Package 'ROSeq'

October 25, 2025

```
Description ROSeq - A rank based approach to modeling gene expression
      with filtered and normalized read count matrix. ROSeq takes
      filtered and normalized read matrix and cell-annotation/condition
      as input and determines the differentially expressed genes between
      the contrasting groups of single cells. One of the input parameters
     is the number of cores to be used.
URL https://github.com/krishan57gupta/ROSeq
BugReports https://github.com/krishan57gupta/ROSeq/issues
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Depends R (>= 4.0)
biocViews GeneExpression, DifferentialExpression, SingleCell
Imports pbmcapply, edgeR, limma
Suggests knitr, rmarkdown, testthat, RUnit, BiocGenerics
VignetteBuilder knitr
git_url https://git.bioconductor.org/packages/ROSeq
git_branch devel
git_last_commit 460dc67
git_last_commit_date 2025-04-15
Repository Bioconductor 3.22
```

Title Modeling expression ranks for noise-tolerant differential

expression analysis of scRNA-Seq data

Type Package

Version 1.21.0

Date/Publication 2025-10-24

Author Krishan Gupta [aut, cre],
 Manan Lalit [aut],
 Aditya Biswas [aut],
 Abhik Ghosh [aut],
 Debarka Sengupta [aut]

Maintainer Krishan Gupta <krishang@iiitd.ac.in>

2 computeDEG

Contents

comp	uteDEG	Con	_						-						_			_						on	np	ar	-
Index																											13
	Tivitivinomanzation	• •	• •	•	•	•	 •	•		•	•	 •	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	
	TMMnormalization																										
	ROSeq																										
	minimizeNLL																										
	L_Tung_single																										10
	initiateAnalysis																										Ó
	getv																										g
	getu2																										8
	getu1																										8
	getI																										-
	getdvda getdvdb																										-
	getdvda																										6
	getdu2da getdu2db																										: 6
	getdu1db																										
	getdu1da																										4
	getDataStatistics .																										
	getd																										3
	findParams																										3
	computeDEG																										2

Description

Uses the (asymptotically) optimum two-sample Wald test based on the MLE of the parameters and its asymptotic variances given by the inverse of the Fisher information matrix

Usage

```
computeDEG(results_1, results_2)
```

Arguments

results_1	A vector corresponding to sub-population one and containing 5 values (a, b, A, number of bins, R2)
results_2	A vector corresponding to sub-population two and containing 5 values (a, b, A, number of bins, R2)

Value

T The Wald test statistic for testing the null hypothesis

See Also

```
getI, findParams
```

findParams 3

findParams	Finds the optimal values of parameters a and b that model the probability distribution of ranks, by Maximising the Log-Likelihood
	only distribution of ranks, by Hammisting the Log Linetinood

Description

Takes in as input the read count data corresponding to one sub-population and the typical gene statistics. Then it splits the entire range into equally sized bins of size $k*\sigma$, where k is a scalar with a default value of 0.05, and σ is the standard deviation of the pulled expression estimates across the cell-groups. Each of these bins corresponds to a rank. Therefore, for each group, cell frequency for each bin maps to a rank. These frequencies are normalized group-wise by dividing by the total cell count within a concerned group.

Usage

```
findParams(ds, geneStats)
```

Arguments

ds The (normalized and filtered) read count data corresponding to a sub-population

geneStats A vector containing 7 values corresponding to the gene data (maximum, mini-

mum, mean, standard deviation, upper multiple of the standard deviation, lower

multiple of standard deviation and log_2(fold change))

Value

results A vector containing 5 values (a, b, A, number of bins, R2)

getd	Finds the double derivative of A	

Description

Finds the double derivative of A with with respect to a, (a, b), b, (a, b) in respective templates from right to left. This first derivative is evaluated at the optimal (a_hat, b_hat). u1, v and u2 constitute the equations required for evaluating the first and second order derivatives of A with respect to parameters a and b

Usage

```
getd(u1, v, du1da, dvda)
```

Arguments

u1	u1
V	V

du1da First derivative of u1 with respect to parameter a dvda First derivative of v with respect to parameter a

4 getdu1da

Value

d2logAda2

getDataStatistics

Evaluates statistics of the read counts corresponding to the gene

Description

Takes in the complete read count vector corresponding to the gene (sp) and also the data corresponding to the two sub-populations (sp1 and sp2)

Usage

```
getDataStatistics(sp, spOne, spTwo)
```

Arguments

sp The complete (normalized and filtered) read count data corresponding to the

gene in question

spOne The (normalized and filtered) read count data corresponding to the first sub-

population

spTwo The (normalized and filtered) read count data corresponding to the second sub-

population

Value

geneStats A vector containing 6 values corresponding to the gene data(maximum, minimum, mean, standard deviation, upper multiple of standard deviation and lower multiple of standard deviation)

getdu1da	Finds the first derivative of u1 with respect to a.	This first derivative is
	evaluated at the optimal (a_hat, b_hat).	

