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adjacency_matrix_from_data_frame
Create an adjacency matrix from a data frame

Description
Convert a data frame containing pairwise interactions into an adjacency matrix. The resulting square
adjacency matrix contains ones for proteins that are found in interactions and zeroes otherwise.
Usage

adjacency_matrix_from_data_frame(dat, symmetric = TRUE, node_columns = c(1, 2))
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Arguments
dat a data frame containing pairwise interactions
symmetric if true, interactions in both directions will be added to the adjacency matrix

node_columns a vector of length two, denoting either the indices (integer vector) or column
names (character vector) of the columns within the data frame containing the
nodes participating in pairwise interactions; defaults to the first two columns of
the data frame (c(1, 2))

Value

an adjacency matrix between all interacting proteins

Examples

ppi <- data.frame(protein_A = paste@("protein”, seq_len(10)),
protein_B = paste@("protein”, c(rep(3, 2), rep(5, 5),
rep(7, 3))))

adj <- adjacency_matrix_from_data_frame(ppi)

adjacency_matrix_from_list
Create an adjacency matrix from a list of complexes

Description
Convert a list of complexes into a pairwise adjacency matrix. The resulting square adjacency matrix
contains ones for proteins that are found in the same complex and zeroes otherwise.

Usage

adjacency_matrix_from_list(complexes)

Arguments
complexes a list of complexes, with each entry containing complex subunits as a character
vector
Value

an adjacency matrix between all complex subunits

Examples

data(gold_standard)
adj <- adjacency_matrix_from_list(gold_standard)
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aic Model selection for Gaussian mixture models

Description

Calculate the AIC, corrected AIC, or BIC for a curve fit with a Gaussian mixture model by non-
linear least squares optimization. This function permits the calculation of the AIC/AICc/BIC after
rejecting some Gaussians in the model, for example because their centres are outside the bounds of
the profile.

Usage

gaussian_aic(coefs, chromatogram)
gaussian_aicc(coefs, chromatogram)

gaussian_bic(coefs, chromatogram)

Arguments

coef's the coefficients of the Gaussian mixture model, output by fit_gaussians

chromatogram  the raw elution profile

Value

the AIC, corrected AIC, or BIC of the fit model

build_gaussians Deconvolve profiles into Gaussian mixture models

Description

Identify peaks in co-fractionation profiles by deconvolving peaks in Gaussian mixture models.
Models are mixtures of between 1 and 5 Gaussians. Profiles are pre-processed prior to building
Gaussians by filtering and cleaning. By default, profiles with fewer than 5 non-missing points, or
fewer than 5 consecutive points after imputation of single missing values, are removed. Profiles
are cleaned by replacing missing values with near-zero noise, imputing single missing values as the
mean of neighboring points, and smoothing with a moving average filter.

Usage

build_gaussians(
profile_matrix,
min_points = 1,
min_consecutive = 5,
impute_NA = TRUE,
smooth = TRUE,
smooth_width = 4,
max_gaussians = 5,



build_gaussians

criterion =

C(”AICC” , MAICM , "BIC”) ,

max_iterations = 50,

min_R_squared = 0.5,

method = c("guess”, "random"),
filter_gaussians_center = TRUE,
filter_gaussians_height = 0.15,
filter_gaussians_variance_min = 0.5,
filter_gaussians_variance_max = 50

Arguments

profile_matrix

min_points

min_consecutive

impute_NA

smooth

smooth_width

max_gaussians

criterion

max_iterations

min_R_squared

method

a numeric matrix of co-elution profiles, with proteins in rows, or aMSnSet object

filter profiles without at least this many total, non-missing points; passed to
filter_profiles

filter profiles without at least this many consecutive, non-missing points; passed
to filter_profiles

if true, impute single missing values with the average of neighboring values;
passed to clean_profiles

if true, smooth the chromatogram with a moving average filter; passed to clean_profiles

width of the moving average filter, in fractions; passed to clean_profiles

the maximum number of Gaussians to fit; defaults to 5. Note that Gaussian
mixtures with more parameters than observed (i.e., non-zero or NA) points will
not be fit. Passed to choose_gaussians

the criterion to use for model selection; one of "AICc" (corrected AIC, and
default), "AIC", or "BIC". Passed to choose_gaussians

the number of times to try fitting the curve with different initial conditions; de-
faults to 50. Passed to fit_gaussians

the minimum R-squared value to accept when fitting the curve with different
initial conditions; defaults to 0.5. Passed to fit_gaussians

the method used to select the initial conditions for nonlinear least squares op-
timization (one of "guess" or "random"); see make_initial_conditions for
details. Passed to fit_gaussians

filter_gaussians_center

true or false: filter Gaussians whose centres fall outside the bounds of the chro-
matogram. Passed to fit_gaussians

filter_gaussians_height

Gaussians whose heights are below this fraction of the chromatogram height
will be filtered. Setting this value to zero disables height-based filtering of fit
Gaussians. Passed to fit_gaussians

filter_gaussians_variance_min

Gaussians whose variance falls below this number of fractions will be filtered.
Setting this value to zero disables filtering. Passed to fit_gaussians

filter_gaussians_variance_max

Gaussians whose variance is above this number of fractions will be filtered.
Setting this value to zero disables filtering. Passed to fit_gaussians
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Value

a list of fit Gaussian mixture models, where each item in the list contains the following five fields:
the number of Gaussians used to fit the curve; the R*2 of the fit; the number of iterations used to fit
the curve with different initial conditions; the coefficients of the fit model; and the curve predicted
by the fit model. Profiles that could not be fit by a Gaussian mixture model above the minimum
R-squared cutoff will be absent from the returned list.

Examples

data(scott)
mat <- clean_profiles(scott[seq_len(5), 1)
gauss <- build_gaussians(mat, max_gaussians = 3)

calculate_autocorrelation
Calculate the autocorrelation for each protein between a pair of co-
elution experiments.

