
Package ‘qpgraph’
October 24, 2025

Title Estimation of Genetic and Molecular Regulatory Networks from
High-Throughput Genomics Data

Version 2.43.1

Description
Estimate gene and eQTL networks from high-throughput expression and genotyping assays.

License GPL (>= 2)

Depends R (>= 3.5)

Imports methods, parallel, Matrix (>= 1.5-0), grid, annotate, graph
(>= 1.45.1), Biobase, S4Vectors, BiocParallel, AnnotationDbi,
IRanges, Seqinfo, GenomicRanges, GenomicFeatures, mvtnorm, qtl,
Rgraphviz

Suggests RUnit, BiocGenerics, BiocStyle, genefilter, org.EcK12.eg.db,
rlecuyer, snow, Category, GOstats

LazyData yes

URL https://github.com/rcastelo/qpgraph

BugReports https://github.com/rcastelo/qpgraph/issues

biocViews Microarray, GeneExpression, Transcription, Pathways,
NetworkInference, GraphAndNetwork, GeneRegulation, Genetics,
GeneticVariability, SNP, Software

git_url https://git.bioconductor.org/packages/qpgraph

git_branch devel

git_last_commit a352aa4

git_last_commit_date 2025-07-23

Repository Bioconductor 3.22

Date/Publication 2025-10-23

Author Robert Castelo [aut, cre],
Alberto Roverato [aut]

Maintainer Robert Castelo <robert.castelo@upf.edu>

Contents
qpgraph-package . 3
EcoliOxygen . 4

1

https://github.com/rcastelo/qpgraph
https://github.com/rcastelo/qpgraph/issues

2 Contents

eQTLcross-class . 5
eQTLnetwork-class . 6
eQTLnetworkEstimate . 6
eQTLnetworkEstimationParam-class . 6
filterCollinearities . 7
graphParam-class . 8
HMgmm-class . 8
qpAllCItests . 10
qpAnyGraph . 12
qpAvgNrr . 14
qpBoundary . 17
qpCItest . 18
qpClique . 21
qpCliqueNumber . 23
qpCov . 25
qpEdgeNrr . 26
qpFunctionalCoherence . 29
qpG2Sigma . 32
qpGenNrr . 33
qpGetCliques . 36
qpGraph-class . 38
qpGraphDensity . 39
qpHist . 41
qpHTF . 42
qpImportNrr . 44
qpIPF . 45
qpK2ParCor . 46
qpNrr . 47
qpPAC . 51
qpPathWeight . 53
qpPCC . 54
qpPlotMap . 56
qpPlotNetwork . 57
qpPrecisionRecall . 59
qpPRscoreThreshold . 60
qpRndGraph . 61
qpRndWishart . 63
qpTopPairs . 64
qpUnifRndAssociation . 65
qpUpdateCliquesRemoving . 66
SsdMatrix-class . 68
UGgmm-class . 68

Index 70

qpgraph-package 3

qpgraph-package Estimation of genetic and molecular regulatory networks from high-
throughput genomics data

Description

Estimate gene and eQTL networks from high-throughput expression and genotyping assays.

Functions

• qpNrr estimates non-rejection rates for every pair of variables.

• qpAvgNrr estimates average non-rejection rates for every pair of variables.

• qpGenNrr estimates generalized average non-rejection rates for every pair of variables.

• qpEdgeNrr estimate the non-rejection rate of one pair of variables.

• qpCItest performs a conditional independence test between two variables given a condition-
ing set.

• qpHist plots the distribution of non-rejection rates.

• qpGraph obtains a qp-graph from a matrix of non-rejection rates.

• qpAnyGraph obtains an undirected graph from a matrix of pairwise measurements.

• qpGraphDensity calculates and plots the graph density as function of the non-rejection rate.

• qpCliqueNumber calculates the size of the largest maximal clique (the so-called clique number
or maximum clique size) in a given undirected graph.

• qpClique calculates and plots the size of the largest maximal clique (the so-called clique
number or maximum clique size) as function of the non-rejection rate.

• qpGetCliques finds the set of (maximal) cliques of a given undirected graph.

• qpRndWishart random generation for the Wishart distribution.

• qpCov calculates the sample covariance matrix, just as the function cov() but returning a
dspMatrix-class object which efficiently stores such a dense symmetric matrix.

• qpG2Sigma builds a random covariance matrix from an undrected graph. The inverse of the
resulting matrix contains zeroes at the missing edges of the given undirected graph.

• qpUnifRndAssociation builds a matrix of uniformly random association values between -
1 and +1 for all pairs of variables that follow from the number of variables given as input
argument.

• qpK2ParCor obtains the partial correlation coefficients from a given concentration matrix.

• qpIPF performs maximum likelihood estimation of a sample covariance matrix given the in-
dependence constraints from an input list of (maximal) cliques.

• qpPAC estimates partial correlation coefficients and corresponding P-values for each edge in a
given undirected graph, from an input data set.

• qpPCC estimates pairwise Pearson correlation coefficients and their corresponding P-values
between all pairs of variables from an input data set.

• qpRndGraph builds a random undirected graph with a bounded maximum connectivity degree
on every vertex.

• qpPrecisionRecall calculates the precision-recall curve for a given measure of association
between all pairs of variables in a matrix.

4 EcoliOxygen

• qpPRscoreThreshold calculates the score threshold at a given precision or recall level from
a given precision-recall curve.

• qpFunctionalCoherence estimates functional coherence of a given transcriptional regulatory
network using Gene Ontology annotations.

• qpTopPairs reports a top number of pairs of variables according to either an association
measure and/or occurring in a given reference graph.

• qpPlotNetwork plots a network using the Rgraphviz library.

This package provides an implementation of the procedures described in (Castelo and Roverato,
2006, 2009) and (Tur, Roverato and Castelo, 2014). An example of its use for reverse-engineering
of transcriptional regulatory networks from microarray data is available in the vignette qpTxRegNet
and, the same directory, contains a pre-print of a book chapter describing the basic functionality of
the package which serves the purpose of a basic users’s guide. This package is a contribution to the
Bioconductor (Gentleman et al., 2004) and gR (Lauritzen, 2002) projects.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n. J. Mach. Learn. Res., 7:2621-2650, 2006.

Castelo, R. and Roverato, A. Reverse engineering molecular regulatory networks from microarray
data with qp-graphs. J. Comput. Biol. 16(2):213-227, 2009.

Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier,
L., Ge, Y., Gentry, J., Hornik, K. Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li,
C., Maechler, M. Rosinni, A.J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, T.Y.H. and
Zhang, J. Bioconductor: open software development for computational biology and bioinformatics.
Genome Biol., 5:R80, 2004.

Lauritzen, S.L. gRaphical Models in R. R News, 3(2)39, 2002.

Tur, I., Roverato, A. and Castelo, R. Mapping eQTL networks with mixed graphical Markov mod-
els. Genetics, 198:1377-1393, 2014.

EcoliOxygen Preprocessed microarray oxygen deprivation data and filtered Regu-
lonDB data

Description

The data consist of two classes of objects, one containing normalized gene expression microar-
ray data from Escherichia coli (E. coli) and the other containing a subset of filtered RegulonDB
transcription regulatory relationships on E. coli.

Usage

data(EcoliOxygen)

eQTLcross-class 5

Format

gds680.eset ExpressionSet object containing n=43 experiments of various mutants under oxygen deprivation (Covert et al., 2004). The mutants were designed to monitor the response from E. coli during an oxygen shift in order to target the a priori most relevant part of the transcriptional network by using six strains with knockouts of five key transcriptional regulators in the oxygen response (arcA, appY, fnr, oxyR and soxS). The data was obtained by downloading the corresponding CEL files from the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) under accession GDS680 and then normalized using the rma() function from the affy package. Following the steps described in (Castelo and Roverato, 2009) probesets were mapped to Entrez Gene Identifiers and filtered such that the current ExpressionSet object contains a total of p=4205 genes. The slot featureNames has already the corresponding Entrez Gene IDs.
subset.gds680.eset ExpressionSet object corresponding to a subset of gds680.eset defined by the transcription factor genes that were knocked-out in the experiments by Covert et al. (2004) and their putative targets according to the RegulonDB database version 6.1.
filtered.regulon6.1 Data frame object containing a subset of the E. coli transcriptional network from RegulonDB 6.1 (Gama-Castro et al, 2008) obtained through the filtering steps described in (Castelo and Roverato, 2009). In this data frame each row corresponds to a transcriptional regulatory relationship and the first two columns contain Blattner IDs of the transcription factor and target genes, respectively, and the following two correspond to the same genes but specified by Entrez Gene IDs. The fifth column contains the direction of the regulation according to RegulonDB.
subset.filtered.regulon6.1 Subset of filtered.regulon6.1 containing the transcriptional regulatory relationships in RegulonDB version 6.1 that involve the transcription factor genes which were knocked-out in the experiments by Covert et al. (2004).

Source

Covert, M.W., Knight, E.M., Reed, J.L., Herrgard, M.J., and Palsson, B.O. Integrating high-throughput
and computational data elucidates bacterial networks. Nature, 429(6987):92-96, 2004.

Gama-Castro, S., Jimenez-Jacinto, V., Peralta-Gil, M., Santos-Zavaleta, A., Penaloza-Spinola, M.I.,
Contreras-Moreira, B., Segura-Salazar, J., Muniz-Rascado, L., Martinez-Flores, I., Salgado, H.,
Bonavides-Martinez, C., Abreu-Goodger, C., Rodriguez-Penagos, C., Miranda-Rios, J., Morett,
E., Merino, E., Huerta, A.M., Trevino-Quintanilla, L., and Collado-Vides, J. RegulonDB (version
6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental)
annotated promoters and Textpresso navigation. Nucleic Acids Res., 36(Database issue):D120-124,
2008.

References

Castelo, R. and Roverato, A. Reverse engineering molecular regulatory networks from microarray
data with qp-graphs. J. Comp. Biol., 16(2):213-227, 2009.

Examples

data(EcoliOxygen)
ls()

eQTLcross-class eQTL experimental cross model class

Description

The expression quantitative trait loci (eQTL) experimental cross model class serves the purpose of
holding all necessary information to simulate genetical genomics data from an experimental cross.

Author(s)

R. Castelo

https://www.ncbi.nlm.nih.gov/geo/

6 eQTLnetworkEstimationParam-class

eQTLnetwork-class eQTL network model class

Description

The expression quantitative trait loci (eQTL) network class serves the purpose of holding the result
of estimating an eQTL network from genetical genomics data.

Author(s)

R. Castelo

See Also

eQTLnetworkEstimationParam-class eQTLcross-class

eQTLnetworkEstimate Estimation of a eQTL network from genetical genomics data

Description

The methods eQTLnetworkEstimate() perform the estimation of eQTL networks from genet-
ical genomics data using as input an eQTLnetworkEstimationParam object and, eventually, a
eQTLnetwork-class object.

Author(s)

R. Castelo

See Also

eQTLnetworkEstimationParam eQTLnetwork-class

eQTLnetworkEstimationParam-class

eQTL network parameter model class

Description

The expression quantitative trait loci (eQTL) network parameter class serves the purpose of holding
the parameter information to estimate an eQTL network from genetical genomics data with the
function eQTLnetworkEstimate.

Author(s)

R. Castelo

See Also

eQTLnetworkEstimate eQTLnetwork-class

filterCollinearities 7

filterCollinearities Filter collinearities

Description

Filters out variables or features that lead to collinearities in the input data.

Usage

filterCollinearities(X, soft.filter=FALSE, long.dim.are.variables=TRUE)

Arguments

X data set where collinearities are identified.

soft.filter logical; if FALSE (default) then the intput object X is returned without the vari-
ables or features that lead to collinearities, i.e., a hard-filtered version of X; if
TRUE, then a logical mask is returned with as many positions as variables or
features and those that lead to collinearities are set to TRUE, while the rest are set
to FALSE.

long.dim.are.variables

logical; if TRUE (default) it is assumed that when X is a data.frame or a ma-
trix, the longer dimension is the one defining the random variables (default); if
FALSE, then random variables are assumed to be at the columns of the data.frame
or matrix.

Details

The input object X can be either a matrix object, a data.frame object or any other class of object
that can be handled by the function qpPCC(), which is internally called, such as an ExpressionSet
object.

Value

The input object X without the variables or features that lead to collinearities when soft.filter=FALSE,
its default value. Otherwise, when soft.filter=TRUE then a logical mask is returned.

Author(s)

R. Castelo

See Also

qpPCC

Examples

build an undirected GMM model with
average correlation 0.99 on the present edges
set.seed(1234)
gmm <- rUGgmm(dRegularGraphParam(), rho=0.99)
gmm

8 HMgmm-class

sample n=100 observations from this GMM
X <- rmvnorm(100, gmm)
dim(X)
head(X)

notice some variables lead to collinearities (r > 0.99)
cor(X)

mask those variables
mask <- filterCollinearities(X, long.dim.are.variables=FALSE,

soft.filter=TRUE)
mask
head(X[, !mask])

graphParam-class Graph parameter classes

Description

Graph parameter classes are defined to ease the simulation of different types of graphs by using a
single interface rgraphBAM().

Author(s)

R. Castelo

HMgmm-class Homogeneous mixed graphical Markov model

Description

The "HMgmm" class is the class of homogeneous mixed graphical Markov models defined within the
qpgraph package to store simulate and manipulate this type of graphical Markov models (GMMs).

An homogeneous mixed GMM is a family of multivariate conditional Gaussian distributions on
mixed discrete and continuous variables sharing a set of conditional independences encoded by
means of a marked graph. Further details can be found in the book of Lauritzen (1996).

Objects from the Class

Objects can be created by calls of the form HMgmm(g, ...) corresponding to constructor methods
or rHMgmm(n, g, ...) corresponding to random simulation methods.

Slots

pI: Object of class "integer" storing the number of discrete random variables.

pY: Object of class "integer" storing the number of continuous random variables.

g: Object of class graphBAM-class storing the associated marked graph.

vtype: Object of class "factor" storing the type (discrete or continuous) of each random variable.

dLevels: Object of class "integer" storing the number of levels of each discrete random variable.

HMgmm-class 9

a: Object of class "numeric" storing the vector of additive linear effects on continuous variables
connected to discrete ones.

rho: Object of class "numeric" storing the value of the marginal correlation between two contin-
uous random variables.

sigma: Object of class dspMatrix-class storing the covariance matrix.

mean: Object of class "numeric" storing the mean vector.

eta2: Object of class "numeric" storing for each continuous variable connected to a discrete one,
the fraction of variance of the continuous variable explained by the discrete one.

Methods

HMgmm(g) Constructor method where g can be either an adjacency matrix or a graphBAM-class
object.

rHMgmm(n, g) Constructor simulation method that allows one to simulate homogeneous mixed
GMMs where n is the number of GMMs to simulate and g can be either a markedGraphParam
object, an adjacency matrix or a graphBAM-class object.

names(x) Accessor method to obtain the names of the elements in the object x that can be retrieved
with the $ accessor operator.

$ Accessor operator to retrieve elements of the object in an analogous way to a list.

dim(x) Dimension of the homogeneous mixed GMM corresponding to the number of discrete and
continuous random variables.

dimnames(x) Names of the discrete and continuous random variables in the homogeneous mixed
GMM.

show(object) Method to display some bits of information about the input homogeneous mixed
GMM specified in object.

summary(object) Method to display a sumamry of the main features of the input homogeneous
mixed GMM specified in object.

plot(x, ...) Method to plot the undirected graph associated to the the input homogeneous mixed
GMM specified in x. It uses the plotting capabilities from the Rgraphviz library to which
further arguments specified in ... are further passed.

Author(s)

R. Castelo

References

Lauritzen, S.L. Graphical models. Oxford University Press, 1996.

See Also

UGgmm

10 qpAllCItests

qpAllCItests Tests of conditional independence

Description

Performs a test of conditional independence for every pair of variables.

Usage

S4 method for signature 'matrix'
qpAllCItests(X, I=NULL, Q=NULL, pairup.i=NULL, pairup.j=NULL,

long.dim.are.variables=TRUE, exact.test=TRUE,
use=c("complete.obs", "em"), tol=0.01,

return.type=c("p.value", "statn", "all"), verbose=TRUE,
R.code.only=FALSE, clusterSize=1, estimateTime=FALSE,

nAdj2estimateTime=10)

Arguments

X data set from where to estimate the non-rejection rates. It can be an Expression-
Set object, a data frame or a matrix.

I indexes or names of the variables in X that are discrete. See details below re-
garding this argument.

Q indexes or names of the variables in X forming the conditioning set.

pairup.i subset of vertices to pair up with subset pairup.j

pairup.j subset of vertices to pair up with subset pairup.i
long.dim.are.variables

logical; if TRUE it is assumed that when data are in a data frame or in a matrix, the
longer dimension is the one defining the random variables (default); if FALSE,
then random variables are assumed to be at the columns of the data frame or
matrix.

exact.test logical; if FALSE an asymptotic conditional independence test is employed with
mixed (i.e., continuous and discrete) data; if TRUE (default) then an exact con-
ditional independence test with mixed data is employed. See details below re-
garding this argument.

use a character string defining the way in which calculations are done in the presence
of missing values. It can be either "complete.obs" (default) or "em".

tol maximum tolerance controlling the convergence of the EM algorithm employed
when the argument use="em".

return.type type of value returned by this function. By default "p.value" indicates that a
list containing a matrix of p-values from all performed conditional independence
(CI) tests will be returned. If return.type="statn" then a list containing the
matrix of the statistics and the sample sizes on each CI test, will be returned. If
return.type="all" then all previous matrices of values will be returned within
a list.

verbose show progress on the calculations.

