Package ‘scCB2’

October 25, 2025

Version 1.19.0
Date 2023/4/18

Title CB2 improves power of cell detection in droplet-based
single-cell RNA sequencing data

Depends R (>=3.6.0)

Imports SingleCellExperiment, SummarizedExperiment, Matrix, methods,
utils, stats, edgeR, rhdf5, parallel, DropletUtils, doParallel,
iterators, foreach, Seurat

Suggests testthat (>= 2.1.0), KernSmooth, beachmat, knitr, BiocStyle,
rmarkdown

biocViews Datalmport, RNASeq, SingleCell, Sequencing, GeneExpression,
Transcriptomics, Preprocessing, Clustering

Description scCB2 is an R package implementing CB2 for distinguish-
ing real cells from empty droplets in droplet-based single cell RNA-seq experiments (espe-
cially for 10x Chromium).
It is based on clustering similar barcodes and calculating Monte-Carlo p-
value for each cluster to test against background distribution.
This cluster-level test outperforms single-barcode-level tests in dealing with low count bar-
codes and homogeneous sequencing library, while keeping FDR well controlled.

License GPL-3
NeedsCompilation yes
VignetteBuilder knitr
Encoding UTF-8
SystemRequirements C++11
RoxygenNote 7.1.2

URL https://github.com/zijianni/scCB2

BugReports https://github.com/zijianni/scCB2/issues
git_url https://git.bioconductor.org/packages/scCB2
git_branch devel

git_last_commit 96be392

git_last commit_date 2025-04-15

Repository Bioconductor 3.22

Date/Publication 2025-10-24

https://github.com/zijianni/scCB2
https://github.com/zijianni/scCB2/issues

2 CBZ2FindCell

Author Zijian Ni [aut, cre],
Shuyang Chen [ctb],
Christina Kendziorski [ctb]

Maintainer Zijian Ni <zni25@wisc.edu>

Contents
CB2FindCell 2
CheckBackgroundCutoff o 4
FilterGB 5
GetCellMat e 5
mbrainSub L 6
QuickCB2 7
ReadlOxRaw 8

Index 10

CB2FindCell Main function of distinguish real cells from empty droplets using
clustering-based Monte-Carlo test
Description

The main function of scCB2 package. Distinguish real cells from empty droplets using clustering-
based Monte-Carlo test.

Usage

CB2FindCell(
RawDat,
FDR_threshold = 9.01,
lower = 100,
upper = NULL,
GeneExpressionOnly = TRUE,
Ncores = 2,
TopNGene = 30000,
verbose = TRUE

Arguments

RawDat Matrix. Supports standard matrix or sparse matrix. This is the raw feature-by-
barcode count matrix.

FDR_threshold Numeric between 0 and 1. Default: 0.01. The False Discovery Rate (FDR) to
be controlled for multiple testing.

lower Positive integer. Default: 100. All barcodes whose total count below or equal
to this threshold are defined as background empty droplets. They will be used
to estimate the background distribution. The remaining barcodes will be test
against background distribution. If sequencing depth is deliberately made higher
(lower) than usual, this threshold can be leveled up (down) correspondingly to
get reasonable number of cells. Recommended sequencing depth for this default
threshold: 40,000~80,000 reads per cell.

CBZ2FindCell 3

upper Positive integer. Default: NULL. This is the upper threshold for large barcodes.
All barcodes whose total counts are larger or equal to upper threshold are di-
rectly classified as real cells prior to testing. If upper = NULL, the knee point
of the log rank curve of barcodes total counts will serve as the upper threshold,
which is calculated using package DropletUtils’s method. If upper = Inf, no
barcodes will be retained prior to testing. If manually specified, it should be
greater than pooling threshold.

GeneExpressionOnly
Logical. Default: TRUE. For 10x Cell Ranger version >=3, extra features (sur-
face proteins, cell multiplexing oligos, etc) besides genes are measured simulta-
neously. If GeneExpressionOnly = TRUE, only genes are used for testing. Re-
moving extra features are recommended because the default pooling threshold
(100) is chosen only for handling gene expression. Extra features expression
level is hugely different from gene expression level. If using the default pooling
threshold while keeping extra features, the estimated background distribution
will be hugely biased and does not reflect the real background distribution of
empty droplets.

Ncores Positive integer. Default: 2. Number of cores for parallel computation.

TopNGene Positive integer. Default: 30000. Number of top highly expressed genes to use.
This threshold avoids high number of false positives in ultra-high dimensional
datasets, e.g. 10x barnyard data.

verbose Logical. Default: TRUE. If verbose = TRUE, progressing messages will be printed.