Description

u1, v and u2 constitute the equations required for evaluating the first and second order derivatives of A with respect to parameters a and b

Usage

```
getdu1da(coefficients, r)
```

Arguments

coefficients the optimal values of a and b

r the rank vector

Value

du1da

getdu1db 5

~ a + d 1 db	Finds the first desirection of all with magnest to b. This first desirection is
getdu1db	Finds the first derivative of u1 with respect to b. This first derivative is
	evaluated at the optimal (a_hat, b_hat).

Description

u1, v and u2 constitute the equations required for evaluating the first and second order derivatives of A with respect to parameters a and b

Usage

```
getdu1db(coefficients, r)
```

Arguments

coefficients the optimal values of a and b
r the rank vector

Value

du1db

getdu2da Finds the first derivative of u2 with respect to a. This first derivative is evaluated at the optimal (a_hat, b_hat).

Description

u1, v and u2 constitute the equations required for evaluating the first and second order derivatives of A with respect to parameters a and b

Usage

```
getdu2da(coefficients, r)
```

Arguments

coefficients the optimal values of a and b
r the rank vector

Value

du2da

6 getdvda

getdu2db	Finds the first derivative of u2 with respect to b. This first derivative is
	evaluated at the optimal (a_hat, b_hat).

Description

u1, v and u2 constitute the equations required for evaluating the first and second order derivatives of A with respect to parameters a and b

Usage

```
getdu2db(coefficients, r)
```

Arguments

```
coefficients the optimal values of a and b
r the rank vector
```

Value

du2db

getdvda

Finds the first derivative of v with respect to a. This first derivative is evaluated at the optimal (a_hat, b_hat).

Description

u1, v and u2 constitute the equations required for evaluating the first and second order derivatives of A with respect to parameters a and b

Usage

```
getdvda(coefficients, r)
```

Arguments

```
coefficients the optimal values of a and b
r the rank vector
```

Value

dvda

getdvdb 7

getdvdb

Finds the first derivative of v with respect to b. This first derivative is evaluated at the optimal (a_hat, b_hat).

Description

u1, v and u2 constitute the equations required for evaluating the first and second order derivatives of A with respect to parameters a and b

Usage

```
getdvdb(coefficients, r)
```

Arguments

coefficients the optimal values of a and b

r the rank vector

Value

dvdb

getI

Computes the Fisher Information Matrix

Description

The Fisher Information Matrix and its derivatives are essential to evulate the minima of log likelihood

Usage

```
getI(results)
```

Arguments

results

A vector containing 5 values (a, b, A, number of bins, R2)

Value

I The Fisher Information Matrix

getu2

getu1

Computes u1

Description

u1, v and u2 constitute the equations required for evaluating the first and second order derivatives of A with respect to parameters a and b

Usage

```
getu1(coefficients, r)
```

Arguments

coefficients the optimal values of a and b

r the rank vector

Value

u1

getu2

Computes u2

Description

u1, v and u2 constitute the equations required for evaluating the first and second order derivatives of A with respect to parameters a and b

Usage

```
getu2(coefficients, r)
```

Arguments

coefficients the optimal values of a and b
r the rank vector

Value

u2

getv 9

getv Computes v

Description

u1, v and u2 constitute the equations required for evaluating the first and second order derivatives of A with respect to parameters a and b

Usage

```
getv(coefficients, r)
```

Arguments

coefficients the optimal values of a and b
r the rank vector

Value

v

initiateAnalysis

Computes differential analysis for a given gene

Description

Takes in the row index which corresponds to a gene and evaluates for differential expression across two cell types.

