Package ‘extraChlIPs’

October 24, 2025

Version 1.13.3
Title Additional functions for working with ChIP-Seq data

Description This package builds on existing tools and adds some simple but
extremely useful capabilities for working wth ChIP-Seq data. The focus is
on detecting differential binding windows/regions.

One set of functions focusses on set-operations retaining mcols for GRanges
objects, whilst another group of functions are to aid visualisation of

results.

Coercion to tibble objects is also implemented.

License GPL-3
Encoding UTF-8

URL https://github.com/smped/extraChIPs

BugReports https://github.com/smped/extraChIPs/issues

Depends BiocParallel, R (>= 4.2.0), GenomicRanges, ggplot2 (>= 4.0.0),
ggside (>= 0.4.0), Seqinfo, SummarizedExperiment (>= 1.39.1),
tibble

Imports csaw, dplyr (>= 1.1.1), edgeR (>=4.0), forcats, GenomelnfoDb,
glue, ggrepel, InteractionSet, IRanges, matrixStats, methods,
patchwork, RColorBrewer, rlang, Rsamtools, rtracklayer,
S4Vectors, scales, stats, stringr, tidyr, tidyselect, vctrs

Suggests apeglm, BiocStyle, SimpleUpset, covr, DESeq?2,
EnrichedHeatmap, GenomicAlignments, GenomiclInteractions, Gviz,
ggforce, harmonicmeanp, here, knitr, limma, magrittr,
plyranges, quantro, rmarkdown, testthat (>= 3.0.0), tidyverse,
VennDiagram

biocViews ChIPSeq, HiC, Sequencing, Coverage
BiocType Software

VignetteBuilder knitr

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.3

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/extraChIPs
git_branch devel

git_last_commit 333a0ad

https://github.com/smped/extraChIPs
https://github.com/smped/extraChIPs/issues

2 Contents

git_last_commit_date 2025-10-07
Repository Bioconductor 3.22
Date/Publication 2025-10-24

Author Stevie Pederson [aut, cre] (ORCID:
<https://orcid.org/0000-0001-8197-3303>)

Maintainer Stevie Pederson <stephen.pederson.au@gmail.com>

Contents
extraChIPs-package e 3
.makeFinalProfileHeatmap 4
mapFeatures L. L e e e 5
mapGl ... e 6
amapWithin 0 0oL 6
addDiffStatus 7
as_tibble L L e 8
bestOverlap e e e e 9
centrePeaks 11
chopMC e 12
collapseGenes e e e e 13
colToRanges e 14
cytobands e e e 15
defineRegions 16
defineSeqinfo L 17
distinctMC L. e 18
dualFilter e 19
ex_datasets e e e 21
fitAssayDiff L 22
fixed_width_datasets e e e 24
getProfileData 25
grlToSE e 27
importPeaks L e 28
makeCoNSensSUS v v vt e e e e e e e e e e e e 29
mapByFeature 31
mapGrlCols e 33
mergeByCol 34
mergeByHMP 36
mergeBySig L 38
partitionRanges 40
plotAssayDensities e e e e e 41
plotAssayHeatmap 42
plotAssayPCA L e e e 43
plotAssayRle L 45
plotGrlCol o 46
PlotHFGC e 48
plotOverlaps L 54
PlOtPAITWise e e e e e e 56
plotPieo 59
plotProfileHeatmap 61

plotSplitDonut e 64

https://orcid.org/0000-0001-8197-3303

extraChIPs-package 3

propOverlap L 68
reduceMC 69
setoptsMC . . . L L e e e e e 69
stitchRanges L e 71
voomWeightsFromCPM 72
Index 74

extraChIPs-package extraChlPs: A package for enabling and extending ChIP-Seq analysis

Description

The package provides three categories of important functions: Range-based, Visualisation and Con-
venience functions, with most centred around GenomicRanges objects

Range-based Functions

Many of the range-based functions included in this package have a focus on retaining the mcols in-
formation whilst manipulating the ranges, such as reduceMC() which not only reduces the Ranges,
but collapses the mcols into vectors or [Ranges::CompressedList objects. Key function from this
group are:

e reduceMC(), setdiffMC(), intersectMC(), unionMC(), distinctMC() and chopMC()

* bestOverlap() and propOverlap() provide simple output easily able to be added as a col-
umn within the mcols element

* as_tibble() coerces a GRanges object to a tibble::tibble.

* colToRanges() enables parsing of a single column to a GRanges object, setting all other
columns as the mcols element.

* stitchRanges() merges nearby ranges setting barrier ranges which cannot be crossed when
merging
* partitionRanges() break apart one set of ranges by another

* dualFilter() filters ranges from sliding windows using a guide set of reference ranges where
signal is confidently expected

* mergeByCol () merges overlapping ranges, as produced by sliding windows

* mapByFeature() is able to map a set of GRanges to the most appropriate gene, using any
optional combination of promoters, enhancers and HiC interactions

* grlToSE() takes selected columns from a GRangesList and sets them as assays within a Sum-
marizedExperiment::RangedSummarizedExperiment object. Used for combining peak inten-
sities or results across multiple ChIP targets.

Visualisation Functions

* plotHFGC() is a wrapper to Gviz plotting functions, able to take any combination of HiC,
Features, Genes and Coverage (i.e. BigWig) and plot a specified range.

* plotOverlaps() visualises overlapping ranges as an UpSet plot or Venn Diagram
* plotProfileHeatmap() plots the average signal around a set of ranges, as prepared by getProfileData()
* plotPie() and plotSplitDonut() enable simple comparison across multiple annotation
columns within a GRanges object.
* plotAssayDensities(), plotAssayPCA() and plotAssayRle() provide simple interfaces
to plotting key values from a SummarizedExperiment::RangedSummarizedExperiment.

4 .makeFinalProfileHeatmap

Convenience Functions

* fitAssayDiff () enables differential signal analysis on a SummarizedExperiment object
* collapseGenes() prints a vector of genes for an rmarkdown document, using italics.
* importPeaks() imports large numbers of broadPeak or narrowPeak files

* makeConsensus() forms consensus peaks from overlapping ranges within a GRangesList()

Author(s)

Stevie Pederson

See Also

Useful links:

e https://github.com/smped/extraChIPs

* Report bugs at https://github.com/smped/extraChIPs/issues

.makeFinalProfileHeatmap
Make a profile heatmap

Description

Make a profile heatmap with optional summary panel at the top

Usage

.makeFinalProfileHeatmap(
data,
x = NULL,
y = NULL,
fill = NULL,
colour = NULL,
linetype = NULL,
facet_x = NULL,
facet_y = NULL,

summary_fun = c("mean”, "median”, "min"”, "max", "none"),
rel_height = 0.3,

x_lab = NULL,

y_lab = NULL,

fill_lab = NULL,
lab_fun_x = waiver(),
label_side = c("left”, "right”, "none"),

https://github.com/smped/extraChIPs
https://github.com/smped/extraChIPs/issues

.mapFeatures 5

Arguments
data A data.frame or tibble in long form
X,y The values mapped to the x & y axes
fill The column used for heatmap colours

colour, linetype

Columns used for the summary plot in the top panel
facet_x, facet_y

Columns used to facet the plot along these axes

summary_fun Function used to create the summary value at each position

rel_height The relative height of the top panel
x_lab, y_lab, fill_lab
_labels added to x/y-axes & the fill legend

Passed to facet_grid

Details

The workhorse function for generating the final heatmap Expects a single data.frame in long form
with requisite columns

Value

A ggplot2 object

.mapFeatures Map ranges to genes using features as an anchor

Description

Map ranges to genes using features as an anchor

Usage
.mapFeatures(.gr, .feat, .genes, .cols, .gr2feat, .feat2gene, ...)
Arguments
.gr The ranges to map onto
.feat Features to use for mapping
.genes GRanges object containing gene-level information
.cols The columns from . genes to map onto .gr
.gr2feat The maximum distance between ranges and features
.feat2gene The maximum distance between features & genes
Passed to findOverlaps and subsetByOverlaps
Value

A data.frame

.mapWithin

.mapGi Map ranges to genes via Interactions

Description

Map ranges to genes via Interactions

Usage
.mapGi(.gr, .gi, .genes, .cols, .gr2gi, .gi2gene, ...)
Arguments
.gr The ranges to map onto
.gi Glnteractions object
.genes GRanges object containing gene-level information
.cols The columns from . genes to map onto .gr
.gr2gi The maximum distance between ranges and anchors
.gi2gene The maximum distance between anchors & genes
Passed to findOverlaps
Value

data.frame of mapped ranges

.mapWithin Map ranges to all genes within a set distance

Description

Map ranges to all genes within a set distance

Usage
.mapWithin(.gr, .genes, .cols, .within, ...)

Arguments
.gr The ranges to map onto
.genes GRanges object containing gene-level information
.cols The columns from . genes to map onto .gr
.within The maximum distance between ranges & genes

Passed to findOverlaps
Value

A data.frame

addDiftStatus

addDiffStatus

Add a status column

Description

Add a status column based on significance and estimated change

Usage

addDiffStatus(x, ...)

S4 method for signature 'data.frame'

addDiffStatus(
X’

fc_col = "logFC",
sig_col = c("FDR", "hmp_fdr", "p_fdr", "adj.P.Value"),

alpha = 0.05,

cutoff = 0,

up = "Increased”,

down = "Decreased”,
other = "Unchanged”,
missing = "Undetected”,
new_col = "status”,
drop = FALSE,

)

S4 method for signature 'DataFrame’
addDiffStatus(x, new_col = "status”, ...)

S4 method for signature 'GRanges'
addDiffStatus(x, ...)

S4 method for signature 'GRangesList'
addDiffStatus(x, ...)

S4 method for signature 'SummarizedExperiment'’

addDiffStatus(x, ...)
Arguments
X Object to be classified

fc_col
sig_col
alpha
cutoff

up, down, other

Used to pass arguments between methods
Name of the fold-change column

Name of the column with significance values
significance threshold

minimum estimated change to be considered in either of the up or down cate-
gories

factor levels to annotate regions based on the above criteria

8 as_tibble

missing Value to add when either fc_col or sig_col has NA values

new_col name of the new column to be added

drop logical(1) Drop unused factor levels from the status column
Details

This takes a simple object and adds a new column classifying entries into one of three categories,
as specified using up, down or other. Results in the new column will always be returned as a factor
with levels in order of the values provided in the arguments other, down and up

Value

An object of the same type as provided

Examples

Working with a data.frame

set.seed(101)

df <- data.frame(logFC = rnorm(20), p = rbeta(20, shapel = 1, shape2 = 20))
df$FDR <- p.adjust(df$p, "fdr")

addDiffStatus(df)

This works identically with a GRanges object, amongst others
gr <- GRanges(paste@("chrl:", seqg_len(20)))

mcols(gr) <- df

addDiffStatus(gr)

as_tibble Convert to a tibble

Description

Convert multiple Genomic objects to tibbles

Usage
S3 method for class 'DataFrame'’
as_tibble(x, rangeAsChar = TRUE, ...)

S3 method for class 'GenomicRanges'
as_tibble(x, rangeAsChar = TRUE, name = "range”, ...)

S3 method for class 'Seqinfo'
as_tibble(x, ...)

S3 method for class 'GInteractions'
as_tibble(x, rangeAsChar = TRUE, suffix = c(".x", ".y"), ...)

S3 method for class 'SummarizedExperiment'
as_tibble(x, rangeAsChar = TRUE, ...)

S3 method for class 'TopTags'
as_tibble(x, ...)

bestOverlap 9

Arguments
X A Genomic Ranges or DataFrame object
rangeAsChar Convert any GRanges element to a character vector
Passed to tibble::as_tibble()
name Name of column to use for ranges. Ignored if rangeAsChar = FALSE
suffix Suffix appended to column names for anchorl and anchor2 of a Glnteractions
object. Only used if specifying rangeAsChar = FALSE
Details

Quick and dirty conversion into a tibble.

By default, GenomicRanges will be returned with the range as a character column called range and
all mcols parsed as the remaining columns. Seqinfo information will be lost during coercion.

Given that names for ranges are considered as rownames in the mcols element, these can be simply
parsed by setting rownames = "id" in the call to as_tibble()

When coercing a DataFrame, any Compressed/SimpleList columns will be coerced to S3 list columns.
Any GRanges columns will be returned as a character column, losing any additional mcols from
these secondary ranges

Coercion of SummarizedExperiment objects will be performed on the rowRanges () element, whilst
for a Glnteractions object, both anchors will returned with the default suffixes .x and .y

Defined as an S3 method for consistency with existing tidy methods

Value

A tibble

Examples

gr <- GRanges("chri1:1-10")
gr$p_value <- runif(1)
names(gr) <- "rangel”

gr

as_tibble(gr)

as_tibble(gr, rownames = "id")
as_tibble(mcols(gr))
as_tibble(seqginfo(gr))

hic <- InteractionSet::GInteractions(gr, GRanges("chr1:201-210"))
hic$id <- "interaction1”
as_tibble(hic)

bestOverlap Find the best overlap between GRanges

Description

Find the best overlap between ranges

10 bestOverlap

Usage

bestOverlap(x, vy, ...)

S4 method for signature 'GRanges,GRanges'

bestOverlap(
X,
Y,
var = NULL,

ignore.strand = FALSE,
missing = NA_character_,
min_prop = 0.01,

)

S4 method for signature 'GRanges,GRangeslList'
bestOverlap(

X)

Y,

ignore.strand = FALSE,

missing = NA_character_,

min_prop = 0.01,

)
Arguments
X a GRanges object
y a named GRangesList or GRanges object with mcol as reference category
Not used
var The variable to use as the category. Not required if y is a GRangesList

ignore.strand logical(1) Passed to findOverlaps

missing Value to assign to ranges with no overlap
min_prop Threshold below which overlaps are discarded
Details

This finds the category in the subject GRanges (y) which has the best overlap with the query
GRanges (x). The aim is to produce a character vector for best classifying the query GRanges using
an external set of features (e.g. promoters, enhancers etc). If the subject (y) is a GRanges object,
the values in the specified column will be used as the category. If the subject (y) is a GRangesList,
the names of the list will be used to provide the best match

Value

Character vector the same length as the supplied GRanges object

Examples

gr <- GRanges("chr1:1-10")
gr_cat <- GRanges(c("chr1:2-10", "chr1:5-10"))
gr_cat$category <- c("a", "b")

centrePeaks

propOverlap(gr, gr_cat)
bestOverlap(gr, gr_cat, var = "category")

grl <- splitAsList(gr_cat, gr_cat$category)
lapply(grl, function(x) propOverlap(gr, x))
bestOverlap(gr, grl)

centrePeaks Re-estimate peak centres from coverage

Description

Use coverage to estimate peak centres

Usage
centrePeaks(x, vy, ...)

S4 method for signature 'GRanges,BamFilelist

centrePeaks(
X,
Y,
f = c("weighted.cov”, "mean”, "median"),

BPPARAM = bpparam(),

)

S4 method for signature 'GRanges,BamFile'
centrePeaks(x, vy, ...)

S4 method for signature 'GRanges,BigWigFilelList'

centrePeaks(
X’
Y,
f = c("weighted.cov”, "mean”, "median"),

BPPARAM = bpparam(),

[

S4 method for signature 'GRanges,BigWigFile
centrePeaks(x, vy, ...)

