Package 'sccomp'

October 28, 2025

Type Package

Title Differential Composition and Variability Analysis for Single-Cell Data

Version 2.1.18 **Date** 2024-01-15

Description Comprehensive R package for differential composition and variability analysis in single-cell RNA sequencing, CyTOF, and microbiome data. Provides robust Bayesian modeling with outlier detection, random effects, and advanced statistical methods for cell type proportion analysis. Features include probabilistic outlier identification, mixed-effect modeling, differential variability testing, and comprehensive visualization tools. Perfect for cancer research, immunology, developmental biology, and single-cell genomics applications.

License GPL-3

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.3

Depends R (>= 4.3.0), instantiate (>= 0.2.3)

Imports stats, boot, utils, scales, lifecycle, rlang, tidyselect, magrittr, crayon, cli, fansi, dplyr, tidyr, purrr, tibble, ggplot2, ggrepel, patchwork, forcats, readr, stringr, glue, SingleCellExperiment

Suggests knitr, rmarkdown, BiocStyle, testthat (>= 3.0.0), markdown, loo, prettydoc, SeuratObject, tidyseurat, tidySingleCellExperiment, bayesplot, posterior

Additional_repositories https://mc-stan.org/r-packages/

SystemRequirements CmdStan

(https://mc-stan.org/users/interfaces/cmdstan), C++14

biocViews Bayesian, Regression, DifferentialExpression, SingleCell, Metagenomics, FlowCytometry, Spatial

LazyData true

VignetteBuilder knitr

URL https://github.com/MangiolaLaboratory/sccomp

BugReports https://github.com/MangiolaLaboratory/sccomp/issues

Config/testthat/edition 3

2 Contents

 ${\bf Maintainer}\ {\bf Stefano}\ {\bf Mangiola}\ {\bf <stefano.mangiola@unimelb.edu.au} {\bf >}$

Contents

Index

clear_stan_model_cache	3
$counts_obj \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	4
handle_missing_values	5
$no_significance_df $	5
plot.sccomp_tbl	6
plot_1D_intervals	7
plot_2D_intervals	8
plot_scatterplot	9
print.sccomp_tbl	10
sccomp_boxplot	11
sccomp_calculate_residuals	13
sccomp_estimate	14
sccomp_predict	
sccomp_proportional_fold_change	
sccomp_remove_outliers	
sccomp_remove_unwanted_effects	
sccomp_remove_unwanted_variation	
sccomp_replicate	
sccomp_stan_models_cache_dir	
$sccomp_test \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	
sccomp_theme	
sce_obj	
seurat_obj	
simulate_data	33
	36
	30

clear_stan_model_cache

Clear Stan Model Cache

Description

This function removes the Stan model cache directory and all its contents. The cache is used by cmdstanr to store compiled Stan models. Clearing the cache can be useful when:

- You're experiencing issues with cached models
- You want to force recompilation of models
- You're switching between different versions of Stan

Usage

clear_stan_model_cache(cache_dir = sccomp_stan_models_cache_dir)

Arguments

cache_dir

A character string representing the path of the cache directory to delete. Defaults to sccomp_stan_models_cache_dir, which is the default cache location used by sccomp.

Details

The function uses unlink() with recursive = TRUE to remove the directory and all its contents. If the cache directory doesn't exist, the function will simply print a message and continue. This is a safe operation as cmdstanr will recreate the cache directory when needed.

Value

NULL invisibly. The function is called for its side effect of removing the cache directory.

References

S. Mangiola, A.J. Roth-Schulze, M. Trussart, E. Zozaya-Valdés, M. Ma, Z. Gao, A.F. Rubin, T.P. Speed, H. Shim, & A.T. Papenfuss, sccomp: Robust differential composition and variability analysis for single-cell data, Proc. Natl. Acad. Sci. U.S.A. 120 (33) e2203828120, https://doi.org/10.1073/pnas.2203828120 (2023).

See Also

- cmdstan_path for information about cmdstanr's cache management
- unlink for details about the underlying file removal function

4 counts_obj

Examples

```
# Clear the default sccomp cache directory
clear_stan_model_cache()

# Clear a specific cache directory
clear_stan_model_cache("path/to/custom/cache")

# Example of when you might want to clear the cache
## Not run:

# If you're experiencing issues with model compilation
clear_stan_model_cache()
# Then try running your model again

## End(Not run)
```

counts_obj

counts_obj

Description

A tidy example dataset containing cell counts per cell group (cluster), sample, and phenotype for differential analysis. This dataset represents the counts of cells in various phenotypes and cell groups across multiple samples.

Usage

```
data(counts_obj)
```

Format

A tidy data frame with the following columns:

- sample: Factor, representing the sample identifier.
- type: Factor, indicating the sample type (e.g., benign, cancerous).
- $\bullet \ \ phenotype: Factor, representing the cell phenotype (e.g., B_cell, HSC, etc.).$
- count: Integer, representing the number of cells for each cell group within each sample.
- cell_group: Factor, representing the cell group (e.g., BM, B1, Dm, etc.).

Value

A tibble representing cell counts per cluster, with columns for sample, type, phenotype, cell group, and counts.

handle_missing_values 5

handle_missing_values Handle missing values in a data frame

Description

Handle missing values in a data frame

Usage

```
handle_missing_values(data)
```

Arguments

data

A data frame to process

Value

A data frame with missing values handled:

- For categorical variables (factor/character): NA values are converted to a factor level "NA"
- For numeric variables: NA values are replaced with the mean of the column

Description

A small example dataset containing cell counts across samples, conditions, and cell groups. This dataset is used to demonstrate the use of sccomp functions in scenarios where there is no significant difference in cell composition between conditions.

Usage

```
data(no_significance_df)
```

Format

A tibble with the following columns:

- sample: Character. Identifier for each sample.
- condition: Character. Experimental condition or group (e.g., "X" or "Y").
- cell_group: Character. Cell group or cell type (e.g., "A", "B").
- count: Numeric. Count of cells in the given sample, condition, and cell group.

Value

A tibble with 34 rows and 4 columns: sample, condition, cell_group, and count.

```
data(no_significance_df)
head(no_significance_df)
```

6 plot.sccomp_tbl

plot.sccomp_tbl

plot

Description

This function plots a summary of the results of the model.

