Package ‘SpatialFeatureExperiment’

October 9, 2025
Type Package

Title Integrating SpatialExperiment with Simple Features in sf
Version 1.11.1

Description A new S4 class integrating Simple Features with the R package sf
to bring geospatial data analysis methods based on vector data to
spatial transcriptomics. Also implements management of spatial neighborhood
graphs and geometric operations. This pakage builds upon SpatialExperiment
and SingleCellExperiment, hence methods for these parent classes can still
be used.

Imports Biobase, BiocGenerics (>= 0.51.2), BiocNeighbors,
BiocParallel, data.table, DropletUtils, EBImage, grDevices,
lifecycle, Matrix, methods, rjson, rlang, S4Vectors, sf,
stheaders, SingleCellExperiment, SpatialExperiment, spatialreg,
spdep (>= 1.1-7), SummarizedExperiment, stats, terra, utils,
zeallot

License Artistic-2.0
Encoding UTF-8
RoxygenNote 7.3.3

Collate 'AllGenerics.R' 'utils.R' 'SFE-class.R' 'aggregate.R'
'align.R' 'annotGeometries.R' 'cbind.R' 'changeSampleIDs.R'
‘coerce.R' 'data.R' 'debris.R' 'df2sf.R' 'dimGeometries.R'
'featureData.R' 'formatTxSpots.R' 'geometry_operation.R'
'graph_wrappers.R' 'image.R' 'int_dimData.R’
'internal-Voyager.R' 'listw2sparse.R' 'localResults.R' 'read.R’
'reexports.R' 'saveRDS.R' 'spatialGraphs.R' 'split.R'
'subset.R' 'tissue_boundary.R' 'transformation.R’
‘'updateObject.R' 'validity.R' 'zzz.R'

Suggests arrow, BiocStyle, dplyr, gmp, knitr, RBioFormats, rhdf5,
rmarkdown, scater, sfarrow, SFEData (>= 1.5.3), Seurat,
SeuratObject, sparseMatrixStats, testthat (>= 3.0.0), tidyr,
VisiumlO, Voyager (>= 1.7.2), withr, xml2

Remotes Voyager=github::pachterlab/voyager @devel
Config/testthat/edition 3

Depends R (>=4.2.0)

VignetteBuilder knitr

biocViews DataRepresentation, Transcriptomics, Spatial

1

URL https://github.com/pachterlab/SpatialFeatureExperiment

BugReports https://github.com/pachterlab/SpatialFeatureExperiment/issues
git_url https://git.bioconductor.org/packages/SpatialFeatureExperiment

git_branch devel

git_last_commit 80353da

git_last commit_date 2025-09-25

Repository Bioconductor 3.22

Date/Publication 2025-10-08

Author Lambda Moses [aut, cre] (ORCID:
<https://orcid.org/0000-0002-7092-9427>),
Alik Huseynov [aut] (ORCID: <https://orcid.org/0000-0002-1438-4389>),
Lior Pachter [aut, ths] (ORCID:
<https://orcid.org/0000-0002-9164-6231>)

Maintainer Lambda Moses <d13764@columbia.edu>

Contents
addVisiumSpotPoly e 4
affinelmg 5
aggBboxes e e 6
aggregate,SpatialFeatureExperiment-method00 L 6
aggregateTX 8
annotGeometries e e e 11
annotOp L e e 13
annotPred L 14
ANNOLSUMMATY v v v vttt et e e e e e e e e e e e e e 15
bbox,SpatialFeatureExperiment-method L. 16
bbox_center 17
BioFormatsImage 17
BioFormatsImage-getters e 19
cbind,SpatialFeatureExperiment-methodo 19
changeSampleIDs 20
colFeatureData 21
colGeOmetries e e 22
containsOutOfMemoryData,SpatialFeatureExperiment-method 23
CIOP & v v e e e e e e e e e e e e e e e e 24
croplmgo e 25
df2sf . . e 26
dim,BioFormatsImage-method 28
dim,Extlmage-method 29
dimGeometries e e e e e 29
BXE . v e e e e 32
Extlmage e e 33
findDebrisCells e 33
findSpatialNeighbors 35
findVisiumGraph o 37
findVisiumHDGraph 38

formatTxSpots o e 38

https://github.com/pachterlab/SpatialFeatureExperiment
https://github.com/pachterlab/SpatialFeatureExperiment/issues
https://orcid.org/0000-0002-7092-9427
https://orcid.org/0000-0002-1438-4389
https://orcid.org/0000-0002-9164-6231

Contents

Index

3

formatTxTech 41
gdalParquetAvailableo 43
getParams L. 44
getPixelSize 45
getTechTxFields e 46
getTissueBoundaryConcave 46
getTissueBoundarylmg L 47
imagelDs 48
Img<-,SpatialExperiment-method oL 0oL 49
imgRaster 50
IMESOUICE o e e e 50
internal-Voyager e 51
localResults e 52
mirrorlmg 55
multi_listw2sparse e e 56
readlOxVisiumSFE 57
readCosMX 59
readSelectTX 60
readVisiumHDo 62
readVizgen L 63
readXeniuml 65
TEEXPOIES © . v v v v e e e e e e e e e e e e e e e e e e 67
removeEmptySpace L 68
rotatelmg L 69
rowGeOMEtIies Lo 70
sampleIDs L 72
saveRDS,SpatialFeatureExperiment-method 72
scalelmg L 73
SFE-Image i 74
SFE-transform L 76
show,SpatialFeatureExperiment-method o0, 77
SpatialFeatureExperiment 78
SpatialFeatureExperiment-class Lo 81
SpatialFeatureExperiment-coerciono 81
SpatialFeatureExperiment-subset 84
spatialGraphs 86
SpatRasterImage 88
splitByCol 89
stany_pred L 91
toExtImage 92
toSpatRasterImage L e 93
translateImg 94
transposelmg L L 94
unit,SpatialFeatureExperiment-method o oL 95
updateObject 96
VISIUM_TOW_COl o o e e 97
98

4 addVisiumSpotPoly

addVisiumSpotPoly Add Visium spot polygons to colGeometry

Description

For adding the spot polygons to SFE objects converted from SPE.

Usage

addVisiumSpotPoly(x, spotDiameter)

Arguments

X A SpatialFeatureExperiment object.

spotDiameter Spot diameter for technologies with arrays of spots of fixed diameter per slide,
such as Visium, ST, DBiT-seq, and slide-seq. The diameter must be in the same
unit as the coordinates in the *Geometry arguments. Ignored for geometries that
are not POINT or MULTIPOINT.

Value

A SFE object with a new colGeometry called spotPoly, which has polygons of the spots.

Examples

library(VisiumIO)
From examples of TENxVisium()
sample_dir <- system.file(
file.path("extdata”, "10xVisium”, "section1"),
package = "VisiumIO"
)
using spacerangerOut folder
tv <- TENxVisium(
spacerangerQut = sample_dir, processing =

n n

raw”, images = "lowres”

)

spe <- import(tv)

There can't be suplicate barcodes

colnames(spe) <- make.unique(colnames(spe), sep = "-")
rownames(spatialCoords(spe)) <- colnames(spe)

sfe <- toSpatialFeatureExperiment(spe)

A hypothetical spot diameter; check the scalefactors_json.json file for
actual diameter in pixels in full resolution image.

sfe <- addVisiumSpotPoly(sfe, spotDiameter = 80)

affinelmg

affinelmg

Affine transformation of images

Description

This function performs affine transformation on images, with any matrix and translation vector.

Usage

S4 method for signature 'SpatRasterImage'
affineImg(x, M, v, maxcell = 1e+07, ...)

S4 method for signature 'BioFormatsImage'’
affineImg(x, M, v, ...)

S4 method for signature 'ExtImage'

affineImg(x, M, v, ...)
Arguments
X An object of class *Image as implemented in this package.
M A 2x2 numeric matrix for the linear transformation in the xy plane.
v A numeric vector of length 2 for translation in the xy plane.
maxcell Max number of pixels to load SpatRasterImage into memory. The default
1e7 is chosen because this is the approximate number of pixels in the medium
resolution image at resolution = 4L in Xenium OME-TIFF to make different
methods of this function consistent.
Ignored. It’s there so different methods can all be passed to the same lapply in
the method for SFE objects. Some methods have extra arguments.
Value

SpatRasterImage will be converted to ExtImage. Otherwise *Image object of the same class. For
BioFormatsImage, the transformation info is stored and will be applied when the image is loaded
into memory as ExtImage.

See Also

Other image methods: SFE-image, cropImg(), dim,BioFormatsImage-method, dim,ExtImage-method,
ext(), imgRaster (), imgSource(), mirrorImg(), rotateImg(), scaleImg(), translateImg(),

transposelImg()

6 aggregate,SpatialFeatureExperiment-method

aggBboxes Aggregate bounding boxes

Description

To find the bounding box of multiple bounding boxes.

Usage
aggBboxes(bboxes)
Arguments
bboxes Either a matrix with 4 rows whose columns are the different bounding boxes,
with row names "xmin", "xmax", "ymin", and "ymax" in any order, or a list of
bounding boxes which are named numeric vectors.
Value

A named numeric vector for the total bounding box.

Examples

bboxes <- list(c(xmin = 5, xmax = 10, ymin = 2, ymax = 20),
c(xmin = 8, xmax = 18, ymin = @, ymax = 15))
bbox_all <- aggBboxes(bboxes)

aggregate,SpatialFeatureExperiment-method
Aggregate data in SFE using geometry

Description

Gene expression and numeric columns of colData will be aggregated with the function specified in
FUN, according to another geometry supplied and a geometry predicate (such as st_intersects).
For example, when the predicate is st_intersects and a spatial grid is used to aggregate, then the
data associated with all cells that intersect with each grid cell will be aggregated with FUN, such as
mean or sum. The categorical columns will be collected into list columns, and logical columns will
be converted into numeric before applying FUN.

Usage

S4 method for signature 'SpatialFeatureExperiment'’
aggregate(

X,

by = NULL,

FUN = sum,

sample_id = "all”,

colGeometryName = 1L,

rowGeometryName = NULL,

aggregate,SpatialFeatureExperiment-method 7

cellsize

NULL,

square = TRUE,

flat_topped = FALSE,
new_geometry_name = "bins”,
join = st_intersects,
sparse = FALSE,

BPPARAM = SerialParam()

Arguments

X

by

FUN

sample_id

colGeometryName

rowGeometryName

cellsize

square

flat_topped

An SFE object to be aggregated.

A sf data frame whose geometry column is used for aggregation or sfc or for
multiple samples a list of sfc whose names are the sample IDs. For multiple
samples, the sf data frame must have a column sample_id to indicate which
geometry for which sample. This argument is optional if cellsize is specified.

Function to aggregate the numerical columns in colData and the gene count
matrix. This can be sum, mean, or any function that takes a numeric matrix as in-
put and returns a numeric vector whose length is same as the number of rows in
the input matrix, such as rowMedians. See package matrixStats. Depending
on the function used for aggregation, numeric columns of colData may need
to be interpreted differently after aggregation. Aggregation is not done when
aggregating by transcript spots in rowGeometry. When it’s sum or mean, ma-
trix multiplication is used for aggregation rather than calling the sum or mean
function itself; this is much faster than looping through the bins and calling the
function on each of them.

Which samples to aggregate, defaults to "all".
Which colGeometry to spatially aggregate the data, by default the first one.

Which rowGeometry to spatially aggregate

numeric of length 1 or 2 with target cellsize: for square or rectangular cells the
width and height, for hexagonal cells the distance between opposite edges (edge
length is cellsize/sqrt(3)). A length units object can be passed, or an area unit
object with area size of the square or hexagonal cell.

logical; if FALSE, create hexagonal grid
logical; if TRUE generate flat topped hexagons, else generate pointy topped

new_geometry_name

join

sparse

BPPARAM

Name to give to the new colGeometry in the output. Defaults to "bins".

logical spatial predicate function to use if by is a simple features object or ge-
ometry; see st_join

Logical, whether the gene count matrix from aggregating transcript spots should
be sparse. When the bins are large, the matrix will not be very sparse so using
sparse matrix will not save memory, but when the bins are small, sparsity is
worth it.

A BiocParallelParam object specifying parallel computing when aggregating
data with functions other than sum and mean when aggregating cells. When ag-
gregating transcript spots, this specifies parallel computing over genes. Defaults
to SerialParam().

8 aggregateTx

Details

For smFISH-based data where the transcript spots are available, the transcript spots can be used
instead of cells to aggregate the gene count matrix, in which case all assays other than counts will
be dropped and FUN only applies to colData because the transcript spots are simply counted.

What this function does is similar to SEraster but more general because any geometry and more
aggregation function can be used, not just regular grids, and the aggregation can be performed on
the transcript spots.

Value

An SFE object with colGeometry the same as the geometry specified in by or same as the grid spec-
ified in cellsize. rowGeometries and rowData remain the same as in the input x. reducedDims,
localResults, colFeatureData (and its colGeometry, annotGeometry, and reducedDim coun-
terparts), and spatialGraphs are dropped because those results no longer apply after aggregation.

Note

For developers: When debugging this function after calling devtools::load_all("."), you may
get an error that comes from S3 dispatch of aggregate.Vector from the S4Vectors package.
When that happens, either restart the R session, or run setGeneric("aggregate”, function(x,
...) standardGeneric("aggregate")) in the console to make an S4 generic as done in the terra
package to prioritize S4 dispatch.

Examples

example code

aggregateTx Aggregate transcript spots from file

Description

This function reads the transcript spot file from the standard output of the commercial technologies
(not GeoParquet) for spatial aggregation where the spots are assigned to polygons such as cells or
spatial bins. Presets for Xenium, MERFISH, and CosMX are available. For Vizgen and Xenium,
the images can be added when add_images = TRUE.

Usage

aggregateTx(
file,
df = NULL,
by = NULL,
sample_id = "sample@1”,
spatialCoordsNames = c("X", "Y", "Z"),
gene_col = "gene",
phred_col = "qv",
min_phred = 20,
flip_geometry = FALSE,
cellsize = NULL,

https://github.com/JEFworks-Lab/SEraster

aggregateTx

square = TRUE,

flat_topped = FALSE,
new_geometry_name = "bins”,
unit = "micron”,

sparse = FALSE,

BPPARAM = SerialParam(),

save_memory = FALSE,
progressbar = FALSE,
.orig_nrows = NULL
)
aggregateTxTech(
data_dir,
df = NULL,
by = NULL,
tech = c("Vizgen”, "Xenium”, "CosMX"),
sample_id = "sample@1”,
image = NULL,
min_phred = 20,
flip = c("geometry”, "image", "none"),

max_flip = "50 MB",

cellsize =

NULL,

square = TRUE,

flat_topped = FALSE,
new_geometry_name = "bins”,
sparse = FALSE,

BPPARAM = SerialParam(),
save_memory = FALSE,
progressbar = FALSE

)
Arguments

file File with the transcript spot coordinates. Should be one row per spot when read
into R and should have columns for coordinates on each axis, gene the transcript
is assigned to, and optionally cell the transcript is assigned to. Must be csv, tsv,
or parquet.

df If the file is already loaded into memory, a data frame (sf) with columns for the
X, ¥, and optionally z coordinates and gene assignment of each transcript spot.
If specified, then argument file will be ignored.

by A sfc or sf object for spatial aggregation.

sample_id Which sample in the SFE object the transcript spots should be added to.

spatialCoordsNames
Column names for the X, y, and optionally z coordinates of the spots. The de-
faults are for Vizgen.

gene_col Column name for genes.

phred_col Column name for Phred scores of the spots.

min_phred Minimum Phred score to keep spot. By default 20, the conventional threshold

indicating "acceptable”, meaning that there’s 1 chance that the spot was decoded
in error.

10

flip_geometry

cellsize

square
flat_topped

aggregateTx

Logical, whether to flip the transcript spot geometries to match the images if
added later.

numeric of length 1 or 2 with target cellsize: for square or rectangular cells the
width and height, for hexagonal cells the distance between opposite edges (edge
length is cellsize/sqrt(3)). A length units object can be passed, or an area unit
object with area size of the square or hexagonal cell.

logical; if FALSE, create hexagonal grid

logical; if TRUE generate flat topped hexagons, else generate pointy topped

new_geometry_name

unit
sparse

BPPARAM

save_memory

progressbar
.orig_nrows
data_dir

tech

image

flip

max_flip

Value

Name to give to the new colGeometry in the output. Defaults to "bins".
Unit the coordinates are in, either microns or pixels in full resolution image.

Logical, whether the gene count matrix from aggregating transcript spots should
be sparse. When the bins are large, the matrix will not be very sparse so using
sparse matrix will not save memory, but when the bins are small, sparsity is
worth it.

bpparam object to specify parallel computing over genes. If a lot of memory is
used, then stick to ‘SerialParam()‘. If save_memory = TRUE, then this argument
is ignored because the operation is not thread safe; SerialParam() will always
be used.

Logical, if TRUE, then the transcript spots will not all be loaded into memory.
open_dataset is used to open a link to the data and then transcript spots of one
gene is loaded into memory at a time.

Logical, whether to show progress bar. This argument is only used when save_memory

= TRUE because otherwise the progressbar argument can be specified in BPPARAM.
Only used internally in the SFE method of aggregate
Top level output directory.

Which technology whose output to read, must be one of "Vizgen", "Xenium",
or "CosMX" though more technologies may be added later.

String, which image(s) to add to the output SFE object. Not applicable to
CosMX. See readVizgen and readXenium for options and multiple images can
be specified. If NULL, then the default from the read function for the technology
will be used.

Logical, whether to flip the geometry to match image. Here the y coordinates are
simply set to -y, so the original bounding box is not preserved. This is consistent
with readVizgen and readXenium.

Maximum size of the image allowed to flip the image. Because the image will

be loaded into memory to be flipped. If the image is larger than this size then
the coordinates will be flipped instead.

A SFE object with count matrix for number of spots of each gene in each geometry. Geometries
with no spot are removed.

Note

The resulting SFE object often includes geometries (e.g. grid cells) outside tissue, because there
can be transcript spots detected outside the tissue. Also, bins at the edge of the tissue that don’t fully
overlap with the tissue will have lower transcript counts; this may have implications to downstream

spatial analyses.

annotGeometries 11

annotGeometries Annotation geometry methods

Description

"Annotation geometry" refers to Simple Feature (sf) geometries NOT associated with rows (fea-
tures, genes) or columns (cells or spots) of the gene count matrix in the SpatialFeatureExperiment
object. So there can be any number of rows in the sf data frame specifying the geometry. Examples
of such geometries are tissue boundaries, pathologist annotation of histological regions, and objects
not characterized by columns of the gene count matrix (e.g. nuclei segmentation in a Visium dataset
where the columns are Visium spots). This page documents getters and setters for the annotation
geometries. Internally, annotation geometries are stored in int_metadata.

Usage

S4 method for signature 'SpatialFeatureExperiment'’
annotGeometries(x)

S4 replacement method for signature 'SpatialFeatureExperiment’
annotGeometries(x, translate = TRUE, ...) <- value

S4 method for signature 'SpatialFeatureExperiment'’
annotGeometryNames (x)

S4 replacement method for signature 'SpatialFeatureExperiment,character’
annotGeometryNames(x) <- value

S4 method for signature 'SpatialFeatureExperiment'’
annotGeometry(x, type = 1L, sample_id = NULL)

S4 replacement method for signature 'SpatialFeatureExperiment'’

annotGeometry(x, type = 1L, sample_id = NULL, translate = TRUE, ...) <- value
tissueBoundary(x, sample_id = 1L)
tissueBoundary(x, sample_id = 1L, translate = TRUE, ...) <- value
Arguments
X A SpatialFeatureExperiment object.
translate Logical. Only used if removeEmptySpace has been run of the SFE object. If

that’s the case, this argument indicates whether the new value to be assigned to
the geometry is in the coordinates prior to removal of empty space so it should
be translated to match the new coordinates after removing empty space. Default
to TRUE.

spatialCoordsNames, spotDiameter, geometryType passed to df2sf. De-
faults are the same as in df2sf. For dimGeometries<- only: geometryType
can be a character vector of the geometry type of each data frame in the list of
the same length as the list if the data frames specify different types of geome-
tries.

12 annotGeometries

value Value to set. For annotGeometry, must be a sf data frame, or an ordinary data
frame that can be converted to a sf data frame (see df2sf). For annotGeometries,
must be a list of such sf or ordinary data frames. There must be a column
sample_id to indicate the sample the geometries are for, and the sample_id
must also appear in colData.

type An integer specifying the index or string specifying the name of the *Geometry
to query or replace. If missing, then the first item in the *Geometries will be
returned or replaced.

sample_id Sample ID to get or set geometries.

Details

Wrapper for getter and setter of special geometry:

tisseuBoundary Boundary of the tissue of interest, including holes. This is usually of geome-
try type MULTIPOLY GON, though geometries in annotGeometries can have any type sup-
ported by sf.

Value
Getters for multiple geometries return a named list. Getters for names return a character vector of
the names. Getters for single geometries return an sf data frame. Setters return an SFE object.

Examples

Example dataset
library(SFEData)
sfe_small <- McKellarMuscleData(dataset = "small")

Get all annotation geometries, returning a named list
annotGeometries(sfe_small)

Set all annotation geometries, in a named list
toy <- readRDS(system.file("extdata/sfe_toy.rds",

package = "SpatialFeatureExperiment”
)
ag <- readRDS(system.file("extdata/ag.rds",
package = "SpatialFeatureExperiment”
))

annotGeometries(toy) <- list(hull = ag)

Get names of annotation geometries
annotGeometryNames(sfe_small)

Set names of annotation geometries
annotGeometryNames(toy) <- "foo"

Get a specific annotation geometry by name
sample_id is optional when there is only one sample present

nuclei <- annotGeometry(sfe_small, type = "nuclei”, sample_id = "Vis5A")

Get a specific annotation geometry by index
tb <- annotGeometry(sfe_small, type = 1L)

Set a specific annotation geometry

annotOp 13

annotGeometry(sfe_small, type = "nuclei2”) <- nuclei

Special convenience function for tissue boundaries
Getter
tb <- tissueBoundary(sfe_small, sample_id = "Vis5A")
Setter
tissueBoundary(sfe_small, sample_id = "Vis5A") <- tb

annotOp Binary operations for geometry of each cell/spot and annotation

Description

Just like annotPred, but performs the operation rather than predicate. For example, this function
would return the geometry of the intersections between each Visium spot and the tissue boundary
for each sample, rather than whether each Visium spot intersects the tissue boundary. In case one
cell/spot gets broken up into multiple geometries, the union of those geometries will be taken, so
each cell/spot will only get one geometry.

Usage

annotOp(
sfe,
colGeometryName = 1L,
annotGeometryName = 1L,
sample_id = "all",
op = st_intersection

)
Arguments
sfe An SFE object.
colGeometryName
Name of column geometry for the predicate.
annotGeometryName
Name of annotation geometry for the predicate.
sample_id Which sample(s) to operate on. Can be "all" to indicate all samples.
op A binary operation function for the geometries. Defaults to st_intersection.
Value

A sf data frame with geometry column containing the geometries and corresponding column names
of sfe as row names. There is no guarantee that the returned geometries are valid or preserve the
geometry class (e.g. when the intersection of polygons result into a line of a point).