Details

Input data is a feature-by-barcode matrix. Background barcodes are defined based on lower. Large
barcodes are automatically treated as real cells based on upper. Remaining barcodes will be first
clustered into subgroups, then tested against background using Monte-Carlo p-values simulated
from Multinomial distribution. The rest barcodes will be further tested using EmptyDrops (Aaron
T. L. Lun et. al. 2019). FDR is controlled based on FDR_threshold.

This function supports parallel computation. Ncores is used to specify number of cores.

Under CellRanger version >=3, extra features other than genes are simultaneously measured (e.g.
surface protein, cell multiplexing oligo). We recommend filtering them out using GeneExpressionOnly
= TRUE because the expression of extra features is not in the same scale as gene expression counts.

If using the default pooling threshold while keeping extra features, the estimated background distri-
bution will be hugely biased and does not reflect the real background distribution of empty droplets.
The resulting matrix will contain lots of barcodes who have almost zero gene expression and rela-
tively high extra features expression, which are usually not useful for RNA-Seq study.

Value

An object of class SummarizedExperiment. The slot assays contains the real cell barcode ma-
trix distinguished during cluster-level test, single-barcode-level test plus large cells who exceed the
upper threshold. The slot metadata contains (1) testing statistics (Pearson correlation to the back-
ground) for all candidate barcode clusters, (2) barcode IDs for all candidate barcode clusters, the
name of each cluster is its median barcode size, (3) testing statistics (log likelihood under back-
ground distribution) for remaining single barcodes not clustered, (4) background distribution count
vector without Good-Turing correction.

Examples

raw data, all barcodes

CheckBackgroundCutoff

data(mbrainSub)
str(mbrainSub)

run CB2 on the first 10000 barcodes

CBOut <- CB2FindCell(mbrainSub[,1:10000], FDR_threshold = 0.01,
lower = 100, Ncores = 2)

RealCell <- GetCellMat(CBOut, MTfilter = 0.05)

real cells
str(RealCell)

CheckBackgroundCutoff Check different background cutoffs and recommend an appropriate
one

Description

The key parameter of CB2 as well as other similar methods is the background cutoff, which divides
barcodes into two groups: (1) small barcodes that are most likely to be background; (2) the rest
barcodes that can be either background or cell, and remain to be tested. Those small barcodes
will be used to estimate a background distribution, which guides the identification of cells from
background. It is crucial to have an unbiased estimation of the background distribution.

Usage

CheckBackgroundCutoff (RawDat)

Arguments
RawDat Matrix. Supports standard matrix or sparse matrix. This is the raw feature-by-
barcode count matrix.
Details

An appropriate background cutoff should be reasonably large to contain enough background infor-
mation, but shouldn’t be too large to mistakenly include real cells. We recommend a background
cutoff which (1) puts more than 90 (2) puts more than 10 The smallest cutoff satisfying either
condition is the recommended cutoff.

Value

A list containing a data frame summarizing background information under different background
cutoffs, and the recommended background cutoff for the input data. For the data frame, ‘n_bg_bcs*
is the number of barcodes less or equal to the cutoff, ‘n_bg_counts* is the number of UMI counts
within the barcodes less or equal to the cutoff, ‘prop_bg_bcs‘ and ‘prop_bg_counts* are the corre-
sponding proportions.

Examples

data(mbrainSub)
CheckBackgroundCutoff(mbrainSub)

FilterGB 5

FilterGB Filter out low count genes and barcodes from count matrix

Description

This function is used for filtering out low count genes and barcodes from count matrix based on total
gene expression count (row sums) and barcode expression count (column sums). CB2FindCell has
already integrated this function into it with g_threshold = @ and b_threshold = @. If users plan to
customize their filtering threshold, this function can be applied to the raw expression count matrix
prior to running CB2FindCell.

Usage
FilterGB(dat, g_threshold = @, b_threshold = 0)

Arguments

dat Input count matrix to be filtered.

g_threshold Nonnegative integer. Default: 0. Filtering threshold for genes. Any gene whose
total expression count is less or equal to g_threshold will be filtered out.

b_threshold Nonnegative integer. Default: @. Filtering threshold for barcodes. Any barcode
whose total count is less or equal to b_threshold will be filtered out.

Value

A filtered matrix with the same format as input matrix.

