair represents a fragment
of exact size.

Usage
ssvFetchBamPE.single(
bam_f,
agr,
win_size = 50,
win_method = c("sample”, "summary”)[1],
summary_FUN = stats::weighted.mean,
anchor = c("left”, "left_unstranded”, "center"”, "center_unstranded”)[3],

return_data.table = FALSE,
max_dupes = Inf,

min_isize = 1,

max_isize = Inf,
return_unprocessed = FALSE,
return_fragSizes = FALSE,
force_skip_centerFix = FALSE,

)
Arguments
bam_f character or BamFile to load
qgr GRanges regions to fetchs
win_size numeric >=1. pileup grabbed every win_size bp for win_method sample. If

win_method is summary, this is the number of windows used (confusing, sorry).

70 ssvFetchBigwig

win_method character. one of c("sample", "summary"). Determines if viewGRangesWinSample_dt

or viewGRangesWinSummary_dt is used to represent each region in qgr.
summary_FUN function. only relevant if win_method is "summary". passed to viewGRangesWinSummary_dt.
anchor character, one of c¢("center", "center_unstranded”, "left", "left_unstranded")

return_data. table
logical. If TRUE the internal data.table is returned instead of GRanges. Default

is FALSE.

max_dupes numeric >= 1. duplicate reads by strandd start position over this number are
removed, Default is Inf.

min_isize integer. Read pairs must have an isize greater than or equal to this value. Default
is 1.

max_isize integer. Read pairs must have an isize less than or equal to this value. Default is
Inf.

return_unprocessed
boolean. if TRUE returns read alignment in data.table. Default is FALSE.
return_fragSizes
boolean. if TRUE returns fragment sizes for all reads per region.
force_skip_centerFix
boolean, if TRUE all query ranges will be used "as is". This is already the
case by default if win_method == "summary" but may have applications where
win_method == "sample".

passed to Rsamtools::ScanBamParam()

Value

tidy GRanges (or data.table if specified) with pileups from bam file. pileup is calculated only every

win_size bp.
ssvFetchBigwig Iterates a character vector (ideally named) and calls
ssvFetchBigwig.single on each. Appends grouping variable
to each resulting data.table and uses rbindlist to efficiently combine
results.
Description

ssvFetchBigwig iteratively calls fetchWindowedBigwig.single. See ssvFetchBigwig.single
for more info.

Usage

ssvFetchBigwig(
file_paths,
agr,
unique_names = NULL,
names_variable = "sample”,
win_size = 50,
win_method = c("sample”, "summary")[1],
summary_FUN = stats::weighted.mean,

ssvFetchBigwig 71

fraglLens = "not_used”,

anchor = c("left”, "left_unstranded”, "center”, "center_unstranded”)[3],
return_data.table = FALSE,

n_cores = getOption("mc.cores”, 1),

n_region_splits = 1,

force_skip_centerFix = FALSE

)
Arguments
file_paths character vector of file_paths to load from. Alternatively, file_paths can be a
data.frame or data.table whose first column is a character vector of paths and
additial columns will be used as metadata.
qgr Set of GRanges to query. For valid results the width of each interval should be

identical and evenly divisible by win_size.
unique_names names to use in final data.table to designate source bigwig.

names_variable The column name where unique_names are stored. Default is ’sample’

win_size The window size that evenly divides widths in qgr.
win_method character. one of c("sample", "summary"). Determines if viewGRangesWinSample_dt
or viewGRangesWinSummary_dt is used to represent each region in qgr.
summary_FUN function. only relevant if win_method is "summary". passed to viewGRangesWinSummary_dt.
fraglLens never used by ssvFetchBigwig. Ignore.
anchor character, one of c¢("center", "center_unstranded", "left", "left_unstranded")

return_data.table
logical. If TRUE the internal data.table is returned instead of GRanges. Default
is FALSE.

n_cores integer number of cores to use. Uses mc.cores option if not supplied.
n_region_splits

integer number of splits to apply to qgr. The query GRanges will be split into

this many roughly equal parts for increased parallelization. Default is 1, no split.
force_skip_centerFix

boolean, if TRUE all query ranges will be used "as is". This is already the

case by default if win_method == "summary" but may have applications where

win_method == "sample".

Details
if ggr contains the range chrl:1-100 and win_size is 10, values from positions chrl 5,15,25...85,
and 95 will be retrieved from bw_file

Value

A tidy formatted GRanges (or data.table if specified) containing fetched values.

Examples

if(Sys.info()['sysname'] != "Windows"){

library(GenomicRanges)

bw_f = system.file("extdata/test_loading.bw",
package = "seqgsetvis"”, mustWork = TRUE)

72 ssvFetchBigwig.single

bw_files = c("a" = bw_f, "b" = bw_f)

ggr = GRanges("chrTest”, IRanges(1, 30))

bw_gr = ssvFetchBigwig(bw_files, qgr, win_size = 10)

bw_gr2 = ssvFetchBigwig(as.list(bw_files), qgr, win_size = 10)

bw_dt = ssvFetchBigwig(bw_files, qgr, win_size = 10,
return_data.table = TRUE)
3

ssvFetchBigwig.single Fetch values from a bigwig appropriate for heatmaps etc.

Description

ssvFetchBigwig.single Gets values for each region of the query GRanges (qgr). Values corre-
spond to the center of each window of size win_size. A tidy formatted data.table object is returned
suitable for plotting using ggplots.

Usage
ssvFetchBigwig.single(
bw_file,
qgr,
win_size = 50,
win_method = c("sample”, "summary”)[1],
summary_FUN = stats::weighted.mean,
anchor = c("left”, "left_unstranded”, "center"”, "center_unstranded”)[3],

return_data.table = FALSE,
force_skip_centerFix = FALSE

)
Arguments
bw_file The character vector path to bigwig files to read from.
qgr Set of GRanges to query. For valid results the width of each interval should be
identical and evenly divisible by win_size.
win_size The window size that evenly divides widths in qgr.
win_method character. one of c("sample", "summary"). Determines if viewGRangesWinSample_dt
or viewGRangesWinSummary_dt is used to represent each region in qgr.
summary_FUN function. only relevant if win_method is "summary". passed to viewGRangesWinSummary_dt.
anchor character, one of c¢("center", "center_unstranded", "left", "left_unstranded")

return_data.table
logical. If TRUE the internal data.table is returned instead of GRanges. Default
is FALSE.

force_skip_centerFix
boolean, if TRUE all query ranges will be used "as is". This is already the
case by default if win_method == "summary" but may have applications where
win_method == "sample".

ssvFetchGRanges 73

Details
if ggr contains the range chrl:1-100 and win_size is 10, values from positions chrl 5,15,25...85,
and 95 will be retrieved from bw_file

Value

A GRanges (or data.table if specified) containing fetched values.

ssvFetchGRanges Fetch coverage values for a list of GRanges.

Description

ssvFetchGRanges Gets coverage values for each region of the query GRanges (qgr). Values corre-
spond to the center of each window of size win_size. A tidy formatted data.table object is returned
suitable for plotting using ggplots.