See Also

annotPred

14

Examples

library(SFEData)

sfe <- McKellarMuscleData("small")
Get the intersection of myofibers with each Visium spot
myofibers_on_spots <- annotOp(sfe, "spotPoly”,

annotPred

annotGeometryName = "myofiber_simplified”
)
annotPred Binary predicates for geometry of each cell/spot and annotation
Description

This function finds binary predicates for the geometry of each cell/spot (i.e. colGeometry) and an
annotation geometry for each sample. For example, whether each Visium spot intersects with the

tissue boundary in each sample.

Usage

an

an

notPred(

sfe,

colGeometryName = 1L,
annotGeometryName = 1L,
sample_id = "all",

pred = st_intersects,
yx = FALSE

notNPred(

sfe,

colGeometryName = 1L,
annotGeometryName = 1L,
sample_id = "all",

pred = st_intersects

Arguments

st
co

an

sa
pr
yX

e An SFE object.

1GeometryName

Name of column geometry for the predicate.

notGeometryName

Name of annotation geometry for the predicate.
mple_id Which sample(s) to operate on. Can be "all" to indicate all samples.

ed Predicate function to use, defaults to st_intersects.

Whether to do pred(y, x) instead of pred(x, y). For symmetric predicates,
the results should be the same. When x has a large number of geometries and
y has few, pred(y, x) is much faster than pred(x, y) for st_intersects,

st_disjoint, and st_is_within_distance.

annotSummary 15

Value

For annotPred, a logical vector of the same length as the number of columns in the sample(s)
of interest, with barcodes (or corresponding column names of sfe) as names. For annotNPred,
a numeric vector of the same length as the number of columns in the sample(s) of interest with
barcodes as names, indicating the number of geometries in the annotGeometry of interest returns
TRUE for the predicate for each each geometry in the colGeometry of interest.

See Also

annotOp

Examples

library(SFEData)
sfe <- McKellarMuscleData("”small")
Whether each spot is in tissue

in_tissue <- annotPred(sfe, "spotPoly”, annotGeometryName = "tissueBoundary")
How many nuclei are there in each Visium spot
n_nuclei <- annotNPred(sfe, "spotPoly”, annotGeometryName = "nuclei”)
annotSummary Summarize attributes of an annotGeometry for each cell/spot
Description

In SFE objects, the annotation geometries don’t have to correspond to the dimensions of the gene
count matrix, so there generally is no one to one mapping between annotation geometries and
cells/spots. However, it may be interesting to relate attributes of annotation geometries to cell/spots
so the attributes can be related to gene expression. This function summarizes attributes of an
annotGeometry for each cell/spot by a geometric predicate with a colGeometry.

Usage

annotSummary (
sfe,
colGeometryName = 1L,
annotGeometryName = 1L,
annotColNames = 1L,
sample_id = "all",
pred = st_intersects,
summary_fun = mean

Arguments

sfe An SFE object.
colGeometryName

Name of column geometry for the predicate.
annotGeometryName

Name of annotation geometry for the predicate.

16 bbox,SpatialFeatureExperiment-method

annotColNames Character, column names of the annotGeometry of interest, to indicate the
columns to summarize. Columns that are absent from the annotGeometry are
removed. The column cannot be "geometry" or "barcode".

sample_id Which sample(s) to operate on. Can be "all" to indicate all samples.
pred Predicate function to use, defaults to st_intersects.
summary_fun Function for the summary, defaults to mean.

Value

A data frame whose row names are the relevant column names of sfe, and each column of which
is the summary of each column specified in annotColName.

Examples
library(SFEData)
sfe <- McKellarMuscleData("”small")
s <- annotSummary(sfe, "spotPoly", "myofiber_simplified"”,
annotColNames = c("area”, "convexity")
)

bbox,SpatialFeatureExperiment-method
Find bounding box of SFE objects

Description

Find bounding box of the union of all colGeometries and annotGeometries of each sample in the
SFE object. This can be used to remove empty space so the tissue and geometries have one corner
at the origin so all samples will be on comparable coordinates.

Usage

S4 method for signature 'SpatialFeatureExperiment'’
bbox(sfe, sample_id = "all"”, include_images = FALSE, include_row = TRUE)

Arguments
sfe A SpatialFeatureExperiment object.
sample_id Sample(s) whose bounding box(es) to find. The bounding box would be for
the union of all colGeometries and annotGeometries associated with each
sample.

include_images Logical, whether the bounding boxes should include image extents. Defaults to
FALSE because often the image has a lot of empty space surrounding the tissue.

include_row Logical, whether the bounding boxes should include rowGeometries, defaults
to TRUE.

Value

For one sample, then a named vector with names xmin, ymin, xmax, and ymax specifying the bound-
ing box. For multiple samples, then a matrix whose columns are samples and whose rows delineate
the bounding box.

bbox_center 17

Examples

library(SFEData)
sfe <- McKellarMuscleData("small")
bbox (sfe, sample_id = "Vis5A")

bbox_center Find center of bounding box

Description

Get x-y coordinates of the center of any bounding box

Usage

bbox_center (bbox)

Arguments

bbox A numeric vector of length 4 with names xmin, xmax, ymin, ymax, in any order.

Value

A numeric vector of length 2.

Examples

bbox <- c(xmin = @, xmax = 100, ymin = @, ymax = 80)
bbox_center (bbox)

BioFormatsImage On disk representation of BioFormats images in SFE object

Description

‘r lifecycle::badge("experimental")‘ At present, the BioFormatsImage is designed for OME-TIFF
from Xenium and has not been tested on other formats that can be read with BioFormats. The
image is not loaded into memory, and when it is, the the BioFormatsImage object is converted into
ExtImage because the loaded image is of a class that inherits from Image. The ExtImage class is a
thin wrapper inheriting from VirtualSpatialImage so it’s compatible with SpatialExperiment
from which SFE is derived. This class might drastically change as it matures, say to accommodate
other formats supported by BioFormats and to store the transformation matrix rather than loading
image into memory upon transform.

18 BioFormatsImage

Usage

S4 method for signature 'BioFormatsImage'’
show(object)

BioFormatsImage(
path,
ext = NULL,
isFull = TRUE,
origin = c(0, 0),
transformation = list()

)
Arguments

object A BioFormatsImage object.

path Path to an OME-TIFF image file.

ext Numeric vector with names "xmin", "xmax", "ymin", "ymax" in microns indi-
cating the spatial extent covered by the image. If NULL, then the extent will be
inferred from the metadata, from physical pixel size and the number of pixels.

isFull Logical, if the extent specified in ext is the full extent. If ext = NULL so it will
be inferred from metadata then isFull = TRUE will be set internally.

origin Origin of the whole image in the x-y plane, defaults to ¢(@,0). This is shifted

when the image is translated. This is not the same as xmin and xmax. For
example, when the extent is only part of the whole image and the whole image
itself can be spatially translated, the origin is needed to determine which part of
the whole image this extent corresponds to.

transformation Named list specifying affine transformation. The list can have names "name"
and named parameter of the transformation, e.g. 1ist(name = "mirror"”, direction
= "vertical”), "rotate" and degrees = 90 (clockwise), and "scale" and factor =
2. The list can also have names "M" for a 2x2 linear transformation matrix in
the xy plane and "v" for a translation vector of length 2 to specify general affine
transformation.

Details

Spatial extent is inferred from OME-TIFF metadata if not specified. Physical pixel size from the
metadata is used to make the extent in micron space. If physical pixel size is absent from metadata,
then the extent will be in pixel space, which might mean that the image will not align with the
geometries because often the geometry coordinates are in microns, so a warning is issued in this
case.

Affine transformations can be specified in the transformation argument, either by name or by
directly specifying the matrix. The transformations specified by name will always preserve the cen-
ter of the image. When named transformations are chained, name and parameter will be converted
to matrix and translation vector the second time a transformation is specified. If the subsequent
transformation happens to restore the image to its original place, then transformation specifications
will be removed.

Value

A BioFormatsImage object.

BioFormatsImage-getters 19

See Also
[isFull()], [origin()]

BioFormatsImage-getters
Other BioFormatsImage getters

Description

isFULL indicates if the extent is the full extent of the image. origin gets the x-y coordinates of the
origin of the image, i.e. the smallest possible x-y coordinate values within the full image.

Usage

S4 method for signature 'BioFormatsImage'’
isFull(x)

S4 method for signature 'BioFormatsImage'’
origin(x)

S4 method for signature 'BioFormatsImage'’

transformation(x)
Arguments

X A BioFormatsImage object.
Value

For isFull: Logical scalar indicating whether the extent is the full extent. For origin: Numeric
vector of length 2. For transformation, a list.

cbind, SpatialFeatureExperiment-method
Concatenate SpatialFeatureExperiment objects

Description

On top of the cbind method of SpatialExperiment, this method is needed to properly merge the
spatialGraphs field in the different SFE objects. rowGeometries and annotGeometries also
need to be combined properly.

Usage

S4 method for signature 'SpatialFeatureExperiment'’
cbind(..., deparse.level = 1)

20 changeSamplelDs

Arguments

SFE objects to cbind.

deparse.level See ?rbind.

Value

A combined SFE object.

Examples

library(SFEData)

sfe_small <- McKellarMuscleData(dataset = "small")
sfe_small2 <- McKellarMuscleData(dataset = "small2")
sfe2 <- cbind(sfe_small, sfe_small2)

changeSampleIDs Change sample IDs

Description

Change sample IDs in all fields of the SFE object where sample IDs are present, not just the colData.

Usage

changeSampleIDs(sfe, replacement)

Arguments

sfe A SpatialFeatureExperiment object.

replacement A named character vector whose names are the existing sample IDs to be changed
and whose values are the corresponding replacements.

Value

An SFE object.

Examples

library(SFEData)

sfe <- McKellarMuscleData(dataset = "small")

sfe <- changeSampleIDs(sfe, c(Vis5A = "sample@d1"))
sampleIDs(sfe)

colFeatureData 21

colFeatureData Get global spatial analysis results and metadata of colData, rowData,
and geometries

Description

Results of spatial analyses on columns in colData, rowData, and geometries are stored in their
metadata. The colFeaturedata function allows the users to more directly access these results.

Usage

colFeatureData(sfe)
rowFeatureData(sfe)
geometryFeatureData(sfe, type, MARGIN = 2L)

reducedDimFeatureData(sfe, dimred)

Arguments
sfe An SFE object.
type Which geometry, can be name (character) or index (integer)
MARGIN Integer, 1 means rowGeometry, 2 means colGeometry, and 3 means annotGe-
ometry. Defaults to 2, colGeometry.
dimred Name of a dimension reduction, can be seen in reducedDimNames.
Value

A DataFrame.

See Also

getParams

Examples

library(SpatialFeatureExperiment)
library(SingleCellExperiment)

library(SFEData)

library(Voyager)

sfe <- McKellarMuscleData("small")
colGraph(sfe, "visium") <- findVisiumGraph(sfe)
Moran's I for colData

sfe <- colDataMoransI(sfe, "nCounts")
colFeatureData(sfe)

22

colGeometries

colGeometries Column geometry getters and setters

Description

colGeometries are geometries that correspond to columns of the gene count matrix, such as Visium
spots or cells. Same as dimGeometry(x,MARGIN = 2L, ...), with convenience wrappers for getters
and setters of special geometries:

spotPoly Polygons of spots from technologies such as Visium, ST, and slide-seq, which do not
correspond to cells. Centroids of the polygons are stored in spatialCoords of the underlying
SpatialExperiment object.

ROIPoly Polygons of regions of interest (ROIs) from technologies such as laser capture microdis-
section (LCM) and GeoMX DSP. These should correspond to columns of the gene count

matrix.

cellSeg Cell segmentation polygons. If the columns of the gene count matrix are single cells, then
this is stored in colGeometries. Otherwise, this is stored in annotGeometries

nucSeg Similar to cellSeg, but for nuclei rather than whole cell.

Usage

colGeometry(x, type =

colGeometry(
X,
type = 1L,

sample_id = 1L,
withDimnames = TRUE,
translate = TRUE
) <- value
colGeometries(x, withD
colGeometries(x, withD
colGeometryNames(x)
colGeometryNames(x) <-

spotPoly(x, sample_id

spotPoly(x, sample_id

centroids(x, sample_id =

centroids(x, sample_id
ROIPoly(x, sample_id =

ROIPoly(x, sample_id =

1L, sample_id = 1L, withDimnames = TRUE)

imnames = TRUE)

imnames = TRUE, translate = TRUE) <- value

value

= 1L, withDimnames

= 1L, withDimnames

1L, withDimnames

= 1L, withDimnames

1L, withDimnames

1L, withDimnames

TRUE)

TRUE, translate = TRUE) <- value
= TRUE)

= TRUE, translate = TRUE) <- value
TRUE)

TRUE, translate = TRUE) <- value

containsOutOfMemoryData,SpatialFeatureExperiment-method 23

cellSeg(x, sample_id = 1L, withDimnames = TRUE)

cellSeg(x, sample_id = 1L, withDimnames = TRUE, translate = TRUE) <- value

nucSeg(x, sample_id = 1L, withDimnames = TRUE)

nucSeg(x, sample_id = 1L, withDimnames = TRUE, translate = TRUE) <- value

Arguments
X A SpatialFeatureExperiment object.
type An integer specifying the index or string specifying the name of the *Geometry
to query or replace. If missing, then the first item in the *Geometries will be
returned or replaced.
sample_id Sample ID to get or set geometries.

withDimnames Logical. If TRUE, then the dimnames (colnames or rownames) of the gene count
matrix should correspond to row names of the sf data frames of interest.

translate Logical. Only used if removeEmptySpace has been run of the SFE object. If
that’s the case, this argument indicates whether the new value to be assigned to
the geometry is in the coordinates prior to removal of empty space so it should
be translated to match the new coordinates after removing empty space. Default
to TRUE.

value Value to set. For dimGeometry, must be a sf data frame with the same number
of rows as size in the dimension of interest, or an ordinary data frame that can
be converted to such a sf data frame (see df2sf). For dimGeometries, must be
a list of such sf or ordinary data frames.

See Also

[dimGeometries()], [rowGeometries()]

Examples

library(SFEData)

sfe <- McKellarMuscleData(dataset = "small")
cgs <- colGeometries(sfe)

spots <- spotPoly(sfe)

containsOutOfMemoryData, SpatialFeatureExperiment-method
Whether an SFE object contains out of memory data

Description

Out of memory data, such as DelayedArray, some SpatRasterImage objects, and BioFormatsImage,
will break if saved as RDS. This method of containsOutOfMemoryData checks if an SFE object
has out of memory data, specifically the images. Having out of memory data will result into an
error when saveRDS is called; we recommend using the alabaster. sfe package instead.

24 crop

Usage

S4 method for signature 'SpatialFeatureExperiment'’
containsOutOfMemoryData(object)

Arguments

object An SFE object

Value

TRUE or FALSE

Examples

outdir <- system.file("extdata”, package = "SpatialFeatureExperiment")
samples <- file.path(outdir, paste@("sample@”, 1:2))

sfe <- read10xVisiumSFE(samples, type = "sparse”, data = "filtered")
containsOutOfMemoryData(sfe)

crop Crop an SFE object with a geometry

Description

Returns an SFE object whose specified colGeometry returns TRUE with a geometric predicate func-
tion (usually intersects) with another geometry of interest. This can be used to subset an SFE object
with a tissue boundary or histological region polygon, or crop away empty spaces. After cropping,
not only will the cells/spots be subsetted, but also all geometries will be cropped.

Usage

crop(
X,
y = NULL,
colGeometryName = 1L,
sample_id = "all",
op = st_intersection,
keep_whole = "none”,
cover = FALSE

Arguments

X An SFE object.
y An object of class sf, sfg, sfc with which to crop the SFE object, or a bounding
box with the format of the output of bbox, SpatialFeatureExperiment-method.

colGeometryName
Column geometry to used to indicate which cells/spots to keep.

croplmg

sample_id

op

keep_whole

cover

Details

25

Samples to crop. Optional when only one sample is present. Can be multi-
ple samples, or "all", which means all samples. For multiple samples, sf data
frame y may have column sample_id indicating which geometry subsets which
sample or matrix y may indicate sample specific bounding boxes in its column
names. Only samples included in the indicated sample IDs are subsetted. If
sample is not indicated in y, then the same geometry or bounding box is used to
subset all samples specified in the sample_id argument.

A geometric operation function to crop the geometries in the SFE object. Only
st_intersection and st_difference are allowed. If "intersection", then only
things inside y is kept after cropping. If "difference", then only things outside y
is kept.

Character vector, can be one or more of "col" and "annot" to keep whole items
from colGeometries or annotGeometries, keeping geometries that partially
intersect with y whole. This can greatly speed up code while not breaking ge-
ometries into multiple pieces. Can also be "none" so all geometries are actually
cropped.

Logical, whether the geometries in x must be entirely covered by y if op =
st_intersection or whether x must be entirely outside y if op = st_difference.
Only relevant when keep_whole != "none".

3D geometries are allowed, but geometric operations can only be performed in x and y but not z.

Value

An SFE object. There is no guarantee that the geometries after cropping are still all valid or preserve
the original geometry class.

Examples

library(SFEData)

sfe <- McKellarMuscleData("small")
Subset sfe to only keep spots on tissue
sfe_on_tissue <- crop(sfe, tissueBoundary(sfe),
colGeometryName = "spotPoly",
sample_id = "Vis5A”

cropImg

Crop images

Description

Crop images of class *Image in this package with a bounding box.

26 df2sf

Usage

S4 method for signature 'SpatRasterImage
cropImg(x, bbox, filename = "")

S4 method for signature 'BioFormatsImage'’
cropImg(x, bbox)

S4 method for signature 'ExtImage'
cropImg(x, bbox)

Arguments
X An object of class xImage as implemented in this package.
bbox Numeric vector with names "xmin", "xmax", "ymin", "ymax", in any order, to
specify the bounding box.
filename Output file name for transformed SpatRaster.
Value

Image of the same class as input but cropped. For BioFormatsImage, the image is not loaded into
memory; only the extent is changed.

See Also

Other image methods: SFE-image, affineImg(), dim,BioFormatsImage-method, dim,ExtImage-method,
ext(), imgRaster(), imgSource(), mirrorImg(), rotateImg(), scaleImg(), translateImg(),
transposelImg()

df2sf From ordinary data frame to sf to construct SFE object

Description

While the SpatialFeatureExperiment constructor and *Geometry replacement methods can con-
vert properly formatted ordinary data frames into sf objects which are used to store the geometries
internally, the user might want to do the conversion, check if the geometry is valid, and inspect and
fix any invalid geometries.

Usage

df2sf(

df,

spatialCoordsNames = c("x", "y"),

spotDiameter = NA,

geometryType = c("POINT"”, "LINESTRING"”, "POLYGON", "MULTIPOINT", "MULTILINESTRING",
"MULTIPOLYGON"),

group_col = "group”,

id_col = "ID",

subid_col = "subID",

check = TRUE,

df2sf 27
Arguments
df An ordinary data frame, i.e. not sf. Or a matrix that can be converted to a data
frame.
spatialCoordsNames
Column names in df that specify spatial coordinates.
spotDiameter Spot diameter for technologies with arrays of spots of fixed diameter per slide,
such as Visium, ST, DBiT-seq, and slide-seq. The diameter must be in the same
unit as the coordinates in the *Geometry arguments. Ignored for geometries that
are not POINT or MULTIPOINT.
geometryType Type of geometry to convert the ordinary data frame to. If the geometry in df is
de facto points, then this argument will be ignored and the returned sf will have
geometry type POINT.
group_col Column to indicate which coordinates for which MULTI geometry, such as to
identify which MULTIPOLYGON or MULTIPOINT.
id_col Column to indicate coordinates for which geometry, within a MULTI geometry
if applicable, such as to identify which POLYGON or which polygon within a
MULTIPOLY GON.
subid_col Column to indicate coordinates for holes in polygons.
check Logical, whether to check the input data frame for issues related to constructing
the geometry of interese such as number of vertices per geometry. If FALSE, it
will save a bit of time, which is useful when the input is already known to be
good.
Other arguments passed to ‘sf::st_buffer’, mainly to make polygon shapes, eg
Visium spot ‘endCapStyle = "ROUND" and VisiumHD bin ‘endCapStyle =
"SQUARE” ‘
Value

An sf object.

Examples

Points, use spotDiameter to convert to circle polygons

This is done to Visium spots

pts_df <- readRDS(system.file("extdata/pts_df.rds",
package = "SpatialFeatureExperiment”

)

sf_use <- df2sf(pts_df, geometryType = "POINT"”, spotDiameter = 0.1)

Linestring

1s_df <- readRDS(system.file("extdata/ls_df.rds",
package = "SpatialFeatureExperiment”

)

sf_use <- df2sf(ls_df, geometryType = "LINESTRING")

Polygon

pol_df <- readRDS(system.file("extdata/pol_df.rds",
package = "SpatialFeatureExperiment”

)

sf_use <- df2sf(pol_df,
geometryType = "POLYGON",
spatialCoordsNames = c("V1", "V2")

)
Multipolygon

28 dim,BioFormatsImage-method

mpol_df <- readRDS(system.file("extdata/mpol_df.rds",
package = "SpatialFeatureExperiment”

)

sf_use <- df2sf(mpol_df,
geometryType = "MULTIPOLYGON",
spatialCoordsNames = c("V1", "V2")

)

Multiple sample_ids present

multipts_df <- readRDS(system.file("extdata/multipts_df.rds",
package = "SpatialFeatureExperiment”

))

sf_use <- df2sf(multipts_df, geometryType = "MULTIPOINT")

dim,BioFormatsImage-method
Find dimension of BioFormatslmage

Description

This is different from other classes. The metadata is read where the dimensions in pixels can be
found. The image itself is not read into memory here.

Usage

S4 method for signature 'BioFormatsImage'’
dim(x)

Arguments

X A BioFormatsImage object.

Value
An integer vector of length 5 showing the number of rows and columns in the full resolution image.

The 5 dimensions are in the order of XYCZT: x, y, channel, z, and time. This is not changed by
transformations. Use ext to see the extent after transformation.

See Also

Other image methods: SFE-image, affineImg(), cropImg(), dim,ExtImage-method, ext(),
imgRaster (), imgSource(), mirrorImg(), rotateImg(), scaleImg(), translateImg(), transposelmg()

dim,ExtImage-method 29

dim,ExtImage-method Find dimensions of ExtImage

Description
This method exists to make the output of dim() for ExtImage consistent with that of Image which
ExtImage inherits from, overriding the VirtualSpatialImage method.
Usage
S4 method for signature 'ExtImage'
dim(x)
Arguments

X A ExtImage object.

Value

An integer vector. As in EBImage, the first element indicates number of pixels in the x direction,
or number of columns in the image, and the second element indicates the number of pixels in the y
direction. This is unlike array indexing.

See Also

Other image methods: SFE-image, affineImg(), cropImg(), dim,BioFormatsImage-method,
ext(), imgRaster (), imgSource(), mirrorImg(), rotateImg(), scaleImg(), translateImg(),
transposeImg()

dimGeometries Dimension geometry methods

Description

"Dimension geometry" refers to Simple Feature (sf) geometries associated with rows (features,
genes) or columns (cells or spots) of the gene count matrix in the SpatialFeatureExperiment
object. For each dimension, the number of rows in the sf data frame specifying the geometries
must match the size of the dimension of interest. For example, there must be the same number
of rows in the sf data frame describing cells as there are cells in the gene count matrix. This page
documents getters and setters for the dimension geometries. The getters and setters are implemented
in a way similar to those of reducedDims in SingleCellExperiment.

