
Package ‘MetaboAnnotation’
October 25, 2025

Title Utilities for Annotation of Metabolomics Data

Version 1.13.3

Description High level functions to assist in annotation of (metabolomics) data sets.
These include functions to perform simple tentative annotations based on
mass matching but also functions to consider m/z and retention times for
annotation of LC-MS features given that respective reference values are
available. In addition, the function provides high-level functions to
simplify matching of LC-MS/MS spectra against spectral libraries and objects
and functionality to represent and manage such matched data.

Depends R (>= 4.0.0)

Imports BiocGenerics, MsCoreUtils, MetaboCoreUtils, ProtGenerics,
methods, S4Vectors, Spectra (>= 1.17.6), BiocParallel,
SummarizedExperiment, QFeatures, AnnotationHub, graphics,
CompoundDb

Suggests testthat, knitr, msdata, BiocStyle, rmarkdown, plotly, shiny,
shinyjs, msentropy, DT, microbenchmark, mzR

Enhances RMariaDB, RSQLite

License Artistic-2.0

VignetteBuilder knitr

BugReports https://github.com/RforMassSpectrometry/MetaboAnnotation/issues

URL https://github.com/RforMassSpectrometry/MetaboAnnotation

biocViews Infrastructure, Metabolomics, MassSpectrometry

Roxygen list(markdown=TRUE)

RoxygenNote 7.3.3

Encoding UTF-8

Collate 'AllClassUnions.R' 'AllGenerics.R' 'CompAnnotationSource.R'
'CompDbSource.R' 'Matched.R' 'MatchedSpectra.R'
'group_standards.R' 'hidden-aliases.R' 'matchFormula.R'
'matchSpectra.R' 'matchValues.R' 'validateMatchedSpectra.R'

git_url https://git.bioconductor.org/packages/MetaboAnnotation

git_branch devel

git_last_commit 4df51a5

git_last_commit_date 2025-10-16

1

https://github.com/RforMassSpectrometry/MetaboAnnotation/issues
https://github.com/RforMassSpectrometry/MetaboAnnotation

2 addMatches

Repository Bioconductor 3.22

Date/Publication 2025-10-24

Author Michael Witting [aut] (ORCID: <https://orcid.org/0000-0002-1462-4426>),
Johannes Rainer [aut, cre] (ORCID:

<https://orcid.org/0000-0002-6977-7147>),
Andrea Vicini [aut] (ORCID: <https://orcid.org/0000-0001-9438-6909>),
Carolin Huber [aut] (ORCID: <https://orcid.org/0000-0002-9355-8948>),
Philippine Louail [aut] (ORCID:

<https://orcid.org/0009-0007-5429-6846>),
Nir Shachaf [ctb]

Maintainer Johannes Rainer <Johannes.Rainer@eurac.edu>

Contents

addMatches . 2
CompAnnotationSource . 14
CompDbSource . 16
createStandardMixes . 17
hidden_aliases . 18
MatchedSpectra . 19
matchFormula . 24
matchSpectra . 25
matchSpectra,Spectra,CompDbSource,Param-method 26
validateMatchedSpectra . 32
ValueParam . 33

Index 43

addMatches Representation of generic objects matches

Description

Matches between query and target generic objects can be represented by the Matched object. By
default, all data accessors work as left joins between the query and the target object, i.e. values are
returned for each query object with eventual duplicated entries (values) if the query object matches
more than one target object. See also Creation and subsetting as well as Extracting data sections
below for details and more information.

The Matched object allows to represent matches between one-dimensional query and target ob-
jects (being e.g. numeric or list), two-dimensional objects (data.frame or matrix) or more
complex structures such as SummarizedExperiments or QFeatures. Combinations of all these dif-
ferent data types are also supported. Matches are represented between elements of one-dimensional
objects, or rows for two-dimensional objects (including SummarizedExperiment or QFeatures).
For QFeatures::QFeatures() objects matches to only one of the assays within the object is sup-
ported.

https://orcid.org/0000-0002-1462-4426
https://orcid.org/0000-0002-6977-7147
https://orcid.org/0000-0001-9438-6909
https://orcid.org/0000-0002-9355-8948
https://orcid.org/0009-0007-5429-6846

addMatches 3

Usage

addMatches(object, ...)

endoapply(X, FUN, ...)

filterMatches(object, param, ...)

matchedData(object, ...)

queryVariables(object, ...)

targetVariables(object, ...)

