Package ‘ensembldb’

October 27, 2025

Type Package
Title Utilities to create and use Ensembl-based annotation databases

Version 2.33.2

Author Johannes Rainer <johannes.rainer@eurac.edu> with contributions
from Tim Triche, Sebastian Gibb, Laurent Gatto
Christian Weichenberger and Boyu Yu.

Maintainer Johannes Rainer <johannes.rainer@eurac.edu>
URL https://github.com/jorainer/ensembldb

BugReports https://github.com/jorainer/ensembldb/issues

Imports methods, RSQLite (>= 1.1), DBI, Biobase, Seqinfo, GenomelnfoDb
(>= 1.45.5), AnnotationDbi (>= 1.31.19), rtracklayer (>=
1.69.1), S4Vectors (>= 0.23.10), Rsamtools, IRanges (>=
2.13.24), ProtGenerics, Biostrings (>= 2.77.2), curl

Depends R (>=3.5.0), BiocGenerics (>= 0.15.10), GenomicRanges (>=
1.61.1), GenomicFeatures (>= 1.61.4), AnnotationFilter (>=
1.5.2)

Suggests BiocStyle, knitr, EnsDb.Hsapiens.v86 (>= 0.99.8), testthat,
BSgenome.Hsapiens. NCBI.GRCh38, ggbio (>= 1.24.0), Gviz (>=
1.20.0), rmarkdown, AnnotationHub

Enhances RMariaDB, shiny
VignetteBuilder knitr

Description The package provides functions to create and use
transcript centric annotation databases/packages. The
annotation for the databases are directly fetched from Ensembl
using their Perl APIL. The functionality and data is similar to
that of the TxDb packages from the GenomicFeatures package,
but, in addition to retrieve all gene/transcript models and
annotations from the database, ensembldb provides a filter
framework allowing to retrieve annotations for specific entries
like genes encoded on a chromosome region or transcript models
of lincRNA genes. EnsDb databases built with ensembldb contain
also protein annotations and mappings between proteins and
their encoding transcripts. Finally, ensembldb provides
functions to map between genomic, transcript and protein
coordinates.

https://github.com/jorainer/ensembldb
https://github.com/jorainer/ensembldb/issues

Collate 'Classes.R' 'Deprecated.R' 'Generics.R' 'Methods-Filter.R'
'Methods.R' 'dbhelpers.R' 'functions-EnsDb.R'
'functions-Filter.R' 'functions-create-EnsDb.R'
'functions-utils.R' 'proteinToX.R' 'transcriptToX.R'
'genomeToX.R' 'select-methods.R' 'seqname-utils.R' 'zzz.R'

biocViews Genetics, AnnotationData, Sequencing, Coverage

License LGPL

RoxygenNote 7.3.2

git_url https://git.bioconductor.org/packages/ensembldb

git_branch devel
git_last_commit f5079f3
git_last_commit_date 2025-08-18

Repository Bioconductor 3.22
Date/Publication 2025-10-27

Contents
addFilter,EnsDb-method 3
cdsToTranscript o o v e e e e e e 4
convertFilter,AnnotationFilter, EnsDb-method 5
Deprecated e 7
EnsDb e 8
EnsDb-class 9
exonsBy . . .o 12
Filter-classes e 20
genomeToProtein 25
genomeToTranscript 27
getGeneRegionTrackForGviz oo 29
getGenomeFaFile 30
hasProteinData,EnsDb-method 32
lengthOf e 33
listEnsDbs e 34
makeEnsembldbPackage L oL 35
proteins,EnsDb-method Lo L 39
proteinToGenome e e 41
proteinToTranscript L e 44
runEnsDbApPD L 47
SEleCt e e 48
seqlevelsStyle L e e 50
transcriptToCds L 53
transcriptToGenome Lo 54
transcriptToProtein e 56
useMySQL,EnsDb-method 58
Index 60

addFilter,EnsDb-method 3

addFilter,EnsDb-method
Globally add filters to an EnsDb database

Description
These methods allow to set, delete or show globally defined filters on an EnsDb object.
addFilter: adds an annotation filter to the EnsDb object.
dropFilter deletes all globally set filters from the EnsDb object.
activeFilter returns the globally set filter from an EnsDb object.

filter filters an EnsDb object. filter is an alias for the addFilter function.

Usage

S4 method for signature 'EnsDb'
addFilter(x, filter = AnnotationFilterList())

S4 method for signature 'EnsDb'
dropFilter(x)

S4 method for signature 'EnsDb'
activeFilter(x)

filter(x, filter = AnnotationFilterList())

Arguments
X The EnsDb object to which the filter should be added.
filter The filter as an AnnotationFilter, AnnotationFilterList or filter expres-
sion. See
Details

Adding a filter to an EnsDb object causes this filter to be permanently active. The filter will be used
for all queries to the database and is added to all additional filters passed to the methods such as
genes.

Value

addFilter and filter return an EnsDb object with the specified filter added.

activeFilter returns an AnnotationFilterList object being the active global filter or NA if no
filter was added.

dropFilter returns an EnsDb object with all eventually present global filters removed.

Author(s)

Johannes Rainer

4 cdsToTranscript

See Also

Filter-classes for a list of all supported filters.

Examples

library(EnsDb.Hsapiens.v86)
edb <- EnsDb.Hsapiens.v86

Add a global SegNameFilter to the database such that all subsequent
queries will be applied on the filtered database.
edb_y <- addFilter(edb, SeqNameFilter("Y"))

Note: using the filter function is equivalent to a call to addFilter.

Each call returns now only features encoded on chromosome Y
gns <- genes(edb_y)

seqlevels(gns)

Get all lincRNA gene transcripts on chromosome Y
transcripts(edb_y, filter = ~ gene_biotype == "1incRNA")

Get the currently active global filter:
activeFilter(edb_y)

Delete this filter again.
edb_y <- dropFilter(edb_y)

activeFilter(edb_y)

cdsToTranscript Map positions within the CDS to coordinates relative to the start of
the transcript

Description

Converts CDS-relative coordinates to positions within the transcript, i.e. relative to the start of the
transcript and hence including its 5° UTR.

Usage
cdsToTranscript(x, db, id = "name"”, exons = NA, transcripts = NA)
Arguments
X IRanges with the coordinates within the CDS. Coordinates are expected to be
relative to the transcription start (the first nucleotide of the transcript). The En-
sembl IDs of the corresponding transcripts have to be provided either as names
of the IRanges, or in one of its metadata columns.
db EnsDb object.
id character (1) specifying where the transcript identifier can be found. Has to
be either "name” or one of colnames(mcols(prng)).
exons CompressedGRangesList object generated by exonsBy () where by = "tx’.

transcripts GRanges object generated by transcripts().

convertFilter,AnnotationFilter,EnsDb-method 5

Value

IRanges with the same length (and order) than the input IRanges x. Each element in IRanges
provides the coordinates within the transcripts CDS. The transcript-relative coordinates are provided
as metadata columns. IRanges with a start coordinate of -1 is returned for transcripts that are not
known in the database, non-coding transcripts or if the provided start and/or end coordinates are not
within the coding region.

Author(s)

Johannes Rainer

See Also

Other coordinate mapping functions: genomeToProtein(), genomeToTranscript(), proteinToGenome(),
proteinToTranscript(), transcriptToCds(), transcriptToGenome(), transcriptToProtein()

Examples

library(EnsDb.Hsapiens.v86)
Defining transcript-relative coordinates for 4 transcripts of the gene
BCL2
txcoords <- IRanges(start = c(4, 3, 143, 147), width =1,
names = c("ENST00000398117", "ENST00000333681",
"ENST00000590515", "ENSTQ0000589955"))

cdsToTranscript(txcoords, EnsDb.Hsapiens.v86)

Next we map the coordinate for variants within the gene PKP2 to the
genome. The variants is PKP2 c.1643DelG and the provided

position is thus relative to the CDS. We have to convert the

position first to transcript-relative coordinates.

pkp2 <- IRanges(start = 1643, width = 1, name = "ENST00000070846")

Map the coordinates by first converting the CDS- to transcript-relative

coordinates

transcriptToGenome(cdsToTranscript(pkp2, EnsDb.Hsapiens.v86),
EnsDb.Hsapiens.v86)

Meanwhile, this function can be called in parallel processes if you preload
the exons and transcripts database.

exons <- exonsBy(EnsDb.Hsapiens.v86)
transcripts <- transcripts(EnsDb.Hsapiens.v86)

cdsToTranscript(txcoords, EnsDb.Hsapiens.v86, exons = exons,transcripts = transcripts)

convertFilter,AnnotationFilter,EnsDb-method
Convert an AnnotationFilter to a SOL WHERE condition for EnsDb

Description

convertFilter converts an AnnotationFilter: :AnnotationFilter or AnnotationFilter: :AnnotationFilterLis
to an SQL where condition for an EnsDb database.

6 convertFilter,AnnotationFilter,EnsDb-method

Usage

S4 method for signature 'AnnotationFilter,EnsDb'
convertFilter(object, db, with.tables = character())

S4 method for signature 'AnnotationFilterList,EnsDb'
convertFilter(object, db, with.tables = character())

Arguments
object AnnotationFilter or AnnotationFilterList objects (or objects extending
these classes).
db EnsDb object.
with.tables optional character vector specifying the names of the database tables that are
being queried.
Value

A character (1) with the SQL where condition.

Note

This function might be used in direct SQL queries on the SQLite database underlying an EnsDb
but is more thought to illustrate the use of AnnotationFilter objects in combination with SQL
databases. This method is used internally to create the SQL calls to the database.

Author(s)

Johannes Rainer

Examples

library(EnsDb.Hsapiens.v86)
edb <- EnsDb.Hsapiens.v86

Define a filter
flt <- AnnotationFilter(~ gene_name == "BCL2")

Use the method from the AnnotationFilter package:
convertFilter(flt)

Create a combination of filters

flt_list <- AnnotationFilter(~ gene_name %in% c("BCL2", "BCL2L11") &
tx_biotype == "protein_coding")

flt_list

convertFilter(flt_list)

Use the filters in the context of an EnsDb database:
convertFilter(flt, edb)

convertFilter(flt_list, edb)

Deprecated 7

Deprecated Deprecated functionality

Description
All functions, methods and classes listed on this page are deprecated and might be removed in future
releases.

GeneidFilter creates a GeneIdFilter. Use GeneIdFilter from the AnnotationFilter package
instead.

GenebiotypeFilter creates a GeneBiotypeFilter. Use GeneBiotypeFilter from the AnnotationFilter
package instead.

EntrezidFilter creates a EntrezFilter. Use EntrezFilter from the AnnotationFilter pack-
age instead.

TxidFilter creates a TxIdFilter. Use TxIdFilter from the AnnotationFilter package in-
stead.

TxbiotypeFilter creates a TxBiotypeFilter. Use TxBiotypeFilter fromthe AnnotationFilter
package instead.

ExonidFilter creates a ExonIdFilter. Use ExonIdFilter from the AnnotationFilter package
instead.

ExonrankFilter creates a ExonRankFilter. Use ExonRankFilter from the AnnotationFilter
package instead.

SeqNameFilter creates a SeqNameFilter. Use SeqNameFilter from the AnnotationFilter
package instead.

SeqgstrandFilter creates a SeqStrandFilter. Use SeqStrandFilter from the AnnotationFilter
instead.

SeqstartFilter creates aGeneStartFilter, TxStartFilter or ExonStartFilter depending on
the value of the parameter feature. Use GeneStartFilter, TxStartFilter and ExonStartFilter
instead.

SeqgendFilter creates a GeneEndFilter, TxEndFilter or ExonEndFilter depending on the value
of the parameter feature. Use GeneEndFilter, TxEndFilter and ExonEndFilter instead.

Usage
n n

GeneidFilter(value, condition = "==

n n

GenebiotypeFilter(value, condition = "==

EntrezidFilter(value, condition = "==")

n n

TxidFilter(value, condition = "==

TxbiotypeFilter(value, condition = "=="

n n

ExonidFilter(value, condition = "==

n n

ExonrankFilter(value, condition = "==

8 EnsDb

n n

SegnameFilter(value, condition = "==

n n

SeqstrandFilter(value, condition = "==

SeqstartFilter(value, condition = ">", feature = "gene")
SegendFilter(value, condition = "<", feature = "gene")
Arguments
value The value for the filter.
condition The condition for the filter.
feature For SeqstartFilter and SeqendFilter: on what type of feature should the

filter be applied? Supported are "gene”, "tx" and "exon”.

EnsDb Connect to an EnsDb object

Description

The EnsDb constructor function connects to the database specified with argument x and returns a
corresponding EnsDb object.

Usage
EnsDb(x)
Arguments
X Either a character specifying the SQLite database file, or a DBIConnection to
e.g. a MariaDB/MySQL database.
Details

By providing the connection to a MariaDB/MySQL database, it is possible to use MariaDB/MySQL
as the database backend and queries will be performed on that database. Note however that this
requires the package RMariaDB to be installed. In addition, the user needs to have access to a
MySQL server providing already an EnsDb database, or must have write privileges on a MySQL
server, in which case the useMySQL method can be used to insert the annotations from an EnsDB
package into a MySQL database.

Value

A EnsDb object.

Author(s)

Johannes Rainer

EnsDb-class 9

Examples

"Standard” way to create an EnsDb object:
library(EnsDb.Hsapiens.v86)
EnsDb.Hsapiens.v86

Alternatively, provide the full file name of a SQLite database file

dbfile <- system.file("extdata/EnsDb.Hsapiens.v86.sqlite”, package = "EnsDb.Hsapiens.v86")
edb <- EnsDb(dbfile)

edb

Third way: connect to a MySQL database

Not run:

library(RMariaDB)

dbcon <- dbConnect(MySQL(), user = my_user, pass = my_pass,
host = my_host, dbname = "ensdb_hsapiens_v86")

edb <- EnsDb(dbcon)

End(Not run)

EnsDb-class Basic usage of an Ensembl based annotation database

Description
The EnsDb class provides access to an Ensembl-based annotation package. This help page describes
functions to get some basic informations from such an object.

Usage

S4 method for signature 'EnsDb'
dbconn(x)

S4 method for signature 'EnsDb'
ensemblVersion(x)

S4 method for signature 'EnsDb'
listColumns(x, table, skip.keys = TRUE, metadata = FALSE, ...)

S4 method for signature 'EnsDb'
listGenebiotypes(x, ...)

S4 method for signature 'EnsDb'
listTxbiotypes(x, ...)

S4 method for signature 'EnsDb'
listTables(x, ...)

S4 method for signature 'EnsDb'
metadata(x, ...)

S4 method for signature 'EnsDb'
organism(object)

10 EnsDb-class

S4 method for signature 'EnsDb'
returnFilterColumns(x)

S4 method for signature 'EnsDb'
returnFilterColumns(x)

S4 replacement method for signature 'EnsDb'
returnFilterColumns(x) <- value

S4 method for signature 'EnsDb'
seginfo(x)

S4 method for signature 'EnsDb'
seqlevels(x)

S4 method for signature 'EnsDb'
updateEnsDb(x, ...)

