Package ‘screenCounter’

October 25, 2025
Version 1.9.0
Date 2024-12-11
Title Counting Reads in High-Throughput Sequencing Screens

Description Provides functions for counting reads from high-throughput
sequencing screen data (e.g., CRISPR, shRNA) to quantify barcode
abundance. Currently supports single barcodes in single- or paired-end
data, and combinatorial barcodes in paired-end data.

Depends S4Vectors, SummarizedExperiment
Imports Rcpp, BiocParallel

Suggests BiocGenerics, Biostrings, BiocStyle, knitr, rmarkdown,
testthat

LinkingTo Rcpp

License MIT + file LICENSE
VignetteBuilder knitr
SystemRequirements C++17, GNU make

BugReports https://github.com/crisprVerse/screenCounter/issues

URL https://github.com/crisprVerse/screenCounter

RoxygenNote 7.3.2

Encoding UTF-8

biocViews CRISPR, Alignment, FunctionalGenomics, FunctionalPrediction
git_url https://git.bioconductor.org/packages/screenCounter

git_branch devel

git_last_commit daldOb2

git_last_commit_date 2025-04-15

Repository Bioconductor 3.22

Date/Publication 2025-10-24

Author Aaron Lun [aut, cre] (ORCID: <https://orcid.org/0000-0002-3564-4813>)

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

1

https://github.com/crisprVerse/screenCounter/issues
https://github.com/crisprVerse/screenCounter
https://orcid.org/0000-0002-3564-4813

2 combineComboCounts

Contents
screenCounter-package oL o e 2
combineComboCounts e 2
countComboBarcodes 3
countDualBarcodes e e 5
countDualBarcodesSingleEnd L 8
countPairedComboBarcodes 11
countRandomBarcodes 14
countSingleBarcodes 16
matchBarcodes 18
parseBarcodeTemplate 19

Index 21

screenCounter-package The screenCounter package

Description

This package provides methods to counting barcodes from read sequences in high-throughput se-
quencing screen data sets. It does so by loading sequences from FASTQ files and then matching
the barcode template to each sequence using a rolling hash (implemented in C++, inspired by Colin
Watanabe’s code). This process is performed across several files using a range of parallelization
schemes available in BiocParallel. We return the resulting count matrix and any feature annota-
tions in a SummarizedExperiment object. Currently, single barcodes (in single- or paired-end data)
and combinatorial barcodes are supported.

Author(s)

Aaron Lun

combineComboCounts Combine combinatorial barcode counts

Description

Combine counts for combinatorial barcodes from multiple files into a single count matrix.

Usage

combineComboCounts(...)

Arguments

Any number of DataFrames produced by countComboBarcodes.

countComboBarcodes 3

Value

A DataFrame containing:

* combinations, a DataFrame containing all unique combinatorial barcodes observed in any
. ... Bach row corresponds to a barcode and each column contains an identifier (either integer
or character) for the sequence in the variable region.

* counts, a matrix with number of columns equal to number of objects in Each row
corresponds to a unique combinatorial barcode in keys and each column represents the count
of that barcode in each entry if Column names are set to the names of . . ., if supplied.

Author(s)
Aaron Lun
Examples

df1 <- DataFrame(combinations=I(DataFrame(X=1:4, Y=1:4)),
counts=sample(10, 4))

df2 <- DataFrame(combinations=I(DataFrame(X=1:4, Y=4:1)),
counts=sample(10, 4))

df3 <- DataFrame(combinations=I(DataFrame(X=1, Y=1)),
counts=sample(10, 1))

combineComboCounts(df1, df2, df3)

countComboBarcodes Count combinatorial barcodes

Description

Count combinatorial barcodes for single-end screen sequencing experiments where entities are dis-
tinguished based on random combinations of a small pool of known sequences within a single
template.

Usage

countComboBarcodes(
fastq,
template,
choices,
substitutions = 0,
find.best = FALSE,
strand = c("both”, "original”, "reverse"),
num.threads = 1,
indices = FALSE

matrixOfComboBarcodes(files, ..., withDimnames = TRUE, BPPARAM = SerialParam())

4 countComboBarcodes

Arguments
fastq String containing the path to a FASTQ file containing single-end data, or a con-
nection object to such a file.
template A template for the barcode structure, see ?parseBarcodeTemplate for details.
choices A List of character vectors, one per variable region in template. The first vector

should contain the potential sequences for the first variable region, the second
vector for the second variable region and so on.

substitutions Integer scalar specifying the maximum number of substitutions when consider-

ing a match.

find.best Logical scalar indicating whether to search each read for the best match. De-
faults to stopping at the first match.

strand String specifying which strand of the read to search.

num. threads Integer scalar specifying the number of threads to use to process a single file.

indices Logical scalar indicating whether integer indices should be used to define each
combinational barcode.

files A character vector of paths to FASTQ files.