Description

For a given protein, the correlation coefficient to all other proteins in the first condition is calcu-
lated, yielding a vector of correlation coefficients. The same procedure is repeated for the second
condition, and the two vectors of correlation coefficients are themselves correlated, yielding a met-
ric whereby higher values reflect proteins with unchanging interaction profiles between conditions,
while lower values reflect proteins with substantially changing interaction profiles.

Usage
calculate_autocorrelation(
profilel,
profile2,
cor_method = c("pearson”, "spearman”, "kendall"),

min_replicates = 1,
min_fractions = 1,
min_pairs = @

)
Arguments
profilel a numeric matrix or data frame with proteins in rows and fractions in columns,
or a MSnSet object, representing the first co-elution condition
profile2 a numeric matrix or data frame with proteins in rows and fractions in columns,
or a MSnSet object, representing the second co-elution condition
cor_method the correlation method to use; one of "pearson”, "spearman”, or "kendall").

min_fractions filter proteins not quantified in at least this many fractions

min_pairs remove correlations between protein pairs not co-occuring in at least this many
fractions from the autocorrelation calculation
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Details

Note that all of zero, NA, NaN, and infinite values are all treated equivalently as missing values when
applying the min_fractions and min_pairs filters, but different handling of missing values will
produce different autocorrelation scores.

Value

a named vector of autocorrelation scores for all proteins found in both matrices.

calculate_features Calculate the default features used to predict interactions in PrinCE

Description

Calculate the six features that are used to discriminate interacting and non-interacting protein pairs
based on co-elution profiles in PrInCE, namely: raw Pearson R value, cleaned Pearson R value, raw
Pearson P-value, Euclidean distance, co-peak, and co-apex. Optionally, one or more of these can be
disabled.

Usage

calculate_features(
profile_matrix,
gaussians,
min_pairs = 0,
pearson_R_raw = TRUE,
pearson_R_cleaned = TRUE,
pearson_P = TRUE,
euclidean_distance = TRUE,
co_peak = TRUE,
co_apex = TRUE,
n_pairs = FALSE,
max_euclidean_quantile = 0.9

Arguments

profile_matrix anumeric matrix of co-elution profiles, with proteins in rows, or aMSnSet object
gaussians a list of Gaussian mixture models fit to the profile matrix by 1link{build_gaussians}

min_pairs minimum number of overlapping fractions between any given protein pair to
consider a potential interaction

pearson_R_raw if true, include the Pearson correlation (R) between raw profiles as a feature
pearson_R_cleaned
if true, include the Pearson correlation (R) between cleaned profiles as a feature
pearson_P if true, include the P-value of the Pearson correlation between raw profiles as a
feature
euclidean_distance
if true, include the Euclidean distance between cleaned profiles as a feature
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co_peak if true, include the ’co-peak score’ (that is, the distance, in fractions, between
the single highest value of each profile) as a feature

co_apex if true, include the ’co-apex score’ (that is, the minimum Euclidean distance
between any pair of fit Gaussians) as a feature

max_euclidean_quantile
very high Euclidean distance values are trimmed to avoid numerical precision

issues; values above this quantile will be replaced with the value at this quantile
(default: 0.9)

Value

a data frame containing the calculated features for all possible protein pairs

calculate_precision Calculate precision at each point in a sequence

Description

Calculate the precision of a list of interactions at each point in the list, given a set of labels.

Usage

calculate_precision(labels)

Arguments

labels a vector of zeroes (FPs) and ones (TPs)

Value

a vector of the same length giving the precision at each point in the input vector

Examples

## calculate features

data(scott)

data(scott_gaussians)

subset <- scott[seq_len(500), 1 ## limit to first 500 proteins

gauss <- scott_gaussians[names(scott_gaussians) %in% rownames(subset)]

features <- calculate_features(subset, gauss)

## make training labels

data(gold_standard)

ref <- adjacency_matrix_from_list(gold_standard)

labels <- make_labels(ref, features)

## predict interactions with naive Bayes classifier

ppi <- predict_ensemble(features, labels, classifier = "NB", cv_folds = 3,
models = 1)

## tag precision of each interaction

ppi$precision <- calculate_precision(ppi$label)
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check_gaussians Check the format of a list of Gaussians

Description

Test whether an input list of Gaussians conforms to the format expected by PrInCE: that is, a named
list with five fields for each entry, i.e., the number of Gaussians in the mixture model, the r2 value,
the number of iterations used by nls, the coefficients of each model, and the fitted curve.

Usage

check_gaussians(
gaussians,
proteins = NULL,
replicate_idx = NULL,
n_error = 3,
pct_warning = 0.1

)
Arguments
gaussians the list of Gaussians
proteins the complete set of input proteins

replicate_idx the replicate being analyzed, if input proteins are provided; used to throw more
informative error messages

n_error minimum number of proteins that can have fitted Gaussians without throwing
an error
pct_warning minimum fraction of proteins that can have fitted Gaussians without giving a
warning
Details

Optionally, some extra checks will be done on the fraction of proteins in the complete dataset for
which a Gaussian mixture model could be fit, if provided. In particular, the function will throw
an error if fewer than n_error proteins have a fitted Gaussian, and emit a warning if fewer than
pct_warning do.

Value

TRUE if all conditions are met, but throws an error if any is not

Examples

data(scott_gaussians)
check_gaussians(scott_gaussians)
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choose_gaussians

Fit a Gaussian mixture model to a co-elution profile

Description

Fit mixtures of one or more Gaussians to the curve formed by a chromatogram profile, and choose
the best fitting model using an information criterion of choice.