S4 method for signature 'GRanges,character’

centrePeaks(x, vy, ...)
Arguments
X A set of GRanges representing peaks
y A suitable set of files with methods defined

Used to pass arguments between methods

12 chopMC

f The function to use when estimating a combined peak centre
BPPARAM An object of class BPPARAM
Details

Use coverage to estimate the centre of a set of peaks or GenomicRanges.

If using the mean or median, the point of maximum coverage for each sample will be found within
each peak and these positions will be averaged to return a position representing an estimated peak
centre.

If using weighted.cov, positions are weighted by the combined coverage across all samples to return
the weighted mean position. In this case coverage will be scaled by total alignments within each
bam file before summing across files

Value

A GRanges object with all widths set to one

Examples

Define some peaks

f <- system.file("extdata/peaks.bed.gz", package = "extraChIPs")
peaks <- importPeaks(f, type = "bed")[[1]]

peaks

Use a bam file to re-centre the regions using highest coverage
bf <- system.file("extdata/bam/ex1.bam"”, package = "extraChIPs")
centres <- centrePeaks(peaks, bf, BPPARAM = SerialParam())
centres

chopMC Keep unique ranges and collapse mcols

Description

Keep unique ranges by ’chopping’ mcols

Usage
chopMC(x, simplify = TRUE)

Arguments
X A GenomicRanges object
simplify logical(1)

Details

This function finds unique ranges and chops all mcols in a manner similar to chop. Chopped
columns will be returned as CompressedList columns, unless simplify = TRUE (the default). In
this case, columns will be returned as vectors where possible.

collapseGenes 13

Value

A GRanges object

Examples

gr <- GRanges(rep(c(”"chr1:1-10"), 2))
gr$id <- paste@("range”, seq_along(gr))
gr$gene <- "genel”

gr

chopMC(gr)

collapseGenes Collapse a vector of gene names

Description

Collapse a vector of gene names

Usage
collapseGenes(
X ’
sort = TRUE,
dedup = TRUE,
format = "_",
sep = n R n R
last = " and ",
numeric = TRUE,
width = Inf,
)
Arguments
X character vector representing gene names
sort logical(1) Should the names be sorted alphabetically
dedup logical(1) Should duplicate names be removed
format character string for markdown formatting of each element
sep separator between vector elements
last character string to place before the last element
numeric logical(1) sort digits numerically, instead of as strings
width The maximum width of the string before truncating to ...
passed to str_sort
Details

Convenience function to collapse a vector of gene names into a character/glue object of length 1.
By default, symbols are deduplicated, sorted alpha-numerically and italicised with an underscore.

14 colToRanges

Value

a glue object

Examples

genes <- c("FOXP3", "BRCA1", "TP53")
collapseGenes(genes)

colToRanges Coerce a column to a GRanges object

Description

Coerce a column to a GRanges object from a rectangular object

Usage

colToRanges(x, ...)

S4 method for signature 'DataFrame’
colToRanges(x, var, seqinfo = NULL, ...)

S4 method for signature 'GRanges'
colToRanges(x, var, ..., keep_metadata = TRUE)

S4 method for signature 'data.frame'

colToRanges(x, var, seqinfo = NULL, ...)
Arguments
X A data-frame or GRanges object containing the column to coerce

Used to pass arguments to lower-level functions
var The name of the column to coerce

seqginfo A seqinfo object to be applied to the new GRanges object. Ignored if the column
is already a GRanges object

keep_metadata logical(1l) If the original object is a GRanges object, retain all metadata from the
original ranges in the replaced ranges

Details

Take a data.frame-like object and coerce one column to a GRanges object, setting the remainder as
the mcols. A particularly useful application of this is when you have a GRanges object with one
mcol being a secondary GRanges object.

Alternatively, if you have a data.frame with GRanges represented as a character column, this pro-
vides a simple method of coercion. In this case, no Seqinfo element will be applied to the GRanges
element.

Value

A GenomicRanges object

cytobands 15

Examples

set.seed(73)

x <- GRanges(c("chr1:1-10", "chr1:6-15", "chr1:51-60"))

seqinfo(x) <- Seqginfo("”chr1”, 60, FALSE, "Example")

df <- data.frame(logFC = rnorm(3), 1logCPM = rnorm(3,8), p = 10*-rexp(3))
mcols(x) <- df

gr <- mergeByCol(x, col = "logCPM", pval = "p")

colToRanges(gr, "keyval_range")

cytobands Cytogenetic bands

Description

Cytogenetic bands for GRCh37/hg19 and GRCh38/hg38

Usage

data(grch37.cytobands)

data(grch38.cytobands)

Format

Cytogenetic bands for standard chromosomes from GRCh37,in the format required by Ideogram-
Track. A data.frame with 5 columns:

chrom Chromosome

chromStart Starting position for each cytogenetic band
chromEnd End position for each cytogenetic band
name Name for each band, e.g. p.36.33

gieStain Staining pattern

An object of class data. frame with 862 rows and 5 columns.

Source

https://hgdownload. soe.ucsc.edu/goldenPath/hg19/database/cytoBand. txt.gz
https://hgdownload. soe.ucsc.edu/goldenPath/hg38/database/cytoBand. txt.gz

Examples

data(grch37.cytobands)
head(grch37.cytobands)

data(grch38.cytobands)
head(grch38.cytobands)

https://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/cytoBand.txt.gz
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/cytoBand.txt.gz

16 defineRegions

defineRegions Define Genomic Regions Based on Gene Annotations

Description

Use gene, transcript and exon annotations to define genomic regions

Usage

defineRegions(
genes,
transcripts,
exons,
promoter = c(2500, 500),
upstream = 5000,
intron = TRUE,
proximal = 10000,
simplify = FALSE,
cols = c("gene_id", "gene_name", "transcript_id", "transcript_name"),

Arguments

genes, transcripts, exons
GRanges objects defining each level of annotation

promoter Numeric vector defining upstream and/or downstream distances for a promoter.
Passing a single value will define a symmetrical promoter The first value repre-
sents the upstream range

upstream The distance from a TSS defining an upstream promoter

intron logical(1) Separate gene bodies into introns and exons. If intron = FALSE gene
bodies will simply be defined as gene bodies

proximal Distance from a gene to be considered a proximal intergenic region. If set to 0,
intergenic regions will simply be considered as uniformly intergenic

simplify Passed internally to reduceMC and setdiffMC

cols Column names to be retained from the supplied annotations
Not used

Details

Using GRanges annotated as genes, transcripts and exons this function will define ranges uniquely
assigned to a region type using a hierarchical process. By default, these region types will be (in
order) 1) Promoters, 2) Upstream Promoters, 3) Exons, 4) Introns, 5) Proximal Intergenic and 6)
Distal Intergenic.

Setting intron = FALSE will replace introns and exons with a generic "Gene Body" annotation.
Setting proximal = @ will return all intergenic regions (not previously annotated as promoters or
upstream promoters) to an "Intergenic" category

Notably, once a region has been defined, it is excluded from all subsequent candidate regions.

Any columns matching the names provided in cols will be returned, and it is assumed that the
gene/transcript/exon ranges will contain informative columns in the mcols() element.

defineSeqinfo 17

Value

A GRangesList

Examples

Define two exons for two transcripts
sq <- Seginfo(segnames = "chr1"”, seqlengths = 50000)
e <- c("chr1:20001-21000", "chr1:29001-29950", "chr1:22001-23000", "chr1:29001-30000")
e <- GRanges(e, seginfo = sq)
mcols(e) <- DataFrame(
gene_id = "Genel"”, transcript_id = paste@("Trans”, c(1, 1, 2, 2))
)

Define the transcript ranges

t <- unlist(endoapply(split(e, e$transcript_id), range))
t$gene_id <- "Genel”

t$transcript_id <- names(t)

names(t) <- NULL

Summarise to gene level
g <- reduceMC(t)
g$transcript_id <- NA_character_

Now annotate the regions
regions <- defineRegions(genes = g, transcripts = t, exons = e)
sort(unlist(regions))

Alternatively, collpse gene body and intergenic ranges
regions <- defineRegions(

genes = g, transcripts = t, exons = e, intron = FALSE, proximal = @
)

sort(unlist(regions))

defineSeginfo Use package data to define a Seqinfo object

Description

Use package data to define a Seqinfo object

Usage

defineSeqinfo(
build = c("GRCh38", "GRCh37", "GRCm39", "GRCm38", "hg19", "hg38", "T2T-CHM13v2.0",
"mm39”, "mm10"),
chr = TRUE,
mito,

18 distinctMC

Arguments
build The Genome build used
chr logical(1) Include the prefix "chr"
mito Specify M or MT to include the mitochondrial chromosome. Omitted by default
Not used
Details

This function will create a Seqinfo object from pre-defined data from the Genome Reference Con-
sortium. Returned objects will always be restricted to assembled molecules only. Currently imple-
mented genome builds represent the four most common builds for ChIP-Seq analysis

Value

A Seqinfo object

Examples

defineSeqinfo("”"GRCh37", TRUE)
defineSeqinfo("”"GRCh37", FALSE, "MT")

distinctMC Keep distinct ranges and mcols

Description

Keep distinct ranges by including mcols

Usage
distinctMC(x, ..., .keep_all = FALSE)
Arguments
X A GenomicRanges object
<data-masking> Passed to distinct
.keep_all If TRUE, keep all columns in x
Details

Wrapper to distinct for GRanges objects. Finds unique ranges and mcols in combination and retains
only the distinct combinations, in keeping with the dplyr function.

Will default to unique(granges(x)) if no columns are provided

Value

A GRanges object

dualFilter

Examples

19

gr <- GRanges(rep(c("chr1:1-10"), 2))
gr$id <- paste@("range”, seq_along(gr))
gr$gene <- "genel”

gr

distinctMC(gr)

distinctMC(gr, gene)
distinctMC(gr, gene, .keep_all = TRUE)

dualFilter

Apply two filters to sliding windows

Description

Apply two filters to counts generated using sliding windows

Usage

dualFilter(
X,

bg = NULL,

ref,
q = 0.5,

logCPM = TRUE,

keep.totals

bin.size

prior.count

TRUE,

NULL,

2,

BPPARAM = bpparam()

Arguments

X

bg

ref

1ogCPM
keep.totals

bin.size

prior.count
BPPARAM

RangedSummarizedExperiment containing sample counts

RangedSummarizedExperiment containing background/input counts, or alter-
nate method for selecting samples from within x, such as a logical, numeric or
character vector

GRanges object containing ranges where signal is expected

The upper percentile of the reference ranges expected to be returned when tuning
the filtering criteria

logical(1) Add a logCPM assay to the returned data

logical(1) Keep the original library sizes or replace using only the retained win-
dows

Bin sizes when calling filterWindowsControl. If not specified will default to the
largest of 2000bp or 10x the window size

Passed to filterWindowsControl and filterWindowsProportion

Settings for running in parallel

20 dualFilter

Details

This function will take sliding (or tiling) windows for it’s input as a RangedSummarizedExperiment
object. The dual strategy of applying filterWindowsControl and filterWindowsProportion will then
be applied. A set of reference ranges for which signal is expected is used to refine the filtering
criteria.

Cutoff values are found for both signal relative to input and overall signal, such that the 100*q% of
the (sliding) windows which overlap a reference range will be returned, along with any others which
match the dual filtering criteria. In general, higher values of q will return more windows as those
with weak signal and a marginal overlap with a reference range will be returned. Lower values will
ensure that fewer windows, generally with the strongest signal, are retained. Cutoff values for both
criteria are added to the metadata element of the returned object.

If setting bg = NULL the filterWindowsControl step will be ignored and only the filterWindowsPro-
portion will be used. This should only be performed if no Input sample is available.

Please note that the any .bam files referred to in the supplied objects must be accessible to this
function. It will not run on a separate machine or file structure to that which the original sliding
windows were prepared. Please see the example/vignette for runnable code.

Value

A RangedSummarizedExperiment which is a filtered subset of the original object. If requested the
assay "logCPM" will be added (TRUE by default)

Examples

Taken from the differential_binding vignette

library(tidyverse)

library(Rsamtools)

library(csaw)

library(BiocParallel)

library(rtracklayer)

For this function we need a set of counts using sliding windows and the
original BamFiles from which they were taken

First we'll set up the bam file list

bfl <- system.file(

"extdata”, "bam”, c("ex1.bam", "ex2.bam”, "input.bam"), package = "extraChIPs"
) %>%

BamFileList() %>%

setNames(c("ex1"”, "ex2", "input"))

Then define the readParam settings for csaw::readParam()
rp <- readParam(

pe = "none”,

dedup = TRUE,

restrict = "chri1o”

)

Now we can form our sliding window object with the counts.
wincounts <- windowCounts(

bam.files = bfl,

spacing = 60,

width = 180,

ext = 200,

filter = 1,

param = rp

ex_datasets 21

)

As this is a subset of reads, add the initial library sizes for accuracy
Note that this step is not normally required

wincounts$totals <- c(964076L, 989543L, 1172179L)

We should also update the metadata for our counts
wincounts$sample <- colnames(wincounts)
wincounts$treat <- as.factor(c(”ctrl”, "treat”, NA))
colData(wincounts)

The function dualFilter requires a set of peaks which will guide the
filtering step. This indicate where genuine signal is likely to be found
and will perform the filtering based on a) signal above the input, and
b) The overall signal level, using the guide set of peaks to inform the
cutoff values for inclusion
peaks <- import.bed(

system.file("extdata"”, "peaks.bed.gz", package = "extraChIPs")

)
filtcounts <- dualFilter(
X = wincounts, bg = "input”, ref = peaks,
q = 0.8 # Better to use g = 0.5 on real data
)
filtcounts
ex_datasets Datasets for an example region
Description

Various example datasets for demonstrating analysis and visualisation strategies. Generation of all
datasets is documented in system. file("script/ex_datasets.md”, package = "extraChIPs")

ex_genes Simple GRanges object with complete ranges for each gene
ex_trans Exon & transcript level information prepared for plotting with Gviz or plotHFGC()
ex_prom Regions defined as promoters

ex_hic Example HiC interactions

Usage

data(ex_trans)
data(ex_genes)
data(ex_prom)

data(ex_hic)

22

Format

GRanges and Glnteractions objects

All annotations are from GRCh37

An object of class GRanges of length 4.
An object of class GRanges of length 9.

An object of class GInteractions of length 1.

Examples

data(ex_trans)
ex_trans

fitAssayDiff

fitAssayDiff Detect Differential ChIP Signal

Description

Detect differential ChIP signal using one of many approaches

Usage
fitAssayDiff(x, ...)