Arguments
(in alphabetic order)

Additional arguments. Not used.

metadata For 1istColumns: whether columns from the metadata database column should
also be returned. Defaults to metadata = FALSE.

object For organism: an EnsDb instance.

skip.keys for listColumns: whether primary and foreign keys (not being e.g. "gene_id"
or alike) should be returned or not. By default these will not be returned.

table For 1listColumns: optionally specify the table name(s) for which the columns
should be returned.

value For returnFilterColumns: alogical of length one specifying whether columns
that are used for eventual filters should also be returned.

X An EnsDb instance.

Value

For connection The SQL connection to the RSQLite database.

For EnsDb An EnsDb instance.

For lengthOf A named integer vector with the length of the genes or transcripts.

For 1istColumns A character vector with the column names.

For listGenebiotypes A character vector with the biotypes of the genes in the database.
For listTxbiotypes A character vector with the biotypes of the transcripts in the database.

For listTables A list with the names corresponding to the database table names and the elements
being the attribute (column) names of the table.

For metadata A data.frame.

For organism A character string.

For returnFilterColumns A logical of length 1.
For seqinfo A Seqinfo class.

For updateEnsDb A EnsDb object.

EnsDb-class 11

Objects from the Class

A connection to the respective annotation database is created upon loading of an annotation package

created with the makeEnsembldbPackage function. In addition, the EnsDb constructor specifying

the SQLite database file can be called to generate an instance of the object (see makeEnsemb1SQLiteFromTables
for an example).

Slots

ensdb Object of class "DBIConnection”: the connection to the database.

tables Named list of database table columns with the names being the database table names. The
tables are ordered by their degree, i.e. the number of other tables they can be joined with.

.properties Internal list storing user-defined properties. Should not be directly accessed.

Methods and Functions

dbconn Returns the connection to the internal SQL database.
ensemblVersion Returns the Ensembl version on which the package was built.

listColumns Lists all columns of all tables in the database, or, if table is specified, of the respec-
tive table.

listGenebiotypes Lists all gene biotypes defined in the database.
listTxbiotypes Lists all transcript biotypes defined in the database.

listTables Returns a named list of database table columns (names of the list being the database
table names).

metadata Returns a data.frame with the metadata information from the database, i.e. informa-
tions about the Ensembl version or Genome build the database was build upon.

organism Returns the organism name (e.g. "homo_sapiens”).

returnFilterColumns, returnFilterColumns<- Get or set the option which results in columns that
are used for eventually specified filters to be added as result columns. The default value is TRUE
(i.e. filter columns are returned).

seqinfo Returns the sequence/chromosome information from the database.
seqlevels Returns the chromosome/sequence names that are available in the database.
show Displays some informations from the database.

updateEnsDb Updates the EnsDb object to the most recent implementation.

Note

While a column named "tx_name” is listed by the listTables and listColumns method, no
such column is present in the database. Transcript names returned by the methods are actually the
transcript IDs. This virfual column was only introduced to be compliant with TxDb objects (which
provide transcript names).

Author(s)

Johannes Rainer

See Also

EnsDb, makeEnsembldbPackage, exonsBy, genes, transcripts, makeEnsemblSQLiteFromTables

addFilter for globally adding filters to an EnsDb object.

12 exonsBy

Examples
library(EnsDb.Hsapiens.v86)

Display some information:
EnsDb.Hsapiens.v86

Show the tables along with its columns
listTables(EnsDb.Hsapiens.v86)

For what species is this database?
organism(EnsDb.Hsapiens.v86)

What Ensembl version if the database based on?
ensemblVersion(EnsDb.Hsapiens.v86)

Get some more information from the database
metadata(EnsDb.Hsapiens.v86)

Get all the sequence names.
seqlevels(EnsDb.Hsapiens.v86)

List all available gene biotypes from the database:
listGenebiotypes(EnsDb.Hsapiens.v86)

List all available transcript biotypes:
listTxbiotypes(EnsDb.Hsapiens.v86)

Update the EnsDb; this is in most instances not necessary at all.
updateEnsDb (EnsDb.Hsapiens.v86)

Hit returnFilterColumns
returnFilterColumns(EnsDb.Hsapiens.v86)

Get protein coding genes on chromosome X, specifying to return
only columns gene_name as additional column.
genes(EnsDb.Hsapiens.v86, filter=list(SegNameFilter("X"),
GeneBiotypeFilter("protein_coding")),
columns=c("gene_name"))
By default we get also the gene_biotype column as the data was filtered
on this column.

This can be changed using the returnFilterColumns option
returnFilterColumns(EnsDb.Hsapiens.v86) <- FALSE
genes(EnsDb.Hsapiens.v86, filter=list(SeqgNameFilter("X"),
GeneBiotypeFilter("protein_coding")),
columns=c("gene_name"))

exonsBy Retrieve annotation data from an Ensembl based package

exonsBy 13

Description

Retrieve gene/transcript/exons annotations stored in an Ensembl based database package gener-
ated with the makeEnsembldbPackage function. Parameter filter enables to define filters to re-
trieve only specific data. Alternatively, a global filter might be added to the EnsDb object using the
addFilter method.

Usage

S4 method for signature 'EnsDb'
exons(x, columns = listColumns(x,"exon"),
filter = AnnotationFilterList(), order.by,

n n

order.type = "asc”", return.type = "GRanges")

S4 method for signature 'EnsDb'

exonsBy(x, by = c("tx", "gene"),
columns = listColumns(x, "exon"), filter =
AnnotationFilterList(), use.names = FALSE)

S4 method for signature 'EnsDb'
intronsByTranscript(x, ..., use.names = FALSE)

S4 method for signature 'EnsDb'

exonsByOverlaps(x, ranges, maxgap = -1L, minoverlap = 0L,
type = c("any"”, "start”, "end"), columns = listColumns(x, "exon"),
filter = AnnotationFilterList())

S4 method for signature 'EnsDb'

transcripts(x, columns = listColumns(x, "tx"),
filter = AnnotationFilterList(), order.by, order.type = "asc”,
return.type = "GRanges")

S4 method for signature 'EnsDb'
transcriptsBy(x, by = c("gene"”, "exon"),
columns = listColumns(x, "tx"), filter = AnnotationFilterList())

S4 method for signature 'EnsDb'
transcriptsByOverlaps(x, ranges, maxgap = -1L,
minoverlap = OL, type = c("any”, "start”, "end"),
columns = listColumns(x, "tx"), filter = AnnotationFilterList())

S4 method for signature 'EnsDb'
promoters(x, upstream = 2000, downstream = 200,
use.names = TRUE, ...)

S4 method for signature 'EnsDb'

genes(x, columns = c(listColumns(x, "gene"), "entrezid"),
filter = AnnotationFilterList(), order.by, order.type = "asc”
return.type = "GRanges")

’

S4 method for signature 'EnsDb'
cdsBy(x, by = c("tx", "gene"), columns = NULL,
filter = AnnotationFilterList(), use.names = FALSE)

14 exonsBy

S4 method for signature 'EnsDb'
fiveUTRsByTranscript(x, columns = NULL,
filter = AnnotationFilterList())

S4 method for signature 'EnsDb'
threeUTRsByTranscript(x, columns = NULL,
filter = AnnotationFilterList())

S4 method for signature 'GRangesList'
toSAF(X, ...)

Arguments

(In alphabetic order)

For promoters: additional arguments to be passed to the transcripts method.
For intronsByTranscript: additional arguments such as filter.

by For exonsBy: wheter exons sould be fetched by genes or by transcripts; as in the
corresponding function of the GenomicFeatures package. For transcriptsBy:
whether transcripts should be fetched by genes or by exons; fetching transcripts
by cds as supported by the transcriptsBy method in the GenomicFeatures
package is currently not implemented. For cdsBy: whether cds should be fetched
by transcript of by gene.

columns Columns to be retrieved from the database tables.

Default values for genes are all columns from the gene database table, for
exons and exonsBy the column names of the exon database table table and
for transcript and transcriptBy the columns of the tx data base table (see
details below for more information).

Note that any of the column names of the database tables can be submitted to
any of the methods (use listTables or 1listColumns methods for a complete
list of allowed column names).

For cdsBy: this argument is only supported for for by="tx".

downstream For method promoters: the number of nucleotides downstream of the transcrip-
tion start site that should be included in the promoter region.

filter A filter describing which results to retrieve from the database. Can be a single
object extending AnnotationFilter, an AnnotationFilterlList object com-
bining several such objects or a formula representing a filter expression (see ex-
amples below or AnnotationFilter for more details). Use the supportedFilters
method to get an overview of supported filter classes and related fields.

maxgap For exonsByOverlaps and transcriptsByOverlaps: see exonsByOverlaps
in GenomicFeatures for more information.

minoverlap For exonsByOverlaps and transcriptsByOverlaps: see exonsByOverlaps
in GenomicFeatures for more information.

order.by Character vector specifying the column(s) by which the result should be ordered.
This can be either in the form of "gene_id, seq_name” or c("gene_id", "seqg_name").

order.type If the results should be ordered ascending (asc, default) or descending (desc).

ranges For exonsByOverlaps and transcriptsByOverlaps: a GRanges object speci-
fying the genomic regions.

exonsBy 15

return. type Type of the returned object. Can be either "data.frame”, "DataFrame” or
"GRanges". In the latter case the return object will be a GRanges object with the
GRanges specifying the chromosomal start and end coordinates of the feature
(gene, transcript or exon, depending whether genes, transcripts or exons was
called). All additional columns are added as metadata columns to the GRanges

object.

type For exonsByOverlaps and transcriptsByOverlaps: see exonsByOverlaps
in GenomicFeatures for more information.

upstream For method promoters: the number of nucleotides upstream of the transcription
start site that should be included in the promoter region.

use.names For cdsBy and exonsBy: only for by="gene": use the names of the genes instead
of their IDs as names of the resulting GRangesList.

X For toSAF a GRangesList object. For all other methods an EnsDb instance.

Details

A detailed description of all database tables and the associated attributes/column names is also given
in the vignette of this package. An overview of the columns is given below:

gene_id the Ensembl gene ID of the gene.

gene_name the name of the gene (in most cases its official symbol).

entrezid the NCBI Entrezgene ID of the gene. Note that this column contains a 1ist of Entrezgene
identifiers to accommodate the potential 1:n mapping between Ensembl genes and Entrezgene
IDs.

gene_biotype the biotype of the gene.

gene_seq_start the start coordinate of the gene on the sequence (usually a chromosome).
gene_seq_end the end coordinate of the gene.

seq_name the name of the sequence the gene is encoded (usually a chromosome).
seq_strand the strand on which the gene is encoded

seq_coord_system the coordinate system of the sequence.

tx_id the Ensembl transcript ID.

tx_biotype the biotype of the transcript.

tx_seq_start the chromosomal start coordinate of the transcript.

tx_seq_end the chromosomal end coordinate of the transcript.

tx_cds_seq_start the start coordinate of the coding region of the transcript (NULL for non-coding
transcripts).

tx_cds_seq_end the end coordinate of the coding region.

gc_content the G and C nucleotide content of the transcript’s sequence expressed as a percentage
(i.e. between 0 and 100).

exon_id the ID of the exon. In Ensembl, each exon specified by a unique chromosomal start and
end position has its own ID. Thus, the same exon might be part of several transcripts.

exon_seq_start the chromosomal start coordinate of the exon.
exon_seq_end the chromosomal end coordinate of the exon.
exon_idx the index of the exon in the transcript model. As noted above, an exon can be part of

several transcripts and thus its position inside these transcript might differ.

Many EnsDb databases provide also protein related annotations. See listProteinColumns for
more information.

16 exonsBy

Value

For exons, transcripts and genes, a data.frame, DataFrame or a GRanges, depending on the
value of the return. type parameter. The result is ordered as specified by the parameter order.by
or, if not provided, by seq_name and chromosomal start coordinate, but NOT by any ordering of
values in eventually submitted filter objects.

For exonsBy, transcriptsBy: a GRangesList, depending on the value of the return.type pa-
rameter. The results are ordered by the value of the by parameter.

For exonsByOverlaps and transcriptsByOverlaps: a GRanges with the exons or transcripts
overlapping the specified regions.

For toSAF: a data. frame with column names "GeneID" (the group name from the GRangesList,
i.e. the ID by which the GRanges are split), "Chr" (the seqnames from the GRanges), "Start” (the
start coordinate), "End” (the end coordinate) and "Strand” (the strand).

For cdsBy: a GRangesList with GRanges per either transcript or exon specifying the start and end
coordinates of the coding region of the transcript or gene.

For fiveUTRsByTranscript: a GRangesList with GRanges for each protein coding transcript rep-
resenting the start and end coordinates of full or partial exons that constitute the 5’ untranslated
region of the transcript.

For threeUTRsByTranscript: a GRangesList with GRanges for each protein coding transcript
representing the start and end coordinates of full or partial exons that constitute the 3’ untranslated
region of the transcript.

Methods and Functions

Note that many methods and functions from the GenomicFeatures package can also be used for
EnsDb objects (such as exonicParts, intronicParts etc).

exons Retrieve exon information from the database. Additional columns from transcripts or genes
associated with the exons can be specified and are added to the respective exon annotation.

exonsBy Retrieve exons grouped by transcript or by gene. This function returns a GRangesList as
does the analogous function in the GenomicFeatures package. Using the columns parame-
ter it is possible to determine which additional values should be retrieved from the database.
These will be included in the GRanges object for the exons as metadata columns. The exons
in the inner GRanges are ordered by the exon index within the transcript (if by="tx"), or in-
creasingly by the chromosomal start position of the exon or decreasingly by the chromosomal
end position of the exon depending whether the gene is encoded on the + or - strand (for
by="gene"). The GRanges in the GRangesList will be ordered by the name of the gene or
transcript.

intronsByTranscript Retrieve introns by transcripts. Filters can also be passed to the function. For
more information see the intronsByTranscript method in the GenomicFeatures package.

exonsByOverlaps Retrieve exons overlapping specified genomic ranges. For more information
see the exonsByOverlaps method in the GenomicFeatures package. The functionality is to
some extent similar and redundant to the exons method in combination with GRangesFilter
filter.

transcripts Retrieve transcript information from the database. Additional columns from genes or
exons associated with the transcripts can be specified and are added to the respective transcript
annotation.

transcriptsBy Retrieve transcripts grouped by gene or exon. This function returns a GRangesList
as does the analogous function in the GenomicFeatures package. Using the columns param-
eter it is possible to determine which additional values should be retrieved from the database.

exonsBy 17

These will be included in the GRanges object for the transcripts as metadata columns. The
transcripts in the inner GRanges are ordered increasingly by the chromosomal start position
of the transcript for genes encoded on the + strand and in a decreasing manner by the chro-
mosomal end position of the transcript for genes encoded on the - strand. The GRanges in the
GRangesList will be ordered by the name of the gene or exon.

transcriptsByOverlaps Retrieve transcripts overlapping specified genomic ranges. For more in-
formation see transcriptsByOverlaps method in the GenomicFeatures package. The func-
tionality is to some extent similar and redundant to the transcripts method in combination
with GRangesFilter filter.

promoters Retrieve promoter information from the database. Additional columns from genes or
exons associated with the promoters can be specified and are added to the respective promoter
annotation.

genes Retrieve gene information from the database. Additional columns from transcripts or exons
associated with the genes can be specified and are added to the respective gene annotation.
Note that column "entrezid” is a list of Entrezgene identifiers to accomodate the potential
1:n mapping between Ensembl genes and Entrezgene IDs.

cdsBy Returns the coding region grouped either by transcript or by gene. Each element in the
GRangesList represents the cds for one transcript or gene, with the individual ranges corre-
sponding to the coding part of its exons. For by="tx" additional annotation columns can be
added to the individual GRanges (in addition to the default columns exon_id and exon_rank).
Note that the GRangesList is sorted by its names.

fiveUTRsByTranscript Returns the 5 untranslated region for protein coding transcripts.
threeUTRsByTranscript Returns the 3’ untranslated region for protein coding transcripts.

toSAF Reformats a GRangesList objectinto adata. frame corresponding to a standard SAF (Sim-
plified Annotation Format) file (i.e. with column names "GeneID", "Chr", "Start”, "End"
and "Strand”). Note: this method makes only sense on a GRangesList that groups features
(exons, transcripts) by gene.

