Package ‘goseq’

October 29, 2025
Title Gene Ontology analyser for RNA-seq and other length biased data
Version 1.61.1
Date 2025-07-22

Description Detects Gene Ontology and/or other user defined categories
which are over/under represented in RNA-seq data.

Depends R (>=2.11.0), BiasedUrn, geneLenDataBase (>= 1.9.2)

Imports mgcv, graphics, stats, utils, AnnotationDbi, GO.db,
BiocGenerics, methods, rtracklayer, GenomicFeatures, Seqinfo

Suggests edgeR, org.Hs.eg.db
License LGPL (>=2)

URL https://github.com/federicomarini/goseq

BugReports https://github.com/federicomarini/goseq/issues

biocViews ImmunoOncology, Sequencing, GO, GeneExpression,
Transcription, RNASeq, DifferentialExpression, Annotation,
GeneSetEnrichment, KEGG, Pathways, Software

RoxygenNote 7.3.1

Encoding UTF-8

git_url https://git.bioconductor.org/packages/goseq
git_branch devel

git_last_commit 1266825

git_last commit_date 2025-07-23

Repository Bioconductor 3.22

Date/Publication 2025-10-28

Author Matthew Young [aut],
Nadia Davidson [aut],
Federico Marini [ctb, cre] (ORCID:
<https://orcid.org/0000-0003-3252-7758>)

Maintainer Federico Marini <marinif@uni-mainz.de>

https://github.com/federicomarini/goseq
https://github.com/federicomarini/goseq/issues
https://orcid.org/0000-0003-3252-7758

2 genes

Contents
GEMES . vt i e e e e e e e e e e e e e e e 2
GELEO . . . e 3
getlength L e 4
BOSEU -+« e e e e e e e e e e e e e e e e e e e 5
COSEQ-PKE e e 7
makespline 8
nullp . . . e 9
PIOtPWE . o e e e 10
PP - - o e e e e e 12
supportedOrganiSms L. e e e e e e e e e e e 12

Index 14

genes Androgen stimulation of prostate cancer Cell lines.
Description

This data set gives the RNA-seq data from an experiment measuring the effects of androgen stimu-
lation on prostate cancer. Information is given about all (ENSEMBL) genes for which there was at
least one mapping read in either the treated or untreated RNA-seq experiment. The edgeR package
was used to determine which genes were differentially expressed. The details of the analysis can be
found in the goseq vignette.

Format

A named vector of ENSEMBL genes, with 1 representing differential expression.

Source

Determination of tag density required for digital transcriptome analysis: application to an androgen-
sensitive prostate cancer model, 2008, Li et. al.

References

Li, H., Lovci, M. T., Kwon, Y. S., Rosenfeld, M. G., Fu, X. D., Yeo, G. W. (2008) Determination
of tag density required for digital transcriptome analysis: application to an androgen-sensitive
prostate cancer model Proceedings of the National Academy of Sciences of the United States of
America Date: Dec 23 Vol: 105 Issue: 51 Pages: 20179-84

Examples

data(genes)
head(genes)

getgo 3

getgo Fetch GO categories

Description
Obtains all gene ontology (GO) categories associated with a set of genes using the relevant organism
package.

Usage
getgo(genes, genome, id, fetch.cats = c("G0:CC", "GO:BP", "GO:MF"))

Arguments
genes A vector or list of genes to get the associated GO categories.
genome A string identifying the genome that genes refer to. For a list of supported
organisms run supportedGenomes.
id A string identifying the gene identifier used by genes. For a list of supported
gene IDs run supportedGenelDs.
fetch.cats A vector specifying which categories to fetch the mapping between category
names and genes for. See details for valid options.
Details

This function attempts to make use of the organism packages (org.<Genome>.<GenelD>.db) to
obtain the mapping between gene ID and GO categories. As with getlength it is preferable that
the same gene identifier system is used for both summarization and retrieving GO categories.

Valid options for the fetch.cats argument are any combination of "GO:CC", "GO:BP", "GO:MF"
& "KEGG". The three GO terms refer to the Cellular Component, Biological Process and Molecular
Function respectively. "KEGG" refers to KEGG pathways.