Further arguments to pass to countComboBarcodes.
withDimnames A logical scalar indicating whether the rows and columns should be named.

BPPARAM A BiocParallelParam object specifying how parallelization is to be performed
across files.

Details

Certain screen sequencing experiments take advantage of combinatorial complexity to generate a
very large pool of unique barcode sequences. Only a subset of all possible combinatorial barcodes
will be used in any given experiment. This function only counts the combinations that are actually
observed, improving efficiency over a more conventional approach (i.e., to generate all possible
combinations and use countSingleBarcodes to count their frequency).

If strand="both", the original read sequence will be searched first. If no match is found, the
sequence is reverse-complemented and searched again. Other settings of strand will only search
one or the other sequence. The most appropriate choice depends on both the sequencing protocol
and the design (i.e., position and length) of the barcode.

We can handle sequencing errors by setting substitutions to a value greater than zero. This will
consider substitutions in both the variable region as well as the constant flanking regions.

By default, the function will stop at the first match that satisfies the requirements above. If find.best=TRUE,
we will instead try to find the best match with the fewest mismatches. If there are multiple matches
with the same number of mismatches, the read is discarded to avoid problems with ambiguity.

Value

countComboBarcodes returns a DataFrame where each row corresponds to a combinatorial bar-
code. It contains combinations, a nested DataFrame that contains the sequences that define each
combinatorial barcode; and counts, an integer vector containing the frequency of each barcode.
The medata contains nreads, an integer scalar of the total number of reads in fastq.

Each column of combinations corresponds to a single variable region in template and one vector
in choices. By default, the sequences are reported directly as character vectors. If indices=FALSE,
each column contains the indices of the sequences in the corresponding entry of choices.

matrix0fComboBarcodes returns a SummarizedExperiment containing:

countDualBarcodes 5

* Aninteger matrix named "counts”, containing counts for each combinatorial barcode in each
files.

* One or more vectors in the rowData that define each combinatorial barcode, equivalent to
combinations.

* Column metadata containing a character vector files, the path to each file; an integer vector
nreads, containing the total number of reads in each file; and nmapped, containing the number
of reads assigned to a barcode in the output count matrix.

If withDimnames=TRUE, row names are set to "BARCODE_[ROW]" and column names are set to
basename(files).

Author(s)

Aaron Lun

Examples

Creating an example dual barcode sequencing experiment.
known.pool <- c("AGAGAGAGA", "CTCTCTCTC",
"GTGTGTGTG", "CACACACAC")

N <- 1000

barcodes <- sprintf("ACGT%SACGT%SACGT",
sample(known.pool, N, replace=TRUE),
sample(known.pool, N, replace=TRUE))

names(barcodes) <- seq_len(N)

library(Biostrings)
tmp <- tempfile(fileext=".fastq")
writeXStringSet(DNAStringSet(barcodes), filepath=tmp, format="fastq")

Counting the combinations.

output <- countComboBarcodes(tmp,
template="ACGTNNNNNNNNNACGTNNNNNNNNNACGT",
choices=list(first=known.pool, second=known.pool))

output$combinations

head(output$counts)

matrixOfComboBarcodes(c(tmp, tmp),
template="ACGTNNNNNNNNNACGTNNNNNNNNNACGT",
choices=list(first=known.pool, second=known.pool))

countDualBarcodes Count dual barcodes

Description

Count the frequency of dual barcodes in a dataset for a paired-end sequencing screen.

6 countDualBarcodes

Usage

countDualBarcodes(
fastq,
choices,
flank5,
flank3,
template = NULL,
substitutions = 0,
find.best = FALSE,
strand = "original”,
randomized = FALSE,
include.invalid = FALSE,
num. threads = 1

)

matrixOfDualBarcodes(
files,
choices,
withDimnames = TRUE,
include.invalid = FALSE,
BPPARAM = SerialParam()

)
Arguments

fastq Character vector of length 2, containing paths to two FASTQ files with paired-
end data.

choices A DataFrame with two character columns specifying valid combinations of vari-
able regions. The first column contains sequences for barcode 1 while the second
column contains sequences for barcode 2.

flank5 Character vector of length 2 containing the constant sequence on the 5 flank of
the variable region for barcodes 1 and 2, respectively. Alternatively, a string can
be supplied if the constant sequence is the same for each barcode.

flank3 Character vector of length 2 containing the constant sequence on the 3’ flank of
the variable region for barcodes 1 and 2, respectively. Alternatively, a string can
be supplied if the constant sequence is the same for each barcode.

template Character vector of length 2 containing the template for the structure of barcodes

1 and 2, respectively. Alternatively, a string can be supplied if the template is
the same for each barcode.