Note

Ensembl defines genes not only on standard chromosomes, but also on patched chromosomes and
chromosome variants. Thus it might be advisable to restrict the queries to just those chromosomes
of interest (e.g. by specifying a SeqNameFilter(c(1:22, "X", "Y"))). In addition, also so called
LRG genes (Locus Reference Genomic) are defined in Ensembl. Their gene id starts with LRG
instead of ENS for Ensembl genes, thus, a filter can be applied to specifically select those genes or
exclude those genes (see examples below).

Depending on the value of the global option "ucscChromosomeNames” (use getOption(ucscChromosomeNames,
FALSE) to get its value or option(ucscChromosomeNames=TRUE) to change its value) the se-
quence/chromosome names of the returned GRanges objects or provided in the returned data. frame

or DataFrame correspond to Ensembl chromosome names (if value is FALSE) or UCSC chromosome

names (if TRUE). This ensures a better integration with the Gviz package, in which this option is set

by default to TRUE.

Note

While it is possible to request values from a column "tx_name” (with the columns argument), no
such column is present in the database. The returned values correspond to the ID of the transcripts.

Author(s)

Johannes Rainer, Tim Triche

18 exonsBy

See Also

supportedFilters to get an overview of supported filters. makeEnsembldbPackage, 1istColumns,
lengthOf

addFilter for globally adding filters to an EnsDb object.

Examples

library(EnsDb.Hsapiens.v86)
edb <- EnsDb.Hsapiens.v86

fizizisiie] genes

#H#

Get all genes encoded on chromosome Y

AllY <- genes(edb, filter = SeqNameFilter("Y"))
AllY

Return the result as a DataFrame; also, we use a filter expression here
to define which features to extract from the database.
AllY.granges <- genes(edb,
filter = ~ seqg_name == "Y",
return.type="DataFrame")
AllY.granges

Include all transcripts of the gene and their chromosomal
coordinates, sort by chrom start of transcripts and return as
GRanges.
AllY.granges.tx <- genes(edb,
filter = SeqNameFilter("Y"),
columns = c("gene_id", "seq_name”,
"seq_strand”, "tx_id", "tx_biotype”,
"tx_seq_start”, "tx_seq_end"),
order.by = "tx_seq_start")
AllY.granges. tx

###HH#H transcripts

##

Get all transcripts of a gene

Tx <- transcripts(edb,
filter = GeneldFilter ("ENSG00000184895"),
order.by = "tx_seqg_start"”)

Tx

Get all transcripts of two genes along with some information on the
gene and transcript
Tx <- transcripts(edb,
filter = GeneldFilter(c("ENSG0Q000184895",
"ENSGQ0000092377")),
columns = c("gene_id", "gene_seqg_start"”, "gene_seq_end”,
"gene_biotype"”, "tx_biotype"))
Tx

it promoters
#H#
Get the bona-fide promoters (2k up- to 20@0nt downstream of TSS)

exonsBy

promoters(edb, filter = GeneldFilter(c("ENSG0Q00Q184895",
"ENSGQ0000092377")))

iziziizie exons

#H#

Get all exons of protein coding transcript for the gene ENSG0Q000184895
Exon <- exons(edb,

filter = ~ gene_id == "ENSG00000184895" &
tx_biotype == "protein_coding"”,
columns = c("gene_id", "gene_seq_start”, "gene_seq_end",

"tx_biotype"”, "gene_biotype"))
Exon

fiziziziand exonsBy
##
Get all exons for transcripts encoded on chromosomes X and Y.
ETx <- exonsBy(edb, by = "tx",
filter = SegNameFilter(c("X", "Y")))

ETx
Get all exons for genes encoded on chromosome 1 to 22, X and Y and
include additional annotation columns in the result
EGenes <- exonsBy(edb, by = "gene”,

filter = SegNameFilter(c("X", "Y")),

columns = c("gene_biotype"”, "gene_name"))
EGenes

Note that this might also contain "LRG" genes.
length(grep(names(EGenes), pattern="LRG"))

to fetch just Ensemblgenes, use an GeneldFilter with value

"ENS%" and condition "like”

eg <- exonsBy(edb, by = "gene",
filter = AnnotationFilterList(SegNameFilter(c("X", "Y")),

GeneldFilter("ENS", "startsWith")),

columns = c("gene_biotype"”, "gene_name"))

eg

length(grep(names(eg), pattern="LRG"))

H#iHHEH transcriptsBy
#H#
TGenes <- transcriptsBy(edb, by = "gene”,
filter = SegNameFilter(c("X", "Y")))
TGenes

convert this to a SAF formatted data.frame that can be used by the
featureCounts function from the Rsubreader package.
head (toSAF (TGenes))

#i#### transcriptsByOverlaps

##

ir <- IRanges(start = c(2654890, 2709520, 28111770),
end = c(2654900, 2709550, 28111790))

gr <- GRanges(rep("Y", length(ir)), ir)

19

20

Retrieve all transcripts overlapping any of the regions.

txs <- transcriptsByOverlaps(edb, gr)
txs

Alternatively, use a GRangesFilter
grf <- GRangesFilter(gr, type = "any")
txs <- transcripts(edb, filter = grf)
txs

#iHHH cdsBy

Get the coding region for all transcripts on chromosome Y.
Specifying also additional annotation columns (in addition to the default

exon_id and exon_rank).
cds <- cdsBy(edb, by = "tx", filter = SegNameFilter("Y"),
columns = c("tx_biotype”, "gene_name"))

H#itHE the 5' untranslated regions:

fUTRs <- fiveUTRsByTranscript(edb, filter = SeqNameFilter("Y"))

Filter-classes

H#itHE the 3' untranslated regions with additional column gene_name.
tUTRs <- threeUTRsByTranscript(edb, filter = SegNameFilter("Y"),
columns = "gene_name")
Filter-classes Filters supported by ensembldb

Description

ensembldb supports most of the filters from the AnnotationFilter package to retrieve specific con-
tent from EnsDb databases. These filters can be passed to the methods such as genes() with the
filter parameter or can be added as a global filter to an EnsDb object (see addFilter () for more
details). Use supportedFilters() to get an overview of all filters supported by EnsDb object.

seqnames: accessor for the sequence names of the GRanges object within a GRangesFilter.

segnames: accessor for the seqlevels of the GRanges object within a GRangesFilter.

supportedFilters returns a data. frame with the names of all filters and the corresponding field

supported by the EnsDb object.

Usage

OnlyCodingTxFilter()

n n

ProtDomIdFilter(value, condition = "==

ProteinDomainIdFilter(value, condition = "==")

n n

ProteinDomainSourceFilter(value, condition = "==

!

UniprotDbFilter(value, condition = "=="

Filter-classes 21

n n

UniprotMappingTypeFilter(value, condition = "==

n n

TxSupportLevelFilter(value, condition = "==

TxIsCanonicalFilter(value, condition = "==")

n n

TxExternalNameFilter(value, condition = "==

S4 method for signature 'GRangesFilter'
segnames (x)

S4 method for signature 'GRangesFilter'
seqlevels(x)

S4 method for signature 'EnsDb'

supportedFilters(object, ...)
Arguments

value The value(s) for the filter. For GRangesFilter it has to be a GRanges object.

condition character (1) specifying the condition of the filter. For character-based fil-
ters (such as GenelIdFilter) "==", "!=", "startsWith" and "endsWith" are
supported. Allowed values for integer-based filters (such as GeneStartFilter)
are H::H’ ll!=H, ll<ll' H<:H’ H>ll and H>:H.

X For segnames, seqlevels: a GRangesFilter object.

object For supportedFilters: an EnsDb object.

Details

For supportedFilters: currently not used.

ensembldb supports the following filters from the AnnotationFilter package:

GeneIdFilter: filter based on the Ensembl gene ID.

GeneNameFilter: filter based on the name of the gene as provided Ensembl. In most cases
this will correspond to the official gene symbol.

SymbolFilter filter based on the gene names. EnsDb objects don’t have a dedicated symbol
column, the filtering is hence based on the gene names.

GeneBiotype: filter based on the biotype of genes (e.g. "protein_coding").
GeneStartFilter: filter based on the genomic start coordinate of genes.
GeneEndFilter: filter based on the genomic end coordinate of genes.
EntrezidFilter: filter based on the genes’ NCBI Entrezgene ID.
TxIdFilter: filter based on the Ensembld transcript ID.

TxNameFilter: to be compliant with TxDb object from the GenomicFeatures package tx_name
in fact represents the Ensembl transcript ID. Thus, the the tx_id and tx_name columns
contain the same information and the TxIdFilter and TxNameFilter are in fact identi-
cal. The names of transcripts (i.e. the external name field in Ensembl are stored in column
"tx_external_name"” (and which can be filtered using the TxExternalNameFilter.

TxBiotypeFilter: filter based on the transcripts’ biotype.

TxStartFilter: filter based on the genomic start coordinate of the transcripts.

Filter-classes

TxEndFilter: filter based on the genonic end coordinates of the transcripts.

ExonIdFilter: filter based on Ensembl exon IDs.

* ExonRankFilter: filter based on the index/rank of the exon within the transcrips.
* ExonStartFilter: filter based on the genomic start coordinates of the exons.

* ExonEndFilter: filter based on the genomic end coordinates of the exons.

* GRangesFilter: Allows to fetch features within or overlapping specified genomic region(s)/range(s).

This filter takes a GRanges object as input and, if type = "any” (the default) will restrict re-

sults to features (genes, transcripts or exons) that are partially overlapping the region. Alter-
natively, by specifying condition = "within" it will return features located within the range.

In addition, the GRangesFilter condition = "start"”, condition = "end"” and condition

= "equal” filtering for features with the same start or end coordinate or that are equal to the
GRanges.

Note that the type of feature on which the filter is applied depends on the method that is
called, i.e. genes() will filter on the genomic coordinates of genes, transcripts() on those

of transcripts and exons () on exon coordinates.

Calls to the methods exonsBy (), cdsBy () and transcriptsBy() use the start and end coor-

n o n

dinates of the feature type specified with argument by (i.e. "gene”, "transcript” or "exon")
for the filtering.

If the specified GRanges object defines multiple regions, all features within (or overlapping)
any of these regions are returned.

Chromosome names/seqnames can be provided in UCSC format (e.g. "chrX") or Ensembl
format (e.g. "X"); see seqlevelsStyle() for more information.

e SegNameFilter: filter based on chromosome names.

* SeqStrandFilter: filter based on the chromosome strand. The strand can be specified with
value = "+", value = "-", value = -1 or value = 1.

* ProteinIdFilter: filter based on Ensembl protein IDs. This filter is only supported if the
EnsDb provides protein annotations; use the hasProteinData() method to check.

* UniprotFilter: filter based on Uniprot IDs. This filter is only supported if the EnsDb pro-
vides protein annotations; use the hasProteinData() method to check.

In addition, the following filters are defined by ensembldb:

* TxExternalNameFilter: filter based on the transcript’s external name (if available).

* TxSupportlevel: allows to filter results using the provided transcript support level. Support
levels for transcripts are defined by Ensembl based on the available evidences for a transcript
with 1 being the highest evidence grade and 5 the lowest level. This filter is only supported on
EnsDb databases with a db schema version higher 2.1.

* UniprotDbFilter: allows to filter results based on the specified Uniprot database name(s).

* UniprotMappingTypeFilter: allows to filter results based on the mapping method/type that
was used to assign Uniprot IDs to Ensembl protein IDs.

e ProtDomIdFilter, ProteinDomainIdFilter: allows to retrieve entries from the database
matching the provided filter criteria based on their protein domain ID (protein_domain_id).

* ProteinDomainSourceFilter: filter results based on the source (database/method) defining
the protein domain (e.g. "pfam"”).

* OnlyCodingTxFilter: allows to retrieve entries only for protein coding transcripts, i.e. tran-
scripts with a CDS. This filter does not take any input arguments.

Filter-classes 23

Value

For ProtDomIdFilter: A ProtDomIdFilter object.

For ProteinDomainIdFilter: A ProteinDomainIdFilter object.

For ProteinDomainSourceFilter: A ProteinDomainSourceFilter object.
For UniprotDbFilter: A UniprotDbFilter object.

For UniprotMappingTypeFilter: A UniprotMappingTypeFilter object.
For TxSupportLevel: A TxSupportLevel object.

For TxIsCanonicalFilter: A TxIsCanonicalFilter object.

For TxExternalNameFilter: A TxExternalNameFilter object.

For supportedFilters: adata. frame with the names and the corresponding field of the supported
filter classes.

Note

For users of ensembldb version < 2.0: in the GRangesFilter from the AnnotationFilter package
the condition parameter was renamed to type (to be consistent with the IRanges package). In
addition, condition = "overlapping” is no longer recognized. To retrieve all features overlapping
the range type = "any" has to be used.

Protein annotation based filters can only be used if the EnsDb database contains protein annotations,
i.e. if hasProteinData is TRUE. Also, only protein coding transcripts will have protein annota-
tions available, thus, non-coding transcripts/genes will not be returned by the queries using protein
annotation filters.

Author(s)

Johannes Rainer

See Also

supportedFilters() to list all filters supported for EnsDb objects.

listUniprotDbs() and listUniprotMappingTypes() to list all Uniprot database names respec-
tively mapping method types from the database.

GeneIdFilter() in the AnnotationFilter package for more details on the filter objects.
genes(), transcripts(), exons(), listGenebiotypes(), listTxbiotypes().
addFilter() and filter () for globally adding filters to an EnsDb.

Examples

Create a filter that could be used to retrieve all informations for
the respective gene.

gif <- GeneldFilter("ENSG00000Q12817")

gif

Create a filter for a chromosomal end position of a gene

sef <- GeneEndFilter (10000, condition = ">")

sef

For additional examples see the help page of "genes”.