S4 method for signature 'SummarizedExperiment'’
fitAssayDiff(

X,

assay = "counts”,

design = NULL,

coef = NULL,

lib.size = "totals",

method = c("qlf", "1t", "wald"),

norm = c("none”, "TMM", "RLE", "TMMwsp"”, "upperquartile"),

groups = NULL,

fc =1,

1fc = log2(fc),

asRanges = FALSE,

offset = NULL,

weighted = FALSE,

null = c("interval”, "worst.case"),

robust = FALSE,

type = c("apeglm”, "ashr”, "normal”)

Arguments

X a SummarizedExperiment object
Passed to normLibSizes and

assay The assay to use for analysis

fitAssayDiff 23

design The design matrix to use for analysis
coef The required column from the design matrix
lib.size The column within the colData element which contains the library size informa-

tion. If set to NULL, column summaries will be used.

method the analytic method to be used. Can be ’qlf” which will fit counts using the
gIlmQLFit strategy , or ’1t’ which fits the limma-trend model on logCPM, or pre-
processed logCPM values. Setting method = *wald’” will call nbinomWaldTest

norm The normalisation strategy to use when running the glmQLF model or the Wald
test. The value 'none’ relies solely on library-size normalisation, and is the
default. All methods available in normLibSizes are implemented. Ignored when
using method = "1t"

groups character(1) If a column name is supplied here, group-based normalisation will
be applied to GLM models treating data in this column as a grouping factor.
Ignored when using method = "It"

fc, 1fc Thresholds passed to treat, glmTreat or IfcShrink

asRanges logical(1). By default, the returned object will be a SummarizedExperiment
object with the results added to the rowData element. Setting asRanges = TRUE
will only return the GRanges object from this element

offset If provided will be used as the offset when a DGEList object is created during
model fitting for method = "qlf’

weighted logical(1) Passed to normLibSizes. Only used when applying a TMM-type nor-
malisation strategy

null Passed to glmTreat glmQLFit when method = "qlf". If method = "It", instead
passed to ImFit

robust Passed to treat and eBayes

type Passed to IfcShrink

Details

Starting with a SummarizedExperiment object this function fits either a glmQLFit model to count
data, performs the nbinomWaldTest on count data, or applies the limma-trend model to logCPM
data.

If fitting Generalised Linear Models via glmQLFit, options for normalisation are "none", which
normalises to library size. Existing library sizes are commonly found in the "totals" column of the
colData element and this is attempted by default. All methods provided in normLibSizes are also
implemented, with the added possibility of normalising within groups instead of across the entire
dataset. To enable this, the column with the grouping factor is expected to be in the colData element
and is simply called by column name. No normalisation is applied when using the limma-trend
model, as this allows for previous normalisation strategies to be performed on the data.

If testing with nbinomWaldTest, applying RLE normalisation without groups, and using colSums

for library sizes (instead of total alignments), the standard normalisation factors from DESeq2: :estimateSizeFactors
will be used. In all other scenarios, normalisation factors as returned by normLibSizes will be used.

The fitType is set to local” when estimating dispersions, and this can be easily modified by passing

fitType via the dot arguments. Results are additionally returned after applying IfcShrink, including

the svalue returned by this approach.

Normalising to ChIP Input samples is not yet implemented. Similarly, the use of offsets when
applying the Wald test is not yet implemented.

24 fixed_width_datasets

Range-based hypothesis testing is implemented using glmTreat or treat. Setting fc to 1 (or Ifc to 0)
will default to a point-based null hypothesis, equivalent to either glmQLFTest (method = "glIf") or
eBayes (method = "It"). When applying nbinomWaldTest, IfcShrink will be applied.

It should also be noted that this is primarily a convenience function and if requiring intermediate
output from any steps, then these can be run individually as conventionally specified.

Value

A SummarizedExperiment object with results set as the rowData element. Any existing columns
not contained in the differential ChIP results will be retained. Results from testing will contain
logCPM, logFC, PValue and any t/F statistic as appropriate, along with an FDR-adjusted p-value.

If specifying a range-based HO by setting Ifc != 0, an additional column p_mu0 will be included
which is the p-value for the point HO: logFC = 0. These are not used for FDR-adjusted p-values
but can be helpful when integrating multiple ChIP targets due to the increase in false-negatives
when using a range-based HO, and when requiring more accurate identification of truly unchanged
sites, as opposed to those which simply fail to achieve significance using a range-based HO where
arbitrary cutoff values are used.

Examples

nrows <- 200; ncols <- 6
counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows)
colnames(counts) <- paste@("Sample_", seqg_len(ncols))
df <- DataFrame(treat = c("A", "A", "A", "B", "B", "B"))
df$treat <- as.factor(df$treat)
se <- SummarizedExperiment(

assays = SimpleList(counts = counts), colData = df
)
X <- model.matrix(~treat, colData(se))
se <- fitAssayDiff(se, design = X, lib.size = NULL)
rowData(se)

fixed_width_datasets Datasets for the Fixed-Width Vignette

Description
GRangesList of peaks and SummarizedExperiment of counts All were saved during initial vignette
preparation at https://github.com/smped/extraChIPs_vignette/blob/main/differential _signal_fixed.Rmd
Usage

data(se)

data(peaks)

Format

An object of class RangedSummarizedExperiment with 188 rows and 6 columns.

An object of class CompressedGRangesList of length 6.

getProfileData 25

Examples

data(se)

se
data(peaks)
peaks

getProfileData Get Profile Data surrounding specified ranges

Description

Get coverage Profile Data surrounding specified ranges

Usage

getProfileData(x, gr, ...)

S4 method for signature 'BigWigFile,GenomicRanges'
getProfileData(
X,
gr,
upstream = 2500,
downstream = upstream,
bins = 100,
mean_mode = "w@",
log = TRUE,
offset = 1,
n_max = Inf,

)

S4 method for signature 'BigWigFilelList,GenomicRanges'
getProfileData(
X,
gr,
upstream = 2500,
downstream = upstream,
bins = 100,
mean_mode = "w@",
log = TRUE,
offset = 1,
BPPARAM = SerialParam(),

)

S4 method for signature 'character,GenomicRanges'
getProfileData(

X,

gr,

upstream = 2500,

downstream = upstream,

26 getProfileData
bins = 100,
mean_mode = "w@",
log = TRUE,
offset = 1,
)
Arguments
X A BigWigFile or BigWiFileList
gr A GRanges object
Passed to normalizeToMatrix
upstream The distance to extend upstream from the centre of each range within gr
downstream The distance to extend downstream from the centre of each range within gr
bins The total number of bins to break the extended ranges into
mean_mode The method used for calculating the score for each bin. See normalizeToMatrix
for details
log logical(1) Should the returned values be log2-transformed
offset Value added to data if log-transforming. Ignored otherwise
n_max Upper limit on the number of ranges to return profile data for. By default, no
limit will be applied .
BPPARAM Passed internally to bplapply
Details
This will take all provided ranges and set as identical width ranges, extending by the specified
amount both up and downstream of the centre of the provided ranges. By default, the ranges exten-
sions are symmetrical and only the upstream range needs to be specified, however this parameteri-
sation allows for non-symmetrical ranges to be generated.
These uniform width ranges will then be used to extract the value contained in the score field from
one or more BigWigFiles. Uniform width ranges are then broken into bins of equal width and the
average score found within each bin.
The binned profiles are returned as a DataFrameList called profile_data as a column within the
resized GRanges object. Column names in each DataFrame are score, position and bp.
If passing a BigWigFileList, profiles will be obtained in series by default. To run in parallel pass a
MulticoreParam object to the BPPARAM argument.
Value
GRanges or GrangesList with column profile_data, as described above
Examples

bw <- system.file("tests"”, "test.bw”, package = "rtracklayer")
gr <- GRanges("chr2:1000")

pd <- getProfileData(bw, gr, upstream = 500, bins = 10)

pd

pd$profile_data

griToSE

27

grlToSE

ment

Set columns from a GRangesList as Assays in a SummarizedExperi-

Description

Move one or more columns from a GRangesList elements into assays in a RangesSummarizedE-
periment

Usage

grlToSE(x, ...)

S4 method for signature 'GRangeslList'
gr1ToSE(

)
Arguments
X A GrangesList
Passed to reduce
assayCols Columns to move to separate assays
metaCols Columns to move to mcols within the rowRanges element
keyvals The value to use when choosing representative values
by How to choose by keyvals
ig

X’

assayCols = c(),
metaCols = c(),
keyvals = c(),

by = c("min”, "max"),

ignore.strand = FALSE

nore.strand logical(1). Whether the strand of the input ranges should be ignored or not.

Details

Given a GRangesList which would commonly represent multiple samples, reduce any overlapping
ranges into a consensus range, setting any metadata columns to be retained as separate assays. These

columns may contain values such as coverage, p-values etc.

Additional columns can also be placed as rowData columns where the original values are better
suited to information about the consensus range rather than the sample (or GRangesList element).

Only one value for each range will be retained, and these are chosen using the value provided as the

keyvals, taking either the min or max value in this column as the representative range.

Value

A RangedSummarizedExperiment

28 importPeaks

Examples

a <- GRanges("chr1:1-10")
a$feature <- "Gene”

a$p <- 0.1
b <- GRanges(c("chr1:6-15", "chr1:15"))
b$feature <- c("Gene"”, "Promoter")

b$p <- c(0.5, 0.01)
grl <- GRangesList(a = a, b = b)
grl
se <- grlToSE(
grl, assayCols = "p”, metaCols = "feature”, keyvals = "p", by = "min"
)
assay(se, "p")
rowRanges(se)

importPeaks Import peaks

Description

Import peaks in narrowPeak, broadPeak or bed format

Usage

importPeaks(
X,
type = c("narrow”, "broad”, "bed"),
blacklist,
seqinfo,
pruning.mode = c("coarse”, "error"),
sort = TRUE,
setNames = TRUE,
glueNames = "{basename(x)}",
centre = FALSE,
nameRanges = TRUE,

)
Arguments
X One or more files to be imported. All files must be of the same type, i.e. narrow
or broad
type The type of peaks to be imported
blacklist A set of ranges to be excluded
seqginfo A seqinfo object to be applied to the GRanges objects

pruning.mode How to handle conflicts if supplying a seqinfo object. Defaults to pruning.mode
= "coarse". Only "coarse" and "error" are implemented. See seqinfo.

sort logical. Should the ranges be sorted during import

setNames logical Set basename(x) as the name for each element of the GRangesList

makeConsensus 29

glueNames glue syntax for naming list elements
centre Add the estimated peak centre. Ignored unless type = "narrow"
nameRanges Place any values in the name column as range names within each file.

passed to sort

Details

Peaks are imported from narrowPeak, broadPeak or bed format as GenomicRanges objects.

If importing bed files, only the default 3-6 columns will imported.

Value

A GRangesList

Examples

fl <- system.file(
c("extdata/ER_1.narrowPeak”, "extdata/ER_2.narrowPeak"),
package = "extraChIPs"”

)
peaks <- importPeaks(f1l)
peaks
makeConsensus Make a set of consensus peaks
Description

Make a set of consensus peaks based on the number of replicates

Usage

makeConsensus (
X,

p=20,

var = NULL,

method = c("union”, "coverage"),

ignore.strand = TRUE,

simplify = FALSE,

min_width = 9,

merge_within = 1L,

30 makeConsensus

Arguments
X A GRangesList
p The minimum proportion of samples (i.e. elements of x) required for a peak to
be retained in the output. By default all merged peaks will be returned
var Additional columns in the mcols element to retain
method Either return the union of all overlapping ranges, or the regions within the

overlapping ranges which are covered by the specified proportion of replicates.
When using p = 0, both methods will return identical results

ignore.strand, simplify, ...
Passed to reduceMC or intersectMC internally

min_width Discard any regions below this width

merge_within Passed to reduce as min.gapwidth

Details

This takes a list of GRanges objects and forms a set of consensus peaks.

When using method = "union" the union ranges of all overlapping peaks will be returned, using the
minimum proportion of replicates specified. When using method = "coverage", only the regions
within each overlapping range which are ’covered’ by the minimum proportion of replicates speci-
fied are returned. This will return narrower peaks in general, although some artefactual very small
ranges may be included (e.g. 10bp). Careful setting of the min_width and merge_within parameters
may be very helpful for these instances. It is also expected that setting method = "coverage" should
return the region within each range which is more likely to contain the true binding site for the
relevant ChIP targets

Value

GRanges object with mcols containing a logical vector for every element of x, along with the column
n which adds all logical columns. These columns denote which replicates contain an overlapping
peak for each range

If any additional columns have been requested using var, these will be returned as CompressedList
objects as produced by reduceMC() or intersectMC().

See Also

reduceMC intersectMC

Examples

data("peaks")
The first three replicates are from the same treatment group
grl <- peaks[1:3]

names(grl) <- gsub("_peaks.+", "", names(grl))

makeConsensus(grl)

makeConsensus(grl, p = 2/3, var = "score")

Using method = 'coverage' finds ranges based on the intersection

makeConsensus(grl, p = 2/3, var = "score”, method = "coverage")

mapByFeature

31

mapByFeature

Map Genomic Ranges to genes using defined features

Description

Map Genomic Ranges to genes using defined regulatory features

Usage
mapByFeature(
gr,
genes,
prom,
enh,
gi,
cols = c("gene_id", "gene_name”, "symbol"),
gr2prom =
gr2enh = 0,
gr2gi = 0,
gr2gene = 1e+05,
prom2gene Q,
enh2gene = 1e+05,
gi2gene =
)
Arguments
gr GRanges object with query ranges to be mapped to genes
genes GRanges object containing genes (or any other nominal feature) to be assigned
prom GRanges object defining promoters
enh GRanges object defining Enhancers
gi Glnteractions object defining interactions. Mappings from interactions to genes
should be performed as a separate prior step.
cols Column names to be assigned as mcols in the output. Columns must be mini-
mally present in genes. If all requested columns are found in any of prom, enh
or gi, these pre-existing mappings will be preferentially used. Any columns not
found in utilised reference objects will be ignored.
gr2prom The maximum permissible distance between a query range and any ranges de-
fined as promoters
gr2enh The maximum permissible distance between a query range and any ranges de-
fined as enhancers
gr2gi The maximum permissible distance between a query range and any ranges de-
fined as Glnteraction anchors
gr2gene The maximum permissible distance between a query range and genes (for ranges
not otherwise mapped)
prom2gene The maximum permissible distance between a range provided in prom and a

gene

32 mapByFeature

enh2gene The maximum permissible distance between a range provided in enh and a gene

gi2gene The maximum permissible distance between a Glnteractions anchor (provided
in gi) and a gene

Passed to findOverlaps and overlapsAny internally

Details

This function is able to utilise feature-level information and long-range interactions to enable better
mapping of regions to genes. If provided, this essentially maps from ranges to genes using the
regulatory features as a framework. The following sequential strategy is used:

1. Ranges overlapping a promoter are assigned to that gene
2. Ranges overlapping an enhancer are assigned to all genes within a specified distance

3. Ranges overlapping a long-range interaction are assigned to all genes connected by the inter-
action

4. Ranges with no gene assignment from the previous steps are assigned to all overlapping genes
or the nearest gene within a specified distance

If information is missing for one of these steps, the algorithm will simply proceed to the next step.
If no promoter, enhancer or interaction data is provided, all ranges will be simply mapped by step
4. Ranges can be mapped by any or all of the first three steps, but step 4 is mutually exclusive with
the first 3 steps.

Distances between each set of features and the query range can be individually specified by modi-
fying the gr2prom, gr2enh, gr2gi or gr2gene parameters. Distances between features and genes
can also be set using the parameters prom2gene, enh2gene and gi2gene.

Additionally, if previously defined mappings are included with any of the prom, enh or gi objects,
this will be used in preference to any obtained from the genes object.