Matched(
query = list(),
target = list(),
matches = data.frame(query_idx = integer(), target_idx = integer(), score = numeric()),
queryAssay = character(),
targetAssay = character(),
metadata = list()

)

S4 method for signature 'Matched'
length(x)

S4 method for signature 'Matched'
show(object)

S4 method for signature 'Matched,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]

matches(object)

target(object)

S4 method for signature 'Matched'
query(x, pattern, ...)

targetIndex(object)

queryIndex(object)

whichTarget(object)

whichQuery(object)

S4 method for signature 'Matched'
x$name

S4 method for signature 'Matched'
colnames(x)

4 addMatches

scoreVariables(object)

S4 method for signature 'Matched'
queryVariables(object)

S4 method for signature 'Matched'
targetVariables(object)

S4 method for signature 'Matched'
matchedData(object, columns = colnames(object), ...)

pruneTarget(object)

S4 method for signature 'Matched,missing'
filterMatches(
object,
queryValue = integer(),
targetValue = integer(),
queryColname = character(),
targetColname = character(),
index = integer(),
keep = TRUE,
...

)

SelectMatchesParam(
queryValue = numeric(),
targetValue = numeric(),
queryColname = character(),
targetColname = character(),
index = integer(),
keep = TRUE

)

TopRankedMatchesParam(n = 1L, decreasing = FALSE)

ScoreThresholdParam(threshold = 0, above = FALSE, column = "score")

S4 method for signature 'Matched,SelectMatchesParam'
filterMatches(object, param, ...)

S4 method for signature 'Matched,TopRankedMatchesParam'
filterMatches(object, param, ...)

S4 method for signature 'Matched,ScoreThresholdParam'
filterMatches(object, param, ...)

SingleMatchParam(
duplicates = c("remove", "closest", "top_ranked"),
column = "score",
decreasing = TRUE

)

addMatches 5

S4 method for signature 'Matched,SingleMatchParam'
filterMatches(object, param, ...)

S4 method for signature 'Matched'
addMatches(
object,
queryValue = integer(),
targetValue = integer(),
queryColname = character(),
targetColname = character(),
score = rep(NA_real_, length(queryValue)),
isIndex = FALSE

)

S4 method for signature 'ANY'
endoapply(X, FUN, ...)

S4 method for signature 'Matched'
endoapply(X, FUN, ...)

S4 method for signature 'Matched'
lapply(X, FUN, ...)

Arguments

object a Matched object.

... additional parameters.

X Matched object.

FUN for lapply and endoapply: user defined function that takes a Matched object
as a first parameter and possibly additional parameters (that need to be provided
in the lapply or endoapply call. For lapply FUN can return any object while for
endoapply it must return a Matched object.

param for filterMatches: parameter object to select and customize the filtering pro-
cedure.

query object with the query elements.

target object with the elements against which query has been matched.

matches data.frame with columns "query_idx" (integer), "target_idx" (integer)
and "score" (numeric) representing the n:m mapping of elements between the
query and the target objects.

queryAssay character that needs to be specified when query is a QFeatures. In this case,
queryAssay is expected to be the name of one of the assays in query (the one
on which the matching was performed).

targetAssay character that needs to be specified when target is a QFeatures. In this case,
targetAssay is expected to be the name of one of the assays in target (the one
on which the matching was performed).

metadata list with optional additional metadata.

x Matched object.

i integer or logical defining the query elements to keep.

6 addMatches

j for [: ignored.

drop for [: ignored.

pattern for query: ignored.

name for $: the name of the column (or variable) to extract.

columns for matchedData: character vector with column names of variables that should
be extracted.

queryValue for SelectMatchesParam: vector of values to search for in query (if query is 1-
dimensional) or in column queryColname of query (if query is 2-dimensional).
For addMatches: either an index in query or value in column queryColname
of query defining (together with targetValue) the pair of query and target
elements for which a match should be manually added. Lengths of queryValue
and targetValue have to match.

targetValue for SelectMatchesParam: vector of values to search for in target (if target
is 1-dimensional) or in column targetColname of target (if target is 2-
dimensional). For addMatches: either an index in target or value in col-
umn targetColname of target defining (together with queryValue) the pair of
query and target elements for which a match should be manually added. Lengths
of queryValue and targetValue have to match.