substitutions Integer vector of length 2 specifying how many substitutions should be allowed
for barcodes 1 and 2, respectively. Alternatively, an integer scalar can be sup-
plied if this is the same for each barcode.

find.best Logical scalar indicating whether to search each read for the best match. De-
faults to stopping at the first match.

strand Character vector of length 2 specifying which strand of the read to search ("original”,
"reverse") for each barcode. Alternatively, a string can be supplied if this is
the same for each barcode.

randomized Logical scalar indicating whether the first FASTQ file always contains the first
barcode in choices. If not, the opposite orientation is also searched.

countDualBarcodes 7

include.invalid
Logical scalar indicating whether counts for invalid barcode combinations should
also be returned.

num. threads Integer scalar specifying the number of threads to use to process a single file.

files A list of character vectors of length 2 containing paths to paired FASTQ files.
Further arguments to pass to countDualBarcodes.

withDimnames A logical scalar indicating whether the rows and columns should be named.

BPPARAM A BiocParallelParam object specifying how parallelization is to be performed
across files.

Details

In a dual barcode experiment, each read of a paired-end sequencing experiment contains one bar-
code. The goal is to count the frequency of each combination of barcodes across the read pairs.
This differs from countComboBarcodes in that (i) only a subset of combinations are valid and (ii)
the two barcodes occur on different reads.

The interpretation of the arguments for matching each barcode to reads is similar to that of countSingleBarcodes.
Each barcode in the combination can be associated with different search parameters; for example,

the search for the “first” barcode in choices[, 1] will be performed with flank5[1], flank3[11],
substitutions[1], strand[1], etc.

By default, the first FASTQ file is assumed to contain the first barcode (i.e., choices[, 1]) while the
second file is assumed to contain the second barcode (choices[, 2]). However, if randomized=TRUE,
the orientation is assumed to be random such that the first FASTQ file may contain the second bar-
code and so on. In such cases, both orientations will be searched to identify a valid combination.

We can handle sequencing errors by setting substitutions to a value greater than zero. This will
consider substitutions in both the variable region as well as the constant flanking regions.

By default, the function will stop at the first match that satisfies the requirements above. If find.best=TRUE,
we will instead try to find the best match with the fewest mismatches. If there are multiple matches
with the same number of mismatches, the read is discarded to avoid problems with ambiguity.

Value

By default, countDualBarcodes will return choices with an additional counts column. This is an
integer vector of length equal to nrow(choices) containing the frequency of each barcode combi-
nation. The metadata contains npairs, the total number of read pairs processed by the function.

matrixOfDualBarcodes will return a SummarizedExperiment object containing:

* An integer matrix named "counts”, where each column is the output of countDualBarcodes
for each file in files.

* Row metadata containing a character vector choices, the sequences of the variable region of
the two barcodes for each row.

* Column metadata containing the character vectors paths1 and paths2, storign the path to
each pair of FASTQ files; integer vectors corresponding to the metadata described above for
countDualBarcodes; and nmapped, containing the number of read pairs assigned to a barcode
combination in the output count matrix.

If withDimnames=TRUE, row names are set to choices while column names are basename(files).

If include.invalid=TRUE, each row contains all observed combinations in addition to those in
choices. The DataFrame (or rowData of the SummarizedExperiment) gains a valid field spec-
ifying if a combination is valid, i.e., present in choices, The metadata also gains the following
fields:

8 countDualBarcodesSingleEnd

* invalid.pair, the number of read pairs with matches for each barcode but do not form a
valid combination.

* barcodel.only, the number of read pairs that only match to barcode 1.

* barcode2.only, the number of read pairs that only match to barcode 2.

Author(s)

Aaron Lun

Examples

Creating an example dual barcode sequencing experiment.
known.pool1l <- c("AGAGAGAGA", "CTCTCTCTC",
"GTGTGTGTG", "CACACACAC")
known.pool2 <- c("ATATATATA", "CGCGCGCGC",
"GAGAGAGAG", "CTCTCTCTC")
choices <- expand.grid(known.pooll, known.pool2)
choices <- DataFrame(barcodel=choices[,1], barcode2=choices[,2])

N <- 1000

readl <- sprintf("CAGCTACGTACG%sCCAGCTCGATCG",
sample(known.pooll, N, replace=TRUE))

names(readl) <- seq_len(N)

read2 <- sprintf("TGGGCAGCGACA%SACACGAGGGTAT",
sample(known.pool2, N, replace=TRUE))
names(read2) <- seqg_len(N)

library(Biostrings)

tmp <- tempfile()

tmp1 <- paste@(tmp, "_1.fastq")
writeXStringSet(DNAStringSet(readl), filepath=tmp1, format="fastq")
tmp2 <- paste@(tmp, "_2.fastq")
writeXStringSet(DNAStringSet(read2), filepath=tmp2, format="fastq")