24

Filter-classes

Example for GRangesFilter:

retrieve all genes overlapping the specified region

grf <- GRangesFilter(GRanges("11", ranges = IRanges(114129278, 114129328),
strand = "+"), type = "any")

library(EnsDb.Hsapiens.v86)

edb <- EnsDb.Hsapiens.v86

genes(edb, filter = grf)

Get also all transcripts overlapping that region.
transcripts(edb, filter = grf)

Retrieve all transcripts for the above gene
gn <- genes(edb, filter = grf)
txs <- transcripts(edb, filter = GeneNameFilter(gn$gene_name))
Next we simply plot their start and end coordinates.
plot(3, 3, pch=NA, xlim=c(start(gn), end(gn)), ylim=c(@, length(txs)),
yaxt="n", ylab="")
Highlight the GRangesFilter region
rect(xleft=start(grf), xright=end(grf), ybottom=0, ytop=length(txs),
col="red", border="red")
for(i in 1:length(txs)){
current <- txs[i]
rect(xleft=start(current), xright=end(current), ybottom=i-0.975, ytop=i-0.125, border="grey")
text(start(current), y=i-0.5,pos=4, cex=0.75, labels=current$tx_id)
3
Thus, we can see that only 4 transcripts of that gene are indeed
overlapping the region.

No exon is overlapping that region, thus we're not getting anything
exons(edb, filter = grf)

Example for ExonRankFilter
Extract all exons 1 and (if present) 2 for all genes encoded on the
Y chromosome
exons(edb, columns = c("tx_id", "exon_idx"),
filter=1list(SegNameFilter("Y"),
ExonRankFilter(3, condition = "<")))

Get all transcripts for the gene SKA2
transcripts(edb, filter = GeneNameFilter("”SKA2"))

Which is the same as using a SymbolFilter
transcripts(edb, filter = SymbolFilter("”SKA2"))

Create a ProteinIdFilter:
pf <- ProteinIdFilter ("ENSPQ0000362111")
pf
Using this filter would retrieve all database entries that are associated
with a protein with the ID "ENSPQQ000362111"
if (hasProteinData(edb)) {
res <- genes(edb, filter = pf)
res

genomeToProtein 25

UniprotFilter:
uf <- UniprotFilter("060762")
Get the transcripts encoding that protein:
if (hasProteinData(edb)) {
transcripts(edb, filter = uf)
The mapping Ensembl protein ID to Uniprot ID can however be 1:n:
transcripts(edb, filter = TxIdFilter("ENSTQ0000371588"),
columns = c("protein_id", "uniprot_id"))

3

ProtDomIdFilter:
pdf <- ProtDomIdFilter("PF0@335")
Also here we could get all transcripts related to that protein domain
if (hasProteinData(edb)) {
transcripts(edb, filter = pdf, columns = "protein_id")

}

genomeToProtein Map genomic coordinates to protein coordinates

Description

Map positions along the genome to positions within the protein sequence if a protein is encoded
at the location. The provided coordinates have to be completely within the genomic position of an
exon of a protein coding transcript (see genomeToTranscript() for details). Also, the provided
positions have to be within the genomic region encoding the CDS of a transcript (excluding its stop
codon; soo transcriptToProtein() for details).

For genomic positions for which the mapping failed an IRanges with negative coordinates (i.e. a
start position of -1) is returned.

Usage

genomeToProtein(x, db, proteins = NA, exons = NA, transcripts = NA)

Arguments
X GRanges with the genomic coordinates that should be mapped to within-protein
coordinates.
db EnsDb object.
proteins DFrame object generated by proteins().
exons CompressedGRangesList object generated by exonsBy () where by = "tx’.
transcripts GRanges object generated by transcripts().
Details

genomeToProtein combines calls to genomeToTranscript() and transcriptToProtein().

26 genomeToProtein

Value

An IRangesList with each element representing the mapping of one of the GRanges in x (i.e.
the length of the IRangesList is length(x)). Each element in IRanges provides the coordinates
within the protein sequence, names being the (Ensembl) IDs of the protein. The ID of the transcript
encoding the protein, the ID of the exon within which the genomic coordinates are located and its
rank in the transcript are provided in metadata columns "tx_id", "exon_id" and "exon_rank".
Metadata columns "cds_ok" indicates whether the length of the CDS matches the length of the en-
coded protein. Coordinates for which cds_ok = FALSE should be taken with caution, as they might
not be correct. Metadata columns "seq_start”, "seq_end", "seq_name"” and "seq_strand" pro-
vide the provided genomic coordinates.

For genomic coordinates that can not be mapped to within-protein sequences an IRanges with a
start coordinate of -1 is returned.

Author(s)

Johannes Rainer

See Also

Other coordinate mapping functions: cdsToTranscript(), genomeToTranscript(), proteinToGenome(),

proteinToTranscript(), transcriptToCds(), transcriptToGenome(), transcriptToProtein()

Examples

library(EnsDb.Hsapiens.v86)
Restrict all further queries to chromosome x to speed up the examples
edbx <- filter(EnsDb.Hsapiens.v86, filter = ~ seg_name == "X")

In the example below we define 4 genomic regions:

630898: corresponds to the first nt of the CDS of ENST00000381578

644636: last nt of the CDS of ENSTQ0000381578

644633: last nt before the stop codon in ENSTQ0000381578

634829: position within an intron.

gnm <- GRanges("X", IRanges(start = c(630898, 644636, 644633, 634829),
width = ¢(5, 1, 1, 3)))

res <- genomeToProtein(gnm, edbx)

The result is an IRangesList with the same length as gnm
length(res)
length(gnm)

The first element represents the mapping for the first GRanges:

the coordinate is mapped to the first amino acid of the protein(s).

The genomic coordinates can be mapped to several transcripts (and hence
proteins).

res[[1]]

The stop codon is not translated, thus the mapping for the second
GRanges fails
res[[2]]

The 3rd GRanges is mapped to the last amino acid.
res[[3]1]

Mapping of intronic positions fail

genomeToTranscript 27

res[[4]]

Meanwhile, this function can be called in parallel processes if you preload
the protein, exons and transcripts database.

proteins <- proteins(edbx)
exons <- exonsBy(edbx)

transcripts <- transcripts(edbx)

genomeToProtein(gnm, edbx, proteins = proteins, exons = exons, transcripts = transcripts)

genomeToTranscript Map genomic coordinates to transcript coordinates

Description

genomeToTranscript maps genomic coordinates to positions within the transcript (if at the pro-
vided genomic position a transcript is encoded). The function does only support mapping of ge-
nomic coordinates that are completely within the genomic region at which an exon is encoded. If
the genomic region crosses the exon boundary an empty IRanges is returned. See examples for
details.

Usage

genomeToTranscript(x, db)

Arguments
X GRanges object with the genomic coordinates that should be mapped.
db EnsDb object or pre-loaded exons ’CompressedGRangesList’ object using ex-
onsBy().
Details

The function first retrieves all exons overlapping the provided genomic coordinates and identifies
then exons that are fully containing the coordinates in x. The transcript-relative coordinates are
calculated based on the relative position of the provided genomic coordinates in this exon.

Value

An IRangesList with length equal to length(x). Each element providing the mapping(s) to po-
sition within any encoded transcripts at the respective genomic location as an IRanges object. An
IRanges with negative start coordinates is returned, if the provided genomic coordinates are not
completely within the genomic coordinates of an exon.

The ID of the exon and its rank (index of the exon in the transcript) are provided in the result’s
IRanges metadata columns as well as the genomic position of x.

Note

The function throws a warning and returns an empty IRanges object if the genomic coordinates can
not be mapped to a transcript.

28 genomeToTranscript

Author(s)

Johannes Rainer

See Also

Other coordinate mapping functions: cdsToTranscript(), genomeToProtein(), proteinToGenome(),
proteinToTranscript(), transcriptToCds(), transcriptToGenome(), transcriptToProtein()

Examples

library(EnsDb.Hsapiens.v86)

Subsetting the EnsDb object to chromosome X only to speed up execution
time of examples
edbx <- filter(EnsDb.Hsapiens.v86, filter = ~ seg_name == "X")

Define a genomic region and calculate within-transcript coordinates
gnm <- GRanges("X:107716399-107716401")

res <- genomeToTranscript(gnm, edbx)

Result is an IRanges object with the start and end coordinates within
each transcript that has an exon at the genomic range.

res

An IRanges with negative coordinates is returned if at the provided
position no exon is present. Below we use the same coordinates but
specify that the coordinates are on the forward (+) strand

gnm <- GRanges("X:107716399-107716401:+")

genomeToTranscript(gnm, edbx)

Next we provide multiple genomic positions.
gnm <- GRanges("X", IRanges(start = c(644635, 107716399, 107716399),
end = c(644639, 107716401, 107716401)), strand = c("x", "x",6 "+"))

The result of the mapping is an IRangesList each element providing the
within-transcript coordinates for each input region
genomeToTranscript(gnm, edbx)

If you are tring to calculate within-transcript coordinates of a huge
list of genomic region, you shall use pre-loaded exons GRangesList to
replace the SQLite db edbx

Below is just a lazy demo of querying multiple genomic region
library(parallel)

gnm <- rep(GRanges("X:107715899-107715901"),10)
exons <- exonsBy(EnsDb.Hsapiens.v86)
You can pre-define the exons region to further accelerate the code.
exons <- exonsBy/(
EnsDb.Hsapiens.v86, by = "tx",
filter = AnnotationFilterList(

SeqNameFilter(as.character(unique(segnames(gnm)))),
GeneStartFilter(max(end(gnm)), condition = "<="),

getGeneRegionTrackForGviz 29

GeneEndFilter(min(start(gnm)), condition = ">=")

)

only run in Linux

res_temp <- mclapply(1:10, function(ind){

genomeToTranscript(gnm[ind], exons)

3}, mc.preschedule = TRUE, mc.cores = detectCores() - 1)

res <- do.call(c,res_temp)

cl <- makeCluster(detectCores() - 1)
clusterExport(cl,c('genomeToTranscript', 'gnm', 'exons"'))

res <- parlLapply(cl,1:10,function(ind){
genomeToTranscript(gnm[ind], exons)

»

stopCluster(cl)

getGeneRegionTrackForGviz
Utility functions

Description

Utility functions integrating EnsDb objects with other Bioconductor packages.

Usage

S4 method for signature 'EnsDb'
getGeneRegionTrackForGviz(x,
filter = AnnotationFilterList(), chromosome = NULL,
start = NULL, end = NULL, featurels = "gene_biotype")

Arguments

(In alphabetic order)

chromosome For getGeneRegionTrackForGviz: optional chromosome name to restrict the
returned entry to a specific chromosome.

end For getGeneRegionTrackForGviz: optional chromosomal end coordinate spec-
ifying, together with start, the chromosomal region from which features should
be retrieved.

featurels For getGeneRegionTrackForGviz: whether the gene ("gene_biotype”) or the
transcript biotype ("tx_biotype") should be returned in column "feature”.

filter A filter describing which results to retrieve from the database. Can be a single
object extending AnnotationFilter, an AnnotationFilterList object com-
bining several such objects or a formula representing a filter expression (see
examples below or AnnotationFilter for more details).

start For getGeneRegionTrackForGviz: optional chromosomal start coordinate spec-

ifying, together with end, the chromosomal region from which features should
be retrieved.

X For toSAF a GRangesList object. For all other methods an EnsDb instance.

30

Value

getGenomeFaFile

For getGeneRegionTrackForGviz: see method description above.

Methods and Functions

getGeneRegionTrackForGviz Retrieve a GRanges object with transcript features from the EnsDb

that can be used directly in the Gviz package to create a GeneRegionTrack. Using the filter,
chromosome, start and end arguments it is possible to fetch specific features (e.g. lincRNAs)
from the database.

If chromosome, start and end is provided the function internally first retrieves all transcripts
that have an exon or an intron in the specified chromosomal region and subsequently fetch all
of these transcripts. This ensures that all transcripts of the region are returned, even those that
have only an intron in the region.

non

The function returns a GRanges object with additional annotation columns "feature”, "gene”,
"exon", "exon_rank"”, "trancript”, "symbol” specifying the feature type (either gene or
transcript biotype), the (Ensembl) gene ID, the exon ID, the rank/index of the exon in the
transcript, the transcript ID and the gene symbol/name.

Author(s)

Johannes Rainer

See Also

transcripts

Examples

library(EnsDb.Hsapiens.v86)
edb <- EnsDb.Hsapiens.v86
#i#HH#H getGeneRegionTrackForGviz

#it

Get all genes encoded on chromosome Y in the specifyed region.
AllY <- getGeneRegionTrackForGviz(edb, chromosome = "Y", start = 5131959,

end = 7131959)

We could plot this now using plotTracks(GeneRegionTrack(AllY))

getGenomeFaFile Functionality related to DNA/RNA sequences

Description

Utility functions related to RNA/DNA sequences, such as extracting RNA/DNA sequences for fea-
tures defined in Ensb.

getGenomeFaFile 31

Usage
S4 method for signature 'EnsDb'
getGenomeFaFile(x, pattern="dna.toplevel.fa")

S4 method for signature 'EnsDb'
getGenomeTwoBitFile(x)

Arguments
(In alphabetic order)
pattern For method getGenomeFaFile: the pattern to be used to identify the fasta file
representing genomic DNA sequence.
X An EnsDb instance.
Value

For getGenomeFaFile: a FaFile-class object with the genomic DNA sequence.

For getGenomeTwoBitFile: a TwoBitFile-class object with the genome sequence.

Methods and Functions

getGenomeFaFile Returns a FaFile-class (defined in Rsamtools) with the genomic sequence
of the genome build matching the Ensembl version of the EnsDb object. The file is retrieved
using the AnnotationHub package, thus, at least for the first invocation, an internet connection
is required to locate and download the file; subsequent calls will load the cached file instead.
If no fasta file for the actual Ensembl version is available the function tries to identify a file
matching the species and genome build version of the closest Ensembl release and returns that
instead. See the vignette for an example to work with such files.

getGenomeTwoBitFile Returns a TwoBitFile-class (defined in the rtracklayer package) with
the genomeic sequence of the genome build matching the Ensembl version of the EnsDb object.
The file is retrieved from AnnotationHub and hence requires (at least for the first query) an
active internet connection to download the respective resource. If no DNA sequence matching
the Ensembl version of x is available, the function tries to find the genomic sequence of the
best matching genome build (closest Ensembl release) and returns that.

See the ensembldb vignette for details.

Author(s)

Johannes Rainer

See Also

transcripts exonsBy

Examples

Loading an EnsDb for Ensembl version 86 (genome GRCh38):
library(EnsDb.Hsapiens.v86)
edb <- EnsDb.Hsapiens.v86

Not run:

32 hasProteinData,EnsDb-method

Retrieve a TwoBitFile with the gneomic DNA sequence matching the organism,
genome release version and, if possible, the Ensembl version of the

EnsDb object.

Dna <- getGenomeTwoBitFile(edb)

Extract the transcript sequence for all transcripts encoded on chromosome
Y.

#t#textractTranscriptSeqs(Dna, edb, filter=SegNameFilter("Y"))

End(Not run)

hasProteinData,EnsDb-method
Determine whether protein data is available in the database

Description

Determines whether the EnsDb provides protein annotation data.

Usage
S4 method for signature 'EnsDb'
hasProteinData(x)
Arguments
X The EnsDb object.
Value

A logical of length one, TRUE if protein annotations are available and FALSE otherwise.

Author(s)

Johannes Rainer

See Also

listTables

Examples

library(EnsDb.Hsapiens.v86)
Does this database/package have protein annotations?
hasProteinData(EnsDb.Hsapiens.v86)

lengthOf 33

lengthOf Calculating lengths of features

Description

These methods allow to calculate the lengths of features (transcripts, genes, CDS, 3’ or 5° UTRs)
defined in an EnsDb object or database.