R.code.only logical; if FALSE then the faster C implementation is used (default); if TRUE then
only R code is executed.

qpAllCItests 11

clusterSize size of the cluster of processors to employ if we wish to speed-up the calcula-
tions by performing them in parallel. A value of 1 (default) implies a single-
processor execution. The use of a cluster of processors requires having previ-
ously loaded the packages snow and rlecuyer.

estimateTime logical; if TRUE then the time for carrying out the calculations with the given pa-
rameters is estimated by calculating for a limited number of adjacencies, speci-
fied by nAdj2estimateTime, and extrapolating the elapsed time; if FALSE (de-
fault) calculations are performed normally till they finish.

nAdj2estimateTime

number of adjacencies to employ when estimating the time of calculations (estimateTime=TRUE).
By default this has a default value of 10 adjacencies and larger values should
provide more accurate estimates. This might be relevant when using a cluster
facility.

Details

When I is set different to NULL then mixed graphical model theory is employed and, concretely,
it is assumed that the data comes from an homogeneous conditional Gaussian distribution. By
default, with exact.test=TRUE, an exact test for conditional independence is employed, otherwise
an asymptotic one will be used. Full details on these features can be found in Tur, Roverato and
Castelo (2014).

Value

A list with three entries called p.value, statistic and n corresponding to a dspMatrix-class
symmetric matrix of p-values for the null hypothesis of coindtional independence with the diagonal
set to NA values, an analogous matrix of the statistics of each test and of the sample sizes, respec-
tively. These returned values, however, depend on the setting of argument return.type which, by
default, enables only returning the matrix of p-values. If arguments pairup.i and pairup.j are
employed, those cells outside the constrained pairs will get also a NA value.

Note, however, that when estimateTime=TRUE, then instead of the matrix of estimated non-rejection
rates, a vector specifying the estimated number of days, hours, minutes and seconds for completion
of the calculations is returned.

Author(s)

R. Castelo, A. Roverato and I. Tur

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n, J. Mach. Learn. Res., 7:2621-2650, 2006.

Tur, I., Roverato, A. and Castelo, R. Mapping eQTL networks with mixed graphical Markov mod-
els. Genetics, 198:1377-1393, 2014.

See Also

qpCItest

12 qpAnyGraph

Examples

library(mvtnorm)

nVar <- 50 ## number of variables
maxCon <- 3 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate

set.seed(123)

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

alltests <- qpAllCItests(X, verbose=FALSE)

distribution of p-values for the present edges
summary(alltests$p.value[upper.tri(alltests$p.value) & A])

distribution of p-values for the missing edges
summary(alltests$p.value[upper.tri(alltests$p.value) & !A])

qpAnyGraph A graph

Description

Obtains an undirected graph from a matrix of pairwise measurements

Usage

qpAnyGraph(measurementsMatrix, threshold=NA_real_, remove=c("below", "above"),
topPairs=NA_integer_, decreasing=TRUE, pairup.i=NULL, pairup.j=NULL)

Arguments

measurementsMatrix

matrix of pairwise measurements.

threshold threshold on the measurements below or above which pairs of variables are as-
sumed to be disconnected in the resulting graph.

remove direction of the removal with the threshold. It should be either "below" (default)
or "above".

topPairs number of edges from the top of the ranking, defined by the pairwise measure-
ments in measurementsMatrix, to use to form the resulting graph. This param-
eter is incompatible with a value different from NULL in threshold.

decreasing logical, only applies when topPairs is set; if TRUE then the ranking is made in
decreasing order; if FALSE then is made in increasing order.

pairup.i subset of vertices to pair up with subset pairup.j

pairup.j subset of vertices to pair up with subset pairup.i

qpAnyGraph 13

Details

This is a general purpose function for thresholding a matrix of pairwise measurements to select
pairs of variables corresponding to selected edges in an undirected graph.

Value

The resulting undirected graph as a graphBAM object. Note that when some gold-standard graph
is available for comparison, a value for the parameter threshold can be found by calculating a
precision-recall curve with qpPrecisionRecall with respect to this gold-standard, and then using
qpPRscoreThreshold. Parameters threshold and topPairs are mutually exclusive, that is, when
we specify with topPairs=n that we want a graph with n edges then threshold cannot be used.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n, J. Mach. Learn. Res., 7:2621-2650, 2006.

See Also

qpNrr qpAvgNrr qpEdgeNrr qpGraph qpGraphDensity qpClique qpPrecisionRecall qpPRscoreThreshold

Examples

require(mvtnorm)
require(graph)

nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate

set.seed(123)

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

estimate Pearson correlations
pcc.estimates <- qpPCC(X)

the higher the threshold
g <- qpAnyGraph(abs(pcc.estimates$R), threshold=0.9,

remove="below")

the sparser the qp-graph
numEdges(g) / choose(numNodes(g), 2)

the lower the threshold
g <- qpAnyGraph(abs(pcc.estimates$R), threshold=0.5,

remove="below")

the denser the graph
numEdges(g) / choose(numNodes(g), 2)

14 qpAvgNrr

qpAvgNrr Average non-rejection rate estimation

Description

Estimates average non-rejection rates for every pair of variables.

Usage

S4 method for signature 'ExpressionSet'
qpAvgNrr(X, qOrders=4, I=NULL, restrict.Q=NULL,

fix.Q=NULL, nTests=100, alpha=0.05,
pairup.i=NULL, pairup.j=NULL, type=c("arith.mean"),

verbose=TRUE, identicalQs=TRUE,
exact.test=TRUE, use=c("complete.obs", "em"),
tol=0.01, R.code.only=FALSE, clusterSize=1,
estimateTime=FALSE, nAdj2estimateTime=10)

S4 method for signature 'data.frame'
qpAvgNrr(X, qOrders=4, I=NULL, restrict.Q=NULL,

fix.Q=NULL, nTests=100, alpha=0.05, pairup.i=NULL,
pairup.j=NULL, long.dim.are.variables=TRUE,
type=c("arith.mean"), verbose=TRUE,
identicalQs=TRUE, exact.test=TRUE,

use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE,
clusterSize=1, estimateTime=FALSE, nAdj2estimateTime=10)

S4 method for signature 'matrix'
qpAvgNrr(X, qOrders=4, I=NULL, restrict.Q=NULL, fix.Q=NULL,

nTests=100, alpha=0.05, pairup.i=NULL,
pairup.j=NULL, long.dim.are.variables=TRUE,
type=c("arith.mean"), verbose=TRUE,
identicalQs=TRUE, exact.test=TRUE,

use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE,
clusterSize=1, estimateTime=FALSE, nAdj2estimateTime=10)

Arguments

X data set from where to estimate the average non-rejection rates. It can be an
ExpressionSet object, a data frame or a matrix.

qOrders either a number of partial-correlation orders or a vector of vector of particular
orders to be employed in the calculation.

I indexes or names of the variables in X that are discrete. When X is an ExpressionSet
then I may contain only names of the phenotypic variables in X. See details be-
low regarding this argument.

restrict.Q indexes or names of the variables in X that restrict the sample space of condi-
tioning subsets Q.

fix.Q indexes or names of the variables in X that should be fixed within every condi-
tioning conditioning subsets Q.

nTests number of tests to perform for each pair for variables.

alpha significance level of each test.

qpAvgNrr 15

pairup.i subset of vertices to pair up with subset pairup.j

pairup.j subset of vertices to pair up with subset pairup.i
long.dim.are.variables

logical; if TRUE it is assumed that when the data is a data frame or a matrix,
the longer dimension is the one defining the random variables; if FALSE, then
random variables are assumed to be at the columns of the data frame or matrix.

type type of average. By now only the arithmetic mean is available.

verbose show progress on the calculations.

identicalQs use identical conditioning subsets for every pair of vertices (default), otherwise
sample a new collection of nTests subsets for each pair of vertices.

exact.test logical; if FALSE an asymptotic conditional independence test is employed with
mixed (i.e., continuous and discrete) data; if TRUE (default) then an exact condi-
tional independence test with mixed data is employed.

use a character string defining the way in which calculations are done in the presence
of missing values. It can be either "complete.obs" (default) or "em".

tol maximum tolerance controlling the convergence of the EM algorithm employed
when the argument use="em".

R.code.only logical; if FALSE then the faster C implementation is used (default); if TRUE then
only R code is executed.

clusterSize size of the cluster of processors to employ if we wish to speed-up the calcula-
tions by performing them in parallel. A value of 1 (default) implies a single-
processor execution. The use of a cluster of processors requires having previ-
ously loaded the packages snow and rlecuyer.

estimateTime logical; if TRUE then the time for carrying out the calculations with the given pa-
rameters is estimated by calculating for a limited number of adjacencies, speci-
fied by nAdj2estimateTime, and extrapolating the elapsed time; if FALSE (de-
fault) calculations are performed normally till they finish.

nAdj2estimateTime

number of adjacencies to employ when estimating the time of calculations (estimateTime=TRUE).
By default this has a default value of 10 adjacencies and larger values should
provide more accurate estimates. This might be relevant when using a cluster
facility.

Details

Note that when specifying a vector of particular orders q, these values should be in the range 1 to
min(p, n-3), where p is the number of variables and n the number of observations. The computa-
tional cost increases linearly within each q value and quadratically in p. When setting identicalQs
to FALSE the computational cost may increase between 2 times and one order of magnitude (depend-
ing on p and q) while asymptotically the estimation of the non-rejection rate converges to the same
value.

When I is set different to NULL then mixed graphical model theory is employed and, concretely,
it is assumed that the data comes from an homogeneous conditional Gaussian distribution. In this
setting further restrictions to the maximum value of q apply, concretely, it cannot be smaller than p
plus the number of levels of the discrete variables involved in the marginal distributions employed
by the algorithm. By default, with exact.test=TRUE, an exact test for conditional independence is
employed, otherwise an asymptotic one will be used. Full details on these features can be found in
Tur, Roverato and Castelo (2014).

16 qpAvgNrr

Value

A dspMatrix-class symmetric matrix of estimated average non-rejection rates with the diago-
nal set to NA values. When using the arguments pairup.i and pairup.j, those cells outside the
constraint pairs will get also a NA value.

Note, however, that when estimateTime=TRUE, then instead of the matrix of estimated average
non-rejection rates, a vector specifying the estimated number of days, hours, minutes and seconds
for completion of the calculations is returned.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. Reverse engineering molecular regulatory networks from microarray
data with qp-graphs. J. Comp. Biol., 16(2):213-227, 2009.

Tur, I., Roverato, A. and Castelo, R. Mapping eQTL networks with mixed graphical Markov mod-
els. Genetics, 198:1377-1393, 2014.

See Also

qpNrr qpEdgeNrr qpHist qpGraphDensity qpClique

Examples

require(mvtnorm)

nVar <- 50 ## number of variables
maxCon <- 3 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate

set.seed(123)

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

avgnrr.estimates <- qpAvgNrr(X, verbose=FALSE)

distribution of average non-rejection rates for the present edges
summary(avgnrr.estimates[upper.tri(avgnrr.estimates) & A])

distribution of average non-rejection rates for the missing edges
summary(avgnrr.estimates[upper.tri(avgnrr.estimates) & !A])

Not run:
library(snow)
library(rlecuyer)

only for moderate and large numbers of variables the
use of a cluster of processors speeds up the calculations

nVar <- 500
maxCon <- 3
A <- qpRndGraph(p=nVar, d=maxCon)

qpBoundary 17

Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

system.time(avgnrr.estimates <- qpAvgNrr(X, q=10, verbose=TRUE))
system.time(avgnrr.estimates <- qpAvgNrr(X, q=10, verbose=TRUE, clusterSize=4))

End(Not run)

qpBoundary Maximum boundary size of the resulting qp-graphs

Description

Calculates and plots the size of the largest vertex boundary as function of the non-rejection rate.

Usage

qpBoundary(nrrMatrix, n=NA, threshold.lim=c(0,1), breaks=5, vertexSubset=NULL,
plot=TRUE, qpBoundaryOutput=NULL, density.digits=0, logscale.bdsize=FALSE,
titlebd="Maximum boundary size as function of threshold", verbose=FALSE)

Arguments

nrrMatrix matrix of non-rejection rates.
n number of observations from where the non-rejection rates were estimated.
threshold.lim range of threshold values on the non-rejection rate.
breaks either a number of threshold bins or a vector of threshold breakpoints.
vertexSubset subset of vertices for which their maximum boundary size is calculated with

respect to all other vertices.
plot logical; if TRUE makes a plot of the result; if FALSE it does not.
qpBoundaryOutput

output from a previous call to qpBoundary. This allows one to plot the result
changing some of the plotting parameters without having to do the calculation
again.

density.digits number of digits in the reported graph densities.
logscale.bdsize

logical; if TRUE then the scale for the maximum boundary size is logarithmic
which is useful when working with more than 1000 variables; FALSE otherwise
(default).

titlebd main title to be shown in the plot.
verbose show progress on calculations.

Details

The maximum boundary is calculated as the largest degree among all vertices of a given qp-graph.

Value

A list with the maximum boundary size and graph density as function of threshold, the threshold on
the non-rejection rate that provides a maximum boundary size strictly smaller than the sample size
n and the resulting maximum boundary size.

18 qpCItest

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n. J. Mach. Learn. Res., 7:2621-2650, 2006.

See Also

qpHTF qpGraphDensity

Examples

require(mvtnorm)

nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate

set.seed(123)

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

the higher the q the less complex the qp-graph

nrr.estimates <- qpNrr(X, q=1, verbose=FALSE)

qpBoundary(nrr.estimates, plot=FALSE)

nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)

qpBoundary(nrr.estimates, plot=FALSE)

qpCItest Conditional independence test

Description

Performs a conditional independence test between two variables given a conditioning set.

Usage

S4 method for signature 'ExpressionSet'
qpCItest(X, i=1, j=2, Q=c(), exact.test=TRUE,

use=c("complete.obs", "em"),
tol=0.01, R.code.only=FALSE)

S4 method for signature 'cross'
qpCItest(X, i=1, j=2, Q=c(), exact.test=TRUE,

use=c("complete.obs", "em"),
tol=0.01, R.code.only=FALSE)

qpCItest 19

S4 method for signature 'data.frame'
qpCItest(X, i=1, j=2, Q=c(), I=NULL,

long.dim.are.variables=TRUE,
exact.test=TRUE,
use=c("complete.obs", "em"),
tol=0.01, R.code.only=FALSE)

S4 method for signature 'matrix'
qpCItest(X, i=1, j=2, Q=c(), I=NULL,

long.dim.are.variables=TRUE,
exact.test=TRUE,
use=c("complete.obs", "em"), tol=0.01,
R.code.only=FALSE)

S4 method for signature 'SsdMatrix'
qpCItest(X, i=1, j=2, Q=c(), R.code.only=FALSE)

Arguments

X data set where the test should be performed. It can be either an ExpressionSet
object, a qtl::cross object, a data frame, a matrix or an SsdMatrix-class
object. In the latter case, the input matrix should correspond to a sample covari-
ance matrix of data on which we want to test for conditional independence. The
function qpCov() can be used to estimate such matrices.

i index or name of one of the two variables in X to test.

j index or name of the other variable in X to test.

Q indexes or names of the variables in X forming the conditioning set.

I indexes or names of the variables in X that are discrete. See details below re-
garding this argument.

long.dim.are.variables

logical; if TRUE it is assumed that when data are in a data frame or in a ma-
trix, the longer dimension is the one defining the random variables (default);
if FALSE, then random variables are assumed to be at the columns of the data
frame or matrix.

exact.test logical; if FALSE an asymptotic likelihood ratio test of conditional independence
test is employed with mixed (i.e., continuous and discrete) data; if TRUE (default)
then an exact likelihood ratio test of conditional independence with mixed data
is employed. See details below regarding this argument.

use a character string defining the way in which calculations are done in the presence
of missing values. It can be either "complete.obs" (default) or "em".

tol maximum tolerance controlling the convergence of the EM algorithm employed
when the argument use="em".

R.code.only logical; if FALSE then the faster C implementation is used (default); if TRUE
then only R code is executed.

Details

When variables in i, j and Q are continuous and I=NULL, this function performs a conditional
independence test using a t-test for zero partial regression coefficient (Lauritzen, 1996, pg. 150).
Note that the size of possible Q sets should be in the range 1 to min(p,n-3), where p is the number
of variables and n the number of observations. The computational cost increases linearly with the
number of variables in Q.

20 qpCItest

When variables in i, j and Q are continuous and discrete (mixed data), indicated with the I ar-
gument when X is a matrix, then mixed graphical model theory (Lauritzen and Wermuth, 1989) is
employed and, concretely, it is assumed that data come from an homogeneous conditional Gaussian
distribution. By default, with exact.test=TRUE, an exact likelihood ratio test for conditional inde-
pendence is performed (Lauritzen, 1996, pg. 192-194; Tur, Roverato and Castelo, 2014), otherwise
an asymptotic one is used.

In this setting further restrictions to the maximum value of q apply, concretely, it cannot be smaller
than p plus the number of levels of the discrete variables involved in the marginal distributions
employed by the algorithm.