Note that getgo is a convenience function, designed to make extracting mappings between GO
categories and Gene ID easy. For less common organisms and/or gene ID getgo may fail to return
a mapping even when a legitimate mapping exists in the relevant organism package. If getgo fails,
you should always try to build the mapping yourself from the organism package (if one exists)
before deciding that the information is unavailable. Further information and examples of this can
be found in the package Vignette.

Value

A list where each entry is named by a gene and contains a vector of all the associated GO categories.
This can be used directly with the gene2cat option in goseq.

Author(s)

Matthew D. Young <myoung@wehi.edu.au>

See Also

supportedGenomes, supportedGenelDs, goseq

4 getlength

Examples

genes <- c("ENSGQ0000124208",
"ENSG00000182463",
"ENSG00000124201",
"ENSG00000124205",
"ENSG00000124207")
getgo(genes, 'hg19', 'ensGene')

getlength Retrieves Gene length data

Description

Gets the length of each gene in a vector.

Usage

getlength(genes, genome, id)

Arguments
genes A vector or list of the genes for which length information is required.
genome A string identifying the genome that genes refer to. For a list of supported
organisms run supportedGenomes.
id A string identifying the gene identifier used by genes. For a list of supported
gene IDs run supportedGenelDs.
Details

Length data is obtained from data obtained from the UCSC genome browser for each combination
of genome and id. As fetching this data at runtime is time consuming, a local copy of the length
information for common genomes and gene ID are included in the geneLenDataBase package.
This function uses this package to fetch the required data.

The length of a gene is taken to be the median length of all its mature, mRNA, transcripts. It is
always preferable to obtain length information directly for the gene ID used to summarize your
count data, rather than converting IDs and then using the supplied databases. Even when two
genes have a one-to-one mapping between different identifier conventions (which is often not the
case), they frequently refer to slightly different regions of the genome with different lengths. It
is therefore recommended that the user perform the full analysis in terms of only one gene ID, or
manually obtain their own length data for the identifier used to bin reads by gene.

Value

Returns a vector of the gene lengths, in the same order as genes. If length data is unavailable for
a particular gene NA is returned in that position. The returned vector is intended for use with the
bias.data option of the nullp function.

Author(s)

Matthew D. Young <myoung@wehi.edu.au>

goseq

See Also

supportedGenomes, supportedGeneIDs, nullp, geneLLenDataBase

Examples

genes <- c("ENSG00000124208",

"ENSG00000182463",
"ENSG00000124201",
"ENSG00000124205",
"ENSG00000124207")

getlength(genes, 'hg19', 'ensGene')

goseq

goseq Gene Ontology analyser

Description

Does selection-unbiased testing for category enrichment amongst differentially expressed (DE)
genes for RNA-seq data. By default, tests gene ontology (GO) categories, but any categories may

be tested.

Usage

goseq(
pwf,
genome,
id,

gene2cat = NULL,
test.cats = c¢("G0O:CC", "GO:BP", "GO:MF"),

method = "Wallenius”,
repcnt = 2000,
use_genes_without_cat = FALSE
)
Arguments
pwf An object containing gene names, DE calls, the probability weighting function.
Usually generated by nullp.
genome A string identifying the genome that genes refer to. For a list of supported
organisms run supportedGenomes.
id A string identifying the gene identifier used by genes. For a list of supported
gene IDs run supportedGenelDs.
gene2cat A data frame with two columns containing the mapping between genes and the
categories of interest. Alternatively, a list where the names are genes and each
entry is a vector containing GO categories associated with that gene (this is the
output produced by getgo). If set to NULL goseq attempts to fetch GO categories
automatically using getgo.
test.cats A vector specifying which categories to test for over representation amongst DE

genes. See details for allowed options.

6 goseq

method The method to use to calculate the unbiased category enrichment scores. Valid
options are "Wallenius", "Sampling" & "Hypergeometric". "Hypergeometric"
and "Sampling" should almost never be used (see details).

repcnt Number of random samples to be calculated when random sampling is used.
Ignored unless method="Sampling".

use_genes_without_cat
A boolean to indicate whether genes without a category should still be used.
For example, a large number of gene may have no GO term annotated. If this
option is set to FALSE, those genes will be ignored in the calculation of p-values
(default behaviour). If this option is set to TRUE, then these genes will count
towards the total number of genes outside the category being tested (default
behaviour prior to version 1.15.2).