Usage

```
## $3 method for class 'sccomp_tbl'
plot(
    x,
    significance_threshold = 0.05,
    test_composition_above_logit_fold_change = attr(.data,
        "test_composition_above_logit_fold_change"),
    significance_statistic = c("FDR", "pH0"),
    show_fdr_message = TRUE,
    ...
)
```

Arguments

Х

A tibble including a cell_group name column | sample name column | read counts column | factor columns | Pvalue column | a significance column

 $significance_threshold$

Numeric value specifying the significance threshold for highlighting differences. Default is 0.025.

test_composition_above_logit_fold_change

A positive integer. It is the effect threshold used for the hypothesis test. A value of 0.2 correspond to a change in cell proportion of 10% for a cell type with baseline proportion of 50%. That is, a cell type goes from 45% to 50%. When the baseline proportion is closer to 0 or 1 this effect thrshold has consistent value in the logit uncontrained scale.

significance_statistic

Character vector indicating which statistic to highlight. Default is "FDR".

show_fdr_message

Logical. Whether to show the Bayesian FDR interpretation message on the plot. Default is TRUE.

... For internal use

Value

A ggplot

References

S. Mangiola, A.J. Roth-Schulze, M. Trussart, E. Zozaya-Valdés, M. Ma, Z. Gao, A.F. Rubin, T.P. Speed, H. Shim, & A.T. Papenfuss, sccomp: Robust differential composition and variability analysis for single-cell data, Proc. Natl. Acad. Sci. U.S.A. 120 (33) e2203828120, https://doi.org/10.1073/pnas.2203828120 (2023).

plot_1D_intervals 7

Examples

```
print("cmdstanr is needed to run this example.")
# Note: Before running the example, ensure that the 'cmdstanr' package is installed:
# install.packages("cmdstanr", repos = c("https://stan-dev.r-universe.dev/", getOption("repos")))

if (instantiate::stan_cmdstan_exists()) {
    data("counts_obj")

    estimate = sccomp_estimate(
        counts_obj,
        ~ type, ~1, "sample", "cell_group", "count",
        cores = 1
    )

    # estimate |> plot()
}
```

plot_1D_intervals

Plot 1D Intervals for Cell-group Effects

Description

This function creates a series of 1D interval plots for cell-group effects, highlighting significant differences based on a given significance threshold.

Usage

```
plot_1D_intervals(
    .data,
    significance_threshold = 0.05,
    test_composition_above_logit_fold_change = attr(.data,
        "test_composition_above_logit_fold_change"),
    show_fdr_message = TRUE,
    significance_statistic = c("FDR", "pH0")
)
```

Arguments

. data Data frame containing the main data.

 $significance_threshold$

Numeric value specifying the significance threshold for highlighting differences.

 ${\tt test_composition_above_logit_fold_change}$

A positive integer. It is the effect threshold used for the hypothesis test. A value of 0.2 correspond to a change in cell proportion of 10% for a cell type with baseline proportion of 50%. That is, a cell type goes from 45% to 50%. When the baseline proportion is closer to 0 or 1 this effect thrshold has consistent value in the logit uncontrained scale.

8 plot_2D_intervals

```
show_fdr_message
```

Logical. Whether to show the Bayesian FDR interpretation message on the plot. Default is TRUE.

significance_statistic

Character vector indicating which statistic to highlight. Default is "FDR".

Value

A combined plot of 1D interval plots.

Examples

```
print("cmdstanr is needed to run this example.")
  if (instantiate::stan_cmdstan_exists()) {
    data("counts_obj")
    estimate <- sccomp_estimate(</pre>
      counts_obj,
      ~ type,
      ~1,
      "sample",
      "cell_group",
      "count",
      cores = 1
    ) |>
    sccomp_test()
  # Example usage:
  my_plot = plot_1D_intervals(estimate)
  }
```

plot_2D_intervals

Plot 2D Intervals for Mean-Variance Association

Description

This function creates a 2D interval plot for mean-variance association, highlighting significant differences based on a given significance threshold.

Usage

```
plot_2D_intervals(
    .data,
    significance_threshold = 0.05,
    test_composition_above_logit_fold_change = attr(.data,
        "test_composition_above_logit_fold_change"),
    show_fdr_message = TRUE,
    significance_statistic = c("FDR", "pH0")
)
```

plot_scatterplot 9

Arguments

. data Data frame containing the main data.

significance_threshold

Numeric value specifying the significance threshold for highlighting differences. Default is 0.025.

 ${\tt test_composition_above_logit_fold_change}$

A positive integer. It is the effect threshold used for the hypothesis test. A value of 0.2 correspond to a change in cell proportion of 10% for a cell type with baseline proportion of 50%. That is, a cell type goes from 45% to 50%. When the baseline proportion is closer to 0 or 1 this effect thrshold has consistent value in the logit uncontrained scale.

show_fdr_message

Logical. Whether to show the Bayesian FDR interpretation message on the plot. Default is TRUE.

significance_statistic

Character vector indicating which statistic to highlight. Default is "FDR".

Value

A ggplot object representing the 2D interval plot.

```
print("cmdstanr is needed to run this example.")
  if (instantiate::stan_cmdstan_exists()) {
    data("counts_obj")
    estimate <- sccomp_estimate(</pre>
      counts_obj,
      ~ type,
      ~type,
      "sample",
      "cell_group",
      "count",
      cores = 1
    ) |>
    sccomp_test()
  # Example usage:
  my_plot = plot_2D_intervals(estimate)
  }
```

10 print.sccomp_tbl

Description

This function creates a scatterplot of cell-group proportions, optionally highlighting significant differences based on a given significance threshold.

Usage

```
plot_scatterplot(
    .data,
    data_proportion,
    factor_of_interest,
    .cell_group,
    .sample,
    significance_threshold = 0.05,
    my_theme
)
```

Arguments

A ggplot2 theme object to be applied to the plot.

Print method for sccomp objects

Value

my_theme

A ggplot object representing the scatterplot.

Examples

```
# Example usage:
# plot_scatterplot(.data, data_proportion, "condition", "cell_group", "sample", 0.025, theme_minimal())
```

Description

print.sccomp_tbl

Print method for sccomp objects.

The print method for sccomp objects provides a summary of the model specifications, data dimensions, and convergence diagnostics.

The output is formatted to be easy to read and understand.

sccomp_boxplot 11

Usage

```
## S3 method for class 'sccomp_tbl'
print(x, ...)
```

Arguments

x A sccomp object

... Additional arguments passed to print

Value

The printed object

Examples

```
# Note: Before running the example, ensure that the 'cmdstanr' package is installed:
# install.packages("cmdstanr", repos = c("https://stan-dev.r-universe.dev/", getOption("repos")))

if (instantiate::stan_cmdstan_exists()) {
    # Create a sccomp object
    data("counts_obj")
    estimate <- sccomp_estimate(
        counts_obj,
        ~ type,
        ~1,
        "sample",
        "cell_group",
        "count",
        cores = 1
    )
    print(estimate)
}</pre>
```

sccomp_boxplot

sccomp_boxplot

Description

Creates a boxplot visualization of the model results from sccomp. This function plots the estimated cell proportions across samples, highlighting significant changes in cell composition according to a specified factor.