Usage

ssvFetchGRanges(
grs,
agr,
file_attribs = data.frame(matrix(@, nrow = length(grs), ncol = 0)),
unique_names = names(grs),

names_variable = "sample”,

win_size = 50,

win_method = c("sample”, "summary”)[1],

summary_FUN = function(x, w) max(x),

target_strand = c("x", "+", "=-" "both")[1],

use_coverage = NULL,

attrib_var = "score”,

fill_value = 0,

anchor = c("left”, "left_unstranded”, "center”, "center_unstranded”)[3],

return_data.table = FALSE,
n_cores = getOption("mc.cores”, 1),
force_skip_centerFix = FALSE

)
Arguments
grs a list of GRanges for which to calculate coverage.
qgr Set of GRanges to query. For valid results the width of each interval should be

identical and evenly divisible by win_size.
file_attribs data.frame (1 row per item in grs) containing attributes to append to results.
unique_names The column name where unique_names are stored. Default is *sample’
names_variable The column name where unique_names are stored. Default is *sample’
win_size The window size that evenly divides widths in qgr.

"non

win_method character. one of c("sample", "summary"). Determines if viewGRangesWinSample_dt
or viewGRangesWinSummary_dt is used to represent each region in qgr.

74 ssvFetchSignal

summary_FUN function. only relevant if win_method is "summary". passed to viewGRangesWinSummary_dt.

non

target_strand character. if one of "+" or
value.

, reads are filtered to match. ignored if any other

use_coverage boolean or NULL, if TRUE, query regions are scored by the number of intervals
overlapping. Default of NULL checks if attrib_var is "score" and uses coverage
if so.

attrib_var character, column in mcols of GRanges to pull values from. Default of "score"
is compatible with internal coverage calculation or bedgraph-like files.

fill_value numeric or character value to use where queried regions are empty. Default is
0 and appropriate for both calculated coverage and bedgraph/bigwig like files.
Will automatically switch to "MISSING" if data is guessed to be qualitative.

"non

anchor character, one of c("center",
return_data. table
logical. If TRUE the internal data.table is returned instead of GRanges. Default
is FALSE.

n_cores integer number of cores to use. Uses mc.cores option if not supplied.

center_unstranded", "left", "left_unstranded")

force_skip_centerFix
boolean, if TRUE all query ranges will be used "as is". This is already the
case by default if win_method == "summary" but may have applications where
win_method == "sample".

Value

A tidy formatted GRanges (or data.table if specified) containing fetched values.

Examples

data(CTCF_in_1@a_narrowPeak_grs)
data(CTCF_in_1@a_overlaps_gr)
ssvFetchGRanges (CTCF_in_1@a_narrowPeak_grs, CTCF_in_1@a_overlaps_gr, win_size = 200)

ssvFetchSignal signal loading framework

Description

Does nothing unless load_signal is overridden to carry out reading data from file_paths (likely via
the appropriate ssvFetch* function, ie. ssvFetchBigwig or ssvFetchBam

Usage
ssvFetchSignal(
file_paths,
qgr!
unique_names = NULL,
names_variable = "sample”,

file_attribs = NULL,
win_size = 50,
win_method = c("sample”, "summary")[1],

ssvFetchSignal 75

return_data.table = FALSE,
load_signal = function(f, nam, qgr) {
warning("nothing happened, ",
"supply a function to"”, "load_signal parameter.”)
1
n_cores = getOption("mc.cores”, 1),
n_region_splits = 1,
force_skip_centerFix = FALSE

)
Arguments
file_paths character vector of file_paths to load from. Alternatively, file_paths can be a
data.frame or data.table whose first column is a character vector of paths and
additial columns will be used as metadata.
qgr GRanges of intervals to return from each file

unique_names unique file ids for each file in file_paths. Default is names of file_paths vector

names_variable character, variable name for column containing unique_names entries. Default
is "sample"

file_attribs optional data.frame/data.table with one row per item in file paths. Each column
will be a variable added to final tidy output.

win_size numeric/integer window size resolution to load signal at. Default is 50.

non

win_method character. one of c("sample", "summary"). Determines if viewGRangesWinSample_dt
or viewGRangesWinSummary_dt is used to represent each region in qgr.
return_data. table
logical. If TRUE data.table is returned instead of GRanges, the default.

load_signal function taking f, nam, and qgr arguments. f is from file_paths, nam is from
unique_names, and qgr is qgr. See details.

n_cores integer number of cores to use. Uses mc.cores option if not supplied.
n_region_splits
integer number of splits to apply to qgr. The query GRanges will be split into
this many roughly equal parts for increased parallelization. Default is 1, no split.
force_skip_centerFix
boolean, if TRUE all query ranges will be used "as is". This is already the
case by default if win_method == "summary" but may have applications where
win_method == "sample".

Details

load_signal is passed f, nam, and qgr and is executed in the environment where load_signal is
defined. See ssvFetchBigwig and ssvFetchBam for examples.

Value

A GRanges with values read from file_paths at intervals of win_size. Originating file is coded
by unique_names and assigned to column of name names_variable. Output is data.table is re-
turn_data.table is TRUE.

76 ssvMakeMembTable

Examples

library(GenomicRanges)

data(CTCF_in_1@a_overlaps_gr)

bam_f = system.file("extdata/test.bam"”,
package = "seqsetvis"”, mustWork = TRUE)

bam_files = c("a" = bam_f, "b" = bam_f)

ggr = CTCF_in_1@a_overlaps_gr[1:2]

ggr = resize(qgr, 500, "center”)

load_bam = function(f, nam, qgr) {

message("loading ", f, " ...")
dt = seqsetvis:::ssvFetchBam.single(bam_f = f,
qgr = qgr,

win_size = 50,

fragLen = NULL,
target_strand = "*",
return_data.table = TRUE)

data.table::set(dt, j = "sample”, value = nam)
message("finished loading ", nam, ".")
dt

}
ssvFetchSignal (bam_files, qgr, load_signal = load_bam)

ssvMakeMembTable generic for methods to convert various objects to a logical matrix in-
dicating membership of items (rows) in sets (columns)

Description

generic for methods to convert various objects to a logical matrix indicating membership of items
(rows) in sets (columns)

list of character vectors input
GRangesList input

GRanges with mcols input
DataFrame input

matrix of logicals, membership table

data.frame input, final output The final method for all inputs, checks column names and returns
logical matrix

Usage

ssvMakeMembTable(object)

S4 method for signature 'list'
ssvMakeMembTable (object)

S4 method for signature 'GRangeslList'
ssvMakeMembTable(object)

S4 method for signature 'GRanges'

ssvOverlaplntervalSets 77

ssvMakeMembTable(object)

S4 method for signature 'DataFrame’
ssvMakeMembTable(object)

S4 method for signature 'matrix’
ssvMakeMembTable(object)

S4 method for signature 'data.frame'
ssvMakeMembTable(object)

Arguments
object the object to convert. Supported types: list (of character or GRanges), GRanges
with membership table metadata, GRangesList, data.frame/matrix/DataFrame
of membership table
Value

a logical matrix indicating membership of items (rows) in sets (columns)