Usage

S4 method for signature 'EnsDb'
lengthOf (x, of="gene", filter = AnnotationFilterList())

Arguments
(In alphabetic order)
filter A filter describing which results to retrieve from the database. Can be a single
object extending AnnotationFilter, an AnnotationFilterlList object com-
bining several such objects or a formula representing a filter expression (see
examples below or AnnotationFilter for more details).
of for lengthOf: whether the length of genes or transcripts should be retrieved
from the database.
X For lengthOf: either an EnsDb or a GRangesList object. For all other methods
an EnsDb instance.
Value

For lengthOf: see method description above.

Methods and Functions

lengthOf Retrieve the length of genes or transcripts from the database. The length is the sum of
the lengths of all exons of a transcript or a gene. In the latter case the exons are first reduced
so that the length corresponds to the part of the genomic sequence covered by the exons.

Note: in addition to this method, also the transcriptLengths function in the GenomicFeatures
package can be used.

Author(s)

Johannes Rainer

See Also

exonsBy transcripts transcriptlLengths

34 listEnsDbs

Examples

library(EnsDb.Hsapiens.v86)
edb <- EnsDb.Hsapiens.v86

#iHHHE lengthOf

##

length of a specific gene.

lengthOf (edb, filter = GeneldFilter ("ENSG00000000003"))

length of a transcript
lengthOf (edb, of = "tx", filter = TxIdFilter("ENST0Q000494424"))

Average length of all protein coding genes encoded on chromosomes X
mean(lengthOf (edb, of = "gene”,
filter = ~ gene_biotype == "protein_coding” &
seq_name == "X"))

Average length of all snoRNAs
mean(lengthOf (edb, of = "gene",
filter = ~ gene_biotype == "snoRNA" &
seg_name == "X"))

#i#H#H## transcriptlengths

##

Calculate the length of transcripts encoded on chromosome Y, including

length of the CDS, 5' and 3' UTR.

len <- transcriptLengths(edb, with.cds_len = TRUE, with.utr5_len = TRUE,
with.utr3_len = TRUE, filter = SegNameFilter("Y"))

head(len)

listEnsDbs List EnsDb databases in a MariaDB/MySQL server

Description

The 1istEnsDbs function lists EnsDb databases in a MariaDB/MySQL server.

Usage

listEnsDbs(dbcon, host, port, user, pass)

Arguments
dbcon A DBIConnection object providing access to a MariaDB/MySQL database. Ei-
ther dbcon or all of the other arguments have to be specified.
host Character specifying the host on which the MySQL server is running.
port The port of the MariaDB/MySQL server (usually 3306).
user The username for the MariaDB/MySQL server.

pass The password for the MariaDB/MySQL server.

makeEnsembldbPackage 35

Details

The use of this function requires the RMariaDB package to be installed. In addition user credentials
to access a MySQL server (with already installed EnsDb databases), or with write access are re-
quired. For the latter EnsDb databases can be added with the useMySQL method. EnsDb databases
in a MariaDB/MySQL server follow the same naming conventions than EnsDb packages, with the
exception that the name is all lower case and that each "." is replaced by "_"

Value
A data.frame listing the database names, organism name and Ensembl version of the EnsDb
databases found on the server.

Author(s)

Johannes Rainer

See Also

useMySQL

Examples

Not run:

library(RMariaDB)

dbcon <- dbConnect(MariaDB(), host = "localhost”, user = my_user, pass = my_pass)
listEnsDbs(dbcon)

End(Not run)

makeEnsembldbPackage Generating a Ensembl annotation package from Ensembl

Description

The functions described on this page allow to build EnsDb annotation objects/databases from En-
sembl annotations. The most complete set of annotations, which include also the NCBI Entrezgene
identifiers for each gene, can be retrieved by the functions using the Ensembl Perl API (i.e. func-
tions fetchTablesFromEnsembl, makeEnsemb1lSQLiteFromTables). Alternatively the functions
ensDbFromAH, ensDbFromGRanges, ensDbFromGff and ensDbFromGtf can be used to build EnsDb
objects using GFF or GTF files from Ensembl, which can be either manually downloaded from
the Ensembl ftp server, or directly form within R using AnnotationHub. The generated SQLite
database can be packaged into an R package using the makeEnsembldbPackage.

Usage

ensDbFromAH(ah, outfile, path, organism, genomeVersion, version)

ensDbFromGRanges(x, outfile, path, organism, genomeVersion,
version, ...)

ensDbFromGff(gff, outfile, path, organism, genomeVersion,
version, ...)

36

makeEnsembldbPackage

ensDbFromGtf(gtf, outfile, path, organism, genomeVersion,

version, ...)

fetchTablesFromEnsembl (version, ensemblapi, user="anonymous",

nn

host="ensembldb.ensembl.org”, pass="",
port=5306, species="human")

makeEnsemb1SQLiteFromTables(path=".", dbname)

makeEnsembldbPackage(ensdb, version, maintainer, author,

Arguments

destDir=".", license="Artistic-2.0")

(in alphabetical order)

ah

author

dbname

destDir
ensdb

ensemblapi

genomeVersion

gff

gtf

host
license
maintainer

organism

outfile

pass

path

port
species

user

For ensDbFromAH: an AnnotationHub object representing a single resource (i.e.
GTF file from Ensembl) from AnnotationHub.

The author of the package.

The name for the database (optional). By default a name based on the species
and Ensembl version will be automatically generated (and returned by the func-
tion).

Where the package should be saved to.

The file name of the SQLite database generated by makeEnsemblSQLiteFromTables.

The path to the Ensembl perl API installed locally on the system. The Ensembl
perl API version has to fit the version.

For ensDbFromAH, ensDbFromGtf and ensDbFromGff: the version of the genome
(e.g. "GRCh37"). If not provided the function will try to guess it from the file
name (assuming file name convention of Ensembl GTF files).

The GFF file to import.

The GTF file name.

The hostname to access the Ensembl database.
The license of the package.

The maintainer of the package.

For ensDbFromAH, ensDbFromGff and ensDbFromGtf: the organism name (e.g.
"Homo_sapiens”). If not provided the function will try to guess it from the file
name (assuming file name convention of Ensembl GTF files).

The desired file name of the SQLite file. If not provided the name of the GTF
file will be used.

The password for the Ensembl database.

The directory in which the tables retrieved by fetchTablesFromEnsembl or the
SQLite database file generated by ensDbFromGtf are stored.

The port to be used to connect to the Ensembl database.
The species for which the annotations should be retrieved.

The username for the Ensembl database.

makeEnsembldbPackage 37

version For fetchTablesFromEnsembl, ensDbFromGRanges and ensDbFromGtf: the
Ensembl version for which the annotation should be retrieved (e.g. 75). The
ensDbFromGtf function will try to guess the Ensembl version from the GTF file
name if not provided.
For makeEnsemblDbPackage: the version for the package.

X For ensDbFromGRanges: the GRanges object.

Currently not used.

Details

The fetchTablesFromEnsembl function internally calls the perl script get_gene_transcript_exon_tables.pl
to retrieve all required information from the Ensembl database using the Ensembl perl APL

As an alternative way, a EnsDb database file can be generated by the ensDbFromGt f or ensDbFromGff
from a GTF or GFF file downloaded from the Ensembl ftp server or using the ensDbFromAH to build
a database directly from corresponding resources from the AnnotationHub. The returned database
file name can then be used as an input to the makeEnsembldbPackage or it can be directly loaded
and used by the EnsDb constructor.

Value

makeEnsemb1SQLiteFromTables, ensDbFromAH, ensDbFromGRanges and ensDbFromGtf: the name
of the SQLite file.

Functions

ensDbFromAH Create an EnsDb (SQLite) database from a GTF file provided by AnnotationHub.
The function returns the file name of the generated database file. For usage see the examples
below.

ensDbFromGff Create an EnsDb (SQLite) database from a GFF file from Ensembl. The function
returns the file name of the generated database file. For usage see the examples below.

ensDbFromGtf Create an EnsDb (SQLite) database from a GTF file from Ensembl. The function
returns the file name of the generated database file. For usage see the examplesbelow.

ensDbFromGRanges Create an EnsDb (SQLite) database from a GRanges object (e.g. from
AnnotationHub). The function returns the file name of the generated database file. For usage
see the examples below.

fetchTablesFromEnsembl Uses the Ensembl Perl API to fetch all required data from an En-
sembl database server and stores them locally to text files (that can be used as input for the
makeEnsembldbSQLiteFromTables function).

makeEnsemblSQLiteFromTables Creates the SQLite EnsDb database from the tables generated
by the fetchTablesFromEnsembl.

makeEnsembldbPackage Creates an R package containing the EnsDb database from a EnsDb
SQLite database created by any of the above functions ensDbFromAH, ensDbF romGff, ensDbFromGtf
or makeEnsemblSQLiteFromTables.

Note
A local installation of the Ensembl perl API is required for the fetchTablesFromEnsembl. See
http://www.ensembl.org/info/docs/api/api_installation.html for installation inscructions.

A database generated from a GTF/GFF files lacks some features as they are not available in the
GTF files from Ensembl. These are: NCBI Entrezgene IDs.

http://www.ensembl.org/info/docs/api/api_installation.html

38 makeEnsembldbPackage

Author(s)

Johannes Rainer

See Also

EnsDb, genes

Examples

Not run:

get all human gene/transcript/exon annotations from Ensembl (75)

the resulting tables will be stored by default to the current working

directory; if the correct Ensembl api (version 75) is defined in the

PERL5LIB environment variable, the ensemblapi parameter can also be omitted.

fetchTablesFromEnsembl (75,
ensemblapi="/home/bioinfo/ensembl/75/API/ensembl/modules”,
species="human")

These tables can then be processed to generate a SQLite database
containing the annotations
DBFile <- makeEnsemblSQLiteFromTables()

and finally we can generate the package

makeEnsembldbPackage (ensdb=DBFile, version="0.0.1",
maintainer="Johannes Rainer <johannes.rainer@eurac.edu>",
author="J Rainer")

Build an annotation database form a GFF file from Ensembl.
ftp://ftp.ensembl.org/pub/release-83/gff3/rattus_norvegicus
gff <- "Rattus_norvegicus.Rnor_6.0.83.gff3.gz"

DB <- ensDbFromGff(gff=gff)

edb <- EnsDb(DB)

edb

Build an annotation file from a GTF file.

the GTF file can be downloaded from

ftp://ftp.ensembl.org/pub/release-75/gtf/homo_sapiens/
gtffile <- "Homo_sapiens.GRCh37.75.gtf.gz"

generate the SQLite database file

DB <- ensDbFromGtf(gtf=paste@(ensemblhost, gtffile))

load the DB file directly
EDB <- EnsDb(DB)

Alternatively, we could fetch a GTF file directly from AnnotationHub
and build the database from that:

library(AnnotationHub)

ah <- AnnotationHub()

Query for all GTF files from Ensembl for Ensembl version 81
query(ah, c("Ensembl”, "release-81", "GTF"))

We could get the one from e.g. Bos taurus:

DB <- ensDbFromAH(ah["AH47941"])

edb <- EnsDb(DB)

edb

proteins,EnsDb-method 39

End(Not run)

Generate a sqlite database for genes encoded on chromosome Y
chrY <- system.file("chrY", package="ensembldb")

DBFile <- makeEnsemblSQLiteFromTables(path=chrY ,dbname=tempfile())
load this database:

edb <- EnsDb(DBFile)

edb

Generate a sqlite database from a GRanges object specifying
genes encoded on chromosome Y
load(system.file("YGRanges.RData", package="ensembldb"))

Y

DB <- ensDbFromGRanges(Y, path=tempdir(), version=75,

organism="Homo_sapiens")
edb <- EnsDb(DB)

proteins,EnsDb-method Protein related functionality

Description

This help page provides information about most of the functionality related to protein annotations
in ensembldb.

The proteins method retrieves protein related annotations from an EnsDb database.
The 1listUniprotDbs method lists all Uniprot database names in the EnsDb.

The listUniprotMappingTypes method lists all methods that were used for the mapping of Uniprot
IDs to Ensembl protein IDs.

The listProteinColumns function allows to conveniently extract all database columns containing
protein annotations from an EnsDb database.

Usage

S4 method for signature 'EnsDb'
proteins(
object,
columns = listColumns(object, "protein"),
filter = AnnotationFilterList(),

order.by = "",
order.type = "asc",
return.type = "DataFrame”

S4 method for signature 'EnsDb'
listUniprotDbs(object)

40 proteins,EnsDb-method

S4 method for signature 'EnsDb'
listUniprotMappingTypes(object)

listProteinColumns(object)

Arguments
object The EnsDb object.
columns For proteins: character vector defining the columns to be extracted from the
database. Can be any column(s) listed by the 1istColumns method.
filter For proteins: A filter object extending AnnotationFilter or a list of such
objects to select specific entries from the database. See Filter-classes for a
documentation of available filters and use supportedFilters to get the full list
of supported filters.
order.by For proteins: a character vector specifying the column(s) by which the result
should be ordered.
order. type For proteins: if the results should be ordered ascending (order. type = "asc”)
or descending (order. type = "desc")
return. type For proteins: character of lenght one specifying the type of the returned object.
Can be either "DataFrame”, "data.frame” or "AAStringSet".
Details

The proteins method performs the query starting from the protein tables and can hence return
all annotations from the database that are related to proteins and transcripts encoding these proteins
from the database. Since proteins does thus only query annotations for protein coding transcripts,
the genes or transcripts methods have to be used to retrieve annotations for non-coding tran-
scripts.

Value

The proteins method returns protein related annotations from an EnsDb object with its return. type
argument allowing to define the type of the returned object. Note that if return. type = "AAStringSet”
additional annotation columns are stored in a DataFrame that can be accessed with the mcols
method on the returned object.

The listProteinColumns function returns a character vector with the column names containing
protein annotations or throws an error if no such annotations are available.

Author(s)

Johannes Rainer

Examples

library(ensembldb)
library(EnsDb.Hsapiens.v86)
edb <- EnsDb.Hsapiens.v86
Get all proteins from tha database for the gene ZBTB16, if protein
annotations are available
if (hasProteinData(edb))
proteins(edb, filter = GeneNameFilter("ZBTB16"))

proteinToGenome 41

List the names of all Uniprot databases from which Uniprot IDs are
available in the EnsDb
if (hasProteinData(edb))

listUniprotDbs(edb)

List the type of all methods that were used to map Uniprot IDs to Ensembl
protein IDs
if (hasProteinData(edb))

listUniprotMappingTypes(edb)

List all columns containing protein annotations
library(EnsDb.Hsapiens.v86)
edb <- EnsDb.Hsapiens.v86
if (hasProteinData(edb))
listProteinColumns(edb)

proteinToGenome Map within-protein coordinates to genomic coordinates

Description

proteinToGenome maps protein-relative coordinates to genomic coordinates based on the genomic
coordinates of the CDS of the encoding transcript. The encoding transcript is identified using
protein-to-transcript annotations (and eventually Uniprot to Ensembl protein identifier mappings)
from the submitted EnsDb object (and thus based on annotations from Ensembl).

