Package 'proDA'

October 28, 2025

Title Differential Abundance Analysis of Label-Free Mass Spectrometry

Type Package

Data

```
Version 1.23.0
Description Account for missing values in label-free mass spectrometry data
      without imputation. The package implements a probabilistic dropout model that
      ensures that the information from observed and missing values are properly
      combined. It adds empirical Bayesian priors to increase power to detect
      differentially abundant proteins.
License GPL-3
Encoding UTF-8
LazyData false
RoxygenNote 7.1.0
Suggests testthat (>= 2.1.0), MSnbase, dplyr, stringr, readr, tidyr,
      tibble, limma, DEP, numDeriv, pheatmap, knitr, rmarkdown,
      BiocStyle
Imports stats, utils, methods, BiocGenerics, SummarizedExperiment,
      S4Vectors, extraDistr
URL https://github.com/const-ae/proDA
BugReports https://github.com/const-ae/proDA/issues
biocViews Proteomics, MassSpectrometry, DifferentialExpression,
      Bayesian, Regression, Software, Normalization, QualityControl
VignetteBuilder knitr
git_url https://git.bioconductor.org/packages/proDA
git_branch devel
git last commit 7a39eea
git_last_commit_date 2025-04-15
Repository Bioconductor 3.22
Date/Publication 2025-10-27
Author Constantin Ahlmann-Eltze [aut, cre] (ORCID:
       <https://orcid.org/0000-0002-3762-068X>),
      Simon Anders [ths] (ORCID: <a href="https://orcid.org/0000-0003-4868-1805">https://orcid.org/0000-0003-4868-1805</a>)
Maintainer Constantin Ahlmann-Eltze <artjom31415@googlemail.com>
```

Contents

.DollarNames.proDAFit	2
abundances	4
accessor_methods	4
as_replicate	5
coefficients	6
coefficient_variance_matrices	6
convergence	7
distance_sq	8
dist_approx	8
dist_approx_impl	9
feature_parameters	
generate_synthetic_data	
hyper_parameters	
invprobit	
invprobit_fast	
median_normalization	
mply_dbl	
pd_lm	
pd_lm.fit	
pd_row_t_test	
predict,proDAFit-method	
proDA	
proDAFit-class	
proDA_package	
reference_level	
result_names	
test_diff	
%zero_dom_mat_mult%	28
	29
	29

.DollarNames.proDAFit Fluent use of accessor methods

Description

Index

The 'proDAFit' object overwrites the dollar function to make it easy to call functions to access values inside the object. This has the advantage that it is very easy to discover the relevant methods but nonetheless have an isolated implementation. Unlike the '@' operator which directly accesses the underlying implementation, the '\$' operator only exposes a limited set of functions

- abundances
- hyper_parameters
- feature_parameters
- coefficients
- convergence
- design
- reference_level

- result names
- coefficient_variance_matrices
- colData
- rowData

Usage

```
## S3 method for class 'proDAFit'
.DollarNames(x, pattern = "")
## S4 method for signature 'proDAFit'
x$name
## S4 replacement method for signature 'proDAFit'
x$name <- value</pre>
```

Arguments

x an object of class 'proDAFit' produced by proDA()
pattern the regex pattern that is provided by the IDE

name one of the functions listed above

value Warning: modifying the content of a 'proDAFit' object is not allowed

Value

whatever the function called name returns.

See Also

accessor_methods for more documentation on the accessor functions.

```
syn_data <- generate_synthetic_data(n_proteins = 10)
fit <- proDA(syn_data$Y, design = syn_data$groups)

# The two styles are identical
design(fit)
fit$design

# More functions
fit$abundances</pre>
```

4 accessor_methods

abundances

Get the abundance matrix

Description

Get the abundance matrix

Usage

```
abundances(object, ...)
```

Arguments

object the object to get from

... additional arguments used by the concrete implementation

Value

the original matrix that was fitted

See Also

accessor_methods for the implementation for a 'proDAFit' object

Examples

```
syn_data <- generate_synthetic_data(n_proteins = 10)
fit <- proDA(syn_data$Y, design = syn_data$groups)
abundances(fit)</pre>
```

accessor_methods

Get different features and elements of the 'proDAFit' object

Description

The functions listed below can all be accessed using the fluent dollar notation (ie. fit\$abundances[1:3,1:3]) without any additional parentheses.

```
## S4 method for signature 'proDAFit'
abundances(object)

## S4 method for signature 'proDAFit'
design(object, formula = FALSE)

## S4 method for signature 'proDAFit'
hyper_parameters(object)
```

as_replicate 5

```
## S4 method for signature 'proDAFit'
feature_parameters(object)

## S4 method for signature 'proDAFit'
coefficients(object)

## S4 method for signature 'proDAFit'
coefficient_variance_matrices(object)

## S4 method for signature 'proDAFit'
reference_level(object)

## S4 method for signature 'proDAFit'
convergence(object)
```

Arguments

object the 'proDAFit' object

formula specific argument for the design function to get the formula that was used to

create the linear model. If no formula was used NULL is returned.