Value

A list with class "htest" containing the following components:

statistic in case of pure continuous data and I=NULL, the t-statistic for zero partial re-
gression coefficient; when I!=NULL, the value Lambda of the likelihood ratio if
exact.test=TRUE and -n log Lambda otherwise.

parameter in case of pure continuous data and I=NULL, the degrees of freedom for the t-
statistic (n-q-2); when I!=NULL, the degrees of freedom for -n log Lambda of a
chi-square distribution under the null hypothesis if exact.test=FALSE and the
(a, b) parameters of a beta distribution under the null if exact.test=TRUE.

p.value the p-value for the test.

estimate in case of pure continuous data (I=NULL), the estimated partial regression coeffi-
cient. In case of mixed continuous and discrete data with I!=NULL, the estimated
partial eta-squared: the fraction of variance from i or j explained by the other
tested variable after excluding the variance explained by the variables in Q. If
one of the tested variables i or j is discrete, then the partial eta-squared is cal-
culated on the tested continuous variable. If both, i and j are continuous, then
the partial eta-squared is calculated on variable i.

alternative a character string describing the alternative hypothesis.

method a character string indicating what type of conditional independence test was
performed.

data.name a character string giving the name(s) of the random variables involved in the
conditional independence test.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n, J. Mach. Learn. Res., 7:2621-2650, 2006.

Lauritzen, S.L. Graphical models. Oxford University Press, 1996.

Lauritzen, S.L and Wermuth, N. Graphical Models for associations between variables, some of
which are qualitative and some quantitative. Ann. Stat., 17(1):31-57, 1989.

Tur, I., Roverato, A. and Castelo, R. Mapping eQTL networks with mixed graphical Markov mod-
els. Genetics, 198:1377-1393, 2014.

qpClique 21

See Also

qpCov qpNrr qpEdgeNrr

Examples

require(mvtnorm)

nObs <- 100 ## number of observations to simulate

the following adjacency matrix describes an undirected graph
where vertex 3 is conditionally independent of 4 given 1 AND 2
A <- matrix(c(FALSE, TRUE, TRUE, TRUE,

TRUE, FALSE, TRUE, TRUE,
TRUE, TRUE, FALSE, FALSE,
TRUE, TRUE, FALSE, FALSE), nrow=4, ncol=4, byrow=TRUE)

Sigma <- qpG2Sigma(A, rho=0.5)

X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

qpCItest(X, i=3, j=4, Q=1, long.dim.are.variables=FALSE)

qpCItest(X, i=3, j=4, Q=c(1,2), long.dim.are.variables=FALSE)

qpClique Complexity of the resulting qp-graphs

Description

Calculates and plots the size of the largest maximal clique (the so-called clique number or maximum
clique size) as function of the non-rejection rate.

Usage

qpClique(nrrMatrix, n=NA, threshold.lim=c(0,1), breaks=5, plot=TRUE,
exact.calculation=TRUE, approx.iter=100,
qpCliqueOutput=NULL, density.digits=0,
logscale.clqsize=FALSE,
titleclq="maximum clique size as function of threshold",
verbose=FALSE)

Arguments

nrrMatrix matrix of non-rejection rates.

n number of observations from where the non-rejection rates were estimated.

threshold.lim range of threshold values on the non-rejection rate.

breaks either a number of threshold bins or a vector of threshold breakpoints.

plot logical; if TRUE makes a plot of the result; if FALSE it does not.
exact.calculation

logical; if TRUE then the exact clique number is calculated; if FALSE then a
lower bound is given instead.

22 qpClique

approx.iter number of iterations to be employed in the calculation of the lower bound (i.e.,
only applies when exact.calculation=FALSE).

qpCliqueOutput output from a previous call to qpClique. This allows one to plot the result
changing some of the plotting parameters without having to do the calculation
again.

density.digits number of digits in the reported graph densities.
logscale.clqsize

logical; if TRUE then the scale for the maximum clique size is logarithmic which
is useful when working with more than 1000 variables; FALSE otherwise (de-
fault).

titleclq main title to be shown in the plot.

verbose show progress on calculations.

Details

The estimate of the complexity of the resulting qp-graphs is calculated as the area enclosed under
the curve of maximum clique sizes.

The maximum clique size, or clique number, is obtained by calling the function qpCliqueNumber
The calculation of the clique number of an undirected graph is an NP-complete problem which
means that its computational cost is bounded by an exponential running time (Pardalos and Xue,
1994). Therefore, giving breakpoints between 0.95 and 1.0 may result into very dense graphs which
can lead to extremely long execution times. If it is necessary to look at that range of breakpoints it
is recommended either to use the lower bound on the clique number (exact.calculation=FALSE)
or to look at qpGraphDensity.

Value

A list with the maximum clique size and graph density as function of threshold, an estimate of
the complexity of the resulting qp-graphs across the thresholds, the threshold on the non-rejection
rate that provides a maximum clique size strictly smaller than the sample size n and the resulting
maximum clique size.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n. J. Mach. Learn. Res., 7:2621-2650, 2006.

Pardalos, P.M. and Xue, J. The maximum clique problem. J. Global Optim., 4:301-328, 1994.

See Also

qpCliqueNumber qpGraphDensity

Examples

require(mvtnorm)

nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable

qpCliqueNumber 23

nObs <- 30 ## number of observations to simulate

set.seed(123)

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

the higher the q the less complex the qp-graph

nrr.estimates <- qpNrr(X, q=1, verbose=FALSE)

qpClique(nrr.estimates, plot=FALSE)$complexity

nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)

qpClique(nrr.estimates, plot=FALSE)$complexity

qpCliqueNumber Clique number

Description

Calculates the size of the largest maximal clique (the so-called clique number or maximum clique
size) in a given undirected graph.

Usage

qpCliqueNumber(g, exact.calculation=TRUE, return.vertices=FALSE,
approx.iter=100, verbose=TRUE, R.code.only)

Arguments

g either a graphNEL object or an adjacency matrix of the given undirected graph.

exact.calculation

logical; if TRUE then the exact clique number is calculated; if FALSE then a
lower bound is given instead.

return.vertices

logical; if TRUE a set of vertices forming a maximal clique of maximum size is
returned; if FALSE only the maximum clique size is returned.

approx.iter number of iterations to be employed in the calculation of the lower bound (i.e.,
only applies when exact.calculation=FALSE.

verbose show progress on calculations.

R.code.only logical; if FALSE then the faster C implementation is used (default); if TRUE
then only R code is executed.

24 qpCliqueNumber

Details

The calculation of the clique number of an undirected graph is one of the basic NP-complete prob-
lems (Karp, 1972) which means that its computational cost is bounded by an exponential running
time (Pardalos and Xue, 1994). The current implementation uses C code from the GNU GPL Cli-
quer library by Niskanen and Ostergard (2003) based on the, probably the fastest to date, algorithm
by Ostergard (2002).

The lower bound on the maximum clique size is calculated by ranking the vertices by their connec-
tivity degree, put the first vertex in a set and go through the rest of the ranking adding those vertices
to the set that form a clique with the vertices currently within the set. Once the entire ranking has
been examined a large clique should have been built and eventually one of the largests ones. This
process is repeated a number of times (approx.iter) each of which the ranking is altered with
increasing levels of randomness acyclically (altering 1 to p vertices and again). Larger values of
approx.iter should provide tighter lower bounds although it has been proven that no polynomial
time algorithm can approximate the maximum clique size within a factor of nϵ (ϵ > 0), unless
P=NP (Feige et al, 1991; Pardalos and Xue, 1994).

Value

a lower bound of the size of the largest maximal clique in the given graph, also known as its clique
number.

Author(s)

R. Castelo

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n. J. Mach. Learn. Res., 7:2621-2650, 2006.

Feige, U., Goldwasser, S., Lov\’asz, L., Safra, S. and Szegedy, M. Approximating the maximum
clique is almost NP-Complete. Proc. 32nd IEEE Symp. on Foundations of Computer Science, 2-12,
1991.

Karp, R.M. Reducibility among combinatorial problems. Complexity of computer computations,
43:85-103, 1972.

Niskanen, S. Ostergard, P. Cliquer User’s Guide, Version 1.0. Communications Laboratory, Helsinki
University of Technology, Espoo, Finland, Tech. Rep. T48, 2003. (https://users.aalto.fi/
~pat/cliquer.html)

Ostergard, P. A fast algorithm for the maximum clique problem. Discrete Appl. Math. 120:197-207,
2002.

Pardalos, P.M. and Xue, J. The maximum clique problem. J. Global Optim., 4:301-328, 1994.

See Also

qpClique

Examples

require(graph)

nVar <- 50

https://users.aalto.fi/~pat/cliquer.html
https://users.aalto.fi/~pat/cliquer.html

qpCov 25

set.seed(123)

g1 <- randomEGraph(V=as.character(1:nVar), p=0.3)
qpCliqueNumber(g1, verbose=FALSE)

g2 <- randomEGraph(V=as.character(1:nVar), p=0.7)
qpCliqueNumber(g2, verbose=FALSE)

qpCov Calculation of the sample covariance matrix

Description

Calculates the sample covariance matrix, just as the function cov() but returning a dspMatrix-class
object which efficiently stores such a dense symmetric matrix.

Usage

qpCov(X, corrected=TRUE)

Arguments

X data set from where to calculate the sample covariance matrix. As the cov()
function, it assumes the columns correspond to random variables and the rows
to multivariate observations.

corrected flag set to TRUE when calculating the sample covariance matrix (default; and set
to FALSE when calculating the uncorrected sum of squares and deviations.

Details

This function makes the same calculation as the cov function but returns a sample covariance matrix
stored in the space-efficient class dspMatrix-class and, moreover, allows one for calculating the
uncorrected sum of squares and deviations which equals (n-1) * cov().

Value

A sample covariance matrix stored as a dspMatrix-class object. See the Matrix package for full
details on this object class.

Author(s)

R. Castelo

See Also

qpPCC

26 qpEdgeNrr

Examples

require(graph)
require(mvtnorm)

nVar <- 50 ## number of variables
nObs <- 10 ## number of observations to simulate

set.seed(123)

g <- randomEGraph(as.character(1:nVar), p=0.15)

Sigma <- qpG2Sigma(g, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

S <- qpCov(X)

estimate Pearson correlation coefficients by scaling the sample covariance matrix
R <- cov2cor(as(S, "matrix"))

get the corresponding boolean adjacency matrix
A <- as(g, "matrix") == 1

Pearson correlation coefficients of the present edges
summary(abs(R[upper.tri(R) & A]))

Pearson correlation coefficients of the missing edges
summary(abs(R[upper.tri(R) & !A]))

qpEdgeNrr Non-rejection rate estimation for a pair of variables

Description

Estimates the non-rejection rate for one pair of variables.

Usage

S4 method for signature 'ExpressionSet'
qpEdgeNrr(X, i=1, j=2, q=1, restrict.Q=NULL, fix.Q=NULL,

nTests=100, alpha=0.05, exact.test=TRUE,
use=c("complete.obs", "em"), tol=0.01,
R.code.only=FALSE)

S4 method for signature 'data.frame'
qpEdgeNrr(X, i=1, j=2, q=1, I=NULL, restrict.Q=NULL, fix.Q=NULL,

nTests=100, alpha=0.05, long.dim.are.variables=TRUE,
exact.test=TRUE, use=c("complete.obs", "em"), tol=0.01,

R.code.only=FALSE)
S4 method for signature 'matrix'
qpEdgeNrr(X, i=1, j=2, q=1, I=NULL, restrict.Q=NULL, fix.Q=NULL,

nTests=100, alpha=0.05, long.dim.are.variables=TRUE,
exact.test=TRUE, use=c("complete.obs", "em"), tol=0.01,

R.code.only=FALSE)

qpEdgeNrr 27

S4 method for signature 'SsdMatrix'
qpEdgeNrr(X, i=1, j=2, q=1, restrict.Q=NULL, fix.Q=NULL,

nTests=100, alpha=0.05, R.code.only=FALSE)

Arguments

X data set from where the non-rejection rate should be estimated. It can be either
an ExpressionSet object a data frame, a matrix or an SsdMatrix-class object.
In the latter case, the input matrix should correspond to a sample covariance
matrix of data from which we want to estimate the non-rejection rate for a pair
of variables. The function qpCov() can be used to estimate such matrices.

i index or name of one of the two variables in X to test.

j index or name of the other variable in X to test.

q order of the conditioning subsets employed in the calculation.

I indexes or names of the variables in X that are discrete when X is a matrix or a
data frame.

restrict.Q indexes or names of the variables in X that restrict the sample space of condi-
tioning subsets Q.

fix.Q indexes or names of the variables in X that should be fixed within every condi-
tioning conditioning subsets Q.

nTests number of tests to perform for each pair for variables.

alpha significance level of each test.
long.dim.are.variables

logical; if TRUE it is assumed that when data are in a data frame or in a ma-
trix, the longer dimension is the one defining the random variables (default);
if FALSE, then random variables are assumed to be at the columns of the data
frame or matrix.

exact.test logical; if FALSE an asymptotic conditional independence test is employed with
mixed (i.e., continuous and discrete) data; if TRUE (default) then an exact condi-
tional independence test with mixed data is employed.See details below regard-
ing this argument.

use a character string defining the way in which calculations are done in the presence
of missing values. It can be either "complete.obs" (default) or "em".

tol maximum tolerance controlling the convergence of the EM algorithm employed
when the argument use="em".

R.code.only logical; if FALSE then the faster C implementation is used (default); if TRUE
then only R code is executed.

Details

The estimation of the non-rejection rate for a pair of variables is calculated as the fraction of tests
that accept the null hypothesis of conditional independence given a set of randomly sampled q-order
conditionals.

Note that the possible values of q should be in the range 1 to min(p,n-3), where p is the number
of variables and n the number of observations. The computational cost increases linearly with q.

When I is set different to NULL then mixed graphical model theory is employed and, concretely,
it is assumed that the data comes from an homogeneous conditional Gaussian distribution. In this
setting further restrictions to the maximum value of q apply, concretely, it cannot be smaller than p

28 qpEdgeNrr

plus the number of levels of the discrete variables involved in the marginal distributions employed
by the algorithm. By default, with exact.test=TRUE, an exact test for conditional independence is
employed, otherwise an asymptotic one will be used. Full details on these features can be found in
Tur, Roverato and Castelo (2014).

The argument I specifying what variables are discrete actually applies only when X is a matrix
object since in the other cases data types are specified for each data columns or slot.

Value

An estimate of the non-rejection rate for the particular given pair of variables.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n, J. Mach. Learn. Res., 7:2621-2650, 2006.

Tur, I., Roverato, A. and Castelo, R. Mapping eQTL networks with mixed graphical Markov mod-
els. Genetics, 198:1377-1393, 2014.

See Also

qpNrr qpAvgNrr qpHist qpGraphDensity qpClique qpCov

Examples

require(mvtnorm)

nObs <- 100 ## number of observations to simulate

the following adjacency matrix describes an undirected graph
where vertex 3 is conditionally independent of 4 given 1 AND 2
A <- matrix(c(FALSE, TRUE, TRUE, TRUE,

TRUE, FALSE, TRUE, TRUE,
TRUE, TRUE, FALSE, FALSE,
TRUE, TRUE, FALSE, FALSE), nrow=4, ncol=4, byrow=TRUE)

Sigma <- qpG2Sigma(A, rho=0.5)

X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

qpEdgeNrr(X, i=3, j=4, q=1, long.dim.are.variables=FALSE)

qpEdgeNrr(X, i=3, j=4, q=2, long.dim.are.variables=FALSE)

qpFunctionalCoherence 29

qpFunctionalCoherence Functional coherence estimation

Description

Estimates functional coherence for a given transcriptional regulatory network specified either as
an adjacency matrix with a list of transcription factor gene identifiers or as a list of transcriptional
regulatory modules, whose element names determine which genes encode for transcription factor
proteins.

Usage

S4 method for signature 'lsCMatrix'
qpFunctionalCoherence(object, TFgenes, geneUniverse=rownames(object),

chip, minRMsize=5,
removeGOterm="transcription", verbose=FALSE,

clusterSize=1)
S4 method for signature 'lspMatrix'
qpFunctionalCoherence(object, TFgenes, geneUniverse=rownames(object),

chip, minRMsize=5,
removeGOterm="transcription", verbose=FALSE,

clusterSize=1)
S4 method for signature 'lsyMatrix'
qpFunctionalCoherence(object, TFgenes, geneUniverse=rownames(object),

chip, minRMsize=5,
removeGOterm="transcription", verbose=FALSE,

clusterSize=1)
S4 method for signature 'matrix'
qpFunctionalCoherence(object, TFgenes, geneUniverse=rownames(object),

chip, minRMsize=5, removeGOterm="transcription",
verbose=FALSE, clusterSize=1)

S4 method for signature 'list'
qpFunctionalCoherence(object,

geneUniverse=unique(c(names(object),
unlist(object,
use.names=FALSE))),

chip, minRMsize=5, removeGOterm="transcription",
verbose=FALSE, clusterSize=1)

Arguments

object object containing the transcriptional regulatory modules for which we want to
estimate their functional coherence. It can be an adjacency matrix of the undi-
rected graph representing the transcriptional regulatory network or a list of gene
target sets where the name of the entry should be the transcription factor gene
identifier.

TFgenes when the input object is a matrix, it is required to provide a vector of tran-
scription factor gene identifiers (which should match somewhere in the row and
column names of the matrix.

30 qpFunctionalCoherence

geneUniverse vector of all genes considered in the analysis. By default it equals the rows and
column names of object when it is a matrix, or the set of all different gene
identifiers occuring in object when it is a list.

chip name of the .db package containing the Gene Ontology (GO) annotations.

minRMsize minimum size of the target gene set in each regulatory module where functional
enrichment will be calculated and thus where functional coherence will be esti-
mated.

removeGOterm word, or regular pattern, matching GO terms that should be excluded in the
transcription factor gene GO annotations, and in the target gene if the regulatory
module has only one gene, prior to the calculation of functional coherence.

verbose logical; if TRUE the function will show progress on the calculations; if FALSE
the function will remain quiet (default).

clusterSize size of the cluster of processors to employ if we wish to speed-up the calcula-
tions by performing them in parallel. A value of 1 (default) implies a single-
processor execution. The use of a cluster of processors requires having previ-
ously loaded the packages snow and rlecuyer.