queryColname for SelectMatchesParam: if query is 2-dimensional it represents the column
of query against which elements of queryValue are compared.

targetColname for SelectMatchesParam: if query is 2-dimensional it represents the column
of target against which elements of targetValue are compared.

index for SelectMatchesParam: indices of the matches to keep (if keep = TRUE) or to
drop if (keep = FALSE).

keep for SelectMatchesParam: logical. If keep = TRUE the matches are kept, if
keep = FALSE they are removed.

n for TopRankedMatchesParam: integer(1) with number of best ranked matches
to keep for each query element.

decreasing for TopRankedMatchesParam: logical(1) whether scores should be ordered
increasing or decreasing. Defaults to decreasing = FALSE.

threshold for ScoreThresholdParam : numeric(1) specifying the threshold to consider
for the filtering.

above for ScoreThresholdParam : logical(1) specifying whether to keep matches
above (above = TRUE) or below (above = FALSE) a certain threshold.

column for ScoreThresholdParam: character(1) specifying the name of the score
variable to consider for the filtering (the default is column = "score"). For
SingleMatchParam: character(1) defining the name of the column to be used
for de-duplication. See description of SingleMatchParam in the Filtering and
subsetting section for details.

duplicates for SingleMatchParam: character(1) defining the de-duplication strategy.
See the description of SingleMatchParam in the Filtering and subsetting sub-
section for choices and details.

score for addMatches: numeric (same length than queryValue) or data.frame (same
number of rows than queryValue) specifying the scores for the matches to add.
If not specified, a NA will be used as score.

isIndex for addMatches: specifies if queryValue and targetValue are expected to be
vectors of indices.

addMatches 7

Value

See individual method description above for details.

Creation and general handling

Matched object is returned as result from the matchValues() function.

Alternatively, Matched objects can also be created with the Matched function providing the query
and target objects as well as the matches data.frame with two columns of integer indices defin-
ing which elements from query match which element from target.

• addMatches: add new matches to an existing object. Parameters queryValue and targetValue
allow to define which element(s) in query and target should be considered matching. If
isIndex = TRUE, both queryValue and targetValue are considered to be integer indices
identifying the matching elements in query and target, respectively. Alternatively (with
isIndex = FALSE) queryValue and targetValue can be elements in columns queryColname
or targetColname which can be used to identify the matching elements. Note that in this
case only the first matching pair is added. Parameter score allows to provide the score for
the match. It can be a numeric with the score or a data.frame with additional information
on the manually added matches. In both cases its length (or number of rows) has to match the
length of queryValue. See examples below for more information.

• endoapply: applies a user defined function FUN to each subset of matches in a Matched object
corresponding to a query element (i.e. for each x[i] with i being 1 to length(x)). The
results are then combined in a single Matched object representing updated matches. Note that
FUN has to return a Matched object.

• lapply: applies a user defined function FUN to each subset of matches in a Matched object
for each query element (i.e. to each x[i] with i from 1 to length(x)). It returns a list of
length(object) elements where each element is the output of FUN applied to each subset of
matches.

Filtering and subsetting

• [: subset the object selecting query object elements to keep with parameter i. The resulting
object will contain all the matches for the selected query elements. The target object will by
default be returned as-is.

• filterMatches: filter matches in a Matched object using different approaches depending on
the class of param:

– ScoreThresholdParam: keeps only the matches whose score is strictly above or strictly
below a certain threshold (respectively when parameter above = TRUE and above = FALSE).
The name of the column containing the scores to be used for the filtering can be specified
with parameter column. The default for column is "score". Such variable is present in
each Matched object. The name of other score variables (if present) can be provided (the
names of all score variables can be obtained with scoreVariables() function). For ex-
ample column = "score_rt" can be used to filter matches based on retention time scores
for Matched objects returned by matchValues() when param objects involving a reten-
tion time comparison are used.

– SelectMatchesParam: keeps or removes (respectively when parameter keep = TRUE and
keep = FALSE) matches corresponding to certain indices or values of query and target.
If queryValue and targetValue are provided, matches for these value pairs are kept or
removed. Parameter indexallows to filter matches providing their index in the [matches()] matrix. Note thatfilterMatchesremoves only matches from the [matches()] matrix from theMatchedobject but thus not alter thequeryortarget‘
in the object. See examples below for more information.