The regions within the protein sequence need to be provided as a named IRanges object with the
names being protein identifiers and the start and end coordinates (within these proteins) defined
by the IRanges object. As an alternative to the IRanges’ names, protein identifiers can also be
provided through a metadata column (see details below).

Note that not all coding regions for protein coding transcripts are complete, and the function thus
checks also if the length of the coding region matches the length of the protein sequence and throws
a warning if that is not the case.

The genomic coordinates for the within-protein coordinates, the Ensembl protein ID, the ID of the
encoding transcript and the within protein start and end coordinates are reported for each input
range.

Usage

S4 method for signature 'EnsDb'
proteinToGenome(x, db, id = "name”, idType = "protein_id")

S4 method for signature 'CompressedGRangeslList'

proteinToGenome(x, db, id = "name”, idType = "protein_id")
Arguments
X IRanges with the coordinates within the protein(s). The object has also to pro-

vide some means to identify the protein (see details).

42 proteinToGenome

db For the method for EnsDb objects: An EnsDb object to be used to retrieve ge-
nomic coordinates of encoding transcripts. For the method for CompressedGRangesList
objects: A CompressedGRangesList object generated by cdsBy () where by =
’tx” and columns = c¢(’tx_id’ ,protein_id’, uniprot_id’, protein_sequence’).

id character (1) specifying where the protein identifier can be found. Has to be
either "name” or one of colnames(mcols(x)).

idType character (1) defining what type of IDs are provided. Has to be one of "protein_id"
(default), "uniprot_id" or "tx_id".

Details

Protein identifiers (supported are Ensembl protein IDs or Uniprot IDs) can be passed to the function
as names of the x IRanges object, or alternatively in any one of the metadata columns (mcols) of x.

Value

list, each element being the mapping results for one of the input ranges in x and names being the
IDs used for the mapping. Each element can be either a:

* GRanges object with the genomic coordinates calculated on the protein-relative coordinates
for the respective Ensembl protein (stored in the "protein_id"” metadata column.

* GRangesList object, if the provided protein identifier in x was mapped to several Ensembl
protein IDs (e.g. if Uniprot identifiers were used). Each element in this GRangesList is a
GRanges with the genomic coordinates calculated for the protein-relative coordinates from the
respective Ensembl protein ID.

The following metadata columns are available in each GRanges in the result:
* "protein_id": the ID of the Ensembl protein for which the within-protein coordinates were
mapped to the genome.
e "tx_id": the Ensembl transcript ID of the encoding transcript.
* "exon_id": ID of the exons that have overlapping genomic coordinates.
* "exon_rank": the rank/index of the exon within the encoding transcript.

* "cds_ok": contains TRUE if the length of the CDS matches the length of the amino acid
sequence and FALSE otherwise.

* "protein_start”: the within-protein sequence start coordinate of the mapping.

* "protein_end": the within-protein sequence end coordinate of the mapping.

Genomic coordinates are returned ordered by the exon index within the transcript.

Note

While the mapping for Ensembl protein IDs to encoding transcripts (and thus CDS) is 1:1, the map-
ping between Uniprot identifiers and encoding transcripts (which is based on Ensembl annotations)
can be one to many. In such cases proteinToGenome calculates genomic coordinates for within-
protein coordinates for all of the annotated Ensembl proteins and returns all of them. See below for
examples.

Mapping using Uniprot identifiers needs also additional internal checks that have a significant im-
pact on the performance of the function. It is thus strongly suggested to first identify the Ensembl
protein identifiers for the list of input Uniprot identifiers (e.g. using the proteins() function and
use these as input for the mapping function.

proteinToGenome 43

A warning is thrown for proteins which sequence does not match the coding sequence length of any
encoding transcripts. For such proteins/transcripts a FALSE is reported in the respective "cds_ok”"
metadata column. The most common reason for such discrepancies are incomplete 3’ or 5’ ends
of the CDS. The positions within the protein might not be correclty mapped to the genome in such
cases and it might be required to check the mapping manually in the Ensembl genome browser.

Author(s)

Johannes Rainer based on initial code from Laurent Gatto and Sebastian Gibb

See Also

proteinToGenome in the GenomicFeatures package for methods that operate on a TxDb or GRanges-
List object.

Other coordinate mapping functions: cdsToTranscript(), genomeToProtein(), genomeToTranscript(),
proteinToTranscript(), transcriptToCds(), transcriptToGenome(), transcriptToProtein()

Examples

library(EnsDb.Hsapiens.v86)
Restrict all further queries to chromosome x to speed up the examples
edbx <- filter(EnsDb.Hsapiens.v86, filter = ~ seg_name == "X")

Define an IRange with protein-relative coordinates within a protein for
the gene SYP

syp <- IRanges(start = 4, end = 17)

names(syp) <- "ENSP00000418169"

res <- proteinToGenome(syp, edbx)

res

Positions 4 to 17 within the protein span two exons of the encoding

transcript.

Perform the mapping for multiple proteins identified by their Uniprot
IDs.

ids <- c("015266", "Q9HBJI8", "unexistant"”)

prngs <- IRanges(start = c(13, 43, 100), end = c(21, 80, 100))
names(prngs) <- ids

res <- proteinToGenome(prngs, edbx, idType = "uniprot_id")

The result is a list, same length as the input object
length(res)
names(res)

No protein/encoding transcript could be found for the last one

res[[3]]

The first protein could be mapped to multiple Ensembl proteins. The
mapping result using all of their encoding transcripts are returned
res[[1]]

The coordinates within the second protein span two exons
res[[2]]

Meanwhile, this function can be called in parallel processes if you preload
the CDS data with desired data columns

44 proteinToTranscript

cds <- cdsBy(edbx,columns = c(listColumns(edbx, 'tx'), 'protein_id', 'uniprot_id', 'protein_sequence'))
cds <- cdsBy(edbx,columns = c(listColumns(edbx, 'tx"'), 'protein_id', 'protein_sequence'))
cds <- cdsBy(edbx,columns = c('tx_id', 'protein_id', 'protein_sequence'))

Define an IRange with protein-relative coordinates within a protein for

the gene SYP

syp <- IRanges(start = 4, end = 17)

names(syp) <- "ENSP00000418169"

res <- proteinToGenome(syp, cds)

res

Positions 4 to 17 within the protein span two exons of the encoding

transcript.

Perform the mapping for multiple proteins identified by their Uniprot
IDs.

ids <- c("015266", "Q9HBJI8", "unexistant")

prngs <- IRanges(start = c(13, 43, 100), end = c(21, 80, 100))
names(prngs) <- ids

res <- proteinToGenome(prngs, cds, idType = "uniprot_id")

proteinToTranscript Map protein-relative coordinates to positions within the transcript

Description

proteinToTranscript maps protein-relative coordinates to positions within the encoding tran-
script. Note that the returned positions are relative to the complete transcript length, which includes
the 5 UTR.

The regions within the protein sequence need to be provided as a named IRanges object with the
names being protein identifiers and the start and end coordinates (within these proteins) defined
by the IRanges object. As an alternative to the IRanges’ names, protein identifiers can also be
provided through a metadata column (see details below).

Similar to the proteinToGenome() function, proteinToTranscript compares for each protein
whether the length of its sequence matches the length of the encoding CDS and throws a warning
if that is not the case. Incomplete 3’ or 5° CDS of the encoding transcript are the most common
reasons for a mismatch between protein and transcript sequences.

Usage

proteinToTranscript(x, db, ...)

S4 method for signature 'CompressedGRangeslList'
proteinToTranscript(x, db, id = "name"”, idType = "protein_id", fiveUTR)

Arguments
X IRanges with the coordinates within the protein(s). The object has also to pro-
vide some means to identify the protein (see details).
db For the method for EnsDb objects: An EnsDb object to be used to retrieve ge-

nomic coordinates of encoding transcripts. For the method for CompressedGRangesList
objects: A CompressedGRangesList object generated by cdsBy () where by =
’tx” and columns = c¢(’tx_id’ ,protein_id’, uniprot_id’, protein_sequence’).

proteinToTranscript 45

Further arguments to be passed on.

id character (1) specifying where the protein identifier can be found. Has to be
either "name"” or one of colnames(mcols(x)).
idType character (1) defining what type of IDs are provided. Has to be one of "protein_id"
(default), "uniprot_id" or "tx_id".
fiveUTR A CompressedGRangesList object generated by fiveUTRsByTranscript().
Details

Protein identifiers (supported are Ensembl protein IDs or Uniprot IDs) can be passed to the function
as names of the x IRanges object, or alternatively in any one of the metadata columns (mcols) of x.

Value

IRangesList, each element being the mapping results for one of the input ranges in x. Each
element is a IRanges object with the positions within the encoding transcript (relative to the start
of the transcript, which includes the 5’ UTR). The transcript ID is reported as the name of each
IRanges. The IRanges can be of length > 1 if the provided protein identifier is annotated to more
than one Ensembl protein ID (which can be the case if Uniprot IDs are provided). If the coordinates
can not be mapped (because the protein identifier is unknown to the database) an IRanges with
negative coordinates is returned.

The following metadata columns are available in each IRanges in the result:
e "protein_id": the ID of the Ensembl protein for which the within-protein coordinates were
mapped to the genome.
e "tx_id": the Ensembl transcript ID of the encoding transcript.

» "cds_ok": contains TRUE if the length of the CDS matches the length of the amino acid
sequence and FALSE otherwise.

* "protein_start”: the within-protein sequence start coordinate of the mapping.

* "protein_end": the within-protein sequence end coordinate of the mapping.

Note

While mapping of Ensembl protein IDs to Ensembl transcript IDs is 1:1, a single Uniprot identifier
can be annotated to several Ensembl protein IDs. proteinToTranscript calculates in such cases
transcript-relative coordinates for each annotated Ensembl protein.

Mapping using Uniprot identifiers needs also additional internal checks that can have a significant
impact on the performance of the function. It is thus strongly suggested to first identify the Ensembl
protein identifiers for the list of input Uniprot identifiers (e.g. using the proteins() function and
use these as input for the mapping function.

Author(s)

Johannes Rainer

See Also
Other coordinate mapping functions: cdsToTranscript(), genomeToProtein(), genomeToTranscript(),
proteinToGenome(), transcriptToCds(), transcriptToGenome(), transcriptToProtein()

Other coordinate mapping functions: cdsToTranscript(), genomeToProtein(), genomeToTranscript(),
proteinToGenome(), transcriptToCds(), transcriptToGenome(), transcriptToProtein()

46 proteinToTranscript

Examples

library(EnsDb.Hsapiens.v86)
Restrict all further queries to chromosome x to speed up the examples
edbx <- filter(EnsDb.Hsapiens.v86, filter = ~ seq_name == "X")

Define an IRange with protein-relative coordinates within a protein for
the gene SYP

syp <- IRanges(start = 4, end = 17)

names(syp) <- "ENSP00000418169"

res <- proteinToTranscript(syp, edbx)

res

Positions 4 to 17 within the protein span are encoded by the region

from nt 23 to 64.

Perform the mapping for multiple proteins identified by their Uniprot
IDs.

ids <- c("015266", "Q9HBJ8", "unexistant")

prngs <- IRanges(start = c(13, 43, 100), end = c(21, 80, 100))
names(prngs) <- ids

res <- proteinToTranscript(prngs, edbx, idType = "uniprot_id")

The result is a list, same length as the input object
length(res)
names(res)

No protein/encoding transcript could be found for the last one

res[[3]1]

The first protein could be mapped to multiple Ensembl proteins. The
region within all transcripts encoding the region in the protein are
returned

res[[1]]

The result for the region within the second protein
res[[2]]

Meanwhile, this function can be called in parallel processes if you preload
the CDS data with desired data columns and fiveUTR data

cds <- cdsBy(edbx,columns = c(listColumns(edbx, 'tx"'), 'protein_id"', 'uniprot_id', 'protein_sequence'))
cds <- cdsBy(edbx,columns = c(listColumns(edbx,'tx'), 'protein_id', 'protein_sequence'))
cds <- cdsBy(edbx,columns = c('tx_id', 'protein_id', 'protein_sequence'))

fiveUTR <- fiveUTRsByTranscript(edbx)

Define an IRange with protein-relative coordinates within a protein for
the gene SYP

syp <- IRanges(start = 4, end = 17)

names(syp) <- "ENSPQ0000418169"

res <- proteinToTranscript(syp, cds, fiveUTR = fiveUTR)

res

Positions 4 to 17 within the protein span are encoded by the region

from nt 23 to 64.

Perform the mapping for multiple proteins identified by their Uniprot

runEnsDbApp 47

IDs.

ids <- c("015266", "Q9HBJI8", "unexistant"”)

prngs <- IRanges(start = c(13, 43, 100), end = c(21, 80, 100))
names(prngs) <- ids

res <- proteinToTranscript(prngs, cds, idType = "uniprot_id"”, fiveUTR = fiveUTR)

runEnsDbApp Search annotations interactively

Description
This function starts the interactive EnsDb shiny web application that allows to look up gene/transcript/exon
annotations from an EnsDb annotation package installed locally.

Usage

runEnsDbApp(...)

Arguments

Additional arguments passed to the runApp function from the shiny package.

Details
The shiny based web application allows to look up any annotation available in any of the locally

installed EnsDb annotation packages.

Value

If the button Return & close is clicked, the function returns the results of the present query either as
data.frame or as GRanges object.

Author(s)

Johannes Rainer

See Also

EnsDb, genes

48 select

select Integration into the AnnotationDbi framework

Description

Several of the methods available for AnnotationDbi objects are also implemented for EnsDb ob-
jects. This enables to extract data from EnsDb objects in a similar fashion than from objects inherit-
ing from the base annotation package class AnnotationDbi. In addition to the standard usage, the
select and mapIds for EnsDb objects support also the filter framework of the ensembdb package
and thus allow to perform more fine-grained queries to retrieve data.

Usage

S4 method for signature 'EnsDb'
columns(x)

S4 method for signature 'EnsDb'
keys(x, keytype, filter,...)

S4 method for signature 'EnsDb'

keytypes(x)

S4 method for signature 'EnsDb'

mapIds(x, keys, column, keytype, ..., multiVals)

S4 method for signature 'EnsDb'

select(x, keys, columns, keytype, ...)

Arguments

(In alphabetic order)

column For mapIds: the column to search on, i.e. from which values should be retrieved.

columns For select: the columns from which values should be retrieved. Use the
columns method to list all possible columns.

keys The keys/ids for which data should be retrieved from the database. This can be
either a character vector of keys/IDs, a single filter object extending AnnotationFilter,
an combination of filters AnnotationFilterList or a formula representing a
filter expression (see AnnotationFilter for more details).

keytype For mapIds and select: the type (column) that matches the provided keys.
This argument does not have to be specified if argument keys is a filter object
extending AnnotationFilter or a list of such objects.
For keys: which keys should be returned from the database.

filter For keys: either a single object extending AnnotationFilter or a list of such
object to retrieve only specific keys from the database.

multiVals What should mapIds do when there are multiple values that could be returned?
Options are: "first” (default), "1ist"”, "filter"”, "asNA". See mapIds in the
AnnotationDbi package for a detailed description.

X The EnsDb object.

Not used.

select 49

Value

See method description above.

Methods and Functions

columns List all the columns that can be retrieved by the mapIds and select methods. Note that
these column names are different from the ones supported by the genes, transcripts etc.
methods that can be listed by the 1istColumns method.