Counting the combinations.
countDualBarcodes(c(tmp1, tmp2), choices=choices,
template=c("CAGCTACGTACGNNNNNNNNNCCAGCTCGATCG",
"TGGGCAGCGACANNNNNNNNNACACGAGGGTAT "))

countDualBarcodes(c(tmp1, tmp2), choices=choices,
flank5=c("CAGCTACGTACG", "TGGGCAGCGACA"),
flank3=c("CCAGCTCGATCG", "ACACGAGGGTAT"))

matrixOfDualBarcodes(list(c(tmpl, tmp2), c(tmpl, tmp2)),
choices=choices,
flank5=c("CAGCTACGTACG", "TGGGCAGCGACA"),
flank3=c("CCAGCTCGATCG", "ACACGAGGGTAT"))

countDualBarcodesSingleEnd
Count dual barcodes in single-end data

countDualBarcodesSingleEnd 9

Description

Count the frequency of dual barcodes in a single-end sequencing screen.

Usage

countDualBarcodesSingleEnd(
fastq,
choices,
template,
substitutions = 0,
find.best = FALSE,
strand = c("both"”, "original”, "reverse"),
include.invalid = FALSE,
num. threads = 1

)

matrixOfDualBarcodesSingleEnd(
files,
choices,
withDimnames = TRUE,
include.invalid = FALSE,
BPPARAM = SerialParam()

)
Arguments
fastq Character vector containing a path to a FASTQ file.
choices A DataFrame with one or more character columns specifying valid combinations
of variable regions. Each column contains sequences for successive barcodes in
template.
template String containing the template for the barcode structure. The number of variable

regions should be equal to the number of columns of choices.
substitutions Integer specifying how many substitutions should be allowed.

find.best Logical scalar indicating whether to search each read for the best match. De-
faults to stopping at the first match.

strand String specifying the strand of the read to search ("original”, "reverse").

include.invalid

Logical scalar indicating whether counts for invalid barcode combinations should
also be returned. This is currently only enabled for template with 2 variable

regions.
num. threads Integer scalar specifying the number of threads to use to process a single file.
files Character vectors containing paths to FASTQ files.

Further arguments to pass to countDualBarcodesSingleEnd.
withDimnames A logical scalar indicating whether the rows and columns should be named.

BPPARAM A BiocParallelParam object specifying how parallelization is to be performed
across files.

10 countDualBarcodesSingleEnd

Details

In a dual barcode experiment, each read of a single-end sequencing experiment contains a barcode
element with multiple variable regions. The goal is to count the frequency of each combination of
barcodes. However, unlike countComboBarcodes, only a subset of combinations are valid here as
defined in choices.

The interpretation of the arguments for matching each barcode to reads is similar to that of countSingleBarcodes.
The strand of the read to search is defined with strand, defaulting to searching both strands. We

can handle sequencing errors by setting substitutions to a value greater than zero. This will

consider substitutions in both the variable region as well as the constant flanking regions.

By default, the function will stop at the first match that satisfies the requirements above. If find.best=TRUE,
we will instead try to find the best match with the fewest mismatches. If there are multiple matches
with the same number of mismatches, the read is discarded to avoid problems with ambiguity.

Value

By default, countDualBarcodesSingleEnd will return choices with an additional counts column.
This is an integer vector of length equal to nrow(choices) containing the frequency of each barcode
combination. The metadata contains nreads, the total number of reads processed by the function.

matrixOfDualBarcodesSingleEnd will return a SummarizedExperiment object containing:

* An integer matrix named "counts”, where each column is the output of countDualBarcodes
for each file in files.

* Row metadata containing a character vector choices, the sequences of the variable region of
the two barcodes for each row.

» Column metadata containing a character vector paths, the path to each FASTQ file; and inte-
ger vectors corresponding to the metadata described above for countDualBarcodesSingleEnd.

If withDimnames=TRUE, row names are set to choices while column names are basename (files).

If include.invalid=TRUE, each row contains all observed combinations in addition to those in
choices. The DataFrame (or rowData of the SummarizedExperiment) gains a valid field specify-
ing if a combination is valid, i.e., present in choices. The metadata also gains the invalid.reads
field, containing the number of reads with matches for each barcode but do not form a valid combi-
nation.