Usage

choose_gaussians(

chromatogram,

points = NULL,

max_gaussians = 5,

criterion = c("AICc", "AIC", "BIC"),
max_iterations = 10,

min_R_squared = 0.5,

method = c("guess”, "random"),
filter_gaussians_center = TRUE,
filter_gaussians_height = 0.15,

filter_gaussians_variance_min = 0.1,
filter_gaussians_variance_max = 5

Arguments

chromatogram
points
max_gaussians
criterion
max_1iterations

min_R_squared

method

0

a numeric vector corresponding to the chromatogram trace
optional, the number of non-NA points in the raw data

the maximum number of Gaussians to fit; defaults to 5. Note that Gaussian
mixtures with more parameters than observed (i.e., non-zero or NA) points will
not be fit.

the criterion to use for model selection; one of "AICc" (corrected AIC, and
default), "AIC", or "BIC"

the number of times to try fitting the curve with different initial conditions; de-
faults to 10

the minimum R-squared value to accept when fitting the curve with different
initial conditions; defaults to 0.5

the method used to select the initial conditions for nonlinear least squares op-
timization (one of "guess" or "random"); see make_initial_conditions for
details

filter_gaussians_center

true or false: filter Gaussians whose centres fall outside the bounds of the chro-
matogram

filter_gaussians_height

Gaussians whose heights are below this fraction of the chromatogram height
will be filtered. Setting this value to zero disables height-based filtering of fit
Gaussians
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filter_gaussians_variance_min
Gaussians whose variance is below this threshold will be filtered. Setting this
value to zero disables filtering.

filter_gaussians_variance_max
Gaussians whose variance is above this threshold will be filtered. Setting this
value to zero disables filtering.

Value

a list with five entries: the number of Gaussians used to fit the curve; the R*2 of the fit; the number
of iterations used to fit the curve with different initial conditions; the coefficients of the fit model;
and the curve predicted by the fit model.

Examples

data(scott)
chrom <- clean_profile(scott[1, 1)
gauss <- choose_gaussians(chrom, max_gaussians = 3)

clean_profile Preprocess a co-elution profile

Description

Clean a co-elution/co-fractionation profile by (1) imputing single missing values with the average of
neighboring values, (2) replacing missing values with random, near-zero noise, and (3) smoothing
with a moving average filter.

Usage

clean_profile(
chromatogram,
impute_NA = TRUE,
smooth = TRUE,
smooth_width = 4,
noise_floor = 0.001

Arguments

chromatogram  anumeric vector corresponding to the chromatogram trace

impute_NA if true, impute single missing values with the average of neighboring values
smooth if true, smooth the chromatogram with a moving average filter
smooth_width  width of the moving average filter, in fractions

noise_floor mean value of the near-zero noise to add

Value

a cleaned profile
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Examples

data(scott)
chrom <- scott[16, ]
cleaned <- clean_profile(chrom)

clean_profiles Preprocess a co-elution profile matrix

Description

Clean a matrix of co-elution/co-fractionation profiles by (1) imputing single missing values with
the average of neighboring values, (2) replacing missing values with random, near-zero noise, and
(3) smoothing with a moving average filter.

Usage

clean_profiles(
profile_matrix,
impute_NA = TRUE,
smooth = TRUE,
smooth_width = 4,
noise_floor = 0.001

Arguments
profile_matrix anumeric matrix of co-elution profiles, with proteins in rows, or aMSnSet object
impute_NA if true, impute single missing values with the average of neighboring values
smooth if true, smooth the chromatogram with a moving average filter
smooth_width  width of the moving average filter, in fractions

noise_floor mean value of the near-zero noise to add

Value

a cleaned matrix

Examples

data(scott)
mat <- scott[c(1, 16), 1
mat_clean <- clean_profiles(mat)
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concatenate_features  Combine features across multiple replicates

Description

Concatenate features extracted from multiple replicates to a single data frame that will be used as
input to a classifier. Doing so allows the classifier to naturally weight evidence for an interaction
between each protein pair from each feature in each replicate in proportion to its discriminatory
power on known examples.

Usage

concatenate_features(feature_list)

Arguments
feature_list a list of feature data frames, as produced by calculate_features, with pro-
teins in the first two columns
Value

a data frame containing features for all protein pairs across all replicates

co_apex Calculate the co-apex score for every protein pair

Description
Calculate the co-apex score for every pair of proteins. This is defined as the minimum Euclidean
distance between any two Gaussians fit to each profile.

Usage

co_apex(gaussians, proteins = NULL)

Arguments
gaussians a list of Gaussian mixture models fit to the profile matrix by 1ink{build_gaussians}
proteins all proteins being scored, optionally including those without Gaussian fits

Value

a matrix of co-apex scores

Examples

data(scott_gaussians)
gauss <- scott_gaussians[seq_len(25)]
CA <- co_apex(gauss)
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detect_complexes Detect significantly interacting complexes in a chromatogram matrix

Description

Use a permutation testing approach to identify complexes that show a significant tendency to inter-
act, relative to random sets of complexes of equivalent size. The function begins by calculating the
Pearson correlation or Euclidean distance between all proteins in the matrix, and

Usage

detect_complexes(
profile_matrix,
complexes,
method = c("pearson”, "euclidean”),
min_pairs = 10,
bootstraps = 100,
progress = TRUE

Arguments

profile_matrix amatrix of chromatograms, with proteins in the rows and fractions in the columns,
or a MSnSet object

complexes a named list of protein complexes, where the name is the complex name and the
entries are proteins within that complex

method method to use to calculate edge weights; one of pearson or euclidean

min_pairs the minimum number of pairwise observations to count a correlation or distance
towards the z score

bootstraps number of bootstraps to execute to estimate z scores
progress whether to show the progress of the function
Value

a named vector of z scores for each complex in the input list

Examples

data(scott)

data(gold_standard)

complexes <- gold_standard[lengths(gold_standard) >= 3]

z_scores <- detect_complexes(t(scott), complexes)
length(na.omit(z_scores)) ## number of complexes that could be tested
z_scores[which.max(z_scores)] ## most significant complex
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filter_profiles Filter a co-elution profile matrix

Description

Filter a matrix of co-elution/co-fractionation profiles by removing profiles without a certain number
of non-mising or consecutive points.

