Package 'abseqR'

October 24, 2025

Type Package

Title Reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

Version 1.27.0

Description AbSeq is a comprehensive bioinformatic pipeline for the analysis of sequencing datasets generated from antibody libraries and abseqR is one of its packages. abseqR empowers the users of abseqPy (https://github.com/malhamdoosh/abseqPy) with plotting and reporting capabilities and

allows them to generate interactive HTML reports for the convenience of viewing and sharing with other researchers. Additionally, abseqR extends abseqPy to compare multiple repertoire analyses and perform further downstream analysis on its output.

License GPL-3 | file LICENSE

Encoding UTF-8

LazyData true

Depends R (>= 3.5.0)

Imports ggplot2, RColorBrewer, circlize, reshape2, VennDiagram, plyr, flexdashboard, BiocParallel (>= 1.1.25), png, grid, gridExtra, rmarkdown, knitr, vegan, ggcorrplot, ggdendro, plotly, BiocStyle, stringr, utils, methods, grDevices, stats, tools, graphics

VignetteBuilder knitr

RoxygenNote 6.1.0

Collate 'accessors-AbSeq.R' 'AbSeqCRep.R' 'util.R' 'distributions.R' 'upstreamAnalysis.R' 'productivityAnalysis.R' 'primerAnalysis.R' 'diversityAnalysis.R' 'annotationAnalysis.R' 'abundanceAnalysis.R' 'plotter.R' 'AbSeqRep.R' 'abseqReport.R' 'statistics.R' 'pairwise.R'

SystemRequirements pandoc (>= 1.19.2.1)

 ${\bf URL}\ {\it https://github.com/malhamdoosh/abseqR}$

 $\pmb{BugReports} \ \text{https://github.com/malhamdoosh/abseqR/issues}$

biocViews Sequencing, Visualization, ReportWriting, QualityControl, MultipleComparison

Suggests testthat

git_url https://git.bioconductor.org/packages/abseqR

2 Contents

git_branch devel
git_last_commit a67964b
git_last_commit_date 2025-04-15
Repository Bioconductor 3.22
Date/Publication 2025-10-24
Author JiaHong Fong [cre, aut], Monther Alhamdoosh [aut]
Maintainer JiaHong Fong <iiahfong@gmail.com></iiahfong@gmail.com>

Contents

+,AbSeqCRep,AbSeqCRep-method
+,AbSeqCRep,AbSeqRep-method
+,AbSeqRep,AbSeqCRep-method
+,AbSeqRep,AbSeqRep-method
.abundanceAnalysis
abundancePlot
.alignQualityHeatMaps
.allPrimerNames
.aminoAcidBar
.aminoAcidPlot
.analyzeUpstreamValidity
.annotAnalysis
.asRepertoireAlignLen
.asRepertoireBitscore
.asRepertoireChain
.asRepertoireDir
.asRepertoireList
.asRepertoireName
.asRepertoirePrimer3
.asRepertoirePrimer5
.asRepertoireQueryStart
.asRepertoireSubjectStart
.asRepertoireUpstream
.boxPlot
.calculateDInd
.calculateDiversityEstimates
.canonicalizeTitle
.capitalize
.checkVert
.cloneDistHist
.cloneDistMarginal
.clonotypeAnalysis
.collateReports
.commonPrimerNames
.correlationTest
.distanceMeasure
.diversityAnalysis
.emptyPlot
findRepertoires

Contents 3

.generateAllSpectratypes
.generateDelayedReport
.generateReport
.getLineTypes
.getTotal
.hmFromMatrix
.inferAnalyzed
.loadMatrixFromDF
.loadSamplesFromString
.pairwiseComparison
.plotCirclize
.plotDist
.plotDiversityCurves
.plotDuplication
.plotErrorDist
.plotIGVErrors
.plotIGVUpstreamLenDist
.plotIGVUpstreamLenDistDetailed
.plotPrimerIGVStatus
.plotPrimerIntegrity
.plotRarefaction
.plotRecapture
.plotSamples
.plotSpectratype
.plotUpstreamLength
.plotUpstreamLengthDist
.primerAnalysis
prodDistPlot
productivity Analysis
productivityPlot
readSummary
regionAnalysis
reportLBE
.saveAs
scatterPlot
scatterPlotComplex
secretionSignalAnalysis
substituteStringInFile
summarySE
topNDist
.UTR5Analysis
vennIntersection
1 1
1 1
abseqReport
report

56

Index

```
+, AbSeqCRep, AbSeqCRep-method
```

Combines 2 AbSeqCRep objects together for comparison

Description

Combines 2 AbSeqCRep objects together for comparison

Usage

```
## S4 method for signature 'AbSeqCRep,AbSeqCRep'
e1 + e2
```

Arguments

```
e1 AbSeqCRep.e2 AbSeqCRep.
```

Value

AbSeqCRep object. Calling abseqR's functions on this object will always result in a comparison.

See Also

```
abseqReport returns a list of AbSeqReps
```

```
# Use example data from abseqR as abseqPy's output, substitute this
# with your own abseqPy output directory
abseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)
# The provided example data has PCR1, PCR2, and PCR3 samples contained within
# pcr12 and pcr13 are instances of AbSeqCRep
pcr12 <- samples[["PCR1"]] + samples[["PCR2"]]
pcr13 <- samples[["PCR1"]] + samples[["PCR3"]]
# all_S is also an instance of AbSeqCRep
all_S <- pcr12 + pcr13
# you can now call the report function on this object
# report(all_S) # uncomment this line to execute report</pre>
```

```
+,AbSeqCRep,AbSeqRep-method
```

Combines a AbSeqCRep object with a AbSeqRep object together for comparison

Description

Combines a AbSeqCRep object with a AbSeqRep object together for comparison

Usage

```
## S4 method for signature 'AbSeqCRep,AbSeqRep'
e1 + e2
```

Arguments

- e1 AbSeqCRep.
- e2 AbSeqRep.

Value

AbSeqCRep object. Calling abseqR's functions on this object will always result in a comparison.

See Also

```
abseqReport returns a list of AbSeqReps
```

```
# Use example data from abseqR as abseqPy's output, substitute this
# with your own abseqPy output directory
abseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)
# The provided example data has PCR1, PCR2, and PCR3 samples contained within
# pcr12 is an instance of AbSeqCRep
pcr12 <- samples[["PCR1"]] + samples[["PCR2"]]
# pcr3 is instance of AbSeqRep
pcr3 <- samples[["PCR3"]]
# pcr123 is an instance of AbSeqCRep
pcr123 <- pcr12 + pcr3
# you can now call the report function on this object
# report(pcr123)  # uncomment this line to execute report</pre>
```

```
+,AbSeqRep,AbSeqCRep-method
```

Combines a AbSeqRep object with a AbSeqCRep object together for comparison

Description

Combines a AbSeqRep object with a AbSeqCRep object together for comparison

Usage

```
## S4 method for signature 'AbSeqRep,AbSeqCRep'
e1 + e2
```

Arguments

- e1 AbSeqRep.
- e2 AbSeqCRep.

Value

AbSeqCRep object. Calling abseqR's functions on this object will always result in a comparison.

See Also

```
abseqReport returns a list of AbSeqReps
```

```
# Use example data from abseqR as abseqPy's output, substitute this
# with your own abseqPy output directory
abseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)
# The provided example data has PCR1, PCR2, and PCR3 samples contained within
# pcr1 is an instance of AbSeqRep
pcr1 <- samples[["PCR1"]]
# pcr23 is instance of AbSeqCRep
pcr23 <- samples[["PCR2"]] + samples[["PCR3"]]
# pcr123 is an instance of AbSeqCRep
pcr123 <- pcr1 + pcr23
# you can now call the report function on this object
# report(pcr123)  # uncomment this line to execute report</pre>
```

```
+,AbSeqRep,AbSeqRep-method
```

Combines 2 AbSeqRep objects together for comparison

Description

Combines 2 AbSeqRep objects together for comparison

Usage

```
## S4 method for signature 'AbSeqRep,AbSeqRep'
e1 + e2
```

Arguments

e1 AbSeqRep object.e2 AbSeqRep object.