Value

See the documentation of the generics to find out what each method returns

as_replicate

Get numeric vector with the count of the replicate for each element

Description

For a vector with repeated values return a vector where each element is the count how often the element was observed previously

Usage

```
as_replicate(x)
```

Arguments

Χ

a vector with repeated elements

Value

numeric vector

See Also

```
order, rank
```

```
x <- c("a", "b", "a", "b", "b", "d")
all(proDA:::as_replicate(x) == c(1,1,2,2,3,1))
```

coefficients

Get the coefficients

Description

Get the coefficients

Usage

```
coefficients(object, ...)
```

Arguments

object the object to get from

. . . additional arguments used by the concrete implementation

Value

```
a numeric matrix of size 'nrow(fit) * p'
```

See Also

accessor_methods for the implementation for a 'proDAFit' object

Examples

```
syn_data <- generate_synthetic_data(n_proteins = 10)
fit <- proDA(syn_data$Y, design = syn_data$groups)
coefficients(fit)</pre>
```

```
coefficient_variance_matrices
```

Get the coefficients

Description

Get the coefficients

Usage

```
coefficient_variance_matrices(object, ...)
```

Arguments

object the object to get from

... additional arguments used by the concrete implementation

Value

a list with as many entries as rows in the data. Each element is a p*p matrix

convergence 7

See Also

accessor_methods for the implementation for a 'proDAFit' object

Examples

```
syn_data <- generate_synthetic_data(n_proteins = 10)
fit <- proDA(syn_data$Y, design = syn_data$groups)
coefficient_variance_matrices(fit)</pre>
```

convergence

Get the convergence information

Description

Get the convergence information

Usage

```
convergence(object, ...)
```

Arguments

```
object the object to get from
... additional arguments used by the concrete implementation
```

Value

a list with information on the convergence

See Also

accessor_methods for the implementation for a 'proDAFit' object

```
syn_data <- generate_synthetic_data(n_proteins = 10)
fit <- proDA(syn_data$Y, design = syn_data$groups)
convergence(fit)</pre>
```

8 dist_approx

distance_sq

Square distance between two Gaussian distributions

Description

The function takes the mean and the diagonal of the covariance matrix as vector and calculates the mean and variance of their distance distribution. The formulas are based on [1] page 53.

Usage

```
distance_sq(mu1, sigma1, mu2, sigma2)
```

Value

a list with elements 'mean' and 'var'

1. Mathai, A. & Provost, S. Quadratic Forms in Random Variables. (1992).

dist_approx

Calculate an approximate distance for 'object'

Description

Calculate an approximate distance for 'object'

Usage

```
dist_approx(object, ...)
```

Arguments

object the object for which the distance is approximated ... additional arguments used by the concrete implementation

Value

a list with two elements: 'mean' and 'sd' both are formally of class "dist"

See Also

dist for the base R function and dist_approx() concrete implementation for 'proDAFit' objects

```
syn_data <- generate_synthetic_data(n_proteins = 10)
fit <- proDA(syn_data$Y, design = syn_data$groups)
dist_approx(fit)</pre>
```

dist_approx_impl 9

Description

The method calculates either the euclidean distance between samples or proteins taking into account the missing values and the associated uncertainty. Because with missing value no single deterministic distance can be calculated two objects are returned: the mean and the associated standard deviation of the distance estimates.

Usage

```
## S4 method for signature 'proDAFit'
dist_approx(object, by_sample = TRUE, blind = TRUE)

## S4 method for signature 'SummarizedExperiment'
dist_approx(object, by_sample = TRUE, blind = TRUE, ...)

## S4 method for signature 'ANY'
dist_approx(object, by_sample = TRUE, blind = TRUE, ...)
```

Arguments

object	the 'proDAFit' object for which we calculate the distance or a matrix like object for which 'proDAFit' is created internally
by_sample	a boolean that indicates if the distances is calculated between the samples ('by_sample = TRUE') or between the proteins ('by_sample = FALSE'). Default: 'TRUE'
blind	fit an intercept model for the missing values to make sure that the results are not biased for the expected result. Default: 'TRUE'
•••	additional arguments to proDA() in case object is a SummarizedExperiment or a matrix

Value

a list with two elements: 'mean' and 'sd' both are formally of class "dist"

```
syn_data <- generate_synthetic_data(n_proteins = 10)
fit <- proDA(syn_data$Y, design = syn_data$groups)
dist_approx(fit)</pre>
```

feature_parameters

Get the feature parameters

Description

Get the feature parameters

Usage

```
feature_parameters(object, ...)
```

Arguments

```
object the object to get from
... additional arguments used by the concrete implementation
```