Usage

filter_profiles(profile_matrix, min_points = 1, min_consecutive = 5)

Arguments

profile_matrix anumeric matrix of co-elution profiles, with proteins in rows, or aMSnSet object

min_points filter profiles without at least this many total, non-missing points

min_consecutive
filter profiles without at least this many consecutive, non-missing points

Value

the filtered profile matrix

Examples

data(scott)
nrow(scott)
filtered <- filter_profiles(scott)
nrow(scott)

fit_curve Output the fit curve for a given mixture of Gaussians

Description

For a Gaussian mixture model fit to a curve by fit_gaussians, output the fit curve using the
coefficients rather than the nls object. This allows individual Gaussians to be removed from the
fit model: for example, if their height is below a certain threshold, or their centres are outside the
bounds of the chromatogram.

Usage

fit_curve(coef, indices)
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Arguments
coef numeric vector of coefficients for a Gaussian mixture model fit by fit_gaussians.
This function assumes that the heights of the Gaussians are specified by coef-
ficients beginning with "A" ("Al1", "A2", "A3", etc.), centres are specified by
coefficients beginning with "mu", and standard deviations are specified by coef-
ficients beginning with "sigma".
indices the indices, or x-values, to predict a fitted curve for (for example, the fractions
in a given chromatogram)
Value

the fitted curve

Examples

data(scott)

chrom <- clean_profile(scott[1, 1)

fit <- fit_gaussians(chrom, n_gaussians = 1)
curve <- fit_curve(fit$coefs, seq_along(chrom))

fit_gaussians Fit a mixture of Gaussians to a chromatogram curve

Description

Fit mixtures of one or more Gaussians to the curve formed by a chromatogram profile, using non-
linear least-squares.

Usage

fit_gaussians(
chromatogram,
n_gaussians,
max_iterations = 10,
min_R_squared = 0.5,
method = c("guess”, "random"),
filter_gaussians_center = TRUE,
filter_gaussians_height = 0.15,
filter_gaussians_variance_min = 0.1,
filter_gaussians_variance_max = 50

Arguments

chromatogram  anumeric vector corresponding to the chromatogram trace
n_gaussians the number of Gaussians to fit

max_iterations the number of times to try fitting the curve with different initial conditions; de-
faults to 10
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min_R_squared the minimum R-squared value to accept when fitting the curve with different
initial conditions; defaults to 0.5

method the method used to select the initial conditions for nonlinear least squares op-
timization (one of "guess" or "random"); see make_initial_conditions for
details

filter_gaussians_center
true or false: filter Gaussians whose centres fall outside the bounds of the chro-
matogram

filter_gaussians_height
Gaussians whose heights are below this fraction of the chromatogram height
will be filtered. Setting this value to zero disables height-based filtering of fit
Gaussians

filter_gaussians_variance_min
Gaussians whose variance falls below this number of fractions will be filtered.
Setting this value to zero disables filtering.

filter_gaussians_variance_max
Gaussians whose variance is above this number of fractions will be filtered.
Setting this value to zero disables filtering.

Value

a list with six entries: the number of Gaussians used to fit the curve; the R*2 of the fit; the number
of iterations used to fit the curve with different initial conditions; the coefficients of the fit model;
and the fit curve predicted by the fit model.

Examples

data(scott)
chrom <- clean_profile(scott[1, 1)
fit <- fit_gaussians(chrom, n_gaussians = 1)

gold_standard Reference set of human protein complexes

Description

A reference set of 467 experimentally confirmed human protein complexes, derived from the EBI
Complex Portal database.

Usage

data(gold_standard)

Format

a list containing 467 entries (character vectors)
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Details

467 protein complexes, ranging in size from 2 to 44 proteins and involving 877 proteins in total,
to provide a reference set of true positive and true negative interactions (intra- and inter-complex
interactions, respectively) for demonstration in PrInCE analysis of a co-elution dataset. Other "gold
standards" are possible in practice, most notably the CORUM database; however, the Complex

Portal reference set is included in this package due to its CC-BY license.

Source

https://www.ebi.ac.uk/complexportal/complex/organisms

impute_neighbors Impute single missing values

Description

Impute single missing values within a chromatogram profile as the average of their neighbors.

Usage

impute_neighbors(chromatogram)

Arguments

chromatogram  anumeric vector corresponding to the chromatogram trace

Value

the imputed chromatogram

Examples

data(scott)
chrom <- scott[16, ]
imputed <- impute_neighbors(chrom)

is_unweighted Test whether a network is unweighted

Description

Test whether a network is unweighted

Usage

is_unweighted(network)

Arguments

network the network to analyze
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Value

true if the input network is a square logical or numeric matrix

Examples

data(gold_standard)
adj <- adjacency_matrix_from_list(gold_standard)
is_unweighted(adj) ## returns TRUE
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is_weighted Test whether a network is weighted

Description

Test whether a network is weighted

Usage

is_weighted(network)

Arguments

network the network to analyze

Value

true if the input network is a square numeric matrix with more than two values

Examples

data(gold_standard)
adj <- adjacency_matrix_from_list(gold_standard)
is_weighted(adj) ## returns FALSE

kristensen Interactome of HeLa cells

Description

Co-elution profiles derived from size exclusion chromatography (SEC) of HeLa cell lysates.