Value

AbSeqCRep object. Calling abseqR's functions on this object will always result in a comparison.

See Also

```
abseqReport returns a list of AbSeqReps
```

```
# Use example data from abseqR as abseqPy's output, substitute this
# with your own abseqPy output directory
abseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)
# The provided example data has PCR1, PCR2, and PCR3 samples contained within
# pcr1 and pcr2 are instances of AbSeqRep
pcr1 <- samples[["PCR1"]]
pcr2 <- samples[["PCR2"]]
# pcr12 is an instance of AbSeqCRep
pcr12 <- pcr1 + pcr2
# you can now call the report function on this object
# report(pcr12) # uncomment this line to execute report</pre>
```

8 abundancePlot

.abundanceAnalysis

Conducts abundance analysis

Description

Conducts abundance analysis

Usage

```
.abundanceAnalysis(abundanceDirectories, abunOut, sampleNames,
  combinedNames, mashedNames, skipDgene = FALSE, .save = TRUE)
```

Arguments

abundanceDirectories

list type. List of sample directories

abunOut string type. Output directory

sampleNames vector type. 1-1 correspondence with abundanceDirectories

combinedNames string type. Title "combined" sample names

mashedNames string type. File "mashed" names - avoid special chars

skipDgene logical type. Skip D gene plots?
. save logical type. Save ggplot as Rdata

Value

None

.abundancePlot

Abundance distribution

Description

Abundance distribution

Usage

```
.abundancePlot(files, sampleNames, outputDir, skipDgene = FALSE,
    .save = TRUE)
```

Arguments

files list type. list of files in abundance directory sampleNames vector type. 1-1 correspondance to files

outputDir string type.

skipDgene logical type. Skip D germline abundance plot if TRUE.

. save logical type. Save Rdata ggplot item

Value

None

.alignQualityHeatMaps $\ Plots\ all\ 5\ alignment\ quality\ heatmaps$

Description

Plots alignment quality vs:

- mismatches
- gaps
- bitscore
- · percent identity
- subject start

Usage

.alignQualityHeatMaps(abundanceDirectory, sampleName)

Arguments

```
abundanceDirectory
```

character type. fully qualified path to abundance directory

sampleName character type. sample name

Value

list of ggplotly heatmaps

.allPrimerNames

Collect primer names from FASTA

Description

Collect primer names from FASTA

Usage

```
.allPrimerNames(primerFile)
```

Arguments

```
primerFile string type. Path to primer file
```

Value

vector of primer names as seen in primerFile

10 .aminoAcidPlot

.aminoAcidBar

Plots amino acid composition logo

Description

Plots amino acid composition logo

Usage

```
.aminoAcidBar(df, scale, region, germ = "")
```

Arguments

df dataframe

scale logical. scale to proportion?
region string. which region is this
germ string. V germline family

Value

ggplot2 object

 $. \verb"aminoAcidPlot"$

Composition logo plot

Description

Plots 2 kinds: scaled and unscaled composition logos

Usage

```
.aminoAcidPlot(compositionDirectory, outdir, sampleName,
  regions = c("FR1", "CDR1", "FR2", "CDR2", "FR3", "CDR3", "FR4"),
  .save = TRUE)
```

Arguments

compositionDirectory

string type.

outdir string type. sampleName string type.

regions logical type. vector of FR/CDR regions to plot

. save logical type. save ggplot object

Value

none

```
.analyzeUpstreamValidity
```

Plots the validity of upstream sequences

Description

Plots the distribution of valid, faulty, and missing start codon in IGV germlines (repeated for gene and family levels).

Usage

```
.analyzeUpstreamValidity(upstreamDirectories, upstreamOut, expectedLength,
  upstreamLengthRange, sampleNames, combinedNames, mashedNames,
  .save = TRUE)
```

Arguments

upstreamDirectories

list type. List of sample directories

upstreamOut string type. Output directory

expectedLength int type. Expected length of upstream sequences. (i.e. upstream_end - up-

stream_start + 1). If this is infinite, no plots will be generated.

upstreamLengthRange

string type. start_end format

sampleNames vector type. 1-1 with upstream directories

combinedNames string type. Title friendly "combined" sample names mashedNames string type. File friendly "mashed-up" sample names

. save logical type. Save Rdata?

Value

None

.annotAnalysis Annotation analysis

Description

Annotation analysis

Usage

```
.annotAnalysis(annotDirectories, annotOut, sampleNames, mashedNames,
    .save = TRUE)
```

12 .asRepertoireBitscore

Arguments

annotDirectories

list type. List of sample directories

annotOut string type. Output directory

sampleNames vector type. 1-1 with annotDirectories

mashedNames string type. File output "mashed" sample names

. save logical type. Saves ggplot object

Value

none

.asRepertoireAlignLen Accessor for alignlen slot

Description

Accessor for alignlen slot

Usage

```
.asRepertoireAlignLen(object, collapse = " - ")
```

Arguments

object AbSeqRep object

collapse character type, collapse the range using this string.

Value

character type. If collapse is a string, then the ranges are represented as 'start - end' in a string, if collapse is NULL, returns a character vector of length two, denoting the start and end value respectively.

 $. \, as {\tt RepertoireBitscore} \, \, \, Accessor for \, {\tt bitscore} \, \, slot$

Description

Accessor for bitscore slot

Usage

```
.asRepertoireBitscore(object, collapse = " - ")
```

Arguments

object AbSeqRep object

collapse character type, collapse the range using this string.

.asRepertoireChain 13

Value

character type. If collapse is a string, then the ranges are represented as 'start - end' in a string, if collapse is NULL, returns a character vector of length two, denoting the start and end value respectively.

.as Repertoire Chain

Accessor for chain slot

Description

Accessor for chain slot

Usage

.asRepertoireChain(object)

Arguments

object

AbSeqRep object

Value

character type, the chain type of this sample

 $.\,as Repertoire \hbox{Dir}$

Accessor for the outdir slot

Description

Accessor for the outdir slot

Usage

.asRepertoireDir(object)

Arguments

object

AbSeqRep object

Value

character type, the output directory of this object

14 .asRepertoireName

.asRepertoireList

Accessor for AbSeqCRep's list of AbSeqRep objects

Description

Accessor for AbSeqCRep's list of AbSeqRep objects

Usage

.asRepertoireList(object)

Arguments

object

AbSeqCRep object

Value

list type, list of AbSeqRep objects that together, compose this AbSeqCRep object.

.asRepertoireName

Accessor for the name slot

Description

Accessor for the name slot

Usage

.asRepertoireName(object)

Arguments

object

AbSeqRep object

Value

character type, the sample name of this object.

.asRepertoirePrimer3

Description

Accessor for the primer3end slot

Usage

```
.asRepertoirePrimer3(object)
```

Arguments

object

AbSeqRep object

Value

character type, the FASTA file name for primer 3' end sequences

 $.\, {\tt asRepertoirePrimer5} \quad Accessor for \, the \, {\tt primer5end} \, slot$

Description

Accessor for the primer5end slot

Usage

.asRepertoirePrimer5(object)

Arguments

object

AbSeqRep object

Value

character type, the FASTA file name for primer 5' end sequences

 $. \, as Repertoire Query Start \,$

Accessor for qstart slot

Description

Accessor for qstart slot

Usage

```
.asRepertoireQueryStart(object, collapse = " - ")
```

Arguments

object AbSeqRep object

collapse character type, collapse the range using this string.

Value

character type. If collapse is a string, then the ranges are represented as 'start - end' in a string, if collapse is NULL, returns a character vector of length two, denoting the start and end value respectively.

.asRepertoireSubjectStart

Accessor for sstart slot

Description

Accessor for sstart slot

Usage

```
.asRepertoireSubjectStart(object, collapse = " - ")
```

Arguments

object AbSeqRep object

collapse character type, collapse the range using this string.

Value

character type. If collapse is a string, then the ranges are represented as 'start - end' in a string, if collapse is NULL, returns a character vector of length two, denoting the start and end value respectively.