Details

This function estimates the functional coherence of a transcriptional regulatory network represented
by means of an undirected graph encoded by either an adjacency matrix and a vector of transcrip-
tion factor genes, or a list of regulatory modules each of them defined by a transcription factor gene
and its targets. The functional coherence of a transcriptional regulatory network is calculated as
specified by Castelo and Roverato (2009) and corresponds to the distribution of individual func-
tional coherence values of every of the regulatory modules of the network each of them defined
as a transcription factor and its set of putatively regulated target genes. In the calculation of the
functional coherence value of a regulatory module, Gene Ontology (GO) annotations are employed
through the given annotation .db package and the conditional hyper-geometric test implemented in
the GOstats package from Bioconductor.

When a regulatory module has only one target gene, then no functional enrichment is calculated
and, instead, the GO trees, grown from the GO annotations of the transcription factor gene and its
target, are directly compared.

Value

A list with the following elements: the transcriptional regulatory network as a list of regulatory
modules and their targets; the previous list of regulatory modules but excluding those with no
enriched GO BP terms. When the regulatory module has only one target, then instead the GO BP
annotations of the target gene are included; a vector of functional coherence values.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. Reverse engineering molecular regulatory networks from microarray
data with qp-graphs. J. Comp. Biol., 16(2):213-227, 2009.

See Also

qpAvgNrr qpGraph

qpFunctionalCoherence 31

Examples

example below takes about minute and a half to execute and for
that reason it is not executed by default
Not run:
library(GOstats)
library(org.EcK12.eg.db)

load RegulonDB data from this package
data(EcoliOxygen)

pick two TFs from the RegulonDB data in this package

TFgenes <- c("mhpR", "iscR")

get their Entrez Gene Identifiers
TFgenesEgIDs <- unlist(mget(TFgenes, AnnotationDbi::revmap(org.EcK12.egSYMBOL)))

get all genes involved in their regulatory modules from
the RegulonDB data in this package
mt <- match(filtered.regulon6.1[,"EgID_TF"], TFgenesEgIDs)

allGenes <- as.character(unique(as.vector(
as.matrix(filtered.regulon6.1[!is.na(mt),

c("EgID_TF","EgID_TG")]))))

mtTF <- match(filtered.regulon6.1[,"EgID_TF"],allGenes)
mtTG <- match(filtered.regulon6.1[,"EgID_TG"],allGenes)

select the corresponding subset of the RegulonDB data in this package
subset.filtered.regulon6.1 <- filtered.regulon6.1[!is.na(mtTF) & !is.na(mtTG),]
TFi <- match(subset.filtered.regulon6.1[,"EgID_TF"], allGenes)
TGi <- match(subset.filtered.regulon6.1[,"EgID_TG"], allGenes)
subset.filtered.regulon6.1 <- cbind(subset.filtered.regulon6.1,

idx_TF=TFi, idx_TG=TGi)

build an adjacency matrix representing the transcriptional regulatory
relationships from these regulatory modules
p <- length(allGenes)
adjacencyMatrix <- matrix(FALSE, nrow=p, ncol=p)
rownames(adjacencyMatrix) <- colnames(adjacencyMatrix) <- allGenes
idxTFTG <- as.matrix(subset.filtered.regulon6.1[,c("idx_TF","idx_TG")])
adjacencyMatrix[idxTFTG] <-

adjacencyMatrix[cbind(idxTFTG[,2],idxTFTG[,1])] <- TRUE

calculate functional coherence on these regulatory modules
fc <- qpFunctionalCoherence(adjacencyMatrix, TFgenes=TFgenesEgIDs,

chip="org.EcK12.eg.db")

print(sprintf("the %s module has a FC value of %.2f",
mget(names(fc$functionalCoherenceValues),org.EcK12.egSYMBOL),
fc$functionalCoherenceValues))

End(Not run)

32 qpG2Sigma

qpG2Sigma Random covariance matrix

Description

Builds a positive definite matrix from an undirected graph G that can be used as a covariance matrix
for a Gaussian graphical model with graph G. The inverse of the resulting matrix contains zeroes at
the missing edges of the given undirected graph G.

Usage

qpG2Sigma(g, rho=0, matrix.completion=c("HTF", "IPF"), tol=0.001,
verbose=FALSE, R.code.only=FALSE)

Arguments

g undirected graph specified either as a graphNEL object or as an adjacency matrix.

rho real number between -1/(n.var-1) and 1 corresponding to the mean marginal
correlation

matrix.completion

algorithm to employ in the matrix completion operations employed to construct
a positive definite matrix with the zero pattern specified in g

tol tolerance under which the matrix completion algorithm stops.

verbose show progress on the calculations.

R.code.only logical; if FALSE then the faster C implementation is used in the internal call to
the HTF, or IPF, algorithm (default); if TRUE then only R code is executed.

Details

The random covariance matrix is built by first generating a random matrix with the function qpRndWishart
from a Wishart distribution whose expected value is a matrix with unit diagonal and constant off-
diagonal entries equal to rho.

Value

A random positive definite matrix that can be used as a covariance matrix for a Gaussian graphical
model with graph G.

Author(s)

A. Roverato

References

Tur, I., Roverato, A. and Castelo, R. Mapping eQTL networks with mixed graphical Markov mod-
els. Genetics, 198(4):1377-1393, 2014.

See Also

qpRndGraph qpGetCliques qpIPF qpRndWishart rmvnorm

qpGenNrr 33

Examples

set.seed(123)
G <- qpRndGraph(p=5, d=2)

Sigma <- qpG2Sigma(G, rho=0.5)

round(solve(Sigma), digits=2)

as(G, "matrix")

qpGenNrr Generalized non-rejection rate estimation

Description

Estimates generalized non-rejection rates for every pair of variables from two or more data sets.

Usage

S4 method for signature 'ExpressionSet'
qpGenNrr(X, datasetIdx=1, qOrders=NULL, I=NULL, restrict.Q=NULL,

fix.Q=NULL, return.all=FALSE, nTests=100, alpha=0.05,
pairup.i=NULL, pairup.j=NULL, verbose=TRUE,
identicalQs=TRUE, exact.test=TRUE,
use=c("complete.obs", "em"), tol=0.01,

R.code.only=FALSE, clusterSize=1, estimateTime=FALSE,
nAdj2estimateTime=10)

S4 method for signature 'data.frame'
qpGenNrr(X, datasetIdx=1, qOrders=NULL, I=NULL, restrict.Q=NULL,

fix.Q=NULL, return.all=FALSE, nTests=100, alpha=0.05,
pairup.i=NULL, pairup.j=NULL, long.dim.are.variables=TRUE,

verbose=TRUE, identicalQs=TRUE, exact.test=TRUE,
use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE,
clusterSize=1, estimateTime=FALSE, nAdj2estimateTime=10)

S4 method for signature 'matrix'
qpGenNrr(X, datasetIdx=1, qOrders=NULL, I=NULL, restrict.Q=NULL,

fix.Q=NULL, return.all=FALSE, nTests=100, alpha=0.05,
pairup.i=NULL, pairup.j=NULL, long.dim.are.variables=TRUE,

verbose=TRUE, identicalQs=TRUE, exact.test=TRUE,
use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE,
clusterSize=1, estimateTime=FALSE, nAdj2estimateTime=10)

Arguments

X data set from where to estimate the average non-rejection rates. It can be an
ExpressionSet object, a data frame or a matrix.

datasetIdx either a single number, or a character string, indicating the column in the phe-
notypic data of the ExpressionSet object, or in the input matrix or data frame,
containing the indexes to the data sets. Alternatively, it can be a vector of these
indexes with as many positions as samples.

34 qpGenNrr

qOrders either a NULL value (default) indicating that a default guess on the q-order will
be employed for each data set or a vector of particular orders with one for each
data set. The default guess corresponds to the floor of the median value among
the valid q orders of the data set.

I indexes or names of the variables in X that are discrete. When X is an ExpressionSet
then I may contain only names of the phenotypic variables in X. See details be-
low regarding this argument.

restrict.Q indexes or names of the variables in X that restrict the sample space of condi-
tioning subsets Q.

fix.Q indexes or names of the variables in X that should be fixed within every condi-
tioning conditioning subsets Q.

return.all logical; if TRUE all intervining non-rejection rates will be return in a matrix
per dataset within a list; FALSE (default) if only generalized non-rejection rates
should be returned.

nTests number of tests to perform for each pair for variables.

alpha significance level of each test.

pairup.i subset of vertices to pair up with subset pairup.j

pairup.j subset of vertices to pair up with subset pairup.i
long.dim.are.variables

logical; if TRUE it is assumed that when the data is a data frame or a matrix,
the longer dimension is the one defining the random variables; if FALSE, then
random variables are assumed to be at the columns of the data frame or matrix.

verbose show progress on the calculations.

identicalQs use identical conditioning subsets for every pair of vertices (default), otherwise
sample a new collection of nTests subsets for each pair of vertices.

exact.test logical; if FALSE an asymptotic conditional independence test is employed with
mixed (i.e., continuous and discrete) data; if TRUE (default) then an exact condi-
tional independence test with mixed data is employed.

use a character string defining the way in which calculations are done in the presence
of missing values. It can be either "complete.obs" (default) or "em".

tol maximum tolerance controlling the convergence of the EM algorithm employed
when the argument use="em".

R.code.only logical; if FALSE then the faster C implementation is used (default); if TRUE
then only R code is executed.

clusterSize size of the cluster of processors to employ if we wish to speed-up the calcula-
tions by performing them in parallel. A value of 1 (default) implies a single-
processor execution. The use of a cluster of processors requires having previ-
ously loaded the packages snow and rlecuyer.

estimateTime logical; if TRUE then the time for carrying out the calculations with the given pa-
rameters is estimated by calculating for a limited number of adjacencies, speci-
fied by nAdj2estimateTime, and extrapolating the elapsed time; if FALSE (de-
fault) calculations are performed normally till they finish.

nAdj2estimateTime

number of adjacencies to employ when estimating the time of calculations (estimateTime=TRUE).
By default this has a default value of 10 adjacencies and larger values should
provide more accurate estimates. This might be relevant when using a cluster
facility.

qpGenNrr 35

Details

Note that when specifying a vector of particular orders q, these values should be in the range 1 to
min(p,n-3), where p is the number of variables and n the number of observations for the corre-
sponding data set. The computational cost increases linearly within each q value and quadratically
in p. When setting identicalQs to FALSE the computational cost may increase between 2 times
and one order of magnitude (depending on p and q) while asymptotically the estimation of the
non-rejection rate converges to the same value.

When I is set different to NULL then mixed graphical model theory is employed and, concretely,
it is assumed that the data comes from an homogeneous conditional Gaussian distribution. In this
setting further restrictions to the maximum value of q apply, concretely, it cannot be smaller than p
plus the number of levels of the discrete variables involved in the marginal distributions employed
by the algorithm. By default, with exact.test=TRUE, an exact test for conditional independence is
employed, otherwise an asymptotic one will be used. Full details on these features can be found in
Tur, Roverato and Castelo (2014).

Value

A list containing the following two or more entries: a first one with name genNrr with a dspMatrix-class
symmetric matrix of estimated generalized non-rejection rates with the diagonal set to NA values.
When using the arguments pairup.i and pairup.j, those cells outside the constraint pairs will get
also a NA value; a second one with name qOrders with the q-orders employed in the calculation
for each data set; if return.all=TRUE then there will be one additional entry for each data set
containing the matrix of the non-rejection rates estimated from that data set with the corresponding
q-order, using the indexing value of the data set as entry name.

Note, however, that when estimateTime=TRUE, then instead of the list with matrices of estimated
(generalized) non-rejection rates, a vector specifying the estimated number of days, hours, minutes
and seconds for completion of the calculations is returned.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. Reverse engineering molecular regulatory networks from microarray
data with qp-graphs. J. Comp. Biol., 16(2):213-227, 2009.

Tur, I., Roverato, A. and Castelo, R. Mapping eQTL networks with mixed graphical Markov mod-
els. Genetics, 198:1377-1393, 2014.

See Also

qpNrr qpAvgNrr qpEdgeNrr qpHist qpGraphDensity qpClique

Examples

nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate

set.seed(123)

simulate two independent Gaussian graphical models determined
by two undirected d-regular graphs

36 qpGetCliques

model1 <- rUGgmm(dRegularGraphParam(p=nVar, d=maxCon), rho=0.5)
model2 <- rUGgmm(dRegularGraphParam(p=nVar, d=maxCon), rho=0.5)

simulate two independent data sets from the previous graphical models
X1 <- rmvnorm(nObs, model1)
dim(X1)
X2 <- rmvnorm(nObs, model2)
dim(X2)

estimate generalized non-rejection rates from the joint data
nrr.estimates <- qpGenNrr(rbind(X1, X2),

datasetIdx=rep(1:2, each=nObs),
qOrders=c("1"=5, "2"=5),
long.dim.are.variables=FALSE, verbose=FALSE)

create adjacency matrices from the undirected graphs
determining the two Gaussian graphical models
A1 <- as(model1$g, "matrix") == 1
A2 <- as(model2$g, "matrix") == 1

distribution of generalized non-rejection rates for the common present edges
summary(nrr.estimates$genNrr[upper.tri(nrr.estimates$genNrr) & A1 & A2])

distribution of generalized non-rejection rates for the present edges specific to A1
summary(nrr.estimates$genNrr[upper.tri(nrr.estimates$genNrr) & A1 & !A2])

distribution of generalized non-rejection rates for the present edges specific to A2
summary(nrr.estimates$genNrr[upper.tri(nrr.estimates$genNrr) & !A1 & A2])

distribution of generalized non-rejection rates for the common missing edges
summary(nrr.estimates$genNrr[upper.tri(nrr.estimates$genNrr) & !A1 & !A2])

compare with the average non-rejection rate on the pooled data set
avgnrr.estimates <- qpNrr(rbind(X1, X2), q=5, long.dim.are.variables=FALSE, verbose=FALSE)

distribution of average non-rejection rates for the common present edges
summary(avgnrr.estimates[upper.tri(avgnrr.estimates) & A1 & A2])

distribution of average non-rejection rates for the present edges specific to A1
summary(avgnrr.estimates[upper.tri(avgnrr.estimates) & A1 & !A2])

distribution of average non-rejection rates for the present edges specific to A2
summary(avgnrr.estimates[upper.tri(avgnrr.estimates) & !A1 & A2])

distribution of average non-rejection rates for the common missing edges
summary(avgnrr.estimates[upper.tri(avgnrr.estimates) & !A1 & !A2])

qpGetCliques Clique list

Description

Finds the set of (maximal) cliques of a given undirected graph.

qpGetCliques 37

Usage

qpGetCliques(g, clqspervtx=FALSE, verbose=TRUE)

Arguments

g either a graphNEL object or an adjacency matrix of the given undirected graph.

clqspervtx logical; if TRUE then the resulting list returned by the function includes addi-
tionally p entries at the beginning (p=number of variables) each corresponding
to a vertex in the graph and containing the indices of the cliques where that
vertex belongs to; if FALSE these additional entries are not included (default).

verbose show progress on calculations.

Details

To find the list of all (maximal) cliques in an undirected graph is an NP-hard problem which means
that its computational cost is bounded by an exponential running time (Garey and Johnson, 1979).
For this reason, this is an extremely time and memory consuming computation for large dense
graphs. The current implementation uses C code from the GNU GPL Cliquer library by Niskanen
and Ostergard (2003).

Value

A list of maximal cliques. When clqspervtx=TRUE the first p entries (p=number of variables)
contain, each of them, the indices of the cliques where that particular vertex belongs to.

Author(s)

R. Castelo

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n. J. Mach. Learn. Res., 7:2621-2650, 2006.

Garey, M.R. and Johnson D.S. Computers and intractability: a guide to the theory of NP-completeness.
W.H. Freeman, San Francisco, 1979.

Niskanen, S. Ostergard, P. Cliquer User’s Guide, Version 1.0. Communications Laboratory, Helsinki
University of Technology, Espoo, Finland, Tech. Rep. T48, 2003. (https://users.aalto.fi/
~pat/cliquer.html)

See Also

qpCliqueNumber qpIPF

Examples

require(graph)

set.seed(123)
nVar <- 50
g1 <- randomEGraph(V=as.character(1:nVar), p=0.3)
clqs1 <- qpGetCliques(g1, verbose=FALSE)

length(clqs1)

https://users.aalto.fi/~pat/cliquer.html
https://users.aalto.fi/~pat/cliquer.html

38 qpGraph-class

summary(sapply(clqs1, length))

g2 <- randomEGraph(V=as.character(1:nVar), p=0.7)
clqs2 <- qpGetCliques(g2, verbose=FALSE)

length(clqs2)

clqs2 <- qpGetCliques(g2, verbose=FALSE)

summary(sapply(clqs2, length))

qpGraph-class The qp-graph

Description

The "qpGraph" class is the class to store and manipulate q-order (partial) correlation graphs, or qp-
graphs for short. See Castelo and Roverato (2006, 2009) for a mathematical and statistical definition
of a qp-graph.