Usage

data(kristensen)

Format

a data frame with 1875 rows and 48 columns, with proteins in rows and SEC fractions in columns
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Details

Protein quantitation was accomplished by SILAC (stable isotopic labelling by amino acids in cell
culture), and is ratiometric, i.e., it reflects the ratio between the intensity of the heavy isotope and the
light isotope ("H/L"). The dataset was initially described in Kristensen et al., Nat. Methods 2012.
The medium isotope channel from replicate 1 (Supplementary Table 1a in the online supplementary
information) is included in the PrInCE package. The R script used to generate this matrix from the
supplementary materials of the paper is provided in the data-raw directory of the package source
code.

Source

https://www.nature.com/articles/nmeth.2131

kristensen_gaussians  Fitted Gaussian mixture models for the kristensen dataset

Description

The kristensen dataset consists of protein co-migration profiles derived from size exclusion chro-
matography (SEC) of unstimulated HeLa cell lysates. The kristensen_gaussians object contains
Gaussian mixture models fit by the function build_gaussians; this is bundled with the R package
in order to expedite the demonstration code, as the process of Gaussian fitting is one of the more
time-consuming aspects of the package.

Usage

data(kristensen_gaussians)

Format
a named list with 1117 entries; names are proteins, and list items conain information about fitted
Gaussians in the format that PrinCE expects

Details

As with the kristensen dataset, the code used to generate this data object is provided in the
data-raw directory of the package source.

make_feature_from_data_frame
Create a feature vector for a classifier from a data frame

Description

Convert a data frame containing pairwise interactions, and a score or other data associated with
each interaction, into a feature vector that matches the dimensions of a data frame used as input to
a classifier, such as a naive Bayes, random forests, or support vector machine classifier.


https://www.nature.com/articles/nmeth.2131
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Usage

make_feature_from_data_frame(
dat,
target,
dat_node_cols = c(1, 2),
target_node_cols = c(1, 2),
feature_col = 3,
default_value = NA

)
Arguments
dat a data frame containing pairwise interactions and a feature to be converted to a
vector in a third column
target the data frame of features that will be provided as input to a classifier

dat_node_cols a vector of length two, denoting either the indices (integer vector) or column
names (character vector) of the columns within the feature data frame; defaults
to the first two columns of the data frame (c(1, 2))

target_node_cols
a vector of length two, denoting either the indices (integer vector) or column
names (character vector) of the columns within the target data frame; defaults to
the first two columns of the data frame (c(1, 2))

feature_col the name or index of the column in the first data frame that contains a feature
for each interaction

default_value the default value for protein pairs that are not in the first data frame (set, by
default, to NA)

Value

a vector matching the dimensions and order of the feature data frame, to use as input for a classifier
in interaction prediction

make_feature_from_expression
Create a feature vector from expression data

Description

Convert a gene or protein expression matrix into a feature vector that matches the dimensions of
a data frame used as input to a classifier, such as a naive Bayes, random forests, or support vector
machine classifier, by calculating the correlation between each pair of genes or proteins.

Usage

make_feature_from_expression(expr, dat, node_columns = c(1, 2), ...)
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Arguments

expr

dat

node_columns

Value

make_initial conditions

amatrix containing gene or protein expression data, with genes/proteins in columns
and samples in rows

the data frame of features to be used by the classifier, with protein pairs in the
columns specified by the node_columns argument

a vector of length two, denoting either the indices (integer vector) or column
names (character vector) of the columns within the data frame containing the
nodes participating in pairwise interactions; defaults to the first two columns of
the data frame (c(1, 2))

arguments passed to cor

a vector matching the dimensions and order of the feature data frame, to use as input for a classifier
in interaction prediction

make_initial_conditions

Make initial conditions for curve fitting with a mixture of Gaussians

Description

Construct a set of initial conditions for curve fitting using nonlinear least squares using a mixture of
Gaussians. The "guess" method ports code from the Matlab release of PrInCE. This method finds
local maxima within the chromatogram, orders them by their separation (in number of fractions)
from the previous local maxima, and uses the positions and heights of these local maxima (+/-
some random noise) as initial conditions for Gaussian curve-fitting. The "random" method simply
picks random values within the fraction and intensity intervals as starting points for Gaussian curve-
fitting. The initial value of sigma is set by default to a random number within +/- 0.5 of two for
both modes; this is based on our manual inspection of a large number of chromatograms.

Usage

make_initial_conditions(

chromatogram,

n_gaussians,

method = c("guess”, "random"),
sigma_default = 2,

sigma_noise

0.5,

mu_noise = 1.5,

A_noise = 0.5

Arguments

chromatogram
n_gaussians
method

sigma_default

a numeric vector corresponding to the chromatogram trace
the number of Gaussians being fit
one of "guess" or "random", discussed above

the default mean initial value of sigma
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sigma_noise

mu_noise
A_noise
Value
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the amount of random noise to add or subtract from the default mean initial value
of sigma

the amount of random noise to add or subtract from the Gaussian centers in
"guess" mode

the amount of random noise to add or subtract from the Gaussian heights in
"guess" mode

a list of three numeric vectors (A, mu, and sigma), each having a length equal to the maximum
number of Gaussians to fit

Examples

data(scott)

chrom <- clean_profile(scott[16, 1)

set.seed(0)

start <- make_initial_conditions(chrom, n_gaussians = 2, method = "guess")

make_labels

Make labels for a classifier based on a gold standard

Description

Create labels for a classifier for protein pairs in the same order as in a dataset that will be used as
input to a classifier, in a memory-friendly way.