Author(s)

Aaron Lun

Examples

Creating an example dual barcode sequencing experiment.
known.pool1l <- c("AGAGAGAGA", "CTCTCTCTC",
"GTGTGTGTG", "CACACACAC")
known.pool2 <- c("ATATATATA", "CGCGCGCGC",
"GAGAGAGAG", "CTCTCTCTC")
choices <- expand.grid(known.pooll, known.pool?2)
choices <- DataFrame(barcodel=choices[,1], barcode2=choices[,2])

N <- 1000

read <- sprintfy(
"CAGCTACGTACG%sCCAGCTCGATCG%SACACGAGGGTAT",
sample(known.pooll, N, replace=TRUE),

countPairedComboBarcodes 11

sample(known.pool2, N, replace=TRUE)
)

names(read) <- seqg_len(N)

library(Biostrings)
tmp <- tempfile(fileext=".fastq")
writeXStringSet(DNAStringSet(read), filepath=tmp, format="fastq")

Counting the combinations.
countDualBarcodesSingleEnd(tmp, choices=choices,
template="CAGCTACGTACGNNNNNNNNNCCAGCTCGATCGNNNNNNNNNACACGAGGGTAT")

matrixOfDualBarcodesSingleEnd(c(tmp, tmp),
choices=choices,
template="CAGCTACGTACGNNNNNNNNNCCAGCTCGATCGNNNNNNNNNACACGAGGGTAT")

countPairedComboBarcodes
Count paired-end combinatorial barcodes

Description

Count combinatorial barcodes for paired-end screen sequencing experiments where entities are dis-
tinguished based on random combinations of a small pool of known sequences across two templates.

Usage

countPairedComboBarcodes (
fastq,
choices,
flank5,
flank3,
template = NULL,
substitutions = 0,
find.best = FALSE,
strand = "original”,
num. threads = 1,
randomized = FALSE,
indices = FALSE

matrixOfPairedComboBarcodes(
files,
withDimnames = TRUE,
BPPARAM = SerialParam()

)

Arguments

fastq Character vector of length 2, containing paths to two FASTQ files with paired-
end data.

12

choices

flank5

flank3

template

substitutions

find.best

strand

num. threads

randomized

indices

files

withDimnames

BPPARAM

Details

countPairedComboBarcodes

A List of two character vectors. The first vector should contain the potential
sequences for the variable region in the first template, the second vector for the
variable region in the second template.

Character vector of length 2 containing the constant sequence on the 5’ flank of
the variable region for barcodes 1 and 2, respectively. Alternatively, a string can
be supplied if the constant sequence is the same for each barcode.

Character vector of length 2 containing the constant sequence on the 3’ flank of
the variable region for barcodes 1 and 2, respectively. Alternatively, a string can
be supplied if the constant sequence is the same for each barcode.

Character vector of length 2 containing the template for the structure of barcodes
1 and 2, respectively. Alternatively, a string can be supplied if the template is
the same for each barcode.

Integer vector of length 2 specifying how many substitutions should be allowed
for barcodes 1 and 2, respectively. Alternatively, an integer scalar can be sup-
plied if this is the same for each barcode.

Logical scalar indicating whether to search each read for the best match. De-
faults to stopping at the first match.

Character vector of length 2 specifying which strand of the read to search ("original”,

"reverse") for each barcode. Alternatively, a string can be supplied if this is
the same for each barcode.

Integer scalar specifying the number of threads to use to process a single file.

Logical scalar indicating whether the first FASTQ file always contains the first
barcode in choices. If not, the opposite orientation is also searched.

Logical scalar indicating whether integer indices should be used to define each
combinational barcode.

A list of character vectors of length 2 containing paths to paired FASTQ files.
Further arguments to pass to countDualBarcodes.
A logical scalar indicating whether the rows and columns should be named.

A BiocParallelParam object specifying how parallelization is to be performed
across files.

Here, we consider a barcode design very similar to that of countComboBarcodes, except that the
two variable regions are present on different reads rather than occurring within a single template on
the same read. This function counts the frequency of these barcode combinations across the two

reads.

The interpretation of the arguments for matching each barcode to reads is similar to that of countSingleBarcodes.

Each barcode in the combination can be associated with different search parameters; for example,
the search for the “first” barcode in choices[[1]] will be performed with flank5[1], flank3[1],
substitutions[1], strand[1], etc.

By default, the first FASTQ file is assumed to contain the first barcode (i.e., choices[[1]]) while

the second file is assumed to contain the second barcode (choices[[2]]). However, if randomized=TRUE,

the orientation is assumed to be random such that the first FASTQ file may contain the second bar-
code and so on. In such cases, both orientations will be searched to identify the combination. This
is most relevant when the constant regions are different between the two reads, otherwise either
orientation could be valid.

countPairedComboBarcodes 13

We can handle sequencing errors by setting substitutions to a value greater than zero. This will
consider substitutions in both the variable region as well as the constant flanking regions for each
read.

By default, the function will stop at the first match that satisfies the requirements above. If find.best=TRUE,
we will instead try to find the best match with the fewest mismatches. If there are multiple matches
with the same number of mismatches, the read is discarded to avoid problems with ambiguity.