.asRepertoireUpstream 17

```
.as
RepertoireUpstream \ Accessor for \ the \ {\tt upstream} \ slot
```

Description

Accessor for the upstream slot

Usage

```
.asRepertoireUpstream(object)
```

Arguments

object

AbSeqRep object

Value

character type

.boxPlot

Creates a box plot

Description

Creates a box plot

Usage

```
.boxPlot(dataframes, sampleNames, plotTitle, xlabel = "", ylabel = "",
    subs = "")
```

Arguments

dataframes list type. List of sample dataframes sampleNames vector type. 1-1 with dataframes plotTitle string type

xlabelstring typeylabelstring typesubsstring type

Value

```
ggplot2 object
```

.calculateDInd

Calculates the "standard" diversity indices

Description

Calculates the "standard" diversity indices

Usage

.calculateDInd(df)

Arguments

df

```
clonotype dataframe. Vegan format: + ______+ | S.1| S.2| S.3 | S.4 | .... | (each species should have its own column) + _____+ | v1 | v2 | v3 | .... | (each species' count values are placed in the corresponding column) + _____+
```

Value

```
dataframe with the column headers: shannon , simpson.con , simpson.inv , simpson.gini , renyi.0 , renyi.1 , renyi.2 , renyi.1nf , hill.0 , hill.1 , hill.2 , hill.Inf renyi.0 => species richness renyi.1 => shannon entropy renyi.2 => inv.gini renyi.Inf => min.entropy finally: hill_a = \exp(\text{renyi}_a)
```

.calculateDiversityEstimates

Calculates Lower Bound Estimates for unseen species and Common Diversity Indices from clonotype tables

Description

Employ common techniques to calculate LBE for unseen species and commonly used diversity indices

Usage

```
.calculateDiversityEstimates(diversityDirectories, diversityOut,
    sampleNames)
```

Arguments

diversityDirectories

list type. List of directories to diversity dir

diversityOut string type. Output directory

sampleNames vector type. 1-1 with diversityDirectories sample names

Value

None

.canonicalizeTitle 19

.canonicalizeTitle

Convert file names to human friendly text

Description

Convert file names to human friendly text

Usage

```
.canonicalizeTitle(str)
```

Arguments

str

string type

Value

string

.capitalize

 $Helper function \ to \ capitalize \ the \ first \ letter \ of \ {\it str}$

Description

Helper function to capitalize the first letter of str

Usage

```
.capitalize(str)
```

Arguments

str

string type

Value

string, str capitalized

20 .cloneDistHist

.checkVert

Checks if abseqPy has a metadata line that suggests the orientation

Description

Checks if abseqPy has a metadata line that suggests the orientation

Usage

```
.checkVert(filename)
```

Arguments

filename

csv filename

Value

True if CSV metadata says "plot vertically"

.cloneDistHist

Marginal histogram of clonotypes (blue for shared, grey for total). The y axis is scaled by sqrt (but it doesn't really matter anyway, since we're stripping away the y-ticks)

Description

Marginal histogram of clonotypes (blue for shared, grey for total). The y axis is scaled by sqrt (but it doesn't really matter anyway, since we're stripping away the y-ticks)

Usage

```
.cloneDistHist(df.original, otherClones, lim.min, flip)
```

Arguments

df.original dataframe with all clones

otherClones clones from the other dataframe

lim.min x-axis minimum limit

flip logical type

Value

ggplot2 object

.cloneDistMarginal 21

.cloneDistMarginal	Marginal density graph of clonotypes (blue for shared, grey for total,
	purple for exclusive clones)

Description

Marginal density graph of clonotypes (blue for shared, grey for total, purple for exclusive clones)

Usage

```
.cloneDistMarginal(df.original, otherClones, lim.min, flip)
```

Arguments

df.original dataframe with all clones

otherClones clones from the other dataframe

lim.min x-axis minimum limit

flip logical type

Value

ggplot2 object

Description

Comprehensive clonotype analyses

Usage

```
.clonotypeAnalysis(diversityDirectories, clonotypeOut, sampleNames,
  mashedNames, .save = TRUE)
```

Arguments

 ${\tt diversityDirectories}$

list type. List of directories to diversity dir

clonotypeOut string type. Output directory

sampleNames vector type. 1-1 with diversityDirectories

mashedNames string type. Prefix for ooutput files using "mashed-up"

. save logical type. Save ggplot object?

Value

Nothing

22 .commonPrimerNames

.collateReports	Collate all HTML reports into a single directory and cretate an entry index.html file that redirects to all collated HTML files

Description

Collate all HTML reports into a single directory and cretate an entry index.html file that redirects to all collated HTML files

Usage

```
.collateReports(reports, individualSamples, outputDirectory)
```

Arguments

reports list/vector type. Collection of strings that are path(s) to <sample>_report.html individualSamples

list type. list of AbSeqRep objects. Used to extract filtering information and % read counts.

outputDirectory

string type. Where should the report be placed.

Value

Nothing

.commonPrimerNames Collect the intersection of all primer names within a collection of primer files

Description

Collect the intersection of all primer names within a collection of primer files

Usage

```
.commonPrimerNames(primerFiles)
```

Arguments

```
primerFiles list / vector type. Collection of primer files
```

Value

vector type. Vector of primerNames that are present in ALL primerFiles. NULL if there's no intersection at all

.correlationTest 23

.correlation Test

Conducts pearson and spearman correlation analysis on dataframe

Description

Conducts pearson and spearman correlation analysis on dataframe

Usage

```
.correlationTest(df)
```

Arguments

df

```
dataframe with at least the following 2 columns: +———+ | prop.x | prop.y | +———+ | ..... | .... | +———+ where prop.x and prop.y are normalized counts (i.e. frequencies) of the clones They may contain 0 in a column to denote it being missing from sample x or y.
```

Value

named list of pearson, pearson.p, spearman, spearman.p

.distanceMeasure

Computes the distance between pariwise samples

Description

Computes the distance between pariwise samples

Usage

```
.distanceMeasure(df)
```

Arguments

df

Value

named list of bray.curtis, jaccard, and morisita.horn

24 .emptyPlot

.diversityAnalysis

Title Diversity analysis

Description

Title Diversity analysis

Usage

```
.diversityAnalysis(diversityDirectories, diversityOut, sampleNames,
  mashedNames, .save = TRUE)
```

Arguments

 ${\tt diversityDirectories}$

list type. List of directories to diversity dir

diversityOut string type. Output directory

sampleNames vector type. 1-1 with diversityDirectories

mashedNames string type. Prefix for output files using "mashed-up" sample names

. save logical type. Save ggplot object?

Value

None

 $.\, {\tt emptyPlot}$

Creates and returns an empty plot

Description

Creates and returns an empty plot

Usage

```
.emptyPlot()
```

Value

empty ggplot2 object

.findRepertoires 25

 $. \verb| findRepertoires| & \textit{Given a directory} = <| abseqPy_output dir > / RESULT_DIR/, \textit{ returns the}| \\$

directories (repositories) in 'directory'. That is, will not return any sample_vs_sample directories. This is done by asserting that a 'repository' must have an (analysis.params) file, and a summary.txt file.

Description

A sample_vs_sample directory will not have these files.

Usage

.findRepertoires(directory)

Arguments

directory string. Path up until <abseqPy_outputdir>/RESULT_DIR/

Value

vector of strings that are samples in 'directory', note, this is NOT a full path, but just the sample/repertoire name itself

.generateAllSpectratypes

Generates all FR/CDR spectratypes

Description

Generates all FR/CDR spectratypes

Usage

```
.generateAllSpectratypes(diversityDirectories, diversityOut, sampleNames,
  mashedNames, .save = TRUE)
```

Arguments

diversityDirectories

list type. List of directories to diversity dir

diversityOut string type. Output directory

sampleNames vector type. 1-1 with diversityDirectories

mashedNames string type. Prefix for output files using "mashed-up" sample names

. save logical type. Save ggplot object?