In earlier versions 1.x of the qpgraph package there was a function called qpGraph() to obtain a
qp-graph from a matrix of non-rejection rates. This function, as it was written, has been deprecated
and replaced by this class and corresponding constructor methods of the same name. The main dif-
ference with respect to earlier 1.x versions is that the argument threshold is now called epsilon,
the argument return.type has been removed and the current version returns an object of this class
qpGraph described in this manual page.

Arguments

epsilon maximum cutoff value met by the edges present in the qp-graph.

topPairs number of edges from the top of the ranking, defined by the non-rejection rates
in nrrMatrix, to use to form the resulting qp-graph. This parameter is incom-
patible with a value different from NULL in epsilon.

pairup.i subset of vertices to pair up with subset pairup.j

pairup.j subset of vertices to pair up with subset pairup.i

q q-order employed to derive the input matrix of non-rejection rates nrrMatrix.

n when the input matrix of non-rejection rates nrrMatrix has been estimated from
data, this is the number of observations in the data set.

Objects from the Class

Objects can be created by calls of the form qpGraph(nrrMatrix, ...) corresponding to construc-
tor methods that take as input a matrix of non-rejection rates, calculated with qpNrr.

Slots

p: number of vertices, in one-to-one correspondence with random variables.

q: order of the qp-graph, always smaller than p-2.

n: when the qp-graph has been estimated from data, this is the number of observations in the data
set, which must be larger than q+2.

qpGraphDensity 39

epsilon: maximum cutoff value of the non-rejection rate met by the edges that are present in the
qp-graph.

g: undirected graph structure of the qp-graph stored as a graphBAM-class object.

Methods

qpGraph(nrrMatrix, ...) Constructor method where nrrMatrix is a matrix of non-rejection
rates.

show(object) Method to display some bits of information about the qp-graph stored in the input
argument object.

Author(s)

R. Castelo

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n, J. Mach. Learn. Res., 7:2621-2650, 2006.

Castelo, R. and Roverato, A. Reverse engineering molecular regulatory networks from microarray
data with qp-graphs. J. Comp. Biol., 16(2):213-227, 2009.

See Also

qpNrr

qpGraphDensity Densities of resulting qp-graphs

Description

Calculates and plots the graph density as function of the non-rejection rate.

Usage

qpGraphDensity(nrrMatrix, threshold.lim=c(0,1), breaks=5,
plot=TRUE, qpGraphDensityOutput=NULL,
density.digits=0,
titlegd="graph density as function of threshold")

Arguments

nrrMatrix matrix of non-rejection rates.

threshold.lim range of threshold values on the non-rejection rate.

breaks either a number of threshold bins or a vector of threshold breakpoints.

plot logical; if TRUE makes a plot of the result; if FALSE it does not.
qpGraphDensityOutput

output from a previous call to qpGraphDensity. This allows one to plot the
result changing some of the plotting parameters without having to do the calcu-
lation again.

40 qpGraphDensity

density.digits number of digits in the reported graph densities.

titlegd main title to be shown in the plot.

Details

The estimate of the sparseness of the resulting qp-graphs is calculated as one minus the area en-
closed under the curve of graph densities.

Value

A list with the graph density as function of threshold and an estimate of the sparseness of the
resulting qp-graphs across the thresholds.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n, J. Mach. Learn. Res., 7:2621-2650, 2006.

See Also

qpNrr qpAvgNrr qpEdgeNrr qpClique

Examples

require(mvtnorm)

nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate

set.seed(123)

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

the higher the q the sparser the qp-graph

nrr.estimates <- qpNrr(X, q=1, verbose=FALSE)

qpGraphDensity(nrr.estimates, plot=FALSE)$sparseness

nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)

qpGraphDensity(nrr.estimates, plot=FALSE)$sparseness

qpHist 41

qpHist Histograms of non-rejection rates

Description

Plots the distribution of non-rejection rates.

Usage

qpHist(nrrMatrix, A=NULL,
titlehist = "all estimated\nnon-rejection rates", freq=TRUE)

Arguments

nrrMatrix matrix of non-rejection rates.

A adjacency matrix of an undirected graph whose present and missing edges will
be employed to show separately the distribution of non-rejection rates.

titlehist main title of the histogram(s).

freq logical; if TRUE, the histograms show frequencies (counts) of occurrence of
the different non-rejection rate values; if FALSE, then probability densities are
plotted

Details

This function plots histograms using the R-function hist and therefore the way they are displayed
follows that of this R-function.

Value

None

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n, J. Mach. Learn. Res., 7:2621-2650, 2006.

See Also

qpNrr qpAvgNrr qpEdgeNrr qpGraphDensity qpClique

42 qpHTF

Examples

require(mvtnorm)

nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)

qpHist(nrr.estimates, A)

qpHTF Hastie Tibshirani Friedman iterative regression algorithm

Description

Performs maximum likelihood estimation of a covariance matrix given the independence constraints
from an input undirected graph.

Usage

qpHTF(S, g, tol = 0.001, verbose = FALSE, R.code.only = FALSE)

Arguments

S input matrix, in the context of this package, the sample covariance matrix.

g input undirected graph.

tol tolerance under which the iterative algorithm stops.

verbose show progress on calculations.

R.code.only logical; if FALSE then the faster C implementation is used (default); if TRUE
then only R code is executed.

Details

This is an alternative to the Iterative Proportional Fitting (IPF) algorithm (see, Whittaker, 1990,
pp. 182-185 and qpIPF) which also adjusts the input matrix to the independence constraints in
the input undirected graph. However, differently to the IPF, it works by going through each of the
vertices fitting the marginal distribution over the corresponding vertex boundary. It stops when the
adjusted matrix at the current iteration differs from the matrix at the previous iteration in less or
equal than a given tolerance value. This algorithm is described by Hastie, Tibshirani and Friedman
(2009, pg. 634), hence we name it here HTF, and it has the advantage over the IPF that it does not
require the list of maximal cliques of the graph which may be exponentially large. In contrast, it
requires that the maximum boundary size of the graph is below the number of samples where the
input sample covariance matrix S was estimated. For the purpose of exploring qp-graphs that meet
such a requirement, one can use the function qpBoundary.

qpHTF 43

Value

The input matrix adjusted to the constraints imposed by the input undirected graph, i.e., a maximum
likelihood estimate of the sample covariance matrix that includes the independence constraints en-
coded in the undirected graph.

Note

Thanks to Giovanni Marchetti for bringing us our attention to this algorithm and sharing an early
version of its implementation on the R package ggm.

Author(s)

R. Castelo

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n. J. Mach. Learn. Res., 7:2621-2650, 2006.

Hastie, T., Tibshirani, R. and Friedman, J.H. The Elements of Statistical Learning, Springer, 2009.

Tur, I., Roverato, A. and Castelo, R. Mapping eQTL networks with mixed graphical Markov mod-
els. Genetics, 198(4):1377-1393, 2014.

Whittaker, J. Graphical Models in Applied Multivariate Statistics. Wiley, 1990.

See Also

qpBoundary qpIPF qpPAC

Examples

require(graph)
require(mvtnorm)

nVar <- 50 ## number of variables
nObs <- 100 ## number of observations to simulate

set.seed(123)

g <- randomEGraph(as.character(1:nVar), p=0.15)

Sigma <- qpG2Sigma(g, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

MLE of the sample covariance matrix
S <- cov(X)

more efficient MLE of the sample covariance matrix using HTF
S_htf <- qpHTF(S, g)

get the adjacency matrix and put the diagonal to one
A <- as(g, "matrix")
diag(A) <- 1

entries in S and S_htf for present edges in g should coincide
max(abs(S_htf[A==1] - S[A==1]))

44 qpImportNrr

entries in the inverse of S_htf for missing edges in g should be zero
max(solve(S_htf)[A==0])

qpImportNrr Import non-rejection rates

Description

Imports non-rejection rates from an external flat file.

Usage

qpImportNrr(filename, nTests)

Arguments

filename name of the flat file with the data on the non-rejection rates.

nTests number of tests performed in the estimation of these non-rejection rates.

Details

This function expects a flat file with three tab-separated columns corresponding to, respectively,
0-based index of one of the variables, 0-based index of the other variable, number of non-rejected
tests for the pair of variables of that row in the text file. An example of a few lines of that file would
be:

6 3 95
6 4 98
6 5 23
7 0 94
7 1 94

After reading the file the function builds a matrix of non-rejection rates by dividing the number of
non-rejected tests by nTests. Note that if the flat file to be imported would eventually have directly
the rates instead of the number of tests, these can be also imported by setting nTests=1.

This function is thought to be used to read files obtained from the standalone parallel version of
qpNrr which can be downloaded from https://functionalgenomics.upf.edu/qp/.

Value

A symmetric matrix of non-rejection rates with the diagonal set to the NA value.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n, J. Mach. Learn. Res., 7:2621-2650, 2006.

https://functionalgenomics.upf.edu/qp/

qpIPF 45

See Also

qpNrr

qpIPF Iterative proportional fitting algorithm

Description

Performs maximum likelihood estimation of a covariance matrix given the independence constraints
from an input list of (maximal) cliques.

Usage

qpIPF(vv, clqlst, tol = 0.001, verbose = FALSE, R.code.only = FALSE)

Arguments

vv input matrix, in the context of this package, the sample covariance matrix.
clqlst list of maximal cliques obtained from an undirected graph by using the function

qpGetCliques.
tol tolerance under which the iterative algorithm stops.
verbose show progress on calculations.
R.code.only logical; if FALSE then the faster C implementation is used (default); if TRUE

then only R code is executed.

Details

The Iterative proportional fitting algorithm (see, Whittaker, 1990, pp. 182-185) adjusts the input
matrix to the independence constraints in the undirected graph from where the input list of cliques
belongs to, by going through each of the cliques fitting the marginal distribution over the clique
for the fixed conditional distribution of the clique. It stops when the adjusted matrix at the current
iteration differs from the matrix at the previous iteration in less or equal than a given tolerance
value.

Value

The input matrix adjusted to the constraints imposed by the list of cliques, i.e., a maximum likeli-
hood estimate of the sample covariance matrix that includes the independence constraints encoded
in the undirected graph formed by the given list of cliques.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n. J. Mach. Learn. Res., 7:2621-2650, 2006.

Tur, I., Roverato, A. and Castelo, R. Mapping eQTL networks with mixed graphical Markov mod-
els. Genetics, 198(4):1377-1393, 2014.

Whittaker, J. Graphical models in applied multivariate statistics. Wiley, 1990.

46 qpK2ParCor

See Also

qpGetCliques qpPAC

Examples

require(graph)
require(mvtnorm)

nVar <- 50 ## number of variables
nObs <- 100 ## number of observations to simulate

set.seed(123)

g <- randomEGraph(as.character(1:nVar), p=0.15)

Sigma <- qpG2Sigma(g, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

MLE of the sample covariance matrix
S <- cov(X)

more efficient MLE of the sample covariance matrix using IPF
clqs <- qpGetCliques(g, verbose=FALSE)
S_ipf <- qpIPF(S, clqs)

get the adjacency matrix and put the diagonal to one
A <- as(g, "matrix")
diag(A) <- 1

entries in S and S_ipf for present edges in g should coincide
max(abs(S_ipf[A==1] - S[A==1]))

entries in the inverse of S_ipf for missing edges in g should be zero
max(solve(S_ipf)[A==0])

qpK2ParCor Partial correlation coefficients

Description

Obtains partial correlation coefficients from a given concentration matrix.

Usage

qpK2ParCor(K)

Arguments

K positive definite matrix, typically a concentration matrix.

Details

This function applies cov2cor to the given concentration matrix and then changes the sign of the
off-diagonal entries in order to obtain a partial correlation matrix.

qpNrr 47

Value

A partial correlation matrix.

Author(s)

R. Castelo and A. Roverato

References

Lauritzen, S.L. Graphical models. Oxford University Press, 1996.

See Also

qpG2Sigma

Examples

require(graph)

n.var <- 5 # number of variables
set.seed(123)
g <- randomEGraph(as.character(1:n.var), p=0.15)

Sigma <- qpG2Sigma(g, rho=0.5)
K <- solve(Sigma)

round(qpK2ParCor(K), digits=2)

as(g, "matrix")

qpNrr Non-rejection rate estimation

Description

Estimates non-rejection rates for every pair of variables.

Usage

S4 method for signature 'ExpressionSet'
qpNrr(X, q=1, restrict.Q=NULL, fix.Q=NULL, nTests=100,

alpha=0.05, pairup.i=NULL, pairup.j=NULL,
verbose=TRUE, identicalQs=TRUE, exact.test=TRUE,

use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE,
clusterSize=1, estimateTime=FALSE, nAdj2estimateTime=10)

S4 method for signature 'cross'
qpNrr(X, q=1, restrict.Q=NULL, fix.Q=NULL, nTests=100,

alpha=0.05, pairup.i=NULL, pairup.j=NULL, verbose=TRUE,
identicalQs=TRUE, exact.test=TRUE, use=c("complete.obs", "em"),
tol=0.01, R.code.only=FALSE, clusterSize=1, estimateTime=FALSE,

nAdj2estimateTime=10)
S4 method for signature 'data.frame'

48 qpNrr

qpNrr(X, q=1, I=NULL, restrict.Q=NULL, fix.Q=NULL, nTests=100,
alpha=0.05, pairup.i=NULL, pairup.j=NULL,
long.dim.are.variables=TRUE, verbose=TRUE,
identicalQs=TRUE, exact.test=TRUE,

use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE,
clusterSize=1, estimateTime=FALSE, nAdj2estimateTime=10)

S4 method for signature 'matrix'
qpNrr(X, q=1, I=NULL, restrict.Q=NULL, fix.Q=NULL, nTests=100,

alpha=0.05, pairup.i=NULL, pairup.j=NULL,
long.dim.are.variables=TRUE, verbose=TRUE, identicalQs=TRUE,

exact.test=TRUE, use=c("complete.obs", "em"), tol=0.01,
R.code.only=FALSE, clusterSize=1, estimateTime=FALSE,
nAdj2estimateTime=10)

Arguments

X data set from where to estimate the non-rejection rates. It can be an ExpressionSet
object, a qtl/cross object, a data.frame object or a matrix object.

q partial-correlation order to be employed.

I indexes or names of the variables in X that are discrete. See details below re-
garding this argument.

restrict.Q indexes or names of the variables in X that restrict the sample space of condi-
tioning subsets Q.

fix.Q indexes or names of the variables in X that should be fixed within every condi-
tioning conditioning subsets Q.

nTests number of tests to perform for each pair for variables.

alpha significance level of each test.

pairup.i subset of vertices to pair up with subset pairup.j

pairup.j subset of vertices to pair up with subset pairup.i
long.dim.are.variables

logical; if TRUE it is assumed that when data are in a data frame or in a matrix, the
longer dimension is the one defining the random variables (default); if FALSE,
then random variables are assumed to be at the columns of the data frame or
matrix.

verbose show progress on the calculations.

identicalQs use identical conditioning subsets for every pair of vertices (default), otherwise
sample a new collection of nTests subsets for each pair of vertices.

exact.test logical; if FALSE an asymptotic conditional independence test is employed with
mixed (i.e., continuous and discrete) data; if TRUE (default) then an exact con-
ditional independence test with mixed data is employed. See details below re-
garding this argument.

use a character string defining the way in which calculations are done in the presence
of missing values. It can be either "complete.obs" (default) or "em".

tol maximum tolerance controlling the convergence of the EM algorithm employed
when the argument use="em".

R.code.only logical; if FALSE then the faster C implementation is used (default); if TRUE then
only R code is executed.

qpNrr 49

clusterSize size of the cluster of processors to employ if we wish to speed-up the calcula-
tions by performing them in parallel. A value of 1 (default) implies a single-
processor execution. The use of a cluster of processors requires having previ-
ously loaded the packages snow and rlecuyer.

estimateTime logical; if TRUE then the time for carrying out the calculations with the given pa-
rameters is estimated by calculating for a limited number of adjacencies, speci-
fied by nAdj2estimateTime, and extrapolating the elapsed time; if FALSE (de-
fault) calculations are performed normally till they finish.

nAdj2estimateTime

number of adjacencies to employ when estimating the time of calculations (estimateTime=TRUE).
By default this has a default value of 10 adjacencies and larger values should
provide more accurate estimates. This might be relevant when using a cluster
facility.

Details

Note that for pure continuous data the possible values of q should be in the range 1 to min(p,
n-3), where p is the number of variables and n the number of observations. The computational
cost increases linearly with q and quadratically in p. When setting identicalQs to FALSE the
computational cost may increase between 2 times and one order of magnitude (depending on p and
q) while asymptotically the estimation of the non-rejection rate converges to the same value. Full
details on the calculation of the non-rejection rate can be found in Castelo and Roverato (2006).

When I is set different to NULL then mixed graphical model theory is employed and, concretely,
it is assumed that the data comes from an homogeneous conditional Gaussian distribution. In this
setting further restrictions to the maximum value of q apply, concretely, it cannot be smaller than p
plus the number of levels of the discrete variables involved in the marginal distributions employed
by the algorithm. By default, with exact.test=TRUE, an exact test for conditional independence is
employed, otherwise an asymptotic one will be used. Full details on these features can be found in
Tur, Roverato and Castelo (2014).

The argument I specifying what variables are discrete actually applies only when X is a matrix
object since in the other cases data types are specified for each data columns or slot.

In the case that X is a qtl/cross object, the default NULL values in arguments pairup.i and
pairup.j actually imply pairing all markers and phenotypes with numerical phenotypes only (in-
cluding integer phenotypes). Likewise, the default argument restrict.Q=NULL implies setting
restrict.Q to all numeric phenotypes. Setting these arguments to values other than NULL allows
the user to use those particular values being set.