Usage

```
sccomp_boxplot(
   .data,
   factor,
   significance_threshold = 0.05,
   test_composition_above_logit_fold_change = attr(.data,
```

12 sccomp_boxplot

```
"test_composition_above_logit_fold_change"),
remove_unwanted_effects = FALSE
)
```

Arguments

.data

A tibble containing the results from sccomp_estimate and sccomp_test, including the columns: cell_group name, sample name, read counts, factor(s), p-values, and significance indicators.

factor

A character string specifying the factor of interest included in the model for stratifying the boxplot.

significance_threshold

A numeric value indicating the False Discovery Rate (FDR) threshold for labeling significant cell-groups. Defaults to 0.05.

test_composition_above_logit_fold_change

A positive numeric value representing the effect size threshold used in the hypothesis test. A value of 0.2 corresponds to a change in cell proportion of approximately 10% for a cell type with a baseline proportion of 50% (e.g., from 45% to 55%). This threshold is consistent on the logit-unconstrained scale, even when the baseline proportion is close to 0 or 1.

remove_unwanted_effects

A logical value indicating whether to remove unwanted variation from the data before plotting. Defaults to FALSE.

Value

A ggplot object representing the boxplot of cell proportions across samples, stratified by the specified factor.

References

S. Mangiola, A.J. Roth-Schulze, M. Trussart, E. Zozaya-Valdés, M. Ma, Z. Gao, A.F. Rubin, T.P. Speed, H. Shim, & A.T. Papenfuss, sccomp: Robust differential composition and variability analysis for single-cell data, Proc. Natl. Acad. Sci. U.S.A. 120 (33) e2203828120, https://doi.org/10.1073/pnas.2203828120 (2023).

```
print("cmdstanr is needed to run this example.")
# Note: Before running the example, ensure that the 'cmdstanr' package is installed:
# install.packages("cmdstanr", repos = c("https://stan-dev.r-universe.dev/", getOption("repos")))

if (instantiate::stan_cmdstan_exists()) {
    data("counts_obj")

    estimate <- sccomp_estimate(
        counts_obj,
        formula_composition = ~ type,
        formula_variability = ~ 1,
        sample = "sample",
        cell_group = "cell_group",
        abundance = "count",
        cores = 1</pre>
```

```
) |>
sccomp_test()

# Plot the boxplot of estimated cell proportions
sccomp_boxplot(
    .data = estimate,
    factor = "type",
    significance_threshold = 0.05
)
}
```

sccomp_calculate_residuals

Calculate Residuals Between Observed and Predicted Proportions

Description

sccomp_calculate_residuals computes the residuals between observed cell group proportions and the predicted proportions from a fitted sccomp model. This function is useful for assessing model fit and identifying cell groups or samples where the model may not adequately capture the observed data. The residuals are calculated as the difference between the observed proportions and the predicted mean proportions from the model.

Usage

```
sccomp_calculate_residuals(.data)
```

Arguments

.data

A tibble of class sccomp_tbl, which is the result of sccomp_estimate(). This tibble contains the fitted model and associated data necessary for calculating residuals.

Details

The function performs the following steps:

- 1. Extracts the predicted mean proportions for each cell group and sample using sccomp_predict().
- 2. Calculates the observed proportions from the original count data.
- 3. Computes residuals by subtracting the predicted proportions from the observed proportions.
- 4. Returns a tibble containing the sample, cell group, residuals, and exposure (total counts per sample).

Value

A tibble (tbl) with the following columns:

- sample A character column representing the sample identifiers.
- cell_group A character column representing the cell group identifiers.
- **residuals** A numeric column representing the residuals, calculated as the difference between observed and predicted proportions.
- **exposure** A numeric column representing the total counts (sum of counts across cell groups) for each sample.

References

S. Mangiola, A.J. Roth-Schulze, M. Trussart, E. Zozaya-Valdés, M. Ma, Z. Gao, A.F. Rubin, T.P. Speed, H. Shim, & A.T. Papenfuss, sccomp: Robust differential composition and variability analysis for single-cell data, Proc. Natl. Acad. Sci. U.S.A. 120 (33) e2203828120, https://doi.org/10.1073/pnas.2203828120 (2023).

Examples

```
if (instantiate::stan_cmdstan_exists() && .Platform$OS.type == "unix") {
# Load example data
data("counts_obj")
# Fit the sccomp model
estimates <- sccomp_estimate(</pre>
  counts_obj,
  formula_composition = ~ type,
  formula_variability = ~1,
  sample = "sample",
  cell_group = "cell_group",
  abundance = "count",
  approximate_posterior_inference = "all",
  cores = 1
# Calculate residuals
residuals <- sccomp_calculate_residuals(estimates)</pre>
# View the residuals
print(residuals)
}
```

sccomp_estimate

Main Function for SCCOMP Estimate

Description

The sccomp_estimate function performs linear modeling on a table of cell counts or proportions, which includes a cell-group identifier, sample identifier, abundance (counts or proportions), and factors (continuous or discrete). The user can define a linear model using an R formula, where the first factor is the factor of interest. Alternatively, sccomp accepts single-cell data containers (e.g., Seurat, SingleCellExperiment, cell metadata, or group-size) and derives the count data from cell metadata.

Usage

```
sccomp_estimate(
   .data,
   formula_composition = ~1,
   formula_variability = ~1,
   sample,
   cell_group,
   abundance = NULL,
```

```
cores = detectCores(),
 bimodal_mean_variability_association = FALSE,
  percent_false_positive = 5,
  inference_method = "pathfinder",
 prior_mean = list(intercept = c(0, 1), coefficients = c(0, 1)),
 prior_overdispersion_mean_association = list(intercept = c(5, 2), slope = c(0, 0.6),
    standard_deviation = c(10, 20)),
  .sample_cell_group_pairs_to_exclude = NULL,
  output_directory = "sccomp_draws_files",
  verbose = TRUE,
  enable_loo = FALSE,
  noise_model = "multi_beta_binomial",
  exclude_priors = FALSE,
 use_data = TRUE,
 mcmc_seed = sample_seed(),
 max_sampling_iterations = 20000,
  pass_fit = TRUE,
  sig_figs = 9,
  cache_stan_model = sccomp_stan_models_cache_dir,
  .count = NULL,
  approximate_posterior_inference = NULL,
  variational_inference = NULL,
  .sample = NULL,
  .cell_group = NULL,
  .abundance = NULL
)
```

Arguments

.data

A tibble including cell_group name column, sample name column, abundance column (counts or proportions), and factor columns.

formula_composition

A formula describing the model for differential abundance.

formula_variability

A formula describing the model for differential variability.

sample A column name as a character string for the sample identifier. Replaces the

deprecated .sample.

cell_group A column name as a character string for the cell-group identifier. Replaces the

deprecated .cell_group.

abundance A column name as a character string for the cell-group abundance, which can be

counts (> 0) or proportions (between 0 and 1, summing to 1 across cell_group).