Examples

data(mbrainSub)

dim(mbrainSub)

mbrainSub_f <- FilterGB(mbrainSub)
dim(mbrainSub_f)

GetCellMat Extract real cell matrix from CB2FindCell output and optionally filter
out low-quality cells

Description

Handy function to extract real cell matrix from CB2FindCell output. It provides the option to filter
out broken cells based on proportion of mitochondrial gene expressions. The input can also be a
sparse matrix only for cell filtering.

Usage
GetCellMat(CBout, MTfilter = @.25, MTgene = NULL)

6 mbrainSub

Arguments

CBout Output object from CB2FindCell, or a sparse matrix (for example, from QuickCB2).

MTfilter Numeric value between 0 and 1. Default: @.25. For each barcode, if the pro-
portion of mitochondrial gene expression exceeds MTfilter, this barcode will
be filtered out. By default, cell barcodes with more than 25 filtered out. Set
MTfilter =1 for no filtering.

The proportion of mitochondrial gene expressions is usually a criterion for eval-
uating cell quality, and is calculated using the scaled sum of all genes starting
with "MT-" (human) or "mt-" (mouse) if row names are gene symbols, or cus-
tomized mitochondrial genes specified by MTgene.

MTgene Character vector. User may specify customized mitochondrial gene names to
perform the filtering. This should correspond to a subset of row names in raw
data.

Value

A dgCMatrix count matrix of real cells.

Examples

Please also refer to the example in function CB2FindCell.

Simulate CB2FindCell output object.
library(SummarizedExperiment)

data(mbrainSub)

mbrainReal <- mbrainSub[,Matrix::colSums(mbrainSub)>500]

CBOut <- SummarizedExperiment(
list(cell_matrix = mbrainReall,sample(ncol(mbrainReal),
200, replace = TRUE)1))

Get cell matrix, filtering out barcodes with
more than 10% of counts from mitochondrial genes.

RealCell <- GetCellMat(CBOut, MTfilter = 0.1)
str(RealCell)

mbrainSub Subset of 1k Brain Cells from an E18 Mouse

Description

1k Brain Cells from an E18 Mouse is a public dataset from 10X Genomics. This subset is the first
50,000 barcodes of original data.

Usage

data(mbrainSub)

QuickCB2

Format

An object of class "dgCMatrix".

Source

1k Brain Cells from an E18 Mouse

Examples

data(mbrainSub)
str(mbrainSub)

QuickCB2

All-in-one function from raw data to filtered cell matrix

Description

All-in-one function for scCB2. Take 10x output raw data as input and return either a matrix of real
cells identified by CB2 or a Seurat object containing this matrix, which can be incorporated with
downstream analysis using Seurat pipeline.

’

=0.01,

’

The directory of 10x output data. For Cell Ranger version <3, directory should
include three files: barcodes.tsv, genes.tsv, matrix.mtx. For Cell Ranger ver-
sion >=3, directory should include three files: barcodes.tsv.gz, features.tsv.gz,
matrix.mtx.gz.

Usage
QuickCB2(
dir = NULL,
h5file = NULL
FDR_threshold
MTfilter = 1,
MTgene = NULL
AsSeurat = FALSE,
Ncores = 2,
)
Arguments
dir
h5file

FDR_threshold

MTfilter

The path of 10x output HDFS file (ended with .h5).

Numeric between 0 and 1. Default: 0.01. The False Discovery Rate (FDR) to
be controlled for multiple testing.

Numeric value between 0 and 1. Default: 1 (No filtering). For each barcode,
if the proportion of mitochondrial gene expression exceeds MTfilter, this bar-
code will be filtered out. No barcode exceeds 100% mitochondrial gene ex-
pression, thus the default (100%) corresponds to no filtering. The proportion of
mitochondrial gene expressions is usually a criterion for evaluating cell quality,
and is calculated using the scaled sum of all genes starting with "MT-" (human)
or "mt-" (mouse) if row names are gene symbols, or customized mitochondrial
genes specified by MTgene.

http://cf.10xgenomics.com/samples/cell-exp/2.1.0/neurons_900

MTgene

AsSeurat

Ncores

Details

ReadlOxRaw

Character vector. User may specify customized mitochondrial gene IDs to per-
form the filtering. This should correspond to a subset of row names in raw data.

Logical. Default: FALSE. Decides whether a Seurat object is returned instead
of cell matrix. Set to TRUE so that users can directly apply Seurat pipeline for
downstream analyses.

Positive integer. Default: detectCores() - 2. Number of cores for parallel
computation.

Additional arguments to be passed to CB2FindCell.