Value

A dspMatrix-class symmetric matrix of estimated non-rejection rates with the diagonal set to NA
values. If arguments pairup.i and pairup.j are employed, those cells outside the constrained
pairs will get also a NA value.

Note, however, that when estimateTime=TRUE, then instead of the matrix of estimated non-rejection
rates, a vector specifying the estimated number of days, hours, minutes and seconds for completion
of the calculations is returned.

Author(s)

R. Castelo, A. Roverato and I. Tur

50 qpNrr

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n, J. Mach. Learn. Res., 7:2621-2650, 2006.

Tur, I., Roverato, A. and Castelo, R. Mapping eQTL networks with mixed graphical Markov mod-
els. Genetics, 198(4):1377-1393, 2014.

See Also

qpAvgNrr qpEdgeNrr qpHist qpGraphDensity qpClique

Examples

nVar <- 50 ## number of variables
maxCon <- 3 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate

set.seed(123)

simulate an undirected Gaussian graphical model
determined by some random undirected d-regular graph
model <- rUGgmm(dRegularGraphParam(p=nVar, d=maxCon), rho=0.5)
model

simulate data from this model
X <- rmvnorm(nObs, model)
dim(X)

estimate non-rejection rates with q=3
nrr.estimates <- qpNrr(X, q=3, verbose=FALSE)

create an adjacency matrix of the undirected graph
determining the undirected Gaussian graphical model
A <- as(model$g, "matrix") == 1

distribution of non-rejection rates for the present edges
summary(nrr.estimates[upper.tri(nrr.estimates) & A])

distribution of non-rejection rates for the missing edges
summary(nrr.estimates[upper.tri(nrr.estimates) & !A])

Not run:
using R code only this would take much more time
qpNrr(X, q=3, R.code.only=TRUE, estimateTime=TRUE)

only for moderate and large numbers of variables the
use of a cluster of processors speeds up the calculations

library(snow)
library(rlecuyer)

nVar <- 500
maxCon <- 3
model <- rUGgmm(dRegularGraphParam(p=nVar, d=maxCon), rho=0.5)
X <- rmvnorm(nObs, model)

system.time(nrr.estimates <- qpNrr(X, q=10, verbose=TRUE))

qpPAC 51

system.time(nrr.estimates <- qpNrr(X, q=10, verbose=TRUE, clusterSize=4))

End(Not run)

qpPAC Estimation of partial correlation coefficients

Description

Estimates partial correlation coefficients (PACs) for a Gaussian graphical model with undirected
graph G and their corresponding p-values for the null hypothesis of zero-partial correlation.

Usage

S4 method for signature 'ExpressionSet'
qpPAC(X, g, return.K=FALSE, tol=0.001,

matrix.completion=c("HTF", "IPF"), verbose=TRUE,
R.code.only=FALSE)

S4 method for signature 'data.frame'
qpPAC(X, g, return.K=FALSE, long.dim.are.variables=TRUE,

tol=0.001, matrix.completion=c("HTF", "IPF"),
verbose=TRUE, R.code.only=FALSE)

S4 method for signature 'matrix'
qpPAC(X, g, return.K=FALSE, long.dim.are.variables=TRUE,

tol=0.001, matrix.completion=c("HTF", "IPF"),
verbose=TRUE, R.code.only=FALSE)

Arguments

X data set from where to estimate the partial correlation coefficients. It can be an
ExpressionSet object, a data frame or a matrix.

g either a qpGraph object, or a graphNEL, graphAM or graphBAM object, or an
adjacency matrix of an undirected graph.

return.K logical; if TRUE this function also returns the concentration matrix K; if FALSE
it does not return it (default).

long.dim.are.variables

logical; if TRUE it is assumed that when X is a data frame or a matrix, the longer
dimension is the one defining the random variables (default); if FALSE, then
random variables are assumed to be at the columns of the data frame or matrix.

tol maximum tolerance in the application of the IPF algorithm.

matrix.completion

algorithm to employ in the matrix completion operations employed to construct
a positive definite matrix with the zero pattern specified in g

verbose show progress on the calculations.

R.code.only logical; if FALSE then the faster C implementation is used (default); if TRUE
then only R code is executed.

52 qpPAC

Details

In the context of maximum likelihood estimation (MLE) of PACs it is a necessary condition for the
existence of MLEs that the sample size n is larger than the clique number w(G) of the graph G. If the
sample size n is larger than the maximum boundary of the input graph bd(G), then the default matrix
completion algorithm HTF by Hastie, Tibshirani and Friedman (2009) can be used (see the function
qpHTF() for details), which has the avantage that is faster than IPF (see the function qpIPF() for
details).

The PAC estimation is done by first obtaining a MLE of the covariance matrix using the qpIPF
function and the p-values are calculated based on the estimation of the standard errors (see Roverato
and Whittaker, 1996) and performing Wald tests based on the asymptotic chi-squared distribution.

Value

A list with two matrices, one with the estimates of the PACs and the other with their p-values. If
return.K=TRUE then the MLE of the inverse covariance is also returned as part of the list.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n. J. Mach. Learn. Res., 7:2621-2650, 2006.

Castelo, R. and Roverato, A. Reverse engineering molecular regulatory networks from microarray
data with qp-graphs. J. Comp. Biol., 16(2):213-227, 2009.

Hastie, T., Tibshirani, R. and Friedman, J.H. The Elements of Statistical Learning, Springer, 2009.

Roverato, A. and Whittaker, J. Standard errors for the parameters of graphical Gaussian models.
Stat. Comput., 6:297-302, 1996.

See Also

qpGraph qpCliqueNumber qpClique qpGetCliques qpIPF

Examples

require(mvtnorm)

nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate

set.seed(123)

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

nrr.estimates <- qpNrr(X, verbose=FALSE)

qpg <- qpGraph(nrr.estimates, epsilon=0.5)
qpg$g

qpPathWeight 53

pac.estimates <- qpPAC(X, g=qpg, verbose=FALSE)

distribution absolute values of the estimated
partial correlation coefficients of the present edges
summary(abs(pac.estimates$R[upper.tri(pac.estimates$R) & A]))

distribution absolute values of the estimated
partial correlation coefficients of the missing edges
summary(abs(pac.estimates$R[upper.tri(pac.estimates$R) & !A]))

qpPathWeight Calculation of path weights

Description

Calculates the path weight for a path of an undirected graph.

Usage

S4 method for signature 'matrix'
qpPathWeight(X, path, Q=integer(0), M=integer(0),

normalized=TRUE, R.code.only=TRUE)

Arguments

X covariance matrix.

path character vector of consecutive vertex names defining a path in an undirected
graph.

Q indexes or names of the variables in sigma that should be used for conditioning.

M indexes or names of the variables in sigma over which we want to marginalize.

normalized logical; TRUE (default) when the calculated path weight should be normalized
so that weights are comparable between paths with different endpoints, and false
otherwise.

R.code.only logical; if FALSE then the faster C implementation is used (not yet available);
if TRUE then only R code is executed (default).

Details

Calculation of path weights. This implementation is still under development and will give only
correct results with either population covariance matrices or sample covariance matrices estimated
from data with n » p. Consult (Roverato and Castelo, 2017) for further details.

Value

The calculated path weight for the given path.

Author(s)

R. Castelo and A. Roverato

54 qpPCC

References

Roverato, A. and Castelo, R. The networked partial correlation and its application to the analysis of
genetic interactions. J. R. Stat. Soc. Ser. C-Appl. Stat., 66:647-665, 2017. doi:10.1111/rssc.12166

Examples

example in Figure 1 from (Castelo and Roverato, 2017)

undirected graph on 9 vertices
edg <- matrix(c(1, 4,

2, 4,
3, 4,
4, 5,
5, 6,
5, 7,
8, 9),

ncol=2, byrow=TRUE)

create a corresponding synthetic precision matrix with
partial correlation values set to -0.4 for all present edges
K <- matrix(0, nrow=9, ncol=9, dimnames=list(1:9, 1:9))
K[edg] <- -0.4
K <- K + t(K)
diag(K) <- 1

calculate the corresponding covariance matrix
S <- solve(K)

calculate networked partial correlations for all present
edges
npc <- sapply(1:nrow(edg), function(i) qpPathWeight(S, edg[i,]))

note that while all partial correlations are zero for missing
edges and are equal to -0.4 for present edges, the corresponding
networked partial correlations are also zero for missing edges
but may be different between them for present edges, depending on
the connections between the vertices
cbind(edg, npc)

qpPCC Estimation of Pearson correlation coefficients

Description

Estimates Pearson correlation coefficients (PCCs) and their corresponding P-values between all
pairs of variables from an input data set.

Usage

S4 method for signature 'ExpressionSet'
qpPCC(X)
S4 method for signature 'data.frame'
qpPCC(X, long.dim.are.variables=TRUE)
S4 method for signature 'matrix'
qpPCC(X, long.dim.are.variables=TRUE)

https://doi.org/10.1111/rssc.12166

qpPCC 55

Arguments

X data set from where to estimate the Pearson correlation coefficients. It can be an
ExpressionSet object, a data frame or a matrix.

long.dim.are.variables

logical; if TRUE it is assumed that when X is a data frame or a matrix, the longer
dimension is the one defining the random variables (default); if FALSE, then
random variables are assumed to be at the columns of the data frame or matrix.

Details

The calculations made by this function are the same as the ones made for a single pair of variables
by the function cor.test but for all the pairs of variables in the data set, with the exception of the
treatment of missing values, since only complete observations across all variables in X are used.

Value

A list with two matrices, one with the estimates of the PCCs and the other with their P-values.

Author(s)

R. Castelo and A. Roverato

See Also

qpPAC

Examples

require(graph)
require(mvtnorm)

nVar <- 50 ## number of variables
nObs <- 10 ## number of observations to simulate

set.seed(123)

g <- randomEGraph(as.character(1:nVar), p=0.15)

Sigma <- qpG2Sigma(g, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

pcc.estimates <- qpPCC(X)

get the corresponding boolean adjacency matrix
A <- as(g, "matrix") == 1

Pearson correlation coefficients of the present edges
summary(abs(pcc.estimates$R[upper.tri(pcc.estimates$R) & A]))

Pearson correlation coefficients of the missing edges
summary(abs(pcc.estimates$R[upper.tri(pcc.estimates$R) & !A]))

56 qpPlotMap

qpPlotMap Plots a map of associated pairs

Description

Plots a map of associated pairs defined by adjusted p-values

Usage

qpPlotMap(p.valueMatrix, markerPos, genePos, chrLen,
p.value=0.05, adjust.method="holm",
xlab="Ordered Markers", ylab="Ordered Genes",
main="", ...)

Arguments

p.valueMatrix squared symmetric matrix with raw p-values for all pairs.

markerPos two-column matrix containing chromosome and position of each genetic marker.

genePos two-column matrix containing chromosome and position of each gene.

chrLen named vector with chromosome lengths. Vector names should correspond to
chromosome names, which are displayed in the axes of the plot. This vector
should be ordered following the same convention for chromosomes in arguments
markerPos and genePos.

p.value adjusted p-value cutoff.

adjust.method method employed to adjust the raw p-values. It is passed in a call to p.adjust()
in its method argument.

xlab label for the x-axis.

ylab label for the y-axis.

main main title of the plot, set to the empty string by default.

... further arguments passed to the plot() function.

Details

This function plots a map of present associations, typically between genetic markers and gene
expression profiles (i.e., eQTL associations), according to the chromosomal locations of both the
genetic markers and the genes. The input argument p.valueMatrix should contain the raw p-values
of these associations. Present associations are selected by a cutoff given in the p.value argument
applied to the adjusted p-values.

The input raw p-values can be obtained with the function qpAllCItests.

Value

The selected present associations are invisibly returned.

Author(s)

R. Castelo

qpPlotNetwork 57

See Also

qpAllCItests

Examples

generate uniformly random p-values for synthetic associations
between m genetic markers and g genes into a symmetric matrix
m <- 100
g <- 100
p <- m + g
markerids <- paste0("m", 1:m)
geneids <- paste0("g", 1:g)
rndpvalues <- matrix(0, nrow=p, ncol=p,

dimnames=list(c(markerids, geneids), c(markerids, geneids)))
rndpvalues[1:m,(m+1):p] <- runif(m*g)

put significant cis associations
rndpvalues[cbind(1:m, (m+1):p)] <- rnorm(m, mean=1e-4, sd=1e-2)^2

put one hotspot locus with significant, but somehat weaker, trans associations
hotspotmarker <- sample(1:m, size=1)
rndpvalues[cbind(hotspotmarker, (m+1):p)] <- rnorm(g, mean=1e-2, sd=1e-2)^2

make matrix symmetric
rndpvalues <- rndpvalues + t(rndpvalues)
stopifnot(isSymmetric(rndpvalues))
rndpvalues[1:m, 1:m] <- rndpvalues[(m+1):p,(m+1):p] <- NA

create chromosomal map
chrlen <- c("chr1"=1000)
posmarkers <- matrix(c(rep(1, m), seq(1, chrlen, length.out=m)), nrow=m)
posgenes <- matrix(c(rep(1, g), seq(1, chrlen, length.out=g)), nrow=g)
rownames(posmarkers) <- paste0("m", 1:m)
rownames(posgenes) <- paste0("g", 1:g)

qpPlotMap(rndpvalues, posmarkers, posgenes, chrlen, cex=3)

qpPlotNetwork Plots a graph

Description

Plots a graph using the Rgraphviz library

Usage

qpPlotNetwork(g, vertexSubset=graph::nodes(g), boundary=FALSE,
minimumSizeConnComp=2, pairup.i=NULL, pairup.j=NULL,
highlight=NULL, annotation=NULL,
layout=c("twopi", "dot", "neato", "circo", "fdp"))

58 qpPlotNetwork

Arguments

g graph to plot provided as a graphNEL-class object.

vertexSubset subset of vertices that define the induced subgraph to be plotted.

boundary flag set to TRUE when we wish that the subset specified in vertexSubset also
includes the vertices connected to them; FALSE otherwise.

minimumSizeConnComp

minimum size of the connected components to be plotted.

pairup.i subset of vertices to pair up with subset pairup.j.

pairup.j subset of vertices to pair up with subset pairup.i.

highlight subset of vertices to highlight by setting the color font to red.

annotation name of an annotation package to transform gene identifiers into gene symbols
when vertices correspond to genes.

layout layout argument for the Rgraphviz library that plots the network. Possible values
are twopi (default), dot, neato, circo, fdp.

Details

This function acts as a wrapper for the functionality provided by the Rgraphviz package to plot
graphs in R. It should help to plot networks obtained with methods from theqpgraph package.

Value

The plotted graph is invisibly returned as a graphNEL-class object.

Author(s)

R. Castelo

See Also

qpGraph qpAnyGraph

Examples

Not run:
require(Rgraphviz)

rndassociations <- qpUnifRndAssociation(10)
g <- qpAnyGraph(abs(rndassociations), threshold=0.7, remove="below")
qpPlotNetwork(g) ## this does not work at the moment and should be fixed

End(Not run)

qpPrecisionRecall 59

qpPrecisionRecall Calculation of precision-recall curves

Description

Calculates the precision-recall curve (see Fawcett, 2006) for a given measure of association between
all pairs of variables in a matrix.

Usage

qpPrecisionRecall(measurementsMatrix, refGraph, decreasing=TRUE, pairup.i=NULL,
pairup.j=NULL, recallSteps=seq(0, 1, by=0.1))

Arguments

measurementsMatrix

matrix containing the measure of association between all pairs of variables.

refGraph a reference graph from which to calculate the precision-recall curve provided
either as an adjacency matrix, a two-column matrix of edges, a graphNEL-class
object or a graphAM-class object.

decreasing logical; if TRUE then the measurements are ordered in decreasing order; if
FALSE then in increasing order.

pairup.i subset of vertices to pair up with subset pairup.j.

pairup.j subset of vertices to pair up with subset pairup.i.

recallSteps steps of the recall on which to calculate precision.

Details

The measurementsMatrix should be symmetric and may have also contain NA values which will not
be taken into account. That is an alternative way to restricting the variable pairs with the parameters
pairup.i and pairup.j.

Value

A matrix where rows correspond to recall steps and columns correspond, respetively, to the actual
recall, the precision, the number of true positives at that recall rate and the threshold score that
yields that recall rate.

Author(s)

R. Castelo and A. Roverato

References

Fawcett, T. An introduction to ROC analysis. Pattern Recogn. Lett., 27:861-874, 2006.

See Also

qpPRscoreThreshold qpGraph qpAvgNrr qpPCC

60 qpPRscoreThreshold

Examples

require(mvtnorm)

nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate

set.seed(123)

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

estimate non-rejection rates
nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)

estimate Pearson correlation coefficients
pcc.estimates <- qpPCC(X)

calculate area under the precision-recall curve
for both sets of estimated values of association
nrr.prerec <- qpPrecisionRecall(nrr.estimates, refGraph=A, decreasing=FALSE,

recallSteps=seq(0, 1, 0.1))
f <- approxfun(nrr.prerec[, c("Recall", "Precision")])
integrate(f, 0, 1)$value

pcc.prerec <- qpPrecisionRecall(abs(pcc.estimates$R), refGraph=A,
recallSteps=seq(0, 1, 0.1))

f <- approxfun(pcc.prerec[, c("Recall", "Precision")])
integrate(f, 0, 1)$value

qpPRscoreThreshold Calculation of scores thresholds attaining nominal precision or recall
levels

Description

Calculates the score threshold at a given precision or recall level from a given precision-recall curve.