8 addMatches

– SingleMatchParam: reduces matches to keep only (at most) a single match per query.
The deduplication strategy can be defined with parameter duplicates:

* duplicates = "remove": all matches for query elements matching more than one
target element will be removed.

* duplicates = "closest": keep only the closest match for each query element. The
closest match is defined by the value(s) of score (and eventually score_rt, if present).
The one match with the smallest value for this (these) column(s) is retained. This is
equivalent to TopRankedMatchesParam(n = 1L, decreasing = FALSE).

* duplicates = "top_ranked": select the best ranking match for each query element.
Parameter column allows to specify the column by which matches are ranked (use
targetVariables(object) or scoreVariables(object) to list possible columns).
Parameter decreasing allows to define whether the match with the highest (decreasing
= TRUE) or lowest (decreasing = FALSE) value in column for each query will be se-
lected.

– TopRankedMatchesParam: for each query element the matches are ranked according
to their score and only the n best of them are kept (if n is larger than the number of
matches for a given query element all the matches are returned). For the ranking (order-
ing) R’s rank function is used on the absolute values of the scores (variable "score"),
thus, smaller score values (representing e.g. smaller differences between expected and
observed m/z values) are considered better. By setting parameter decreasing = TRUE
matches can be ranked in decreasing order (i.e. higher scores are ranked higher and are
thus selected). If besides variable "score" also variable "score_rt" is available in the
Matched object (which is the case for the Matched object returned by matchValues()
for param objects involving a retention time comparison), the ordering of the matches
is based on the product of the ranks of the two variables (ranking of retention time dif-
ferences is performed on the absolute value of "score_rt"). Thus, matches with small
(or, depending on parameter decreasing, large) values for "score" and "score_rt"
are returned.

• pruneTarget: cleans the object by removing non-matched target elements.

Extracting data

• $ extracts a single variable from the Matched x. The variables that can be extracted can be
listed using colnames(x). These variables can belong to query, target or be related to the
matches (e.g. the score of each match). If the query (target) object is two dimensional, its
columns can be extracted (prefix "target_" is used for columns in the target object) oth-
erwise if query (target) has only a single dimension (e.g. is a list or a character) the
whole object can be extracted with x$query (x$target). More precisely, when query (target)
is a SummarizedExperiment the columns from rowData(query) (rowData(target)) are ex-
tracted; when query (target) is a QFeatures::QFeatures() the columns from rowData of the
assay specified in the queryAssay (targetAssay) slot are extracted. The matching scores are
available as variable "score". Similar to a left join between the query and target elements,
this function returns a value for each query element, with eventual duplicated values for query
elements matching more than one target element. If variables from the target data.frame are
extracted, an NA is reported for the entries corresponding to query elements that don’t match
any target element. See examples below for more details.

• length returns the number of query elements.

• matchedData allows to extract multiple variables contained in the Matched object as a DataFrame.
Parameter columns allows to define which columns (or variables) should be returned (defaults
to columns = colnames(object)). Each single column in the returned DataFrame is con-
structed in the same way as in $. That is, like $, this function performs a left join of variables

addMatches 9

from the query and target objects returning all values for all query elements (eventually re-
turning duplicated elements for query elements matching multiple target elements) and the
values for the target elements matched to the respective query elements (or NA if the target
element is not matched to any query element).

• matches returns a data.frame with the actual matching information with columns "query_idx"
(index of the element in query), "target_idx" (index of the element in target) "score" (the
score of the match) and eventual additional columns.

• target returns the target object.

• targetIndex returns the indices of the matched targets in the order they are assigned to the
query elements. The length of the returned integer vector is equal to the total number of
matches in the object. targetIndex and queryIndex are aligned, i.e. each element in them
represent a matched query-target pair.

• query returns the query object.

• queryIndex returns the indices of the query elements with matches to target elements. The
length of the returned integer vector is equal to the total number of matches in the object.
targetIndex and queryIndex are aligned, i.e. each element in them represent a matched
query-target pair.

• queryVariables returns the names of the variables (columns) in query.

• scoreVariables returns the names of the score variables stored in the Matched object (pre-
cisely the names of the variables in matches(object) containing the string "score" in their
name ignoring the case).