Value

a data.frame with information on each fit

See Also

accessor_methods for the implementation for a 'proDAFit' object

Examples

```
syn_data <- generate_synthetic_data(n_proteins = 10)
fit <- proDA(syn_data$Y, design = syn_data$groups)
feature_parameters(fit)</pre>
```

```
generate_synthetic_data
```

Generate a dataset according to the probabilistic dropout model

Description

Generate a dataset according to the probabilistic dropout model

```
generate_synthetic_data(
    n_proteins,
    n_conditions = 2,
    n_replicates = 3,
    frac_changed = 0.1,
    dropout_curve_position = 18.5,
    dropout_curve_scale = -1.2,
    location_prior_mean = 20,
    location_prior_scale = 4,
```

```
variance_prior_scale = 0.05,
variance_prior_df = 2,
effect_size = 2,
return_summarized_experiment = FALSE
)
```

Arguments

n_proteins the number of rows in the dataset

n_conditions the number of conditions. Default: 2

n_replicates the number of replicates per condition. Can either be a single number or a vector

with length(n_replicates) == n_conditions. Default: 3

frac_changed the fraction of proteins that actually differ between the conditions. Default: 0.1

dropout_curve_position

the point where the chance to observe a value is 50%. Can be a single number or a vector of length(dropout_curve_position) == n_conditions * n_replicates.

Default: 18.5

dropout_curve_scale

The width of the dropout curve. Negative numbers mean that lower intensities are more likely to be missing. Can be a single number or a vector of length(dropout_curve_position) == n_c onditions * n_c replicates. De-

fault: -1.2

location_prior_mean, location_prior_scale

the position and the variance around which the individual condition means (t_mu)

scatter. Default: 20 and 4

variance_prior_scale, variance_prior_df

the scale and the degrees of freedom of the inverse Chi-squared distribution used

as a prior for the variances. Default: $0.05 \ \text{and} \ 2$

effect_size the standard deviation that is used to draw different values for the frac_changed

part of the proteins. Default: 2

return_summarized_experiment

a boolean indicator if the method should return a ${\tt SummarizedExperiment}$ ob-

ject instead of a list. Default: FALSE

Value

a list with the following elements

Y the intensity matrix including the missing values

Z the intensity matrix before dropping out values

t_mu a matrix with n_proteins rows and n_conditions columns that contains the underlying means for each protein

t_sigma2 a vector with the true variances for each protein

changed a vector with boolean values if the protein is actually changed

group the group structure mapping samples to conditions

if return_summarized_experiment is FALSE. Otherwise returns a SummarizedExperiment with the same information.

12 hyper_parameters

Examples

```
syn_data <- generate_synthetic_data(n_proteins = 10)
names(syn_data)
head(syn_data$Y)

# Returning a SummarizedExperiment
se <- generate_synthetic_data(n_proteins = 10, return_summarized_experiment = TRUE)
se
head(SummarizedExperiment::assay(se))</pre>
```

hyper_parameters

Get the hyper parameters

Description

Get the hyper parameters

Usage

```
hyper_parameters(object, ...)
```

Arguments

```
object the object to get from
... additional arguments used by the concrete implementation
```

Value

a list with the values for each fitted hyper-parameter

See Also

accessor_methods for the implementation for a 'proDAFit' object

```
syn_data <- generate_synthetic_data(n_proteins = 10)
fit <- proDA(syn_data$Y, design = syn_data$groups)
hyper_parameters(fit)</pre>
```

invprobit 13

Description

Calculate the values of the sigmoidal function that is defined by the cumulative normal distribution function (pnorm). This method provides a convenient wrapper for the pnorm that automatically handles negative zeta and is more consistent in its naming.

Usage

```
invprobit(x, rho, zeta, log = FALSE, oneminus = FALSE)
```

Arguments

X	numeric vector
rho	numeric vector of length 1 or the same length as x. Specifies the inflection point of the inverse probit curve.
zeta	numeric vector of length 1 or the same length as \mathbf{x} . Specifies the scale of the curve at the inflection point of the inverse probit curve.
log	boolean if the log of the result is returned
oneminus	boolean if one minus the result is returned

Value

```
a numeric vector of length(x).
```

Examples

```
xg <- seq(-5, 5, length.out=101)
plot(xg, invprobit(xg, rho=-2, zeta=-0.3))</pre>
```

invprobit_fast

Same thing as invprobit, but without the parameter validation

Description

Same thing as invprobit, but without the parameter validation

Usage

```
invprobit_fast(x, rho, zeta, log = FALSE, oneminus = FALSE)
```

Value

```
a numeric vector of length(x)
```

14 mply_dbl

Description

The method calculates for each sample the median change (i.e. the difference between the observed value and the row average) and subtracts it from each row. Missing values are ignored in the procedure. The method is based on the assumption that a majority of the rows did not change.