Usage

S4 method for signature 'SpatialFeatureExperiment'’
dimGeometries(x, MARGIN = 2, withDimnames = TRUE)

S4 replacement method for signature 'SpatialFeatureExperiment’
dimGeometries(x, MARGIN, withDimnames = TRUE, translate = TRUE, ...) <- value

30 dimGeometries

S4 method for signature 'SpatialFeatureExperiment'’
dimGeometryNames(x, MARGIN)

S4 replacement method for signature 'SpatialFeatureExperiment,numeric,character'
dimGeometryNames(x, MARGIN) <- value

S4 method for signature 'SpatialFeatureExperiment'’
dimGeometry(x, type = 1L, MARGIN, sample_id = 1L, withDimnames = TRUE)

S4 replacement method for signature 'SpatialFeatureExperiment'’
dimGeometry(

X,

type = 1L,

MARGIN,

sample_id = 1L,

withDimnames = TRUE,

translate = TRUE,

) <- value

Arguments
X A SpatialFeatureExperiment object.
MARGIN As in apply. 1 stands for rows and 2 stands for columns.

withDimnames Logical. If TRUE, then the dimnames (colnames or rownames) of the gene count
matrix should correspond to row names of the sf data frames of interest.

translate Logical. Only used if removeEmptySpace has been run of the SFE object. If
that’s the case, this argument indicates whether the new value to be assigned to
the geometry is in the coordinates prior to removal of empty space so it should
be translated to match the new coordinates after removing empty space. Default
to TRUE.

spatialCoordsNames, spotDiameter, geometryType passed to df2sf. De-
faults are the same as in df2sf. For dimGeometries<- only: geometryType
can be a character vector of the geometry type of each data frame in the list of
the same length as the list if the data frames specify different types of geome-
tries.

value Value to set. For dimGeometry, must be a sf data frame with the same number
of rows as size in the dimension of interest, or an ordinary data frame that can
be converted to such a sf data frame (see df2sf). For dimGeometries, must be
a list of such sf or ordinary data frames.

type An integer specifying the index or string specifying the name of the *Geometry
to query or replace. If missing, then the first item in the *Geometries will be
returned or replaced.

sample_id Sample ID to get or set geometries.

Value

Getters for multiple geometries return a named list. Getters for names return a character vector of
the names. Getters for single geometries return an sf data frame. Setters return an SFE object.

dimGeometries

See Also

[colGeometries()], [rowGeometries()]

Examples

library(SFEData)
sfe <- McKellarMuscleData(dataset = "small")

Get all column geometries as a named list

Use MARGIN = 1 or rowGeometry/ies for rowGeometries
cgs <- dimGeometries(sfe, MARGIN = 2)

Or equivalently

cgs <- colGeometries(sfe)

Set all column geometries with a named list
dimGeometries(sfe, MARGIN = 2) <- cgs

Or equivalently

colGeometries(sfe) <- cgs

Get names of column geometries
cgns <- dimGeometryNames(sfe, MARGIN = 2)
cgns <- colGeometryNames(sfe)

Set column geometry names
dimGeometryNames(sfe, MARGIN = 2) <- cgns
colGeometryNames(sfe) <- cgns

Get a specific column geometry by name

spots <- dimGeometry(sfe, "spotPoly"”, MARGIN = 2)

spots <- colGeometry(sfe, "spotPoly")

Or equivalently, the wrapper specifically for Visium spot polygons,

for the name "spotPoly”

spots <- spotPoly(sfe)

Other colGeometry wrappers for specific names:

ROIPoly (for LCM and GeoMX DSP), cellSeg and nucSeg (for MERFISH; would
query annotGeometries for Visium)

rowGeometry wrappers for specific names: txSpots (MERFISH transcript spots)
By index

spots <- colGeometry(sfe, 1L)

Multiple samples, only get geometries for one sample

sfe2 <- McKellarMuscleData("small2")

sfe_combined <- cbhind(sfe, sfe2)

spots1 <- colGeometry(sfe, "spotPoly”, sample_id = "Vis5A")

spots2 <- spotPoly(sfe_combined, sample_id = "sample@2")

Get geometries for multiple samples

spots3 <- spotPoly(sfe_combined, sample_id = c("Vis5A", "sample@2"))
All samples

spots3 <- spotPoly(sfe_combined, sample_id = "all")

Set specific column geometry by name

colGeometry(sfe, "foobar") <- spots

Or use wrapper

spotPoly(sfe) <- spots

Specify sample_id

colGeometry(sfe_combined, "foobar"”, sample_id = "Visb5A") <- spots]

32 ext

Only entries for the specified sample are set.

foobar <- colGeometry(sfe_combined, "foobar"”, sample_id = "sample@2")
ext Get and set extent of image objects
Description

Unlike in SpatialExperiment, images in SFE have extents which are used to align them to the
geometries and in geometric operations on SFE objects. These functions get or set the extent for S4
image classes inheriting from VirtualSpatialImage implemented in the SFE package.

Usage
S4 method for signature 'BioFormatsImage'’
ext(x)

S4 method for signature 'ExtImage'
ext(x)

S4 method for signature 'SpatRasterImage'
ext(x)

S4 replacement method for signature 'BioFormatsImage,numeric'’
ext(x) <- value

S4 replacement method for signature 'ExtImage,numeric'
ext(x) <- value

S4 replacement method for signature 'SpatRasterImage,numeric'
ext(x) <- value

Arguments
X A *Image object.
value A numeric vector with names "xmin", "xmax", "ymin", "ymax" specifying the
extent to use.
Value

Getters return a numeric vector specifying the extent. Setters return a *Image object of the same
class as the input.

Note

For SpatRasterImage, the image may be may not be loaded into memory. You can check if the
image is loaded into memory with terra::inMemory(x), and check the original file path with
imgSource. If the image is not loaded into memory, then the original file must be present at the
path indicated by imgSource in order for any code using the image to work, which includes this
function ext.

For BioFormatsImage, internally only the pre-transform extent is stored. The ext getter will apply
the transformation on the fly. The setter sets the pre-transformation extent.

ExtImage 33

See Also

Other image methods: SFE-image, affineImg(), cropImg(), dim,BioFormatsImage-method,
dim,ExtImage-method, imgRaster(), imgSource(), mirrorImg(), rotateImg(), scaleImg(),
translateImg(), transposeImg()

ExtImage Use the EBImage Image class in SFE objects

Description

This is a thin wrapper around the Image class in the EBImage package so it inherits from VirtualSpatialImage
to be compatible with SpatialExperiment from which SFE inherits. An ext field is added to spec-

ify the spatial extent of the image in microns to facilitate geometric operations on the SFE object

(including the images) and plotting with Voyager.

Usage

S4 method for signature 'ExtImage'
show(object)

ExtImage(img, ext = NULL)

Arguments
object An ExtImage object.
img An Image object or anything that inherits from Image such as AnnotatedImage
in RBioFormats.
ext Numeric vector with names "xmin", "xmax", "ymin", "ymax" in microns indi-
cating the spatial extent covered by the image. If NULL, then the extent will be
inferred from the metadata, from physical pixel size and the number of pixels.
Value

An ExtImage object.

findDebrisCells Identify cells in small bits outside the main piece of tissue

Description

This is used for quality control (QC), as the small bits are likely to be low quality technical artifacts
and are not informative to spatial analyses. Please confirm the quality of those cells by checking
the histology image with ImageJ or QuPath.

34 findDebrisCells

Usage

S4 method for signature 'matrix’
findDebrisCells(

X,

max_cells = 5,

distance_cutoff = 50,

BNPARAM NULL,

BPPARAM = SerialParam()
)

S4 method for signature 'sfc
findDebrisCells(
X,
max_cells = 5,
distance_cutoff = 50,
BNPARAM = NULL,

BPPARAM = SerialParam()
)

S4 method for signature 'sf'
findDebrisCells(
X,
max_cells = 5,
distance_cutoff = 50,
BNPARAM NULL,
BPPARAM = SerialParam()

)

S4 method for signature 'SpatialExperiment’
findDebrisCells(

X,

max_cells = 5,

distance_cutoff = 50,

BNPARAM = NULL,

BPPARAM = SerialParam()

)
Arguments
X Object with spatial coordinates of cells. Can be a SpatialExperiment or SpatialFeatureExperime
object, a matrix with 2 columns for x and y coordinates of cells, or a sf or sfc
object with cell geometries.
max_cells Maximum number of cells for a clump of cells to be considered debris.

distance_cutoff
Minimum distance of cell to the tissue for it to be considered debris, in the same
unit as in x.

BNPARAM A BiocNeighborParam object specifying the algorithm to find k nearest neigh-
bors and distance based neighbors with nn_method = "bioc"”. For distance
based neighbors, only KmknnParam and VptreeParam are applicable.

BPPARAM A BiocParallelParamobject for multithreading. Only used for k nearest neigh-
bor and distance based neighbor with nn_method = "bioc”.

findSpatialNeighbors 35

Details

How this function works: A distance-based spatial neighborhood graph is computed, with distance_cutoff
as the distance cutoff. Then disjoint connected subgraphs are found. Cells in subgraphs with
max_cells or fewer cells are considered debris.

Value

Depends on the method:

Spatial(Feature)Experiment The same object with a logical column "is_debris" added to colData.

Matrix and sf(c) A logical vector indicating whether each cell is debris.

findSpatialNeighbors Find spatial neighborhood graph

Description

This function wraps all spatial neighborhood graphs implemented in the package spdep for the
SpatialFeatureExperiment (SFE) class, to find spatial neighborhood graphs for the entities rep-
resented by columns or rows of the gene count matrix in the SFE object or spatial entities in the
annotGeometries field of the SFE object. Results are stored as 1istw objects in the spatialGraphs
field of the SFE object, as 1istw is used in many methods that facilitate the spatial neighborhood
graph in the spdep, spatialreg, and adespatial. The edge weights of the graph in the listw
object are by default style W (see nb21istw) and the unweighted neighbor list is in the neighbours
field of the 1istw object.

Usage

S4 method for signature 'SpatialFeatureExperiment'’
findSpatialNeighbors(

X,

sample_id = "all",

type = "spatialCoords”,

MARGIN = 2,

method = c("tri2nb”, "knearneigh”, "dnearneigh”, "gabrielneigh”, "relativeneigh",

"soi.graph”, "poly2nb"),

dist_type = c("none”, "idw", "exp", "dpd"),

glist = NULL,

style = c("raw", "w", "B", "C", "U", "minmax"”, "S"),

nn_method = c("bioc”, "spdep"”),

alpha = 1,

dmax = NULL,

BPPARAM = SerialParam(),

BNPARAM = KmknnParam(),

zero.policy = TRUE,

36 findSpatialNeighbors

Arguments

X A SpatialFeatureExperiment object.

sample_id Which sample(s) in the SFE object to use for the graph. Can also be "all", which
means this function will compute the graph for all samples independently.

type Name of the geometry associated with the MARGIN of interest for which to
compute the graph.

MARGIN Just like in apply, where 1 stands for row, 2 stands for column. Here, in ad-
dition, 3 stands for annotation, to query the annotGeometries, such as nuclei
segmentation in a Visium data

method Name of function in the package spdep to use to find the spatial neighborhood
graph.

dist_type Type of distance-based weight. "none" means not using distance-based weights;
the edge weights of the spatial neighborhood graph will be entirely determined
by the style argument. "idw" means inverse distance weighting. "exp" means
exponential decay. "dpd" means double-power distance weights. See nb2listwdist
for details.

glist list of general weights corresponding to neighbours

style style can take values “W”, “B”, “C”, “U”, “minmax” and “S”

nn_method Method to find k nearest neighbors and distance based neighbors. Can be either
"bioc" or "spdep". For "bioc", methods from BiocNeighbors are used. For
"spdep", methods from the spdep package are used. The "bioc" option is more
scalable to larger datasets and supports multithreading.

alpha Only relevant when dist_type = "dpd".

dmax Only relevant when dist_type = "dpd".

BPPARAM A BiocParallelParam object for multithreading. Only used for k nearest neigh-
bor and distance based neighbor with nn_method = "bioc".

BNPARAM A BiocNeighborParam object specifying the algorithm to find k nearest neigh-

bors and distance based neighbors with nn_method = "bioc"”. For distance
based neighbors, only KmknnParam and VptreeParam are applicable.

zero.policy default NULL, use global option value; if FALSE stop with error for any empty
neighbour sets, if TRUE permit the weights list to be formed with zero-length
weights vectors

Extra arguments passed to the spdep function stated in the method argument,
such as k, use_kd_tree, d1, d2, nnmult, sym, and quadsegs. Note that any
arguments about using longitude and latitude, which are irrelevant, are ignored.

Value

For one sample, then a 1istw object representing the graph, with an attribute "method" recording
the function used to build the graph, its arguments, and information about the geometry for which
the graph was built. The attribute is used to reconstruct the graphs when the SFE object is subsetted
since some nodes in the graph will no longer be present. If sample_id = "all" or has length > 1, then
anamed list of 1istw objects, whose names are the sample_ids. To add the list for multiple samples
to a SFE object, specify the name argument in the spatialGraphs replacement method, so graph
of the same name will be added to the SFE object for each sample.

findVisiumGraph 37

Note

style = "raw” is only applicable when dist_type is not "none". If dist_type = "none"” and
style = "raw”, then style will default to "W". Using distance based weights does not supplant
finding a spatial neighborhood graph. The spatial neighborhood graph is first found and then its
edges weighted based on distance in this function.

Examples

library(SFEData)

sfe <- McKellarMuscleData(dataset = "small")

sample_id is optional when only one sample is present
g <- findSpatialNeighbors(sfe, sample_id = "Vis5A")
attr(g, "method")

Returns named list for multiple samples

sfe2 <- McKellarMuscleData(dataset = "small2")
sfe_combined <- cbind(sfe, sfe2)

gs <- findSpatialNeighbors(sfe, sample_id = "all")

findVisiumGraph Find spatial neighborhood graphs for Visium spots

Description

Visium spots are arranged in a hexagonal grid. This function uses the known locations of the Visium
barcodes to construct a neighborhood graph, so adjacent spots are connected by edges. Since the
known rows and columns of the spots are used, the unit the spot centroid coordinates are in does
not matter.

Usage
findVisiumGraph(x, sample_id = "all”, style = "W", zero.policy = NULL)

Arguments

X A SpatialFeatureExperiment object with Visium data. Column names of the
gene count matrix must be Visium barcodes, which may have a numeric suffix
to distinguish between samples (e.g. "AAACAACGAATAGTTC-1").

sample_id Which sample(s) in the SFE object to use for the graph. Can also be "all", which
means this function will compute the graph for all samples independently.

style style can take values “W”, “B”, “C”, “U”, “minmax” and “S”

zero.policy default NULL, use global option value; if FALSE stop with error for any empty
neighbour sets, if TRUE permit the weights list to be formed with zero-length
weights vectors

Value

For one sample, then a 1istw object representing the graph, with an attribute "method" recording
the function used to build the graph, its arguments, and information about the geometry for which
the graph was built. The attribute is used to reconstruct the graphs when the SFE object is subsetted
since some nodes in the graph will no longer be present. If sample_id = "all" or has length > 1, then
anamed list of 1istw objects, whose names are the sample_ids. To add the list for multiple samples
to a SFE object, specify the name argument in the spatialGraphs replacement method, so graph
of the same name will be added to the SFE object for each sample.

38 formatTxSpots

Examples

library(SFEData)

sfe <- McKellarMuscleData(dataset = "small")

g <- findVisiumGraph(sfe)

For multiple samples, returns named list
sfe2 <- McKellarMuscleData(dataset = "small2")
sfe_combined <- cbind(sfe, sfe2)

gs <- findVisiumGraph(sfe, sample_id = "all")

findVisiumHDGraph Find Visium HD spatial neighborhood graph

Description

Visium HD spots are arranged in a square grid. This function finds either a rook or a queen spatial
neighborhood graph for the spots. colData of the SFE object must have columns array_row and
array_col.

Usage
findVisiumHDGraph(x, style = "W", queen = FALSE, zero.policy = TRUE)

Arguments
X An SFE object with Visium HD data with one sample with the required infor-
mation in its colData.
style style can take values “W”, “B”, “C”, “U”, “minmax” and “S”
queen Logical. Default is FALSE, using rook neighbors.

zero.policy default NULL, use global option value; if FALSE stop with error for any empty
neighbour sets, if TRUE permit the weights list to be formed with zero-length
weights vectors

Value

A listw object for the graph.

formatTxSpots Read and process transcript spots geometry for SFE

Description

The function ‘formatTxSpots* reads the transcript spot coordinates of smFISH-based data and for-
mats the data. The data is not added to an SFE object. If the file specified in ‘file_out‘ already exists,
then this file will be read instead of the original file in the ‘file* argument, so the processing is not
run multiple times. The function ‘addTxSpots* adds the data read and processed in ‘formatTxSpots*
to the SFE object, and reads all transcript spot data. To only read a subset of transcript spot data,
first use ‘formatTxSpots* to write the re-formatted data to disk. Then read the specific subset and
add them separately to the SFE object with the setter functions.

formatTxSpots

Usage
formatTxSpots(
file,
dest = c("rowGeometry"”, "colGeometry"),
spatialCoordsNames = c("global_x", "global_y", "global_z"),
gene_col = "gene"”,
cell_col = "cell_id",
z = "all"”,
phred_col = "qv",
min_phred = 20,

)

split_col = NULL,

not_in_cell_id = c("-1", "UNASSIGNED"),
z_option = c("3d", "split"),

flip = FALSE,

file_out = NULL,

BPPARAM = SerialParam(),

return = TRUE,

save_memory = FALSE,

progressbar = FALSE,

partition = FALSE

addTxSpots(

sfe,

file,

sample_id = 1L,

spatialCoordsNames = c("global_x", "global_y", "global_z"),

gene_col = "gene",
z = "all",
phred_col = "qv",

min_phred = 20,

split_col = NULL,

z_option = c("3d", "split"),
flip = FALSE,

file_out = NULL,

BPPARAM = SerialParam()

39

)
Arguments
file File with the transcript spot coordinates. Should be one row per spot when read
into R and should have columns for coordinates on each axis, gene the transcript
is assigned to, and optionally cell the transcript is assigned to. Must be csv, tsv,
or parquet.
dest Where in the SFE object to store the spot geometries. This affects how the data

is processed. Options:

rowGeometry All spots for each gene will be a ‘MULTIPOINT® geometry,
regardless of whether they are in cells or which cells they are assigned to.

colGeometry The spots for each gene assigned to a cell of interest will be a
‘MULTIPOINT® geometry; since the gene count matrix is sparse, the ge-

ometries are NOT returned to memory.

40

formatTxSpots

spatialCoordsNames

gene_col

cell_col

phred_col

min_phred

split_col

not_in_cell_id

z_option

flip

file_out

BPPARAM

return

save_memory

progressbar

partition
sfe

sample_id

Column names for the x, y, and optionally z coordinates of the spots. The de-
faults are for Vizgen.

Column name for genes.

ne

Column name for cell IDs, ignored if ‘dest = "rowGeometry"‘. Can have length
> 1 when multiple columns are needed to uniquely identify cells, in which case
the contents of the columns will be concatenated, such as in CosMX data where
cell ID is only unique within the same FOV. Default "cell_id" is for Vizgen
MERFISH. Should be ‘c("cell_ID", "fov")* for CosMX.

Index of z plane to read. Can be "all" to read all z-planes into MULTIPOINT
geometries with XYZ coordinates. If z values are not integer, then spots with all
z values will be read.

Column name for Phred scores of the spots.

Minimum Phred score to keep spot. By default 20, the conventional threshold
indicating "acceptable”, meaning that there’s 1 chance that the spot was decoded
in error.

Categorical column to split the geometries, such as cell compartment the spots
are assigned to as in the "CellComp" column in CosMX output.

Value of cell ID indicating that the spot is not assigned to any cell, such as "-1"
in Vizgen MERFISH and "0" in CosMX. When there’re multiple columns for
‘cell_col‘, the first column is used to identify spots that are not in cells.

What to do with z coordinates. "3d" is to construct 3D geometries. "split" is to
create a separate 2D geometry for each z-plane so geometric operations are fully
supported but some data wrangling is required to perform 3D analyses. When
the z coordinates are not integers, 3D geometries will always be constructed
since there are no z-planes to speak of. This argument does not apply when
‘spatialCoordsNames* has length 2.

Logical, whether to flip the geometry to match image. Here the y coordinates are
simply set to -y, so the original bounding box is not preserved. This is consistent
with readVizgen and readXenium.

Name of file to save the geometry or raster to disk. Especially when the ge-
ometries are so large that it’s unwieldy to load everything into memory. If this
file (or directory for multiple files) already exists, then the existing file(s) will
be read, skipping the processing. When writing the file, extensions supplied are
ignored and extensions are determined based on ‘dest*.

BiocParallelParam object to specify multithreading to convert raw char in
some parquet files to R objects. Not used otherwise.

Logical, whether to return the geometries in memory. This does not depend
on whether the geometries are written to file. Always ‘FALSE‘ when ‘dest =

ne

"colGeometry"*.

Logical, if TRUE, then the transcript spots will not all be loaded into memory.
open_dataset is used to open a link to the data and then transcript spots of one
gene is loaded into memory at a time.

Logical, whether to show progress bar. This argument is only used when save_memory

= TRUE because otherwise the progressbar argument can be specified in BPPARAM.
Whether to partition the output by gene.
A ‘SpatialFeatureExperiment* object.

Which sample in the SFE object the transcript spots should be added to.

formatTxTech 41

Value

A sf data frame for vector geometries if ‘file_out® is not set. ‘SpatRaster* for raster. If there are
multiple files written, such as when splitting by cell compartment or when ‘dest = "colGeometry"*,
then a directory with the same name as ‘file_out® will be created (but without the extension) and
the files are written to that directory with informative names. ‘parquet‘ files that can be read with
‘st_read" is written for vector geometries. When ‘return = FALSE®, the file name or directory (when

there’re multiple files) is returned.

The ‘sf* data frame, or path to file where geometries are written if ‘return = FALSE®.

Note

"e

When ‘dest = "colGeometry"‘, the geometries are always written to disk and not returned in mem-
ory, because this is essentially the gene count matrix, which is sparse. This kind of reformatting
is implemented so users can read in MULTIPOINT geometries with transcript spots for each gene
assigned to each cell for spatial point process analyses, where not all genes are loaded at once.