Replaces the deprecated . abundance and . count.

cores Number of cores to use for parallel calculations.

bimodal_mean_variability_association

Logical, whether to model mean-variability as bimodal.

percent_false_positive

A real number between 0 and 100 for outlier identification.

inference_method

Character string specifying the inference method to use ('pathfinder', 'hmc', or 'variational'). Replaces the deprecated approximate_posterior_inference and variational_inference.

prior_mean A list specifying prior knowledge about the mean distribution, including inter-

cept and coefficients.

prior_overdispersion_mean_association

A list specifying prior knowledge about mean/variability association.

.sample_cell_group_pairs_to_exclude

A column name indicating sample/cell-group pairs to exclude.

output_directory

A character string specifying the output directory for Stan draws.

verbose Logical, whether to print progression details.

enable_loo Logical, whether to enable model comparison using the LOO package.

noise_model A character string specifying the noise model (e.g., 'multi_beta_binomial').

exclude_priors Logical, whether to run a prior-free model.

use_data Logical, whether to run the model data-free.

mcmc_seed An integer seed for MCMC reproducibility.

max_sampling_iterations

Integer to limit the maximum number of iterations for large datasets.

pass_fit Logical, whether to include the Stan fit as an attribute in the output.

sig_figs Number of significant figures to use for Stan model output. Default is 9.

cache_stan_model

A character string specifying the cache directory for compiled Stan models. The sccomp version will be automatically appended to ensure version isolation. Default is sccomp_stan_models_cache_dir which points to ~/.sccomp_models.

... Additional arguments passed to the cmdstanr::sample function.

. count **DEPRECATED**. Use abundance instead.

approximate_posterior_inference

DEPRECATED. Use inference_method instead.

variational_inference

DEPRECATED. Use inference_method instead.

. sample **DEPRECATED**. Use sample instead.

. abundance **DEPRECATED**. Use abundance instead.

Value

A tibble (tbl), with the following columns:

- cell_group The cell groups being tested.
- parameter The parameter being estimated from the design matrix described by the input formula_composition and formula_variability.
- factor The covariate factor in the formula, if applicable (e.g., not present for Intercept or contrasts).
- c_lower Lower (2.5%) quantile of the posterior distribution for a composition (c) parameter.
- c_effect Mean of the posterior distribution for a composition (c) parameter.
- c_upper Upper (97.5%) quantile of the posterior distribution for a composition (c) parameter.
- c_pHO Probability of the c_effect being smaller or bigger than the test_composition_above_logit_fold_change argument.

c_FDR - False discovery rate of the c_effect being smaller or bigger than the test_composition_above_logit_fo
argument. False discovery rate for Bayesian models is calculated differently from frequentists
models, as detailed in Mangiola et al, PNAS 2023.

- c_n_eff Effective sample size, the number of independent draws in the sample. The higher, the better.
- c R k hat R statistic, a measure of chain equilibrium, should be within 0.05 of 1.0.
- v_lower Lower (2.5%) quantile of the posterior distribution for a variability (v) parameter.
- v_effect Mean of the posterior distribution for a variability (v) parameter.
- v_upper Upper (97.5%) quantile of the posterior distribution for a variability (v) parameter.
- v_pHO Probability of the v_effect being smaller or bigger than the test_composition_above_logit_fold_chan argument.
- v_FDR False discovery rate of the v_effect being smaller or bigger than the test_composition_above_logit_fo argument. False discovery rate for Bayesian models is calculated differently from frequentists models, as detailed in Mangiola et al, PNAS 2023.
- v_n_eff Effective sample size for a variability (v) parameter.
- v_R_k_hat R statistic for a variability (v) parameter, a measure of chain equilibrium.

The function also attaches several attributes to the result:

- count_data The original count data used in the analysis, stored as an attribute for efficient access.
- model_input The model input data used for fitting.
- formula_composition The formula used for composition modeling.
- formula_variability The formula used for variability modeling.
- fit The Stan fit object (if pass_fit = TRUE).

References

S. Mangiola, A.J. Roth-Schulze, M. Trussart, E. Zozaya-Valdés, M. Ma, Z. Gao, A.F. Rubin, T.P. Speed, H. Shim, & A.T. Papenfuss, sccomp: Robust differential composition and variability analysis for single-cell data, Proc. Natl. Acad. Sci. U.S.A. 120 (33) e2203828120, https://doi.org/10.1073/pnas.2203828120 (2023).

```
print("cmdstanr is needed to run this example.")
# Note: Before running the example, ensure that the 'cmdstanr' package is installed:
# install.packages("cmdstanr", repos = c("https://stan-dev.r-universe.dev/", getOption("repos")))

if (instantiate::stan_cmdstan_exists()) {
    data("counts_obj")

    estimate <- sccomp_estimate(
        counts_obj,
        ~ type,
        ~1,
        "sample",
        "cell_group",
        "count",
        cores = 1</pre>
```

18 sccomp_predict

sccomp_predict

sccomp_predict

Description

This function replicates counts from a real-world dataset.

Usage

```
sccomp_predict(
  fit,
  formula_composition = NULL,
  new_data = NULL,
  number_of_draws = 500,
  mcmc_seed = sample_seed(),
  summary_instead_of_draws = TRUE,
  robust = FALSE
)
```

Arguments

fit The result of sccomp_estimate.

formula_composition

A formula. The formula describing the model for differential abundance, for example ~treatment. This formula can be a sub-formula of your estimated model; in this case all other factor will be factored out.

new_data

A sample-wise data frame including the column that represent the factors in your formula. If you want to predict proportions for 10 samples, there should be 10 rows. T

number_of_draws

An integer. How may copies of the data you want to draw from the model joint posterior distribution.

sccomp_predict 19

mcmc_seed

An integer. Used for Markov-chain Monte Carlo reproducibility. By default a random number is sampled from 1 to 999999. This itself can be controlled by set.seed()

summary_instead_of_draws

Return the summary values (i.e. mean and quantiles) of the predicted proportions, or return single draws. Single draws can be helful to better analyse the uncertainty of the prediction.

robust

A logical. If TRUE, use robust statistics (median and median absolute deviation) instead of classical statistics (mean and standard deviation) for the summary calculations.

Value

A tibble (tbl) with the following columns:

- cell_group A character column representing the cell group being tested.
- sample A factor column representing the sample name for which the predictions are made.
- **proportion_mean** A numeric column representing the predicted mean (or median when robust=TRUE) proportions from the model.
- **proportion_lower** A numeric column representing the lower bound (2.5%) of the 95% credible interval for the predicted proportions.
- **proportion_upper** A numeric column representing the upper bound (97.5%) of the 95% credible interval for the predicted proportions.