Usage

```
median_normalization(X, spike_in_rows = NULL)
```

Arguments

```
X a matrix or SummarizedExperiment of proteins and samples
spike_in_rows a numeric or boolean vector that is used to normalize the intensities across
samples. Default: NULL which means that all rows are used.
```

Value

the normalized matrix

Examples

```
syn_data <- generate_synthetic_data(n_proteins = 10)
normalized_data <- median_normalization(syn_data$Y)
normalized_data

# If we assume that the first 5 proteins are spike-ins
normalized_data2 <- median_normalization(syn_data$Y, spike_in_rows = 1:5)</pre>
```

mply_dbl

apply function that always returns a numeric matrix

Description

The function is modeled after 'vapply', but always returns a matrix with one row for each iteration. You need to provide the number of elements each function call produces beforehand (i.e. the number of resulting columns). For a more flexible version where you don't need to provide the number of columns see msply_dbl

```
mply_dbl(x, FUN, ncol = 1, ...)
msply_dbl(x, FUN, ...)
```

pd_lm 15

Arguments

X	a vector that will be passed to 'vapply' or a matrix that will be passed to apply with MARGIN=1.
FUN	the function that returns a vector of length ncol
ncol	the length of the vector returned by 'FUN'.
	additional arguments to FUN

Value

```
a matrix of size length(x) x ncol
```

Functions

- mply_dbl: apply function that always returns a numeric matrix
- msply_dbl: flexible version that automatically infers the number of columns

Examples

```
# Behaves similar to sapply(), but it always returns a matrix
t(sapply(1:5, function(i) c(i - i/3, i, i + i/3)))
proDA:::mply_dbl(1:5, function(i) c(i - i/3, i, i + i/3), ncol=3)

# Which can avoid some bad surprises
t(sapply(1:5, identity))
proDA:::mply_dbl(1:5, identity)

# Works also with matrix input
mat <- matrix(1:20, ncol=4)
mat
proDA:::msply_dbl(mat, function(i) rep(i, each=2))</pre>
```

pd_lm

Fit a single linear probabilistic dropout model

Description

The function works similar to the classical 1m but with special handling of NA's. Whereas 1m usually just ignores response value that are missing, pd_1m applies a probabilistic dropout model, that assumes that missing values occur because of the dropout curve. The dropout curve describes for each position the chance that that a value is missed. A negative dropout_curve_scale means that the lower the intensity was, the more likely it is to miss the value.

16 pd_lm

Usage

```
pd_lm(
   formula,
   data = NULL,
   subset = NULL,
   dropout_curve_position,
   dropout_curve_scale,
   location_prior_mean = NULL,
   location_prior_scale = NULL,
   variance_prior_scale = NULL,
   variance_prior_df = NULL,
   location_prior_df = S,
   method = c("analytic_hessian", "analytic_grad", "numeric"),
   verbose = FALSE
)
```

Arguments

formula a formula that specifies a linear model

data an optional data.frame whose columns can be used to specify the formula

subset an optional selection vector for data to subset it

dropout_curve_position

the value where the chance to observe a value is 50%. Can either be a single value that is repeated for each row or a vector with one element for each row. Not optional.

dropout_curve_scale

the width of the dropout curve. Smaller values mean that the sigmoidal curve is steeper. Can either be a single value that is repeated for each row or a vector with one element for each row. Not optional.

location_prior_mean, location_prior_scale

the optional mean and variance of the prior around which the predictions are supposed to scatter. If no value is provided no location regularization is applied.

variance_prior_scale, variance_prior_df

the optional scale and degrees of freedom of the variance prior. If no value is provided no variance regularization is applied.

location_prior_df

The degrees of freedom for the t-distribution of the location prior. If it is large

(> 30) the prior is approximately Normal. Default: 3

one of 'analytic_hessian', 'analytic_gradient', or 'numeric'. If 'analytic_hessian'

the nlminb optimization routine is used, with the hand derived first and second derivative. Otherwise, optim either with or without the first derivative is used.

verbose boolean that signals if the method prints informative messages. Default: FALSE.

Value

method

a list with the following entries

coefficients a named vector with the fitted values

coef_variance_matrix a p*p matrix with the variance associated with each coefficient estimate
n_approx the estimated "size" of the data set (n_hat - variance_prior_df)

pd_lm.fit

- **df** the estimated degrees of freedom (n_hat p)
- s2 the estimated unbiased variance
- **n obs** the number of response values that were not 'NA'