Value

A GRanges object with added mcols as specified

Examples

Define some genes

genes <- GRanges(c("chr1:2-10:x", "chr1:25-30:-", "chr1:31-40:+"))
genes$gene_id <- paste@("gene", seq_along(genes))
genes

Add a promoter for each gene

prom <- promoters(genes, upstream = 1, downstream = 1)
prom

Some ranges to map

gr <- GRanges(paste@("chri1:", seq(@, 60, by = 15)))

gr

Map so that any gene within 25bp of the range is assigned
mapByFeature(gr, genes, gr2gene = 25)

Now use promoters to be more accurate in the gene assignment

Given that the first range overlaps the promoter of genel, this is a
more targetted approach. Similarly for the third range
mapByFeature(gr, genes, prom, gr2gene = 25)

mapGrlCols 33

mapGrlCols Collapse a GRangesList adding multiple columns from each element

Description

Make consensus peaks and add individual columns from each original GRangesList element

Usage
mapGrlCols(
X’
var = NULL,

collapse = NULL,
collapse_sep = "; ",

name_sep = "_",
include = FALSE,

)
Arguments
X GRangesList
var Column(s) to map onto the set of consensus peaks
collapse Columns specified here will be simplified into a single column. Should only be

character or factor columns
collapse_sep String to separate values when collapsing columns
name_sep String to separate values when adding column names
include logical(1) Include the original ranges as character columns

Passed to makeConsensus

Details

Starting with a GRangesList, make a single GRanges object with select columns from each element
added to the new object

Value

GRanges object with a set of consensus ranges across all list elements and values from each element
mapped to these consensus ranges.

If requested (include = TRUE) the original ranges are returned as character columns, as there will
be multiple NA values in each.

Examples

a <- GRanges(paste@("chri1:", seq(1, 61, by = 20)))
width(a) <- 5

a$logFC <- rnorm(length(a))

a_g <- as.list(paste("Gene", seqg_along(a)))
a_gl[11] <- c("Gene @", a_g[[11])

a$genes <- as(a_g, "CompressedList")

34 mergeByCol

b <- GRanges("chr1:61-70")
b$logFC <- rnorm(1)
b$genes <- as(list("Gene 5"), "CompressedList")

grl <- GRangesList(A = a, B = b)
mapGrlCols(grl, var = "logFC")

This forms a union of overlapping rangesby default
Pass methods to makeConsensus() to change to regions with coverage == 2
mapGrlCols(grl, var = "logFC", method = "coverage”, p = 1)

Columns can be collapsed to merge into a single column
mapGrlCols(grl, var = "logFC", collapse = "genes")

Original ranges can also be included
mapGrlCols(grl, collapse = "genes"”, include = TRUE)

mergeByCol Merge sliding windows using a specified column

Description

Merge sliding windows using a specified column

Usage

mergeByCol(x, ...)

S4 method for signature 'GenomicRanges'

mergeByCol(
X,
df = NULL,
col,
by = c("max", "median"”, "mean"”, "min"),
logfc = "logFC",
pval = "P",
inc_cols,

p_adj_method = "fdr",
merge_within = 1L,
ignore_strand = TRUE,
min_win = 1,

S4 method for signature 'RangedSummarizedExperiment'
mergeByCol(

X,

df = NULL,

col,

mergeByCol 35

by = c("max", "median”, "mean"”, "min"),
logfc = "logFC",

pval = "P",

inc_cols,

p_adj_method = "fdr",

merge_within = 1L,

ignore_strand = FALSE,

Arguments

X A GenomicRanges or SummarizedExperiment object
Not used

df A data.frame-like object containing the columns of interest. If not provided, any
columns in the mcols() slot will be used.

col The column to select as representative of the merged ranges

by The method for selecting representative values

logfc Column containing logFC values

pval Column containing p-values

inc_cols Any additional columns to return. Output will always include columns specified

in the arguments col, logfc and pval. Note that values from any additional
columns will correspond to the selected range returned in keyval_range

p_adj_method Any of p.adjust.methods
merge_within Merge any ranges within this distance
ignore_strand Passed internally to reduce and findOverlaps

min_win Only keep merged windows derived from at least this number

Details

This merges sliding windows using the values in a given column to select representative values
for the subsequent merged windows. Values can be chosen from the specified column using any
of min(), max(), mean() or median(), although max() is strongly recommended when specifying
values like logCPM. Once a representative range is selected using the specified column, values
from columns specified using inc_cols are also returned. In addition to these columns, the range
from the representative window is returned in the mcols element as a GRanges object in the column
keyval_range.

Merging windows using either the logFC or p-value columns is not implemented.

If adjusted p-values are requested an additional column names the same as the initial p-value, but
tagged with the adjustment method, will be added. In addition, using the p-value from the selected
window, the number of windows with lower p-values are counted by direction and returned in the
final object. The selected window will always be counted as up/down regardless of significance as
the p-value for this column is taken as the threshold. This is a not dissimilar approach to cluster-
direction.

If called on a SummarizedExperiment object, the function will be applied to the rowRanges element.

Value

A Genomic Ranges object

36 mergeByHMP

Examples

x <- GRanges(c("chr1:1-10", "chr1:6-15", "chr1:51-60"))

set.seed(1001)

df <- DataFrame(logFC = rnorm(3), logCPM = rnorm(3,8), p = rexp(3, 10))
mergeByCol(x, df, col = "logCPM", pval = "p")

mcols(x) <- df

X

mergeByCol(x, col = "logCPM", pval = "p")

mergeByHMP Merge Sliding Windows using the Harmonic Mean P

Description

Merge overlapping windows using harmonic mean p-values from significance testing

Usage

mergeByHMP(x, ...)

S4 method for signature 'GenomicRanges'
mergeByHMP (
X,
df = NULL,
w = NULL,
logfc = "logFC",
pval = "P",
cpm = "logCPM",
inc_cols = NULL,
p_adj_method = "fdr",
merge_within = 1L,
ignore_strand = TRUE,
min_win = 1,
keyval = c("min”, "merged"),
hm_pre = "hm",

)

S4 method for signature 'RangedSummarizedExperiment'
mergeByHMP (
X,
df = NULL,
w = NULL,
logfc = "logFC",
pval = "P",
cpm = "logCPM",
inc_cols = NULL,
p_adj_method = "fdr",
merge_within = 1L,
ignore_strand = FALSE,

mergeByHMP 37

hm_pre = "hm",
)
Arguments

X GenomicRanges object
Not used

df data.frame with results of differential binding analysis performed using a sliding
window strategy. If not provided, the columns in the mcols() element of x will
be used

w vector of weights to applied when calculating harmonic mean p-values

logfc, pval, cpm Column names for the values holding window specific estimates of change in
binding (logfc), overall signal intensity (cpm) and the significance from statisti-
cal testing (pval).

inc_cols (Optional) Character vector of any additional columns in df to return. Values
will correspond to the range in the keyval_range column

p_adj_method One of p.adjust.methods or "fwer". If "fwer" is specified the adjusted harmonic-
mean p-value will be returned in a form which strictly controls the experiment-
wide FWER. Please see vignette("harmonicmeanp") for more details

merge_within Merge any non-overlapping windows within this distance
ignore_strand Passed internally to reduce and findOverlaps
min_win Only keep merged windows derived from at least this number

keyval Return the key-value range as the window associated with the minimum p-value,
or by merging the ranges from all windows with raw p-values below the merged
harmonic-mean p-value

hm_pre Prefix to add to the beginning of all HMP-derived columns

Details

When using sliding windows to test for differential signal, overlapping windows can be merged
based on the significance of results. mergeByHMP () merges overlapping windows using the asymp-
totically exact harmonic mean p-value p.hmp from the individual, window-level tests. This tests
the Null Hypothesis that there is no significance amongst the initial set of p-values, and returns a
summarised value which controls the FDR within a set of tests (Wilson, PNAS, 2019). Multilevel
testing across the set of results is currently implemented using p_adj_method = "fwer"

Given that the harmonic mean p-value is calculated from the inverse p-values, these are used to
provide a weighted average of expression and logFC values in the returned object. Any weights
provided in w are ignored for these values as they are simple representative estimates. The repre-
sentative range returned in keyval_range corresponds to the window with the lowest p-value.

The total number of windows is also returned in the final object, with the summarised values n_up
and n_down indicating the number of windows with raw p-values below the calculated harmonic
mean p-value, and with the corresponding direction of change.

The column containing the harmonic mean p-values is returned as hmp’. An additional column
with adjusted hmp-values is returned with the suffix ’_*’ added where the p-value adjustment
method is added after the underscore.

38

Value

mergeBySig

A GenomicRanges object with merged ranges from the original object along with summarised or
representative values from the relevant columns. The range corresponding to a representative values
is also returned as described above

Examples

X <- GRanges(c("chr1:1-10", "chr1:6-15", "chr1:51-60"))
set.seed(1001)

df <- DataFrame(logFC = rnorm(3), logCPM = rnorm(3,8), p = rexp(3, 10))

mergeByHMP (x, df, pval = "p")
mcols(x) <- df

X

mergeByHMP(x, pval = "p"”, p_adj_method = "fwer")

mergeBySig

Merge overlapping ranges based on p-values

Description

Merge overlapping windows using p-values from significance testing

Usage

mergeBySig(x, ...)

S4 method for signature 'GenomicRanges'

mergeBySig(
X,
df = NULL,
logfc = "logFC",
pval = "P",
cpm = "logCPM",
inc_cols,
p_adj_method = "fdr",
alpha = 0.05,
method = c(”"combine”, "best”, "minimal”),

)

merge_within = 1L,
ignore_strand = TRUE,
min_win = 1,

S4 method for signature 'RangedSummarizedExperiment'
mergeBySig(

X)

df = NULL,

logfc = "logFC",
pval = "P",

cpm = "logCPM",

mergeBySig
inc_cols,
p_adj_method = "fdr",
alpha = 0.05,
method = c("combine”, "best”, "minimal”),

merge_within = 1L,
ignore_strand = TRUE,

39

Arguments

X

df

logfc, pval, cpm

inc_cols
p_adj_method
alpha

method

merge_within
ignore_strand

min_win

Details

GenomicRanges object
Passed to all csaw functions being wrapped

data.frame with results of differential binding analysis performed using a sliding
window strategy. If not provided, the columns in the mcols() element of x will
be used

Column names for the values holding window specific estimates of change in
binding (logfc), overall signal intensity (cpm) and the significance from statisti-
cal testing (pval)

(Optional) Character vector of any additional columns in df to return
One of p.adjust.methods
Significance threshold to apply during internal calculations

Shorthand versions for which csaw strategy to use for merging windows. Choose
from ’combine’ (combineTests), 'best’ (getBestTest) or “minimal’ (minimal-
Tests).

Merge any non-overlapping windows within this distance
Passed internally to reduce and findOverlaps

Only keep merged windows derived from at least this number

When using sliding windows to test for differential signal, overlapping windows can be merged
based on the significance of results. mergeBySig() is a wrapper to the functions combineTests,
getBestTest and minimalTests, using each function’s approach to finding a representative window.
The returned object differs from those returned by the original functions in that the description of
windows as "up’, ’"down’ or mixed is omitted and the genomic range corresponding to the represen-
tative window is also returned. Column names also correspond to those in the original object.

An additional column with adjusted p-values is returned. This column retains the same name as
the original but with the suffix °_*’ added where the p-value adjustment method is added after the

underscore.

Value

A GenomicRanges object with overlapping ranges from the original object merged and representa-
tive values returned. The range corresponding to the representative values is also returned

40 partitionRanges

Examples

x <- GRanges(c("chr1:1-10", "chr1:6-15", "chr1:51-60"))

set.seed(1001)

df <- DataFrame(logFC = rnorm(3), logCPM = rnorm(3,8), p = rexp(3, 10))
mcols(x) <- df

mergeBySig(x, pval = "p”, method = "combine”)

mergeBySig(x, pval = "p”, method = "best")

mergeBySig(x, pval = "p", method = "min”

partitionRanges Partition a set of Genomic Ranges

Description

Partition a set of Genomic Ranges by another

Usage

partitionRanges(x, vy, ...)

S4 method for signature 'GRanges,GRanges'
partitionRanges(

X)

Y,

y_as_both = TRUE,

ignore.strand = FALSE,

simplify = TRUE,

suffix = C(”‘X"’ "'y”)’
)
Arguments

X,y GenomicRanges objects
Not used

y_as_both logical(1) If there are any unstranded regions in y, should these be assigned
to both strands. If TRUE unstranded regions can be used to partition stranded
regions

ignore.strand If set to TRUE, then the strand of x and y is set to "*" prior to any computation.

simplify Pass to chopMC and simplify mcols in the output
suffix Added to any shared column names in the provided objects
Details

The query set of ranges can be broken in regions which strictly overlap a second set of ranges. The
complete set of mcols from both initial objects will included in the set of partitioned ranges

Value

A GRanges object

plotAssayDensities

Examples

x <- GRanges(c("chr1:1-10", "chr1:6-15"))

x$id <- paste@("range”,
X

seq_along(x))

y <- GRanges(c("chri1:2-5", "chr1:6-12"))

y$id <- paste@("range”,
y
partitionRanges(x, y)

seq_along(y))

41

plotAssayDensities

Plot Densities for any assay within a SummarizedExperiment

Description

Plot Densities for any assay within a SummarizedExperiment

Usage

plotAssayDensities(x,

)

S4 method for signature 'SummarizedExperiment’

plotAssayDensities(
X,
assay = "counts”,
group = NULL,
colour = NULL,
fill = NULL,

linetype = NULL,
linewidth = NULL,
alpha = NULL,
trans = NULL,
n_max = Inf,

)
Arguments
X A SummarizedExperiment object
Passed to geom_density
assay An assay within x
group Used by geom_line. Defaults to the column names but treatment groups can also

be specified to summarise within groups

colour, fill, alpha

Optional column in colData to set the respective aesthetics. Can also be any
valid colour specification as a fixed value or a fixed alpha value

linetype, linewidth

Any optional column in colData used to determine linetype or linewidth. Can
also be fixed values

trans character(1). Any transformative function to be applied to the data before cal-
culating the density, e.g. trans = "log2"

n_max Maximum number of points to use when calculating densities

42 plotAssayHeatmap

Details

Uses ggplot2 to create a density plot for all samples within the selected assay

Value

A ggplot2 object. Scales and labels can be added using conventional ggplot2 syntax.

Examples

data("se")
se$treatment <- c("E2", "E2", "E2", "E2DHT", "E2DHT”, "E2DHT")
Plot individual samples

plotAssayDensities(se, colour = "treatment”)
Plot combined within treatment groups
plotAssayDensities(se, colour = "treatment”, group = "treatment"”)
Use a data transformation
plotAssayDensities(se, trans = "loglp", colour = "treat")
plotAssayHeatmap Draw a heatmap from a single SummarizedExperiment assay
Description

Use ggplot2 to create a heatmap from a SummarizedExperiment object

Usage

plotAssayHeatmap(x, ...)