References

S. Mangiola, A.J. Roth-Schulze, M. Trussart, E. Zozaya-Valdés, M. Ma, Z. Gao, A.F. Rubin, T.P. Speed, H. Shim, & A.T. Papenfuss, sccomp: Robust differential composition and variability analysis for single-cell data, Proc. Natl. Acad. Sci. U.S.A. 120 (33) e2203828120, https://doi.org/10.1073/pnas.2203828120 (2023).

```
sccomp_proportional_fold_change
```

Calculate Proportional Fold Change from sccomp Estimated Effects

Description

This function calculates the proportional fold change between two conditions using the estimated effects from a sccomp model. The fold changes are derived from the model's posterior predictions rather than raw counts, providing a more robust estimate that accounts for the model's uncertainty and covariate effects.

Note! This statistic is descriptive and should not be used to define significance - use sccomp_test() for that. While fold changes in proportions are easier to interpret than changes in logit space, they are not linear (the same proportional change has different meaning for rare vs abundant cell types). In contrast, the logit scale used internally by sccomp provides linear effects that are more appropriate for statistical inference.

Usage

```
sccomp_proportional_fold_change(.data, formula_composition, from, to)
```

Arguments

.data

A sccomp estimate object (of class 'sccomp_tbl') obtained from running sccomp_estimate(). This object contains the fitted model and estimated effects.

formula_composition

The formula specifying which model effects to use for calculating fold changes. This should match or be a subset of the formula used in the original sccomp_estimate()

call

from Character string specifying the reference/control condition (e.g., "benign").

to Character string specifying the comparison condition (e.g., "cancer").

Value

A tibble with the following columns:

- cell_group The cell group identifier
- proportion_fold_change The estimated fold change in proportions between conditions. Positive values indicate increases, negative values indicate decreases.
- average_uncertainty The average uncertainty in the fold change estimate, derived from the credible intervals
- statement A text description of the fold change, including the direction and the estimated proportions

```
print("cmdstanr is needed to run this example.")
# Note: Before running the example, ensure that the 'cmdstanr' package is installed:
# install.packages("cmdstanr", repos = c("https://stan-dev.r-universe.dev/", getOption("repos")))
```

```
if (instantiate::stan_cmdstan_exists()) {
  # Load example data
  data("counts_obj")
  # First estimate the composition effects
  estimate <- sccomp_estimate(</pre>
      counts_obj,
      ~ type,
      ~1,
      "sample",
      "cell_group",
      "count",
      cores = 1
  )
  # Calculate proportional fold changes from the estimated effects
  estimate |>
  sccomp_proportional_fold_change(
    formula_composition = ~ type,
    from = "benign",
    to = "cancer"
 )
}
```

sccomp_remove_outliers

sccomp_remove_outliers main

Description

The sccomp_remove_outliers function takes as input a table of cell counts with columns for cell-group identifier, sample identifier, integer count, and factors (continuous or discrete). The user can define a linear model using an input R formula, where the first factor is the factor of interest. Alternatively, sccomp accepts single-cell data containers (e.g., Seurat, SingleCellExperiment, cell metadata, or group-size) and derives the count data from cell metadata.

Usage

```
sccomp_remove_outliers(
    .estimate,
    percent_false_positive = 5,
    cores = detectCores(),
    inference_method = attr(.estimate, "inference_method"),
    output_directory = "sccomp_draws_files",
    verbose = TRUE,
    mcmc_seed = sample_seed(),
    max_sampling_iterations = 20000,
    enable_loo = FALSE,
    sig_figs = 9,
    cache_stan_model = sccomp_stan_models_cache_dir,
    approximate_posterior_inference = NULL,
```

```
variational_inference = NULL,
    ...
)
```

Arguments

.estimate

A tibble including a cell_group name column, sample name column, read counts column (optional depending on the input class), and factor columns.

percent_false_positive

A real number between 0 and 100 (not inclusive), used to identify outliers with a specific false positive rate.

cores

Integer, the number of cores to be used for parallel calculations.

inference_method

Character string specifying the inference method to use ('pathfinder', 'hmc', or 'variational').

output_directory

A character string specifying the output directory for Stan draws.

verbose

Logical, whether to print progression details.

mcmc_seed

Integer, used for Markov-chain Monte Carlo reproducibility. By default, a random number is sampled from 1 to 999999.

max_sampling_iterations

Integer, limits the maximum number of iterations in case a large dataset is used, to limit computation time.

enable_loo

Logical, whether to enable model comparison using the R package LOO. This is useful for comparing fits between models, similar to ANOVA.

sig_figs

Number of significant figures to use for Stan model output. Default is 9.

cache_stan_model

A character string specifying the cache directory for compiled Stan models. The sccomp version will be automatically appended to ensure version isolation. Default is sccomp_stan_models_cache_dir which points to ~/.sccomp_models.

approximate_posterior_inference

DEPRECATED, use the variational_inference argument.

variational_inference

DEPRECATED Logical, whether to use variational Bayes for posterior inference. It is faster and convenient. Setting this argument to FALSE runs full Bayesian (Hamiltonian Monte Carlo) inference, which is slower but the gold standard.

. Additional arguments passed to the cmdstanr::sample function.

Value

A tibble (tbl), with the following columns:

- cell_group The cell groups being tested.
- parameter The parameter being estimated from the design matrix described by the input formula_composition and formula_variability.
- factor The covariate factor in the formula, if applicable (e.g., not present for Intercept or contrasts).
- c_lower Lower (2.5%) quantile of the posterior distribution for a composition (c) parameter.

- c_effect Mean of the posterior distribution for a composition (c) parameter.
- c_upper Upper (97.5%) quantile of the posterior distribution for a composition (c) parameter.
- c_pH0 Probability of the c_effect being smaller or bigger than the test_composition_above_logit_fold_changer argument.
- c_FDR False discovery rate of the c_effect being smaller or bigger than the test_composition_above_logit_fo
 argument. False discovery rate for Bayesian models is calculated differently from frequentists
 models, as detailed in Mangiola et al, PNAS 2023.
- c_n_eff Effective sample size, the number of independent draws in the sample. The higher, the better.
- c_R_k_hat R statistic, a measure of chain equilibrium, should be within 0.05 of 1.0.
- v_lower Lower (2.5%) quantile of the posterior distribution for a variability (v) parameter.
- v_effect Mean of the posterior distribution for a variability (v) parameter.
- v_upper Upper (97.5%) quantile of the posterior distribution for a variability (v) parameter.
- v_pHO Probability of the v_effect being smaller or bigger than the test_composition_above_logit_fold_chan argument.
- v_FDR False discovery rate of the v_effect being smaller or bigger than the test_composition_above_logit_fo argument. False discovery rate for Bayesian models is calculated differently from frequentists models, as detailed in Mangiola et al, PNAS 2023.
- v_n_eff Effective sample size for a variability (v) parameter.
- v_R_k_hat R statistic for a variability (v) parameter, a measure of chain equilibrium.