Examples

char_list = list(letters[1:3], letters[2:4])

ssvMakeMembTable(char_list)

library(GenomicRanges)

gr_list = list(GRanges("chr1”, IRanges(1:3%2, 1:3%2)),
GRanges("chr1"”, IRanges(2:4*2, 2:4x2)))

ssvMakeMembTable(gr_list)

library(GenomicRanges)

gr_list = list(GRanges("chr1”, IRanges(1:3%*2, 1:3%2)),
GRanges("chr1”, IRanges(2:4%x2, 2:4%2)))

ssvMakeMembTable(GRangesList(gr_list))

gr = GRanges("chr1”, IRanges(1:3%2, 1:3%2))

gr$set_a = c(TRUE, TRUE, FALSE)

gr$set_b = c(FALSE, TRUE, TRUE)

ssvMakeMembTable(gr)

gr = GRanges("chr1”, IRanges(1:3%2, 1:3%2))

gr$set_a = c(TRUE, TRUE, FALSE)

gr$set_b = c(FALSE, TRUE, TRUE)

ssvMakeMembTable(mcols(gr))

memb_mat = matrix(c(TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE),
ncol = 2, byrow = FALSE)

ssvMakeMembTable (memb_mat)

memb_df = data.frame(a = c(TRUE, TRUE, FALSE, FALSE),
b = c(TRUE, FALSE, TRUE, FALSE))

ssvMakeMembTable (memb_df)

ssvOverlapIntervalSets
Intersect a list of GRanges to create a single GRanges object of merged
ranges including metadata describing overlaps per input GRanges

78

Description

ssvSignalBandedQuantiles

Intersect a list of GRanges to create a single GRanges object of merged ranges including metadata
describing overlaps per input GRanges

Usage
ssvOverlapIntervalSets(
grs,
ext = 0,

use_first = FALSE,
preserve_mcols = FALSE,

Arguments

grs

ext

use_first

preserve_mcols

Value

A list of GRanges

An integer specifying how far to extend ranges before merging. in effect, ranges
withing 2*ext of one another will be joined during the merge

A logical. If True, instead of merging all grs, only use first and add metadata
logicals for others.

Controls carrying forward mcols metadata from input list of GRanges. If TRUE,
all mcols will be carried forward with the item name appended. If a charac-
ter vector, only those attributes will be carried and all must be present in all
GRanges. The default of FALSE will carry nothing forward and only member-
ship table will be generated. ssvAnnotateSubjectGRanges is used internally.

arguments passed to IRanges::findOverlaps, i.e. maxgap, minoverlap, type, se-
lect, invert.

GRanges with metadata columns describing overlap of input grs.

Examples

library(GenomicRanges)

a = GRanges("chr1”, IRanges(1:7x10, 1:7%10))
b = GRanges("chr1”, IRanges(5:10*%10, 5:10%10))
ssvOverlapIntervalSets(list(a, b))

ssvSignalBandedQuantiles

plot profiles from bigwigs

Description

plot profiles from bigwigs

ssvSignalBandedQuantiles

Usage

ssvSignalBandedQuantiles(
bw_data,

y- ="y",

x_ = "x",

by_ = "fake",
hsv_reverse = FALSE,
hsv_saturation = 1,

hsv_value = 1,

79

hsv_grayscale = FALSE,
hsv_hue_min = 0,
hsv_hue_max = 0.7,
hsv_symmetric = FALSE,
n_quantile = 18,
quantile_min = 0.05,
quantile_max = 0.95,
return_data = FALSE

Arguments

bw_data

y_

X_

by_
hsv_reverse
hsv_saturation
hsv_value
hsv_grayscale
hsv_hue_min
hsv_hue_max
hsv_symmetric
n_quantile
quantile_min
quantile_max

return_data

Value

a GRanges or data.table of bigwig signal. As returned from ssvFetchBam and
ssvFetchBigwig

the variable name in bw_data for y axis in plot

the variable name in bw_data for x axis in plot

the variable name in bw_data to facet on

logical, should color scale be reversed? default FALSE
numeric value from O to 1. Saturation for color scale. default 1
numeric value from 0 to 1. Value for color scale. default 1
logical, if TRUE gray() is used instead of rainbow(). default FALSE
numeric [0, hsv_hue_max) hue min of color scale

numeric (hsv_hue_min, 1] hue max of color scale

if TRUE, colorscale is symmetrical, default FALSE.

number of evenly size quantile bins

the lowest quantile start

the highest quantile end

logical. If TRUE, return value is no longer ggplot and is instead the data used to
generate that plot. Default is FALSE.

ggplot object using ribbon plots to show quantile distributions

Examples

data(CTCF_in_1@a_profiles_gr)

#rainbow colors

ggr = CTCF_in_10a_profiles_gr
ssvSignalBandedQuantiles(qgr)

80

ssvSignalClustering

#grayscale
ssvSignalBandedQuantiles(qggr, hsv_grayscale = TRUE,
hsv_symmetric = TRUE, hsv_reverse = TRUE)

#using "by_" per sample
ssvSignalBandedQuantiles(qggr, hsv_grayscale = TRUE,
hsv_symmetric = TRUE, hsv_reverse = TRUE, by_ = "sample")
#adding spline smoothing
splined = applySpline(qgr, n = 10,
by_ = c("id", "sample"))
ssvSignalBandedQuantiles(splined, n_quantile = 50,
quantile_min = .25, quantile_max = .75,
hsv_symmetric = TRUE, hsv_reverse = TRUE, by_ = "sample")
ssvSignalClustering Clustering as for a heatmap. This is used internally by

ssvSignalHeatmap but can also be run before calling ssvSignal-
Heatmap for greater control and access to clustering results directly.

Description

Clustering is via k-means by default. The number of clusters is determined by nclust. Optionally,
k-means can be initialized with a data.frame provided to k_centroids. As an alternative to k-means,
a membership table from ssvMakeMembTable can be provided to determine logical clusters.

Usage

ssvSignalClustering(
bw_data,
nclust = NULL,
k_centroids = NULL,
memb_table = NULL,

row_ = "id",

column_ = "x",

fill_ = "y",

facet_ = "sample”,
cluster_ = "cluster_id",

max_rows = 500,

max_cols = 100,

clustering_col_min = -Inf,

clustering_col_max = Inf,

within_order_strategy = valid_sort_strategies[2],
dcast_fill = NA,

iter.max = 30,

fun.aggregate = "mean”
)
Arguments
bw_data a GRanges or data.table of bigwig signal. As returned from ssvFetchBam and
ssvFetchBigwig
nclust Number of clusters. Defaults to 6 if nclust, k_centroids, and memb_table are

not set.

ssvSignalClustering 81

k_centroids data.frame of centroids for k-means clusters. Incompatible with nclust or memb_table.

memb_table Membership table as from ssvMakeMembTable. Logical groups from member-
ship table will be clusters. Incompatible with nclust or k_centroids.

row_ variable name mapped to row, likely id or gene name for ngs data. Default is
"id" and works with ssvFetch* output.

column_ varaible mapped to column, likely bp position for ngs data. Default is "x" and
works with ssvFetch* output.

fill_ numeric variable to map to fill. Default is "y" and works with ssvFetch* output.

facet_ variable name to facet horizontally by. Default is "sample" and works with
ssvFetch* output. Set to "" if data is not facetted.

cluster_ variable name to use for cluster info. Default is "cluster_id".

max_rows for speed rows are sampled to 500 by default, use Inf to plot full data

max_cols for speed columns are sampled to 100 by default, use Inf to plot full data

clustering_col_min
numeric minimum for col range considered when clustering, default in -Inf
clustering_col_max
numeric maximum for col range considered when clustering, default in Inf
within_order_strategy
one of "hclust", "sort", "right", "left", "none", "reverse". If "hclust", hierarchical
clustering will be used. If "sort", a simple decreasing sort of rosSums. If "left",
will attempt to put high signal on left ("right" is opposite). If "none", existing
order is preserved. If "reverse" reverses existing order.

dcast_fill value to supply to dcast fill argument. default is NA.
iter.max Number of max iterations to allow for k-means. Default is 30.

fun.aggregate Function to aggregate when multiple values present for facet_, row_, and col-
umn_. The function should accept a single vector argument or be a character
string naming such a function.