S4 method for signature 'SummarizedExperiment'’

plotAssayHeatmap(
X,
assay = "counts”,
by_x = "colnames"”,

facet_x = NULL,
ysideline = FALSE,
yside_col = NULL,
trans = NULL,
n_max = 100,

)
Arguments
X a SummarizedExperiment object
Not used
assay the assay to take values from
by_x the parameter to use for the x-axis. Will default to column names but should be

one value per sample, such as an additional column containing shortened sample
labels.

plotAssayPCA 43

facet_x column from colData(x) which will be used to group samples along the x-axis

ysideline logical(1) Draw a line across the side of the y-axis summarising values for each
range

yside_col column from colData(x) to group and colour the lines drawn on the side of the
y-axis. If grouping by treatment or replicate, the mean values will be shown

trans character(1). Any transformative function to be applied to the data before cal-
culating the density, e.g. trans = "log2"

n_max Maximum number of ranges to draw

Details

Draw a heatmap containing selected values from an assay within a SummarizedExperiment object.
Columns within the colData element of the object can be used to facet along the x-axis (e.g. treat-
ment groups). The maximum number of points is set to be 100, although this can be changed easily
should the plot require more ranges to be drawn.

The averages across any grouping of samples can be drawn as a line plot on the side of the y-axis
by setting ysideline = TRUE, with groups as specified in yside_col. This feature is added for the
specific context of neighbouring or overlapping ranges, and as such may be less informative in any
other scenario

The returned object is a ggplot2 object so scales can easily be added after heatmap creation using
scale_fill_* for the main heatmap, and scale_colour_* for any groupings along the y-axis

Value

A ggplot2 object. Scales and labels can be added using conventional ggplot2 syntax.

Examples

nrows <- 10; ncols <- 4
counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows)
colnames(counts) <- paste@("Sample_", seqg_len(ncols))
df <- DataFrame(treat = c("A", "A", "B", "B"))
se <- SummarizedExperiment(
assays = SimpleList(counts = counts),
colData = df
)
rowRanges(se) <- GRanges(paste@("chri1:", seq_len(nrows)))
plotAssayHeatmap(se, facet_x = "treat")

n

plotAssayPCA Plot PCA For any assay within a SummarizedExperiment

Description

Plot PCA for any assay within a SummarizedExperiment object

44

Usage

plotAssayPCA(x,

plotAssayPCA

L)

S4 method for signature 'SummarizedExperiment'

plotAssayPCA(
X,
assay = "counts”,
colour = NULL,
shape = NULL,
size = NULL,
fill = NULL,
label = "colnames”,
show_points = TRUE,
pc_x =1,
pc_y = 2,
trans = NULL,

n_max = Inf,

tol = sqrt(.Machine$double.eps),

rank = NULL,

Arguments

X

assay

colour, size

shape, fill

label

show_points

pc_x

pc_y

trans

n_max

tol, rank

Details

An object containing an assay slot
Passed to geom_text and geom_point
The assay to perform PCA on

The column names to be used for colours and point/label size. Can be fixed
values (e.g. size = 3) and can also be a manipulation of a column, e.g. colour =
log10(totals)

The column name(s) to be used for determining the shape or fill colour of plotted
points. Can also be a fixed value

The column name to be used for labels. Will default to the column names of the
SummarizedExperiment

logical(1). Display the points. If TRUE any labels will repel. If FALSE, labels will
appear at the exact points

numeric(1) The PC to plot on the x-axis
numeric(1) The PC to plot on the y-axis

character(1). Any transformative function to be applied to the data before per-
forming the PCA, e.g. trans = "log2"

Subsample the data to this many points before performing PCA

Passed to prcomp

Uses ggplot2 to create a PCA plot for the selected assay. Any numerical transformation prior to
performing the PCA can be specified using the trans argument

plotAssayRle

Value

A ggplot2 object

Examples

data("se")

se$treatment <- c("E2", "E2", "E2", "E2DHT", "E2DHT", "E2DHT")

se$sample <- colnames(se)

plotAssayPCA(se, trans = "loglp"”, colour = "treatment”, label = "sample")

45

plotAssayPCA(
se, trans = "loglp”, colour = "treatment”, label = "sample”,
size = logl@(totals), shape = 17
)
plotAssayPCA(
se, trans = "loglp”, colour = "treatment”, label = "sample”,
show_points = FALSE
)
plotAssayRle Plot RLE for a given assay within a SummarizedExperiment
Description

Plot RLE for a given assay within a SummarizedExperiment

Usage
plotAssayRle(x, ...)

S4 method for signature 'SummarizedExperiment'’

plotAssayRle(
X ’
assay = "counts”,
colour = NULL,
fill = NULL,
rle_group = NULL,
by_x = "colnames”,
n_max = Inf,
trans = NULL,
)
Arguments
X A SummarizedExperiment object
Passed to geom_boxplot
assay The assay to plot
colour Column from colData(x) to outline the boxplots

fill Column from colData(x) to fill the boxplots

46

rle_group Column from colData(x) to calculate RLE within groups Commonly an alter-
native sample label.

by_x Boxplots will be drawn by this grouping variable from colData(x). If not spec-
ified, the default values will be colnames(x)

n_max Maximum number of points to plot

trans character(1). Numerical transformation to apply to the data prior to RLE calcu-
lation

Details

Uses ggplot2 to create an RLE plot for the selected assay. Any numerical transformation prior to

performing the RLE can be specified using the trans argument

Value

A ggplot2 object

Examples

data("se")

se$treatment <- c("E2", "E2", "E2", "E2DHT", "E2DHT", "E2DHT")

se$sample <- colnames(se)

A conventional RLE Plot using all samples

plotAssayRle(se, trans = "loglp"”, fill = "treatment”)

Calculate RLE within groups

plotAssayRle(se, trans = "loglp”, fill = "treatment”, rle_group = "treatment")
Or show groups combined

plotAssayRle(se, trans = "loglp”, fill = "treatment”, by_x = "treatment"”)

plotGrlCol Draw a plot from a GRangesList column

Description

Draw a plot from a GRangesList column using ggplot2

Usage

plotGrlCol(
X,
var = "width",
geom = c("boxplot”, "violin"”, "point"”, "jitter"),
.id = "sample”,
df,
fill,
colour,
q=20.1,
q_size = 3.5,
qline_type = 2,
gline_col = "blue”,

plotGrICol 47

total = "{comma(n)}",

total_geom = c("label”, "text"”, "none"),
total_pos = c("median”, "top"”, "bottom"),
total_size = 3.5,

total_alpha = 1,

total_adj = 0.025,

L

digits = 0

)
Arguments

X A GRangesList

var The variable to plot. Either a column in the mcols element or width. Can be
quoted or unquoted

geom Choose between different geoms, or even provide a geom_*() function

.id The column name to place the element names. Passed internally to the same
argument in bind_rows

df Optional data.frame with columns to be passed to the colour or fill parameters.
Must contain a column with the same name as the value passed to the . id argu-
ment.

fill, colour Optional column names found in the df. Can be quoted or unquoted

q The overall percentile to be drawn as a labelled, horizontal line. Set q = 0 to
hide this line

g_size Text size of percentile label

gline_type, gline_col
Linetype and colour arguments for the horizontal line showing the specified per-

centile(s)
total Glue syntax for totals, representing the length of each GRangesList element
total_geom Passed to annotate. Set to none to hide totals
total_pos Position for placing totals

total_size, total_alpha
Size and transparency of totals

total_adj Adjustment for labels
Passed to the geom if selecting via character string. Ignored otherwise
digits Number of decimal places for the horizontal line label
Details

Using a common column or the width of the ranges, produces a boxplot or violinplot from each
element of the provided GRangesList. The names of the GRangesList will be passed to the x-axis
using the .id argument. A data frame containing annotations corresponding to each element can
be supplied, ensuring that the column associated with each elements is the name passed to the . id
argument.

If qis > 0, a horizontal line will be draw corresponding to this percentile across the complete dataset,
with parameters for this line able to be set using the gline_* arguments. The digits argument controls
how many decimal points will be shown for the associated label.

The total length of each element will be added by default as a total, and is able to be placed across
the median values, or at the top and bottom extremes of the plot.

48 plotHFGC
Value
A ggplot object
Examples
Load some peaks
data('peaks')
names(peaks) <- gsub("_peaks.+", "", names(peaks))
The default boxplot
plotGrlCol (peaks)
A customised violin plot
df <- data.frame(sample = names(peaks), treat = rep(c("A", "B"), each = 3))
plotGrlCol(
peaks, geom = "violin”, total_pos = "bottom”, total_adj = 0.05,
df = df, fill = "treat"”,
draw_quantiles = 0.5, trim = FALSE, width = 0.7, alpha = 0.7
) +
scale_y_loglo()
plotGrlCol(
peaks, var = score, geom = "jitter", total_pos = "bottom”, total_adj = 0.05,
df = df, colour = treat, width = 0.2, height = 0
)
plotGrlCol(
peaks, geom = geom_boxplot(colour = "grey70"), df = df, fill = treat,
total_pos = "bottom”, total_adj = 0.05,
)+
scale_y_logl0()
plotHFGC Plot a Genomic Region showing HiC, Features, Genes and Coverage

Description

Plot a region with showing HiC, Features, Genes and Coverage

Usage

plotHFGC(
gr,
hic,
features,
genes,
coverage,
annotation,
zoom = 1,
shift = o,
max = le+07,
axistrack = TRUE,

plotHFGC

cytobands,

covtype

49

c("1", "heatmap"),

linecol = c(),
gradient = grDevices::hcl.colors(101, "viridis"),

hiccol = list(anchors = "lightblue”, interactions = "red"),
featcol,

genecol,

annotcol,

highlight = "blue”,

hicsize

featsize =

genesize =

covsize =

annotsize = 0.5,

hicname = "HiC",

featname = "Features”,
featstack = c(”full”, "hide", "dense”, "squish", "pack"),
collapseTranscripts = "auto”,
maxTrans 12,

ylim = NULL,

fontsize 12,

cex.title = 0.8,

rotation.title = 0,

col.title = "white”,
background.title = "lightgray”,
title.width = 1.5

Arguments

gr
hic

features

genes

coverage

annotation

The range(s) of interest. Must be on a single chromosome

Any HiC interactions to be included as a GenomicInteractions object. If not
supplied, no HiC track will be drawn.

A named GRangesList or list of GRangesList objects. Each GRangesList should
contain features in each element which will drawn on the same track. If provid-
ing a list, each GRangesList within the list will drawn on a separate track. If
this argument is not specified, no feature track will be drawn. Features will be
drawn with colours provided in featcol.

A GRanges object with exon structure for each transcript/gene. If not included,
no track will be drawn for gene/transcript structure. The expected mcols in this
object are type, gene, exon transcript and symbol. See data(ex_trans) for an
example.

A named list of BigWigFileList objects containing the primary tracks to show
coverage for. Each list element will be drawn on a separate track, with elements
within each BigWigFileList shown on the same track. List names will become
track names. Alternatively, a single BigWigFileList will plot all individual files
on separate tracks. If not included, no coverage tracks will be drawn.

Annotations for the coverage track(s). A single GRangesList if coverage is a
BigWigListList. If coverage is supplied as a list of BigWigFileLists, a named
list of GRangesList objects for each coverage track being annotatated. Names
must match those given for coverage.

50

zoom
shift

max

axistrack

cytobands

covtype

linecol

gradient

hiccol

featcol

genecol
annotcol
highlight

plotHFGC

Multiplicative factor for zooming in and out

Shift the plot. Applied after zooming

The maximum width of the plotting region. Given that the width of the final
plotting window will be determined by any HiC interactions, this argument ex-
cludes any interactions beyond this distance. Plotting can be somewhat slow
if any long range interactions are included. Ignored if no HiC interactions are
supplied.

logical. Add an AxisTrack()

Cytogenetic bands to be displayed on each chromosome. See data(’ grch37.cytobands’)

for the correct format. Only drawn if a cytobands data.frame is provided.

The plot type for coverage. Currently only lines ("1") and heatmaps ("heatmap")
are supported

If passing a BigWigFileList to coverage, a vector of colours. If passing a list of
BigWigFileList objects to coverage, a list of colours with structure that matches
the object being passed to coverage, i.e. a named list of the same length, with
elements who’s length matches each BigWigFileList. Only used if covtype =
Hlll.

Colour gradient for heatmaps

list with names "anchors” and "interactions”. Colours are passed to these
elements

Named vector (or list) of colours for each feature. Must be provided if drawing
features

Named vector (or list) of colours for each gene category
Colours matching the coverage annotations

Outline colour for the highlight track. Setting this to NULL will remove the high-
light

hicsize, featsize, genesize, covsize, annotsize

Relative sizes for each track (hic, features, genes, coverage & annotation)

hicname, featname

Names displayed in the LHS panel

featstack Stacking for the fature track

collapseTranscripts
Passed to GeneRegionTrack for the genes track. Defaults to "auto” for au-
tomatic setting. If the number of transcripts to be plotted is > maxtrans, the
argument will be automatically set to "meta”, otherwise this will be passed as
FALSE which will show all transcripts.

maxTrans Only used if collapseTranscripts is set to "auto".

ylim If a numeric vector, this will be passed to all coverage tracks. Alternatively, a
named list of y-limits for each coverage track with names that match those in
each element of the coverage list.
Passed to DataTrack for the coverage tracks only. Useful arguments may be
things like legend

fontsize Applied across all tracks

cex.title Passed to all tracks

rotation.title
col.title

Passed to all tracks

Passed to all tracks

plotHFGC 51

background.title
Passed to all tracks

title.width Expansion factor passed to plotTracks, and used to widen the panels on the LHS
of all tracks. Can have unpredictable effects on the font size of y-axis limits due
to the algorithm applied by plotTracks

Details

Convenience function for plotting a common set of tracks. All tracks are optional. For more fine
control, users are advised to simply use Gviz directly.

The primary tracks defined in this function are H (HiC), F (features), G (genes), and C (coverage).
Axis and Ideogram tracks are an additional part of this visualisation, with the Ideogram also being
optional

Use all tracks specific to this dataset to generate a simple visualisation. In descending order the
tracks displayed will be:

1. HiC Interactions (if supplied)
2. Regulatory features
3. Genes/genes

4. Coverage tracks as supplied

All tracks are optional and will simply be omitted if no data is supplied. See individual sections
below for a more detailed explanation of each track

If wanting a single track of genes, simply pass a GRanges object in the format specified for a
GeneRegionTrack. Passing a GRangesList with the same format will yield an individual track for
each list element, with each track shown by default as a separate colour. This can be used for
showing Up/Down-regulated genes, or Detected/Undetected genes.

If passing a BigWigFileList for the coverage track, each file within the object will be drawn on
a separate track. If specified, the same y-limits will be applied to each track If passing a list of
BigWigFileList objects, each list element will be drawn as a single track with the individual files
within each BigWigFileList overlaid within each track.

Cytogenetic band information must be in the structure required by IdeogramTrack, with data for
both GRCh37 and GRCh38 provided in this package (grch37.cytobands, grch38.cytobands).

A highlight overlay over the GRanges provided as the gr argument will be added if a colour is
provided. If set to NULL, no highlight will be added.

Value

A Gviz object

Displaying HiC Interactions

The available arguments for displaying HiC Interactions are defined below. If hic is supplied, a
single InteractionTrack will be added displaying all interactions with an anchor within the range
specified by gr. Only interactions with an anchor explicitly overlapping gr will be shown. If no
interactions are found within gr, the track will not be displayed. The plotting range will expand to
incorporate these interactions, with the paramater max providing an upper limit on the displayed
range.

hic This is the GInteractions object required for inclusion of a HiC track in the final output. Will
be ignored if not supplied

52

plotHFGC

hiccol Determines the colours used for display of anchors and interactions
hicsize Relative size of the track compared to others
hicname The name to display on the LHS panel

max The maximum width of the plotted region. If multiple long-range interactions are identified,
this provides an upper limit for the display. This defaults to 10Mb.