Value

countPairedComboBarcodes returns a DataFrame where each row corresponds to a combinatorial
barcode. It contains combinations, a nested DataFrame that contains the sequences that define each
combinatorial barcode; and counts, an integer vector containing the frequency of each barcode.
The medata contains:

* npairs, the total number of read pairs processed by the function.
* barcodel.only, the number of read pairs that only match to barcode 1.

* barcode2.only, the number of read pairs that only match to barcode 2.

Each column of combinations corresponds to a single variable region in template and one vector
in choices. By default, the sequences are reported directly as character vectors. If indices=FALSE,
each column contains the indices of the sequences in the corresponding entry of choices.

matrixOfPairedComboBarcodes returns a SummarizedExperiment containing:

* Aninteger matrix named "counts”, containing counts for each combinatorial barcode in each
files.

* One or more vectors in the rowData that define each combinatorial barcode, equivalent to
combinations.

* Column metadata containing a character vector files, the path to each file; an integer vector
nreads, containing the total number of reads in each file; and nmapped, containing the number
of reads assigned to a barcode in the output count matrix.

Author(s)

Aaron Lun

Examples

Creating an example dual barcode sequencing experiment.
known.pooll <- c("AGAGAGAGA", "CTCTCTCTC", "GTGTGTGTG", "CACACACAC")
known.pool2 <- c("ATATATATA", "CGCGCGCGC", "GAGAGAGAG", "CTCTCTCTC")
choices <- list(barcodel=known.pooll, barcode2=known.pool2)

N <- 1000
readl <- sprintf("CAGCTACGTACG%sCCAGCTCGATCG", sample(known.pooll, N, replace=TRUE))
names(readl) <- seq_len(N)

read2 <- sprintf("TGGGCAGCGACA%SACACGAGGGTAT", sample(known.pool2, N, replace=TRUE))
names(read2) <- seq_len(N)

library(Biostrings)

tmp <- tempfile()

tmpl <- paste@(tmp, "_1.fastq")
writeXStringSet(DNAStringSet(readl), filepath=tmp1, format="fastq")
tmp2 <- paste@(tmp, "_2.fastq")

14 countRandomBarcodes

writeXStringSet(DNAStringSet(read2), filepath=tmp2, format="fastq")

Counting the combinations.
countPairedComboBarcodes(c(tmp1, tmp2), choices=choices,
template=c("”"CAGCTACGTACGNNNNNNNNNCCAGCTCGATCG",

"TGGGCAGCGACANNNNNNNNNACACGAGGGTAT"))

matrixOfPairedComboBarcodes(list(c(tmpl, tmp2)),
template=c("CAGCTACGTACGNNNNNNNNNCCAGCTCGATCG",
"TGGGCAGCGACANNNNNNNNNACACGAGGGTAT"),
choices=1list(first=known.pooll, second=known.pool2))

countRandomBarcodes Count random barcodes

Description

Count the frequency of random barcodes in a FASTQ file containing data for a single-end sequenc-
ing screen. This differs from countSingleBarcodes in that the barcode is completely random
rather than being drawn from a known pool of sequences.

Usage

countRandomBarcodes(
fastq,
template,
substitutions = 0,
find.best = FALSE,
strand = c("both”, "original"”, "reverse"),
num. threads = 1

matrixOfRandomBarcodes(
files,
withDimnames = TRUE,
BPPARAM = SerialParam()

)
Arguments
fastq String containing the path to a FASTQ file containing single-end data.
template String containing the template for the barcode structure. See parseBarcodeTemplate

for more details.

substitutions Integer scalar specifying the maximum number of substitutions when consider-
ing a match.

find.best Logical scalar indicating whether to search each read for the best match. De-
faults to stopping at the first match.

strand String specifying which strand of the read to search.

num. threads Integer scalar specifying the number of threads to use to process a single file.

countRandomBarcodes 15

files A character vector of paths to FASTQ files.
Further arguments to pass to countSingleBarcodes.
withDimnames A logical scalar indicating whether the rows and columns should be named.

BPPARAM A BiocParallelParam object specifying how parallelization is to be performed
across files.

Details

If strand="both", the original read sequence will be searched first. If no match is found, the
sequence is reverse-complemented and searched again. Other settings of strand will only search
one or the other sequence. The most appropriate choice depends on both the sequencing protocol
and the design (i.e., position and length) of the barcode.

We can handle sequencing errors by setting substitutions to a value greater than zero. This will
consider substitutions in both the variable region as well as the constant flanking regions.

By default, the function will stop at the first match that satisfies the requirements above. If find.best=TRUE,
we will instead try to find the best match with the fewest mismatches. If there are multiple matches
with the same number of mismatches, the read is discarded to avoid problems with ambiguity.

Value
countRandomBarcodes will return a DataFrame containing:
* sequences, a character vector containing the sequences of the random barcodes in the variable
region.