Examples

```
# Without missing values
y <- rnorm(5, mean=20)</pre>
lm(y \sim 1)
pd_lm(y \sim 1,
      dropout_curve_position = NA,
      dropout_curve_scale = NA)
# With some missing values
y < -c(23, 21.4, NA)
lm(y \sim 1)
pd_lm(y \sim 1,
      dropout_curve_position = 19,
      dropout_curve_scale = -1)
# With only missing values
y \leftarrow c(NA, NA, NA)
\# lm(y \sim 1) \# Fails
pd_lm(y \sim 1,
      dropout_curve_position = 19,
      dropout_curve_scale = -1,
      location_prior_mean = 21,
      location_prior_scale = 3,
      variance_prior_scale = 0.1,
      variance_prior_df = 2)
```

pd_lm.fit

The work horse for fitting the probabilistic dropout model

Description

If there is no location and variance moderation and no missing values, the model is fitted with 'lm'.

```
pd_lm.fit(
   y,
   X,
   dropout_curve_position,
   dropout_curve_scale,
   location_prior_mean = NULL,
   location_prior_scale = NULL,
   variance_prior_scale = NULL,
   variance_prior_df = NULL,
   location_prior_df = 3,
```

pd_row_t_test

```
method = c("analytic_hessian", "analytic_grad", "numeric"),
  verbose = FALSE
)
```

Value

a list with the following entries

coefficients a named vector with the fitted values

n_approx the estimated "size" of the data set (n_hat - variance_prior_df)

df the estimated degrees of freedom (n_hat - p)

s2 the estimated unbiased variance

n_obs the number of response values that were not 'NA'

pd_row_t_test

Row-wise tests of difference using the probabilistic dropout model

Description

This is a helper function that combines the call of proDA() and test_diff(). If you need more flexibility use those functions.

```
pd_row_t_test(
 Χ,
  Υ,
  moderate_location = TRUE,
  moderate_variance = TRUE,
  alternative = c("two.sided", "greater", "less"),
  pval_adjust_method = "BH",
  location_prior_df = 3,
  max_iter = 20,
  epsilon = 0.001,
  return_fit = FALSE,
  verbose = FALSE
)
pd_row_f_test(
  Χ,
  . . . ,
  groups = NULL,
  moderate_location = TRUE,
  moderate_variance = TRUE,
  pval_adjust_method = "BH",
  location_prior_df = 3,
  max_iter = 20,
  epsilon = 0.001,
  return_fit = FALSE,
  verbose = FALSE
)
```

pd_row_t_test 19

Arguments

X, Y, . . . the matrices for condition 1, 2 and so on. They must have the same number of rows

moderate_location

boolean values to indicate if the location and the variances are moderated. Default: TRUE

moderate_variance

boolean values to indicate if the location and the variances are moderated. Default: TRUE

alternative a string that decides how the hypothesis test is done. This parameter is only relevant for the Wald-test specified using the 'contrast' argument. Default:

"two.sided"

pval_adjust_method

a string the indicates the method that is used to adjust the p-value for the multiple testing. It must match the options in p. adjust. Default: "BH"

location_prior_df

the number of degrees of freedom used for the location prior. A large number

(> 30) means that the prior is approximately Normal. Default: 3

max_iter the maximum of iterations proDA() tries to converge to the hyper-parameter

estimates. Default: 20

epsilon if the remaining error is smaller than epsilon the model has converged. Default:

1e-3

return_fit boolean that signals that in addition to the data.frame with the hypothesis test

results, the fit from proDA() is returned. Default: FALSE

verbose boolean that signals if the method prints messages during the fitting. Default:

FALSE

groups a factor or character vector with that assignes the columns of X to different con-

ditions. This parameter is only applicable for the F-test and must be specified if

only a single matrix is provided.

Details

The pd_row_t_test is not actually doing a t-test, but rather a Wald test. But, as the two are closely related and term t-test is more widely understood, we choose to use that name.

Value

If return_fit == FALSE a data.frame is returned with the content that is described in test_diff.

If return_fit == TRUE a list is returned with two elements: fit with a reference to the object returned from proDA() and a test_result() with the data.frame returned from test_diff().

See Also

proDA and test_diff for more flexible versions. The function was inspired by the rowFtests function in the genefilter package.

Examples

```
data1 <- matrix(rnorm(10 * 3), nrow=10)</pre>
data2 <- matrix(rnorm(10 * 4), nrow=10)
data3 <- matrix(rnorm(10 * 2), nrow=10)</pre>
# Comparing two datasets
pd_row_t_test(data1, data2)
# Comparing multiple datasets
pd_row_f_test(data1, data2, data3)
# Alternative
data_comb <- cbind(data1, data2, data3)</pre>
pd_row_f_test(data_comb,
  groups = c(rep("A",3), rep("B", 4), rep("C", 2)))
# t.test, lm, pd_row_t_test, and pd_row_f_test are
# approximately equivalent on fully observed data
set.seed(1)
x <- rnorm(5)
y <- rnorm(5, mean=0.3)</pre>
t.test(x, y)
summary(lm(c(x, y) \sim cond,
           data = data.frame(cond = c(rep("x", 5),
                                       rep("y", 5))))$coefficients[2,]
pd_row_t_test(matrix(x, nrow=1), matrix(y, nrow=1),
              moderate_location = FALSE,
              moderate_variance = FALSE)
pd_row_f_test(matrix(x, nrow=1), matrix(y, nrow=1),
              moderate_location = FALSE,
              moderate_variance = FALSE)
```

predict,proDAFit-method

Predict the parameters or values of additional proteins

Description

This function can either predict the abundance matrix for proteins (type = "response") without missing values according to the linear probabilistic dropout model, fitted with proDA(). Or, it can predict the feature parameters for additional proteins given their abundances including missing values after estimating the hyper-parameters on a dataset with the same sample structure (type = "feature_parameters").

```
## S4 method for signature 'proDAFit'
predict(
  object,
  newdata,
```

proDA 21

```
newdesign,
type = c("response", "feature_parameters"),
...
)
```

Arguments

object an 'proDAFit' object that is produced by proDA().