QuickCB2 is a quick function to apply CB2 on 10x Cell Ranger raw data by combining Read1@xRaw,
Read10@xRawH5, CB2FindCell and GetCellMat into one simple function under default parameters.

Value

Either a sparse matrix of real cells identified by CB2 or a Seurat object containing real cell matrix.

Examples

simulate 10x output files

data(mbrainSub)

mbrainSub <- mbrainSub[,1:10000]

data_dir <- file.path(tempdir(),"CB2example")
dir.create(data_dir)

gene_name <- rownames(mbrainSub)

For simplicity, use gene names to generate gene IDs to fit the format.
gene_id <- paste@("ENSG_fake_",gene_name)
barcode_id <- colnames(mbrainSub)
Matrix::writeMM(mbrainSub,file = file.path(data_dir,"matrix.mtx"))
write.table(barcode_id,file = file.path(data_dir,"barcodes.tsv"),
sep = "\t", quote = FALSE, col.names = FALSE, row.names = FALSE)
write.table(cbind(gene_id,gene_name),file = file.path(data_dir,"genes.tsv"),
sep = "\t", quote = FALSE, col.names = FALSE, row.names = FALSE)

Run QuickCB2 on 10x raw data and get cell matrix.
Control FDR at 1%. Use 2-core parallel computation.

RealCell <- QuickCB2(dir = data_dir,

str(RealCell)

FDR_threshold = 0.01,
Ncores = 2)

Read10xRaw

Read 10x output data

Description

Read10@xRaw is a one-line handy function for reading 10x Cell Ranger output data, producing a count
matrix for input to CB2FindCell. Read1@xRawH5 is for reading 10x Cell Ranger output HDFS5 file
(ended with .h5). Works under both old (<3) and new (>=3) Cell Ranger version.

Readl0xRaw

Usage
Read10xRaw(dir

= NULL, row.name = "symbol"”, meta = FALSE)

Read10xRawH5(h5file, row.name = "symbol"”, meta = FALSE)

Arguments

dir

row.name

meta

h5file

Value

The directory of 10x output data. For Cell Ranger version <3, directory should
include three files: barcodes.tsv, genes.tsv, matrix.mtx. For Cell Ranger ver-
sion >=3, directory should include three files: barcodes.tsv.gz, features.tsv.gz,
matrix.mtx.gz.

Specify either using gene symbols (row.name = "symbol”) or gene Ensembl
IDs (row.name = "id") as row names of the count matrix. Default is row.name
= "symbol".

Logical. If TRUE, returns a list containing both the count matrix and metadata
of genes (features). Metadata includes feature names, IDs and other additional

information depending on Cell Ranger output. If FALSE (default), only returns
the count matrix.

The path of 10x output HDFS file (ended with .h5).

If meta = TRUE, returns a list of two elements: a "dgCMatrix" sparse matrix containing expression
counts and a data frame containing metadata of genes (features). For the count matrix, each row is
a gene (feature) and each column is a barcode. If meta = FALSE, only returns the count matrix.

Examples

simulate 10x output files

data(mbrainSub)

data_dir <- file.path(tempdir(),"CB2example”)
dir.create(data_dir)
gene_name <- rownames(mbrainSub)

For simplicity, use gene names to generate gene IDs to fit the format.
gene_id <- paste@("ENSG_fake_", gene_name)
barcode_id <- colnames(mbrainSub)
Matrix::writeMM(mbrainSub,file = file.path(data_dir,"matrix.mtx"))
write.table(barcode_id,file = file.path(data_dir,"barcodes.tsv"),
sep = "\t", quote = FALSE, col.names = FALSE, row.names = FALSE)
write.table(cbind(gene_id,gene_name),file = file.path(data_dir,"genes.tsv"),
sep = "\t", quote = FALSE, col.names = FALSE, row.names = FALSE)

read files

list.files(data_dir)

mbrainSub_new <-

Read10@xRaw(data_dir)

str(mbrainSub_new)
identical (mbrainSub, mbrainSub_new)

Index

x datasets
mbrainSub, 6

CB2FindCell, 2
CheckBackgroundCutoff, 4

FilterGB, 5
GetCellMat, 5
mbrainSub, 6
QuickCB2,7

Read10xRaw, 8
Read10xRawH5 (Read10xRaw), 8

10

	CB2FindCell
	CheckBackgroundCutoff
	FilterGB
	GetCellMat
	mbrainSub
	QuickCB2
	Read10xRaw
	Index