Details

The pwf argument is almost always the output of the function nullp. This is a data frame with 3
columns, named "DEgenes", "bias.data" and "pwf" with the rownames set to the gene names. Each
row corresponds to a gene with the DEgenes column specifying if the gene is DE (1 for DE, 0 for
not DE), the bias.data column giving the numeric value of the DE bias being accounted for (usually
the gene length or number of counts) and the pwf column giving the genes value on the probability
weighting function.

goseq obtains length data from UCSC and GO mappings from the organism packages (see 1ink{getgo}
and getlength for details). If your data is in an unsupported format you will need to obtain the GO
category mapping and supply them to the goseq function using the gene2cat argument.

To use your own gene to category mapping with goseq, use the gene2cat argument. This argument
takes a data.frame, with one column containing gene IDs and the other containing the associated cat-
egories. As the mapping from gene <-> category is in general many to many there will be multiple
rows containing the same gene identifier. Alternatively, gene2cat can take a list, where the names
are the genes and the entries are the GO categories associated with the genes. This is the format
produced by the getgo function and is more space efficient than the data.frame representation.

If gene2cat is left as NULL, goseq attempts to use getgo to fetch GO category to gene identifier
mappings.

The PWF is usually calculated using the nullp function to correct for length bias. However, goseq
will work with any vector of weights. Any bias can be accounted for so long as a weight for each
gene is supplied using this argument. NAs are allowed in the "pwf" and "bias.data" columns of the
PWEF data frame (these usually occur as a result of missing length data for some genes). Any entry
which is NA is set to the weighting of the median gene.

Valid options for the test.cats argument are any combination of "GO:CC", "GO:BP", "GO:MF"
& "KEGG". The three GO terms refer to the Cellular Component, Biological Process and Molecular
Function respectively. "KEGG" refers to KEGG pathways.

The three methods, "Wallenius", "Sampling" & "Hypergeometric", calculate the p-values as fol-
lows.

"Wallenius" approximates the true distribution of numbers of members of a category amongst DE
genes by the Wallenius non-central hypergeometric distribution. This distribution assumes that
within a category all genes have the same probability of being chosen. Therefore, this approxima-
tion works best when the range in probabilities obtained by the probability weighting function is
small. "Wallenius" is the recommended method for calculating p-values.

"Sampling" uses random sampling to approximate the true distribution and uses it to calculate the
p-values for over (and under) representation of categories. In practice, its use quickly becomes
computationally prohibitive because repcnt would need to be set very high for most applications.

goseq-pkg 7

CAUTION: "Hypergeometric" should NEVER be used for producing results for biological inter-
pretation. If there is genuinely no bias in power to detect DE in your experiment, the PWF will
reflect this and the other methods will produce accurate results.

"Hypergeometric" assumes there is no bias in power to detect differential expression at all and

calculates the p-values using a standard hypergeometric distribution. Useful if you wish to test the
effect of selection bias on your results.

Value

goseq returns a data frame with several columns. The first column gives the name of the category,
the second gives the p-value for the associated category being over represented amongst DE genes.
The third column gives the p-value for the associated category being under represented amongst DE
genes. The p-values have not been corrected for multiple hypothesis testing. The fourth and fifth
columns give the number of differentially expressed genes in the category and total genes in the
category respectively. If any of the categories was a GO term, there will be two additional columns
for the GO term and its ontology.

Author(s)

Matthew D. Young <myoung@wehi.edu.au>

References

Young, M. D., Wakefield, M. J., Smyth, G. K., Oshlack, A. (2010) Gene ontology analysis for
RNA-seq: accounting for selection bias Genome Biology Date: Feb 2010 Vol: 11 Issue: 2 Pages:
R14

See Also

nullp, getgo, getlength

Examples

data(genes)
pwf <- nullp(genes, 'hgl19', 'ensGene')
pvals <- goseq(pwf, 'hgl19', 'ensGene"')
head(pvals)

goseq-pkg goseq

Description
Detects Gene Ontology and/or other user defined categories which are over/under represented in
RNA-seq data.