The function also attaches several attributes to the result:

- count_data The original count data used in the analysis, stored as an attribute for efficient access.
- model input The model input data used for fitting.
- formula_composition The formula used for composition modeling.
- formula_variability The formula used for variability modeling.
- fit The Stan fit object (if pass_fit = TRUE).

References

S. Mangiola, A.J. Roth-Schulze, M. Trussart, E. Zozaya-Valdés, M. Ma, Z. Gao, A.F. Rubin, T.P. Speed, H. Shim, & A.T. Papenfuss, sccomp: Robust differential composition and variability analysis for single-cell data, Proc. Natl. Acad. Sci. U.S.A. 120 (33) e2203828120, https://doi.org/10.1073/pnas.2203828120 (2023).

```
print("cmdstanr is needed to run this example.")
# Note: Before running the example, ensure that the 'cmdstanr' package is installed:
# install.packages("cmdstanr", repos = c("https://stan-dev.r-universe.dev/", getOption("repos")))

if (instantiate::stan_cmdstan_exists()) {
    data("counts_obj")

    estimate = sccomp_estimate(
        counts_obj,
        ~ type,
```

```
~1,
    "sample",
    "cell_group",
    "count",
    cores = 1
) |>
    sccomp_remove_outliers(cores = 1)
}
```

sccomp_remove_unwanted_effects

Remove unwanted effects from a sccomp_tbl object

Description

This method removes unwanted effects from a dataset using the model estimates. For example, if you fit your data with the formula ~ factor_1 + factor_2 and use the formula ~ factor_1 to remove unwanted variation, the factor_2 effect will be factored out.

Usage

```
sccomp_remove_unwanted_effects(
   .data,
   formula_composition_keep = NULL,
   formula_composition = NULL,
   cores = detectCores()
)
```

Arguments

 $. \, data \qquad \qquad A \,\, sccomp_tbl \,\, object. \,\, The \,\, result \,\, of \,\, sccomp_estimate. \\ formula_composition_keep$

A formula. The formula describing the model for differential abundance, for example ~type. In this case, only the effect of the type factor will be preserved, while all other factors will be factored out.

 $formula_composition$

DEPRECATED. Use formula_composition_keep instead.

cores Integer, the number of cores to be used for parallel calculations.

Value

A tibble (tbl) with the following columns:

- sample A character column representing the sample name for which data was adjusted.
- **cell_group** A character column representing the cell group being tested.
- adjusted_proportion A numeric column representing the adjusted proportion after removing unwanted variation.
- adjusted_counts A numeric column representing the adjusted counts after removing unwanted variation.
- logit_residuals A numeric column representing the logit residuals calculated after adjustment.

References

S. Mangiola, A.J. Roth-Schulze, M. Trussart, E. Zozaya-Valdés, M. Ma, Z. Gao, A.F. Rubin, T.P. Speed, H. Shim, & A.T. Papenfuss, sccomp: Robust differential composition and variability analysis for single-cell data, Proc. Natl. Acad. Sci. U.S.A. 120 (33) e2203828120, https://doi.org/10.1073/pnas.2203828120 (2023).

Examples

```
print("cmdstanr is needed to run this example.")
# Note: Before running the example, ensure that the 'cmdstanr' package is installed:
# install.packages("cmdstanr", repos = c("https://stan-dev.r-universe.dev/", getOption("repos")))

if (instantiate::stan_cmdstan_exists()) {
    data("counts_obj")

    estimates = sccomp_estimate(
        counts_obj,
        ~ type, ~1, "sample", "cell_group", "count",
        cores = 1
    ) |>
        sccomp_remove_unwanted_effects()
```

sccomp_remove_unwanted_variation

DEPRECATED: Remove Unwanted Variation from sccomp Estimates

Description

This function is DEPRECATED. Please use sccomp_remove_unwanted_effects instead. This function uses the model to remove unwanted variation from a dataset using the estimates of the model. For example, if you fit your data with the formula ~ factor_1 + factor_2 and use the formula ~ factor_1 to remove unwanted variation, the factor_2 effect will be factored out.

Usage

```
sccomp_remove_unwanted_variation(
   .data,
   formula_composition_keep = NULL,
   formula_composition = NULL,
   formula_variability = NULL,
   cores = detectCores()
)
```

Arguments

.data A tibble. The result of sccomp_estimate.

```
formula_composition_keep
```

A formula. The formula describing the model for differential abundance, for example ~type. In this case, only the effect of the type factor will be preserved, while all other factors will be factored out.

formula_composition

DEPRECATED. Use formula_composition_keep instead.

formula_variability

DEPRECATED. Use formula_variability_keep instead.

cores

Integer, the number of cores to be used for parallel calculations.

Value

A tibble (tb1) with the following columns:

- sample A character column representing the sample name for which data was adjusted.
- cell_group A character column representing the cell group being tested.
- adjusted_proportion A numeric column representing the adjusted proportion after removing unwanted variation.
- adjusted_counts A numeric column representing the adjusted counts after removing unwanted variation.
- logit_residuals A numeric column representing the logit residuals calculated after adjustment

References

S. Mangiola, A.J. Roth-Schulze, M. Trussart, E. Zozaya-Valdés, M. Ma, Z. Gao, A.F. Rubin, T.P. Speed, H. Shim, & A.T. Papenfuss, sccomp: Robust differential composition and variability analysis for single-cell data, Proc. Natl. Acad. Sci. U.S.A. 120 (33) e2203828120, https://doi.org/10.1073/pnas.2203828120 (2023).

```
print("cmdstanr is needed to run this example.")
# Note: Before running the example, ensure that the 'cmdstanr' package is installed:
# install.packages("cmdstanr", repos = c("https://stan-dev.r-universe.dev/", getOption("repos")))

if (instantiate::stan_cmdstan_exists()) {
    data("counts_obj")

    estimates = sccomp_estimate(
        counts_obj,
        ~ type, ~1, "sample", "cell_group", "count",
        cores = 1
    ) |>
        sccomp_remove_unwanted_variation()
```

sccomp_replicate 27

sccomp_replicate

sccomp_replicate

Description

This function replicates counts from a real-world dataset.