newdata a matrix or a SummarizedExperiment which contains the new abundances for

which values are predicted.

newdesign a formula or design matrix that specifies the new structure that will be fitted

type either "response" or "feature_parameters". Default: "response"
... additional parameters for the construction of the 'proDAFit' object.

Details

Note: this method behaves a little different from what one might expect from the classical predict.lm() function, because object is not just a single set of coefficients for one fit, but many fits (ie. one for each protein) with some more hyper-parameters. The classical predict function predicts the response for new samples. This function does not support this, instead it is useful for getting a matrix without missing values for additional proteins.

Value

If type = "response" a matrix with the same dimensions as object. Or, if type = "feature_parameters" a 'proDAFit' object with the same hyper-parameters and column data as object, but new fitted rowData().

proDA

Main function to fit the probabilistic dropout model

Description

The function fits a linear probabilistic dropout model and infers the hyper-parameters for the location prior, the variance prior, and the dropout curves. In addition it infers for each protein the coefficients that best explain the observed data and the associated uncertainty.

```
proDA(
   data,
   design = ~1,
   col_data = NULL,
   reference_level = NULL,
   data_is_log_transformed = TRUE,
   moderate_location = TRUE,
   moderate_variance = TRUE,
   location_prior_df = 3,
   n_subsample = nrow(data),
   max_iter = 20,
```

22 proDA

```
epsilon = 0.001,
  verbose = FALSE,
    ...
)
```

Arguments

data

a matrix like object (matrix(), SummarizedExperiment(), or anything that can be cast to SummarizedExperiment() (eg. 'MSnSet', 'eSet', ...)) with one column per sample and one row per protein. Missing values should be coded as NA

design

a specification of the experimental design that is used to fit the linear model. It can be a model.matrix() with one row for each sample and one column for each coefficient. It can also be a formula with the entries referring to global objects, columns in the col_data argument or columns in the colData(data) if data is a SummarizedExperiment. Thirdly, it can be a vector that for each sample specifies the condition of that sample. Default: ~1, which means that all samples are treated as if they are in the same condition.

col_data

a data.frame with one row for each sample in data. Default: NULL

reference_level

a string that specifies which level in a factor coefficient is used for the intercept. Default: NULL

data_is_log_transformed

the raw intensities from mass spectrometry experiments have a linear mean-variance relation. This is undesirable and can be removed by working on the log scale. The easiest way to find out if the data is already log-transformed is to see if the intensities are in the range of '0' to '100' in which case they are transformed or if they rather are between '1e5' to '1e12', in which case they are not. Default: TRUE

moderate_location, moderate_variance

boolean values to indicate if the location and the variances are moderated. Default: TRUF

location_prior_df

the number of degrees of freedom used for the location prior. A large number

(> 30) means that the prior is approximately Normal. Default: 3

n_subsample the number of proteins that are used to estimate the hyper-parameter. Reducing

this number can speed up the fitting, but also mean that the final estimate is less

precise. By default all proteins are used. Default: nrow(data)

max_iter the maximum of iterations proDA() tries to converge to the hyper-parameter

estimates. Default: 20

epsilon if the remaining error is smaller than epsilon the model has converged. Default:

1e-3

verbose boolean that signals if the method prints messages during the fitting. Default:

FALSE

... additional parameters for the construction of the 'proDAFit' object

Details

By default, the method is moderating the locations and the variance of each protein estimate. The variance moderation is fairly standard in high-throughput experiments and can boost the power to

proDAFit-class 23

detect differentially abundant proteins. The location moderation is important to handle the edge case where in one condition a protein is not observed in any sample. In addition it can help to get more precise estimates of the difference between conditions. Unlike 'DESeq2', which moderates the coefficient estimates (ie. the "betas") to be centered around zero, 'proDA' penalizes predicted intensities that strain far from the other observed intensities.

Value

An object of class 'proDAFit'. The object contains information on the hyper-parameters and feature parameters, the convergence, the experimental design etc. Internally, it is a sub-class of SummarizedExperiment which means the object is subsettable. The '\$'-operator is overloaded for this object to make it easy to discover applicable functions.