Examples

Default arguments are for MERFISH

fp <- tempfile()

dir_use <- SFEData::VizgenOutput(file_path = fp)

g <- formatTxSpots(file.path(dir_use, "detected_transcripts.csv"))
unlink(dir_use, recursive = TRUE)

For CosMX, note the colnames, also dest = "colGeometry”

Results are written to the tx_spots directory

dir_use <- SFEData::CosMXOutput(file_path = fp)

cg <- formatTxSpots(file.path(dir_use, "Run5642_S3_Quarter_tx_file.csv"),

dest = "colGeometry”, z = "all"”,
cell_col = c("cell_ID", "fov"),
gene_col = "target”, not_in_cell_id = "0@",

spatialCoordsNames = c("x_global_px", "y_global_px", "z"),
file_out = file.path(dir_use, "tx_spots”))

Cleanup

unlink(dir_use, recursive = TRUE)

formatTxTech Read and process transcript spots for specific commercial technolo-
gies

Description

To preset parameters such as spatialCoordsNames, gene_col, cell_col, and phred_col that are
standard for the output of the technology.

Usage
formatTxTech(
data_dir,
tech = c("Vizgen”, "Xenium”, "CosMX"),
dest = c("rowGeometry"”, "colGeometry"),

z = "all”,

42

formatTxTech

min_phred = 20,
split_cell_comps = FALSE,
z_option = c("3d", "split"),

flip = FALSE,

file_out = NULL,
BPPARAM = SerialParam(),

return = TRUE
)

addTxTech(
sfe,
data_dir,
sample_id = 1

L,

tech = c("Vizgen", "Xenium”, "CosMX"),

z = "all”,

min_phred = 20,
split_cell_comps = FALSE,
z_option = c("3d", "split"),

flip = FALSE,

file_out = NULL,
BPPARAM = SerialParam()

Arguments

data_dir
tech

dest

min_phred

Top level output directory.

Which technology whose output to read, must be one of "Vizgen", "Xenium",
or "CosMX" though more technologies may be added later.

Where in the SFE object to store the spot geometries. This affects how the data
is processed. Options:

rowGeometry All spots for each gene will be a ‘MULTIPOINT® geometry,
regardless of whether they are in cells or which cells they are assigned to.

colGeometry The spots for each gene assigned to a cell of interest will be a
‘MULTIPOINT* geometry; since the gene count matrix is sparse, the ge-
ometries are NOT returned to memory.

Which z-planes to read. Always "all" for Xenium where the z coordinates are
not discrete.

Minimum Phred score to keep spot. By default 20, the conventional threshold
indicating "acceptable”, meaning that there’s 1 chance that the spot was decoded
in error.

split_cell_comps

z_option

Only relevant to CosMX whose transcript spot file assigns the spots to cell com-
ponents. Setting this argument to TRUE

What to do with z coordinates. "3d" is to construct 3D geometries. "split" is to
create a separate 2D geometry for each z-plane so geometric operations are fully
supported but some data wrangling is required to perform 3D analyses. When
the z coordinates are not integers, 3D geometries will always be constructed
since there are no z-planes to speak of. This argument does not apply when
‘spatialCoordsNames* has length 2.

gdalParquetAvailable

flip

file_out

BPPARAM

return

sfe

sample_id

Value

43

Logical, whether to flip the geometry to match image. Here the y coordinates are
simply set to -y, so the original bounding box is not preserved. This is consistent
with readVizgen and readXenium.

Name of file to save the geometry or raster to disk. Especially when the ge-
ometries are so large that it’s unwieldy to load everything into memory. If this
file (or directory for multiple files) already exists, then the existing file(s) will
be read, skipping the processing. When writing the file, extensions supplied are
ignored and extensions are determined based on ‘dest".

BiocParallelParam object to specify multithreading to convert raw char in
some parquet files to R objects. Not used otherwise.

Logical, whether to return the geometries in memory. This does not depend
on whether the geometries are written to file. Always ‘FALSE‘ when ‘dest =

ne

"colGeometry"*.
A ‘SpatialFeatureExperiment* object.

Which sample in the SFE object the transcript spots should be added to.

The ‘sf* data frame, or path to file where geometries are written if ‘return = FALSE®.

Examples

library(SFEData)
fp <- tempfile()

dir_use <- XeniumOutput("v2", file_path = fp)
fn_tx <- formatTxTech(dir_use, tech = "Xenium", flip = TRUE, return = FALSE,

file_out = file.path(dir_use, "tx_spots.parquet”))

gdalParquetAvailable Check if Parquet GDAL driver is available

Description

The GeoParquet files for geometries are typically written and read with the sfarrow package, but
to add only a select few genes to the SFE object say for visualization purposes, the Parquet GDAL
driver is required in order to use GDAL’s SQL to query the GeoParquet file to only load the few
genes requested. The transcript spots from a large dataset can take up a lot of memory if all loaded.

Usage

gdalParquetAvailable()

Details

The Parquet driver has been supported since GDAL 3.5.0. The arrow C++ library must be in-
stalled in order to make the Parquet driver available. When arrow is installed, newer versions of
GDAL installed from Homebrew (Mac) should have the Parquet driver. For Linux, the binary from
apt-get’s default repo is 3.4.1 (as of April 2024). To use the Parquet driver, GDAL may need to
be installed from source. See script from the geospatial rocker. A Voyager docker container with
the Parquet driver will soon be provided.

https://github.com/rocker-org/rocker-versioned2/blob/master/scripts/experimental/install_dev_osgeo.sh

44 getParams

Value

Logical, indicating whether the Parquet driver is present.

Examples

gdalParquetAvailable()

getParams Get parameters used in spatial methods

Description

The getParams function allows users to access the parameters used to compute the results that may
be stored in colFeatureData.

Usage

getParams(
sfe,
name,
local = FALSE,
colData = FALSE,
colGeometryName = NULL,
annotGeometryName = NULL,
reducedDimName = NULL

)
Arguments
sfe A SpatialFeatureExperiment object.
name Name used to store the results.
local Logical, whether the results of interest come from a local spatial method.
colData Logical, whether the results were computed for a column of colData(sfe).
colGeometryName
To get results for a colGeometry.
annotGeometryName

To get results for an annotGeometry; colGeometry has precedence so this ar-
gument is ignored if colGeometryName is specified.

reducedDimName Name of a dimension reduction, can be seen in reducedDimNames. colGeometryName
and annotGeometryName have precedence over reducedDimName.

Value

A named list showing the parameters

getPixelSize 45

Examples

library(SFEData)

library(scater)

library(Voyager)

sfe <- McKellarMuscleData("”small")
colGraph(sfe, "visium”) <- findVisiumGraph(sfe)
sfe <- colDataMoransI(sfe, "nCounts")
getParams(sfe, "moran”, colData = TRUE)

getPixelSize Get physical size of pixels

Description

This function gets physical size of pixels in each resolution of a OME-TIFF pyramid in BioFormatsImage.

Usage

getPixelSize(file, resolution = 1L)

Arguments
file Path to an OME-TIFF file.
resolution Which resolution to query; 1 means the highest resolution. The pixels will be
larger for the lower resolutions.
Value

Numeric vector of length 2 of pixel size in x and y. Usually they’re the same.

Examples

library(SFEData)

fp <- tempfile()

dir_use <- XeniumOutput("v1", file_path = fp)

RBioFormats null pointer error
try(getPixelSize(file.path(dir_use, "morphology_focus.ome.tif")))
getPixelSize(file.path(dir_use, "morphology_focus.ome.tif"))
unlink(dir_use, recursive = TRUE)

46 getTissueBoundaryConcave

getTechTxFields Get relevant fields and file paths for transcript spots

Description

Get column names for X, y, and z coordinates, gene IDs, and cell IDs from the transcript file and get
file paths for transcript spot coordinates given technology.

Usage

getTechTxFields(tech, data_dir = NULL)

Arguments
tech Name of the commercial technology, must be one of Vizgen, Xenium, and
CosMX.
data_dir Top level directory of the output.
Value

A named list with elements:

spatialCoordsNames A character vector for column names for the xyz coordinates of the tran-
script spots.

gene_col Column name for gene IDs.

cell_col Column name for cell IDs.

fn File path of the transcript spot file.

getTissueBoundaryConcave
Get tissue boundary from concave hull of cell geometries

Description

The concave hull will be a smoothed outline, and the smoothness can be adjusted with the ratio
parameter. Run findDebrisCells to remove small bits outside the main piece tissue before running
this function.

Usage

getTissueBoundaryConcave(
sfe,
sample_id = NULL,
colGeometryName = 1L,
ratio = 0.01,
allow_holes = TRUE

getTissueBoundaryImg 47

Arguments
sfe An SFE object with images
sample_id Sample id(s) whose tissue boundaries are to be found.
colGeometryName
Name of the colGeometry to use to infer the concave hull.
ratio numeric; fraction convex: 1 returns the convex hulls, 0 maximally concave hulls
allow_holes logical; if TRUE, the resulting concave hull may have holes
Value

A sf data frame with columns sample_id and geometry.

getTissueBoundaryImg Get tissue boundary from histology image

Description

This function gets the tissue boundary from image and makes sure that it is properly aligned with
the geometries in the SFE object.

Usage

getTissueBoundaryImg(
sfe,
sample_id = NULL,
image_id = NULL,
image_type = c("brightfield”, "fluorescent"),
channel = NULL,
n_pieces = 1,
resolution = 4,
maxcell = 1e+0@7,
fill_holes = FALSE,
simplify = TRUE,
dTolerance = 0

)
Arguments
sfe An SFE object with images
sample_id Sample id(s) whose tissue boundaries are to be found.
image_id ID of image to use to get boundary.
image_type Character, either "brightfield" or "fluorescent”
channel Channel to use for tissue segmentation. If NULL use average of all channels.
n_pieces Number of pieces; only this number of largest pieces are kept. Smaller pieces

will be considered debris and removed. Can be a vector of the same length as
sample_id, or if sample_id is "all" then same length as the number of samples
in the SFE object to specify different number of pieces in different samples. If
n_pieces is length 1 while there are multiple samples, then the same number is
applied to all samples.

48 imagelDs

resolution Integer, which resolution to use for tissue boundary in a pyramidal OME-TIFF
stack. Only applicable to BioFormatsImage. Note that the image will be loaded
into memory and you usually don’t need the highest resolution for the tissue

boundary.
maxcell Max number of pixels when loading SpatRasterImage into memory.
fill_holes Logical, whether to fill holes in the tissue, to only get the outer outline.
simplify Logical, whether to simplify the output polygon.
dTolerance Distance tolerance when simplifying the polygon, in the same unit as the ge-

ometries in the SFE object.

Value

A sf data frame with columns sample_id and geometry.

imagelDs Show all image_ids in the SFE object

Description

The title is self-explanatory. Some functions require image_id to get or set images.

Usage

imageIDs(sfe)

Arguments

sfe A SpatialFeatureExperiment object.

Value

A character vector of image_ids.

Examples

fp <- system.file(file.path("extdata”, "sample@1"),
package = "SpatialFeatureExperiment”)

sfe <- read10xVisiumSFE(fp, type = "sparse”)
imageIDs(sfe)

Img<-,SpatialExperiment-method 49

Img<-,SpatialExperiment-method
Image setter

Description

Modify or replace images stored in a SpatialExperiment object. This is different from addImg
which adds the image from files and can’t replace existing images, which is there to be consis-
tent with SpatialExperiment. This setter here can replace existing images with another object
that inherits from VirtualSpatialImage, including SpatRasterImage, BioFormatsImage, and
ExtImage.

Usage

S4 replacement method for signature 'SpatialExperiment'’
Img(x, sample_id = 1L, image_id, scale_fct = 1) <- value

Arguments
X A SpatialExperiment object, which includes SFE.
sample_id Which sample the image is associated with. Use sampleIDs to get sample IDs
present in the SFE object.
image_id Image ID, such as "lowres" and "hires" for Visium data and "DAPI" and "PolyT"
for Vizgen MERFISH data.
scale_fct Scale factor to convert pixels in lower resolution to those in the full resolution.
Only relevant to image classes implemented in SpatialExperiment but not
SpatialFeatureExperiment because the spatial extent of images in SFE takes
precedence.
value New version of image to add, must inherit from VirtualSpatialImage.
Value

SFE object with the new image added.

Examples

library(EBImage)

library(SFEData)

library(RBioFormats)

fp <- tempfile()

fn <- XeniumOutput("v2", file_path = fp)

Weirdly the first time I get the null pointer error
try(sfe <- readXenium(fn))

sfe <- readXenium(fn)

img <- getImg(sfe) |> toExtImage(resolution = 1L)
img <- img[,,1] > 500

Img(sfe, image_id = "mask”) <- img

imageIDs(sfe)

unlink(fn, recursive = TRUE)

50 imgSource

imgRaster Get the image from *Image class

Description

In SFE, S4 classes inheriting from VirtualSpatialImage have been implemented to make these
image classes compatible with SpatialExperiment.

Usage

S4 method for signature 'SpatRasterImage'’
imgRaster(x, maxcell = 1e+@7, col = terra::map.pal(”viridis"”, 100))

S4 method for signature 'BioFormatsImage'
imgRaster(x, resolution = 4L)

S4 method for signature 'ExtImage'

imgRaster(x)
Arguments
X An object of class *Image as implemented in this package.
maxcell positive integer. Maximum number of cells to use for the plot
col vector of colors. The default is map.pal("viridis”, 100)
resolution Resolution to read in from OME-TIFF, defaults to 4, which is a medium resolu-
tion in Xenium.
Value

Since version 1.9.8, imgRaster will return an array of hex colors, or the raster object, as required
by SpatialExperiment. This will break older SFE code calling imgRaster.

See Also

Other image methods: SFE-image, affineImg(), cropImg(), dim,BioFormatsImage-method,
dim,ExtImage-method, ext(), imgSource(), mirrorImg(), rotateImg(), scaleImg(), translateImg(),
transposeImg()

imgSource Source of images that are on disk

Description

Get the file path of images that are on disk and not read into memory. Only applies to SpatRasterImage
and BioFormatsImage.

internal-Voyager 51

Usage

S4 method for signature 'SpatRasterImage
imgSource(x)

S4 method for signature 'BioFormatsImage
imgSource(x)

S4 method for signature 'ExtImage'
imgSource(x)

Arguments

X An object of class xImage as implemented in this package.

Value

String, file path to the original image on disk. For SpatRasterImage, if the image is loaded into
memory, then NULL.

See Also

Other image methods: SFE-image, affineImg(), cropImg(), dim,BioFormatsImage-method,
dim,ExtImage-method, ext(), imgRaster (), mirrorImg(), rotateImg(), scaleImg(), translateImg(),
transposeImg()

internal-Voyager Internal functions also used in Voyager

Description

Not meant for the user, but exporting to be used internally in Voyager. But one day I may clean
these up and remove the internal note for people building on top of SFE.

Usage
.value2df(value, use_geometry, feature = NULL)
.check_features(x, features, colGeometryName = NULL, swap_rownames = NULL)
.warn_symbol_duplicate(x, symbols, swap_rownames = "symbol")
.symbol2id(x, features, swap_rownames)
.check_sample_id(x, sample_id, one = TRUE, mustWork = TRUE)
.rm_empty_geometries(g, MARGIN)
.check_rg(type, x, sample_id)

.ext_(x)

52 localResults

Value

Internal

localResults Get and set results from local spatial statistics

Description

Local spatial statics like local Moran’s I, local Geary’s C, Getis-Ord Gi*, and geographically
weighted summary statistics return values at each spatial location. Just like dimension reductions,
these results are clearly associated with the broader SFE object, so they should have a place within
the object. However, a separate field is needed because these analyses are conceptually distinct
from dimension reduction. Also, each feature (e.g. gene) can have its own results with values at
each location. The localResults field in the SFE object stores these results that has a value for
each spatial location.

Usage
S4 method for signature 'SpatialFeatureExperiment'’
localResults(
X7
sample_id = "all”,
name = "all",

features = NULL,
colGeometryName = NULL,
annotGeometryName = NULL,
withDimnames = TRUE,
swap_rownames = NULL,

)
S4 replacement method for signature 'SpatialFeatureExperiment’
localResults(

X,

sample_id = "all",

name = "all”,

features = NULL,
colGeometryName = NULL,
annotGeometryName = NULL,
withDimnames = TRUE,
swap_rownames = NULL,

) <- value

S4 method for signature 'SpatialFeatureExperiment'’
localResultNames(x)

S4 replacement method for signature 'SpatialFeatureExperiment,character’
localResultNames(x) <- value

localResults 53
S4 method for signature 'SpatialFeatureExperiment'’
localResultFeatures(

X,
type = 1L,
colGeometryName = NULL,
annotGeometryName = NULL,
swap_rownames = NULL
)
S4 method for signature 'SpatialFeatureExperiment'’
localResultAttrs(
X,
type = 1L,
feature,
colGeometryName = NULL,
annotGeometryName = NULL,
swap_rownames = NULL
)
S4 method for signature 'SpatialFeatureExperiment'’
localResult(
X,
type = 1L,
feature,
colGeometryName = NULL,
annotGeometryName = NULL,
sample_id = 1L,
withDimnames = TRUE,
simplify = TRUE,
swap_rownames = NULL
)
S4 replacement method for signature 'SpatialFeatureExperiment’
localResult(
X,
type = 1L,
feature,
colGeometryName = NULL,
annotGeometryName = NULL,
sample_id = 1L,
withDimnames = TRUE
) <- value

Arguments
X A SpatialFeatureExperiment object.
sample_id Sample ID to get or set geometries.
name Name of the spatial method used, such as "localmoran".
features Features whose local results to get or set, for LocalResults getter and setter for

multiple features at a time.
colGeometryName
Which colGeometry to get or set local results.

54 localResults

annotGeometryName
Which annotGeometry to get or set local results.

withDimnames Logical. If TRUE, then the dimnames (colnames or rownames) of the gene count
matrix should correspond to row names of the sf data frames of interest.

swap_rownames Name of a column in rowData to identify features instead of the row names of
the SFE object. For example, if the row names of the SFE object are Ensembl
IDs and gene symbols are in the "symbol” column in rowData, then putting
"symbol" for this argument will use the gene symbols to identify which gene’s
local results to get or set.

Ignored
value Values to set, should be either a matrix or a data frame.
type Name or index of the spatial method used, such as "localmoran".
feature Feature whose local results to get or set, for localResult getter and setter for

one feature at a time.

simplify Basically whether to return the content of the list rather than a list when the list
only has one element, such as results for one type and one feature.

Value

localResults returns a named list each element of which is a set of local results of interest.
localResult returns a matrix or a data frame, whichever the original is when it’s set. localResultNames
returns a character vector. Setters return an SFE object with the desired field set. For genes and
colData columns, the local results are stored in the localResults field in int_colData, whereas

for colGeometries and annotGeometries, the local results are stored as columns in the same sf

data frames. localResultFeatures returns a character vector of names of features for which local
results are available. localResultAttrs returns a character vector of the column names of the
local results of one type for one feature. It returns NULL if the results are a vector.

Examples

Toy example
sfe <- readRDS(system.file("extdata/sfe_toy.rds",
package = "SpatialFeatureExperiment”
))
localResults functions are written for organizing results from local
spatial statistics (see the Voyager package). But for the examples here,
random toy matrices are used. The real results are often matrices, with a
matrix for each feature.
library(S4Vectors)
set.seed(29)
toy_res1 <- matrix(rnorm(10),
nrow = 5, ncol = 2,
dimnames = list(colnames(sfe), c("meow”, "purr"))
)
toy_reslb <- matrix(rgamma(10, shape = 2),
nrow = 5, ncol = 2,
dimnames = list(colnames(sfe), c("meow”, "purr"))
)
toy_df1 <- DataFrame(genel = I(toy_resl), gene2 = I(toy_reslb))

toy_res2 <- matrix(rpois(1@, lambda = 2),
nrow = 5, ncol = 2,
dimnames = list(colnames(sfe), c("sassy”, "tortitude"))

mirrorlmg

)

toy_df2 <- DataFrame(genel = I(toy_res2))

Set all local results

localResults(sfe) <- list(localmoran = toy_df1, Gistar = toy_df2)
Get all local results

lrs <- localResults(sfe)

Set results of the same type for multiple genes

localResults(sfe, name = "localmoran”) <- toy_df1

Can also use a list

localResults(sfe, name = "localmoran”) <- as.list(toy_df1)

Get results of the same type for multiple genes

lrs <- localResults(sfe, name = "localmoran”, features = c("genel”, "gene2"))

Set results for one type and one gene

localResult(sfe, "localmoran”, feature = "genel"”) <- toy_resl
Get results for one type and one gene
1r <- localResult(sfe, "localmoran”, feature = "genel")

Set results for a feature in colGeometries

cg_toy <- readRDS(system.file("extdata/cg_toy.rds",
package = "SpatialFeatureExperiment”

)

colGeometry(sfe, "cg") <- cg_toy

localResult(sfe, "localmoran”,
feature = "genel”,
colGeometryName = "cg

) <- toy_resl

Get results for a feature in colGeometries

n

1r <- localResult(sfe, "localmoran”, "genel"”, colGeometryName = "cg")
mirrorImg Mirror/flip images
Description

Flip images along the middle horizontal or vertical axis.

Usage
S4 method for signature 'SpatRasterImage'’
mirrorImg(
X’
direction = c("vertical”, "horizontal”),
filename = "",

maxcell = NULL,

S4 method for signature 'BioFormatsImage'’
mirrorImg(x, direction = c("vertical”, "horizontal”), ...)

S4 method for signature 'ExtImage'
mirrorImg(x, direction = c("vertical”, "horizontal”), ...)

56 multi_listw2sparse

Arguments
X SpatRaster or SpatVector
direction character. Should (partially) match "vertical" to flip by rows, or "horizontal" to
flip by columns
filename character. Output filename
maxcell Max number of pixels to load SpatRasterImage into memory. The default
1e7 is chosen because this is the approximate number of pixels in the medium
resolution image at resolution = 4L in Xenium OME-TIFF to make different
methods of this function consistent.
additional arguments for writing files as in writeRaster
Value

*Image object of the same class.

See Also

Other image methods: SFE-image, affineImg(), cropImg(), dim,BioFormatsImage-method,
dim,ExtImage-method, ext(), imgRaster(), imgSource(), rotateImg(), scaleImg(), translateImg(),
transposeImg()

multi_listw2sparse Convert multiple listw graphs into a single sparse adjacency matrix

Description

Each sample in the SFE object has a separate spatial neighborhood graph. Spatial analyses per-
formed jointly on multiple samples require a combined spatial neighborhood graph from the dif-
ferent samples, where the different samples would be disconnected components of the graph. This
combined adjacency matrix can be used in MULTISPATI PCA.

Usage

multi_listw2sparse(listws)

Arguments

listws A list of 1istw objects.

Value

A sparse dgCMatrix of the combined spatial neighborhood graph, with the original spatial neigh-
borhood graphs of the samples on the diagonal. When the input is an SFE object, the rows and
columns will match the column names of the SFE object.

Examples

example code

read10xVisiumSFE 57

read10xVisiumSFE Read 10X Visium data as SpatialFeatureExperiment

Description

Read Space Ranger output from Visium vl (not HD) as a SpatialFeatureExperiment object, where
spots are represented with polygons in the colGeometry called "spotPoly". Other geometries can be
added later after the dataset is read. If data = "filtered”, then spatial neighborhood graphs of the
spots are also computed and stored in the colGraph called "visium" in all samples for downstream
spatial analyses.