Value

Nothing

26 .generateReport

```
.generateDelayedReport
```

Generates report for all samples in 'compare'

Description

This function is needed because we are delaying the generation of reports until after all threads/processes have joined. There's currently an issue with rmarkdown::render() in parallel execution, see: https://github.com/rstudio/rm

Usage

```
.generateDelayedReport(root, compare, interactivePlot)
```

Arguments

root string, project root directory.

compare vector of strings, each string is a comparison defined by the user (assumes that

this value has been checked).

interactivePlot

logical, whether or not to plot interactive plotly plots.

Value

a named list of samples, each an AbSeqRep object found in "root"

.generateReport

Generates HTML report from AbSeqRep and AbSeqCRep ojects

Description

Generates HTML report from AbSeqRep and AbSeqCRep ojects

Usage

```
.generateReport(object, root, outputDir, interactivePlot = TRUE,
    .indexHTML = "#")
```

Arguments

object AbSeqCRep type.

root string type. Root directory of the sample(s)

outputDir string type. The path where the HTML will be generated

interactive Plot

logical type. Interactive or not

.indexHTML character type. The back button will redirect to this link. This is typically used

to redirect users back to index.html page

Value

path (including HTML name) where the report (HTML file) was saved to

.getLineTypes 27

.getLineTypes

Helper function to return line types by importance based on provided CD/Fs regions

Description

In the aesthetics of diversity plots (rarefaction, recapture, and duplication), the line types should emphasise the most important antibody region, they're ranked in ascending order of: "FR4", "FR1", "FR2", "FR3", "CDR1", "CDR2", "CDR3", "V".

Usage

```
.getLineTypes(regions)
```

Arguments

regions

a list/vector of strings (regions)

Value

vector of strings, each corresponding to the appropriate line type for regions.

.getTotal

Get total number of samples (n)

Description

Often enough, the CSV values supplied do not contain raw counts but percentages (so this value will let us know exactly the sample size).

Usage

```
.getTotal(filename)
```

Arguments

filename

csv filename

Value

string, sample size.

28 .inferAnalyzed

hmF	romMa	triv
1 111111	i Ullillia	LIIX

Plots a plotly heatmap from provided matrix

Description

Plots a plotly heatmap from provided matrix

Usage

```
.hmFromMatrix(m, title, xlabel = "", ylabel = "")
```

Arguments

m	matrix type
title	character type
xlabel	character type
ylabel	character type

Value

list with keys: static and interactive (ggplot2 object and plotly object respectivelyb)

.inferAnalyzed

Returns all samples found under sampleDirectory

Description

Returns all samples found under sampleDirectory

Usage

```
.inferAnalyzed(sampleDirectory)
```

Arguments

```
sampleDirectory string, path to sample directory.
```

Value

un-normalized path to all samples under sampleDirectory

.loadMatrixFromDF 29

.loadMatrixFromDF	Given a dataframe with the columns "from", "to", and value.var, return a symmetric matrix (with diagonal values = diag). I.e. a call to
	isSymmetric(return_value_of_this_function) will always be TRUE.

Description

Given a dataframe with the columns "from", "to", and value.var, return a symmetric matrix (with diagonal values = diag). I.e. a call to isSymmetric(return_value_of_this_function) will always be TRUE.

Usage

.loadMatrixFromDF(dataframe, value.var, diag, unidirectional = TRUE)

Arguments

dataframe	dataframe with 3 required columns, namely: + + from to value.var +
	parameter
value.var	the column to use as the matrix value
diag	what should the diagonal values be if the dataframe doesn't provide them
unidirectional	logical type. If the dataframe provided has the reverse pairs (i.e. a from-to pair AND a to-from pair with the save values in the value.var column), then this should be FALSE. Otherwise, this function will flip the from-to columns to generate a symmetric dataframe (and hence, a symmetric matrix).

Value

a symmetric matrix with rownames(mat) == colnames(mat) The diagonal values are filled with diag if the dataframe itself doesn't have diagonal data

```
.loadSamplesFromString
```

Loads AbSeqCRep or AbSeqRep objects from a list of sampleNames

Description

Loads AbSeqCRep or AbSeqRep objects from a list of sampleNames

Usage

```
.loadSamplesFromString(sampleNames, root, warnMove = TRUE)
```

30 .plotCirclize

Arguments

sampleNames vector, singleton or otherwise root string type. root directory

warnMove logical type. Warning message ("message" level, not "warning" level) if the

directory has been moved?

Value

AbSeqRep or AbSeqCRep object depending on sampleNames

.pairwiseComparison

Conduct all vs all pairwise comparison analyses

Description

Conduct all vs all pairwise comparison analyses

Usage

```
.pairwiseComparison(dataframes, sampleNames, outputPath, .save = TRUE)
```

Arguments

dataframes list of dataframes

sampleNames 1-1 vector corresponding to dataframes

outputPath string .save logical

Value

nothing

 $. \verb|plotCirclize| \\$

V-J association plot

Description

V-J association plot

Usage

```
.plotCirclize(sampleName, path, outputdir)
```

Arguments

sampleName string type

path string type. Path to _vjassoc.csv

outputdir string type

.plotDist 31

Value

None

Description

Plots barplot for all sample in dataframes. If length(sampleNames) == 1, then the bars will also have y-values (or x if horizontal plot) labels on them. Use 'perc' to control if the values are percentages.

Usage

```
.plotDist(dataframes, sampleNames, plotTitle, vert = TRUE, xlabel = "",
  ylabel = "", perc = TRUE, subs = "", sorted = TRUE,
  cutoff = 15, legendPos = "right")
```

Arguments

dataframes list type. List of dataframes sampleNames vector type. 1-1 correspondence to dataframes. plotTitle string type. boolean type. True if the plot should be vertical vert xlabel string type ylabel string type boolean type. True if data's axis is a percentage proportion (instead of 0-1) only perc used if length(sampleNames) == 1 subs string type sorted boolean type. True if bar plot should be sorted in descending order cutoff int type. Number of maximum ticks to show (x on vert plots, y on hori plots). legendPos string type. Where to position legend (see ggplot's theme())

Value

ggplot2 object

32 .plotDuplication

Description

Plots rarefaction, recapture, and de-dup plots for specified region

Usage

```
.plotDiversityCurves(region, diversityDirectories, sampleNames,
    mashedNames, diversityOut, .save = TRUE)
```

Arguments

region string type. One of: "cdr", "cdr_v", and "fr". "cdr" means CDR1-3, "cdr_v"

means CDR3 and V only, and finally "fr" means FR1-4.

diversityDirectories

list type. List of directories to diversity dir

sampleNames vector type. 1-1 with diversityDirectories

mashedNames string type. Prefix for output files using "mashed-up"

diversityOut string type. Output directory sample names

. save logical type. Save ggplot object?

Value

Nothing

Description

bins singletons, doubletons, and higher order clonotypes into a line plot

Usage

```
.plotDuplication(files, sampleNames, regions = c("CDR3", "V"))
```

Arguments

files list type. List of strings to _cdr_v_duplication.csv pathname sampleNames vector type. Vector of strings each representing sample names

regions vector type. Which regions to include in the plot. Default = c("CDR3", "V")

Value

ggplot2 object

.plotErrorDist 33

.plotErrorDist	Plots the error distribution for each region: CDRs, FRs, IGV, IGD, and IGJ

Description

Plots the distribution of indels (gaps), indels in out-of-frame sequences, and the distribution of mismatches for CDRs, FRs, IGV, IGD, and IGJ.

Usage

```
.plotErrorDist(productivityDirectories, prodOut, sampleNames,
  combinedNames, mashedNames, .save = TRUE)
```

Arguments

productivityDirectories

list type. List of directories

prod0ut string type. Output directory

sampleNames vector type. 1-1 with productivity directories

combinedNames string type. Title friendly "combined" sample names string type. File friendly "mashed-up" sample names

. save logical type. Save Rdata?

Value

None

.plotIGVErrors Plots the error distribution for IGV germlines	.plotIGVErrors	Plots the error distribution for IGV germlines
---	----------------	--

Description

Plots the distribution of in-frame unproductive, out-of-frame unproductive, and productive IGV germlines.