Usage

```
sccomp_replicate(
   fit,
   formula_composition = NULL,
   formula_variability = NULL,
   number_of_draws = 1,
   mcmc_seed = sample_seed(),
   cache_stan_model = sccomp_stan_models_cache_dir
)
```

Arguments

fit The result of sccomp_estimate.

formula_composition

A formula. The formula describing the model for differential abundance, for example ~treatment. This formula can be a sub-formula of your estimated model; in this case all other factor will be factored out.

formula_variability

A formula. The formula describing the model for differential variability, for example ~treatment. In most cases, if differentially variability is of interest, the formula should only include the factor of interest as a large amount of data is needed to define variability depending to each factors. This formula can be a sub-formula of your estimated model; in this case all other factor will be factored out.

number_of_draws

An integer. How may copies of the data you want to draw from the model joint posterior distribution.

mcmc_seed

An integer. Used for Markov-chain Monte Carlo reproducibility. By default a random number is sampled from 1 to 999999. This itself can be controlled by set.seed()

cache_stan_model

A character string specifying the cache directory for compiled Stan models. The sccomp version will be automatically appended to ensure version isolation. Default is sccomp_stan_models_cache_dir which points to ~/.sccomp_models.

Value

A tibble tbl with cell_group-wise statistics

A tibble (tbl), with the following columns:

- cell_group A character column representing the cell group being tested.
- sample A factor column representing the sample name from which data was generated.

- generated_proportions A numeric column representing the proportions generated from the model.
- generated_counts An integer column representing the counts generated from the model.
- **replicate** An integer column representing the replicate number, where each row corresponds to a different replicate of the data.

References

S. Mangiola, A.J. Roth-Schulze, M. Trussart, E. Zozaya-Valdés, M. Ma, Z. Gao, A.F. Rubin, T.P. Speed, H. Shim, & A.T. Papenfuss, sccomp: Robust differential composition and variability analysis for single-cell data, Proc. Natl. Acad. Sci. U.S.A. 120 (33) e2203828120, https://doi.org/10.1073/pnas.2203828120 (2023).

Examples

```
print("cmdstanr is needed to run this example.")
# Note: Before running the example, ensure that the 'cmdstanr' package is installed:
# install.packages("cmdstanr", repos = c("https://stan-dev.r-universe.dev/", getOption("repos")))

if (instantiate::stan_cmdstan_exists() && .Platform$OS.type == "unix") {
    data("counts_obj")

    sccomp_estimate(
        counts_obj,
        ~ type, ~1, "sample", "cell_group", "count",
        cores = 1
    ) |>
        sccomp_replicate()
}
```

```
sccomp_stan_models_cache_dir
```

Default cache directory for Stan models

Description

A global variable that defines the default cache directory for Stan models used by the sccomp package. This directory is used to store compiled Stan models to avoid recompilation on subsequent runs.

Usage

```
sccomp_stan_models_cache_dir
```

Format

An object of class character of length 1.

sccomp_test 29

Details

The cache directory is set to ~/.sccomp_models by default. This location is used by various sccomp functions to store and retrieve compiled Stan models, improving performance by avoiding unnecessary recompilation of models that have already been compiled.

Users can override this default by specifying a different cache directory in function calls that accept a cache_stan_model parameter.

Value

A character string containing the path to the default cache directory.

See Also

```
sccomp_estimate, sccomp_replicate, clear_stan_model_cache
```

Examples

```
# View the default cache directory
sccomp_stan_models_cache_dir

# Use a custom cache directory in a function call
# sccomp_estimate(data, cache_stan_model = "/path/to/custom/cache")
```

 $sccomp_test$

sccomp_test

Description

This function test contrasts from a sccomp result.

Usage

```
sccomp_test(
   .data,
   contrasts = NULL,
   percent_false_positive = 5,
   test_composition_above_logit_fold_change = 0.1,
   pass_fit = TRUE
)
```

Arguments

.data

A tibble. The result of sccomp_estimate.

contrasts

A vector of character strings. For example if your formula is ~ 0 + treatment and the factor treatment has values yes and no, your contrast could be "constrasts = c(treatmentyes - treatmentno)".

percent_false_positive

A real between 0 and 100 non included. This used to identify outliers with a specific false positive rate.

30 sccomp_test

test_composition_above_logit_fold_change

A positive integer. It is the effect threshold used for the hypothesis test. A value of 0.2 correspond to a change in cell proportion of 10% for a cell type with baseline proportion of 50%. That is, a cell type goes from 45% to 50%. When the baseline proportion is closer to 0 or 1 this effect thrshold has consistent value in the logit uncontrained scale.

pass_fit

A boolean. Whether to pass the Stan fit as attribute in the output. Because the Stan fit can be very large, setting this to FALSE can be used to lower the memory imprint to save the output.

Value

A tibble (tbl), with the following columns:

- cell_group The cell groups being tested.
- parameter The parameter being estimated from the design matrix described by the input formula_composition and formula_variability.
- factor The covariate factor in the formula, if applicable (e.g., not present for Intercept or contrasts).
- c_lower Lower (2.5%) quantile of the posterior distribution for a composition (c) parameter.
- c_effect Mean of the posterior distribution for a composition (c) parameter.
- c_upper Upper (97.5%) quantile of the posterior distribution for a composition (c) parameter.
- c_pH0 Probability of the c_effect being smaller or bigger than the test_composition_above_logit_fold_changer argument.
- c_FDR False-discovery rate of the null hypothesis (no difference) for a composition (c).
- c_n_eff Effective sample size the number of independent draws in the sample, the higher the better.
- c_R_k_hat R statistic, a measure of chain equilibrium, should be within 0.05 of 1.0.
- v_lower Lower (2.5%) quantile of the posterior distribution for a variability (v) parameter.
- v_effect Mean of the posterior distribution for a variability (v) parameter.
- v upper Upper (97.5%) quantile of the posterior distribution for a variability (v) parameter.
- v_pH0 Probability of the null hypothesis (no difference) for a variability (v).
- v_FDR False-discovery rate of the null hypothesis (no difference) for a variability (v).
- v_n_eff Effective sample size for a variability (v) parameter.
- v R k hat R statistic for a variability (v) parameter.
- count_data Nested input count data.

References

S. Mangiola, A.J. Roth-Schulze, M. Trussart, E. Zozaya-Valdés, M. Ma, Z. Gao, A.F. Rubin, T.P. Speed, H. Shim, & A.T. Papenfuss, sccomp: Robust differential composition and variability analysis for single-cell data, Proc. Natl. Acad. Sci. U.S.A. 120 (33) e2203828120, https://doi.org/10.1073/pnas.2203828120 (2023).

sccomp_theme 31

Examples

```
print("cmdstanr is needed to run this example.")
# Note: Before running the example, ensure that the 'cmdstanr' package is installed:
# install.packages("cmdstanr", repos = c("https://stan-dev.r-universe.dev/", getOption("repos")))

if (instantiate::stan_cmdstan_exists()) {
    data("counts_obj")

    estimates = sccomp_estimate(
        counts_obj,
        ~ 0 + type, ~1, "sample", "cell_group", "count",
        cores = 1
    ) |>
        sccomp_test("typecancer - typebenign")
}
```

 $sccomp_theme$

Create a multipanel theme compatible with ggplot2 4.0.0 S7 system

Description

Creates a multipanel theme that is compatible with the new ggplot2 4.0.0 S7 system. This function creates a fresh theme object using the new S7 system instead of relying on the saved S3 theme object.