Author(s)

Maintainer: Federico Marini <marinif@uni-mainz.de> (ORCID) [contributor]
Authors:

* Matthew Young <my4@sanger.ac.uk>
¢ Nadia Davidson <nadia.davidson@mcri.edu.au>

https://orcid.org/0000-0003-3252-7758

8 makespline
See Also
Useful links:

* https://github.com/federicomarini/goseq

* Report bugs at https://github.com/federicomarini/goseq/issues

makespline Monotonic Spline

Description
Fits a monotonic cubic spline to the data provided, using the penalized constrained least squares
method from the mgcv package.

Usage

makespline(x, y, newX = NULL, nKnots = 6, lower_bound = 10*-3)

Arguments
X The predictor variable.
y The response variable. Must be the same length as x.
newX The points at which to return the value on the fitted spline. If not specified x is
used.
nKnots The number of knots to use in fitting the spline.
lower_bound The spline cannot drop below this value.
Details

This uses the pcls function from the mgev package to produce the fit. The monotonicity constraint
is enforced using mono. con from the same package. The lower_bound argument is only used on
the rare occasions when the fitting function becomes negative or arbitrarily close to zero. If this does
occur lower_bound is added everywhere to ensure that no one length is given essentially infinite
weighting.

Value

Returns a vector of values containing the value of the fit at each point newX.

Author(s)

Matthew D. Young <myoung@wehi.edu.au>.

References

Package mgcv. In particular this function is a modification of an example given in the man page for
pcls.

https://github.com/federicomarini/goseq
https://github.com/federicomarini/goseq/issues

nullp 9

Examples

y <= ¢(rbinom(50,p=0.4,size=1), rbinom(50,p=0.6,size=1))
x <- 1:100

plot(x,y)

p <- makespline(x,y)

lines(x,p)

nullp Probability Weighting Function

Description

Calculates a Probability Weighting Function for a set of genes based on a given set of biased data
(usually gene length) and each genes status as differentially expressed or not.

Usage

nullp(DEgenes, genome, id, bias.data = NULL, plot.fit = TRUE)

Arguments
DEgenes A named binary vector where 1 represents DE, 0 not DE and the names are gene
IDs.
genome A string identifying the genome that genes refer to. For a list of supported
organisms run supportedGenomes.
id A string identifying the gene identifier used by genes. For a list of supported
gene IDs run supportedGeneIDs.
bias.data A numeric vector containing the data on which the DE may depend. Usually
this is the median transcript length of each gene in bp. If set to NULL nullp will
attempt to fetch length using getlength.
plot.fit Plot the PWF or not? Calls plotPWF with default values if TRUE.
Details

It is essential that the entire analysis pipeline, from summarizing raw reads through to using goseq
be done in just one gene identifier format. If your data is in a different format you will need to obtain
the gene lengths and supply them to the nullp function using the bias.data argument. Converting
to a supported format from another format should be avoided whenever possible as this will almost
always result in data loss.

NAs are allowed in the bias.data vector if you do not have information about a certain gene. Setting
a gene to NA is preferable to removing it from the analysis.

If bias.data is left as NULL, nullp attempts to use getlength to fetch GO category to gene iden-
tifier mappings.

It is recommended you review the fit produced by the nullp function before proceeding by leaving
plot.fit as TRUE.

10 plotPWF

Value

A data frame with 3 columns, named "DEgenes", "bias.data" and "pwf" with the rownames set to
the gene names. Each row corresponds to a gene with the DEgenes column specifying if the gene
is DE (1 for DE, O for not DE), the bias.data column giving the numeric value of the DE bias being
accounted for (usually the gene length or number of counts) and the pwf column giving the genes
value on the probability weighting function. This object is usually passed to goseq to calculate
enriched categories or plotPWF for further plotting.

Author(s)

Matthew D. Young <myoung@wehi.edu.au>

References

Young, M. D., Wakefield, M. J., Smyth, G. K., Oshlack, A. (2010) Gene ontology analysis for
RNA-seq: accounting for selection bias Genome Biology Date: Feb 2010 Vol: 11 Issue: 2 Pages:
R14

See Also

supportedGenomes, supportedGenelDs, goseq, getlength

Examples

data(genes)
pwf <- nullp(genes, 'hgl9', 'ensGene')

plotPWF Plot the Probability Weighting Function

Description

Plots the Probability Weighting Function created by nullp by binning together genes.