Usage

qpPRscoreThreshold(preRecFun, level, recall.level=TRUE, max.score=9999999)

Arguments

preRecFun precision-recall function (output from qpPrecisionRecall).

level recall or precision level.

recall.level logical; if TRUE then it is assumed that the value given in the level parameter
corresponds to a desired level of recall; if FALSE then it is assumed a desired
level of precision.

max.score maximum score given by the method that produced the precision-recall function
to an association.

qpRndGraph 61

Value

The score threshold at which a given level of precision or recall is attained by the given precision-
recall function. For levels that do not form part of the given function their score is calculated
by linear interpolation and for this reason is important to carefully specify a proper value for the
max.score parameter.

Author(s)

R. Castelo and A. Roverato

References

Fawcett, T. An introduction to ROC analysis. Pattern Recogn. Lett., 27:861-874, 2006.

See Also

qpPrecisionRecall qpGraph

Examples

require(mvtnorm)

nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate

set.seed(123)

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

nrr.estimates <- qpNrr(X, q=1, verbose=FALSE)

nrr.prerec <- qpPrecisionRecall(nrr.estimates, A, decreasing=FALSE,
recallSteps=seq(0, 1, by=0.1))

qpPRscoreThreshold(nrr.prerec, level=0.5, recall.level=TRUE, max.score=0)

qpPRscoreThreshold(nrr.prerec, level=0.5, recall.level=FALSE, max.score=0)

qpRndGraph Undirected random d-regular graphs

Description

Samples an undirected d-regular graph approximately uniformly at random.

Usage

qpRndGraph(p=6, d=2, labels=1:p, exclude=NULL, verbose=FALSE,
return.type=c("adjacency.matrix", "edge.list", "graphBAM", "graphNEL"),

R.code.only=FALSE)

62 qpRndGraph

Arguments

p number of vertices.

d degree of every vertex.

labels vertex labels.

exclude vector of vertices inducing edges that should be excluded from the sampled d-
regular graph.

verbose show progress on the calculations.

return.type class of object to be returned by the function

R.code.only logical; if FALSE then the faster C implementation is used (default); if TRUE then
only R code is executed.

Details

This function implements the algorithm from Steger and Wormald (1999) for sampling undirected
d-regular graphs from a probability distribution of all d-regular graphs on p vertices which is ap-
proximately uniform. More concretely, for all vertex degree values d that grow as a small power
of p, all d-regular graphs on p vertices will have in the limit the same probability as p grows large.
Steger and Wormald (1999, pg. 396) believe that for d » sqrt(p) the resulting probability distribution
will no longer be approximately uniform.

This function is provided in order to generate a random undirected graph as input to the function
qpG2Sigma which samples a random covariance matrix whose inverse (aka, precision matrix) has
zeroes on those cells corresponding to the missing edges in the input graph. d-regular graphs are
useful for working with synthetic graphical models for two reasons: one is that d-regular graph
density is a linear function of d and the other is that the minimum connectivity degree of two
disconnected vertices is an upper bound of their outer connectivity (see Castelo and Roverato, 2006,
pg. 2646).

Value

The adjacency matrix of the resulting graph.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n, J. Mach. Learn. Res., 7:2621-2650, 2006.

Steger, A. and Wormald, N.C. Generating random regular graphs quickly, Combinatorics, Probab.
and Comput., 8:377-396.

See Also

qpG2Sigma

qpRndWishart 63

Examples

set.seed(123)

A <- qpRndGraph(p=50, d=3)

summary(apply(A, 1, sum))

qpRndWishart Random Wishart distribution

Description

Random generation for the (n.var * n.var) Wishart distribution (see Press, 1972) with matrix pa-
rameter A=diag(delta)%*%P%*%diag(delta) and degrees of freedom df.

Usage

qpRndWishart(delta=1, P=0, df=NULL, n.var=NULL)

Arguments

delta a numeric vector of n.var positive values. If a scalar is provided then this is
extended to form a vector.

P a (n.var * n.var) positive definite matrix with unit diagonal. If a scalar is pro-
vided then this number is used as constant off-diagonal entry for P.

df degrees of freedom.

n.var dimension of the Wishart matrix. It is required only when both delata and P are
scalar.

Details

The degrees of freedom are df > n.var-1 and the expected value of the distribution is equal to df
* A. The random generator is based on the algorithm of Odell and Feiveson (1966).

Value

A list of two n.var * n.var matrices rW and meanW where rW is a random value from the Wishart
and meanW is the expected value of the distribution.

Author(s)

A. Roverato

References

Odell, P.L. and Feiveson, A.G. A numerical procedure to generate a sample covariance matrix. J.
Am. Statist. Assoc. 61, 199-203, 1966.

Press, S.J. Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of Inference.
New York: Holt, Rinehalt and Winston, 1972.

Tur, I., Roverato, A. and Castelo, R. Mapping eQTL networks with mixed graphical Markov mod-
els. Genetics, 198(4):1377-1393, 2014.

64 qpTopPairs

See Also

qpG2Sigma

Examples

Construct an adjacency matrix for a graph on 6 vertices

nVar <- 6
A <- matrix(0, nVar, nVar)
A[1,2] <- A[2,3] <- A[3,4] <- A[3,5] <- A[4,6] <- A[5,6] <- 1
A=A + t(A)
A
set.seed(123)
M <- qpRndWishart(delta=sqrt(1/nVar), P=0.5, n.var=nVar)
M
set.seed(123)
d=1:6
M <- qpRndWishart(delta=d, P=0.7, df=20)
M

qpTopPairs Report pairs of variables

Description

Report a top number of pairs of variables according to either some association measure and/or
occurring in a given reference graph.

Usage

qpTopPairs(measurementsMatrix=NULL, refGraph=NULL, n=6L, file=NULL,
decreasing=FALSE, pairup.i=NULL, pairup.j=NULL,
annotation=NULL, fcOutput=NULL, fcOutput.na.rm=FALSE,
digits=NULL)

Arguments

measurementsMatrix

matrix containing the measure of association between all pairs of variables.

refGraph a reference graph containing the pairs that should be reported and provided ei-
ther as an adjacency matrix, a graphNEL-class object or a graphAM-class
object.

n number of pairs to report, 6 by default, use Inf for reporting all of them.

file file name to dump the pairs information as tab-separated column text.

decreasing logical; if TRUE then the measurements are employed to be ordered in decreas-
ing order; if FALSE then in increasing order.

pairup.i subset of vertices to pair up with subset pairup.j.

pairup.j subset of vertices to pair up with subset pairup.i.

annotation name of an annotation package to transform gene identifiers into gene symbols
when variables correspond to genes.

qpUnifRndAssociation 65

fcOutput output of qpFunctionalCoherence.

fcOutput.na.rm flag set to TRUE when pairs with NA values from fcOutput should not be re-
ported; FALSE (default) otherwise.

digits number of decimal digits reported in the values of measurementsMatrix and
functional coherence values. By default digits=NULL, and therefore, no round-
ing is performed.

Details

The measurementsMatrix should be symmetric and may have also contain NA values which will not
be taken into account. That is an alternative way to restricting the variable pairs with the parameters
pairup.i and pairup.j. The same holds for refGraph. One of these two, should be specified.

Value

The ranking of pairs is invisibly returned.

Author(s)

R. Castelo

See Also

qpGraph qpPrecisionRecall qpFunctionalCoherence

Examples

qpTopPairs(matrix(runif(100), nrow=10, dimnames=list(1:10,1:10)))

qpUnifRndAssociation Uniformly random association values

Description

Builds a matrix of uniformly random association values between -1 and +1 for all pairs of variables
that follow from the number of variables given as input argument.

Usage

qpUnifRndAssociation(n.var, var.names=as.character(1:n.var))

Arguments

n.var number of variables.

var.names names of the variables to use as row and column names in the resulting matrix.

Details

This function simply generates uniformly random association values with no independence pattern
associated to them. For generating a random covariance matrix that reflects such a pattern use the
function qpG2Sigma.

66 qpUpdateCliquesRemoving

Value

A symmetric matrix of uniformly random association values between -1 and +1.

Author(s)

R. Castelo

See Also

qpG2Sigma

Examples

rndassociation <- qpUnifRndAssociation(100)
summary(rndassociation[upper.tri(rndassociation)])

qpUpdateCliquesRemoving

Update clique list when removing one edge

Description

Updates the set of (maximal) cliques of a given undirected graph when removing one edge.

Usage

qpUpdateCliquesRemoving(g, clqlst, v, w, verbose=TRUE)

Arguments

g either a graphNEL object or an adjacency matrix of the given undirected graph.

clqlst list of cliques of the graph encoded in g. this list should start on element n+1
(for n vertices) while between elements 1 to n there should be references to
the cliques to which each of the 1 to n vertices belong to (i.e., the output of
qpGetCliques) with parameter clqspervtx=TRUE.

v vertex of the edge being removed.

w vertex of the edge being removed.

verbose show progress on calculations.

Details

To find the list of all (maximal) cliques in an undirected graph is an NP-hard problem which means
that its computational cost is bounded by an exponential running time (Garey and Johnson, 1979).
For this reason, this is an extremely time and memory consuming computation for large dense
graphs. If we spend the time to obtain one such list of cliques and we remove one edge of the graph
with this function we may be able to update the set of maximal cliques instead of having to generate
it again entirely with qpGetCliques but it requires that in the first call to qpGetCliques we set
clqspervtx=TRUE. It calls a C implementation of the algorithm from Stix (2004).

qpUpdateCliquesRemoving 67

Value

The updated list of maximal cliques after removing one edge from the input graph. Note that be-
cause the corresponding input clique list had to be generated with the argument clqspervtx=TRUE
in the call to qpGetCliques, the resulting updated list of cliques also includes in its first p entries
(p=number of variables) the indices of the cliques where that particular vertex belongs to. Notice
also that although this strategy might be in general more efficient than generating again the entire
list of cliques, when removing one edge from the graph, the clique enumeration problem remains
NP-hard (see Garey and Johnson, 1979) and therefore depending on the input graph its computation
may become unfeasible.

Author(s)

R. Castelo

References

Garey, M.R. and Johnson D.S. Computers and intractability: a guide to the theory of NP-completeness.
W.H. Freeman, San Francisco, 1979.

Stix, V. Finding all maximal cliques in dynamic graphs Comput. Optimization and Appl., 27:173-
186, 2004.

See Also

qpCliqueNumber qpGetCliques qpIPF

Examples

the example below takes about 30 seconds to execute and for that reason
it is not executed by default
Not run:
require(graph)

set.seed(123)
nVar <- 1000
g1 <- randomEGraph(V=as.character(1:nVar), p=0.1)
g1
clqs1 <- qpGetCliques(g1, clqspervtx=TRUE, verbose=FALSE)

length(clqs1)

g2 <- removeEdge(from="1", to=edges(g1)[["1"]][1], g1)
g2

system.time(clqs2a <- qpGetCliques(g2, verbose=FALSE))

system.time(clqs2b <- qpUpdateCliquesRemoving(g1, clqs1, "1", edges(g1)[["1"]][1], verbose=FALSE))

length(clqs2a)

length(clqs2b)-nVar

End(Not run)

68 UGgmm-class

SsdMatrix-class Sum of squares and deviations Matrices

Description

The "SsdMatrix" class is the class of symmetric, dense matrices in packed storage (just as a
dspMatrix-class, i.e., only the upper triangle is stored) defined within the qpgraph package to
store corrected, or uncorrected, matrices of the sum of squares and deviations (SSD) of pairs of
random variables. A corrected SSD matrix corresponds to a sample covariance matrix.

Objects from the Class

Objects can be created by calls of the form new("SsdMatrix", ...) or by using qpCov() which
estimates a sample covariance matrix from data returning an object of this class.

Slots

ssd: Object of class dspMatrix-class storing the SSD matrix.

n: Object of class "numeric" storing the sample size employed to estimate the SSD matrix stored
in the slot ssd. This is specially relevant when the SSD matrix was estimated from data with
missing values by using complete observations only, which is the default mode of operation
of qpCov().

Extends

"SsdMatrix" extends class "dspMatrix", directly.

Methods

dim signature(x = "SsdMatrix")

dimnames signature(x = "SsdMatrix")

show signature(object = "SsdMatrix")

det signature(object = "SsdMatrix")

determinant signature(object = "SsdMatrix", logarithm = "missing")

determinant signature(object = "SsdMatrix", logarithm = "logical")

UGgmm-class Undirected Gaussian graphical Markov model

Description

The "UGgmm" class is the class of undirected Gaussian graphical Markov models defined within the
qpgraph package to store simulate and manipulate this type of graphical Markov models (GMMs).

An undirected Gaussian GMM is a family of multivariate normal distributions sharing a set of
conditional independences encoded by means of an undirected graph. Further details can be found
in the book of Lauritzen (1996).

UGgmm-class 69

Objects from the Class

Objects can be created by calls of the form UGgmm(g, ...) corresponding to constructor methods
or rUGgmm(n, g, ...) corresponding to random simulation methods.

Slots

p: Object of class "integer" storing the dimension of the undirected Gaussian GMM correspond-
ing to the number of random variables.

g: Object of class graphBAM-class storing the associated undirected labeled graph.

mean: Object of class "numeric" storing the mean vector.

sigma: Object of class dspMatrix-class storing the covariance matrix.

Methods

UGgmm(g) Constructor method where g can be either an adjacency matrix or a graphBAM-class
object.

rUGgmm(n, g) Constructor simulation method that allows one to simulate undirected Gaussian
GMMs where n is the number of GMMs to simulate and g can be either a graphParam object,
an adjacency matrix or a graphBAM-class object.

names(x) Accessor method to obtain the names of the elements in the object x that can be retrieved
with the $ accessor operator.

$ Accessor operator to retrieve elements of the object in an analogous way to a list.

dim(x) Dimension of the undirected Gaussian GMM corresponding to the total number of random
variables.

dimnames(x) Names of the random variables in the undirected Gaussian GMM.

show(object) Method to display some bits of information about the input undirected Gaussian
GMM specified in object.

summary(object) Method to display a sumamry of the main features of the input undirected Gaus-
sian GMM specified in object.

plot(x, ...) Method to plot the undirected graph associated to the the input undirected Gaussian
GMM specified in x. It uses the plotting capabilities from the Rgraphviz library to which
further arguments specified in ... are further passed.

Author(s)

R. Castelo

References

Lauritzen, S.L. Graphical models. Oxford University Press, 1996.

See Also

HMgmm

Index

∗ classes
eQTLcross-class, 5
eQTLnetwork-class, 6
eQTLnetworkEstimate, 6
eQTLnetworkEstimationParam-class,

6
graphParam-class, 8
HMgmm-class, 8
qpGraph-class, 38
SsdMatrix-class, 68
UGgmm-class, 68

∗ datasets
EcoliOxygen, 4

∗ graphs
qpgraph-package, 3

∗ models
filterCollinearities, 7
qpAllCItests, 10
qpAnyGraph, 12
qpAvgNrr, 14
qpBoundary, 17
qpCItest, 18
qpClique, 21
qpCliqueNumber, 23
qpCov, 25
qpEdgeNrr, 26
qpFunctionalCoherence, 29
qpG2Sigma, 32
qpGenNrr, 33
qpGetCliques, 36
qpgraph-package, 3
qpGraphDensity, 39
qpHist, 41
qpHTF, 42
qpImportNrr, 44
qpIPF, 45
qpK2ParCor, 46
qpNrr, 47
qpPAC, 51
qpPathWeight, 53
qpPCC, 54
qpPlotMap, 56
qpPlotNetwork, 57

qpPrecisionRecall, 59
qpPRscoreThreshold, 60
qpRndGraph, 61
qpRndWishart, 63
qpTopPairs, 64
qpUnifRndAssociation, 65
qpUpdateCliquesRemoving, 66

∗ multivariate
filterCollinearities, 7
qpAllCItests, 10
qpAnyGraph, 12
qpAvgNrr, 14
qpBoundary, 17
qpCItest, 18
qpClique, 21
qpCliqueNumber, 23
qpCov, 25
qpEdgeNrr, 26
qpFunctionalCoherence, 29
qpG2Sigma, 32
qpGenNrr, 33
qpGetCliques, 36
qpgraph-package, 3
qpGraphDensity, 39
qpHist, 41
qpHTF, 42
qpImportNrr, 44
qpIPF, 45
qpK2ParCor, 46
qpNrr, 47
qpPAC, 51
qpPathWeight, 53
qpPCC, 54
qpPlotMap, 56
qpPlotNetwork, 57
qpPrecisionRecall, 59
qpPRscoreThreshold, 60
qpRndGraph, 61
qpRndWishart, 63
qpTopPairs, 64
qpUnifRndAssociation, 65
qpUpdateCliquesRemoving, 66

∗ package

70

INDEX 71

qpgraph-package, 3
$,HMgmm-method (HMgmm-class), 8
$,UGgmm-method (UGgmm-class), 68
$,eQTLcross-method (eQTLcross-class), 5
$,qpGraph-method (qpGraph-class), 38

addeQTL (eQTLcross-class), 5
addeQTL,eQTLcross-method

(eQTLcross-class), 5
addGeneAssociation (eQTLcross-class), 5
addGeneAssociation,eQTLcross-method

(eQTLcross-class), 5
addGenes (eQTLcross-class), 5
addGenes,eQTLcross,integer-method