Usage

```
sccomp_theme()
```

Value

A ggplot2 theme object compatible with ggplot2 4.0.0

sce_obj

sce_obj

Description

Example SingleCellExperiment object containing gene expression data for 106,297 cells across two assays: counts and logcounts. The object includes metadata and assay data for RNA expression, which can be used directly in differential analysis functions like sccomp_glm.

Usage

```
data(sce_obj)
```

32 seurat_obj

Format

A SingleCellExperiment object with the following structure:

- assays: Two assays: counts (raw RNA counts) and logcounts (log-transformed counts).
- rowData: No additional row-level metadata is present.
- colData: Metadata for each cell, including six fields: sample, type, nFeature_RNA, ident, and others.
- dim: 1 feature and 106,297 cells.
- colnames: Cell identifiers for all 106,297 cells.

Value

A SingleCellExperiment object containing single-cell RNA expression data.

seurat_obj seurat_obj

Description

Example Seurat object containing gene expression data for 106,297 cells across a single assay. The object includes RNA counts and data layers, but no variable features are defined. This dataset can be directly used with functions like sccomp_glm for differential abundance analysis.

Usage

```
data(seurat_obj)
```

Format

A Seurat object with the following structure:

- assays: Contains gene expression data. The active assay is RNA, with 1 feature and no variable features.
- layers: Two layers: counts and data, representing raw and processed RNA expression values, respectively.
- samples: 106,297 samples (cells) within the RNA assay.

Value

A Seurat object containing single-cell RNA expression data.

simulate_data 33

simulate_data

simulate_data

Description

This function simulates data from a fitted model.

Usage

```
simulate_data(
    .data,
    .estimate_object,
    formula_composition,
    formula_variability = NULL,
    .sample = NULL,
    .cell_group = NULL,
    .coefficients = NULL,
    variability_multiplier = 5,
    number_of_draws = 1,
    mcmc_seed = sample_seed(),
    cores = detectCores(),
    sig_figs = 9,
    cache_stan_model = sccomp_stan_models_cache_dir
)
```

Arguments

.data

A tibble including a cell_group name column | sample name column | read counts column | factor columns | Pvalue column | a significance column

.estimate_object

The result of sccomp_estimate execution. This is used for sampling from real-data properties.

formula_composition

A formula. The formula describing the model for differential abundance, for example ~treatment

formula_variability

A formula. The formula describing the model for differential variability, for example ~treatment

. sample A column name as symbol. The sample identifier

.cell_group A column name as symbol. The cell_group identifier

. coefficients $\,$ The column names for coefficients, for example, $c(b_0,\,b_1)$

variability_multiplier

A real scalar. This can be used for artificially increasing the variability of the simulation for benchmarking purposes.

number_of_draws

An integer. How may copies of the data you want to draw from the model joint posterior distribution.

34 simulate_data

mcmc_seed An integer. Used for Markov-chain Monte Carlo reproducibility. By default a

random number is sampled from 1 to 999999. This itself can be controlled by set.seed()#' @param cores Integer, the number of cores to be used for parallel

calculations.

cores Integer, the number of cores to be used for parallel calculations.

sig_figs Number of significant figures to use for Stan model output. Default is 9.

cache_stan_model

A character string specifying the cache directory for compiled Stan models. The sccomp version will be automatically appended to ensure version isolation. Default is sccomp_stan_models_cache_dir which points to ~/.sccomp_models.

Value

A tibble (tbl) with the following columns:

- sample A character column representing the sample name.
- type A factor column representing the type of the sample.
- phenotype A factor column representing the phenotype in the data.
- count An integer column representing the original cell counts.
- **cell_group** A character column representing the cell group identifier.
- **b_0** A numeric column representing the first coefficient used for simulation.
- **b_1** A numeric column representing the second coefficient used for simulation.
- **generated_proportions** A numeric column representing the generated proportions from the simulation.
- generated_counts An integer column representing the generated cell counts from the simulation.
- replicate An integer column representing the replicate number for each draw from the posterior distribution.

References

S. Mangiola, A.J. Roth-Schulze, M. Trussart, E. Zozaya-Valdés, M. Ma, Z. Gao, A.F. Rubin, T.P. Speed, H. Shim, & A.T. Papenfuss, sccomp: Robust differential composition and variability analysis for single-cell data, Proc. Natl. Acad. Sci. U.S.A. 120 (33) e2203828120, https://doi.org/10.1073/pnas.2203828120 (2023).

```
print("cmdstanr is needed to run this example.")
# Note: Before running the example, ensure that the 'cmdstanr' package is installed:
# install.packages("cmdstanr", repos = c("https://stan-dev.r-universe.dev/", getOption("repos")))

if (instantiate::stan_cmdstan_exists()) {
    data("counts_obj")
    library(dplyr)

    estimate = sccomp_estimate(
        counts_obj,
        ~ type, ~1, "sample", "cell_group", "count",
        cores = 1
```

simulate_data 35

```
# Set coefficients for cell_groups. In this case all coefficients are 0 for simplicity.
counts_obj = counts_obj |> mutate(b_0 = 0, b_1 = 0)

# Simulate data
simulate_data(counts_obj, estimate, ~type, ~1, sample, cell_group, c(b_0, b_1))
}
```

Index

```
* datasets
    counts_obj, 4
    no_significance_df, 5
    sccomp_stan_models_cache_dir, 28
    sce_obj, 31
    seurat_obj, 32
clear_stan_model_cache, 3, 29
cmdstan_path, 3
counts_obj, 4
handle_missing_values, 5
no_significance_df, 5
plot.sccomp_tbl, 6
plot_1D_intervals, 7
plot_2D_intervals, 8
plot_scatterplot, 9
print.sccomp_tbl, 10
sccomp_boxplot, 11
sccomp_calculate_residuals, 13
sccomp_estimate, 14, 29
sccomp_predict, 18
sccomp_proportional_fold_change, 20
sccomp_remove_outliers, 21
sccomp\_remove\_unwanted\_effects, 24, 25
sccomp_remove_unwanted_variation, 25
sccomp_replicate, 27, 29
\verb|sccomp_stan_models_cache_dir|, 28|
sccomp_test, 29
sccomp_theme, 31
sce_obj, 31
seurat_obj, 32
simulate_data, 33
unlink, 3
```