Details
Within each cluster, items will either be sorted by decreasing average signal or hierachically clus-
tered; this is controlled via within_order_strategy.

Value

data.table of signal profiles, ready for ssvSignalHeatmap

Examples

data(CTCF_in_1@a_profiles_gr)
clust_dt = ssvSignalClustering(CTCF_in_10a_profiles_gr)
ssvSignalHeatmap(clust_dt)

clust_dt2 = ssvSignalClustering(CTCF_in_10@a_profiles_gr, nclust = 2)
ssvSignalHeatmap(clust_dt2)

#clustering can be targetted to a specific part of the region
clust_dt3 = ssvSignalClustering(CTCF_in_10@a_profiles_gr, nclust

clustering_col_min = -250, clustering_col_max = -150)
ssvSignalHeatmap(clust_dt3)

1l
N

82

ssvSignalHeatmap

there are also multiple sorting strategies to apply within each cluster

clust_dt4 = ssvSignalClustering(
CTCF_in_1@a_profiles_gr,
nclust = 2,
within_order_strategy = "left”

)
ssvSignalHeatmap(clust_dt4)

clust_dt5 = ssvSignalClustering(
CTCF_in_1@a_profiles_gr,
nclust = 2,
within_order_strategy = "sort"

)
ssvSignalHeatmap(clust_dt5)

ssvSignalHeatmap heatmap style representation of membership table. instead of cluster-

ing, each column is sorted starting from the left

Description

See ssvSignalHeatmap.ClusterBars for an alternative with more control over where the cluster

bars appear.

Usage

ssvSignalHeatmap(
bw_data,
nclust = 6,
perform_clustering = c("auto”, "
row_ = "id",
column_ = "x",
fill_ = "y",
facet_ = "sample”,
cluster_ = "cluster_id",
max_rows = 500,
max_cols = 100,

fill_limits = NULL,
clustering_col_min = -Inf,
clustering_col_max = Inf,

within_order_strategy = c("hclust”, "sort”)[2],

dcast_fill = NA,

return_data = FALSE,
show_cluster_bars = TRUE,
rect_colors = c("black”, "gray"),
text_colors = rev(rect_colors),
show_labels = TRUE,

label_angle = 0,

fun.aggregate = "mean”

yes”, "no")[1],

ssvSignalHeatmap 83

Arguments
bw_data a GRanges or data.table of bigwig signal. As returned from ssvFetchBam and
ssvFetchBigwig
nclust number of clusters

perform_clustering
should clustering be done? default is auto. auto considers if row_ has been
ordered by being a factor and if cluster_ is a numeric.

row_ variable name mapped to row, likely id or gene name for ngs data. Default is
"id" and works with ssvFetch* output.

column_ varaible mapped to column, likely bp position for ngs data. Default is "x" and
works with ssvFetch* output.

fill_ numeric variable to map to fill. Default is "y" and works with ssvFetch* output.

facet_ variable name to facet horizontally by. Default is "sample" and works with
ssvFetch* output. Set to "" if data is not facetted.

cluster_ variable name to use for cluster info. Default is "cluster_id".
max_rows for speed rows are sampled to 500 by default, use Inf to plot full data
max_cols for speed columns are sampled to 100 by default, use Inf to plot full data

fill_limits limits for fill legend. values will be cropped to this range if set. Default of
NULL uses natural range of fill_.
clustering_col_min
numeric minimum for col range considered when clustering, default in -Inf
clustering_col_max
numeric maximum for col range considered when clustering, default in Inf
within_order_strategy
one of "hclust" or "sort". if hclust, hierarchical clustering will be used. if sort, a
simple decreasing sort of rosSums.
dcast_fill value to supply to dcast fill argument. default is NA.
return_data logical. If TRUE, return value is no longer ggplot and is instead the data used to
generate that plot. Default is FALSE.
show_cluster_bars
if TRUE, show bars indicating cluster membership.

rect_colors colors of rectangle fill, repeat to match number of clusters. Default is c("black",
llgrayﬂ).
text_colors colors of text, repeat to match number of clusters. Default is reverse of rect_colors.

show_labels logical, shoud rectangles be labelled with cluster identity. Default is TRUE.
label_angle angle to add clusters labels at. Default is 0, which is horizontal.

fun.aggregate Function to aggregate when multiple values present for facet_, row_, and col-
umn_. Affects both clustering and plotting. The function should accept a single
vector argument or be a character string naming such a function.

Value

ggplot heatmap of signal profiles, facetted by sample

84 ssvSignalHeatmap.ClusterBars

Examples

data(CTCF_in_1@a_profiles_gr)

#the simplest use
ssvSignalHeatmap(CTCF_in_10@a_profiles_gr)
ssvSignalHeatmap(CTCF_in_1Qa_profiles_gr, show_cluster_bars = FALSE)

#clustering can be done manually beforehand
clust_dt = ssvSignalClustering(CTCF_in_1@a_profiles_gr, nclust = 3)
ssvSignalHeatmap(clust_dt)

ssvSignalHeatmap(clust_dt, max_rows = 20, max_cols = 7)

aggregation, when facet_ is shared by multiple samples
prof_gr = CTCF_in_1@a_profiles_gr

prof_gr$mark = "CTCF"

clust_gr = ssvSignalClustering(

prof_gr,
facet_ = "mark",
fun.aggregate = function(x)as.numeric(x > 10)
)
table(clust_grs$y)
ssvSignalHeatmap(prof_gr, facet_ = "mark"”,
fun.aggregate = function(x)as.numeric(x > 10))
ssvSignalHeatmap(prof_gr, facet_ = "mark”,
fun.aggregate = max)
ssvSignalHeatmap(prof_gr, facet_ = "mark",

fun.aggregate = min)

ssvSignalHeatmap.ClusterBars

heatmap style representation of membership table. instead of cluster-

ing, each column is sorted starting from the lefft.