* counts, an integer vector containing the frequency of each barcode.

The metadata contains nreads, an integer scalar containing the total number of reads in fastq.

matrixOfRandomBarcodes will return a SummarizedExperiment object containing:

* Aninteger matrix named "counts”, where each column is the output of countRandomBarcodes
for each file in files.

* Row metadata containing a character vector sequences, the sequence of the variable region
of each barcode for each row.

* Column metadata containing a character vector files, the path to each file; an integer vector
nreads, containing the total number of reads in each file; and nmapped, containing the number
of reads assigned to a barcode in the output count matrix.

If withDimnames=TRUE, row names are set to sequences while column names are basename (files).

Author(s)

Aaron Lun

Examples

Creating an example dataset.
N <- 1000
randomized <- lapply(1:N, function(i) {

paste(sample(c("A", "C", "G", "T"), 8, replace=TRUE), collapse="")
»
barcodes <- sprintf("CAGCTACGTACG%sCCAGCTCGATCG", randomized)
names(barcodes) <- seq_len(N)

16

countSingleBarcodes

library(Biostrings)
tmp <- tempfile(fileext=".fastq")
writeXStringSet(DNAStringSet(barcodes), filepath=tmp, format="fastq")

Counting the sequences:
countRandomBarcodes(tmp, template="CAGCTACGTACGNNNNNNNNCCAGCTCGATCG")

matrixOfRandomBarcodes(c(tmp, tmp), template="CAGCTACGTACGNNNNNNNNCCAGCTCGATCG")

countSingleBarcodes Count single barcodes

Description

Count the frequency of barcodes in a FASTQ file containing data for a single-end sequencing screen.

Usage

countSingleBarcodes(
fastq,
choices,
flank5,
flank3,
template = NULL,
substitutions = 0,
find.best = FALSE,

strand = c("both”, "original”, "reverse"),

num. threads = 1
)
matrix0fSingleBarcodes(
files,
choices,

L

withDimnames = TRUE,
BPPARAM = SerialParam()

)

Arguments

fastqg
choices
flank5
flank3
template

substitutions

find.best

strand

String containing the path to a FASTQ file containing single-end data.

A character vector of sequences for the variable regions, one per barcode.
String containing the constant sequence on the 5’ flank of the variable region.
String containing the constant sequence on the 3’ flank of the variable region.
String containing the template for the barcode structure.

Integer scalar specifying the maximum number of substitutions when consider-
ing a match.

Logical scalar indicating whether to search each read for the best match. De-
faults to stopping at the first match.

String specifying which strand of the read to search.

countSingleBarcodes 17

num. threads Integer scalar specifying the number of threads to use to process a single file.
files A character vector of paths to FASTQ files.

Further arguments to pass to countSingleBarcodes.
withDimnames A logical scalar indicating whether the rows and columns should be named.

BPPARAM A BiocParallelParam object specifying how parallelization is to be performed
across files.

Details

If template is specified, it will be used to define the flanking regions. Any user-supplied values of
flank5 and flank3 will be ignored. Note that, for this function, the template should only contain a
single variable region. See parseBarcodeTemplate for more details.

If strand="both", the original read sequence will be searched first. If no match is found, the
sequence is reverse-complemented and searched again. Other settings of strand will only search
one or the other sequence. The most appropriate choice depends on both the sequencing protocol
and the design (i.e., position and length) of the barcode.

We can handle sequencing errors by setting substitutions to a value greater than zero. This will
consider substitutions in both the variable region as well as the constant flanking regions.

By default, the function will stop at the first match that satisfies the requirements above. If find.best=TRUE,
we will instead try to find the best match with the fewest mismatches. If there are multiple matches
with the same number of mismatches, the read is discarded to avoid problems with ambiguity.

Value

countSingleBarcodes will return a DataFrame containing:

* choices, a character vector equal to the input choices.
* counts, an integer vector of length equal to nrow(choices) containing the frequency of each
barcode.
The metadata contains nreads, an integer scalar containing the total number of reads in fastq.
matrix0fSingleBarcodes will return a SummarizedExperiment object containing:
* Aninteger matrix named "counts”, where each column is the output of countSingleBarcodes
for each file in files.

* Row metadata containing a character vector choices, the sequence of the variable region of
each barcode for each row.

* Column metadata containing a character vector files, the path to each file; an integer vector
nreads, containing the total number of reads in each file; and nmapped, containing the number
of reads assigned to a barcode in the output count matrix.

If withDimnames=TRUE, row names are set to choices while column names are basename (files).