• targetVariables returns the names of the variables (columns) in target (prefixed with "target_").

• whichTarget returns an integer with the indices of the elements in target that match at least
one element in query.

• whichQuery returns an integer with the indices of the elements in query that match at least
one element in target.

Author(s)

Andrea Vicini, Johannes Rainer

See Also

MatchedSpectra() for matched Spectra::Spectra() objects.

Examples

Creating a `Matched` object.
q1 <- data.frame(col1 = 1:5, col2 = 6:10)
t1 <- data.frame(col1 = 11:16, col2 = 17:22)
Define matches between query row 1 with target row 2 and, query row 2
with target rows 2,3,4 and query row 5 with target row 5.
mo <- Matched(

q1, t1, matches = data.frame(query_idx = c(1L, 2L, 2L, 2L, 5L),
target_idx = c(2L, 2L, 3L, 4L, 5L),
score = seq(0.5, 0.9, by = 0.1)))

mo

Which of the query elements (rows) match at least one target
element (row)?
whichQuery(mo)

10 addMatches

Which target elements (rows) match at least one query element (row)?
whichTarget(mo)

Extracting variable "col1" from query object .
mo$col1

We have duplicated values for the entries of `col1` related to query
elements (rows) matched to multiple rows of the target object). The
value of `col1` is returned for each element (row) in the query.

Extracting variable "col1" from target object. To access columns from
target we have to prefix the name of the column by `"target_"`.
Note that only values of `col1` for rows matching at least one query
row are returned and an NA is reported for query rows without matching
target rows.
mo$target_col1

The 3rd and 4th query rows do not match any target row, thus `NA` is
returned.

`matchedData` can be used to extract all (or selected) columns
from the object. Same as with `$`, a left join between the columns
from the query and the target is performed. Below we extract selected
columns from the object as a DataFrame.
res <- matchedData(mo, columns = c("col1", "col2", "target_col1",

"target_col2"))
res
res$col1
res$target_col1

With the `queryIndex` and `targetIndex` it is possible to extract the
indices of the matched query-target pairs:
queryIndex(mo)
targetIndex(mo)

Hence, the first match is between the query with index 1 to the target
with index 2, then, query with index 2 is matched to target with index 2
and so on.

The example matched object contains all query and all target
elements (rows). Below we subset the object keeping only query rows that
are matched to at least one target row.
mo_sub <- mo[whichQuery(mo)]

mo_sub contains now only 3 query rows:
nrow(query(mo_sub))

while the original object contains all 5 query rows:
nrow(query(mo))

Both objects contain however still the full target object:
nrow(target(mo))
nrow(target(mo_sub))

With the `pruneTarget` we can however reduce also the target rows to
only those that match at least one query row

addMatches 11

mo_sub <- pruneTarget(mo_sub)
nrow(target(mo_sub))

########
Creating a `Matched` object with a `data.frame` for `query` and a `vector`
for `target`. The matches are specified in the same way as the example
before.

q1 <- data.frame(col1 = 1:5, col2 = 6:10)
t2 <- 11:16
mo <- Matched(q1, t2, matches = data.frame(query_idx = c(1L, 2L, 2L, 2L, 5L),

target_idx = c(2L, 2L, 3L, 4L, 5L), score = seq(0.5, 0.9, by = 0.1)))

target is a simple vector and has thus no columns. The matched values
from target, if it does not have dimensions and hence column names, can
be retrieved with `$target`
mo$target

Note that in this case "target" is returned by the function `colnames`
colnames(mo)

As before, we can extract all data as a `DataFrame`
res <- matchedData(mo)
res

Note that the columns of the obtained `DataFrame` are the same as the
corresponding vectors obtained with `$`
res$col1
res$target

Also subsetting and pruning works in the same way as the example above.

mo_sub <- mo[whichQuery(mo)]

mo_sub contains now only 3 query rows:
nrow(query(mo_sub))

while the original object contains all 5 query rows:
nrow(query(mo))

Both object contain however still the full target object:
length(target(mo))
length(target(mo_sub))

Reducing the target elements to only those that match at least one query
row
mo_sub <- pruneTarget(mo_sub)
length(target(mo_sub))