Usage

make_labels(gold_standard, dat, node_columns = c(1, 2), protein_groups = NULL)

Arguments

gold_standard
dat

node_columns

protein_groups

Value

an adjacency matrix of gold-standard interactions
a data frame with interacting proteins in the first two columns

a vector of length two, denoting either the indices (integer vector) or column
names (character vector) of the columns within the data frame containing the
nodes participating in pairwise interactions; defaults to the first two columns of
the data frame (c(1, 2))

optionally, specify a list linking each protein in the first two columns of the input
data frame to a protein group

a vector of the same length as the input dataset, containing NAs for protein pairs not in the gold
standard and ones or zeroes based on the content of the adjacency matrix
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Examples

data(gold_standard)

adj <- adjacency_matrix_from_list(gold_standard)

proteins <- unique(unlist(gold_standard))

dat <- data.frame(protein_A = sample(proteins, 10),
protein_B = sample(proteins, 10))

labels <- make_labels(adj, dat)

match_matrix_dimensions
Match the dimensions of a query matrix to a profile matrix

Description

Match the row and column names of a square feature matrix to the row names of a profile matrix,
adding rows/columns containing NAs when proteins in the profile matrix are missing from the feature
matrix.

Usage

match_matrix_dimensions(query, profile_matrix)

Arguments

query a square matrix containing features for pairs of proteins

profile_matrix the profile matrix for which interactions are being predicted

Value

a square matrix with the same row and column names as the input profile matrix, for use in interac-
tion prediction

Examples

data(gold_standard)

subset <- adjacency_matrix_from_list(gold_standard[seq(1, 200)]1)
target <- adjacency_matrix_from_list(gold_standard)

matched <- match_matrix_dimensions(subset, target)

dim(subset)

dim(target)

dim(matched)
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predict_ensemble

Predict interactions using an ensemble of classifiers

Description

Use an ensemble of classifiers to predict interactions from co-elution dataset features. The ensemble
approach ensures that results are robust to the partitioning of the dataset into folds. For each model,
the median of classifier scores across all folds is calculated. Then, the median of all such medians

across all models i

Usage

predict_ensembl
dat,
labels,
classifier =
models = 1,
cv_folds =
trees 500,
node_columns

Arguments

dat

labels

classifier

models

cv_folds

trees

node_columns

Value

s calculated.

e(

C(”NB”, ”SVM”, HRFH’ "LR”),

10,

c(1, 2)

a data frame containing interacting gene/protein pairs in the first two columns,
and the features to use for classification in the remaining columns

labels for each interaction in dat: O for negatives, 1 for positives, and NA for
interactions outside the reference set

the type of classifier to use; one of "NB"” (naive Bayes), "SVM" (support vector
machine), "RF" (random forest), or "LR" (logistic regression)

the number of classifiers to train

the number of folds to split the reference dataset into when training each classi-
fier. By default, each classifier uses ten-fold cross-validation, i.e., the classifier
is trained on 90% of the dataset and used to classify the remaining 10%

for random forest classifiers only, the number of trees to grow for each fold

a vector of length two, denoting either the indices (integer vector) or column
names (character vector) of the columns within the input data frame containing
the nodes participating in pairwise interactions; defaults to the first two columns
of the data frame (c(1, 2))

the input data frame of pairwise interactions, ranked by the median of classifier scores across all

ensembled models
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Examples

## calculate features

data(scott)

data(scott_gaussians)

subset <- scott[seq_len(500), 1 ## limit to first 500 proteins

gauss <- scott_gaussians[names(scott_gaussians) %in% rownames(subset)]

features <- calculate_features(subset, gauss)

## make training labels

data(gold_standard)

ref <- adjacency_matrix_from_list(gold_standard)

labels <- make_labels(ref, features)

## predict interactions with naive Bayes classifier

ppi <- predict_ensemble(features, labels, classifier = "NB",
cv_folds = 3, models = 1)

predict_interactions  Predict interactions given a set of features and examples

Description

Discriminate interacting from non-interacting protein pairs by training a machine learning model
on a set of labelled examples, given a set of features derived from a co-elution profile matrix (see
calculate_features.

Usage

predict_interactions(

features,

gold_standard,
classifier = c(”"NB", "SVM", "RF", "LR", "ensemble"),
verbose = FALSE,

models = 10,
cv_folds = 10,
trees = 500
)
Arguments
features a data frame with proteins in the first two columns, and features to be passed to

gold_standard

the classifier in the remaining columns

an adjacency matrix of "gold standard" interactions used to train the classifier

classifier the type of classifier to use: one of "NB" (naive Bayes), "SVM" (support vector
machine), "RF" (random forest), "LR" (logistic regression), or "ensemble"” (an
ensemble of all four)

verbose if TRUE, print a series of messages about the stage of the analysis

models the number of classifiers to train and average across, each with a different k-fold
cross-validation split

cv_folds the number of folds to use for k-fold cross-validation

trees for random forests only, the number of trees in the forest
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Details

PrInCE implements four different classifiers (naive Bayes, support vector machine, random forest,
and logistic regression). Naive Bayes is used as a default. The classifiers are trained on the gold
standards using a ten-fold cross-validation procedure, training on 90 that are part of the training
data, the held-out split is used to assign a classifier score, whereas for the remaining protein pairs,
the median of all ten folds is used. Furthermore, to ensure the results are not sensitive to the precise
classifier split used, an ensemble of multiple classifiers (ten, by default) is trained, and the classifier
score is subsequently averaged across classifiers.

PrInCE can also ensemble across multiple different types of classifiers, by supplying the "ensemble”
option to the classifier argument.

Value

a ranked data frame of pairwise interactions, with the classifier score, label, and cumulative preci-
sion for each interaction

Examples

## calculate features

data(scott)

data(scott_gaussians)

subset <- scott[seq_len(500), ] ## limit to first 500 proteins
gauss <- scott_gaussians[names(scott_gaussians) %in% rownames(subset)]
features <- calculate_features(subset, gauss)

## load training data

data(gold_standard)

ref <- adjacency_matrix_from_list(gold_standard)

## predict interactions

ppi <- predict_interactions(features, ref, cv_folds = 3, models = 1)

PrInCE PrInCE: Prediction of Interactomes from Co-Elution

Description

PrInCE is a computational approach to infer protein-protein interaction networks from co-elution
proteomics data, also called co-migration, co-fractionation, or protein correlation profiling. This
family of methods separates interacting protein complexes on the basis of their diameter or bio-
chemical properties. Protein-protein interactions can then be inferred for pairs of proteins with sim-
ilar elution profiles. PrInCE implements a machine-learning approach to identify protein-protein
interactions given a set of labelled examples, using features derived exclusively from the data. This
allows PrInCE to infer high-quality protein interaction networks from raw proteomics data, with-
out bias towards known interactions or functionally associated proteins, making PrInCE a unique
resource for discovery.