Author(s)

Aaron Lun

18 matchBarcodes

Examples

Creating an example dual barcode sequencing experiment.
known.pool <- c("AGAGAGAGA", "CTCTCTCTC",
"GTGTGTGTG", "CACACACAC™)

N <- 1000

barcodes <- sprintf ("CAGCTACGTACG%sCCAGCTCGATCG",
sample(known.pool, N, replace=TRUE))

names(barcodes) <- seq_len(N)

library(Biostrings)
tmp <- tempfile(fileext=".fastq")
writeXStringSet(DNAStringSet(barcodes), filepath=tmp, format="fastq")

Counting the combinations.
countSingleBarcodes(tmp, choices=known.pool,
template="CAGCTACGTACGNNNNNNNNNCCAGCTCGATCG")

countSingleBarcodes(tmp, choices=known.pool,
flank5="CAGCTACGTACG", flank3="CCAGCTCGATCG")

matrix0fSingleBarcodes(c(tmp, tmp), choices=known.pool,
flank5="CAGCTACGTACG", flank3="CCAGCTCGATCG")

matchBarcodes Match sequences to a pool of barcodes

Description

Pretty much what it says on the tin. Useful for matching observed sequences (e.g., from countRandomBarcodes)
to a pool of known barcode sequences, accounting for substitutions and ambiguous IUPAC codes.

Usage

matchBarcodes(sequences, choices, substitutions = @, reverse = FALSE)

Arguments
sequences Character vector of observed sequences.
choices Character vector of barcode sequences.
substitutions Integer scalar specifying the maximum number of substitutions when consider-
ing a match.
reverse Whether to match sequences to the reverse complement of choices.

Value
DataFrame with one row per entry of sequences, containing the following fields:

* index, the index of the matching barcode in choices. This is set to NA if no unambiguous
match is found.

* mismatches, the number of mismatching bases with the assigned barcode. This is set to NA if
index is NA.

parseBarcodeTemplate 19

Author(s)

Aaron Lun

Examples

choices <- c("AAAAAA", "CCCCCC”, "GGGGGG”, "TTTTTT")
matchBarcodes (c("AAAAAA", "AAATAA"), choices)

matchBarcodes (c("AAAAAA", "AAATAA"), choices, substitutions=1)
matchBarcodes (c("AAAAAA", "AAATAA"), choices, reverse=TRUE)

Works with IUPAC codes in the barcodes:
choices <- c("”AAARAA", "CCCYCC", "GGGMGG", "TTTSTT")
matchBarcodes (c("AAAAAA", "AAAGAA"), choices)

parseBarcodeTemplate Parse barcode template

Description

Parse a barcode template to identify variable regions based on the run of N’s.

Usage

parseBarcodeTemplate(template)

Arguments
template String containing template sequence of a barcode. Variable regions should be
marked with N’s.
Details

The barcode template should contain runs of N’s to mark the variable regions. The first run of N’s
is the first variable region, the second run of N’s is the second variable region, and so on. The
template is “realized” into a barcode when the N’s are replaced with actual DNA sequence. The
use of a template provides a convenient format to express the general structure of the barcode while
avoiding confusion about barcode-specific variable regions.

Value

A list containing:

* variable, a DataFrame containing the position and length of each run of N’s.

* constant, a character vector of constant regions flanking and separating the variable regions.

Author(s)

Aaron Lun

20 parseBarcodeTemplate

Examples

Single spacer:
parseBarcodeTemplate (" AAAANNNNNNNGGGG")

Double spacer:
parseBarcodeTemplate (" AAAANNNNCCCCNNGGGG")

Index

BiocParallelParam, 4, 7,9, 12,15, 17

combineComboCounts, 2
countComboBarcodes, 2, 3, 7, 10, 12
countDualBarcodes, 5
countDualBarcodesSingleEnd, 8
countPairedComboBarcodes, 11
countRandomBarcodes, 14, I8
countSingleBarcodes, 4, 7, 10, 12, 14, 16

DataFrame, 2-4, 6,9, 13, 15, 17-19
List, 4,12

matchBarcodes, 18
matrixOfComboBarcodes
(countComboBarcodes), 3
matrix0fDualBarcodes
(countDualBarcodes), 5
matrixOfDualBarcodesSingleEnd
(countDualBarcodesSingleEnd), 8
matrix0fPairedComboBarcodes
(countPairedComboBarcodes), 11
matrixOfRandomBarcodes
(countRandomBarcodes), 14
matrix0fSingleBarcodes
(countSingleBarcodes), 16

parseBarcodeTemplate, 4, 14, 17, 19
rowData, 7, 10

screenCounter-package, 2
SummarizedExperiment, 2,4, 7, 10,13, 15,17

21

	screenCounter-package
	combineComboCounts
	countComboBarcodes
	countDualBarcodes
	countDualBarcodesSingleEnd
	countPairedComboBarcodes
	countRandomBarcodes
	countSingleBarcodes
	matchBarcodes
	parseBarcodeTemplate
	Index