Usage

```
initiateAnalysis(gene, scdata, scgroups, classOne, classTwo)
```

Arguments

gene	The row index of the normalised and filtered, read count matrix
scdata	The normalised and filtered, read count matrix
scgroups	The location of the two sub-populations
classOne	The location of the first sub-population, for example, sample names as given as columns names
classTwo	The location of thesecond sub-population, for example, sample names as given as columns names

Value

```
combinedResults A vector containing 12 values (gr1: a, g1: b, gr1: A, gr1: number of bins, gr1: R2, gr2: a, gr2: b, gr2: A, gr2: number of bins, gr2: R2, T, p)
```

10 minimizeNLL

L_Tung_single

Single cell samples for DE genes analysis

Description

Three replicates from three human induced pluripotent stem cell (iPSC) lines were considered. 96 single cells were considered in each of the three replicates corresponding to one of the three individuals (these shall be referred to by their labels NA19098,NA19101 and NA19239)

Usage

```
data("L_Tung_single")
```

Format

The format is: list of cells corresponding NA19098 versus NA19101 and groups labels.

Details

filtered and normalized data

Source

Tung, P.-Y.et al.Batch effects and the effective design of single-cell geneexpression studies. Scientific reports 7, 39921 (2017).

References

Tung, P.-Y.et al.Batch effects and the effective design of single-cell geneexpression studies. Scientific reports7, 39921 (2017).

Examples

```
data(L_Tung_single)
## summary(ROSeq::L_Tung_single)
```

minimizeNLL

Minimizes the Negative Log-Likelihood by iterating across values of parameters a and b

Description

Takes in as input a vector of values (coefficients), the number of bins and the normalized probability distribution of ranks

Usage

```
minimizeNLL(coefficients, r, readCount)
```

ROSeq 11

Arguments

coefficients A vector containing two values for a and b

r The number of bins

readCount A vector of (normalized) frequency of read counts that fall within each bin

Value

NLL Negative-Log Likelihood for the input coefficients

See Also

findParams

ROSea	Modeling expression ranks for noise-tolerant differential expression
	analysis of scRNA-Seq data

Description

Takes in the complete filtered and normalized read count matrix, the location of the two subpopulations and the number of cores to be used

Usage

```
ROSeq(countData, condition, numCores = 1)
```

Arguments

countData The normalised and filtered, read count matrix, with row names as genes name/ID

and column names as sample id/name

condition Labels for the two sub-populations numCores The number of cores to be used

Value

pValues and FDR adjusted p significance values

Examples

```
countData<-list()
countData$count<-ROSeq::L_Tung_single$NA19098_NA19101_count
countData$group<-ROSeq::L_Tung_single$NA19098_NA19101_group
head(countData$count)
gene_names<-rownames(countData$count)
countData$count<-apply(countData$count,2,function(x) as.numeric(x))
rownames(countData$count)<-gene_names
countData$count<-countData$count[,colSums(countData$count> 0) > 2000]
g_keep <- apply(countData$count,1,function(x) sum(x>2)>=3)
countData$count<-countData$count[g_keep,]
countData$count<-limma::voom(ROSeq::TMMnormalization(countData$count))
output<-ROSeq(countData=countData$count$E, condition = countData$group)
output</pre>
```

12 TMMnormalization

TMMnormalization

TMM Normalization.

Description

Trimmed Means of M values (TMM) normalization (on the basis of edgeR package)

Usage

TMMnormalization(countTable)

Arguments

countTable

The filtered, read count matrix, with row names as genes name/ID and column names as sample id/name

Value

countTableTMM

Examples

```
countData<-list()
countData$count<-ROSeq::L_Tung_single$NA19098_NA19101_count
countData$group<-ROSeq::L_Tung_single$NA19098_NA19101_group
head(countData$count)
gene_names<-rownames(countData$count)
countData$count<-apply(countData$count,2,function(x) as.numeric(x))
rownames(countData$count)<-gene_names
countData$count<-countData$count[,colSums(countData$count> 0) > 2000]
g_keep <- apply(countData$count,1,function(x) sum(x>2)>=3)
countData$count<-countData$count[g_keep,]
countTableTMM<-ROSeq::TMMnormalization(countData$count)
countTableTMM</pre>
```

Index

```
* datasets
    L\_Tung\_single, \textcolor{red}{10}
computeDEG, 2
findParams, 2, 3, 11
getd, 3
getDataStatistics, 4
getdu1da, 4
getdu1db, 5
getdu2da, 5
getdu2db, 6
getdvda, 6
getdvdb, 7
getI, 2, 7
getu1, 8
getu2, 8
getv, 9
{\tt initiateAnalysis}, {\tt 9}
L_Tung_single, 10
minimizeNLL, 10
ROSeq, 11
TMMnormalization, 12
```