Usage

read10xVisiumSFE (
samples = deprecated(),
dirs = NULL,
sample_id = paste@("sample”, sprintf("%02d", seq_along(dirs))),
type = c("HDF5", "sparse"),
data = c("filtered”, "raw"),

images = c("lowres”, "hires"),
unit = c("full_res_image_pixel”, "micron”),
style = "W",
zero.policy = NULL,
row.names = c("id"”, "symbol"),
flip = c("geometry”, "image", "none"),
read_spatial_enrichment = TRUE
)
Arguments
samples A character vector containing one or more directory names, each corresponding
to a 10X sample. Each directory should contain a matrix file, a gene/feature
annotation file, and a barcode annotation file.
Alternatively, each string may contain a path to a HDFS5 file in the sparse ma-
trix format generated by 10X. These can be mixed with directory names when
type="auto".
Alternatively, each string may contain a prefix of names for the three-file system
described above, where the rest of the name of each file follows the standard
10X output.
dirs Directory for each sample that contains the spatial and raw/filtered_featues_bc_matrix
directories.
sample_id Which sample(s) in the SFE object to use for the graph. Can also be "all", which
means this function will compute the graph for all samples independently.
type Either "HDF5", and the matrix will be represented as TENxMatrix, or "sparse",
and the matrix will be read as a dgCMatrix.
data character string specifying whether to read in filtered (spots mapped to tissue)
or raw data (all spots).
images character vector specifying which images to include. Valid values are "lowres”,

"hires"”, "fullres”, "detected”, "aligned”

58

unit

style

zero.policy

row.names

flip

readl0x VisiumSFE

Whether to use pixels in full resolution image or microns as the unit. If using
microns, then spacing between spots in pixels will be used to convert the coor-
dinates into microns, as the spacing is known to be 100 microns. This is used to
plot scale bar.

style can take values “W”, “B”, “C”, “U”, “minmax” and “S”

default NULL, use global option value; if FALSE stop with error for any empty
neighbour sets, if TRUE permit the weights list to be formed with zero-length
weights vectors

String specifying whether to use Ensembl IDs ("ID") or gene symbols ("Sym-
bol") as row names. For symbols, the Ensembl ID will be appended to disam-
biguate rows where the same symbol corresponds to multiple Ensembl IDs.

Whether to flip the geometries or the images, because in sf and terra, the
geometries use the Cartesian coordinates greater y coordinates going up, while
in images, greater y values go down. Originally the Visium spots are in pixels
in full res image. Either the image or the geometry needs to be flipped for them
match in the Cartesian coordinate system.

read_spatial_enrichment

sample

Value

Logical, whether to read the ‘spatial_enrichment.csv* file from Visium output if
the file is present and add its contents to ‘rowData‘.

Deprecated, use the dirs argument instead.

A SpatialFeatureExperiment object. The images might need to be manually transposed and/or mir-
rored to match the spots in this version of this package.

Note

It is assumed that the images have not been cropped. Otherwise the images might not align with the

spots.

Examples

dir <- system.file("extdata", package = "SpatialFeatureExperiment")

sample_ids <- c("sample@1”, "sample@2")
samples <- file.path(dir, sample_ids, "outs")

list.files(samples[1])

list.files(file.path(samples[1], "spatial”))

(sfe <- read10xVisiumSFE(dirs = samples, sample_id = sample_ids,
type = "sparse”, data = "filtered”

)

readCosMX

59

readCosMX

Read CosMX data into SFE

Description

This function reads the standard CosMX output into an SFE object, as in "Basic Data Files" on the
Nanostring website. For new version of CosMX, these files are the flat files in the AtoMX output.

Usage

readCosMX(
data_dir,
z = "all",

sample_id = "sample@1”,
min_area = NULL,

add_molecules

= FALSE,

split_cell_comps = FALSE,
BPPARAM = SerialParam(),

file_out
z_option

Arguments

data_dir
z

sample_id

min_area

add_molecules

file.path(data_dir, "tx_spots.parquet”),
C("3d”, ”Split”)

Top level output directory.
Integer z index or "all" to indicate which z-planes to read for the transcript spots.

A character sample identifier, which matches the sample_id in imgData. The
sample_id will also be stored in a new column in colData, if not already
present. Default = sample@1.

Minimum cell area in square microns or pixel units (eg for CosMX). Anything
smaller will be considered artifact or debris and removed. Default to ‘NULL",
ie no filtering of polygons.

Logical, whether to add transcripts coordinates to an object.

split_cell_comps

BPPARAM

file_out

Logical, whether to split transcript spot geometries by cell compartment. Only
relevant when ‘add_molecules = TRUE".

A BiocParallelParam object specifying parallel processing backend and num-
ber of threads to use for parallelizable tasks:

1. To load cell segmentation from HDF?5 files from different fields of view
(FOVs) with multiple cores. A progress bar can be configured in the BiocParallelParam
object. When there are numerous FOVs, reading in the geometries can be
time consuming, so we recommend using a server and larger number of
threads. This argument is not used if use_cellpose = TRUE and the par-
quet file is present.
2. To get the largest piece and see if it’s larger than min_area when there are
multiple pieces in the cell segmentation for one cell.

Name of file to save the geometry or raster to disk. Especially when the ge-
ometries are so large that it’s unwieldy to load everything into memory. If this

60 readSelectTx

file (or directory for multiple files) already exists, then the existing file(s) will
be read, skipping the processing. When writing the file, extensions supplied are
ignored and extensions are determined based on ‘dest".

z_option What to do with z coordinates. "3d" is to construct 3D geometries. "split" is to
create a separate 2D geometry for each z-plane so geometric operations are fully
supported but some data wrangling is required to perform 3D analyses. When
the z coordinates are not integers, 3D geometries will always be constructed
since there are no z-planes to speak of. This argument does not apply when
‘spatialCoordsNames* has length 2.

Value

An SFE object. Cell polygons are written to ‘cell_boundaries_sf.parquet in ‘data_dir‘. If reading
transcript spots (‘add_molecules = TRUE®), then the reformatted transcript spots are saved to file
specified in the ‘file_out‘ argument, which is by default ‘tx_spots.parquet’ in the same directory as
the rest of the data.

Examples

fp <- tempfile()

dir_use <- SFEData::CosMXOutput(file_path = fp)

sfe <- readCosMX(dir_use, z = "all”, add_molecules = TRUE)
Clean up

unlink(dir_use, recursive = TRUE)

readSelectTx Read transcript spots of select genes

Description

I speculate that in practice, the most common use of the transcript spots is visualization, and only
a few genes can be visualized at a time or the spots will overcrowd. Then it doesn’t make sense to
load the transcript spots of all genes into memory as they can take up a lot of memory. The function
readSelectTx reads transcript spots of select genes into R, and the function addSelectTx adds
them to rowGeometries of the SFE object.

Usage

readSelectTx(file, gene_select, z = "all", z_option = c("3d", "split"))

addSelectTx(
sfe,
file,
gene_select,
sample_id = 1L,
z = "all",
z_option = c("3d", "split"),
swap_rownames = NULL

readSelectTx

Arguments

file

gene_select

z_option

sfe

sary).

If specified, then return = TRUE.

Index of z plane to read. Can be "all" to read all z-planes into MULTIPOINT
geometries with XYZ coordinates. If z values are not integer, then spots with all

z values will be read.

‘spatialCoordsNames* has length 2.

A ‘SpatialFeatureExperiment® object.

sample_id Which sample in the SFE object the transcript spots should be added to.

swap_rownames

Value

When there are multipel parquet files to be read, a list of sf data frames with MULTIPOINT geom-
etry for genes selected. When there is only one file, then one sf data frame. For addSelectTx, an

spot MULTIPOINT geometry to rows of sfe.

SFE object with the transcript spots of the selected genes added.

Note

The GDAL Parquet driver is required for this function, though not for other functions that work
with GeoParquet files. GDAL Parquet driver has been supported since GDAL 3.5.0, but is not part
of the default installation. The z and z_option arguments are there since the file names contain

z-plane information when relevant. See the GDAL documentation page for the Parquet driver.

Examples

library(SFEData)
if (gdalParquetAvailable()) {

fp <- tempfile()

dir_use <- XeniumOutput("v2", file_path = fp)

fn_tx <- formatTxTech(dir_use, tech = "Xenium", flip = TRUE, return = FALSE,
file_out = file.path(dir_use, "tx_spots.parquet”))

gene_select <- c("ACE2", "BMX")

df <- readSelectTx(fn_tx, gene_select)

RBioFormats null pointer error the first time

try(sfe <- readXenium(dir_use))

sfe <- readXenium(dir_use)

sfe <- addSelectTx(sfe, fn_tx, head(rownames(sfe), 5), swap_rownames = "Symbol")

unlink(dir_use, recursive = TRUE)

File path of a GeoParquet file (e.g. already reformatted with the formatTxSpots
or addTxSpots function, should have already flipped to match image if neces-

Character vector of a subset of genes. If NULL, then all genes that have transcript
spots are added. Only relevant when reading data from formatted files on disk.

What to do with z coordinates. "3d" is to construct 3D geometries. "split" is to
create a separate 2D geometry for each z-plane so geometric operations are fully
supported but some data wrangling is required to perform 3D analyses. When
the z coordinates are not integers, 3D geometries will always be constructed
since there are no z-planes to speak of. This argument does not apply when

Name of a column in rowData(sfe) to use as gene identifiers in place of the
actual row names. In some cases this may be needed to match each transcript

https://gdal.org/drivers/vector/parquet.html

62

readVisiumHD

readVisiumHD Read Visium HD data

Description

Usage

This function reads Visium HD Space Ranger output into R.

readVisiumHD(

data_dir,

bin_size = c(2L, 8L, 16L),
sample_id = NULL,

type = c("HDF5", "sparse"),
data = c("filtered”, "raw"),

images = c("lowres”, "hires"),

unit = c("full_res_image_pixel”, "micron”),
style = "W",

zero.policy = NULL,

row.names = c("id"”, "symbol"),

flip = c("geometry”, "image"),
add_graph = FALSE,
rotate = FALSE

Arguments

data_dir Directory

bin_size One or more resolutions to load, must be 2, 8, or 16. Can be either integer or
character.

sample_id Which sample(s) in the SFE object to use for the graph. Can also be "all", which
means this function will compute the graph for all samples independently.

type Either "HDF5", and the matrix will be represented as TENxMatrix, or "sparse",
and the matrix will be read as a dgCMatrix.

data character string specifying whether to read in filtered (spots mapped to tissue)
or raw data (all spots).

images character vector specifying which images to include. Valid values are "lowres”
"hires"”, "fullres”, "detected”, "aligned”

unit Whether to use pixels in full resolution image or microns as the unit. If using
microns, then spacing between spots in pixels will be used to convert the coor-
dinates into microns, as the spacing is known to be 100 microns. This is used to
plot scale bar.

style style can take values “W”, “B”, “C”, “U”, “minmax” and “S”

zero.policy

row.names

default NULL, use global option value; if FALSE stop with error for any empty

neighbour sets, if TRUE permit the weights list to be formed with zero-length

weights vectors

String specifying whether to use Ensembl IDs ("ID") or gene symbols ("Sym-

bol") as row names. For symbols, the Ensembl ID will be appended to disam-
biguate rows where the same symbol corresponds to multiple Ensembl IDs.

readVizgen 63

flip Whether to flip the geometries or the images, because in sf and terra, the
geometries use the Cartesian coordinates greater y coordinates going up, while
in images, greater y values go down. Originally the Visium spots are in pixels
in full res image. Either the image or the geometry needs to be flipped for them
match in the Cartesian coordinate system.

add_graph c(local), if to add spatial neighborhood graph for spots and only if c(data =
"filtered"). Default is c(TRUE). This is optional because for larger datasets,
the graph can take a while to compute.

rotate Logical, whether to rotate the geometry, because usually the grid of spots is
slightly, but just very slightly, rotated from the perfect horizontal line. The spots
can be rotated so the square polygons are more accurate, because for computa-
tional efficiency, st_buffer is used to create the polygons which are not rotated.
This is optional because the rotation is very slight.

Value

An SFE object if ‘length(bin_size) == 1L*, otherwise a list of SFE objects each element of which is
for one bin size. They’re not concatenated since it might not make sense to perform joint analyses
on the different resolutions that benefit from having them in the same SFE object, unlike different
biological replica. Here unlike in read10xVisiumSFE, the centroids geometry is also added be-
cause it will greatly facilitate plotting when there are many spots when not zooming in. See the
scattermore argument in plotSpatialFeature.

Examples

#

readVizgen Read Vizgen MERFISH output as SpatialFeatureExperiment

Description

This function reads the standard Vizgen MERFISH output into an SFE object. The coordinates
are in microns. Cell centroids are read into colGeometry "centroids", and cell segmentations are
read into colGeometry "cellSeg". The image(s) (polyT, DAPI, and cell boundaries) are also read
as SpatRaster objects so they are not loaded into memory unless necessary. Because the image’s
origin is the top left while the geometry’s origin is bottom left, either the image or the geometry
needs to be flipped. Because the image accompanying MERFISH datasets are usually very large,
the coordinates will be flipped so the flipping operation won’t load the entire image into memory.
Large datasets with hundreds of thousands of cells can take a while to read if reading transcript
spots as it takes a while to convert the spots to MULTIPOINT geometries.

Usage

readVizgen(
data_dir,
z = "all",
sample_id = "sample@l”,
min_area = NULL,
image = c("DAPI", "PolyT"”, "Cellbound"),
flip = c("geometry”, "image"”, "none"),

64

readVizgen

max_flip = "50 MB",
filter_counts = FALSE,

add_molecules

= FALSE,

use_bboxes = FALSE,

use_cellpose

= TRUE,

BPPARAM = SerialParam(),
file_out = file.path(data_dir, "detected_transcripts.parquet”),

z_option =

Arguments

data_dir

z

sample_id

min_area

image

flip

max_flip

filter_counts
add_molecules

use_bboxes

use_cellpose

BPPARAM

C(”3d”, Hsplitn)

Top level output directory.

Integer, z index to read, or "all", indicating z-planes of the images and transcript
spots to read. While cell segmentation seems to have multiple z-planes, the
segmentation in all z-planes are the same so in effect the cell segmentatio is
only in 2D.

A character sample identifier, which matches the sample_id in imgData. The
sample_id will also be stored in a new column in colData, if not already
present. Default = sample@1.

Minimum cell area in square microns or pixel units (eg for CosMX). Anything
smaller will be considered artifact or debris and removed. Default to ‘NULL",
ie no filtering of polygons.

Which image(s) to load, can be "DAPI", "PolyT", "Cellbound" or any combina-
tion of them.

To flip the image, geometry coordinates, or none. Because the image has the
origin at the top left while the geometry has origin at the bottom left, one of
them needs to be flipped for them to match. If one of them is already flipped,
then use "none". The image will not be flipped if it’s GeoTIFF.

Maximum size of the image allowed to flip the image. Because the image will
be loaded into memory to be flipped. If the image is larger than this size then
the coordinates will be flipped instead.

Logical, whether to keep cells with counts > @.
Logical, whether to add transcripts coordinates to an object.

If no segmentation output is present, use cell_metadata to make bounding
boxes instead.

Whether to read the parquet files from CellPose cell segmentation. If FALSE,
cell segmentation will be read from the HDF5 files. Note that reading HDF5
files for numerous FOVs is very slow.

A BiocParallelParam object specifying parallel processing backend and num-
ber of threads to use for parallelizable tasks:

1. To load cell segmentation from HDF?5 files from different fields of view

(FOVs) with multiple cores. A progress bar can be configured in the BiocParallelParam

object. When there are numerous FOVs, reading in the geometries can be
time consuming, so we recommend using a server and larger number of
threads. This argument is not used if use_cellpose = TRUE and the par-
quet file is present.

2. To get the largest piece and see if it’s larger than min_area when there are
multiple pieces in the cell segmentation for one cell.

readXenium 65

file_out Name of file to save the geometry or raster to disk. Especially when the ge-
ometries are so large that it’s unwieldy to load everything into memory. If this
file (or directory for multiple files) already exists, then the existing file(s) will
be read, skipping the processing. When writing the file, extensions supplied are
ignored and extensions are determined based on ‘dest".

z_option What to do with z coordinates. "3d" is to construct 3D geometries. "split" is to
create a separate 2D geometry for each z-plane so geometric operations are fully
supported but some data wrangling is required to perform 3D analyses. When
the z coordinates are not integers, 3D geometries will always be constructed
since there are no z-planes to speak of. This argument does not apply when
‘spatialCoordsNames* has length 2.

Value

A SpatialFeatureExperiment object.

Note

Since the transcript spots file is often very large, we recommend only using add_molecules = TRUE
on servers with a lot of memory. If reading all z-planes, conversion of transcript spot geometry to
parquet file might fail due to arrow data length limit. In a future version, when the transcript spot
geometry is large, it will be written to multiple separate parquet files which are then concatenated
with DuckDB. Also, in a future version, the transcript spot processing function might be rewritten
in C++ to stream the original CSV file so it’s not entirely loaded into memory.

Examples

fp <~ tempfile()

dir_use <- SFEData::VizgenOutput(file_path = fp)
sfe <- readVizgen(dir_use, z = 3L, image = "PolyT",
flip = "geometry")

Filtering of counts, and addition of molecule coordinates..
sfe <- readVizgen(dir_use, z = 3L, image = "PolyT", filter_counts = TRUE,

add_molecules = TRUE, flip = "geometry")

unlink(dir_use, recursive = TRUE)

readXenium Read 10X Xenium output as SpatialFeatureExperiment

Description

This function reads the standard 10X Xenium output into an SFE object.

Usage

readXenium(
data_dir,
sample_id = "sample@1”,
min_area = NULL,
image = c("morphology_focus”, "morphology_mip"),

66 readXenium
segmentations = c("cell”, "nucleus"),
row.names = c("id", "symbol"),
flip = c("geometry”, "image", "none"),
max_flip = "50 MB",
filter_counts = FALSE,
add_molecules = FALSE,
min_phred = 20,
BPPARAM = SerialParam(),
file_out = file.path(data_dir, "tx_spots.parquet”)
)
Arguments
data_dir Top level output directory.
sample_id A character sample identifier, which matches the sample_id in imgData. The
sample_id will also be stored in a new column in colData, if not already
present. Default = sample@1.
min_area Minimum cell area in square microns or pixel units (eg for CosMX). Anything
smaller will be considered artifact or debris and removed. Default to ‘NULL®,
ie no filtering of polygons.
image Which image(s) to load, can be "morphology_mip", "morphology_focus" or
both. Note that in Xenium Onboarding Analysis (XOA) v2, there is no longer
"morphology_mip" and "morphology_focus" is a directory with 4 images corre-
sponding to 4 channels: DAPI, "Cadherin", 18S, and Vimentin. So this argument
is ignored for XOA v2.
segmentations Which segmentation outputs to read, can be "cell", "nucleus", or both.
row.names String specifying whether to use Ensembl IDs ("id") or gene symbols ("sym-
bol") as row names. If using symbols, the Ensembl ID will be appended to
disambiguate in case the same symbol corresponds to multiple Ensembl IDs.
Always "symbol" if ‘add_molecules = TRUE® because only gene symbols are
used in the transcript spot files.
flip To flip the image, geometry coordinates, or none. Because the image has the
origin at the top left while the geometry has origin at the bottom left, one of
them needs to be flipped for them to match. If one of them is already flipped,
then use "none". The image will not be flipped if it’s GeoTIFF.
max_flip Maximum size of the image allowed to flip the image. Because the image will

filter_counts
add_molecules

min_phred

BPPARAM

be loaded into memory to be flipped. If the image is larger than this size then
the coordinates will be flipped instead.

Logical, whether to keep cells with counts > .
Logical, whether to add transcripts coordinates to an object.

Minimum Phred score to keep spot. By default 20, the conventional threshold
indicating "acceptable”, meaning that there’s 1 chance that the spot was decoded
in error.

A BiocParallelParam object specifying parallel processing backend and num-
ber of threads to use for parallelizable tasks:

1. To load cell segmentation from HDF?5 files from different fields of view

(FOVs) with multiple cores. A progress bar can be configured in the BiocParallelParam

object. When there are numerous FOVs, reading in the geometries can be
time consuming, so we recommend using a server and larger number of

reexports 67

threads. This argument is not used if use_cellpose = TRUE and the par-
quet file is present.

2. To get the largest piece and see if it’s larger than min_area when there are
multiple pieces in the cell segmentation for one cell.

file_out Name of file to save the geometry or raster to disk. Especially when the ge-
ometries are so large that it’s unwieldy to load everything into memory. If this
file (or directory for multiple files) already exists, then the existing file(s) will
be read, skipping the processing. When writing the file, extensions supplied are
ignored and extensions are determined based on ‘dest".

Value

An SFE object. If reading segmentations, the cell or nuclei segmentation will be saved to ‘cell_boundaries_sf.parquet*
and ‘nucleus_boundaries_sf.parquet respectively in ‘data.dir‘ so next time the boundaries can be

read much more quickly. If reading transcript spots (‘add_molecules = TRUE®), then the refor-

matted transcript spots are saved to file specified in the ‘file_out‘ argument, which is by default
‘tx_spots.parquet‘ in the same directory as the rest of the data. If images are present, then the im-

ages will be of the BioFormatsImage class and not loaded into memory until necessary in later

operations.

Note

Sometimes when reading images, you will see this error the first time: ’java.lang.NullPointerException:
Cannot invoke "loci.formats.DimensionSwapper.setMetadataFiltered(boolean)" because "RBioFor-
mats.reader" is null’. See this issue https://github.com/aoles/RBioFormats/issues/42 Rerun the code
and it should work the second time.

Examples

library(SFEData)

library(RBioFormats)

fp <- tempfile()

dir_use <- XeniumOutput("v2", file_path = fp)

RBioFormats issue

try(sfe <- readXenium(dir_use, add_molecules = TRUE))
sfe <- readXenium(dir_use, add_molecules = TRUE)
unlink(dir_use, recursive = TRUE)

reexports Functions re-exported from other packages

Description

These are some commonly used getters and setters of classes that SFE inherits so you don’t have to
separately attach those packages to use these functions.

Usage

colData(x, ...)

rowData(x, use.names = TRUE, ...)

68 removeEmptySpace
colData(x, ...) <- value
spatialCoords(x, ...)
spatialCoords(x) <- value
spatialCoordsNames(x)
getImg(x, ...)
imgData(x)
rmvImg(x, ...)
counts(object, ...)
logcounts(object, ...)
reducedDim(x, type, ...)
Arguments
X A SummarizedExperiment object or derivative.
For assay, arguments in . . . are forwarded to assays.
For rbind, cbind, . .. contains SummarizedExperiment objects (or derivatives)
to be combined.
For other accessors, ignored.
use.names For rowData: Like mcols(x), by default rowData(x) propagates the rownames
of x to the returned DataFrame object (note that for a SummarizedExperiment
object or derivative, the rownames are also the names i.e. rownames(x) is al-
ways the same as names(x)). Setting use.names=FALSE suppresses this prop-
agation i.e. it returns a DataFrame object with no rownames. Use this when
rowData(x) fails, which can happen when the rownames contain NAs (because
the rownames of a SummarizedExperiment object or derivative can contain NAs,
but the rownames of a DataFrame object cannot).
For combineRows and combineCols: See Combining section below.
value An object of a class specified in the S4 method signature or as outlined in ‘De-
tails’.
object A SingleCellExperiment object, which includes SFE.
type Name or numeric index to indicate which reducedDim to get, such as "PCA".
By default the first item in reducedDims.
removeEmptySpace Remove empty space
Description

For each sample independently, all geometries and spatialCoords are translated so the origin is at
the minimum coordinates of the bounding box of all geometries of the sample. This way coordinates
of different samples will be more comparable. This removes empty space in the images if present.

rotateImg 69

Usage

removeEmptySpace(sfe, sample_id = "all")

Arguments

sfe An SFE object.

sample_id Sample to remove empty space.
Value

An SFE object with empty space removed.