Usage

PrInCE(
profiles,
gold_standard,
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gaussians =
precision =

PrIinCE

NULL,
NULL,

verbose = FALSE,

min_points

1,

min_consecutive = 5,

min_pairs =
impute_NA =

3,
TRUE,

smooth = TRUE,

smooth_width = 4,
max_gaussians = 5,
max_iterations = 50,
min_R_squared = 0.5,

method = c("guess”, "random"),

criterion =

C(MAICCM , nAICn , ”BIC”) ,

pearson_R_raw = TRUE,
pearson_R_cleaned = TRUE,

pearson_P =

TRUE,

euclidean_distance = TRUE,
co_peak = TRUE,

co_apex

TRUE,

n_pairs = FALSE,

classifier
models = 1,
cv_folds =
trees = 500
)
Arguments
profiles

gold_standard

gaussians

precision

verbose

min_points

C(”NB”, ”SVM”, HRFH’ "LR”, ”ensemble”),

0,

the co-elution profile matrix, or a list of profile matrices if replicate experiments
were performed. Can be a single numeric matrix, with proteins in rows and
fractions in columns, or a list of matrices. Alternatively, can be provided as a
single MSnSet object or a list of objects.

a set of "gold standard’ interactions, used to train the classifier. Can be provided
either as an adjacency matrix, in which both rows and columns correspond to
protein IDs in the co-elution matrix or matrices, or as a list of proteins in the
same complex, which will be converted to an adjacency matrix by PrInCE. Ze-
roes in the adjacency matrix are interpreted by PrInCE as "true negatives" when
calculating precision.

optionally, provide Gaussian mixture models fit by the build_gaussians func-
tion. If profiles is a numeric matrix, this should be the named list output by
build_gaussians for that matrix; if profiles is a list of numeric matrices, this
should be a list of named lists

optionally, return only interactions above the given precision; by default, all
interactions are returned and the user can subsequently threshold the list using
the threshold_precision function

if TRUE, print a series of messages about the stage of the analysis

filter profiles without at least this many total, non-missing points; passed to
filter_profiles

min_consecutive

filter profiles without at least this many consecutive, non-missing points; passed
to filter_profiles
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min_pairs minimum number of overlapping fractions between any given protein pair to
consider a potential interaction

impute_NA if true, impute single missing values with the average of neighboring values;
passed to clean_profiles

smooth if true, smooth the chromatogram with a moving average filter; passed to clean_profiles
smooth_width width of the moving average filter, in fractions; passed to clean_profiles

max_gaussians the maximum number of Gaussians to fit; defaults to 5. Note that Gaussian
mixtures with more parameters than observed (i.e., non-zero or NA) points will
not be fit. Passed to choose_gaussians

max_iterations the number of times to try fitting the curve with different initial conditions; de-
faults to 50. Passed to fit_gaussians

min_R_squared the minimum R-squared value to accept when fitting the curve with different
initial conditions; defaults to 0.5. Passed to fit_gaussians

method the method used to select the initial conditions for nonlinear least squares op-
timization (one of "guess" or "random"); see make_initial_conditions for
details. Passed to fit_gaussians

criterion the criterion to use for model selection; one of "AICc" (corrected AIC, and
default), "AIC", or "BIC". Passed to choose_gaussians

pearson_R_raw if true, include the Pearson correlation (R) between raw profiles as a feature
pearson_R_cleaned
if true, include the Pearson correlation (R) between cleaned profiles as a feature

pearson_P if true, include the P-value of the Pearson correlation between raw profiles as a
feature

euclidean_distance
if true, include the Euclidean distance between cleaned profiles as a feature

co_peak if true, include the ’co-peak score’ (that is, the distance, in fractions, between
the single highest value of each profile) as a feature

co_apex if true, include the ’co-apex score’ (that is, the minimum Euclidean distance
between any pair of fit Gaussians) as a feature

n_pairs if TRUE, include the number of fractions in which both of a given pair of proteins
were detected as a feature

classifier the type of classifier to use: one of "NB" (naive Bayes), "SVM" (support vector
machine), "RF"” (random forest), "LR" (logistic regression), or "ensemble"” (an
ensemble of all four)

models the number of classifiers to train and average across, each with a different k-fold
cross-validation split
cv_folds the number of folds to use for k-fold cross-validation
trees for random forests only, the number of trees in the forest
Details

PrInCE takes as input a co-elution matrix, with detected proteins in rows and fractions as columns,
and a set of ’gold standard’ true positives and true negatives. If replicate experiments were per-
formed, a list of co-elution matrices can be provided as input. PrInCE will construct features for
each replicate separately and use features from all replicates as input to the classifier. The ’gold stan-
dard’ can be either a data frame or adjacency matrix of known interactions (and non-interactions),
or a list of protein complexes. For computational convenience, Gaussian mixture models can be
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pre-fit to every profile and provided separately to the PrInCE function. The matrix, or matrices, can
be provided to PrInCE either as numeric matrices or as MSnSet objects.

PrInCE implements three different types of classifiers to predict protein-protein interaction net-
works, including naive Bayes (the default), random forests, and support vector machines. The
classifiers are trained on the gold standards using a ten-fold cross-validation procedure, training on
90 that are part of the training data, the held-out split is used to assign a classifier score, whereas
for the remaining protein pairs, the median of all ten folds is used. Furthermore, to ensure the re-
sults are not sensitive to the precise classifier split used, an ensemble of multiple classifiers (ten, by
default) is trained, and the classifier score is subsequently averaged across classifiers. PrinCE can
also ensemble across a set of classifiers.