Description

Compared to ssvSignalHeatmap, cluster_bars are displayed on the left once instead of for each facet

Usage
ssvSignalHeatmap.ClusterBars(
bw_data,
nclust = 6,
perform_clustering = c("auto”, "yes"”, "no")[1],
row_ = "id",
column_ = "x",
fill_ = "y",
facet_ = "sample”,
cluster_ = "cluster_id",

FUN_format_heatmap = NULL,
max_rows = 500,

max_cols = 100,
fill_limits = NULL,

ssvSignalHeatmap.ClusterBars 85

clustering_col_min = -Inf,
clustering_col_max = Inf,
within_order_strategy = c("hclust”, "sort")[2],
dcast_fill = NA,

return_data = FALSE,
return_unassembled_plots = FALSE,
rel_widths = c(1, 9),

rect_colors = c("black”, "gray"),
text_colors = rev(rect_colors),
show_labels = TRUE,

label_angle = 0,

fun.aggregate = "mean”,
)
Arguments
bw_data a GRanges or data.table of bigwig signal. As returned from ssvFetchBam and
ssvFetchBigwig
nclust number of clusters

perform_clustering
should clustering be done? default is auto. auto considers if row_ has been
ordered by being a factor and if cluster_ is a numeric.

row_ variable name mapped to row, likely id or gene name for ngs data. Default is
"id" and works with ssvFetch* output.

column_ varaible mapped to column, likely bp position for ngs data. Default is "x" and
works with ssvFetch* output.

fill_ numeric variable to map to fill. Default is "y" and works with ssvFetch* output.

facet_ variable name to facet horizontally by. Default is "sample" and works with

nn

ssvFetch* output. Set to "" if data is not facetted.

cluster_ variable name to use for cluster info. Default is "cluster_id".
FUN_format_heatmap
optional function to modify main ggplot (labels, themes, scales, etc.). Take a
ggplot and returns a ggplot. Default is NULL.
max_rows for speed rows are sampled to 500 by default, use Inf to plot full data
max_cols for speed columns are sampled to 100 by default, use Inf to plot full data
fill_ limits limits for fill legend. values will be cropped to this range if set. Default of
NULL uses natural range of fill_.
clustering_col_min
numeric minimum for col range considered when clustering, default in -Inf
clustering_col_max
numeric maximum for col range considered when clustering, default in Inf
within_order_strategy
one of "hclust" or "sort". if hclust, hierarchical clustering will be used. if sort, a
simple decreasing sort of rosSums.
dcast_fill value to supply to dcast fill argument. default is NA.

return_data logical. If TRUE, return value is no longer ggplot and is instead the data used to
generate that plot. Default is FALSE.

86 ssvSignalLineplot

return_unassembled_plots

logical. If TRUE, return list of heatmap and cluster-bar ggplots. Can be cus-
tomized and passed to assemble_heatmap_cluster_bars

rel_widths numeric of length 2. Passed to cowplot::plot_grid. Default is c(1, 9).

rect_colors colors of rectangle fill, repeat to match number of clusters. Default is c("black”,
"gray").

text_colors colors of text, repeat to match number of clusters. Default is reverse of rect_colors.

show_labels logical, shoud rectangles be labelled with cluster identity. Default is TRUE.
label_angle angle to add clusters labels at. Default is 0, which is horizontal.

fun.aggregate Function to aggregate when multiple values present for facet_, row_, and col-
umn_. Affects both clustering and plotting. The function should accept a single
vector argument or be a character string naming such a function.

addtional arguments passed to cowplot::plot_grid

Value

ggplot heatmap of signal profiles, facetted by sample

Examples

data(CTCF_in_1@a_profiles_gr)

#the simplest use
ssvSignalHeatmap.ClusterBars(CTCF_in_10a_profiles_gr)
ssvSignalHeatmap.ClusterBars(CTCF_in_1Qa_profiles_gr, rel_widths = c(1, 5))

#clustering can be done manually beforehand
clust_dt = ssvSignalClustering(data.table::as.data.table(CTCF_in_10a_profiles_gr), nclust = 3)
ssvSignalHeatmap.ClusterBars(clust_dt)

aggregation, when facet_ is shared by multiple samples
prof_gr = CTCF_in_1@a_profiles_gr
prof_gr$mark = "CTCF"
ssvSignalHeatmap.ClusterBars(prof_gr, facet_
ssvSignalHeatmap.ClusterBars(prof_gr, facet_

"mark”, fun.aggregate = mean)
"mark"”, fun.aggregate = "sum")

ssvSignallineplot construct line type plots where each region in each sample is repre-
sented

Description

construct line type plots where each region in each sample is represented

Usage

ssvSignallLineplot(
bw_data,

nyn

x_ = "x",

no,n

y_ =7y,
color_ = "sample”,

ssvSignalLineplot 87
sample_ = "sample”,
region_ = "id",
group_ = "auto_grp”,
line_alpha = 1,
facet_ = "auto_facet”,
facet_method = facet_wrap,
spline_n = NULL,
return_data = FALSE
)
Arguments
bw_data a GRanges or data.table of bigwig signal. As returned from ssvFetchBam and
ssvFetchBigwig
X_ variable name mapped to x aesthetic, x by default.
y_ variable name mapped to y aesthetic, y by default.
color_ variable name mapped to color aesthetic, sample by default.
sample_ variable name, along with region_ used to group and facet by default, change
group_ or facet_ to override.
region_ variable name, along with sample_ used to group and facet by default, change
group_ or facet_ to override.
group_ group aesthetic keeps lines of geom_path from mis-connecting. auto_grp by
default which combines sample_ and region_. probably shouldn’t change.
line_alpha alpha value for lines. default is 1.
facet_ facetting divides up plots. auto_facet by default which combines sample_ and

region_.

between two variables, ie.

facet_method
spline_n

return_data

if overriding facet_method with facet_grid, make sure to include ~

”a""'b", ".""'b”, na~."

ggplot2 facetting method or wrapper for same, facet_wrap by default.
if not NULL, applySpline will be called with n = spline_n. default is NULL.
logical. If TRUE, return value is no longer ggplot and is instead the data used to

generate that plot. Default is FALSE.

Value

ggplot of signal potentially facetted by region and sample

Examples

data(CTCF_in_1Qa_profiles_gr)

bw_gr = CTCF_in_1Qa_profiles_gr
ssvSignallLineplot(subset(bw_gr, bw_gr$id
ssvSignallLineplot(subset(bw_gr, bw_gr$id
facet_ = "sample~.",
facet_method = facet_grid)
ssvSignallLineplot(subset(bw_gr, bw_gr$id
facet_ = paste("sample”, "~", "id"),
ssvSignallineplot(subset(bw_gr, bw_gr$id
ssvSignallLineplot(subset(bw_gr, bw_gr$id
ssvSignallineplot(subset(bw_gr, bw_gr$id
facet_ = "id", spline_n = 10)

%in% seq_len(3)), facet_ = "sample")

%in% seq_len(3)),

%in% seq_len(3)),

facet_method = facet_grid)

%in% seq_len(3)))

%in% seq_len(3)), facet_ = "id")
%in% seq_len(3)),

88

ssvSignalLineplotAgg

ssvSignallLineplotAgg

aggregate line signals in a single line plot

Description

aggregate line signals in a single line plot

Usage

ssvSignallLineplotAgg(
bw_data,
x_ = "x",
y- ="y",
sample_ = "sample”,
color_ = sample_,
group_ = sample_,

agg_fun = mean,
spline_n = NULL,
return_data = FALSE

)
Arguments

bw_data a GRanges or data.table of bigwig signal. As returned from ssvFetchBam and
ssvFetchBigwig

X_ variable name mapped to x aesthetic, x by default.

y_ variable name mapped to y aesthetic, y by default.

sample_ variable name, along with region_ used to group by default,

color_ variable name mapped to color aesthetic, sample_ by default. change group_ to
override.

group_ group aesthetic keeps lines of geom_path from mis-connecting. Most useful if
you need to supply a variable to later facet upon. Defaults to value of sample_.

agg_fun the aggregation function to apply by sample_ and x_, default is mean

spline_n if not NULL, applySpline will be called with n = spline_n. default is NULL.

return_data
generate that plot. Default is FALSE.