(eQTLcross-class), 5
addGenes,eQTLcross,missing-method

(eQTLcross-class), 5
addGenes,eQTLcross,numeric-method

(eQTLcross-class), 5
alleQTL (eQTLnetwork-class), 6
alleQTL,eQTLcross-method

(eQTLcross-class), 5
alleQTL,eQTLnetwork-method

(eQTLnetwork-class), 6
allGeneAssociations

(eQTLnetwork-class), 6
allGeneAssociations,eQTLnetwork-method

(eQTLnetwork-class), 6

ciseQTL (eQTLnetwork-class), 6
ciseQTL,eQTLcross,missing-method

(eQTLcross-class), 5
ciseQTL,eQTLcross,numeric-method

(eQTLcross-class), 5
ciseQTL,eQTLnetwork,missing-method

(eQTLnetwork-class), 6
ciseQTL,eQTLnetwork,numeric-method

(eQTLnetwork-class), 6
cor.test, 55
cov, 25
cov2cor, 46

det,SsdMatrix-method (SsdMatrix-class),
68

determinant,SsdMatrix,logical-method
(SsdMatrix-class), 68

determinant,SsdMatrix,missing-method
(SsdMatrix-class), 68

dim,HMgmm-method (HMgmm-class), 8
dim,SsdMatrix-method (SsdMatrix-class),

68
dim,UGgmm-method (UGgmm-class), 68
dimnames,HMgmm-method (HMgmm-class), 8

dimnames,SsdMatrix-method
(SsdMatrix-class), 68

dimnames,UGgmm-method (UGgmm-class), 68
dRegularGraphParam (graphParam-class), 8
dRegularGraphParam-class

(graphParam-class), 8
dRegularMarkedGraphParam

(graphParam-class), 8
dRegularMarkedGraphParam-class

(graphParam-class), 8

EcoliOxygen, 4
eQTLcross (eQTLcross-class), 5
eQTLcross,map,matrix,graphBAM-method

(eQTLcross-class), 5
eQTLcross,map,matrix,HMgmm-method

(eQTLcross-class), 5
eQTLcross,map,matrix,matrix-method

(eQTLcross-class), 5
eQTLcross,map,missing,HMgmm-method

(eQTLcross-class), 5
eQTLcross,map,missing,matrix-method

(eQTLcross-class), 5
eQTLcross,map,missing,missing-method

(eQTLcross-class), 5
eQTLcross-class, 5
eQTLcrossParam (eQTLcross-class), 5
eQTLcrossParam-class (eQTLcross-class),

5
eQTLnetwork (eQTLnetwork-class), 6
eQTLnetwork-class, 6
eQTLnetworkEstimate, 6, 6
eQTLnetworkEstimate,eQTLnetworkEstimationParam,formula,eQTLnetwork-method

(eQTLnetworkEstimate), 6
eQTLnetworkEstimate,eQTLnetworkEstimationParam,formula,missing-method

(eQTLnetworkEstimate), 6
eQTLnetworkEstimate,eQTLnetworkEstimationParam,missing,eQTLnetwork-method

(eQTLnetworkEstimate), 6
eQTLnetworkEstimationParam, 6
eQTLnetworkEstimationParam

(eQTLnetworkEstimationParam-class),
6

eQTLnetworkEstimationParam-class, 6
erGraphParam (graphParam-class), 8
erGraphParam-class (graphParam-class), 8
erMarkedGraphParam (graphParam-class), 8
erMarkedGraphParam-class

(graphParam-class), 8

filterCollinearities, 7
filtered.regulon6.1 (EcoliOxygen), 4

gds680.eset (EcoliOxygen), 4

72 INDEX

geneAnnotation
(eQTLnetworkEstimationParam-class),
6

geneAnnotation,eQTLnetwork-method
(eQTLnetwork-class), 6

geneAnnotation,eQTLnetworkEstimationParam-method
(eQTLnetworkEstimationParam-class),
6

geneNames
(eQTLnetworkEstimationParam-class),
6

geneNames,eQTLcross-method
(eQTLcross-class), 5

geneNames,eQTLnetwork-method
(eQTLnetwork-class), 6

geneNames,eQTLnetworkEstimationParam-method
(eQTLnetworkEstimationParam-class),
6

geneticMap
(eQTLnetworkEstimationParam-class),
6

geneticMap,eQTLnetwork-method
(eQTLnetwork-class), 6

geneticMap,eQTLnetworkEstimationParam-method
(eQTLnetworkEstimationParam-class),
6

ggData
(eQTLnetworkEstimationParam-class),
6

ggData,eQTLnetworkEstimationParam-method
(eQTLnetworkEstimationParam-class),
6

graph (eQTLnetwork-class), 6
graph,eQTLnetwork-method

(eQTLnetwork-class), 6
graphParam, 69
graphParam-class, 8

hist, 41
HMgmm, 69
HMgmm (HMgmm-class), 8
HMgmm,graphBAM-method (HMgmm-class), 8
HMgmm,matrix-method (HMgmm-class), 8
HMgmm,missing-method (HMgmm-class), 8
HMgmm-class, 8

markedGraphParam, 9
markedGraphParam-class

(graphParam-class), 8
markerNames

(eQTLnetworkEstimationParam-class),
6

markerNames,eQTLcross-method
(eQTLcross-class), 5

markerNames,eQTLnetwork-method
(eQTLnetwork-class), 6

markerNames,eQTLnetworkEstimationParam-method
(eQTLnetworkEstimationParam-class),
6

names,eQTLcross-method
(eQTLcross-class), 5

names,HMgmm-method (HMgmm-class), 8
names,qpGraph-method (qpGraph-class), 38
names,UGgmm-method (UGgmm-class), 68

physicalMap
(eQTLnetworkEstimationParam-class),
6

physicalMap,eQTLnetwork-method
(eQTLnetwork-class), 6

physicalMap,eQTLnetworkEstimationParam-method
(eQTLnetworkEstimationParam-class),
6

plot,eQTLcross,ANY-method
(eQTLcross-class), 5

plot,eQTLnetwork,ANY-method
(eQTLnetwork-class), 6

plot,graphBAM,ANY-method
(graphParam-class), 8

plot,HMgmm,ANY-method (HMgmm-class), 8
plot,UGgmm,ANY-method (UGgmm-class), 68

qpAllCItests, 10, 56, 57
qpAllCItests,matrix-method

(qpAllCItests), 10
qpAnyGraph, 3, 12, 58
qpAvgNrr, 3, 13, 14, 28, 30, 35, 40, 41, 50, 59
qpAvgNrr,data.frame-method (qpAvgNrr),

14
qpAvgNrr,ExpressionSet-method

(qpAvgNrr), 14
qpAvgNrr,matrix-method (qpAvgNrr), 14
qpBoundary, 17, 17, 42, 43
qpCItest, 3, 11, 18
qpCItest,cross-method (qpCItest), 18
qpCItest,data.frame-method (qpCItest),

18
qpCItest,ExpressionSet-method

(qpCItest), 18
qpCItest,matrix-method (qpCItest), 18
qpCItest,SsdMatrix-method (qpCItest), 18
qpClique, 3, 13, 16, 21, 22, 24, 28, 35, 40, 41,

50, 52
qpCliqueNumber, 3, 22, 23, 37, 52, 67

INDEX 73

qpCov, 3, 19, 21, 25, 27, 28, 68
qpEdgeCor (qpEdgeNrr), 26
qpEdgeCor,matrix-method (qpEdgeNrr), 26
qpEdgeCor,UGgmm-method (qpEdgeNrr), 26
qpEdgeNrr, 3, 13, 16, 21, 26, 35, 40, 41, 50
qpEdgeNrr,data.frame-method

(qpEdgeNrr), 26
qpEdgeNrr,ExpressionSet-method

(qpEdgeNrr), 26
qpEdgeNrr,matrix-method (qpEdgeNrr), 26
qpEdgeNrr,SsdMatrix-method (qpEdgeNrr),

26
qpFunctionalCoherence, 4, 29, 65
qpFunctionalCoherence,list-method

(qpFunctionalCoherence), 29
qpFunctionalCoherence,lsCMatrix-method

(qpFunctionalCoherence), 29
qpFunctionalCoherence,lspMatrix-method

(qpFunctionalCoherence), 29
qpFunctionalCoherence,lsyMatrix-method

(qpFunctionalCoherence), 29
qpFunctionalCoherence,matrix-method

(qpFunctionalCoherence), 29
qpG2Sigma, 3, 32, 47, 62, 64–66
qpGenNrr, 3, 33
qpGenNrr,data.frame-method (qpGenNrr),

33
qpGenNrr,ExpressionSet-method

(qpGenNrr), 33
qpGenNrr,list-method (qpGenNrr), 33
qpGenNrr,matrix-method (qpGenNrr), 33
qpGetCliques, 3, 32, 36, 45, 46, 52, 66, 67
qpGraph, 3, 13, 30, 52, 58, 59, 61, 65
qpGraph (qpGraph-class), 38
qpgraph, 8, 38, 68
qpgraph (qpgraph-package), 3
qpGraph,dspMatrix-method

(qpGraph-class), 38
qpGraph,matrix-method (qpGraph-class),

38
qpGraph-class, 38
qpgraph-package, 3
qpGraphDensity, 3, 13, 16, 18, 22, 28, 35, 39,

39, 41, 50
qpHist, 3, 16, 28, 35, 41, 50
qpHTF, 18, 42, 52
qpImportNrr, 44
qpIPF, 3, 32, 37, 42, 43, 45, 52, 67
qpK2ParCor, 3, 46
qpNrr, 3, 13, 16, 21, 28, 35, 38–41, 44, 45, 47
qpNrr,cross-method (qpNrr), 47
qpNrr,data.frame-method (qpNrr), 47

qpNrr,ExpressionSet-method (qpNrr), 47
qpNrr,matrix-method (qpNrr), 47
qpPAC, 3, 43, 46, 51, 55
qpPAC,data.frame-method (qpPAC), 51
qpPAC,ExpressionSet-method (qpPAC), 51
qpPAC,matrix-method (qpPAC), 51
qpPathWeight, 53
qpPathWeight,dspMatrix-method

(qpPathWeight), 53
qpPathWeight,matrix-method

(qpPathWeight), 53
qpPCC, 3, 7, 25, 54, 59
qpPCC,data.frame-method (qpPCC), 54
qpPCC,ExpressionSet-method (qpPCC), 54
qpPCC,matrix-method (qpPCC), 54
qpPlotMap, 56
qpPlotNetwork, 4, 57
qpPrecisionRecall, 3, 13, 59, 60, 61, 65
qpPRscoreThreshold, 4, 13, 59, 60
qpRndGraph, 3, 32, 61
qpRndWishart, 3, 32, 63
qpTopPairs, 4, 64
qpUnifRndAssociation, 3, 65
qpUpdateCliquesRemoving, 66

rcmvnorm (HMgmm-class), 8
rcmvnorm,ANY,HMgmm-method

(HMgmm-class), 8
reQTLcross (eQTLcross-class), 5
reQTLcross,eQTLcross,missing-method

(eQTLcross-class), 5
reQTLcross,eQTLcrossParam,missing-method

(eQTLcross-class), 5
reQTLcross,integer,eQTLcross-method

(eQTLcross-class), 5
reQTLcross,integer,eQTLcrossParam-method

(eQTLcross-class), 5
reQTLcross,missing,eQTLcross-method

(eQTLcross-class), 5
reQTLcross,missing,eQTLcrossParam-method

(eQTLcross-class), 5
reQTLcross,numeric,eQTLcross-method

(eQTLcross-class), 5
reQTLcross,numeric,eQTLcrossParam-method

(eQTLcross-class), 5
resetCutoffs (eQTLnetwork-class), 6
resetCutoffs,eQTLnetwork-method

(eQTLnetwork-class), 6
rgraphBAM (graphParam-class), 8
rgraphBAM,dRegularGraphParam,missing-method

(graphParam-class), 8
rgraphBAM,erGraphParam,missing-method

(graphParam-class), 8

74 INDEX

rgraphBAM,graphParam,missing-method
(graphParam-class), 8

rgraphBAM,integer,dRegularGraphParam-method
(graphParam-class), 8

rgraphBAM,integer,erGraphParam-method
(graphParam-class), 8

rgraphBAM,integer,graphParam-method
(graphParam-class), 8

rgraphBAM,missing,dRegularGraphParam-method
(graphParam-class), 8

rgraphBAM,missing,erGraphParam-method
(graphParam-class), 8

rgraphBAM,missing,graphParam-method
(graphParam-class), 8

rgraphBAM,numeric,dRegularGraphParam-method
(graphParam-class), 8

rgraphBAM,numeric,erGraphParam-method
(graphParam-class), 8

rgraphBAM,numeric,graphParam-method
(graphParam-class), 8

rHMgmm (HMgmm-class), 8
rHMgmm,graphBAM,missing-method

(HMgmm-class), 8
rHMgmm,integer,graphBAM-method

(HMgmm-class), 8
rHMgmm,integer,markedGraphParam-method

(HMgmm-class), 8
rHMgmm,integer,matrix-method

(HMgmm-class), 8
rHMgmm,markedGraphParam,missing-method

(HMgmm-class), 8
rHMgmm,matrix,missing-method

(HMgmm-class), 8
rHMgmm,missing,graphBAM-method

(HMgmm-class), 8
rHMgmm,missing,markedGraphParam-method

(HMgmm-class), 8
rHMgmm,missing,matrix-method

(HMgmm-class), 8
rHMgmm,numeric,graphBAM-method

(HMgmm-class), 8
rHMgmm,numeric,markedGraphParam-method

(HMgmm-class), 8
rHMgmm,numeric,matrix-method

(HMgmm-class), 8
rmvnorm, 32
rmvnorm (UGgmm-class), 68
rmvnorm,integer,numeric-method

(UGgmm-class), 68
rmvnorm,numeric,numeric-method

(UGgmm-class), 68
rmvnorm,numeric,UGgmm-method

(UGgmm-class), 68
rUGgmm (UGgmm-class), 68
rUGgmm,graphBAM,missing-method

(UGgmm-class), 68
rUGgmm,graphParam,missing-method

(UGgmm-class), 68
rUGgmm,integer,graphBAM-method

(UGgmm-class), 68
rUGgmm,integer,graphParam-method

(UGgmm-class), 68
rUGgmm,integer,matrix-method

(UGgmm-class), 68
rUGgmm,matrix,missing-method

(UGgmm-class), 68
rUGgmm,missing,graphBAM-method

(UGgmm-class), 68
rUGgmm,missing,graphParam-method

(UGgmm-class), 68
rUGgmm,missing,matrix-method

(UGgmm-class), 68
rUGgmm,numeric,graphBAM-method

(UGgmm-class), 68
rUGgmm,numeric,graphParam-method

(UGgmm-class), 68
rUGgmm,numeric,matrix-method

(UGgmm-class), 68

show,eQTLcross-method
(eQTLcross-class), 5

show,eQTLcrossParam-method
(eQTLcross-class), 5

show,eQTLnetwork-method
(eQTLnetwork-class), 6

show,eQTLnetworkEstimationParam-method
(eQTLnetworkEstimationParam-class),
6

show,graphParam-method
(graphParam-class), 8

show,HMgmm-method (HMgmm-class), 8
show,HMgmmSummary-method (HMgmm-class),

8
show,qpGraph-method (qpGraph-class), 38
show,SsdMatrix-method

(SsdMatrix-class), 68
show,UGgmm-method (UGgmm-class), 68
show,UGgmmSummary-method (UGgmm-class),

68
sim.cross (eQTLcross-class), 5
sim.cross,map,eQTLcross-method

(eQTLcross-class), 5
sim.cross,map,matrix-method

(eQTLcross-class), 5
SsdMatrix-class, 68

INDEX 75

subset.filtered.regulon6.1
(EcoliOxygen), 4

subset.gds680.eset (EcoliOxygen), 4
summary,HMgmm-method (HMgmm-class), 8
summary,UGgmm-method (UGgmm-class), 68

transeQTL (eQTLcross-class), 5
transeQTL,eQTLcross,missing-method

(eQTLcross-class), 5
transeQTL,eQTLcross,numeric-method

(eQTLcross-class), 5

UGgmm, 9
UGgmm (UGgmm-class), 68
UGgmm,graphBAM-method (UGgmm-class), 68
UGgmm,matrix-method (UGgmm-class), 68
UGgmm,missing-method (UGgmm-class), 68
UGgmm-class, 68

varExplained (eQTLnetwork-class), 6
varExplained,eQTLnetworkEstimationParam,eQTLnetwork-method

(eQTLnetwork-class), 6

	qpgraph-package
	EcoliOxygen
	eQTLcross-class
	eQTLnetwork-class
	eQTLnetworkEstimate
	eQTLnetworkEstimationParam-class
	filterCollinearities
	graphParam-class
	HMgmm-class
	qpAllCItests
	qpAnyGraph
	qpAvgNrr
	qpBoundary
	qpCItest
	qpClique
	qpCliqueNumber
	qpCov
	qpEdgeNrr
	qpFunctionalCoherence
	qpG2Sigma
	qpGenNrr
	qpGetCliques
	qpGraph-class
	qpGraphDensity
	qpHist
	qpHTF
	qpImportNrr
	qpIPF
	qpK2ParCor
	qpNrr
	qpPAC
	qpPathWeight
	qpPCC
	qpPlotMap
	qpPlotNetwork
	qpPrecisionRecall
	qpPRscoreThreshold
	qpRndGraph
	qpRndWishart
	qpTopPairs
	qpUnifRndAssociation
	qpUpdateCliquesRemoving
	SsdMatrix-class
	UGgmm-class
	Index