By default, PrInCE calculates six features from each pair of co-elution profiles as input to the
classifier, including conventional similarity metrics but also several features specifically adapted to
co-elution proteomics. For example, one such feature is derived from fitting a Gaussian mixture
model to each elution profile, then calculating the smallest Euclidean distance between any pair of
fitted Gaussians. The complete set of features includes:

1. the Pearson correlation between raw co-elution profiles;
2. the p-value of the Pearson correlation between raw co-elution profiles;

3. the Pearson correlation between cleaned profiles, which are generated by imputing single
missing values with the mean of their neighbors, replacing remaining missing values with ran-

dom near-zero noise, and smoothing the profiles using a moving average filter (see clean_profile);

4. the Euclidean distance between cleaned profiles;

5. the ’co-peak’ score, defined as the distance, in fractions, between the maximum values of each
profile; and

6. the ’co-apex’ score, defined as the minimum Euclidean distance between any pair of fit Gaus-
sians

The output of PrInCE is a ranked data frame, containing the classifier score for every possible pro-
tein pair. PrInCE also calculates the precision at every point in this ranked list, using the ’gold
standard’ set of protein complexes or binary interactions. Our recommendation is to select a thresh-
old for the precision and use this to construct an unweighted protein interaction network.

Value

a ranked data frame of interacting proteins, with the precision at each point in the list

References

Stacey RG, Skinnider MA, Scott NE, Foster LJ (2017). “A rapid and accurate approach for predic-
tion of interactomes from co-elution data (PrInCE).” BMC Bioinformatics, 18(1), 457.

Scott NE, Brown LM, Kristensen AR, Foster LJ (2015). “Development of a computational frame-
work for the analysis of protein correlation profiling and spatial proteomics experiments.” Journal
of Proteomics, 118, 112-129.

Kristensen AR, Gsponer J, Foster LI (2012). “A high-throughput approach for measuring temporal
changes in the interactome.” Nature Methods, 9(9), 907-909.

Skinnider MA, Stacey RG, Foster LJ (2018). “Genomic data integration systematically biases in-
teractome mapping.” PLoS Computational Biology, 14(10), e1006474.
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Examples

data(scott)
data(scott_gaussians)
data(gold_standard)
# analyze only the first 100 profiles
subset <- scott[seq_len(500), ]
gauss <- scott_gaussians[names(scott_gaussians) %in% rownames(subset)]
ppi <- PrInCE(subset, gold_standard,
gaussians = gauss, models = 1,
cv_folds = 3

replace_missing_data  Replace missing data with median * random noise

Description

Replace missing data within each numeric column of a data frame with the column median, plus or
minus some random noise, in order to train classifiers that do not easily ignore missing data (e.g.
random forests or support vector machines).

Usage

replace_missing_data(dat, noise_pct = 0.05)

Arguments
dat the data frame to replace missing data in
noise_pct the standard deviation of the random normal distribution from which to draw
added noise, expressed as a percentage of the standard deviation of the non-
missing values in each column
Value

a data frame with missing values in each numeric column replaced by the column median, plus or
minus some random noise

scott Cytoplasmic interactome of Jurkat T cells during apoptosis

Description
Co-elution profiles derived from size exclusion chromatography (SEC) of cytoplasmic fractions
from Jurkat T cells, 4 hours following Fas stimulation.

Usage

data(scott)



32 scott_gaussians

Format

a data frame with 1560 rows and 55 columns, with proteins in rows and SEC fractions in columns

Details

Protein quantitation was accomplished by SILAC (stable isotopic labelling by amino acids in cell
culture), and is ratiometric, i.e., it reflects the ratio between the intensity of the heavy isotope and
the light isotope ("H/L"). The dataset was initially described in Scott et al., Mol. Syst. Biol. 2017.
The heavy isotope channel from replicate 1 is included in the PrInCE package. The R script used
to generate this matrix from the supplementary materials of the paper is provided in the data-raw
directory of the package source code.

Source

http://msb.embopress.org/content/13/1/906

scott_gaussians Fitted Gaussian mixture models for the scott dataset

Description

The scott dataset consists of protein co-migration profiles derived from size exclusion chromatog-
raphy (SEC) of cytoplasmic fractions from Jurkat T cells, 4 hours following Fas stimulation. The
scott_gaussians object contains Gaussian mixture models fit by the function build_gaussians;
this is bundled with the R package in order to expedite the demonstration code, as the process of
Gaussian fitting is one of the more time-consuming aspects of the package.

Usage

data(scott_gaussians)

Format

a named list with 970 entries; names are proteins, and list items conain information about fitted
Gaussians in the format that PrInCE expects

Details

As with the scott dataset, the code used to generate this data object is provided in the data-raw
directory of the package source.


http://msb.embopress.org/content/13/1/906
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threshold_precision Threshold interactions at a given precision cutoff

Description

Threshold interactions at a given precision cutoff

Usage

threshold_precision(interactions, threshold)

Arguments

interactions  the ranked list of interactions output by predict_interactions, including a
precision column

threshold the minimum precision of the unweighted interaction network to return

Value

the subset of the original ranked list at the given precision

Examples

data(scott)
data(scott_gaussians)
data(gold_standard)
# analyze only the first 100 profiles
subset <- scott[seq_len(500), 1]
gauss <- scott_gaussians[names(scott_gaussians) %in% rownames(subset)]
ppi <- PrInCE(subset, gold_standard,
gaussians = gauss, models = 1,
cv_folds = 3
)
network <- threshold_precision(ppi, threshold = 0.5)
nrow(network)
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