Displaying Features

If wanting to add an AnnotationTrack with regions defined as ’features’, the following arguments
are highly relevant. All are ignored if features is not provided.

features A named GRangeslList. Each element will be considered as a separate feature and drawn
as a block in a distinct colour. Any mcols data will be ignored.

featcol A named vector (or list) providing a colour for each element of features
featname The name to display on the LHS panel
featstack Stacking to be applied to all supplied features

featsize Relative size of the track compared to others

Displaying Genes And Transcripts

To display genes or transcripts, simply provide a single GRanges object if you wish to display all
genes on a single track. The mcols element of this object should contain the columns feature,
gene, exon, transcript and symbol as seen on the GeneRegionTrack help page.

Alternatively, a GRangesList can be provided to display genes on separate tracks based on their
category. This can be useful for separating and colouring Up/Down regulated genes in a precise
way. All elements should be as described above. Again, all parameters associated with this track-
set will be ignored of no object is supplied to this argument.

genes A GRanges or GRangesList object as described above

genecol A single colour if supplying a GRanges object, or a named vector/list of colours matching
the GRangesList

genesize Relative size of the track compared to others

collapseTranscripts Passed to all tracks. See the GeneRegionTrack section in settings for detail
regarding possible arguments. If genes is a GRangesList, can be a named vector/list with
names matching the names of the genes object.

Displaying Coverage Tracks

This section contains the most flexibility and can take two types of input. The first option is a
BigWigFilelList, which will lead to each BigWig file being plotted on it’s own track. An alternative
isalistof BigWigFilelList objects. In this case, each list element will be plotted as a separate track,
with all individual BigWig files within each list element overlaid within the relevant track.

In addition to the coverage tracks, annotations can be added to each BigWigFilelList in the form of
coloured ranges, indicating anything of the users choice. Common usage may be to indicate regions
with binding of a ChIP target is found to be detected, unchanged, gained or lost.

coverage ABigWigFileListorlistofBigWigFileList objects. A singleBigWigFileList will
be displayed with each individual file on a separate track with independent y-axes. Each ele-
ment of the BigWigFilelList must be named and these names will be displayed on the LHS

plotHFGC 53

panels A list of BigWigFilelList objects will be displayed with each list element as a sepa-
rate track, with any BigWig files overlaid using the same y-axis. The list must be named with
these names displayed on the LHS panel. Each internal BigWig within a BigWigFilelList
must also be named.

covtype Currently only lines (covtype = "1") and heatmaps (covtype = "heatmap”) are supported.
Colours can be specified using the arguments below

linecol Can be a single colour applied to all tracks, or a named vector (or list) of colours. If
coverage is a single BigWigFilelList, these names should match the names of this object
exactly. If coverage is a list of BigWigFilelList objects, linecol should be a list with
matching names. Each element of this list should also be a named vector with names that
exactly match those of each corresponding BigWigFilelist.

gradient A colour gradient applied to all heatmap tracks. No specific structure is required beyond
a vector of colours.

covsize Relative size of the tracks compared to others

ylim Can be a vector of length 2 applied to all coverage tracks. Alternatively, if passing a list
of BigWigFlielList objects to the coverage argument, this can be a named list of numeric
vectors with names matching coverage

annotation Each BigWigFilelist needs annotations to be passed to this argument as a named
GRangesList, with names being used to associate unique colours with that set of ranges.
If coverage is a BigWigFilelList a simple GRangesList would be supplied and a single
“annotation’ track will appear at the top of the set of coverage tracks. If coverage is a 1ist,
then a named list of GRangesList objects should be supplied, with each being displayed
above the corresponding track from the coverage object.

annotcol A vector of colours corresponding to all names within all GRangesList elements supplied
as annotation. It is assumed that the same colour scheme will be applied to all annotation
tracks and, as such, the colours should not be provided as a list which matches the coverage
tracks. Instead, every named element anywhere in the annotation GRanges, across all of the
tracks must be included as a colour

annotsize Relative size of the tracks compared to others

Examples

library(rtracklayer)
Make sure we have the cytobands active
data(grch37.cytobands)

Prepare the HiC, promoter & transcript information
data(ex_hic, ex_trans, ex_prom)

ex_features <- GRangesList(Promoter = ex_prom)
featcol <- c(Promoter = "red")

Prepare the coverage
fl <- system.file(
"extdata”, "bigwig"”, c("ex1.bw"”, "ex2.bw"), package = "extraChIPs"

)
bwfl <- BigWigFileList(f1l)
names(bwfl) <- c("ex1", "ex2")

bw_col <- c(ex1 = "#4B0055", ex2 = "#007094")

Define the plotting range
gr <- GRanges("chr10:103862000-103900000")

54 plotOverlaps

Now create the basic plot

plotHFGC(
gr,
hic = ex_hic, features = ex_features, genes = ex_trans, coverage = bwfl,
featcol = featcol, linecol = bw_col, cytobands = grch37.cytobands

)

plotHFGC(
gr,
hic = ex_hic, features = ex_features, genes = ex_trans, coverage = bwfl,
featcol = featcol, linecol = bw_col, cytobands = grch37.cytobands,
maxTrans = 1

plotOverlaps Plot Overlaps Between List Elements

Description

Plot Overlaps between list elements as an upset or Venn diagram

Usage

plotOverlaps(x, ...)

S4 method for signature 'GRangeslList'

plotOverlaps(
X’
type = c("auto”, "venn", "upset"),
var = NULL,
f = c("mean”, "median”, "max", "min", "sd"),

merge_within = 1L,
ignore.strand = TRUE,
set_col = NULL,
label_size = 3.5,
hj_sets = 1.15,
exp_sets = 0.2
vj_intersect = -0.5,
exp_intersect = 0.1

’

)
S4 method for signature 'list'
plotOverlaps(

X,

type = c("auto”, "venn", "upset”),

set_col = NULL,

label_size = 3.5,
hj_sets = 1.15,

plotOverlaps 55

exp_sets = 0.2,
vj_intersect =

exp_intersect =

)

Arguments

X

type

var

£
merge_within
ignore.strand
set_col

label_size

hj_sets
exp_sets
vj_intersect

exp_intersect

Details

-0.5,
0.1

GRangesList of S3 list able to be coerced to character vectors

Passed to draw.pairwise.venn (or draw.single/triple.venn) for Venn Dia-
grams, and to simpleUpSet for UpSet plots

The type of plot to be produced

Column to summarised as a boxplot in an upper panel (UpSet plot only)
Summarisation function. Must return a single value from any numeric vector
Passed to makeConsensus

Passed to reduce

Colours to be assigned to each set

Text size for set and intersection labels. Passed internally to geom_text (size =
label_size)

Horizontal adjustment of set size labels
X-axis expansion for set size panel
Vertical adjustment of intersection size labels

Y-axis expansion for intersections size panel

This function should give the capability to show overlaps for any number of replicates or groups, or
a list of items such as gene names. For n = 2, a scaled Venn Diagram will be produced, however no
scaling is implemented for n =3

UpSet plots are possible for any lists with length > 1, and are the only implemented possibility for

lists > 3.

If the input is a GRangesList an additional boxplot can be requested using any numeric column
within the existing mcols() element. Values will be summarised across all elements using the
requested function and the boxplot will be included as an upper panel above the intersections

Value

Either a VennDiagram (i.e. grid) object, or a ComplexUpset plot

Examples

Examples using a list of character vectors

ex <- list(

x = letters[1:5], y

)

plotOverlaps(ex, type
plotOverlaps(ex, type =

letters[c(6:15, 26)], z = letters[c(2, 10:25)]

"upset™)

"venn", set_col = 1:3, alpha = 0.3)

plotOverlaps(ex[1:2])

GRangesList object

upper panel

will produce a boxplot of summarised values in the

56 plotPairwise

data("peaks”)

grl <- peaks[1:3]

names(grl) <- gsub(”_peaks.+", , names(grl))
plotOverlaps(grl, type = 'upset', var = 'score', f = 'max')

nn

If only two samples are present, a VennDiagram will be produced
plotOverlaps(grl[1:2], set_col = c("green”, "blue"”), cex = 1.5, cat.cex = 1.5)

plotPairwise Plot Pairwise Values from a GRangeList

Description

Plot Pairwise Values from a GRangeList by overlapping GRanges

Usage

plotPairwise(
X,
var,
colour,
label,
index = c(1, 2),
p =0,
method = "union",
ignore.strand = TRUE,
min_width = 0,
xside = c("boxplot”, "density"”, "violin"”, "none"),
yside = c("boxplot”, "density"”, "violin”, "none"),
side_panel_width = c(0.3, 0.4),
side_alpha = 1,
xside_axis_pos = "right",
yside_axis_label = scales::label_wrap(10),
smooth = TRUE,
rho_geom = c("text”, "label”, "none"),
rho_col = "black”,
rho_size = 4,
rho_pos = c(0.05, 0.95),
rho_alpha = 1,
label_geom = c("label_repel”, "label”, "text_repel”, "text”, "none"),
label_width = 20,
label_sep = ";
label_size = 3.5,
label_alpha = 0.7,
min_d = 1,
group_sep = " - ",
simplify_equal = TRUE,
name_sep = " ",
plot_theme = theme_get(),

n
’

plotPairwise 57

Arguments
X A GRangesList
var The colunm to compare between list elements
colour Optional column to use for combining across elements and setting point colour
label Optional column to use for labelling ranges with the most extreme changes
index Which list elements to compare

p, method, ignore.strand, min_width
Passed to makeConsensus()

xside, yside Will call geom_(x/y)side* from the package ggside and show additional panels
on the top and right of the plot respectively

side_panel_width
Set the relative widths of the side panels

side_alpha Set fill transparency in side panels

xside_axis_pos Position for axis_labels in the top panel when using a discrete axis

yside_axis_label
Wrapping for axis labels on the right-side panel when using a discrete axis. Set
to waiver() to turn off wrapping

smooth logical(1). If TRUE a regression line will be drawn using geom_smooth. To
add this manually, set to FALSE and call this geom with any custom parameters
after creating the plot

rho_geom Used to add correlation coefficients for the two values

rho_col, rho_size, rho_alpha
Parameters for displaying the correlation

rho_pos Place the correlation coefficient within the plotting region
label_geom Used to add labels from the column specified in label
label_width Label text will be truncated to this length

label_sep If multiple values (e.g. genes) are mapped to a range, separate values using this
string

label_size, label_alpha
Passed to the geom used for adding labels

min_d Labels will only be added if the points lie circle beyond a sircle of this radius
group_sep Text separator used to separate categories when specifying colour

simplify_equal logical(1) When combining columns from both elements for the colour cate-
gories, should shared values be annotated as *Both ...” instead of having longer,
more difficult to read annotations.

name_sep Character string to separate names of the GRangesList and the selected column.
Will appear as axis-labels

plot_theme Sets the initial theme by using the default theme for the current R session via
get_theme()

Passed to geom_point () for the main panel

58 plotPairwise

Details

This function enables pairwise plotting of two elements within a GRangesList. All elements of the
GRangesList will contain the same columns, so a set of consensus ranges are first formed, before
then taking all values from each GRangesList element which overlap the range and producing a
piarwise plot.

Given that not all ranges will have values in both elements, side panels are produced which can show
the distribution of plotted values, along with those which are only found in one of the foundational
GRanges. These can take the form of density, violin or boxplots.

Addition columns, such as Differential Signal status can also be used to form pairwise groups and
colour the points.

If a column in the GRangesList is suitable for labelling points, such as a column with genes mapped
to each range, this can be specified using the argument label = "col_to_label”. Only the furthest
point from the origin will be labelled within each group used to colour the points. Labels will only
be added if they lie beyond a circle of radius min_d from the origin. If multiple genes are mapped
to the range, these will be separated by the string provided in the label_sep argument.

A regression line and correlation co-efficient are added to the plot by default, but can be hidden
easily if preferred

Value

A ggside or ggplot2 object

Examples

theme_set (theme_bw())

set.seed(100)

gr1 <- GRanges(paste@("chri1:", seq(10, 150, by = 10)))
width(gr1) <- 5

gr1$logFC <- rnorm(length(gr1))

gr1$FDR <- rbeta(length(grl), 1, 8)

gr2 <- GRanges(paste@("chri:"”, seq(51, 250, by = 15)))
width(gr2) <- 4

gr2$logFC <- rnorm(length(gr2))

gr2$FDR <- rbeta(length(gr2), 1, 8)

grl <- GRangesList(TF1 = gr1, TF2 = gr2)

grl <- addDiffStatus(grl)

Using the defaults
plotPairwise(grl, var = "logFC")

Density plots on the side panels

plotPairwise(
grl, var = "logFC", xside = "density"”, yside = "density",
side_alpha = 0.5

)
Turning off side panels, regression line and correlations
plotPairwise(
grl, var = "logFC", xside = "none"”, yside = "none”,
rho_geom = "none"”, smooth = FALSE
)

Add colours using the status column

plotPie

plotPairwise(grl, var = "logFC", colour = "status"”) +

scale_fill_manual(values =
guides(fill = "none")

rep_len(c("blue”, "red”, "white", "grey"), 8))

59

plotPie

Draw Pie Graphs based on one or more columns

Description

Draw Pie Graphs based one or more data.frame columns

Usage
plotPie(object, ...)
S4 method for signature 'GRanges'
plotPie(object, scale_by = c("n", "width"), ...)
S4 method for signature 'DataFrame’
plotPie(object, ...)
S4 method for signature 'data.frame'
plotPie(
object,
fill,
X!
Y,
scale_by,
scale_factor = 1000,
width = 0.8,
total_geom = c("label”, "text", "none"),
total_glue = "{comma(N)}",
total_colour = "black”,
total_fill = "white",
total_alpha = 1,
total_size = 3,
min_p = 0.01,
max_p = 1,
cat_geom = c("label”, "text", "none"),

cat_glue = "{.data[[fill
cat_colour = "black”,
cat_fill = "white”,
cat_size = 3,

cat_alpha = 1,

cat_adj = o,

hole_width = @,

113\n{comma(n, 1)I\n({percent(p, 0.1)}",

60

Arguments

object

scale_by

fill
X

y

scale_factor

width

total_geom

total_glue

plotPie

An object (data. frame)
Not used

Scale the counts by this column. In this case of a GRanges object this defaults
to the count (scale_by = "n") but can also be specified as being width of each
range (scale_by = "width"). If choosing width, width will be displayed in Kb

The category/column used to fill the slices of the pie charts
The second (optional) category/column to place along the x-axis
The final (optional) category/column to plce along the y-axis

When scaling by another column, such as width, totals will be divided by this
value, with 1000 being the default to provide output in kb.

Scale the width of all pies

The geom_* to use for the totals at the centre of each pie. Setting this to "none’
will disable totals

glue syntax to use for the totals in the centre of each pie. The column "N’ will
produce the totals and any other values or formatting may be added here.

total_colour, total_fill, total_alpha, total_size

min_p

max_p

cat_geom

cat_glue

Colour, fill, alpha and size for the main totals in the centre of each pie chart

The minimum proportion of the total required for adding labels. Effectively
removes labels from pie charts with few members. Alternatively when only one
column is specified, categories below this will not be shown around the edge of
the plot

only display labels for segments representing less than this proportion of the
total.