Returns a character vector of supported column names.

keys Retrieves all keys from the column name specified with keytype. By default (if keytype is
not provided) it returns all gene IDs. Note that keytype="TXNAME" will return transcript ids,
since no transcript names are available in the database.

Returns a character vector of IDs.

keytypes List all supported key types (column names).
Returns a character vector of key types.

maplds Retrieve the mapped ids for a set of keys that are of a particular keytype. Argument keys
can be either a character vector of keys/IDs, a single filter object extending AnnotationFilter
or a list of such objects. For the latter, the argument keytype does not have to be specified.
Importantly however, if the filtering system is used, the ordering of the results might not rep-
resent the ordering of the keys.
The method usually returns a named character vector or, depending on the argument multiVals
a named list, with names corresponding to the keys (same ordering is only guaranteed if keys
is a character vector).

select Retrieve the data as a data.frame based on parameters for selected keys, columns and
keytype arguments. Multiple matches of the keys are returned in one row for each possible
match. Argument keys can be either a character vector of keys/IDs, a single filter object
extending AnnotationFilter or a list of such objects. For the latter, the argument keytype
does not have to be specified.

Note that values from a column "TXNAME" will be the same than for a column "TXID", since in-
ternally no database column "tx_name” is present and the column is thus mapped to "tx_id".

Returns a data.frame with the column names corresponding to the argument columns and
rows with all data matching the criteria specified with keys.

The use of select without filters or keys and without restricting to specicic columns is
strongly discouraged, as the SQL query to join all of the tables, especially if protein anno-
tation data is available is very expensive.

Author(s)

Johannes Rainer

See Also

listColumns transcripts

Examples

library(EnsDb.Hsapiens.v86)
edb <- EnsDb.Hsapiens.v86

List all supported keytypes.
keytypes(edb)

50

seqlevelsStyle

List all supported columns for the select and mapIds methods.
columns(edb)

List /real/ database column names.
listColumns(edb)

Retrieve all keys corresponding to transcript ids.
txids <- keys(edb, keytype = "TXID")

length(txids)

head(txids)

Retrieve all keys corresponding to gene names of genes encoded on chromosome X
gids <- keys(edb, keytype = "GENENAME", filter = SeqNameFilter("X"))

length(gids)

head(gids)

Get a mapping of the genes BCL2 and BCL2L11 to all of their

transcript ids and return the result as list

maps <- maplds(edb, keys = c(”"BCL2", "BCL2L11"), column = "TXID",
keytype = "GENENAME", multiVals = "list")

maps

Perform the same query using a combination of a GeneNameFilter and a
TxBiotypeFilter to just retrieve protein coding transcripts for these
two genes.
mapIlds(edb, keys = list(GeneNameFilter(c("BCL2", "BCL2L11")),
TxBiotypeFilter("protein_coding”)), column = "TXID",
multivVals = "list")

select:
Retrieve all transcript and gene related information for the above example.
select(edb, keys = list(GeneNameFilter(c("BCL2", "BCL2L11")),
TxBiotypeFilter("protein_coding"”)),
columns = c(”GENEID", "GENENAME”, "TXID", "TXBIOTYPE", "TXSEQSTART",
"TXSEQEND", "SEQNAME", "SEQSTRAND"))

Get all data for genes encoded on chromosome Y
Y <- select(edb, keys = "Y", keytype = "SEQNAME")
head(Y)
nrow(Y)

Get selected columns for all 1incRNAs encoded on chromosome Y. Here we use

a filter expression to define what data to retrieve.

Y <- select(edb, keys = ~ seq_name == "Y" & gene_biotype == "lincRNA",
columns = c("GENEID", "GENEBIOTYPE"”, "TXID", "GENENAME"))

head(Y)

nrow(Y)

seqlevelsStyle Support for other than Ensembl seqlevel style

seqlevelsStyle 51

Description

The methods and functions on this help page allow to integrate EnsDb objects and the annotations
they provide with other Bioconductor annotation packages that base on chromosome names (se-
qlevels) that are different from those defined by Ensembl.

Usage

S4 method for signature 'EnsDb'
seqlevelsStyle(x)

S4 replacement method for signature 'EnsDb'
seqlevelsStyle(x) <- value

S4 method for signature 'EnsDb'
supportedSeqlevelsStyles(x)

Arguments
(In alphabetic order)
value For seqlevelsStyle<-: a character string specifying the seqlevels style that
should be set. Use the supportedSeqlevelsStyle to list all available and
supported seqlevel styles. As an alternative, it is also possible to submit a
data.frame with custom mapping. This needs to have two columns, one of
them being called "Ensembl” with the original chromosome names and another
column with the new names.
X An EnsDb instance.
Value

For seqlevelsStyle: see method description above.

For supportedSeqglevelsStyles: see method description above.

Methods and Functions

seqlevelsStyle Get the style of the seqlevels in which results returned from the EnsDb object are
encoded. By default, and internally, seqnames as provided by Ensembl are used.

The method returns a character string specifying the currently used seqlevelstyle.

seqlevelsStyle<- Change the style of the seqlevels in which results returned from the EnsDb object
are encoded. Changing the seqlevels helps integrating annotations from EnsDb objects e.g.
with annotations from packages that base on UCSC annotations. The function also supports
using/defining custom mappings by submitting a mapping data. frame (see examples below).

supportedSeqlevelsStyles Lists all seqlevel styles for which mappings between seqlevel styles are
available in the GenomeInfoDb package.

The method returns a character vector with supported seqlevel styles for the organism of the
EnsDb object.

52 seqlevelsStyle

Note

The mapping between different seqname styles is performed based on data provided by the GenomeInfoDb
package. Note that in most instances no mapping is provided for seqnames other than for primary
chromosomes. By default functions from the ensembldb package return the original seqname is

in such cases. This behaviour can be changed with the ensembldb. segnameNotFound global op-

tion. For the special keyword "ORIGINAL" (the default), the original seqnames are returned, for

"MISSING" an error is thrown if a seqname can not be mapped. In all other cases, the value of the op-

tion is returned as seqname if no mapping is available (e.g. setting options(ensembldb. seqnameNotFound=NA)
returns an NA if the seqname is not mappable).

Author(s)

Johannes Rainer

See Also

EnsDb transcripts

Examples

library(EnsDb.Hsapiens.v86)
edb <- EnsDb.Hsapiens.v86

Get the internal, default seqlevel style.
seqlevelsStyle(edb)

Get the seglevels from the database.
seqlevels(edb)

Get all supported mappings for the organism of the EnsDb.
supportedSeqglevelsStyles(edb)

Change the seqlevels to UCSC style.
seqglevelsStyle(edb) <- "UCSC"
seqlevels(edb)

Change the option ensembldb.segnameNotFound to return NA in case
the segname can not be mapped form Ensembl to UCSC.
options(ensembldb.segnameNotFound = NA)

seqlevels(edb)

Defining custom mapping for chromosome names. The ~data.frame” should have
one column named ~"Ensembl”™ with the original name and an additional column
with the new names
mymap <- data.frame(Ensembl = c(4, 7, 9, 10),

myway = c("a", "b", "c", "d"))
seqlevelsStyle(edb) <- mymap
seqlevels(edb)

This allows us also to rename individual chromosomes but keeping all
original names for the others.

options(ensembldb.segnameNotFound = "ORIGINAL")

seqlevels(edb)

transcriptToCds 53

transcriptToCds Map transcript-relative coordinates to positions within the CDS

Description

Converts transcript-relative coordinates to positions within the CDS (if the transcript encodes a

protein).
Usage
transcriptToCds(x, db, id = "name”, exons = NA, transcripts = NA)
Arguments
X IRanges with the coordinates within the transcript. Coordinates are expected
to be relative to the transcription start (the first nucleotide of the transcript).
The Ensembl IDs of the corresponding transcripts have to be provided either as
names of the IRanges, or in one of its metadata columns.
db EnsDb object.
id character (1) specifying where the transcript identifier can be found. Has to
be either "name” or one of colnames(mcols(prng)).
exons CompressedGRangesList object generated by exonsBy () where by = "tx’.
transcripts GRanges object generated by transcripts().
Value

IRanges with the same length (and order) than the input IRanges x. Each element in IRanges
provides the coordinates within the transcripts CDS. The transcript-relative coordinates are provided
as metadata columns. IRanges with a start coordinate of -1 is returned for transcripts that are not
known in the database, non-coding transcripts or if the provided start and/or end coordinates are not
within the coding region.

Author(s)

Johannes Rainer

See Also

Other coordinate mapping functions: cdsToTranscript(), genomeToProtein(), genomeToTranscript(),
proteinToGenome(), proteinToTranscript(), transcriptToGenome(), transcriptToProtein()

Examples

library(EnsDb.Hsapiens.v86)
Defining transcript-relative coordinates for 4 transcripts of the gene
BCL2
txcoords <- IRanges(start = c(1463, 3, 143, 147), width =1,
names = c("ENST@0000398117", "ENST0Q0000333681",
"ENST00000590515", "ENST00000589955"))

Map the coordinates.

54 transcriptToGenome

transcriptToCds(txcoords, EnsDb.Hsapiens.v86)

ENSTQQ000590515 does not encode a protein and thus -1 is returned

The coordinates within ENST00000333681 are outside the CDS and thus also
-1 is reported.

Meanwhile, this function can be called in parallel processes if you preload
the exons and transcripts database.

exons <- exonsBy(EnsDb.Hsapiens.v86)
transcripts <- transcripts(EnsDb.Hsapiens.v86)

transcriptToCds(txcoords, EnsDb.Hsapiens.v86, exons = exons,transcripts = transcripts)

transcriptToGenome Map transcript-relative coordinates to genomic coordinates

Description

transcriptToGenome maps transcript-relative coordinates to genomic coordinates. Provided co-
ordinates are expected to be relative to the first nucleotide of the transcript, not the CDS. CDS-
relative coordinates have to be converted to transcript-relative positions first with the cdsToTranscript()

function.
Usage
transcriptToGenome(x, db, id = "name")
Arguments
X IRanges with the coordinates within the transcript. Coordinates are counted
from the start of the transcript (including the 5° UTR). The Ensembl IDs of the
corresponding transcripts have to be provided either as names of the IRanges,
or in one of its metadata columns.
db EnsDb object or pre-loaded exons *’CompressedGRangesList’ object using ex-
onsBy().
id character (1) specifying where the transcript identifier can be found. Has to
be either "name"” or one of colnames(mcols(prng)).
Value

GRangesList with the same length (and order) than the input IRanges x. Each GRanges in the
GRangesList provides the genomic coordinates corresponding to the provided within-transcript co-
ordinates. The original transcript ID and the transcript-relative coordinates are provided as metadata
columns as well as the ID of the individual exon(s). An empty GRanges is returned for transcripts
that can not be found in the database.

Author(s)

Johannes Rainer

transcriptToGenome 55

See Also

cdsToTranscript() and transcriptToCds() for the mapping between CDS- and transcript-relative
coordinates.

Other coordinate mapping functions: cdsToTranscript(), genomeToProtein(), genomeToTranscript(),
proteinToGenome(), proteinToTranscript(), transcriptToCds(), transcriptToProtein()

Examples

library(EnsDb.Hsapiens.v86)
Restrict all further queries to chromosome x to speed up the examples
edbx <- filter(EnsDb.Hsapiens.v86, filter = ~ seg_name == "X")

Below we map positions 1 to 5 within the transcript ENSTQ0000381578 to
the genome. The ID of the transcript has to be provided either as names
or in one of the IRanges' metadata columns

txpos <- IRanges(start = 1, end = 5, names = "ENST00000381578")

transcriptToGenome (txpos, edbx)

The object returns a GRangesList with the genomic coordinates, in this
example the coordinates are within the same exon and map to a single
genomic region.

Next we map nucleotides 501 to 505 of ENSTQ0000486554 to the genome
txpos <- IRanges(start = 501, end = 505, names = "ENSTQ0000486554")

transcriptToGenome (txpos, edbx)
The positions within the transcript are located within two of the
transcripts exons and thus a “GRanges™ of length 2 is returned.

Next we map multiple regions, two within the same transcript and one
in a transcript that does not exist.
txpos <- IRanges(start = c(501, 1, 5), end = c(505, 10, 6),

names = c("ENST00Q000486554", "ENST00000486554", "some"))

res <- transcriptToGenome(txpos, edbx)

The length of the result GRangesList has the same length than the
input IRanges
length(res)

The result for the last region is an empty GRanges, because the
transcript could not be found in the database

res[[3]]

res
If you are tring to map a huge list of transcript-relative coordinates
to genomic level, you shall use pre-loaded exons GRangesList to replace
the SQLite db edbx

exons <- exonsBy(EnsDb.Hsapiens.v86)
Below is just a lazy demo of querying 10%4 transcript-relative
coordinates without any pre-splitting

library(parallel)

txpos <- IRanges(

56

transcript ToProtein

start = rep(1,10),

end = rep(30,10),

names = c(rep('ENST0Q0000486554',9), 'some'),
note = rep('something',10))

only run in Linux

res_temp <- mclapply(1:10, function(ind){

transcriptToGenome (txpos[ind], exons)

3}, mc.preschedule = TRUE, mc.cores = detectCores() - 1)

res <- do.call(c,res_temp)

cl <- makeCluster(detectCores() - 1)

clusterExport(cl,c('transcriptToGenome', 'txpos', 'exons'))

res <- parLapply(cl,1:10,function(ind){
transcriptToGenome(txpos[ind], exons)

B
stopCluster(cl)

transcriptToProtein Map transcript-relative coordinates to amino acid residues of the en-
coded protein

Description

transcriptToProtein maps within-transcript coordinates to the corresponding coordinates within
the encoded protein sequence. The provided coordinates have to be within the coding region of the
transcript (excluding the stop codon) but are supposed to be relative to the first nucleotide of the
transcript (which includes the 5° UTR). Positions relative to the CDS of a transcript (e.g. /PKP2
c.1643delg/) have to be first converted to transcript-relative coordinates. This can be done with the
cdsToTranscript() function.

Usage
transcriptToProtein(
X ’
db,
id = "name”,
proteins = NA,
exons = NA,
transcripts = NA
)
Arguments
X IRanges with the coordinates within the transcript. Coordinates are counted
from the start of the transcript (including the 5> UTR). The Ensembl IDs of the
corresponding transcripts have to be provided either as names of the IRanges,
or in one of its metadata columns.
db EnsDb object.
id character (1) specifying where the transcript identifier can be found. Has to

be either "name"” or one of colnames(mcols(prng)).

proteins DFrame object generated by proteins().

transcriptToProtein 57

exons CompressedGRangesList object generated by exonsBy () where by = "tx’.
transcripts GRanges object generated by transcripts().
Details

Transcript-relative coordinates are mapped to the amino acid residues they encode. As an example,
positions within the transcript that correspond to nucleotides 1 to 3 in the CDS are mapped to the
first position in the protein sequence (see examples for more details).