Value

ggplot of signal aggregated with agg_fun() by sample.

Examples

data(CTCF_in_1Qa_profiles_gr)
bw_gr = CTCF_in_1Qa_profiles_gr
ssvSignallLineplotAgg(bw_gr) +

labs(title = "agg regions by sample.”)
ssvSignallLineplotAgg(CTCF_in_10a_profiles_gr, spline_n

labs(title = "agg regions by sample, with spline smoothing.")

10) +

logical. If TRUE, return value is no longer ggplot and is instead the data used to

ssvSignalScatterplot

89

ssvSignallLineplotAgg(subset(bw_gr, bw_gr$id %in% seq_len(10)),

sample_ = "id", color_ = "id") +

labs(title = "agg samples by region id (weird)")
ssvSignallLineplotAgg(subset(bw_gr, bw_gr$id %in% seq_len(10)), sample_ = "id",

color_ = "id", spline_n = 10) +

labs(title = "agg samples by region id (weird), with spline smoothing")

ssvSignalScatterplot maps signal from 2 sample profiles to the x and y axis. axes are stan-

dard or "volcano" min XY vs fold-change Y/X

Description

maps signal from 2 sample profiles to the x and y axis. axes are standard or "volcano" min XY vs

fold-change Y/X

Usage

ssvSignalScatterplot(
bw_data,
X_hame,
y_name,
color_table = NULL,
value_variable = "y",
xy_variable = "sample”,
value_function = max,
by_ = "id",
plot_type = c("standard”, "volcano”)[1],
show_help = FALSE,
fixed_coords = TRUE,
return_data = FALSE

Arguments

bw_data

X_name
y_name

color_table

value_variable
xy_variable

value_function

by_
plot_type
show_help

a GRanges or data.table of bigwig signal. As returned from ssvFetchBam and
ssvFetchBigwig

sample name to map to x-axis, must be stored in variable specified in xy_variable
sample name to map to y-axis, must be stored in variable specified in xy_variable

data.frame with 2 columns, one of which must be named "group" and gets
mapped to color. The other column must be the same as by_ parameter and
is used for merging.

variable name that stores numeric values for plotting, default is "y"

variable name that stores sample, must contain entires for x_name and y_name

a function to apply to value_variable in all combintations of by_ per x_name
and y_name

variables that store individual measurement ids
standard or volcano, default is "standard"

if TRUE overlay labels to aid plot interpretation, default is FALSE

90 ssv_mclapply

fixed_coords if TRUE coordinate system is 1:1 ratio, default is TRUE

return_data logical. If TRUE, return value is no longer ggplot and is instead the data used to
generate that plot. Default is FALSE.

Value

ggplot of points comparing signal from 2 samples

Examples

data(CTCF_in_1Qa_profiles_gr)
ssvSignalScatterplot(CTCF_in_10a_profiles_gr,

x_name = "MCF1QA_CTCF", y_name = "MCF1QAT1_CTCF")
ssvSignalScatterplot(CTCF_in_1Qa_profiles_gr,

x_name = "MCF1QA_CTCF", y_name = "MCF1QCA1_CTCF")

ssvSignalScatterplot(CTCF_in_1Qa_profiles_gr,
x_name = "MCF1QA_CTCF", y_name = "MCF1QAT1_CTCF",
value_function = median) + labs(title = "median FE in regions")

ssvSignalScatterplot(CTCF_in_10a_profiles_gr,
x_name = "MCF1QA_CTCF", y_name = "MCF1@AT1_CTCF",
plot_type = "volcano”)

ssvSignalScatterplot(CTCF_in_1@a_profiles_gr,
x_name = "MCF1QA_CTCF", y_name = "MCF1QAT1_CTCF",
plot_type = "volcano”, show_help = TRUE)

ssv_mclapply ssv_mclapply

Description

ssv_mclapply

Usage
ssv_mclapply(X, FUN, mc.cores = getOption("mc.cores”, 1), ...)
Arguments

X For pbsapply and pblapply, a vector (atomic or list) or an expressions vector
(other objects including classed objects will be coerced by as.list.) For pbapply
an array, including a matrix. For pbtapply an R object for which a split method
exists. Typically vector-like, allowing subsetting with "[".

FUN The function to be applied to each element of X: see apply, sapply, and lapply. In
the case of functions like +, *%*%’, etc., the function name must be backquoted
or quoted. If FUN is NULL, pbtapply returns a vector which can be used to
subscript the multi-way array pbtapply normally produces.

mc.cores Number of cores to use for ppbmclapply. Defaults to option mc.cores.

passed to pbapply::pblapply or pbmcapply::pbmclapply

test_peaks 91

Value

result of either pblapply or pbmclapply

test_peaks 4 random peaks for single-end data and 4 control regions 30kb down-
stream from each peak.

Description

matches system.file("extdata/test_peaks.bam”, package = "seqsetvis”)

Format

GRanges length 8

Details

this is included only for testing ssvFetchBam functions.

Value

GRanges length 8

viewGRangesWinSample_dt
get a windowed sampling of score_gr

Description

This method is appropriate when all GRanges in qgr are identical width and when it is practical to
use a window_size smaller than features in genomic signal. For instance, when retrieving signal
around peaks or promoters this method maintains a fixed genomic scale across regions. This allows
meaingful comparison of peak widths can be made.

Usage

viewGRangesWinSample_dt(
score_gr,
agr,
window_size,
attrib_var = "score”,
fill_value = 0,
anchor = c("center”, "center_unstranded”, "left"”, "left_unstranded”)[1]

92 viewGRangesWinSummary_dt

Arguments
score_gr GRanges with a "score" metadata column.
qgr regions to view by window.
window_size qgr will be represented by value from score_gr every window_size bp.
attrib_var character name of attribute to pull data from. Default is "score", compatible with
with bigWigs or bam coverage.
fill_value numeric or character value to use where queried regions are empty. Default is
0 and appropriate for both calculated coverage and bedgraph/bigwig like files.
Will automatically switch to "MISSING" if data is guessed to be qualitative.
anchor character. controls how x value is derived from position for each region in qgr.
0 may be the left side or center. If not unstranded, x coordinates are flipped for
(-) strand. One of c("center", "center_unstranded", "left", "left_unstranded").
Default is "center".
Details

Summarizes score_gr by grabbing value of "score" every window_size bp. Columns in output
data.table are: standard GRanges columns: seqnames, start, end, width, strand id - matched to
names(score_gr). if names(score_gr) is missing, added as 1:length(score_gr). y - value of score
from score_gr. x - relative bp position.

Value

data.table that is GRanges compatible

Examples

data(CTCF_in_1@a_overlaps_gr)
bam_file = system.file("extdata/test.bam"”,

package = "seqsetvis”)
ggr = CTCF_in_10a_overlaps_gr[seq_len(5)]
ggr = GenomicRanges::resize(qgr, width = 500, fix = "center")

bam_gr = seqsetvis:::fetchBam(bam_file, qgr)
bam_dt = viewGRangesWinSample_dt(bam_gr, qgr, 50)

if(Sys.info()['sysname'] != "Windows"){
bw_file = system.file("extdata/MCF10A_CTCF_FE_random100@.bw",
package = "seqsetvis")
bw_gr = rtracklayer::import.bw(bw_file, which = qgr)
bw_dt = viewGRangesWinSample_dt(bw_gr, qgr, 50)

viewGRangesWinSummary_dt
Summarizes signal in bins. The same number of bins per re-
gion in qgr is used and widths can vary in qgr, in contrast to
viewGRangesWinSample_dt where width must be constant across re-
gions.

viewGRangesWinSummary_dt 93

Description

This function is most appropriate where features are expected to vary greatly in size and feature
boundaries are important, ie. gene bodies, enhancers or TADs.