The geom_* to use for category labels corresponding to each slice of the pie.
Setting this to 'none’ will disable category labels

glue syntax to use for the category labels corresponding to each slice of the pie
charts. The columns 'n’ and ’p’ can be used to print totals and proportions for
each slice.

cat_colour, cat_fill, cat_size, cat_alpha

cat_adj
hole_width
Details

Colour, fill, size and alpha for category labels
Adjust category labels

Add a hole in the middle to turn the plot into a donut. Values between zero and
1 work best. Only implemented for pie charts using one value (i.e. fill)

Using a data. frame as input, this function will draw pie graphs based on one ore more columns,
by simply counting the values in combination across these columns. One column must be selected
for the fill as a bare minimum, with up to three being possible. Additional columns can be set for
the x-axis to draw a series of pie-graphs in a row, with a further column able to added to layout a
series of pie graphs in a grid

If only one column/category is chosen, category labels will be added around the edge of the plot

If show_total = TRUE the overall counts for each pie graph will be added in the centre using
geom_label. Parameters for these labels are customisable

plotProfileHeatmap 61

Value

A ggplot2 object able to be customised with colour scales and themes.

Also note that the $data element of the returned object will contain the data.frame used for plotting.
The additional column label_radians represents the mid-point of each pie slice and can be used
for manually adding labels to each pie. Only applies when plotting across the x or y axes

Examples

set.seed(200)

df <- data.frame(
feature = sample(

c("Promoter”, "Enhancer”, "Intergenic"), 200, replace = TRUE

),
TF1 sample(c("Up"”, "Down"”, "Unchanged"), 200, replace = TRUE),
TF2 = sample(c("Up", "Down", "Unchanged"), 200, replace = TRUE),
w = rexp(200)

)

plotPie(df, fill = "feature”, total_glue = "N = {comma(N)3}")

plotPie(
df, fill = "feature”, scale_by = "w", total_geom = "none",
cat_glue = "{percent(p)}"”, cat_size =5

)

plotPie(df, fill = "feature”, x = "TF1")

plotPie(

df, fill = "feature”, x = "TF1", y = "TF2", min_p = 0.02,
total_geom = "none”, cat_glue = "{n} / {N}"

)+

scale_fill_viridis_d() +

theme_bw()

And using a GRanges object

data("ex_prom")

gr <- ex_prom

mcols(gr) <- df[seq_along(gr),]

Show values by counts

plotPie(gr, fill = "feature”, total_size = 5)

Show values scaled by width of each range as a donut plot

plotPie(
gr, fill = "feature”, scale_by = "width”, total_glue = "{round(N, 1)}kb",
cat_glue = "{percent(p, 0.1)}", cat_size = 4, total_size = 5, hole_width = 0.2

)

plotProfileHeatmap Draw a coverage Profile Heatmap

Description

Plot a coverage Profile Heatmap across multiple ranges

62

Usage

plotProfileHeatmap(object, ...)

S4 method for signature 'GenomicRangesList'
plotProfileHeatmap(

)

object,

profileCol = "profile_data”,
xValue = "bp",

fillValue = "score",

facetX = NULL,

facetY = NULL,

colour = facety,

linetype = NULL,

summariseBy = c("mean”, "median”, "min"”, "max", "none"),
xLab = xValue,

yLab = NULL,

fillLab = fillValue,
labelFunX = waiver(),
relHeight = 0.3,

sortFilter = NULL,

maxDist = 100,

S4 method for signature 'GenomicRanges'
plotProfileHeatmap(

object,

profileCol = "profile_data”,
xValue = "bp",

fillValue = "score",

facetX = NULL,

facetY = NULL,

colour = facety,

linetype = NULL,

summariseBy = c("mean”, "median”, "min"”, "max", "none"),
xLab = xValue,
yLab = NULL,

fillLab = fillValue,
labelFunX = waiver(),
relHeight = 0.3,
summarylLabelSide = "left",
respectlLevels = FALSE,
sortFilter = NULL,

maxDist = 100,

Arguments

object A GRanges or GRangesList object

plotProfileHeatmap

Passed to facet_grid internally. Can be utilised for switching panel strips or

passing a labeller function

plotProfileHeatmap 63

profileCol Column name specifying where to find the profile DataFrames
xValue, fillValue
Columns within the profile DataFrames for heatmaps

facetX, facetY Columns used for faceting across the x- or y-axis respectively

colour Column used for colouring lines in the summary panel. Defaults to any column
used for facetY

linetype Column used for linetypes in the summary panel

summariseBy Function for creating the summary plot in the top panel. If set to 'none’, no

summary plot will be drawn. Otherwise the top panel will contain a line-plot
representing this summary value for each x-axis bin
xLab, yLab, fillLab

Labels for plotting aesthetics. Can be overwritten using labs() on any returned

object
labelFunX Function for formatting x-axis labels
relHeight The relative height of the top summary panel. Represents the fraction of the

plotting area taken up by the summary panel.

sortFilter If calling on a GRangesList, a method for subsetting the original object (e.g.
1:2). If calling on a GRanges object should be and expression able to be parsed
as a filtering expression using eval_tidy. This is applied when sorting the range
order down the heatmap such that ranges can be sorted by one or specific sam-
ples, or all. Ranges will always be sorted such that those with the strongest
signal are at the top of the plot

maxDist Maximum distance from the centre to find the strongest signal when arranging
the ranges
summarylLabelSide

Side to place y-axis for the summary plot in the top panel

respectLevels logical(1) If FALSE, facets along the y-axis will be arranged in descending order
of signal, otherwise any original factor levels will be retained

Details

Convenience function for plotting coverage heatmaps across a common set of ranges, shared be-
tween one or more samples. These are most commonly the coverage values from merged samples
within a treatment group. THe input data structure is based on that obtained from getProfileData,
and can be provided either as a GRanges object (generally for one sample) or as a GRangesList.

A ’profile DataFrame’ here refers to a data.frame (or tibble, or DataFrame) with a coverage value
in one column that corresponds to a genomic bin of a fixed size denoted in another, as generated
by getProfileData. Given that multiple ranges are most likely to be drawn, each profile data frame
must be the same size in terms of the number of bins, each of which represent a fixed number of
nucleotides. At a minimum this is a two column data frame although getProfileData will provide
three columns for each specified genomic region.

If using a GRangesList, each list element will be drawn as a separate panel by default. These panels
will appear in the same order as the list elements of the GRangesList, although this can easily
be overwritten by passing a column name to the facetX argument. The default approach will add
the original element names as the column "name" which can be seen in the $data element of any
resultant ggplot object produced by this function.

Value

A ggplot2 object, able to be customised using standard ggplot2 syntax

64 plotSplitDonut

Examples

library(rtracklayer)
fl <- system.file(
"extdata”, "bigwig"”, c("ex1.bw"”, "ex2.bw"), package = "extraChIPs"

)
bwfl <- BigWigFileList(f1l)
names (bwfl) <- c("ex1", "ex2")

gr <- GRanges(
c(
"chr10:103880281-103880460", "chr10:103892581-103892760",
"chr10:103877281-103877460"
)
)
pd <- getProfileData(bwfl, gr)
plotProfileHeatmap(pd, "profile_data"”) +
scale_fill_viridis_c(option = "inferno”, direction = -1) +
labs(fill = "Coverage")

plotSplitDonut Draw Two-Level Donut Charts

Description

Create Donut charts based on one or two columns in a data frame

Usage

plotSplitDonut(object, ...)

S4 method for signature 'GRanges'
plotSplitDonut(object, scale_by = c("n”, "width"), ...)

S4 method for signature 'DataFrame’
plotSplitDonut(object, ...)
S4 method for signature 'data.frame'
plotSplitDonut(

object,

inner,

outer,

scale_by,

scale_factor = 1000,

r_centre = 0.5,

r_inner =1,

r_outer =1

total_glue = "{comma(N)}",

total_size = 5,

total_colour = "black”,

inner_glue = "{inner} {.datal[inner]]1}\n{percent(p,@.1)}",

plotSplitDonut

outer_glue =
total_label =
inner_label
outer_label =
label_alpha
inner_label_a
outer_label_a
label_size =
inner_label_s
outer_label_s
label_colour
inner_label_c
outer_label_c
min_p = 0.05,
inner_min_p =
outer_min_p =
max_p = 1,
inner_max_p =
outer_max_p =
inner_pattern
outer_pattern
inner_rotate
outer_rotate
explode_inner
explode_outer
explode_query

explode_x = @
explode_y = @
explode_r = 0
nudge_r = 0.5

inner_nudge_r
outer_nudge_r
expand = 0.1,
inner_palette
outer_palette
inner_legend
outer_legend
outer_p_by =
layout = c(ma

Arguments

object

scale_by

inner

outer

"{outer} {.datal[outer]]}\n{percent(p,0.1)3}",
c("label”, "text", "none"),

c("label”, "text", "none"),

c("label”, "text", "none"),

1,
lpha
1pha
3,
ize = NULL,
ize = NULL,
= "black”,
olour = NULL,
olour = NULL,

NULL,
NULL,

NULL,
NULL,

NULL,
NULL,

— n.n
= Ly
— n.n

FALSE,
= FALSE,
= NULL,
NULL,
= c("AND", "OR"),

NULL,
NULL,

NULL,
NULL,
= TRUE,
= TRUE,
c("all”, "inner"),

65

in = area(1, 1, 12, 12), 1lgl1 = area(2, 12), 1lg2 = area(l11, 12)),

A GRanges or data. frame-like object
Not used

Column to scale values by. If provided, values in this column will be summed,
instead of simply counting entries. Any label in the centre of the plot will also

reflect this difference
Column name to create the inner ring

Column name to create the outer ring, subset by the inner ring

66

plotSplitDonut

scale_factor = When scaling by another column, such as width, totals will be divided by this
value, with 1000 being the default to provide output in kb.

r_centre The radius of the hole in the centre. Setting to zero will create a Pie chart

r_inner, r_outer
The radii of the inner/outer rings

total_glue glue-syntax for formatting the total which appears in the centre of the plot. Inter-
nally, the value N will be calculated and as such, this value should appear within
this argument.

total_size Label size total number of entries in the centre of the plot.

total_colour Label colour for the summary total in the centre

inner_glue, outer_glue
glue-syntax for formatting labels which appear on each inner/outer segment In-
ternally, the values n and p will be calculated as totals and proportions of the
total. As such, these values can appear within this argument, as well as the
fields described in the details

total_label, inner_label, outer_label

Can take values ’text’, ’label’ or 'none’. If setting one the first two values, the
labelling function geom_* will be called, otherwise no label will be drawn
label_alpha, inner_label_alpha, outer_label_alpha
transparency for labels
label_size, inner_label_size, outer_label_size

Size of all text labels
label_colour, inner_label_colour, outer_label_colour

Takes any colour specification, with the additional option of ’palette’. In this
special case, the same palette as is used for each segment will be applied.

min_p, inner_min_p, outer_min_p
only display labels for segments representing greater than this proportion of the
total. If inner/outer values are specified, the values in min_p will be ignored for
that layer

max_p, inner_max_p, outer_max_p
only display labels for segments representing less than this proportion of the
total. If inner/outer values are specified, the values in max_p will be ignored for
that layer

inner_pattern, outer_pattern
Regular expressions which are combined with max_p and min_p values for ac-
curately choosing labels

inner_rotate, outer_rotate
logical(1). Rotate labels for inner or outer rings. This will be ignored by when
setting the geom as "label". See geom_text

explode_inner, explode_outer
Regular expressions from either the inner or outer ring for which segments will
be ’exploded’

explode_query Setting to AND and specifying values for both the inner and outer ring will
require matches in both categories

explode_x, explode_y
Numeric values for shifting exploded values

explode_r Radius expansion for exploded values

nudge_r, inner_nudge_r, outer_nudge_r
Radius expansion for labels

plotSplitDonut 67

expand Passed to expansion for both x and y axes. Can be helpful if labels are clipped
by plot limits

inner_palette Colour palette for the inner ring

outer_palette Optional colour palette for the outer ring
inner_legend, outer_legend
logical(1). Show legends for either layer

outer_p_by Scale the proportions for outer segments by the complete dataset, or within each
inner segment
layout Passed to plot_layout
Details

Using a data.frame or GRanges object, this function enables creation of a Pie/Donut chart with an
inner and outer ring. The function itself is extremely flexible allowing for separate colour palettes
in the inner and outer rings, as well as highly customisable labels.

Sections can be exploded using a value from the inner ring or outer ring separately, or in combina-
tion by setting explode_query = "AND". Exploded sections can be shifted by expanding the radius
(explode_r), or along the x/y co-ordinates using explode_x/y, allowing for detailed placement of
sections.

If only the inner palette is specified, segments in the outer ring will be assigned the same colours
as the inner segments, but with increased transparency. Only a single legend will be drawn in
this scenario. If an outer palette is specified, both colour palettes are completely distinct and two
distinct legends will be drawn. The placement of these legends, along with the larger donut plot,
can be manually specified by providing a layout as defined in plot_layout. Names are not required
on this layout, but may be beneficial for code reproducibility.

The inner label denoting the total can also be heavily customised using the glue syntax to present the
calculated value N along with any additional text, such as kb’ if scaling GenomicRanges by width.
The same approach can be taken for the inner and outer labels, where totals are held in the value n,
proportions are held in the value p and the values corresponding to each segment can be accessed
using .datal[[inner]] or .data[[outer]]. Column titles can be added using {inner}/{outer}.
Values from the inner segments can be added to the outer labels using this strategy enabling a wide
variety of labelling approaches to be utilised.

Value

A patchwork object consisting of both ggplot2 objects and legend grobs

Examples

library(grDevices)
set.seed(200)
df <- data.frame(
feature = sample(
c("Promoter”, "Enhancer"”, "Intergenic"”), 200, replace = TRUE
)?
TF1 = sample(c("Up", "Down"”, "Unchanged"), 200, replace = TRUE),
TF2 = sample(c("Up", "Down"”, "Unchanged"), 200, replace = TRUE)
)
The standard plot
plotSplitDonut(df, inner = "TF1", outer = "TF2", inner_legend = FALSE)

Adding an exploded section along with an outer palette & customisation

68 propOverlap

plotSplitDonut(
df, inner = "TF1", outer = "feature”, total_label = "none"”,
inner_label_alpha = 0.5, r_centre = 0,
outer_glue = "{.datal[outer]I}\n(n = {n})", outer_label = "text",
explode_inner = "Up", explode_outer = "Prom|Enh",
explode_query = "AND", explode_r = 0.4, outer_rotate = TRUE,
inner_palette = hcl.colors(3, "Spectral”, rev = TRUE),
outer_palette = hcl.colors(3, "Cividis")

propOverlap Find the proportions of an overlapping range

Description

Find the proportion of a query reange which overlaps the subject

Usage

propOverlap(x, vy, ...)

S4 method for signature 'GRanges,GRanges'

propOverlap(x, y, ignore.strand = FALSE, ...)
Arguments
X,y A GenomicRanges object
Not used

ignore.strand If set to TRUE, then the strand of x and y is set to "*" prior to any computation.