Usage
plotPWF(
pwf,
binsize = "auto”,
pwf_col = 3,
pwf_lwd = 2,
xlab = "Biased Data in <binsize> gene bins.",

ylab = "Proportion DE",

plotPWF 11

Arguments
pwf A data frame with 3 columns named DEgenes, bias.data & pwf and row names
giving the gene names. Usually generated by nullp.
binsize Calculate and plot the fraction of genes that are DE in bins of this size. If set to
"auto" the best binsize for visualization is attempted to be found automatically.
pwf_col The colour of the probability weighting function
pwf_lwd The width of the probability weighting function
xlab The x-axis label. <binsize> is replaced by the binsize used.
ylab The y-axis label.
Extra arguments that are passed to plot.
Details

This function is almost always called using the output from the nullp function. However, it can be
used to visualize the length (or any other type of quantifiable) bias in ability to detect DE in a data
set. The pwf argument needs to be a data frame with 3 columns each containing numeric entries
(although NAs are permitted in the bias.data and pwf columns), which must be named "DEgenes",
"bias.data" and "pwf", although they can appear in any order. The row names are taken to be the
gene names. The DEgenes column should be Os or 1s where 1 represents a DE gene, 0 a gene
which is not DE. The bias.data column is a quantification of the quantity for which there is a bias in
detecting DE for the associated gene, this is usually gene length or the number of counts associated
with a gene. Finally, the pwf column gives the probability weighting to be applied for a given gene.

Value

Nothing is returned.

Author(s)

Matthew D. Young <myoung@wehi.edu.au>

References

Young, M. D., Wakefield, M. J., Smyth, G. K., Oshlack, A. (2010) Gene ontology analysis for
RNA-seq: accounting for selection bias Genome Biology Date: Feb 2010 Vol: 11 Issue: 2 Pages:
R14

See Also

nullp

Examples

data(genes)
pwf <- nullp(genes, 'hgl9', 'ensGene',plot.fit=FALSE)
plotPWF (pwf,binsize=200)

12

supportedOrganisms

pp Prints progress through a loop

Description

Prints progress through a loop

Usage

pp(total, count, i = i)

Arguments
total total number of iterations
count current iteration
i index of the loop

Value

message indicating the progress

supportedOrganisms Supported Organisms

Description

Lists which genomes and gene ids are supported for gene lengths and for gene ontology

Usage

supportedOrganisms()

Details

Goseq allows a user to provide their own bias data (usually gene lengths) and/or gene categories
(usually gene ontologies), but goseq also provides this data automatically for many commonly used
species. This function lists which genome and gene ids are automatically supported by goseq.
The first to third columns list the genomes, gene ids, and gene id descriptions respectively. The
fourth column indicates whether this combination of genome and id are available in the geneLength-
DataBase. If a particular combination is absent, goseq may still automatically fetch the gene lengths
from either a TxDB annotation package (must be installed) or download the data from UCSC. For
example gene lengths for hg38 are not supported in genelLengthDataBase but may be fetched by
these other means. However, this is not always the case. The final column indicates if GO terms
will be automatically fetched for the genome and id combination. Goseq relies on an org annota-
tion package (e.g. org.Hs. eg.db) existing for the organism. In general, if either the lengths or GO
terms are not supported, the user must enter this information manually.

Value

A data.frame containing supported genomes and gene ids

supportedOrganisms

Author(s)

Nadia Davidson <nadia.davidson@mcri.edu.au>

Examples

supportedOrganisms()

13

Index

+ datasets
genes, 2

* internal
goseq-pkg, 7

genes, 2

getgo, 3, 5-7

getlength, 3,4,6, 7,9, 10
goseq, 3,5, 10

goseq-package (goseq-pkg), 7
goseq-pkg, 7

makespline, 8
nullp, 4-7,9, 10, 11

plotPWF, 9, 10
pp, 12

supportedGenelDs, 3-5, 9, 10
supportedGenomes, 3-5, 9, 10
supportedOrganisms, 12

14

	genes
	getgo
	getlength
	goseq
	goseq-pkg
	makespline
	nullp
	plotPWF
	pp
	supportedOrganisms
	Index