Usage

viewGRangesWinSummary_dt(

score_gr,
qgr,
n_tiles =

100,

attrib_var = "score”,

attrib_type

NULL,

fill_value = 0,
anchor = c("center”, "center_unstranded”, "left", "left_unstranded”)[1],
summary_FUN = stats::weighted.mean

)

Arguments

score_gr GRanges with a "score" metadata column.

qgr regions to view by window.

n_tiles numeric >= 1, the number of tiles to use for every region in qgr.

attrib_var character name of attribute to pull data from. Default is "score", compatible with

attrib_type

fill_value

anchor

summary_FUN

Details

with bigWigs or bam coverage.

one of NULL, qualitative or quantitative. If NULL will attempt to guess by
casting attrib_var attribute to character or factor. Default is NULL.

numeric or character value to use where queried regions are empty. Default is
0 and appropriate for both calculated coverage and bedgraph/bigwig like files.
Will automatically switch to "MISSING" if data is guessed to be qualitative.

character. controls how x value is derived from position for each region in qgr.
0 may be the left side or center. If not unstranded, x coordinates are flipped for
(-) strand. One of c("center", "center_unstranded", "left", "left_unstranded").
Default is "center".

function. used to aggregate score by tile. must accept x=score and w=width nu-

meric vectors as only arguments. default is weighted.mean. limma::weighted.median

is a good alternative.

Columns in output data.table are: standard GRanges columns: seqnames, start, end, width, strand
id - matched to names(score_gr). if names(score_gr) is missing, added as seq_along(score_gr). y -
value of score from score_gr x - relative bp position

Value

data.table that is GRanges compatible

94 within_clust_sort

Examples

data(CTCF_in_1@a_overlaps_gr)
bam_file = system.file("extdata/test.bam"”,
package = "seqsetvis”)
ggr = CTCF_in_10a_overlaps_gr[1:5]
unlike viewGRangesWinSample_dt, width is not fixed
ggr = GenomicRanges::resize(qgr, width = 500, fix = "center")
bam_gr = seqsetvis:::fetchBam(bam_file, qgr)
bam_dt = viewGRangesWinSummary_dt(bam_gr, qgr, 50)

if(Sys.info()['sysname'] != "Windows"){
bw_file = system.file("extdata/MCF10A_CTCF_FE_random100@.bw",
package = "seqsetvis")
bw_gr = rtracklayer::import.bw(bw_file, which = qgr)

bw_dt = viewGRangesWinSummary_dt(bw_gr, qgr, 50)
3
within_clust_sort within_clust_sort
Description

Without modifying cluster assignments, modify the order of rows within each cluster based on
within_order_strategy.

Usage
within_clust_sort(
clust_dt,
row_ = "id",
column_ = "x",
fill_ = "y",
facet_ = "sample”,
cluster_ = "cluster_id",
within_order_strategy = c("hclust”, "sort"”, "left”, "right"”, "none", "reverse"”)[2],
clustering_col_min = -Inf,

clustering_col_max = Inf,
dcast_fill = NA

)
Arguments

clust_dt data.table output from ssvSignalClustering

row_ variable name mapped to row, likely id or gene name for ngs data. Default is
"id" and works with ssvFetch* output.

column_ varaible mapped to column, likely bp position for ngs data. Default is "x" and
works with ssvFetch* output.

fill_ numeric variable to map to fill. Default is "y" and works with ssvFetch* output.

facet_ variable name to facet horizontally by. Default is "sample" and works with

ssvFetch* output. Set to "" if data is not facetted.

within_clust_sort 95

cluster_ variable name to use for cluster info. Default is "cluster_id".
within_order_strategy
one of "hclust", "sort", "right", "left", "reverse". If "hclust", hierarchical clus-
tering will be used. If "sort", a simple decreasing sort of rosSums. If "left",
will atttempt to put high signal on left ("right" is opposite). If "reverse" reverses
existing order (should only be used after meaningful order imposed).
clustering_col_min
numeric minimum for col range considered when clustering, default in -Inf
clustering_col_max
numeric maximum for col range considered when clustering, default in Inf

dcast_fill value to supply to dcast fill argument. default is NA.

Details

This is particularly useful when you want to sort within each cluster by a different variable from
cluster assignment. Also if you’ve imported cluster assigments but want to sort within each for the
new data for a prettier heatmap.

TODO refactor shared code with clusteringKmeansNestedHclust

Value

data.table matching input clust_dt save for the reassignment of levels of row_ variable.

Examples

data(CTCF_in_1@a_profiles_dt)

#clustering by relative value per region does a good job highlighting changes
#when then plotting raw values the order within clusters is not smooth

#this is a good situation to apply a separate sort within clusters.

prof_dt = CTCF_in_1@a_profiles_dt

prof_dt = append_ynorm(prof_dt)

prof_dt[, y_relative := y_norm / max(y_norm), list(id)]

clust_dt = ssvSignalClustering(prof_dt, fill_ = "y_relative"”)
clust_dt.sort = within_clust_sort(clust_dt)

cowplot::plot_grid(
ssvSignalHeatmap(clust_dt) +
labs(title = "clustered by relative, sorted by relative”),
ssvSignalHeatmap(clust_dt.sort) +
labs(title = "clustered by relative, sorted by raw value")

Index

+ datasets
Bcell_peaks, 11
chromHMM_demo_bw_states_gr, 15
chromHMM_demo_chain_url, 15
chromHMM_demo_data, 16
chromHMM_demo_overlaps_gr, 17
chromHMM_demo_segmentation_url, 17
chromHMM_demo_state_colors, 18
chromHMM_demo_state_total_widths

18

CTCF_in_10a_bigWig_urls, 25
CTCF_in_10a_data, 25
CTCF_in_10@a_narrowPeak_grs, 26
CTCF_in_1@a_narrowPeak_urls, 26
CTCF_in_1@a_overlaps_gr, 27
CTCF_in_10@a_profiles_dt, 27
CTCF_in_1Qa_profiles_gr, 28
test_peaks, 91

.expand_cigar_dt, 4

.expand_cigar_dt_recursive, 4

.rm_dupes, 5

.rm_dupesPE, 5

add_cluster_annotation, 6
append_ynorm, 7

applyMovingAverage, 8

applySpline, 9
assemble_heatmap_cluster_bars, 10, 86

Bcell_peaks, 11

calc_norm_factors, 7, 11
centerAtMax, 12
centerFixedSizeGRanges, 13
centerGRangesAtMax, 14
chromHMM_demo_bw_states_gr, 15, 16
chromHMM_demo_chain_url, 15, 16
chromHMM_demo_data, 15, 16,16, 17, 18
chromHMM_demo_overlaps_gr, 16, 17
chromHMM_demo_segmentation_url, 16, 17
chromHMM_demo_state_colors, /6, 18
chromHMM_demo_state_total_widths, /6,
18
clusteringKmeans, 19