Note

Unlike other functions in this package, this function operates on all samples by default.

Examples

library(SFEData)
library(SingleCellExperiment)

sfe <- McKellarMuscleData("full")

Only keep spots on tissue

sfe <- sfe[, colData(sfe)$in_tissue]
Move the coordinates of the tissue
sfe <- removeEmptySpace(sfe)

rotateImg Rotate image

Description

As in SpatialExperiment, rotation here must be a multiple of 90 degrees.

Usage

S4 method for signature 'SpatRasterImage'’
rotateImg(x, degrees, maxcell = 1e+07, ...)

S4 method for signature 'BioFormatsImage'’
rotateImg(x, degrees, ...)

S4 method for signature 'ExtImage'

rotateImg(x, degrees, ...)
Arguments
X An object of class xImage as implemented in this package.
degrees How many degrees to rotate. Positive number means clockwise and negative

number means counterclockwise.

70 rowGeometries

maxcell Max number of pixels to load SpatRasterImage into memory. The default
1e7 is chosen because this is the approximate number of pixels in the medium
resolution image at resolution = 4L in Xenium OME-TIFF to make different
methods of this function consistent.

Ignored. It’s there so different methods can all be passed to the same lapply in
the method for SFE objects. Some methods have extra arguments.

Value

SpatRasterImage will be loaded into memory and converted to ExtImage. Otherwise *Image
object of the same class.

See Also

Other image methods: SFE-image, affineImg(), cropImg(), dim,BioFormatsImage-method,
dim,ExtImage-method, ext(), imgRaster(), imgSource(),mirrorIimg(), scaleImg(), translateImg(),
transposeImg()

rowGeometries Row geometry getters and setters

Description

rowGeometries are geometries that corresponding to rows of the gene count matrix, such as sm-
FISH transcript spots. The txSpots() function is a convenience wrapper for transcript spots, al-
though this entirely depends on the rowGeometry being named txSpots.

Usage

rowGeometry(x, type = 1L, sample_id = 1L, withDimnames = TRUE)

rowGeometry(
X,
type = 1L,

sample_id = 1L,
withDimnames = TRUE,
partial = FALSE,
translate = TRUE

) <- value

rowGeometries(x, sample_id = "all”, withDimnames = TRUE)

rowGeometries(
X,
sample_id = "all”,
withDimnames = TRUE,
partial = FALSE,
translate = TRUE

) <- value

rowGeometryNames (x)

rowGeometries 71

rowGeometryNames(x) <- value
txSpots(x, sample_id = 1L, withDimnames = TRUE)

txSpots(
X,
sample_id = 1L,
withDimnames = TRUE,
partial = FALSE,
translate = TRUE

) <- value
Arguments
X A SpatialFeatureExperiment object.
type An integer specifying the index or string specifying the name of the *Geometry
to query or replace. If missing, then the first item in the *Geometries will be
returned or replaced.
sample_id Sample ID to get or set geometries.

withDimnames Logical. If TRUE, then the dimnames (colnames or rownames) of the gene count
matrix should correspond to row names of the sf data frames of interest.

partial In setters, if a rowGeometry of the same name exists, whether to only replace
the rows present in value.

translate Logical. Only used if removeEmptySpace has been run of the SFE object. If
that’s the case, this argument indicates whether the new value to be assigned to
the geometry is in the coordinates prior to removal of empty space so it should
be translated to match the new coordinates after removing empty space. Default
to TRUE.

value Value to set. For dimGeometry, must be a sf data frame with the same number
of rows as size in the dimension of interest, or an ordinary data frame that can
be converted to such a sf data frame (see df2sf). For dimGeometries, must be
a list of such sf or ordinary data frames.

Details

When there are multiple samples in the SFE object, rowGeometries for each sample has the
sample_id appended to the name of the geometry. For example, if the name is txSpots and the
sample ID is sample@1, then the actual name of the rowGeometry is txSpots_sample@1. In the
getter, one can still specify rowGeometry(sfe, "txSpots”, sample_id = "sample@1").

Appending the sample_id is unnecessary when there is only one sample, but sample_id will be
appended when to SFE objects are combined with cbind. It is necessary to distinguish bewteen
different samples because they can have overlapping coordinate values.

See Also

[dimGeometries()], [colGeometries()]

72 saveRDS, SpatialFeatureExperiment-method

Examples

library(SFEData)

library(RBioFormats)

fp <- tempfile()

dir_use <- XeniumOutput("v2", file_path = fp)

RBioFormats issue

try(sfe <- readXenium(dir_use, add_molecules = TRUE))
sfe <- readXenium(dir_use, add_molecules = TRUE)
rowGeometries(sfe)

rowGeometryNames (sfe)

tx <- rowGeometry(sfe, "txSpots")

txSpots(sfe)

unlink(dir_use, recursive = TRUE)

samplelDs Get all unique sample IDs

Description

The title is self-explanatory.

Usage
sampleIDs(sfe)

Arguments

sfe A SpatialFeatureExperiment object.

Value

A character vector of all unique entries of the sample_id column in colData(x).

Examples

library(SFEData)
sfe <- McKellarMuscleData(dataset = "small")
sampleIDs(sfe)

saveRDS, SpatialFeatureExperiment-method
Save SpatialFeatureExperiment as RDS file

Description

Saving SFE objects as RDS files is complicated by the SpatRaster class of the images. If present,
the images need to be wrapped with the wrap function in terra before serializing the SFE object.
Otherwise the images will be invalid pointers when the RDS is reloaded. If the image does not fit in
memory and its file source is unknown, then it will be written to a temporary file, which is reloaded
when the RDS file is loaded. When an SFE object with images is read from an RDS file, the images
will not be unwrapped until necessary.

scalelmg 73

Usage

S4 method for signature 'SpatialFeatureExperiment'’
saveRDS(

object,

file = "",

ascii = FALSE,

version = NULL,

compress = TRUE,

refhook = NULL

)
Arguments
object A SpatialFeatureExperiment object.
file a connection or the path name of the file where the R object is saved to or read
from.
ascii a logical. If TRUE or NA, an ASCII representation is written; otherwise (default),
a binary one is used. See the comments in the help for save.
version the workspace format version to use. NULL specifies the current default version
(3). The only other supported value is 2, the default from R 1.4.0 to R 3.5.0.
compress a logical specifying whether saving to a named file is to use "gzip" compres-
sion, or one of "gzip", "bzip2"”, "xz" or "zstd" to indicate the type of com-
pression to be used. Ignored if file is a connection.
refhook a hook function for handling reference objects.
Value
Invisibly NULL.
Examples
outdir <- system.file("extdata”, package = "SpatialFeatureExperiment")

samples <- file.path(outdir, paste@("sample@”, 1:2))

sfe <- read10xVisiumSFE(samples, type = "sparse”, data = "filtered")
saveRDS(sfe, "foo.rds")

Clean up

file.remove("foo.rds")

scalelmg Scale image

Description

This function scales the image about its center. After scaling, the center of the image is not shifted.

Usage

S4 method for signature 'AlignedSpatiallmage'’
scaleImg(x, factor, ...)

S4 method for signature 'BioFormatsImage'’
scaleImg(x, factor, ...)

74 SFE-image

Arguments
X An object of class xImage as implemented in this package.
factor Numeric, scaling factor.
Ignored. It’s there so different methods can all be passed to the same lapply in
the method for SFE objects. Some methods have extra arguments.
Value

A *Image object of the same class that has been scaled. Behind the scene, it’s only the extent that
has been changed and the images are not changed. The center of the image is unchanged.

See Also

Other image methods: SFE-image, affineImg(), cropImg(), dim,BioFormatsImage-method,
dim,ExtImage-method, ext(), imgRaster(), imgSource(),mirrorImg(), rotateImg(), translateImg(),
transposeImg()

SFE-image Methods for handling image-related data

Description

Generics of these functions are defined in SpatialExperiment, except for transposeImg. These
SFE methods cater to the new image-related classes in SFE. The SPE method for getImg, rmvImg,
and imgRaster don’t need to be modified for SFE and are hence not implemented here, but are
simply re-exported.

Usage

S4 method for signature 'SpatialFeatureExperiment'’
addImg(x, imageSource, sample_id = 1L, image_id, extent = NULL, scale_fct = 1)

S4 method for signature 'SpatialFeatureExperiment'’
transposeImg(

X,

sample_id = 1L,

image_id = NULL,

maxcell = 1e+0@7,

filename = ""

)

S4 method for signature 'SpatialFeatureExperiment'’
mirrorImg(

X,

sample_id = 1L,

image_id = NULL,

direction = "vertical”,
maxcell = 1e+0@7,
filename = ""

SFE-image

75

S4 method for signature 'SpatialFeatureExperiment'’
rotateImg(x, sample_id = 1L, image_id = NULL, degrees, maxcell = 1e+07)

S4 method for signature 'SpatialFeatureExperiment'’
translateImg(x, sample_id = 1L, image_id = NULL, v)

S4 method for signature 'SpatialFeatureExperiment'’
scaleImg(x, sample_id = 1L, image_id = NULL, factor)

S4 method for signature 'SpatialFeatureExperiment'’
affineImg(x, sample_id = 1L, image_id = NULL, M, v)

Arguments

X

imageSource

sample_id

image_id

extent

scale_fct

maxcell

filename

direction

degrees

factor

Details

A SFE object.

a character string specifying an image file name (.png, .jpg or .tif) or URL to
source the image from

Which sample the image is associated with. Use sampleIDs to get sample IDs
present in the SFE object.

Image ID, such as "lowres" and "hires" for Visium data and "DAPI" and "PolyT"
for Vizgen MERFISH data.

A numeric vector of length 4 with names of the set xmin, ymin, xmax, and
ymax, specifying the extent of the image.

Scale factor — multiply pixel coordinates in full resolution image by this scale
factor should yield pixel coordinates in a different resolution. extent takes
precedence over scale_fct.

Max number of pixels to load SpatRasterImage into memory. The default
le7 is chosen because this is the approximate number of pixels in the medium
resolution image at resolution = 4L in Xenium OME-TIFF to make different
methods of this function consistent.

character. Output filename

character. Should (partially) match "vertical" to flip by rows, or "horizontal" to
flip by columns

How many degrees to rotate. Positive number means clockwise and negative
number means counterclockwise.

A numeric vector of length 2 specifying the vector in the xy plane to translate
the SFE object.

Numeric, scaling factor.

A 2x2 numeric matrix for the linear transformation in the xy plane.

Method of transposeImg, mirrorImg, and rotateImg perform the method on all images within
the SFE object that are specified with sample_id and image_id. For images that are not loaded
into memory, rotateImg will load SpatRasterImage into memory and all image operations except
translate will load BioFormatsImage into memory.

76 SFE-transform

Note

If the image is already a GeoTIFF file that already has an extent, then the extent associated with the
file will be honored and the extent and scale_fct arguments are ignored. Transposing the image
is just like transposing a matrix. It’s flipped about the line going from the top left to the bottom
right.

See Also

Other image methods: affineImg(), cropImg(), dim,BioFormatsImage-method, dim,ExtImage-method,
ext(), imgRaster(), imgSource(),mirrorImg(), rotateImg(), scaleImg(), translateImg(),
transposeImg()

Examples

library(SFEData)
sfe <- McKellarMuscleData("small")
img_path <- system.file(file.path("extdata”, "sample@1”, "outs"”, "spatial”,

"tissue_lowres_image.png"), package = "SpatialFeatureExperiment”)
sfe <- addImg(sfe, img_path, sample_id = "Vis5A", image_id = "lowres"”, scale_fct =
0.023)

img <- getImg(sfe)

SpatRasterImage method
img_t <- transposeImg(img)
SFE method

sfe <- transposeImg(sfe, sample_id = "Vis5A”, image_id = "lowres")
SFE-transform Affine transfortaion of SFE object in histological space
Description

These functions perform affine transformations on SFE objects, including all geometries and im-
ages. The transformation is performed on each sample as a whole. This differs from functions such
as mirrorImg in that mirrorImg and rotatelImg transform the image with the center at the center
of the image itself. In contrast, the center of transformation here is the center of the bounding box
of the entire sample, including images.

Usage
transpose(sfe, sample_id = "all”, maxcell = NULL, filename = "")
mirror(
sfe,
sample_id = "all",
direction = c("vertical”, "horizontal”),
maxcell = NULL,
filename = ""
)
rotate(sfe, sample_id = "all"”, degrees, maxcell = 1e+07)

translate(sfe, sample_id = "all", v)

show,SpatialFeatureExperiment-method 77

scale(sfe, sample_id = "all", factor)

affine(sfe, sample_id = "all”, M, v, maxcell = 1e+07)

Arguments

sfe
sample_id

maxcell

filename

direction

degrees

v
factor

M

Details

An SFE object.
Sample(s) to transform.

Rotating SpatRasterImage will convert it into ExtImage, loading the image
into memory. This argument specifies the maximum number of pixels in the
image loaded into memory. The image will be down sampled to approximately
this number of pixels.

character. Output filename

character. Should (partially) match "vertical" to flip by rows, or "horizontal" to
flip by columns

How many degrees to rotate. Positive number means clockwise and negative
number means counterclockwise.

Vector to spatially translate the SFE object.
Numeric, scaling factor.

A 2x2 numeric matrix for the linear transformation in the xy plane.

For images that are not loaded into memory, rotateImg will load SpatRasterImage into memory
and all image operations except translate will load BioFormatsImage into memory.

Value

An SFE object with the sample(s) transformed.

Examples

library(SFEData)

sfe <- McKellarMuscleData("”small")
sfe2 <- transpose(sfe)
sfe3 <- mirror(sfe)

show, SpatialFeatureExperiment-method

Print method for SpatialFeatureExperiment

Description

Printing summaries of colGeometries, rowGeometries, and annotGeometries in addition to
what’s shown for SpatialExperiment. Geometry names and types are printed.

78 SpatialFeatureExperiment

Usage

S4 method for signature 'SpatialFeatureExperiment'’
show(object)

Arguments

object A SpatialFeatureExperiment object.

Value

None (invisible NULL).

Examples

library(SFEData)
sfe <- McKellarMuscleData(dataset = "small")
sfe # The show method is implicitly called

SpatialFeatureExperiment
Constructor of SpatialFeatureExperiment object

Description

Create a SpatialFeatureExperiment object.

Usage

SpatialFeatureExperiment(
assays,
colData = DataFrame(),
rowData = NULL,
sample_id = "sample@l1”,
spatialCoordsNames = c("x", "y"),
spatialCoords = NULL,
colGeometries = NULL,
rowGeometries = NULL,
annotGeometries = NULL,
spotDiameter = NA_real_,
annotGeometryType = "POLYGON",
spatialGraphs = NULL,
unit = c("full_res_image_pixel”, "micron”),

SpatialFeatureExperiment 79

Arguments

assays A list or SimplelList of matrix-like elements, or a matrix-like object (e.g. an
ordinary matrix, a data frame, a DataFrame object from the S4Vectors pack-
age, a SparseMatrix derivative from the SparseArray package, a sparseMa-
trix derivative from the Matrix package, a DelayedMatrix object from the De-
layedArray package, etc...). All elements of the list must have the same dimen-
sions, and dimension names (if present) must be consistent across elements and
with the row names of rowRanges and colData.

colData An optional DataFrame describing the samples. Row names on colData, if
present, become the column names of the returned object.

rowData NULL (the default) or a DataFrame object describing the rows. Row names,
if present, become the row names of the constructed SummarizedExperiment
object. The number of rows of the DataFrame must equal the number of rows
of the matrices in assays.

sample_id A character sample identifier, which matches the sample_id in imgData. The
sample_id will also be stored in a new column in colData, if not already
present. Default = sample@1.

spatialCoordsNames
A character vector of column names if *Geometries arguments have ordinary
data frames, to identify the columns in the ordinary data frames that specify
the spatial coordinates. If colGeometries is not specified, then this argument
will behave as in SpatialExperiment, but colGeometries will be given prece-
dence if provided.

spatialCoords A numeric matrix containing columns of spatial coordinates, as in SpatialExperiment.
The coordinates are centroids of the entities represented by the columns of the
gene count matrix. If colGeometries is also specified, then it will be given pri-
ority and a warning is issued. Otherwise, the sf representation of the centroids
will be stored in the colGeometry called centroids.

colGeometries Geometry of the entities that correspond to the columns of the gene count matrix,
such as cells and Visium spots. It must be a named list of one of the following:

An sf data frame The geometry column specifies the geometry of the entities.

An ordinary data frame specifying centroids Column names for the coordi-
nates are specified in the spatialCoordsNames argument. For Visium and
ST, in addition to the centroid coordinate data frame, the spot diameter in
the same unit as the coordinates can be specified in the spotDiamter argu-
ment.

An ordinary data frame specifying polygons Also use spatialCoordsNames.
There should an additional column "ID" to specify which vertices belong
to which polygon. The coordinates should not be in list columns. Rather,
the data frame should look like it is passed to ggplot2: :geom_polygon. If
there are holes, then there must also be a column "subID" that differentiates
between the outer polygon and the holes.

In all cases, the data frame should specify the same number of geometries as the
number of columns in the gene count matrix. If the column "barcode" is present,
then it will be matched to column names of the gene count matrix. Otherwise,
the geometries are assumed to be in the same order as columns in the gene count
matrix. If the geometries are specified in an ordinary data frame, then it will
be converted into sf internally. Named list of data frames because each entity
can have multiple geometries, such as whole cell and nuclei segmentations. The

80 SpatialFeatureExperiment

geometries are assumed to be POINTSs for centroids and POLYGONSs for seg-
mentations. If polygons are specified in an ordinary data frame, then anything
with fewer than 3 vertices will be removed. For anything other than POINTSs,
attributes of the geometry will be ignored.

rowGeometries Geometry associated with genes or features, which correspond to rows of the
gene count matrix.

annotGeometries
Geometry of entities that do not correspond to columns or rows of the gene
count matrix, such as tissue boundary and pathologist annotations of histological
regions, and nuclei segmentation in a Visium dataset. Also a named list as in
colGeometries. The ordinary data frame may specify POINTs, POLYGONS,
or LINESTRINGS, or their MULTI versions. Each data frame can only specify
one type of geometry. For MULTT versions, there must be a column "group" to
identify each MULTI geometry.

spotDiameter Spot diameter for technologies with arrays of spots of fixed diameter per slide,
such as Visium, ST, DBiT-seq, and slide-seq. The diameter must be in the same
unit as the coordinates in the *Geometry arguments. Ignored for geometries that
are not POINT or MULTIPOINT.
annotGeometryType
Character vector specifying geometry type of each element of the list if annotGeometry
is specified. Each element of the vector must be one of POINT, LINESTRING,
POLYGON, MULTIPOINT, MULTILINESTRING, and MULTIPOLY GON. Must
be either length 1 (same for all elements of the list) or the same length as the
list. Ignored if the corresponding element is an sf object.

spatialGraphs A named list of 1istw objects (see spdep) for spatial neighborhood graphs.
unit Unit the coordinates are in, either microns or pixels in full resolution image.

Additional arguments passed to the SpatialExperiment and SingleCellExperiment
constructors.

Value

A SFE object. If neither colGeometries nor spotDiameter is specified, then a colGeometry
called "centroids" will be made, which is essentially the spatial coordinates as sf POINTs. If
spotDiameter is specified, but not colGeometries, then the spatial coordinates will be buffered
by half the diameter to get spots with the desired diameter, and the resulting colGeometry will be
called "spotPoly", for which there’s a convenience getter and setter, spotPoly.

Examples

library(Matrix)

data("visium_row_col")

coordsl <- visium_row_col[visium_row_col$col < 6 & visium_row_col$row < 6,]
coordsl1$row <- coordsi$row * sqrt(3)

cg <- df2sf(coordsl1[, c("col”, "row")]1, c("col”, "row"), spotDiameter = 0.7)

set.seed(29)

col_inds <- sample(seq_len(13), 13)

row_inds <- sample(seq_len(5), 13, replace = TRUE)

values <- sample(seq_len(5), 13, replace = TRUE)

mat <- sparseMatrix(i = row_inds, j = col_inds, x = values)
colnames(mat) <- coordsi1$barcode

rownames(mat) <- sample(LETTERS, 5)

SpatialFeatureExperiment-class 81

rownames(cg) <- colnames(mat)

sfe <- SpatialFeatureExperiment(list(counts = mat),
colData = coordsT,
spatialCoordsNames = c("col”, "row"),
spotDiameter = 0.7

)

sfe2 <- SpatialFeatureExperiment(list(counts = mat),
colGeometries = list(foo = cg)

)

SpatialFeatureExperiment-class
The SpatialFeatureExperiment class

Description

This class inherits from the SpatialExperiment (SPE) class, which in turn inherits from SingleCellExperiment
(SCE). SpatialFeatureExperiment stores geometries of spots or cells in sf objects which form

columns of a DataFrame which is in turn a column of the int_colData DataFrame of the un-

derlying SCE object, just like reducedDim in SCE. Geometries of the tissue outline, pathologist

annotations, and objects (e.g. nuclei segmentation in a Visium dataset) are stored in sf objects in a

named list called annotGeometries in int_metadata.

SpatialFeatureExperiment-coercion
SpatialFeatureExperiment coercion methods

Description

The SpatialFeatureExperiment class inherits from SpatialExperiment, which in turn inherits

from SingleCellExperiment. A SpatialExperiment object with geometries in colGeometries

in the int_colData, rowGeometries in the int_elementMetadata, or annotGeometries in the

int_metadata can be directly converted to SpatialFeatureExperiment with as(spe, "SpatialFeatureExperiment”
A SpatialExperiment object without the geometries can also be converted; the coordinates in

the spatialCoords field will be used to make POINT geometries named "centroids" to add to

colGeometries. The geometries can also be supplied separately when using toSpatialFeatureExperiment.

Images are converted to SpatRaster.

Usage

S4 method for signature 'SpatialExperiment’
toSpatialFeatureExperiment(

X,

colGeometries = NULL,

rowGeometries = NULL,

annotGeometries = NULL,

spatialCoordsNames = c("x", "y"),

annotGeometryType = "POLYGON",

spatialGraphs = NULL,

82 SpatialFeatureExperiment-coercion

spotDiameter = NA,
unit = NULL
)

S4 method for signature 'SingleCellExperiment'’
toSpatialFeatureExperiment(
X,
sample_id = "sample@1”,
spatialCoordsNames = c("x", "y"),
spatialCoords = NULL,
colGeometries = NULL,
rowGeometries = NULL,
annotGeometries = NULL,
annotGeometryType = "POLYGON",
spatialGraphs = NULL,
spotDiameter = NA,
scaleFactors 1,
imageSources = NULL,
image_id = NULL,
loadImage = TRUE,
imgData = NULL,
unit = NULL
)

S4 method for signature 'Seurat'
toSpatialFeatureExperiment(

X,
add_molecules = TRUE,
flip = c("geometry”, "image", "none"),
image_scalefactors = c("lowres”, "hires"),
unit = NULL,
BPPARAM = SerialParam()
)
Arguments
X A SpatialExperiment or Seurat object to be coerced to a SpatialFeatureExperiment

object.

colGeometries Geometry of the entities that correspond to the columns of the gene count matrix,
such as cells and Visium spots. It must be a named list of one of the following:

An sf data frame The geometry column specifies the geometry of the entities.