Examples

```
# Quick start
# Import the proDA package if you haven't already done so
# library(proDA)
set.seed(1)
syn_data <- generate_synthetic_data(n_proteins = 10)</pre>
fit <- proDA(syn_data$Y, design = syn_data$groups)</pre>
result_names(fit)
test_diff(fit, Condition_1 - Condition_2)
# SummarizedExperiment
se <- generate_synthetic_data(n_proteins = 10,</pre>
                      return_summarized_experiment = TRUE)
se
proDA(se, design = ~ group)
# Design using model.matrix()
data_mat <- matrix(rnorm(5 * 10), nrow=10)</pre>
colnames(data_mat) <- paste0("sample", 1:5)</pre>
annotation_df <- data.frame(names = paste0("sample", 1:5),</pre>
                      condition = c("A", "A", "A", "B", "B"),
                      age = rnorm(5, mean=40, sd=10))
design_mat <- model.matrix(~ condition + age,</pre>
                             data=annotation_df)
design_mat
proDA(data_mat, design_mat, col_data = annotation_df)
```

proDAFit-class

proDA Class Definition

Description

proDA Class Definition

24 reference_level

proDA_package

proDA: Identify differentially abundant proteins in label-free mass spectrometry

Description

Account for missing values in label-free mass spectrometry data without imputation. The package implements a probabilistic dropout model that ensures that the information from observed and missing values are properly combined. It adds empirical Bayesian priors to increase power to detect differentially abundant proteins.

reference_level

Get the reference level

Description

Get the reference level

Usage

```
reference_level(object, ...)
```

Arguments

object the object to get from

. . . additional arguments used by the concrete implementation

Value

a string

See Also

accessor_methods for the implementation for a 'proDAFit' object

```
syn_data <- generate_synthetic_data(n_proteins = 10)
fit <- proDA(syn_data$Y, design = syn_data$groups, reference_level = "Condition_1")
reference_level(fit)</pre>
```

result_names 25

result_names

Get the result_names

Description

Get the result_names

Usage

```
result_names(fit, ...)
```

Arguments

fit the fit to get the result_names from
... additional arguments used by the concrete implementation

Value

a character vector

Examples

```
syn_data <- generate_synthetic_data(n_proteins = 10)
fit <- proDA(syn_data$Y, design = syn_data$groups)
result_names(fit)</pre>
```

test_diff

Identify differentially abundant proteins

Description

The 'test_diff()' function is used to test coefficients of a 'proDAFit' object. It provides a Wald test to test individual coefficients and a likelihood ratio F-test to compare the original model with a reduced model. The result_names method provides a quick overview which coefficients are available for testing.

```
test_diff(
   fit,
   contrast,
   reduced_model = ~1,
   alternative = c("two.sided", "greater", "less"),
   pval_adjust_method = "BH",
   sort_by = NULL,
   decreasing = FALSE,
   n_max = Inf,
   verbose = FALSE
)
```

26 test_diff

```
## S4 method for signature 'proDAFit'
result_names(fit)
```

Arguments

fit an object of class 'proDAFit'. Usually, this is produced by calling proDA()

contrast an expression or a string specifying which contrast is tested. It can be a single

coefficient (to see the available options use result_names(fit)) or any linear combination of them. The contrast is always compared against zero. Thus, to find out if two coefficients differ use coef1 - coef2. Remember if the coefficient is not a valid identifier in R, to escape it using back ticks. For example if

you test the interaction of A and B use `A:B`.

reduced_model If you don't want to test an individual coefficient, you can can specify a reduced

model and compare it with the original model using an F-test. This is useful to find out how a set of parameters affect the goodness of the fit. If neither a contrast, nor a reduced_model is specified, by default a comparison with an

intercept model (ie. just the average across conditions) is done. Default: ~ 1.

alternative a string that decides how the hypothesis test is done. This parameter is only

relevant for the Wald-test specified using the 'contrast' argument. Default:

"two.sided"

pval_adjust_method

a string the indicates the method that is used to adjust the p-value for the multiple

testing. It must match the options in p.adjust. Default: "BH"

sort_by a string that specifies the column that is used to sort the resulting data.frame.

Default: NULL which means the result is sorted by the order of the input matrix.

decreasing a boolean to indicate if the order is reversed. Default: FALSE

n_max the maximum number of rows returned by the method. Default: Inf

verbose boolean that signals if the method prints informative messages. Default: FALSE.

Details

To test if coefficient is different from zero with a Wald test use the contrast function argument. To test if two models differ with an F-test use the reduced_model argument. Depending on the test that is conducted, the functions returns slightly different data.frames.

The function is designed to follow the principles of the base R test functions (ie. t.test and wilcox.test) and the functions designed for collecting the results of high-throughput testing (ie. limma::topTable and DESeq2::results).

Value

The 'result names()' function returns a character vector.

The 'test_diff()' function returns a data.frame with one row per protein with the key parameters of the statistical test. Depending what kind of test (Wald or F test) the content of the 'data.frame' differs.