96

clusteringKmeansNestedHclust, 19
col2hex, 21

collapse_gr, 21, 22
convert_collapsed_coord, 22
copy_clust_info, 23
crossCorrByRle, 24
CTCF_in_10a_bigWig_urls, 25, 25
CTCF_in_10a_data, 25, 25, 26-28
CTCF_in_1@a_narrowPeak_grs, 26
CTCF_in_10a_narrowPeak_urls, 25, 26
CTCF_in_1Qa_overlaps_gr, 25,27
CTCF_in_1Qa_profiles_dt, 25, 27
CTCF_in_1Qa_profiles_gr, 28

easyload_bed, 28
easylLoad_broadPeak, 29
easylLoad_FUN, 30
easylLoad_IDRmerged, 30
easylLoad_narrowPeak, 31
easylLoad_seacr, 32
expandCigar, 33

fetchBam, 33
findMaxPos, 34
fraglLen_calcStranded, 35
fraglLen_fromMacs2Xls, 36

get_mapped_reads, 37
getReadlLength, 37
ggellipse, 38

harmonize_seqlengths, 39

make_clustering_matrix, 40
merge_clusters, 41

prepare_fetch_GRanges, 42
prepare_fetch_GRanges_names, 43
prepare_fetch_GRanges_width, 44

quantileGRangesWidth, 45

reorder_clusters_hclust, 45
reorder_clusters_manual, 46
reorder_clusters_stepdown, 47

INDEX

reverse_clusters, 48

safeBrew, 50

seqgsetvis (seqsetvis-package), 4
seqgsetvis-package, 4
set_list2memb, 50

shift_anchor, 51

split_cluster, 51

ssv_mclapply, 90
ssvAnnotateSubjectGRanges, 52, 54, 78

ssvAnnotateSubjectGRanges, GRanges-method

(ssvAnnotateSubjectGRanges), 52

ssvAnnotateSubjectGRanges,GRangesList-method

(ssvAnnotateSubjectGRanges), 52
ssvAnnotateSubjectGRanges,list-method
(ssvAnnotateSubjectGRanges), 52
ssvConsensusIntervalSets, 54
ssvFactorizeMembTable, 55
ssvFeatureBars, 56
ssvFeatureBinaryHeatmap, 57, 60
ssvFeatureEuler, 58, 60
ssvFeaturePie, 59
ssvFeatureUpset, 59, 60
ssvFeatureVenn, 60
ssvFetchBam, 62, 74, 75, 79, 80, 83, 85, 87-89
ssvFetchBam.single, 62, 64
ssvFetchBamPE, 65
ssvFetchBamPE.RNA, 67
ssvFetchBamPE.single, 67, 69
ssvFetchBigwig, 4, 10, 70, 74, 75, 79, 80, 83,
85, 87-89
ssvFetchBigwig.single, 70, 72
ssvFetchGRanges, 73
ssvFetchSignal, 74
ssvMakeMembTable, 55, 60, 61, 76, 80, 81
ssvMakeMembTable,data. frame-method
(ssvMakeMembTable), 76
ssvMakeMembTable,DataFrame-method
(ssvMakeMembTable), 76
ssvMakeMembTable,GRanges-method
(ssvMakeMembTable), 76
ssvMakeMembTable,GRangesList-method
(ssvMakeMembTable), 76
ssvMakeMembTable, list-method
(ssvMakeMembTable), 76
ssvMakeMembTable,matrix-method
(ssvMakeMembTable), 76
ssvOverlapIntervalSets, 4, 77
ssvSignalBandedQuantiles, 78
ssvSignalClustering, 41, 46-49, 52, 80, 94
ssvSignalHeatmap, 80, 82
ssvSignalHeatmap.ClusterBars, 82, 84
ssvSignallLineplot, 86

ssvSignallLineplotAgg, 88
ssvSignalScatterplot, 89

test_peaks, 91

upset, 60
UpSetR: :upset, 59

viewGRangesWinSample_dt, 62, 64, 66,
70-73,75,91, 92

viewGRangesWinSummary_dt, 62—-64, 66,
70-75, 92

within_clust_sort, 94

97

	seqsetvis-package
	.expand_cigar_dt
	.expand_cigar_dt_recursive
	.rm_dupes
	.rm_dupesPE
	add_cluster_annotation
	append_ynorm
	applyMovingAverage
	applySpline
	assemble_heatmap_cluster_bars
	Bcell_peaks
	calc_norm_factors
	centerAtMax
	centerFixedSizeGRanges
	centerGRangesAtMax
	chromHMM_demo_bw_states_gr
	chromHMM_demo_chain_url
	chromHMM_demo_data
	chromHMM_demo_overlaps_gr
	chromHMM_demo_segmentation_url
	chromHMM_demo_state_colors
	chromHMM_demo_state_total_widths
	clusteringKmeans
	clusteringKmeansNestedHclust
	col2hex
	collapse_gr
	convert_collapsed_coord
	copy_clust_info
	crossCorrByRle
	CTCF_in_10a_bigWig_urls
	CTCF_in_10a_data
	CTCF_in_10a_narrowPeak_grs
	CTCF_in_10a_narrowPeak_urls
	CTCF_in_10a_overlaps_gr
	CTCF_in_10a_profiles_dt
	CTCF_in_10a_profiles_gr
	easyLoad_bed
	easyLoad_broadPeak
	easyLoad_FUN
	easyLoad_IDRmerged
	easyLoad_narrowPeak
	easyLoad_seacr
	expandCigar
	fetchBam
	findMaxPos
	fragLen_calcStranded
	fragLen_fromMacs2Xls
	getReadLength
	get_mapped_reads
	ggellipse
	harmonize_seqlengths
	make_clustering_matrix
	merge_clusters
	prepare_fetch_GRanges
	prepare_fetch_GRanges_names
	prepare_fetch_GRanges_width
	quantileGRangesWidth
	reorder_clusters_hclust
	reorder_clusters_manual
	reorder_clusters_stepdown
	reverse_clusters
	safeBrew
	set_list2memb
	shift_anchor
	split_cluster
	ssvAnnotateSubjectGRanges
	ssvConsensusIntervalSets
	ssvFactorizeMembTable
	ssvFeatureBars
	ssvFeatureBinaryHeatmap
	ssvFeatureEuler
	ssvFeaturePie
	ssvFeatureUpset
	ssvFeatureVenn
	ssvFetchBam
	ssvFetchBam.single
	ssvFetchBamPE
	ssvFetchBamPE.RNA
	ssvFetchBamPE.single
	ssvFetchBigwig
	ssvFetchBigwig.single
	ssvFetchGRanges
	ssvFetchSignal
	ssvMakeMembTable
	ssvOverlapIntervalSets
	ssvSignalBandedQuantiles
	ssvSignalClustering
	ssvSignalHeatmap
	ssvSignalHeatmap.ClusterBars
	ssvSignalLineplot
	ssvSignalLineplotAgg
	ssvSignalScatterplot
	ssv_mclapply
	test_peaks
	viewGRangesWinSample_dt
	viewGRangesWinSummary_dt
	within_clust_sort
	Index