Usage

```
.plotIGVErrors(productivityDirectories, prodOut, sampleNames,
  combinedNames, mashedNames, .save = TRUE)
```

Arguments

productivityDirectories

list type. List of directories

prod0ut string type. Output directory

sampleNames vector type. 1-1 with productivity directories

combinedNames string type. Title friendly "combined" sample names string type. File friendly "mashed-up" sample names

. save logical type, save Rdata?

Value

None

```
.plotIGVUpstreamLenDist
```

Plot IGV family distribution for a given upstreamLengthRange

Description

Given an upstream length range, plot the distributions of IGV family without showing their actual lengths. If their actual lengths matter, refer to .plotIGVUpstreamLenDistDetailed.

Usage

```
.plotIGVUpstreamLenDist(upstreamDirectories, upstreamOut,
   upstreamLengthRange, lengthType, sampleNames, combinedNames, mashedNames,
   .save = TRUE)
```

Arguments

upstreamDirectories

list type. List of sample directories

upstreamOut string type. Output directory

 ${\tt upstreamLengthRange}$

The range of upstream sequences to be included in this plot. This is usually determined by abseqPy and the format should be as follows: "min_max", e.g.:

1_15 means range(1, 15) inclusive.string type.

lengthType string type. "" (the empty string) denotes everything and "_short" denotes a short

sequence. abseqPy dictates this because it's used for locating the files.

sampleNames vector type. 1-1 with upstream directories

combinedNames string type. Title friendly "combined" sample names
mashedNames string type. File friendly "mashed-up" sample names

. save logical type. Save Rdata?

Value

None

```
.plotIGVUpstreamLenDistDetailed
```

Plots the detailed length distribution for IGV families

Description

A boxplot for each IGV families showing the IQR of upstream lengths. In contrast to .plotIGVUpstreamLenDist, which only shows the distribution of IGV families over upstreamLengthRange.

Usage

```
.plotIGVUpstreamLenDistDetailed(upstreamDirectories, upstreamOut,
   upstreamLengthRange, lengthType, sampleNames, combinedNames, mashedNames,
   .save = TRUE)
```

Arguments

upstreamDirectories

list type. List of sample directories

upstreamOut string type. Output directory

upstreamLengthRange

The range of upstream sequences to be included in this plot. This is usually determined by abseqPy and the format should be as follows: "min_max", e.g.:

1_15 means range(1, 15) inclusive.string type.

lengthType string type. "" (the empty string) denotes everything and "_short" denotes a short

sequence. abseqPy dictates this because it's used for locating the files.

sampleNames vector type. 1-1 with upstream directories

combinedNames string type. Title friendly "combined" sample names string type. File friendly "mashed-up" sample names

. save logical type. Save Rdata?

Value

None

```
.plotPrimerIGVStatus Plots, for a given category and pend, the primer IGV indelled distribution in a bar plot
```

Description

Plots the abundace of indelled primers relative to IGV germlines

Usage

```
.plotPrimerIGVStatus(primer, pend, category, primerDirectories,
   sampleNames, primerOut, combinedNames, mashedNames, .save = TRUE)
```

36 .plotPrimerIntegrity

Arguments

primer string, primer name

pend string, either 3 or 5 (primer end)

category string, either "all", "productive", or "outframe"

primerDirectories

string type. Path to primer analysis directory

sampleNames vector type. 1-1 with primerDirectories

primerOut string type. output directory

combinedNames string type. Title friendly "combined" sample names string type. File friendly "mashed-up" sample names

. save logical type. Save Rdata?

Value

None

or 3' pend

Description

Plots the distribution of primer integrity for a given category and 5' or 3' pend

Usage

```
.plotPrimerIntegrity(primerIntegrity, pend, category, primerDirectories,
    sampleNames, primerOut, combinedNames, mashedNames, .save = TRUE)
```

Arguments

primerIntegrity

string. One of "stopcodon", "integrity", "indelled", "indel_pos"

pend string, either 3 or 5 (primer end)

category string, either "all", "productive", or "outframe"

primerDirectories

string type. Path to primer analysis directory

sampleNames vector type. 1-1 with primerDirectories

primerOut string type. output directory

combinedNames string type. Title friendly "combined" sample names string type. File friendly "mashed-up" sample names

. save logical type. Save Rdata?

Value

None

.plotRarefaction 37

|--|

Description

Plots the number of unique clonotypes (on the y-axis) drawn from a sample size on the x axis. The number of unique clonotypes is averaged over 5 repeated rounds.

Usage

```
.plotRarefaction(files, sampleNames, regions = c("CDR3", "V"))
```

Arguments

files list type. A list of files consisting of path to samples

sampleNames vector type. A vector of strings, each being the name of samples in files

regions vector type. A vector of strings, regions to be included. Defaults to c("CDR3",

"V")

Value

ggplot2 object

.plotRecapture Plots capture-recapture

Description

Plots the percent of recapture clonotypes (on the y-axis) drawn from a repeated (with replacement) sample size on the x axis. The percentage of recaptured clonotypes is averaged over 5 recapture rounds.

Usage

```
.plotRecapture(files, sampleNames, regions = c("CDR3", "V"))
```

Arguments

files list type. List of _cdr_v_recapture.csv.gz files.

sampleNames vector type. A vector of strings each representing the name of samples in files.

regions vector type. A vector of strings, regions to be included in the plot. defaults to

c("CDR3", "V")

Value

ggplot2 object

.plotSpectratype

$. \verb plotSamples & \textit{Monolith AbSeq Plot function - the "driver" program}$

Description

Monolith AbSeq Plot function - the "driver" program

Usage

```
.plotSamples(sampleNames, directories, analysis, outputDir, primer5Files,
    primer3Files, upstreamRanges, skipDgene = FALSE)
```

Arguments

sampleNames	vector type. Vector of sample names in strings
directories	vector type. Vector of directories in strings, must be 1-1 with sampleNames
analysis	vector / list type. What analysis to plot for. If sampleNames or directories is > 1 (i.e. AbSeqCRep), then make sure that it's an intersection of all analysis conducted by the repertoires, otherwise, it wouldn't make sense
outputDir	string type. Where to dump the output
primer5Files	vector / list type. Collection of strings that the sample used for primer5 analysis. If sample N doesn't have a primer 5 file, leave it as anthing but a valid file path.
primer3Files	vector / list type. Collection of strings that the sample used for primer 3 analysis. If sample N doesn't have a primer 3 file, leave it as anthing but a valid file path.
upstreamRanges	list type. Collection of "None"s or vector denoting upstreamStart and upstreamEnd for each sample.
skipDgene	logical type. Whether or not to skip D gene distribution plot

Value

none

```
.plotSpectratype Spectratype plotter
```

Description

Plots length distribution

Usage

```
.plotSpectratype(dataframes, sampleNames, region, title = "Spectratype",
   subtitle = "", xlabel = "Length(AA)", ylabel = "Distribution",
   showLabel = FALSE)
```

.plotUpstreamLength 39

Arguments

dataframes list type. List of dataframes.

sampleNames vector type. 1-1 correspondance with dataframes

region string type. Region that will be displayed in the plot title. This specifies which

region this spectratype belongs to. If not supplied, a default (start, end) range

will be displayed instead

title string type. Ignored if region is specified.

subtitlestring typexlabelstring typeylabelstring type

showLabel bool type. Show geom_text? - Ignored if samples > 1

Value

ggplot2 object

.plotUpstreamLength Plot upstream distribution

Description

Plot upstream distribution

Usage

```
.plotUpstreamLength(upstreamDirectories, upstreamOut, expectedLength,
  upstreamLengthRange, sampleNames, combinedNames, mashedNames,
  .save = TRUE)
```

Arguments

 ${\tt upstreamDirectories}$

list type. List of sample directories

upstreamOut string type. Output directory

expectedLength int type. Expected length of upstream sequences. (i.e. upstream_end - up-

 $stream_start + 1$).

upstreamLengthRange

string type. start_end format

sampleNames vector type. 1-1 with upstream directories

combinedNames string type. Title friendly "combined" sample names string type. File friendly "mashed-up" sample names

. save logical type. Save Rdata?

Value

None

40 .primerAnalysis

```
.plotUpstreamLengthDist
```

Plot upstream sequence length distribution for upstream sequences (5'UTR or secretion signal) for a given upstreamLengthRange

Description

Given an upstream length range, plot the distribution of upstream sequence lengths.