An ordinary data frame specifying centroids Column names for the coordi-
nates are specified in the spatialCoordsNames argument. For Visium and
ST, in addition to the centroid coordinate data frame, the spot diameter in
the same unit as the coordinates can be specified in the spotDiamter argu-
ment.

An ordinary data frame specifying polygons Also use spatialCoordsNames.
There should an additional column "ID" to specify which vertices belong
to which polygon. The coordinates should not be in list columns. Rather,
the data frame should look like it is passed to ggplot2: : geom_polygon. If
there are holes, then there must also be a column "subID" that differentiates
between the outer polygon and the holes.

SpatialFeatureExperiment-coercion 83

In all cases, the data frame should specify the same number of geometries as the
number of columns in the gene count matrix. If the column "barcode" is present,
then it will be matched to column names of the gene count matrix. Otherwise,
the geometries are assumed to be in the same order as columns in the gene count
matrix. If the geometries are specified in an ordinary data frame, then it will
be converted into sf internally. Named list of data frames because each entity
can have multiple geometries, such as whole cell and nuclei segmentations. The
geometries are assumed to be POINTs for centroids and POLYGONSs for seg-
mentations. If polygons are specified in an ordinary data frame, then anything
with fewer than 3 vertices will be removed. For anything other than POINTSs,
attributes of the geometry will be ignored.

rowGeometries Geometry associated with genes or features, which correspond to rows of the
gene count matrix.

annotGeometries
Geometry of entities that do not correspond to columns or rows of the gene
count matrix, such as tissue boundary and pathologist annotations of histological
regions, and nuclei segmentation in a Visium dataset. Also a named list as in
colGeometries. The ordinary data frame may specify POINTs, POLYGONS,
or LINESTRINGS, or their MULTI versions. Each data frame can only specify
one type of geometry. For MULTT versions, there must be a column "group" to
identify each MULTI geometry.

spatialCoordsNames
A character vector of column names if *Geometries arguments have ordinary
data frames, to identify the columns in the ordinary data frames that specify
the spatial coordinates. If colGeometries is not specified, then this argument
will behave as in SpatialExperiment, but colGeometries will be given prece-
dence if provided.

annotGeometryType
Character vector specifying geometry type of each element of the list if annotGeometry
is specified. Each element of the vector must be one of POINT, LINESTRING,
POLYGON, MULTIPOINT, MULTILINESTRING, and MULTIPOLY GON. Must
be either length 1 (same for all elements of the list) or the same length as the
list. Ignored if the corresponding element is an sf object.

spatialGraphs A named list of 1istw objects (see spdep) for spatial neighborhood graphs.

spotDiameter Spot diameter for technologies with arrays of spots of fixed diameter per slide,
such as Visium, ST, DBiT-seq, and slide-seq. The diameter must be in the same
unit as the coordinates in the *Geometry arguments. Ignored for geometries that
are not POINT or MULTIPOINT.

unit # Default unit is "micron”. However for Visium one can choose between
"micron” or "full_res_image_pixel".

sample_id A character sample identifier, which matches the sample_id in imgData. The
sample_id will also be stored in a new column in colData, if not already
present. Default = sample@1.

spatialCoords A numeric matrix containing columns of spatial coordinates, as in SpatialExperiment.
The coordinates are centroids of the entities represented by the columns of the
gene count matrix. If colGeometries is also specified, then it will be given pri-
ority and a warning is issued. Otherwise, the sf representation of the centroids
will be stored in the colGeometry called centroids.

scaleFactors Optional scale factors associated with the image(s). This can be provided as
a numeric value, numeric vector, list, or file path to a JSON file for the 10x

84

imageSources

image_id

loadImage
imgData

add_molecules

flip

SpatialFeatureExperiment-subset

Genomics Visium platform. For 10x Genomics Visium, the correct scale factor
will automatically be selected depending on the resolution of the image from
imageSources. Default = 1.

Optional file path(s) or URL(s) for one or more image sources.

Optional character vector (same length as imageSources) containing unique
image identifiers.

Logical indicating whether to load image into memory. Default = FALSE.

Optional DataFrame containing the image data. Alternatively, this can be built
from the arguments imageSources and image_id (see Details).

Logical, whether to add transcripts coordinates to an object.

To flip the image, geometry coordinates, or none. Because the image has the
origin at the top left while the geometry has origin at the bottom left, one of
them needs to be flipped for them to match. If one of them is already flipped,
then use "none". The image will not be flipped if it’s GeoTIFF.

image_scalefactors

BPPARAM

Value

A character, choose between "lowres" or "hires". Only for 10X Visium,
image scaling factors are from ‘scalefactors_json.json‘ file.

Deprecated when coercing from SpatialExperiment, but is used when coerc-
ing from Seurat object.

A SpatialFeatureExperiment object

Examples

library(VisiumIO)
From examples o
sample_dir <- sys

f TENxVisium()
tem.file(

file.path("extdata”, "10xVisium”, "section1"),
package = "VisiumIOQ”
)

using spaceran

tv <- TENxVisium(
spacerangerQOu

)

spe <- import(tv)

There can't be

colnames(spe) <-

gerOut folder

t = sample_dir, processing = "raw”, images = "lowres"

duplicate barcodes
make.unique(colnames(spe), sep = "-")

rownames(spatialCoords(spe)) <- colnames(spe)

sfe <- toSpatialF

eatureExperiment(spe)

For coercing Seurat to SFE see this -> ./vignettes/seurat_sfe_coerce.Rmd

SpatialFeatureExperiment-subset

Subsetting SpatialFeatureExperiment objects

SpatialFeatureExperiment-subset 85

Description

The SFE method has special treatment for the spatial graphs. In 1istw, the neighbors are indicated
by indices, which will change after subsetting. The SFE_graph_subset option determines whether
the graphs are subsetted or reconstructed. In the default (options(SFE_graph_subset = TRUE)),
the graphs are subsetted, in which case singletons may be produced. For options (SFE_graph_subset
= FALSE), which is the behavior of versions earlier than Bioc 3.20, the graphs are reconstructed with
the parameters recorded in an attribute of the graphs. This option can result into different graphs.
For example, suppose we start with a k nearest neighbor graph. After subsetting, cells at the bound-
ary of the region used to subset the SFE object may lose some of their neighbors. In contrast, when
the graph is reconstructed, these same edge cells will gain other cells that remain after subsetting as
neighbors in the new KNN graph.

Usage

S4 method for signature 'SpatialFeatureExperiment,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]

Arguments
X A SpatialFeatureExperiment object.
i Row indices for subsetting.
A column indices for subsetting.
Passed to the SingleCellExperiment method of [.
drop Only used if graphs are reconstructed (options (SFE_graph_subset = FALSE)).
If TRUE then colGraphs are dropped but annotGraphs are kept.
Details

The option SFE_graph_subset was introduced because subsetting is usually faster than reconstruct-
ing and in some cases such as distance-based neighbors and Visium spot adjacency give the same re-
sults. It was introduced also because of the development of alabster. sfe for a language-agnostic
on-disk serialization of SFE objects and some parameters used to construct graphs have special
classes whose alabaster methods have not been implemented, such as BPPARAM and BNPARAM, so
when reconstructing, the defaults for those arguments will be used.

The edge weights will be recomputed from the binary neighborhood indicator with the same normal-
ization style as the original graph, such as "W" for row normalization. When distance-based edge
weights are used instead of the binary indicator, the edge weights will be re-normalized, which is
mostly some rescaling. This should give the same results as recomputing the distance based edge
weights for styles "raw", "W", and "B" since the distances themselves don’t change, but the ef-
fects of other more complicated styles of re-normalization on spatial statistics should be further
investigated.

By default, upon subsetting, the images are cropped to the bounding box of the remaining cells.
However, when the image is large and the bounding box contains most of the original image, crop-
ping is slow. Cropping can be disabled by options(SFE_subset_crop = FALSE). Also, when the
remaining part of the image is larger than a threshold, the image will not be cropped; the thresh-
old can be set with the SFE_subset_crop_max option, such as options(SFE_subset_crop_max =
"100MB").

Value

A subsetted SpatialFeatureExperiment object.

86 spatialGraphs

Examples

Just like subsetting matrices and SingleCellExperiment
library(SFEData)

sfe <- McKellarMuscleData(dataset = "small")

sfe_subset <- sfe[seq_len(10), seq_len(10), drop = TRUE]
Gives warning as graph reconstruction fails

sfe_subset <- sfe[seq_len(10), seq_len(10)]

spatialGraphs Spatial graph methods

Description

Spatial neighborhood graphs as spdep’s 1istw objects are stored in the int_metadata of the SFE
object. The listw class is used because spdep has many useful methods that rely on the neigh-
borhood graph as listw. See the spdep doumentation website for functions to edit the spatial
neighborhood graph, or the nb object within the 1istw.

Usage

S4 method for signature 'SpatialFeatureExperiment'’
spatialGraphs(x, MARGIN = NULL, sample_id = "all"”, name = "all")

colGraphs(x, sample_id = "all"”, name = "all")
rowGraphs(x, sample_id = "all”, name = "all")
annotGraphs(x, sample_id = "all”, name = "all")

S4 replacement method for signature 'SpatialFeatureExperiment’
spatialGraphs(x, MARGIN = NULL, sample_id = "all”, name = "all") <- value

colGraphs(x, sample_id = "all", name = "all") <- value
rowGraphs(x, sample_id = "all”, name = "all"”) <- value
annotGraphs(x, sample_id = "all”, name = "all"”) <- value

S4 method for signature 'SpatialFeatureExperiment,numeric'
spatialGraphNames(x, MARGIN, sample_id = 1L)

S4 replacement method for signature 'SpatialFeatureExperiment,numeric,ANY,character'’
spatialGraphNames(x, MARGIN, sample_id = 1L) <- value

colGraphNames(x, sample_id = 1L)
rowGraphNames(x, sample_id = 1L)

annotGraphNames(x, sample_id = 1L)

https://r-spatial.github.io/spdep/reference/index.html

spatialGraphs

87

colGraphNames(x, sample_id = 1L) <- value

rowGraphNames(x, sample_id

1L) <- value

annotGraphNames(x, sample_id = 1L) <- value

S4 method for signature 'SpatialFeatureExperiment'’
spatialGraph(x, type = 1L, MARGIN, sample_id = 1L)

colGraph(x, type = 1L, sample_id

1L)

rowGraph(x, type = 1L, sample_id = 1L)

annotGraph(x, type = 1L, sample_id = 1L)

S4 replacement method for signature 'SpatialFeatureExperiment’
spatialGraph(x, type = 1L, MARGIN, sample_id = NULL) <- value

colGraph(x, type

rowGraph(x, type = 1L, sample_id

1L, sample_id = 1L) <- value

1L) <- value

annotGraph(x, type = 1L, sample_id = 1L) <- value

Arguments

X

MARGIN

sample_id

name

value

type

Value

A SpatialFeatureExperiment object.

As in apply. 1 stands for rows and 2 stands for columns. In addition, 3 stands
for spatial neighborhood graphs that correspond to annotGeometries.

Name of the sample the graph is associated with. This is useful when multiple
pieces of tissues are in the same SFE object (say for a joint dimension reduction
and clustering) and the spatial neighborhood is only meaningful within the same
piece of tissue. See the sample_id argument in SpatialExperiment.

Name of the graphs to add to each sample_id; used in the spatialGraphs re-
placement method as it must be character while type can be either an integer
index or a name.

A listw object (*Graph), or a named list of list of 1istw objects (*Graphs)
where the names of the top level list are sample_ids when adding graphs for all
samples in the margin of interest, or a list of 1istw objects when adding graphs
for one sample in one margin.

An integer specifying the index or string specifying the name of the *Graph to
query or replace. If missing, then the first item in the *Graph will be returned or
replaced.

Getters for multiple graphs return a named list. Getters for names return a character vector of the
names. Getters for single graphs return a 1istw object. Setters return an SFE object.

88

Examples

library(SFEData)

sfe <- McKellarMuscleData(dataset = "small")
gl <- findVisiumGraph(sfe)

g2 <- findSpatialNeighbors(sfe)

Set all graphs of a margin by a named list
spatialGraphs(sfe, MARGIN = 2L, sample_id = "Vis5A") <-
list(tri2nb = g2, visium = g1)
Or equivalently
colGraphs(sfe, sample_id = "Vis5A") <- list(tri2nb = g2, visium = g1)

Get all graphs of a margin, returning a named list
gs <- spatialGraphs(sfe, MARGIN = 2L)

Or equivalently

gs <- colGraphs(sfe)

Set graph of the same name and same margin for multiple samples

Each sample has a separate graph

sfe2 <- McKellarMuscleData("small2")

sfe_combined <- cbind(sfe, sfe2)

colGraphs(sfe_combined, name = "visium”, sample_id = "all") <-
findVisiumGraph(sfe_combined, sample_id = "all")

Get graph names

spatialGraphNames(sfe, MARGIN = 2L, sample_id = "Vis5A")

Or equivalently (sample_id optional as only one sample is present)
colGraphNames(sfe)

Set graph names
spatialGraphNames(sfe, MARGIN = 2L) <- c("foo"”, "bar")
colGraphNames(sfe) <- c("tri2nb”, "visium")

SpatRasterImage

MARGIN = 1 means rowGraphs; MARGIN = 3 means annotation graphs (annotGraphs)

for both getters and setters

Set single graph by
Spatial graph for myofibers
g_myofiber <- findSpatialNeighbors(sfe,
type = "myofiber_simplified”,
MARGIN = 3L
)
spatialGraph(sfe, type = "myofiber”, MARGIN = 3L) <- g_myofiber
Or equivalently
annotGraph(sfe, "myofiber"”) <- g_myofiber

Get a specific graph by name

g <- spatialGraph(sfe, "myofiber”, MARGIN = 3L)
g2 <- spatialGraph(sfe, "visium"”, MARGIN = 2L)
Or equivalently

g <- annotGraph(sfe, "myofiber™)

g2 <- colGraph(sfe, "visium")

SpatRasterImage SpatRaster representation of images in SFE objects

splitByCol 89

Description

SpatialFeatureExperiment and the Voyager package work with images differently from SpatialExperiment.
In SFE and Voyager’s, plotting functions for SFE objects, the images can be read with rast and

represented as SpatRaster, so the image is not entirely loaded into memory unless necessary.

Plotting will not load a large image into memory; rather the image will be downsampled and the
downsampled version is plotted. A SpatRasterImage object (as of Bioc 3.19 or SFE version 1.6

and above) is a SpatRaster object but also inheriting from VirtualSpatialImage as required by
SpatialExperiment.

Usage

SpatRasterImage(img)

S4 method for signature 'SpatRasterImage'’

show(object)

Arguments
img A SpatRaster or PackedSpatRaster object.
object A SpatRasterImage object.

Value

A SpatRasterImage object.

Examples

Example code

splitByCol Split SFE object with categorical vector or geometry

Description

The split methods for SFE split an SFE object into multiple SFE objects by geometries (all
cells/spots intersecting with each geometry will become a separate SFE object). The splitSamples
function splits the SFE object by sample_id so each sample will become a separate SFE object.
The splitContiguity function splits the SFE object by contiguity of an annotGeometry, which
by default is "tissueBoundary". The splitComponent function splits the SFE object by graph com-
ponent, so if there are disconnected components in the graph, then each component will become a
new SFE object.

Usage

S4 method for signature 'SpatialFeatureExperiment,sf’
splitByCol(x, f, sample_id = "all”, colGeometryName = 1L, cover = FALSE)

S4 method for signature 'SpatialFeatureExperiment,sfc'
splitByCol(x, f, sample_id = 1L, colGeometryName = 1L, cover = FALSE)

S4 method for signature 'SpatialFeatureExperiment,list’

90 splitByCol

splitByCol(x, f, sample_id = "all"”, colGeometryName = 1L, cover = FALSE)
splitSamples(x)

splitContiguity(
X,
colGeometryName = 1L,
annotGeometryName = "tissueBoundary"”,
min_area = 0,
cover = FALSE

)

splitComponent(x, colGraphName = 1L, min_cells = 100)

Arguments

X An SFE object

f It can be a sf data frame or sfc to split by geometry. Each row of the sf data
frame or each element in the sfc will correspond to a new SFE object. The
sf data frame must have a column sample_id when splitting multiple samples.
Can also be a list of sfc whose names correspond to sample_ids to split.

sample_id Which samples to split.

colGeometryName
Which colGeometry to use to determine which cells or spots should belong to
which new SFE object when splitting by sf or sfc. Default to the first one.

cover Logical, whether the geometries in x must be entirely covered by y if op =
st_intersection or whether x must be entirely outside y if op = st_difference.
Only relevant when keep_whole != "none".

annotGeometryName
Name of annotGeometry to use to split by contiguity.

min_area Minimum area in the same unit as the geometry coordinates (squared) for each

piece to be considered a separate piece when splitting by contiguity. Only pieces
that are large enough are considered.

colGraphName Name of graph to use for splitComponent. We recommend distance based
neighbors (‘dnearneigh’ in findSpatialNeighbors), and recommend NOT us-
ing k nearest neighbors (‘knearneigh*) or triangulation (‘tri2nb°).

min_cells Minimum number of cells per graph component; components with fewer than
this number of cells are considered debris and removed.

Value

A list of SFE objects.

Examples

example code

st_any_pred 91

st_any_pred Simple geometry predicates

Description

Unlike functions in sf like st_intersects, this function simply returns a logical vector indicating
whether each geometry in x intersects (or returns TRUE from other predicates) anything in y, prefer-
ably when y only contains a small number of geometries or is one single MULTI geometry. This
is useful when cropping or subsetting an SFE object with a geometry, such as tissue boundary or
histological region polygons or a bounding box.

Usage

st_any_pred(x, y, pred, yx = FALSE, sparse = FALSE, ...)

st_any_intersects(x, y, yx = FALSE, sparse = FALSE)
st_n_pred(x, y, pred, ...)

st_n_intersects(x, y)

Arguments
X An object of class sf, sfc, or sfg.
y Another object of class sf, sfc, or sfg.
pred A geometric binary predicate function, such as st_intersects. It should return
an object of class sgbp, for sparse predicates.
yX Whether to do pred(y, x) instead of pred(x, y). For symmetric predicates,
the results should be the same. When x has a large number of geometries and
y has few, pred(y, x) is much faster than pred(x, y) for st_intersects,
st_disjoint, and st_is_within_distance.
sparse If TRUE, returns numeric indices rather than logical vector. Defaults to FALSE for
backward compatibility, though the default in st_intersects is TRUE.
Arguments passed to pred.
Value

For st_any_x, a logical vector indicating whether each geometry in x intersects (or other predicates
such as is covered by) anything in y or a numeric vector of indices of TRUE when sparse = TRUE.
Simplified from the sgbp results which indicate which item in y each item in x intersects, which
might not always be relevant. For st_n_x, an integer vector indicating the number of geometries in
y returns TRUE for each geometry in x.

Examples

library(sf)

pts <- st_sfc(
st_point(c(.5, .5)), st_point(c(1.5, 1.5)),
st_point(c(2.5, 2.5))

92 toExtImage

pol <- st_polygon(list(rbind(c(@, 0), c(2, @), c(2, 2), c(0, 2), c(@, 0))))
st_any_pred(pts, pol, pred = st_disjoint)

st_any_intersects(pts, pol)

st_n_pred(pts, pol, pred = st_disjoint)

st_n_intersects(pts, pol)

toExtImage Convert images to Extlmage

Description

The ExtImage class is a thin wrapper around the Image class in ExtImage so it inherits from
VirtualSpatialImage as required by SpatialExperiment and has extent as used in Voyager’s
plotting functions. This function converts SpatRasterImage (thin wrapper around the class in
terra) and BioFormatsImage into ExtImage for image operations as implemented in the ExtImage
package.

Usage

S4 method for signature 'BioFormatsImage'’
toExtImage(x, resolution = 4L, channel = NULL)

S4 method for signature 'SpatRasterImage'’
toExtImage(x, maxcell = 1e+@7, channel = NULL)

Arguments
X Either a BioFormatsImage or SpatRasterImage object.
resolution Integer, which resolution in the BioFormatsImage to read and convert. Defaults
to 4, which is a lower resolution. Ignored if only 1 resolution is present.
channel Integer vector to indicate channel(s) to read. If NULL, then all channels will be
read.
maxcell Maximum number of pixels when SpatRasterImage is read into memory.
Value

A ExtImage object. The image is loaded into memory.

See Also

toSpatRasterImage

toSpatRasterImage 93

toSpatRasterImage Convert images to SpatRasterImage

Description

The resolution specified from the OME-TIFF file will be read into memory and written to disk as a
GeoTIFF file that has the extent. The output file will have the same file name as the input file except
without the ome in the extension.

Usage

S4 method for signature 'ExtImage'
toSpatRasterImage(

X,

save_geotiff = TRUE,

file_out = "img.tiff",

overwrite = FALSE

)

S4 method for signature 'BioFormatsImage'’
toSpatRasterImage(

X,

save_geotiff = TRUE,

resolution = 4L,

channel = NULL,

overwrite = FALSE

Arguments

X Either a BioFormatsImage or EBIImage object.

save_geotiff Logical, whether to save the image to GeoTIFF file.

file_out File to save the non-OME TIFF file for SpatRaster.
overwrite Logical, whether to overwrite existing file of the same name.
resolution Integer, which resolution in the BioFormatsImage to read and convert. Defaults

to 4, which is a lower resolution. Ignored if only 1 resolution is present.

channel Integer vector to indicate channel(s) to read. If NULL, then all channels will be
read.

Value

A SpatRasterImage object

See Also

toExtImage

94 transposelmg

translatelmg Translate/shift image in space

Description

This function shifts the spatial extent of the image in the x-y plane.

Usage

S4 method for signature 'SpatRasterImage'’
translateImg(x, v, ...)

S4 method for signature 'BioFormatsImage'’
translateImg(x, v, ...)

S4 method for signature 'ExtImage'

translateImg(x, v, ...)
Arguments
X An object of class *Image as implemented in this package.
v Numeric vector of length 2 to shift the image in the x-y plane.

Ignored. It’s there so different methods can all be passed to the same lapply in
the method for SFE objects. Some methods have extra arguments.
Value

A xImage object of the same class that has been shifted in space.

See Also

Other image methods: SFE-image, affineImg(), cropImg(), dim,BioFormatsImage-method,
dim,ExtImage-method, ext(), imgRaster(), imgSource(), mirrorImg(), rotateImg(), scaleImg(),
transposeImg()

transposelmg Transpose images

Description

Swap rows and columns of images. In effect, this will flip the image around the diagonal running
from top left to bottom right.

unit,SpatialFeatureExperiment-method 95

Usage

S4 method for signature 'SpatRasterImage'
transposeImg(x, filename = "", maxcell = NULL, ...)