Value

IRanges with the same length (and order) than the input IRanges x. Each element in IRanges pro-
vides the coordinates within the protein sequence, names being the (Ensembl) IDs of the protein.
The original transcript ID and the transcript-relative coordinates are provided as metadata columns.
Metadata columns "cds_ok" indicates whether the length of the transcript’s CDS matches the length
of the encoded protein. IRanges with a start coordinate of -1 is returned for transcript coordinates
that can not be mapped to protein-relative coordinates (either no transcript was found for the pro-
vided ID, the transcript does not encode a protein or the provided coordinates are not within the
coding region of the transcript).

Author(s)

Johannes Rainer

See Also

cdsToTranscript() and transcriptToCds() for conversion between CDS- and transcript-relative
coordinates.

Other coordinate mapping functions: cdsToTranscript(), genomeToProtein(), genomeToTranscript(),
proteinToGenome(), proteinToTranscript(), transcriptToCds(), transcriptToGenome()

Examples

library(EnsDb.Hsapiens.v86)
Restrict all further queries to chromosome x to speed up the examples
edbx <- filter(EnsDb.Hsapiens.v86, filter = ~ seg_name == "X")

Define an IRanges with the positions of the first 2 nucleotides of the
coding region for the transcript ENSTQ0000381578
txpos <- IRanges(start = 692, width = 2, names = "ENSTQ0000381578")

Map these to the corresponding residues in the protein sequence

The protein-relative coordinates are returned as an ~IRanges™ object,
with the original, transcript-relative coordinates provided in metadata
columns tx_start and tx_end

transcriptToProtein(txpos, edbx)

We can also map multiple ranges. Note that for any of the 3 nucleotides
encoding the same amino acid the position of this residue in the
protein sequence is returned. To illustrate this we map below each of the
first 4 nucleotides of the CDS to the corresponding position within the
protein.
txpos <- IRanges(start = c(692, 693, 694, 695),

width = rep(1, 4), names = rep("ENSTQ0000381578", 4))
transcriptToProtein(txpos, edbx)

58 useMySQL,EnsDb-method

If the mapping fails, an IRanges with negative start position is returned.
Mapping can fail (as below) because the ID is not known.
transcriptToProtein(IRanges(1, 1, names = "unknown"), edbx)

Or because the provided coordinates are not within the CDS
transcriptToProtein(IRanges(1, 1, names = "ENST00000381578"), edbx)

Meanwhile, this function can be called in parallel processes if you preload
the protein, exons and transcripts database.

proteins <- proteins(edbx)
exons <- exonsBy(edbx)
transcripts <- transcripts(edbx)

txpos <- IRanges(start = c(692, 693, 694, 695),
width = rep(1, 4),
names = c(rep("ENST00000381578", 2), rep("ENSTQ0000486554", 2)),
info="test"')

transcriptToProtein(txpos,edbx,proteins = proteins,exons = exons,transcripts = transcripts)

useMySQL,EnsDb-method Use a MariaDB/MySQL backend

Description

Change the SQL backend from SQLite to MySQL. When first called on an EnsDb object, the function
tries to create and save all of the data into a MySQL database. All subsequent calls will connect to
the already existing MySQL database.

Usage

S4 method for signature 'EnsDb'
useMySQL (x, host = "localhost”, port = 3306, user, pass)

Arguments
X The EnsDb object.
host Character vector specifying the host on which the MariaDB/MySQL server runs.
port The port on which the MariaDB/MySQL server can be accessed.
user The user name for the MariaDB/MySQL server.
pass The password for the MariaDB/MySQL server.
Details

This functionality requires that the RMariaDB package is installed and that the user has (write) access
to a running MySQL server. If the corresponding database does already exist users without write
access can use this functionality.

Value

A EnsDb object providing access to the data stored in the MySQL backend.

useMySQL,EnsDb-method 59

Note

At present the function does not evaluate whether the versions between the SQLite and Mari-
aDB/MySQL database differ.

Author(s)

Johannes Rainer

Examples

Load the EnsDb database (SQLite backend).

library(EnsDb.Hsapiens.v86)

edb <- EnsDb.Hsapiens.v86

Now change the backend to MySQL; my_user and my_pass should

be the user name and password to access the MySQL server.

Not run:

edb_mysql <- useMySQL(edb, host = "localhost"”, user = my_user, pass = my_pass)

End(Not run)

Index

* classes
EnsDb-class, 9
exonsBy, 12
getGeneRegionTrackForGviz, 29
getGenomeFaFile, 30
lengthOf, 33
select, 48
seglevelsStyle, 50

* coordinate mapping functions
cdsToTranscript, 4
genomeToProtein, 25
genomeToTranscript, 27
proteinToGenome, 41
proteinToTranscript, 44
transcriptToCds, 53
transcriptToGenome, 54
transcriptToProtein, 56

+ data
makeEnsembldbPackage, 35
runEnsDbApp, 47

* shiny
runEnsDbApp, 47

activeFilter (addFilter,EnsDb-method), 3
activeFilter,EnsDb-method
(addFilter,EnsDb-method), 3
addFilter, 11,13, 18
addFilter (addFilter,EnsDb-method), 3
addFilter(), 20, 23
addFilter,EnsDb-method, 3
AnnotationFilter, 3, 14, 20, 29, 33, 48
AnnotationFilterList, 3, /4, 29, 33, 48

cdsBy (exonsBy), 12

cdsBy(), 22,42, 44

cdsBy, EnsDb-method (exonsBy), 12
cdsToTranscript, 4, 26, 28, 43,45, 53, 55, 57
cdsToTranscript(), 54-57
columns,EnsDb-method (select), 48

convertFilter,AnnotationFilter,EnsDb-method,

5

dbconn (EnsDb-class), 9

dbconn, EnsDb-method (EnsDb-class), 9

Deprecated, 7

dropFilter (addFilter,EnsDb-method), 3

dropFilter,EnsDb-method
(addFilter,EnsDb-method), 3

EnsDb, 3, 8, 8, 11, 20, 32, 38-40, 47, 52, 58
EnsDb-class, 9
ensDbFromAH (makeEnsembldbPackage), 35
ensDbFromGff (makeEnsembldbPackage), 35
ensDbFromGRanges
(makeEnsembldbPackage), 35
ensDbFromGtf (makeEnsembldbPackage), 35
ensembldb-deprecated (Deprecated), 7
ensemblVersion (EnsDb-class), 9
ensemblVersion, EnsDb-method
(EnsDb-class), 9
EntrezidFilter (Deprecated), 7
exonicParts, 16
ExonidFilter (Deprecated), 7
ExonrankFilter (Deprecated), 7
exons (exonsBy), 12
exons(), 22, 23
exons,EnsDb-method (exonsBy), 12
exonsBy, 11,12, 31, 33
exonsBy(), 4, 22, 25, 53, 57
exonsBy,EnsDb-method (exonsBy), 12
exonsByOverlaps,EnsDb-method (exonsBy),
12

fetchTablesFromEnsembl
(makeEnsembldbPackage), 35

filter (addFilter,EnsDb-method), 3

filter(), 23

Filter-classes, 20

fiveUTRsByTranscript(), 45

fiveUTRsByTranscript,EnsDb-method
(exonsBy), 12

GenebiotypeFilter (Deprecated), 7

convertFilter,AnnotationFilterList,EnsDb-methGeneidFilter (Deprecated), 7
(convertFilter,AnnotationFilter,EnsDbGeetiddjlter(), 23

5

genes, 3, 11, 38, 40,47, 49

INDEX

genes (exonsBy), 12

genes(), 20, 22, 23

genes,EnsDb-method (exonsBy), 12

genomeToProtein, 5, 25, 28, 43,45, 53, 55, 57

genomeToTranscript, 5, 26, 27,43, 45, 53,
55,57

genomeToTranscript(), 25

getGeneRegionTrackForGviz, 29

getGeneRegionTrackForGviz,EnsDb-method
(getGeneRegionTrackForGviz), 29

getGenomeFaFile, 30

getGenomeFaFile, EnsDb-method
(getGenomeFaFile), 30

getGenomeTwoBitFile (getGenomeFaFile),
30

getGenomeTwoBitFile,EnsDb-method
(getGenomeFaFile), 30

GRangesFilter, 16, 17

hasProteinData
(hasProteinData,EnsDb-method),
32

hasProteinData(), 22

hasProteinData, EnsDb-method, 32

intronicParts, 16
intronsByTranscript,EnsDb-method
(exonsBy), 12

keys,EnsDb-method (select), 48
keytypes,EnsDb-method (select), 48

lengthOf, 18, 33

lengthOf ,EnsDb-method (1engthOf), 33

lengthOf,GRangesList-method (1lengthOf),
33

listColumns, 14, 18, 40, 49

listColumns (EnsDb-class), 9

listColumns,EnsDb-method (EnsDb-class),
9

listEnsDbs, 34

listGenebiotypes (EnsDb-class), 9

listGenebiotypes(), 23

listGenebiotypes,EnsDb-method
(EnsDb-class), 9

listProteinColumns, 15

listProteinColumns
(proteins,EnsDb-method), 39

listTables, 14, 32

listTables (EnsDb-class), 9

listTables,EnsDb-method (EnsDb-class), 9

listTxbiotypes (EnsDb-class), 9

listTxbiotypes(), 23

61

listTxbiotypes,EnsDb-method
(EnsDb-class), 9
listUniprotDbs (proteins,EnsDb-method),
39
listUniprotDbs(), 23
listUniprotDbs,EnsDb-method
(proteins,EnsDb-method), 39
listUniprotMappingTypes
(proteins,EnsDb-method), 39
listUniprotMappingTypes(), 23
listUniprotMappingTypes,EnsDb-method
(proteins,EnsDb-method), 39

makeEnsembldbPackage, 11, 13, 18, 35
makeEnsembl1SQLiteFromTables, //
makeEnsemblSQLiteFromTables
(makeEnsembldbPackage), 35
mapIds,EnsDb-method (select), 48
metadata (EnsDb-class), 9
metadata,EnsDb-method (EnsDb-class), 9

OnlyCodingTxFilter (Filter-classes), 20

OnlyCodingTxFilter-class
(Filter-classes), 20

organism (EnsDb-class), 9

organism,EnsDb-method (EnsDb-class), 9

promoters (exonsBy), 12
promoters,EnsDb-method (exonsBy), 12
ProtDomIdFilter (Filter-classes), 20
ProtDomIdFilter-class (Filter-classes),
20
ProteinDomainIdFilter (Filter-classes),
20
ProteinDomainIdFilter-class
(Filter-classes), 20
ProteinDomainSourceFilter
(Filter-classes), 20
ProteinDomainSourceFilter-class
(Filter-classes), 20
proteins (proteins,EnsDb-method), 39
proteins(), 25, 42,45, 56
proteins,EnsDb-method, 39
proteinToGenome, 5, 26, 28, 41, 43, 45, 53,
55,57
proteinToGenome(), 44

proteinToGenome, CompressedGRangesList-method

(proteinToGenome), 41
proteinToGenome, EnsDb-method

(proteinToGenome), 41
proteinToGenome,Preloaded-method

(proteinToGenome), 41

62

proteinToTranscript, 5, 26, 28, 43, 44, 53,
55,57

INDEX

toSAF,GRangesList-method (exonsBy), 12
transcriptLengths, 33

proteinToTranscript,CompressedGRangesList-methodnscripts, 71, 30, 31, 33, 40, 49, 52

(proteinToTranscript), 44
proteinToTranscript,EnsDb-method

(proteinToTranscript), 44
proteinToTranscript,Preloaded-method

(proteinToTranscript), 44

returnFilterColumns (EnsDb-class), 9

returnFilterColumns,EnsDb-method
(EnsDb-class), 9

returnFilterColumns<- (EnsDb-class), 9

returnFilterColumns<-,EnsDb-method
(EnsDb-class), 9

runApp, 47

runEnsDbApp, 47

select, 48
select,EnsDb-method (select), 48
SeqgendFilter (Deprecated), 7
seginfo (EnsDb-class), 9
seqginfo,EnsDb-method (EnsDb-class), 9
seglevels (EnsDb-class), 9
seglevels,EnsDb-method (EnsDb-class), 9
seqlevels,GRangesFilter-method
(Filter-classes), 20
seglevelsStyle, 50
seglevelsStyle(), 22
seqlevelsStyle,EnsDb-method
(seqlevelsStyle), 50
seqlevelsStyle<- (seqlevelsStyle), 50
seqlevelsStyle<-,EnsDb-method
(seglevelsStyle), 50
SegnameFilter (Deprecated), 7
segnames,GRangesFilter-method
(Filter-classes), 20
SeqstartFilter (Deprecated), 7
SeqstrandFilter (Deprecated), 7
show (EnsDb-class), 9
show, EnsDb-method (EnsDb-class), 9
supportedFilters, 14, 18, 40
supportedFilters(), 20, 23
supportedFilters,EnsDb-method
(Filter-classes), 20
supportedSeqlevelsStyles
(seglevelsStyle), 50
supportedSeqlevelsStyles,EnsDb-method
(seglevelsStyle), 50

threeUTRsByTranscript,EnsDb-method
(exonsBy), 12
toSAF (exonsBy), 12

transcripts (exonsBy), 12
transcripts(), 4, 22, 23, 25, 53, 57
transcripts,EnsDb-method (exonsBy), 12
transcriptsBy, /4
transcriptsBy (exonsBy), 12
transcriptsBy(), 22
transcriptsBy,EnsDb-method (exonsBy), 12
transcriptsByOverlaps, 17
transcriptsByOverlaps,EnsDb-method
(exonsBy), 12
transcriptToCds, 5, 26, 28, 43, 45, 53, 55, 57
transcriptToCds(), 55, 57
transcriptToGenome, 5, 26, 28, 43, 45, 53,
54,57
transcriptToProtein, 5, 26, 28, 43,45, 53,
55,56
transcriptToProtein(), 25
TxbiotypeFilter (Deprecated), 7
TxExternalNameFilter (Filter-classes),
20
TxExternalNameFilter-class
(Filter-classes), 20
TxidFilter (Deprecated), 7
TxIsCanonicalFilter (Filter-classes), 20
TxIsCanonicalFilter-class
(Filter-classes), 20
TxSupportLevelFilter (Filter-classes),
20
TxSupportLevelFilter-class
(Filter-classes), 20

UniprotDbFilter (Filter-classes), 20

UniprotDbFilter-class (Filter-classes),
20

UniprotMappingTypeFilter
(Filter-classes), 20

UniprotMappingTypeFilter-class
(Filter-classes), 20

updateEnsDb (EnsDb-class), 9

updateEnsDb,EnsDb-method (EnsDb-class),
9

useMySQL, 8, 35

useMySQL (useMySQL,EnsDb-method), 58

useMySQL ,EnsDb-method, 58

	addFilter,EnsDb-method
	cdsToTranscript
	convertFilter,AnnotationFilter,EnsDb-method
	Deprecated
	EnsDb
	EnsDb-class
	exonsBy
	Filter-classes
	genomeToProtein
	genomeToTranscript
	getGeneRegionTrackForGviz
	getGenomeFaFile
	hasProteinData,EnsDb-method
	lengthOf
	listEnsDbs
	makeEnsembldbPackage
	proteins,EnsDb-method
	proteinToGenome
	proteinToTranscript
	runEnsDbApp
	select
	seqlevelsStyle
	transcriptToCds
	transcriptToGenome
	transcriptToProtein
	useMySQL,EnsDb-method
	Index