Usage

```
.plotUpstreamLengthDist(upstreamDirectories, upstreamOut,
   upstreamLengthRange, lengthType, sampleNames, combinedNames, mashedNames,
   .save)
```

Arguments

upstreamDirectories

list type. List of sample directories

upstreamOut string type. Output directory

upstreamLengthRange

The range of upstream sequences to be included in this plot. This is usually determined by abseqPy and the format should be as follows: "min_max", e.g.:

1_15 means range(1, 15) inclusive.string type.

lengthType string type. "" (the empty string) denotes everything and "_short" denotes a short

sequence. abseqPy dictates this because it's used for locating the files.

sampleNames vector type. 1-1 with upstream directories

combinedNames string type. Title friendly "combined" sample names mashedNames string type. File friendly "mashed-up" sample names

. save logical type. Save Rdata?

Value

None

.primerAnalysis

Conducts primer specificity analysis

Description

Conducts primer specificity analysis

Usage

```
.primerAnalysis(primerDirectories, primer5Files, primer3Files, primerOut,
    sampleNames, combinedNames, mashedNames, .save = TRUE)
```

.prodDistPlot 41

Arguments

primerDirectories

string type. Path to primer analysis directory

primer5Files vector/list type. 5' end primer files primer3Files vector/list type. 3' end primer files

primerOut string type. output directory

sampleNames vector type. 1-1 with primerDirectories

combinedNames string type. Title friendly "combined" sample names mashedNames string type. File friendly "mashed-up" sample names

. save logical type. Save Rdata?

Value

None

.prodDistPlot

Plots a distribution plot for different productivity analysis files

Description

A wrapper for plotDist

Usage

```
.prodDistPlot(productivityDirectories, sampleNames, title, reg,
  outputFileName, region, .save = TRUE)
```

Arguments

 ${\tt productivityDirectories}$

vector type. directories where all productivity csv files lives (usually <sample-

name>/productivity/)

sampleNames vector type. title string type.

reg string type. Regular expression to find the right files for this particular distribu-

tion plot

outputFileName string type. Vector of file names to save in the order of regions

region string type. Most of the dist plots are regional based. use "" if no regions are

involved

. save logical type. Save Rdata?

Value

None

42 .productivityPlot

```
.productivityAnalysis Conducts productivty analysis
```

Description

Conducts productivty analysis

Usage

```
.productivityAnalysis(productivityDirectories, prodOut, sampleNames,
  combinedNames, mashedNames, .save = TRUE)
```

Arguments

productivityDirectories

list type. List of directories

prod0ut string type. Output directory

sampleNames vector type. 1-1 with productivity directories

combinedNames string type. Title friendly "combined" sample names string type. File friendly "mashed-up" sample names

. save logical type. Save Rdata

Value

None

```
.productivityPlot Summary of productivity
```

Description

Shows the percentage of 1. productivity, 2. non-functional + reason for being unproductive, i.e. "Stop Codon" or "Out of frame" or "Stop & Out"

Usage

```
.productivityPlot(dataframes, sampleNames)
```

Arguments

dataframes list type. List of sample dataframes sampleNames vector type. 1-1 with dataframes

Value

```
ggplot2 object
```

readSummary 43

.readSummary

Return value specifed by key from AbSeq's summary file

Description

Return value specifed by key from AbSeq's summary file

Usage

```
.readSummary(sampleRoot, key)
```

Arguments

sampleRoot

 $sample \ 's \ root \ directory. \ For \ example, \ /path/to/<output \ dir>/reports/<sample_name>.$

key

character type. Possible values are (though they might change)

- RawReads
- AnnotatedReads
- FilteredReads
- · ProductiveReads

Value

value associated with key from summary file. "NA" (in string) if the field is not available refer to util.R for the key values

.regionAnalysis

Title Shows varying regions for a given clonotype defined by its CDR3

Description

Title Shows varying regions for a given clonotype defined by its CDR3

Usage

```
.regionAnalysis(path, sampleName, top = 15)
```

Arguments

path

string type. Path to diversity folder where <sampleName>_clonotype_diversity_region_analysis.csv.g

is located

sampleName

string type

top

int type. Top N number of clones to analyze

Value

ggplot2 object

44 .saveAs

.reportLBE	Reports abundance-based (Lower bound) diversity estimates using the Vegan package

Description

Reports abundance-based (Lower bound) diversity estimates using the Vegan package

Usage

```
.reportLBE(df)
```

Arguments

```
df clonotype dataframe. Vegan format: + + | S.1| S.2| S.3 | S.4 | ... | (each species should have its own column) + + | v1 | v2 | v3 | .... | (each species' count values are placed in the corresponding column) + + + | v1 | v2 | v3 | .... |
```

Value

Description

It's a convinient function that does the check and saves at the same time, for brevity within other areas of the code (to eliminate repeated if checks).

Usage

```
.saveAs(.save, filename, plot)
```

Arguments

plot

```
\begin{tabular}{ll} . save & logical type. Whether or not we should save. \\ filename & string. \\ \end{tabular}
```

ggplot object.

Value

nothing

.scatterPlot 45

.scatterPlot	Title Creates a scatter plot	

Description

Title Creates a scatter plot

Usage

```
.scatterPlot(df1, df2, name1, name2, cloneClass)
```

Arguments

df1	dataframe for sample 1
df2	dataframe for sample 2
name1	string type, Sample 1 name
name2	string type. Sample 2 name

cloneClass string type. What region was used to classify clonotypes - appears in title. For

example, CDR3 or V region

Value

ggplot2 object

```
.scatterPlotComplex Creates a complex scatter plot
```

Description

Creates a complex scatter plot

Usage

```
.scatterPlotComplex(df.union, df1, df2, name1, name2, cloneClass)
```

Arguments

df.union	a 'lossless' dataframe created by intersecting sample1 and sample2 It should contain NAs where clones that appear in one sample do the other. For example:	
	+ Count.y + 210 +	+ Clonotype prop.x prop.y Count.x
df1	dataframe for sample 1	
df2	dataframe for sample 2	
name1	string type, Sample 1 name	
name2	string type. Sample 2 name	

cloneClass string type. What region was used to classify clonotypes - appears in title. For

example, CDR3 or V region

this plotting techique was shamelessly plagarised from https://github.com/mikessh/vdjtools/blob/mast

(VDJTools) with minor modifications

Value

ggplot2 object

.secretionSignalAnalysis

Secretion signal analysis

Description

Generates all the required plots for Secretion signal analysis. This includes upstream length distributions and upstream sequence validity.

Usage

```
.secretionSignalAnalysis(secDirectories, secOut, sampleNames,
  combinedNames, mashedNames, upstreamRanges, .save = TRUE)
```

Arguments

secDirectories list type. Secretion signal directories where files are located

secOut string type. Where to dump output

sampleNames vector type. 1-1 with secDirectories

combinedNames string type. Title friendly string

mashedNames string type. File name friendly string

upstreamRanges list type. Upstream ranges for each sample. If length(secDirectories) > 1, the

plots will only be generated for upstream ranges that are present in ALL sam-

ples. (i.e. the intersection)

. save logical type, save Rdata?

Value

none

.substituteStringInFile 47

```
.substituteStringInFile
```

Substitutes the first occurance of 'key' with 'value' in 'filename'

Description

Substitutes the first occurance of 'key' with 'value' in 'filename'

Usage

```
.substituteStringInFile(filename, key, value, fixed = FALSE)
```

Arguments

filename	character type
key	character type
value	character type
fixed	logical type

Value

None

.summarySE

Summary of dataframe

Description

Gives count, mean, standard deviation, standard error of the mean, and confidence interval (default 95%).

 $adapted\ from\ http://www.cookbook-r.com/Graphs/Plotting_means_and_error_bars_(ggplot 2)/\#Helper\ functions$

Usage

```
.summarySE(data = NULL, measurevar, groupvars = NULL, na.rm = FALSE,
  conf.interval = 0.95, .drop = TRUE)
```

Arguments

data a data frame.

measurevar the name of a column that contains the variable to be summariezed groupvars a vector containing names of columns that contain grouping variables

na.rm a boolean that indicates whether to ignore NA's

conf.interval the percent range of the confidence interval (default is 95%)

.drop logical.