Details

This behaves similarly to overlapsAny except the proportion of the query range which overlaps one
or more subject ranges is returned instead of a logical vector

Value

Numeric vector the same length as x

Examples

x <- GRanges("chr1:1-10")
y <- GRanges("chri1:1-5")
propOverlap(x, y)
propOverlap(y, x)

reduceMC 69

reduceMC Reduce ranges retaining mcols

Description

Reduce ranges retaining mcols

Usage

reduceMC(x, ignore.strand = FALSE, simplify = TRUE, ...)
Arguments

X A GenomicRanges object

ignore.strand If set to TRUE, then the strand of x and y is set to "*" prior to any computation.
simplify logical(1). Attempt to simplify returned columns where possible

Passed to reduce

Details

This function extends reduce so that all mcols are returned in the output. Where the reduced ranges
map to multiple ranges in the original range, mcols will be returned as CompressedList columns.

If simplify = TRUE columns will be returned as vectors where possible.

Value

A GRanges object

Examples

x <- GRanges(c("chr1:1-10:+", "chr1:6-12:-"))
x$id <- c("rangel”, "range2")

reduceMC(x)

reduceMC(x, ignore.strand = TRUE)

setoptsMC Perform set operations retaining mcols

Description

Perform set operations retaining all mcols from the query range

70

setoptsMC

Usage

setdiffMC(x, vy, ...)
intersectMC(x, vy, ...)
unionMC(x, vy, ...)

S4 method for signature 'GRanges,GRanges'
setdiffMC(x, y, ignore.strand = FALSE, simplify = TRUE, ...)

S4 method for signature 'GRanges,GRanges'
intersectMC(x, y, ignore.strand = FALSE, simplify = TRUE, ...)

S4 method for signature 'GRanges,GRanges'
unionMC(x, y, ignore.strand = FALSE, simplify = TRUE, ...)

Arguments

Y GenomicRanges objects
Not used
ignore.strand If set to TRUE, then the strand of x and y is set to "*" prior to any computation.

simplify logical(1) If TRUE, any List columns will be returned as vectors where possible.
This can only occur if single, unique entries are present in all initial elements.

Details

This extends the methods provided by setdiff, intersect and union so that mcols from x will be
returned as part of the output.

Where output ranges map back to multiple ranges in x, CompressedList columns will be returned.
By default, these will be simplified if possible, however this behaviour can be disabled by setting
simplify = FALSE.

All columns will be returned which can also be time-consuming. A wise approach is to only provide
columns you require as part of the query ranges x.

If more nuanced approaches are required, the returned columns can be further modified by many
functions included in the plyranges package, such as mutate().

Value

A GRanges object with all mcols returned form the original object. If a range obtained by setdiff
maps back to two or more ranges in the original set of Ranges, mcols will be returned as Compress-
edList columns

Examples

x <- GRanges("chr1:1-100:+")

x$id <- "rangel”

y <- GRanges(c("chr1:51-60:+", "chr1:21-30:-"))
setdiffMC(x, y)

setdiffMC(x, y, ignore.strand = TRUE)

The intersection works similarly
intersectMC(x, y)

stitchRanges 71

Union may contain ranges not initially in x
unionMC(x, y)
unionMC(x, y, ignore.strand = TRUE)

stitchRanges Stitch Ranges within a given distance

Description

Stitch together ranges within a given distance, using excluded ranges as barriers that cannot be
crossed

Usage

stitchRanges(x, exclude, maxgap = 12500L, ignore.strand = TRUE)

Arguments
X Ranges to be stitched together
exclude Ranges to exclude
maxgap The maximum distance between ranges to be stitched

ignore.strand logical

Details

Stitches together ranges within a given distance, using any ranges provided for exclusion as barriers
between stitched ranges. This may be particularly useful if wanting to stitch enhancers whilst
excluding promoters.

All inputs and outputs are Genomic Ranges objects

Value

A GRanges object

Examples

x <- GRanges(c("chr1:1-10", "chr1:101-110", "chr1:201-210", "chr2:1-10"))
y <- GRanges("chr1:200:+")
stitchRanges(x, exclude =y, maxgap = 100)

72

voomWeightsFromCPM

voomWeightsFromCPM Estimate voom precision weights directly From CPM values

Description

Estimate voom precision weights directly From CPM values

Usage

voomWeightsFromCPM(
cpm,
design = NULL,
wd = NULL,
lib.size = NULL,
isLogCPM = TRUE,

span = 0.5,
)
Arguments
cpm Matrix of CPM or logCPM values
design The design matrix for the experiment
wo Initial vector of sample weights. Should be calculated using array Weights
lib.size Initial library sizes. Must be provided as these are no estimable from CPM
values
isLogCPM logical(1). Indicates whether the data is log2 transformed already. Most com-
monly (e.g. if using the output of cqn) it will be,
span Width of the smoothing window used for the lowess mean-variance trend. Ex-
pressed as a proportion between 0 and 1.
Passed to ImFit internally
Details

This function takes CPM or logCPM values and estimates the precision weights as would be done
by providing counts directly to voom. Using this function enables the use of logCPM values which
have been normalised using other methods such as Conditional-Quantile or Smooth-Quantile Nor-
malisation.

The precision weights are returned as part of the EList output, and these are automatically passed
to the function ImFit during model fitting. This will ensure that the mean-variance relationship is
appropriate for the linear modelling steps as performed by limma.

Initial sample weights can be passed to the function, and should be calculated using array Weights
called on the normalised 1ogCPM values. The returned sample weights will be different to these,
given that the function voomWithQualityWeights performs two rounds of estimation. The first is on
the initial data, with the inappropriate mean-variance relationship, whilst the second round is after
incorporation of the precision weights.

voomWeightsFromCPM 73

Value

An object of class EList as would be output by voom. Importantly, there will be no genes element,
although this can be added later. Similarly, the returned targets element will only contain sample
names and library sizes. This can be incorporated with any other metadata as required.

Plotting data is always returned, noting the the value sx has been offset by the library sizes and will
be simple logCPM values. As such, the fitted Amean is also returned in this list element.

If initial sample weights were provided, modified weights will also be returned, as the initial func-
tion voomWithQualityWeights performs two rounds of estimation of sample weights. Here we
would simply provide the initial weights a priori, with the second round performed within the
function. Importantly, this second round of sample weight estimation uses the precision weights
ensuring the correct mean-variance relationship is used for the final estimation of sample weights

Examples

library(csaw)

library(edgeR)

bamFiles <- system.file("”exdata”, c("repl.bam”, "rep2.bam"), package="csaw")
wc <- windowCounts(bamFiles, filter=1)

cpm <- cpm(wc, log = TRUE)

el <- voomWeightsFromCPM(cpm, lib.size = wc$totals)

Index

+ datasets
cytobands, 15
ex_datasets, 21
fixed_width_datasets, 24
* internal
.makeFinalProfileHeatmap, 4
.mapFeatures, 5
.mapGi, 6
.mapWithin, 6
extraChIPs-package, 3
.makeFinalProfileHeatmap, 4
.mapFeatures, 5
.mapGi, 6
.mapWithin, 6

addDiffStatus, 7
addDiffStatus,data.frame-method
(addDiffStatus), 7

addDiffStatus,DataFrame-method
(addDiffStatus), 7

addDiffStatus,GRanges-method
(addDiffStatus), 7

addDiffStatus,GRangesList-method
(addDiffStatus), 7

addDiffStatus, SummarizedExperiment-method
(addDiffStatus), 7

annotate, 47

AnnotationTrack, 52

arrayWeights, 72

as_tibble, 8

as_tibble(), 3

bestOverlap, 9

bestOverlap(), 3

bestOverlap, GRanges,GRanges-method
(bestOverlap), 9

bestOverlap,GRanges,GRangesList-method
(bestOverlap), 9

bind_rows, 47

bplapply, 26

centrePeaks, 11

centrePeaks,GRanges,BamFile-method
(centrePeaks), 11

74

centrePeaks,GRanges,BamFileList-method
(centrePeaks), 11

centrePeaks,GRanges,BigWigFile-method
(centrePeaks), 11

centrePeaks,GRanges,BigWigFilelList-method
(centrePeaks), 11

centrePeaks, GRanges, character-method
(centrePeaks), 11

chop, 12

chopMC, 12

chopMC(), 3

cluster-direction, 35

collapseGenes, 13

collapseGenes(), 4

colToRanges, 14

colToRanges(), 3

colToRanges,data. frame-method
(colToRanges), 14

colToRanges,DataFrame-method
(colToRanges), 14

colToRanges, GRanges-method
(colToRanges), 14

combineTests, 39

CompressedList, 70

cytobands, 15

DataTrack, 50
defineRegions, 16
defineSeqinfo, 17
distinct, I8
distinctMC, 18
distinctMC(), 3
draw.pairwise.venn, 55
dualFilter, 19
dualFilter(), 3

eBayes, 23, 24
eval_tidy, 63
ex_datasets, 21

ex_genes (ex_datasets), 21
ex_hic (ex_datasets), 21
ex_prom (ex_datasets), 21
ex_trans (ex_datasets), 21
expansion, 67

INDEX

extraChIPs (extraChIPs-package), 3
extraChIPs-package, 3

facet_grid, 62

filterWindowsControl, /9, 20

filterWindowsProportion, 19, 20

findOverlaps, 10, 35, 37, 39

fitAssayDiff, 22

fitAssayDiff (), 4

fitAssayDiff,SummarizedExperiment-method
(fitAssayDiff), 22

fixed_width_datasets, 24

GeneRegionTrack, 50-52
geom_boxplot, 45
geom_density, 4/
geom_label, 60
geom_line, 41
geom_point, 44
geom_smooth, 57
geom_text, 44, 66
getBestTest, 39
getProfileData, 25, 63
getProfileData(), 3

getProfileData,BigWigFile,GenomicRanges-method

(getProfileData), 25

getProfileData,BigWigFilelList,GenomicRanges-method

(getProfileData), 25

75

IRanges: :CompressedList, 3

1fcShrink, 23, 24
limma-trend, 23
ImFit, 23,72

makeConsensus, 29, 55

makeConsensus(), 4, 57

mapByFeature, 31

mapByFeature(), 3

mapGrlCols, 33

mergeByCol, 34

mergeByCol(), 3

mergeByCol,GenomicRanges-method
(mergeByCol), 34

mergeByCol,RangedSummarizedExperiment-method
(mergeByCol), 34

mergeByHMP, 36

mergeByHMP , GenomicRanges-method
(mergeByHMP), 36

mergeByHMP ,RangedSummarizedExperiment-method
(mergeByHMP), 36

mergeBySig, 38

mergeBySig,GenomicRanges-method

(mergeBySig), 38

mergeBySig,RangedSummarizedExperiment-method

(mergeBySig), 38

minimalTests, 39

getProfileData, character,GenomicRanges-methodMulticoreParam, 26

(getProfileData), 25
GInteractions, 9
glmQLFit, 23
glmQLFTest, 24
glmTreat, 23, 24
glue, 29, 60, 66, 67
grch37.cytobands, 51
grch37.cytobands (cytobands), 15
grch38.cytobands, 51
grch38.cytobands (cytobands), 15
grlToSE, 27
grlToSE(), 3
grlToSE,GRangesList-method (grlToSE), 27

IdeogramTrack, 15, 51

importPeaks, 28

importPeaks(), 4

InteractionTrack, 57

intersect, 70

intersectMC, 30

intersectMC (setoptsMC), 69

intersectMC(), 3

intersectMC, GRanges,GRanges-method
(setoptsMC), 69

nbinomWaldTest, 23, 24
normalizeToMatrix, 26
normLibSizes, 22, 23

overlapsAny, 68

p.adjust.methods, 35

p.hmp, 37

partitionRanges, 40

partitionRanges(), 3

partitionRanges,GRanges,GRanges-method
(partitionRanges), 40

peaks (fixed_width_datasets), 24

plot_layout, 67

plotAssayDensities, 41

plotAssayDensities(), 3

plotAssayDensities, SummarizedExperiment-method
(plotAssayDensities), 41

plotAssayHeatmap, 42

plotAssayHeatmap, SummarizedExperiment-method
(plotAssayHeatmap), 42

plotAssayPCA, 43

plotAssayPCA(), 3

76

plotAssayPCA, SummarizedExperiment-method
(plotAssayPCA), 43

plotAssayRle, 45

plotAssayRle(), 3

plotAssayRle, SummarizedExperiment-method
(plotAssayRle), 45

plotGrlCol, 46

plotHFGC, 48

plotHFGC(), 3

plotOverlaps, 54

plotOverlaps(), 3

plotOverlaps,GRangesList-method
(plotOverlaps), 54

plotOverlaps,list-method
(plotOverlaps), 54

plotPairwise, 56

plotPie, 59

plotPie(), 3

plotPie,data.frame-method (plotPie), 59

plotPie,DataFrame-method (plotPie), 59

plotPie,GRanges-method (plotPie), 59

plotProfileHeatmap, 61

plotProfileHeatmap(), 3

plotProfileHeatmap,GenomicRanges-method
(plotProfileHeatmap), 61

plotProfileHeatmap, GenomicRangesList-method

(plotProfileHeatmap), 61
plotSplitDonut, 64
plotSplitDonut(), 3
plotSplitDonut,data.frame-method

(plotSplitDonut), 64
plotSplitDonut,DataFrame-method

(plotSplitDonut), 64
plotSplitDonut,GRanges-method

(plotSplitDonut), 64
plotTracks, 51
prcomp, 44
propOverlap, 68
propOverlap(), 3
propOverlap, GRanges,GRanges-method

(propOverlap), 68

RangedSummarizedExperiment, 20
reduce, 27, 30, 35, 37, 39, 55, 69
reduceMC, 30, 69

reduceMC(), 3

se (fixed_width_datasets), 24
seqinfo, 28

setdiff, 70

setdiffMC (setoptsMC), 69
setdiffMC(), 3

INDEX

setdiffMC,GRanges, GRanges-method
(setoptsMC), 69

setoptsMC, 69

settings, 52

simpleUpSet, 55

stitchRanges, 71

stitchRanges(), 3

str_sort, /3

SummarizedExperiment: :RangedSummarizedExperiment,
3

tibble, 9
tibble::as_tibble(), 9
tibble: :tibble, 3
treat, 23, 24

union, 70

unionMC (setoptsMC), 69

unionMC(), 3

unionMC, GRanges,GRanges-method
(setoptsMC), 69

voom, 72
voomWeightsFromCPM, 72
voomWithQualityWeights, 72, 73

	extraChIPs-package
	.makeFinalProfileHeatmap
	.mapFeatures
	.mapGi
	.mapWithin
	addDiffStatus
	as_tibble
	bestOverlap
	centrePeaks
	chopMC
	collapseGenes
	colToRanges
	cytobands
	defineRegions
	defineSeqinfo
	distinctMC
	dualFilter
	ex_datasets
	fitAssayDiff
	fixed_width_datasets
	getProfileData
	grlToSE
	importPeaks
	makeConsensus
	mapByFeature
	mapGrlCols
	mergeByCol
	mergeByHMP
	mergeBySig
	partitionRanges
	plotAssayDensities
	plotAssayHeatmap
	plotAssayPCA
	plotAssayRle
	plotGrlCol
	plotHFGC
	plotOverlaps
	plotPairwise
	plotPie
	plotProfileHeatmap
	plotSplitDonut
	propOverlap
	reduceMC
	setoptsMC
	stitchRanges
	voomWeightsFromCPM
	Index