S4 method for signature 'BioFormatsImage'’
transposeImg(x, ...)

S4 method for signature 'ExtImage'

transposeImg(x, ...)
Arguments
X An object of class *Image as implemented in this package.
filename Output file name for transformed SpatRaster.
maxcell Max number of pixels to load SpatRasterImage into memory. The default

1e7 is chosen because this is the approximate number of pixels in the medium
resolution image at resolution = 4L in Xenium OME-TIFF to make different
methods of this function consistent.

Ignored. It’s there so different methods can all be passed to the same lapply in
the method for SFE objects. Some methods have extra arguments.

Value

For SpatRasterImage and ExtImage, object of the same class. For BioFormatsImage, the image
of the specified resolution is read into memory and then the ExtImage method is called, returning
ExtImage. For the extent: xmin and xmax are switched with ymin and ymax.

See Also

Other image methods: SFE-image, affineImg(), cropImg(), dim,BioFormatsImage-method,
dim,ExtImage-method, ext(), imgRaster(), imgSource(),mirrorIimg(), rotateImg(), scaleImg(),
translateImg()

unit,SpatialFeatureExperiment-method
Get unit of a SpatialFeatureExperiment

Description

Length units can be microns or pixels in full resolution image in SFE objects.

Usage
S4 method for signature 'SpatialFeatureExperiment'’
unit(x)

Arguments

X A SpatialFeatureExperiment object.

96 updateObject

Value

A string for the name of the unit. At present it’s merely a string and udunits is not used.

Examples

library(SFEData)
sfe <- McKellarMuscleData(dataset = "small")
SpatialFeatureExperiment::unit(sfe)

updateObject Update a SpatialFeatureExperiment object

Description

Update a SpatialFeatureExperiment to the latest version of object structure. This is usually called
by internal functions.

Usage
S4 method for signature 'SpatialFeatureExperiment'’
updateObject(object, ..., verbose = FALSE)
SFEVersion(object)

Arguments
object An old SpatialFeatureExperiment object.

Additional arguments that are ignored.

verbose Logical scalar indicating whether a message should be emitted as the object is
updated.

Details

Version 1.1.4 adds package version to the SFE object. We are considering an overhaul of the
spatialGraphs slot in a future version using the sfdep package to decouple the adjacency graph
from the edge weights.

Value

An updated version of object.

See Also

objectVersion, which is used to determine if the object is up-to-date.

visium_row_col

Examples

library(SFEData)

sfe <- McKellarMuscleData("small")

First version of SFE object doesn't log SFE package version, so should be NULL
SFEVersion(sfe)

sfe <- updateObject(sfe)

See current version

SFEVersion(sfe)

97

visium_row_col Row and columns of Visium barcodes on the slide

Description

From Space Ranger 1.3.1.

Usage

visium_row_col

Format

A data frame with 4992 rows with columns barcode, col, and row.

Source

Space Ranger 1.3.1

Index

* Geometric operations Img<-,SpatialExperiment-method, 49
addVisiumSpotPoly, 4 imgRaster, 50
aggregate,SpatialFeatureExperiment-method, imgSource, 50

6 SFE-image, 74
aggregateTx, 8 + Non-spatial operations
annotOp, 13 cbind,SpatialFeatureExperiment-method,
annotPred, 14 19
annotSummary, 15 SpatialFeatureExperiment-subset,
bbox,SpatialFeatureExperiment-method, 84
16 + Read data into SFE
crop, 24 read10xVisiumSFE, 57
removeEmptySpace, 68 readCosMX, 59
SFE-transform, 76 readVizgen, 63
splitByCol, 89 readXenium, 65
st_any_pred, 91 + Spatial neighborhood graph

x Getters and setters findSpatialNeighbors, 35
annotGeometries, 11 findVisiumGraph, 37
colFeatureData, 21 findVisiumHDGraph, 38
colGeometries, 22 + SpatialFeatureExperiment class
dimGeometries, 29 show, SpatialFeatureExperiment-method,
getParams, 44 77
localResults, 52 SpatialFeatureExperiment, 78
rowGeometries, 70 SpatialFeatureExperiment-class, 81
spatialGraphs, 86 SpatialFeatureExperiment-coercion,

+x Image affine transformation 81
affinelmg, 5 unit,SpatialFeatureExperiment-method,
mirrorImg, 55 95
rotatelImg, 69 updateObject, 96
scalelmg, 73 * Transcript spots
translatelmg, 94 formatTxSpots, 38
transposelmg, 94 formatTxTech, 41

+ Image classes readSelectTx, 60
BioFormatsImage, 17 * Utilities
BioFormatsImage-getters, 19 aggBboxes, 6
ExtImage, 33 bbox_center, 17
SpatRasterImage, 88 changeSamplelIDs, 20
toExtImage, 92 containsOutOfMemoryData, SpatialFeatureExperiment-me
toSpatRasterImage, 93 23

+ Image methods df2sf, 26
cropImg, 25 gdalParquetAvailable, 43
dim,BioFormatsImage-method, 28 getPixelSize, 45
dim,ExtImage-method, 29 imagelDs, 48
ext, 32 samplelDs, 72

98

INDEX

99

saveRDS, SpatialFeatureExperiment-method, aggBboxes, 6

72
visium_row_col, 97
* datasets
visium_row_col, 97
* image methods
affinelmg, 5
cropImg, 25
dim,BioFormatsImage-method, 28
dim,ExtImage-method, 29
ext, 32
imgRaster, 50
imgSource, 50
mirrorImg, 55
rotatelImg, 69
scalelmg, 73
SFE-image, 74
translatelmg, 94
transposelmg, 94
* internal
internal-Voyager, 51
.check_features (internal-Voyager), 51
.check_rg (internal-Voyager), 51
.check_sample_id (internal-Voyager), 51
.ext_ (internal-Voyager), 51
.rm_empty_geometries
(internal-Voyager), 51
.symbol2id (internal-Voyager), 51
.value2df (internal-Voyager), 51
.warn_symbol_duplicate
(internal-Voyager), 51

aggregate,SpatialFeatureExperiment-method,
6

aggregateTx, 8

aggregateTxTech (aggregateTx), 8

annotGeometries, 11, 22, 36

annotGeometries, SpatialFeatureExperiment-method
(annotGeometries), 11

annotGeometries<- (annotGeometries), 11

annotGeometries<-,SpatialFeatureExperiment-method
(annotGeometries), 11

annotGeometry (annotGeometries), 11

annotGeometry,SpatialFeatureExperiment-method
(annotGeometries), 11

annotGeometry<- (annotGeometries), 11

annotGeometry<-,SpatialFeatureExperiment-method
(annotGeometries), 11

annotGeometryNames (annotGeometries), 11

annotGeometryNames, SpatialFeatureExperiment-method
(annotGeometries), 11

annotGeometryNames<- (annotGeometries),
11

annotGeometryNames<-,SpatialFeatureExperiment,character
(annotGeometries), 11

annotGraph (spatialGraphs), 86

annotGraph<- (spatialGraphs), 86

annotGraphNames (spatialGraphs), 86

annotGraphNames<- (spatialGraphs), 86

annotGraphs (spatialGraphs), 86

annotGraphs<- (spatialGraphs), 86

annotNPred (annotPred), 14

[,SpatialFeatureExperiment, ANY, ANY,ANY-methodannotOp, 13

(SpatialFeatureExperiment-subset),
84

addImg, 49

addImg,SpatialFeatureExperiment-method
(SFE-image), 74

addSelectTx (readSelectTx), 60

addTxSpots, 61

addTxSpots (formatTxSpots), 38

addTxTech (formatTxTech), 41

addVisiumSpotPoly, 4

affine (SFE-transform), 76

affinelmg, 5, 26, 28, 29, 33, 50, 51, 56, 70,
74,76, 94, 95

affineImg,BioFormatsImage-method
(affinelmg), 5

affinelmg,ExtImage-method (affinelmg), 5

affinelmg,SpatialFeatureExperiment-method
(SFE-image), 74

affinelmg, SpatRasterImage-method
(affinelmg), 5

annotPred, /3, 14
annotSummary, 15
apply, 30, 36, 87

bbox
(bbox,SpatialFeatureExperiment-method),
16
bbox,SpatialFeatureExperiment-method,
16

bbox_center, 17
BiocNeighborParam, 34, 36
BiocParallelParam, 7, 34, 36, 40, 43, 59, 64,
66
BioFormatsImage, 17, 19, 28, 45, 49
BioFormatsImage-class
(BioFormatsImage), 17
BioFormatsImage-getters, 19

cbind,SpatialFeatureExperiment-method,
19
cellSeg (colGeometries), 22

100 INDEX

cellSeg<- (colGeometries), 22 dimGeometryNames, SpatialFeatureExperiment-method
centroids (colGeometries), 22 (dimGeometries), 29

centroids<- (colGeometries), 22 dimGeometryNames<- (dimGeometries), 29

changeSamplelDs, 20 dimGeometryNames<-,SpatialFeatureExperiment,numeric, ch:
colData, 59, 64, 66, 79, 83 (dimGeometries), 29

colData (reexports), 67
colData<- (reexports), 67 ext, 5, 26, 28, 29, 32, 50, 51, 56, 70, 74, 76,

colFeatureData, 21, 44 94, 95
colGeometries, 22 ext,BioFormatsImage-method (ext), 32

colGeometries<- (colGeometries), 22 ext,ExtImage-method (ext), 32
colGeometry, 63 ext,SpatRasterImage-method (ext), 32
colGeometry (colGeometries), 22 ext<-,BioFormatsImage,numeric-method
colGeometry<- (colGeometries), 22 (ext), 32

colGeometryNames (colGeometries), 22 ext<-,ExtImage,numeric-method (ext), 32
colGeometryNames<- (colGeometries), 22 ext<-,SpatRasterImage, numeric-method
colGraph (spatialGraphs), 86 (ext), 32

colGraph<- (spatialGraphs), 86 ExtImage, /7, 29,33, 49

colGraphNames (spatialGraphs), 86 ExtImage-class (ExtImage), 33
colGraphNames<- (spatialGraphs), 86
colGraphs (spatialGraphs), 86
colGraphs<- (spatialGraphs), 86
conne;tlon,73 findDebrisCells, sf-method
containsOutOfMemoryData, 23 (findDebrisCells), 33

containsOutOfMemoryData,SpatialFeatureExperimFP%a@ggp?sCells sfc-method

findDebrisCells, 33, 46
findDebrisCells,matrix-method
(findDebrisCells), 33

" 67 (findDebrisCells), 33
CountzireexportSL findDebrisCells, SpatialExperiment-method
cron (findDebrisCells), 33
croplmg, 5, 25, 28, 29, 33, 50, 51, 56, 70, 74, findSpatialNeighbors, 35, 90

76, 94, 95 » 99,

findSpatialNeighbors,SpatialFeatureExperiment-method
(findSpatialNeighbors), 35

findVisiumGraph, 37

findVisiumHDGraph, 38

formatTxSpots, 38, 61

formatTxTech, 41

cropImg,BioFormatsImage-method
(cropImg), 25

cropImg,ExtImage-method (cropImg), 25

cropImg,SpatRasterImage-method
(cropImg), 25

DataFrame, 68, 79, 84 gdalParquetAvailable, 43

DelayedMatrix, 79 geometryFeatureData (colFeatureData), 21
df2sf, 11, 12, 23,26, 30, 71 setIng (reexports), 67

d?m,BioFormatsImage—method,28 getParanms, 44
dim,ExtImage-method, 29 getPixelSize, 45

dimGeometries, 29 getTechTxFields, 46

dimGeometries,SpatialFeatureExperiment—methodgetTissueBoundaryconcave’46
(dimGeometries), 29

getTissueBoundaryImg, 47
dimGeometries<- (dimGeometries), 29
dimGeometries<-,SpatialFeatureExperiment-methbdage, /7, 33

(dimGeometries), 29 imagelDs, 48
dimGeometry (dimGeometries), 29 Img<-,SpatialExperiment-method, 49
dimGeometry, SpatialFeatureExperiment-method Img<- (Img<-,SpatialExperiment-method),
(dimGeometries), 29 49
dimGeometry<- (dimGeometries), 29 imgData, 59, 64, 66, 79, 83
dimGeometry<-,SpatialFeatureExperiment-methodimgData (reexports), 67
(dimGeometries), 29 imgRaster, 5, 26, 28, 29, 33, 50, 51, 56, 70,

dimGeometryNames (dimGeometries), 29 74,76, 94, 95

INDEX

imgRaster,BioFormatsImage-method
(imgRaster), 50

imgRaster,ExtImage-method (imgRaster),
50

imgRaster, SpatRasterImage-method
(imgRaster), 50

imgSource, 5, 26, 28, 29, 32, 33, 50, 50, 56,
70,74, 76, 94, 95

imgSource,BioFormatsImage-method
(imgSource), 50

imgSource,ExtImage-method (imgSource),
50

imgSource, SpatRasterImage-method
(imgSource), 50

internal-Voyager, 51

isFull (BioFormatsImage-getters), 19

isFull,BioFormatsImage-method
(BioFormatsImage-getters), 19

KmknnParam, 34, 36

localResult (localResults), 52

localResult,SpatialFeatureExperiment-method

(localResults), 52
localResult<- (localResults), 52

101

mirrorImg,ExtImage-method (mirrorImg),
55

mirrorImg,SpatialFeatureExperiment-method

(SFE-image), 74
mirrorImg,SpatRasterImage-method

(mirrorImg), 55
multi_listw2sparse, 56

nb2listw, 35
nb2listwdist, 36

nucSeg (colGeometries), 22
nucSeg<- (colGeometries), 22

objectVersion, 96

open_dataset, 10, 40

origin (BioFormatsImage-getters), 19

origin,BioFormatsImage-method
(BioFormatsImage-getters), 19

plotSpatialFeature, 63

rast, 89

rbind, 20
read10xVisiumSFE, 57, 63
readCosMX, 59

localResult<-,SpatialFeatureExperiment-methodreadSelectTx, 60

(localResults), 52
localResultAttrs (localResults), 52

readVisiumHD, 62
readVizgen, 10, 63

localResultAttrs, SpatialFeatureExperiment-meth@adXenium, 70, 65

(localResults), 52
localResultFeatures (localResults), 52

reducedDim (reexports), 67
reducedDimFeatureData (colFeatureData),

localResultFeatures,SpatialFeatureExperiment-method 21

(localResults), 52
localResultNames (localResults), 52

reducedDimNames, 21, 44
reexports, 67

localResultNames,SpatialFeatureExperiment-meth@moveEmptySpace, 11, 23, 30, 68, 71

(localResults), 52
localResultNames<- (localResults), 52

rmvImg (reexports), 67
ROIPoly (colGeometries), 22

localResultNames<-,SpatialFeatureExperiment, R@FBeter=rieehceometries), 22

(localResults), 52
localResults, 52

localResults,SpatialFeatureExperiment-method

(localResults), 52
localResults<- (localResults), 52

rotate (SFE-transform), 76

rotatelmg, 5, 26, 28, 29, 33, 50, 51, 56, 69,
74-76, 94, 95

rotateImg,BioFormatsImage-method
(rotatelmg), 69

localResults<-,SpatialFeatureExperiment-methotiotatelImg,ExtImage-method (rotatelmg),

(localResults), 52
logcounts (reexports), 67

mcols, 68

mirror (SFE-transform), 76

mirrorlImg, 5, 26, 28, 29, 33, 50, 51, 55, 70,
74-76, 94, 95

mirrorImg,BioFormatsImage-method
(mirrorImg), 55

69

rotatelmg,SpatialFeatureExperiment-method

(SFE-image), 74
rotateImg, SpatRasterImage-method
(rotatelImg), 69
rowData (reexports), 67
rowFeatureData (colFeatureData), 21
rowGeometries, 70
rowGeometries<- (rowGeometries), 70

102 INDEX

rowGeometry (rowGeometries), 70 spatialGraphNames, SpatialFeatureExperiment,numeric-metl
rowGeometry<- (rowGeometries), 70 (spatialGraphs), 86
rowGeometryNames (rowGeometries), 70 spatialGraphNames<- (spatialGraphs), 86
rowGeometryNames<- (rowGeometries), 70 spatialGraphNames<-,SpatialFeatureExperiment,numeric, Al
rowGraph (spatialGraphs), 86 (spatialGraphs), 86
rowGraph<- (spatialGraphs), 86 spatialGraphs, 36, 37, 86
rowGraphNames (spatialGraphs), 86 spatialGraphs,SpatialFeatureExperiment-method
rowGraphNames<- (spatialGraphs), 86 (spatialGraphs), 86
rowGraphs (spatialGraphs), 86 spatialGraphs<- (spatialGraphs), 86
rowGraphs<- (spatialGraphs), 86 spatialGraphs<-,SpatialFeatureExperiment-method
(spatialGraphs), 86
sampleIDs, 49, 72, 75 SpatRaster, 63, 89
save, 73 SpatRasterImage, 49, 88
saveRDS, SpatialFeatureExperiment-method, SpatRasterImage-class
7 (SpatRasterImage), 88
scale (SFE-transform), 76 spl%tByCol,89) . .
scalelmg, 5, 26, 28, 29, 33, 50, 51, 56, 70, 73, splitByCol,SpatialFeatureExperiment,list-method
76, 94, 95 (splitByCol), 89

splitByCol,SpatialFeatureExperiment,sf-method
(splitByCol), 89

splitByCol, SpatialFeatureExperiment, sfc-method
(splitByCol), 89

splitComponent (splitByCol), 89

splitContiguity (splitByCol), 89

splitSamples (splitByCol), 89

spotPoly, 80

spotPoly (colGeometries), 22

spotPoly<- (colGeometries), 22

st_any_intersects (st_any_pred), 91

st_any_pred, 91

st_difference, 25

st_intersection, 13, 25

st_intersects, /4, 16, 91

st_join, 7

st_n_intersects (st_any_pred), 91

st_n_pred (st_any_pred), 91

scaleImg,AlignedSpatialImage-method
(scalelmg), 73

scaleImg,BioFormatsImage-method
(scalelmg), 73

scaleImg,SpatialFeatureExperiment-method
(SFE-image), 74

SFE-image, 74

SFE-transform, 76

SFEVersion (updateObject), 96

show,BioFormatsImage-method
(BioFormatsImage), 17

show, ExtImage-method (ExtImage), 33

show, SpatialFeatureExperiment-method,
77

show, SpatRasterImage-method
(SpatRasterImage), 88

SingleCellExperiment, 80, 81

SparseMatrix, 79

sparseMatrix, 79 tissueBoundary (annotGeometries), 11
spatialCoords (reexports), 67 tissueBoundary<- (annotGeometries), 11
spatialCoords<- (reexports), 67 toExtImage, 92
spatialCoordsNames (reexports), 67 toExtImage,BioFormatsImage-method
SpatialExperiment, 79-81, 83, 87 (toExtImage), 92
SpatialFeatureExperiment, 36, 78, 96 toExtImage,SpatRasterImage-method
SpatialFeatureExperiment-class, 81 (toExtImage), 92
SpatialFeatureExperiment-coercion, 81 toSpatialFeatureExperiment
SpatialFeatureExperiment-subset, 84 (SpatialFeatureExperiment-coercion),
spatialGraph (spatialGraphs), 86 81
spatialGraph,SpatialFeatureExperiment-method toSpatialFeatureExperiment,Seurat-method
(spatialGraphs), 86 (SpatialFeatureExperiment-coercion),
spatialGraph<- (spatialGraphs), 86 81
spatialGraph<-,SpatialFeatureExperiment-methotoSpatialFeatureExperiment,SingleCellExperiment-method
(spatialGraphs), 86 (SpatialFeatureExperiment-coercion),

spatialGraphNames (spatialGraphs), 86 81

INDEX

toSpatialFeatureExperiment,SpatialExperiment-method
(SpatialFeatureExperiment-coercion),
81
toSpatRasterImage, 93
toSpatRasterImage,BioFormatsImage-method
(toSpatRasterImage), 93
toSpatRasterImage,ExtImage-method
(toSpatRasterImage), 93
transformation
(BioFormatsImage-getters), 19
transformation,BioFormatsImage-method
(BioFormatsImage-getters), 19
translate (SFE-transform), 76
translatelmg, 5, 26, 28, 29, 33, 50, 51, 56,
70, 74,76, 94, 95
translateImg,BioFormatsImage-method
(translatelmg), 94
translateImg,ExtImage-method
(translatelImg), 94
translatelmg,SpatialFeatureExperiment-method
(SFE-image), 74
translatelmg,SpatRasterImage-method
(translatelmg), 94
transpose (SFE-transform), 76
transposelmg, 5, 26, 28, 29, 33, 50, 51, 56,
70, 74-76, 94, 94
transposelmg,BioFormatsImage-method
(transposelmg), 94
transposelmg,ExtImage-method
(transposelmg), 94
transposelmg,SpatialFeatureExperiment-method
(SFE-image), 74
transposelmg, SpatRasterImage-method
(transposeImg), 94
txSpots (rowGeometries), 70
txSpots<- (rowGeometries), 70

unit
(unit,SpatialFeatureExperiment-method),
95
unit,SpatialFeatureExperiment-method,
95

updateObject, 96
updateObject,SpatialFeatureExperiment-method
(updateObject), 96

visium_row_col, 97
VptreeParam, 34, 36

wrap, 72
writeRaster, 56

103

	addVisiumSpotPoly
	affineImg
	aggBboxes
	aggregate,SpatialFeatureExperiment-method
	aggregateTx
	annotGeometries
	annotOp
	annotPred
	annotSummary
	bbox,SpatialFeatureExperiment-method
	bbox_center
	BioFormatsImage
	BioFormatsImage-getters
	cbind,SpatialFeatureExperiment-method
	changeSampleIDs
	colFeatureData
	colGeometries
	containsOutOfMemoryData,SpatialFeatureExperiment-method
	crop
	cropImg
	df2sf
	dim,BioFormatsImage-method
	dim,ExtImage-method
	dimGeometries
	ext
	ExtImage
	findDebrisCells
	findSpatialNeighbors
	findVisiumGraph
	findVisiumHDGraph
	formatTxSpots
	formatTxTech
	gdalParquetAvailable
	getParams
	getPixelSize
	getTechTxFields
	getTissueBoundaryConcave
	getTissueBoundaryImg
	imageIDs
	Img<-,SpatialExperiment-method
	imgRaster
	imgSource
	internal-Voyager
	localResults
	mirrorImg
	multi_listw2sparse
	read10xVisiumSFE
	readCosMX
	readSelectTx
	readVisiumHD
	readVizgen
	readXenium
	reexports
	removeEmptySpace
	rotateImg
	rowGeometries
	sampleIDs
	saveRDS,SpatialFeatureExperiment-method
	scaleImg
	SFE-image
	SFE-transform
	show,SpatialFeatureExperiment-method
	SpatialFeatureExperiment
	SpatialFeatureExperiment-class
	SpatialFeatureExperiment-coercion
	SpatialFeatureExperiment-subset
	spatialGraphs
	SpatRasterImage
	splitByCol
	st_any_pred
	toExtImage
	toSpatRasterImage
	translateImg
	transposeImg
	unit,SpatialFeatureExperiment-method
	updateObject
	visium_row_col
	Index