Value

dataframe

48 .UTR5Analysis

.topNDist	Title Clonotype table
-----------	-----------------------

Description

Title Clonotype table

Usage

```
.topNDist(dataframes, sampleNames, top = 10)
```

Arguments

dataframes list type. List of dataframes.

sampleNames vector type. vector of strings representing sample names should have one-to-one

correspondence with dataframes

top int type. Top N clonotypes to plot

Value

None

.UTR5Analysis 5' UTR analysis

Description

Generates all the required plots for 5' UTR analysis. This includes upstream length distributions and upstream sequence validity.

Usage

```
.UTR5Analysis(utr5Directories, utr5Out, sampleNames, combinedNames,
  mashedNames, upstreamRanges, .save = TRUE)
```

Arguments

utr5Directories

list type. 5UTR directories where files are located

utr50ut string type. Where to dump output sampleNames vector type. 1-1 with utr5Directories combinedNames string type. Title friendly string mashedNames string type. File name friendly string

 ${\tt upstreamRanges} \ \ list\ type.\ \ Upstream\ ranges\ for\ each\ sample.\ If\ length (utr5Directories) > 1,\ the$

plots will only be generated for upstream ranges that are present in ALL sam-

ples. (i.e the intersection)

. save logical type, save Rdata?

Value

none

vennIntersection 49

.vennIntersection Title Creates Venndiagram for clonotype intersection

Description

Title Creates Venndiagram for clonotype intersection

Usage

.vennIntersection(dataframes, sampleNames, outFile, top = Inf)

Arguments

dataframes list type. List of sample dataframes. Only accepts 2 - 5 samples. Warning

message will be generated for anything outside of the range

sampleNames vector type. 1-1 with dataframes outFile string type. Filename to be saved as

top int type. Top N cutoff, defaults to ALL clones if not specified

Value

Nothing

AbSeqCRep-class S4 class - AbSeqCompositeRepertoire analysis object

Description

AbSeqCRep is a collection of AbSeqRep S4 objects. This S4 class contains multiple samples(repertoires) and it can be "combined" with other samples by using the + operator to create an extended AbSeqCRep object. This value, in turn, can be used as the first argument to report which generates a comparison between all samples included in the + operation.

Users do not manually construct this class, but rather indirectly obtain this class object as a return value from the + operation between two AbSeqRep objects, which are in turn, obtained indirectly from abseqReport and report functions. It is also possible to obtain this class object by + (adding) AbSeqCRep objects.

Value

AbSeqCRep

Slots

repertoires list of AbSeqRep objects.

See Also

AbSeqRep

50 AbSeqRep-class

Examples

```
# Use example data from abseqR as abseqPy's output, substitute this
# with your own abseqPy output directory
abseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)
# The provided example data has PCR1, PCR2, and PCR3 samples contained within
# pcr12 and pcr13 are instances of AbSeqCRep
pcr12 <- samples[["PCR1"]] + samples[["PCR2"]]
pcr13 <- samples[["PCR1"]] + samples[["PCR3"]]
# all_S is also an instance of AbSeqCRep
all_S <- pcr12 + pcr13</pre>
```

AbSeqRep-class

S4 class - AbSeqRepertoire analysis object

Description

The AbSeqRep object contains all metadata associated with the AbSeq (python backend) run conducted on it. This S4 class represents a single sample(repertoire) and it can be "combined" with other samples by using the + operator to create an AbSeqCRep object. This value, in turn, can be used as the first argument to report which generates a comparison between all samples included in the + operation.

Users do not manually construct this class, but rather indirectly obtain this class object as a return value from the abseqReport and report functions.

Value

AbSeqRep

Slots

```
f1 character. Path to FASTA/FASTQ file 1.
```

f2 character. Path to FASTA/FASTQ file 2.

chain character. Type of chain, possible values:

- hv
- 1v
- kv
- klv

each representing Heavy, Lambda and Kappa respectively.

task character. Type of analysis conducted, possible values:

- all
- annotate
- abundance
- diversity
- · productivity

AbSeqRep-class 51

- fastqc
- primer
- 5utr
- rsasimple
- · seglen
- · secretion
- · seqlenclass

name character. Name of analysis.

bitscore numeric. Part of filtering criteria: V gene bitscore filter value.

qstart numeric. Part of filtering criteria: V gene query start filter value.

sstart numeric. Part of filtering criteria: V gene subject start filter value.

alignlen numeric. Part of filtering criteria: V gene alignment length filter value.

detailedComposition logical. Plots composition logo by IGHV families if set to true, otherwise, plots logos by FR/CDRs.

log character. Path to log file.

merger character. Merger used to merge paired-end reads.

fmt character. File format of file1 and (if present) file2. Possible values are FASTA or FASTQ.

sites character. Path to restriction sites txt file. This option is only used if -t rsasimple

primer5end ANY. Path to 5' end primer FASTA file.

primer3end ANY. Path to 3' end primer FASTA file.

trim5 numeric. Number of nucleotides to trimd at the 5' end;

trim3 numeric. Number of nucleotides to trimd at the 3' end;

outdir character. Path to output directory

primer5endoffset numeric. Number of nucleotides to offset before aligning 5' end primers in primer5end FASTA file.

threads numeric. Number of threads to run.

upstream character. Index (range) of upstream nucleotides to analyze. This option is only used if -t 5utr or -t secretion.

seqtype character. Sequence type, possible values are either dna or protein.

database character. Path to IgBLAST database.

actualqstart numeric. Query sequence's starting index (indexing starts from 1). This value overrides the inferred query start position by AbSeq.

fr4cut logical. The end of FR4 is marked as the end of the sequence if set to TRUE, otherwise the end of the sequence is either the end of the read itself, or trimmed to --trim3 <num>.

domainSystem character. Domain system to use in IgBLAST, possible values are either imgt or kabat.

See Also

abseqReport returns a list of AbSeqRep objects.

52 abseqReport

Examples

```
# this class is not directly constructed by users, but as a return
# value from the abseqReport method.

# Use example data from abseqR as abseqPy's output, substitute this
# with your own abseqPy output directory
abseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)</pre>
```

abseqReport

Visualize all analysis conducted by abseqPy

Description

Plots all samples in the output directory supplied to abseqPy's --outdir or -o argument. Users can optionally specify which samples in directory should be compared. Doing so generates additional plots for clonotype comparison and the usual plots will also conveniently include these samples using additional aesthetics.

Calling this function with a valid directory will always return a named list of objects; these individual objects can be combined using the + operator to form a new comparison, in which the report function accepts as its first parameter.

Usage

```
abseqReport(directory, report, compare, BPPARAM)
```

Arguments

directory

string type. directory as specified in -o or --outdir in abseqPy. This tells AbSeq where to look for abseqPy's output.

report

(optional) integer type. The possible values are:

- 0 does nothing (returns named list of AbSeqRep objects)
- 1 generates plots for csv files
- 2 generates a report that collates all plots
- 3 generates interactive plots in report (default)

each higher value also does what the previous values do. For example, report = 2 will return a named list of AbSeqRep objects, plot csv files, and generate a (non-interactive)HTML report that collates all the plots together.

compare

(optional) vector of strings. From the samples in found in directory directory, they can be selected and compared against each other. For example, to compare "sample1" with "sample2" and "sample3" with "sample4", compare should be c("sample1, sample2", "sample3, sample4"). An error will be thrown if the samples specified in this parameter are not found in directory.

BPPARAM

(optional) BiocParallel backend. Configures the parallel implementation. Refer to BiocParallel for more information. By default, use all available cores.

abseqReport 53

Value

named list. List of AbSeqRep objects. The names of the list elements are taken directly from the repertoire object itself. This return value is consistent with the return value of report.

See Also

AbSeqRep

report. Analogous function, but takes input from an AbSeqRep or AbSeqCRep object instead.