The Wald test, which can considered equivalent to a t-test, returns a 'data.frame' with the following columns:

name the name of the protein, extracted from the rowname of the input matrixpval the p-value of the statistical test

test_diff 27

adj_pval the multiple testing adjusted p-value

diff the difference that particular coefficient makes. In differential expression analysis this value is also called log fold change, which is equivalent to the difference on the log scale.

t_statistic the diff divided by the standard error se

se the standard error associated with the diff

df the degrees of freedom, which describe the amount of available information for estimating the se. They are the sum of the number of samples the protein was observed in, the amount of information contained in the missing values, and the degrees of freedom of the variance prior.

avg_abundance the estimate of the average abundance of the protein across all samples.

n_approx the approximated information available for estimating the protein features, expressed as multiple of the information contained in one observed value.

n_obs the number of samples a protein was observed in

The F-test returns a 'data.frame' with the following columns

name the name of the protein, extracted from the rowname of the input matrix

pval the p-value of the statistical test

adj_pval the multiple testing adjusted p-value

- **f_statistic** the ratio of difference of normalized deviances from original model and the reduced model, divided by the standard deviation.
- **df1** the difference of the number of coefficients in the original model and the number of coefficients in the reduced model
- **df2** the degrees of freedom, which describe the amount of available information for estimating the se. They are the sum of the number of samples the protein was observed in, the amount of information contained in the missing values, and the degrees of freedom of the variance prior.

avg_abundance the estimate of the average abundance of the protein across all samples.

- **n_approx** the information available for estimating the protein features, expressed as multiple of the information contained in one observed value.
- **n** obs the number of samples a protein was observed in

See Also

The contrast argument is inspired by limma::makeContrasts.

%zero_dom_mat_mult%

Helper function that makes sure that NA * 0 = 0 in matrix multiply

Description

Helper function that makes sure that NA * 0 = 0 in matrix multiply

Usage

```
X %zero_dom_mat_mult% Y
```

Arguments

```
X a matrix of size 'n*m'
Y a matrix of size 'm*p'
```

Value

```
a matrix of size 'n*p'
```

Index

```
* internal
                                                 dollar_methods(.DollarNames.proDAFit),
    %zero_dom_mat_mult%, 28
    as_replicate, 5
                                                 feature_parameters, 10
    distance_sq, 8
                                                 feature_parameters,proDAFit-method
    invprobit_fast, 13
                                                          (accessor_methods), 4
    mply_dbl, 14
    pd_lm.fit, 17
                                                 generate_synthetic_data, 10
.DollarNames.proDAFit, 2
.proDAFit(proDAFit-class), 23
                                                 hyper_parameters, 12
$,proDAFit-method
                                                 hyper_parameters,proDAFit-method
        (.DollarNames.proDAFit), 2
                                                         (accessor_methods), 4
$<-,proDAFit-method</pre>
        (.DollarNames.proDAFit), 2
                                                 invprobit, 13
%zero_dom_mat_mult%, 28
                                                 invprobit_fast, 13
                                                 lm, 15
abundances, 4
abundances, proDAFit-method
                                                 median_normalization, 14
        (accessor_methods), 4
                                                 mply_dbl, 14
accessor_methods, 3, 4, 4, 6, 7, 10, 12, 24
                                                 msply_dbl, 14
as_replicate, 5
                                                 msply_dbl (mply_dbl), 14
coefficient_variance_matrices, 6
coefficient_variance_matrices,proDAFit-method<sup>nlminb</sup>, 16
        (accessor_methods), 4
                                                 optim, 16
coefficients, 6
                                                 order, 5
coefficients, proDAFit-method
        (accessor_methods), 4
                                                 p.adjust, 19, 26
convergence, 7
                                                 pd_1m, 15
convergence,proDAFit-method
                                                 pd_lm.fit, 17
        (accessor_methods), 4
                                                 pd_row_f_test (pd_row_t_test), 18
                                                 pd_row_t_tst, 18
design,proDAFit-method
                                                 pnorm, 13
        (accessor_methods), 4
                                                 predict, proDAFit-method, 20
dist, 8
                                                 proDA, 19, 21
dist_approx, 8
                                                 proDA_package, 24
dist_approx(), 8
                                                 proDAFit-class, 23
dist_approx, ANY-method
        (dist_approx_impl), 9
                                                 rank, 5
dist_approx,proDAFit-method
                                                 reference_level, 24
        (dist_approx_impl), 9
                                                 reference_level,proDAFit-method
dist_approx,SummarizedExperiment-method
                                                          (accessor_methods), 4
        (dist_approx_impl), 9
                                                 result_names, 25
dist_approx_impl, 9
                                                 result_names,proDAFit-method
                                                          (test_diff), 25
distance_sq, 8
```

30 INDEX

```
rowFtests, 19
t.test, 26
test_diff, 19, 25
wilcox.test, 26
```