Examples

```
# Use example data from abseqR as abseqPy's output, substitute this
# with your own abseqPy output directory
abseqPyOutput <- tempdir()</pre>
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)
### 1. The `report` parameter usage example:
\# report = 0; don't plot, don't collate a HTML report, don't show anything interactive
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)</pre>
# samples is now a named list of AbSeqRep objects
# report = 1; just plot pngs; don't collate a HTML report; nothing interactive
# samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 1)</pre>
# samples is now a named list of AbSeqRep objects
# report = 2; plot pngs; collate a HTML report; HTML report will NOT be interactive
# samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 2)</pre>
# samples is now a named list of AbSeqRep objects
# report = 3 (default); plot pngs; collate a HTML report; HTML report will be interactive
# samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 3)</pre>
# samples is now a named list of AbSeqRep objects
### 2. Using the return value of abseqReport:
# NOTE, often, this is used to load multiple samples from different directories
\# using abseqReport (with report = 0), then the samples are added together
# before calling the report function. This is most useful when the samples
# live in different abseqPy output directory.
# Note that the provided example data has PCR1, PCR2, and PCR3
# samples contained within the directory
stopifnot(names(samples) == c("PCR1", "PCR2", "PCR3"))
# as a hypothetical example, say we found something
# interesting in PCR1 and PCR3, and we want to isolate them:
# we want to explicitly compare PCR1 with PCR3
pcr13 <- samples[["PCR1"]] + samples[["PCR3"]]</pre>
# see abseqR::report for more information.
# abseqR::report(pcr13)
                            # uncomment this line to run
### BPPARAM usage:
# 4 core machine, use all cores - use whatever value that suits you
```

54 report

```
nproc <- 4
# samples <- abseqReport(file.path(abseqPyOutput, "ex"),
# BPPARAM = BiocParallel::MulticoreParam(nproc))

# run sequentially - no multiprocessing
# samples <- abseqReport(file.path(abseqPyOutput, "ex"),
# BPPARAM = BiocParallel::SerialParam())

# see https://bioconductor.org/packages/release/bioc/html/BiocParallel.html
# for more information about how to use BPPARAM and BiocParallel in general.</pre>
```

report

Plots AbSeqRep or AbSeqCRep object to the specfied directory

Description

Plots all samples in the object argument and saves the analysis in outputDir. Users can optionally specify which samples in object should be compared. Doing so generates additional plots for clonotype comparison and the usual plots will also conveniently include these samples using additional aesthetics.

This method is analogous to abseqReport. The only difference is that this method accepts AbSeqRep or AbSeqCRep objects as its first parameter, and the outputDir specifies where to store the result.

Usage

```
report(object, outputDir, report = 3)
## S4 method for signature 'AbSeqRep'
report(object, outputDir, report = 3)
## S4 method for signature 'AbSeqCRep'
report(object, outputDir, report = 3)
```

Arguments

object AbSeqRep or AbSeqCRep object to plot.
outputDir string type. Directory where analysis will be saved to.
report (optional) integer type. The possible values are:

- 0 does nothing (returns named list of AbSeqRep objects)
- 1 generates plots for csv files
- 2 generates a report that collates all plots
- 3 generates interactive plots in report (default)

each value also does what the previous values do. For example, report = 2 will return a named list of AbSeqRep objects, plot csv files, and generate a (non-interactive)HTML report that collates all the plots together.

report 55

Value

named list. List of AbSeqRep objects. The names of the list elements are taken directly from the repertoire object itself. This return value is consistent with the return value of abseqReport.

See Also

abseqReport. Analogus function, but takes input from a string that signifies the output directory of abseqPy as the first arugment instead.

AbSeqRep AbSeqCRep

Examples

```
# Use example data from abseqR as abseqPy's output, substitute this
# with your own abseqPy output directory
abseqPyOutput <- tempdir()</pre>
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)</pre>
# The provided example data has PCR1, PCR2, and PCR3 samples contained within
# We can use the + operator to combine samples, thus requesting the
# report function to compare them:
pcr12 <- samples[["PCR1"]] + samples[["PCR2"]]</pre>
# generate plots and report for this new comparison
# report(pcr12, "PCR1_vs_PCR2")
# generate plots only
# report(pcr12, "PCR1_vs_PCR2", report = 1)
# generate plots, and a non-interactive report
# report(pcr12, "PCR1_vs_PCR2", report = 2)
# generate plots, and an interactive report
                                             # this is the default
# report(pcr12, "PCR1_vs_PCR2", report = 3)
```

Index

```
+, AbSeqCRep, AbSeqCRep-method, 4
                                                 .getLineTypes, 27
+, AbSeqCRep, AbSeqRep-method, 5
                                                 .getTotal, 27
                                                 .hmFromMatrix, 28
+, AbSeqRep, AbSeqCRep-method, 6
+, AbSeqRep, AbSeqRep-method, 7
                                                 .inferAnalyzed, 28
                                                 .loadMatrixFromDF, 29
.UTR5Analysis, 48
                                                 .loadSamplesFromString, 29
.abundanceAnalysis, 8
                                                 .pairwiseComparison, 30
.abundancePlot, 8
                                                 .plotCirclize, 30
.alignQualityHeatMaps, 9
                                                 .plotDist, 31
.allPrimerNames, 9
                                                 .plotDiversityCurves, 32
.aminoAcidBar, 10
                                                 .plotDuplication, 32
.aminoAcidPlot, 10
                                                 .plotErrorDist, 33
.analyzeUpstreamValidity, 11
                                                 .plotIGVErrors, 33
.annotAnalysis, 11
                                                 .plotIGVUpstreamLenDist, 34, 35
.asRepertoireAlignLen, 12
                                                 .plotIGVUpstreamLenDistDetailed, 34, 35
.asRepertoireBitscore, 12
                                                 .plotPrimerIGVStatus, 35
.asRepertoireChain, 13
                                                 .plotPrimerIntegrity, 36
.asRepertoireDir, 13
                                                 .plotRarefaction, 37
.asRepertoireList, 14
                                                 .plotRecapture, 37
.asRepertoireName, 14
                                                 .plotSamples, 38
.asRepertoirePrimer3, 15
                                                 .plotSpectratype, 38
.asRepertoirePrimer5, 15
                                                 .plotUpstreamLength, 39
.asRepertoireQueryStart, 16
                                                 .plotUpstreamLengthDist, 40
.asRepertoireSubjectStart, 16
                                                 .primerAnalysis, 40
.asRepertoireUpstream, 17
                                                 .prodDistPlot, 41
.boxPlot, 17
                                                 .productivityAnalysis, 42
.calculateDInd, 18
                                                 .productivityPlot, 42
.calculateDiversityEstimates, 18
                                                 .readSummary, 43
.canonicalizeTitle, 19
                                                 .regionAnalysis, 43
.capitalize, 19
                                                 .reportLBE, 44
.checkVert.20
                                                 . saveAs, 44
.cloneDistHist, 20
                                                 .scatterPlot, 45
.cloneDistMarginal, 21
                                                 .scatterPlotComplex, 45
.clonotypeAnalysis, 21
                                                 .secretionSignalAnalysis, 46
.collateReports, 22
                                                 .substituteStringInFile, 47
.commonPrimerNames, 22
                                                 .summarySE, 47
.correlationTest, 23
                                                 .topNDist, 48
.distanceMeasure, 23
                                                 .vennIntersection, 49
.diversityAnalysis, 24
.emptyPlot, 24
                                                 AbSeqCRep, 4-7, 14, 26, 49, 50, 53-55
. \verb|findRepertoires|, 25|\\
                                                 AbSeqCRep (AbSeqCRep-class), 49
.generateAllSpectratypes, 25
                                                 AbSeqCRep-class, 49
                                                 AbSeqRep, 5–7, 14, 26, 49, 52–55
.generateDelayedReport, 26
.generateReport, 26
                                                 AbSeqRep (AbSeqRep-class), 50
```

INDEX 57

```
AbSeqRep-class, 50 abseqReport, 4–7, 49–51, 52, 54, 55 report, 49, 50, 52, 53, 54 report, AbSeqCRep-method (report), 54 report, AbSeqRep-method (report), 54
```