########
Filtering `Matched` with `filterMatches`

Inspecting the matches in `mo`:
mo$col1
mo$target

We have thus target *12* matched to both query elements with values 1 and

12 addMatches

2, and query element 2 is matching 3 target elements. Let's assume we want
to resolve this multiple mappings to keep from them only the match between
query 1 (column `"col1"` containing value `1`) with target 1 (value `12`)
and query 2 (column `"col1"` containing value `2`) with target 2 (value
`13`). In addition we also want to keep query element 5 (value `5` in
column `"col1"`) with the target with value `15`:
mo_sub <- filterMatches(mo,

SelectMatchesParam(queryValue = c(1, 2, 5), queryColname = "col1",
targetValue = c(12, 13, 15)))

matchedData(mo_sub)

Alternatively to specifying the matches to filter with `queryValue` and
`targetValue` it is also possible to specify directly the index of the
match(es) in the `matches` `data.frame`:
matches(mo)

To keep only matches like in the example above we could use:
mo_sub <- filterMatches(mo, SelectMatchesParam(index = c(1, 3, 5)))
matchedData(mo_sub)

Note also that, instead of keeping the specified matches, it would be
possible to remove them by setting `keep = FALSE`. Below we remove
selected matches from the object:
mo_sub <- filterMatches(mo,

SelectMatchesParam(queryValue = c(2, 2), queryColname = "col1",
targetValue = c(12, 14), keep = FALSE))

mo_sub$col1
mo_sub$target

As alternative to *manually* selecting matches it is also possible to
filter matches keeping only the *best matches* using the
`TopRankedMatchesParam`. This will rank matches for each query based on
their *score* value and select the best *n* matches with lowest score
values (i.e. smallest difference in m/z values).
mo_sub <- filterMatches(mo, TopRankedMatchesParam(n = 1L))
matchedData(mo_sub)

Additionally it is possible to select matches based on a threshold
for their *score*. Below we keep matches with score below 0.75 (one
could select matches with *score* greater than the threshold by setting
`ScoreThresholdParam` parameter `above = TRUE`.
mo_sub <- filterMatches(mo, ScoreThresholdParam(threshold = 0.75))
matchedData(mo_sub)

########
Selecting the best match for each `query` element with `endoapply`

It is also possible to select for each `query` element the match with the
lowest score using `endoapply`. We manually define a function to select
the best match for each query and give it as input to `endoapply`
together with the `Matched` object itself. We obtain the same results as
in the `filterMatches` example above.

FUN <- function(x) {
if(nrow(x@matches) > 1)

x@matches <- x@matches[order(x@matches$score)[1], , drop = FALSE]
x

addMatches 13

}

mo_sub <- endoapply(mo, FUN)
matchedData(mo_sub)

########
Adding matches using `addMatches`

`addMatches` allows to manually add matches. Below we add a new match
between the `query` element with a value of `1` in column `"col1"` and
the target element with a value of `15`. Parameter `score` allows to
assign a score value to the match.
mo_add <- addMatches(mo, queryValue = 1, queryColname = "col1",

targetValue = 15, score = 1.40)
matchedData(mo_add)
Matches are always sorted by `query`, thus, the new match is listed as
second match.

Alternatively, we can also provide a `data.frame` with parameter `score`
which enables us to add additional information to the added match. Below
we define the score and an additional column specifying that this match
was added manually. This information will then also be available in the
`matchedData`.
mo_add <- addMatches(mo, queryValue = 1, queryColname = "col1",

targetValue = 15, score = data.frame(score = 5, manual = TRUE))
matchedData(mo_add)

The match will get a score of NA if we're not providing any score.
mo_add <- addMatches(mo, queryValue = 1, queryColname = "col1",

targetValue = 15)
matchedData(mo_add)

Creating a `Matched` object with a `SummarizedExperiment` for `query` and
a `vector` for `target`. The matches are specified in the same way as
the example before.
library(SummarizedExperiment)
q1 <- SummarizedExperiment(

assays = data.frame(matrix(NA, 5, 2)),
rowData = data.frame(col1 = 1:5, col2 = 6:10),
colData = data.frame(cD1 = c(NA, NA), cD2 = c(NA, NA)))

t1 <- data.frame(col1 = 11:16, col2 = 17:22)
Define matches between row 1 in rowData(q1) with target row 2 and,
rowData(q1) row 2 with target rows 2,3,4 and rowData(q1) row 5 with target
row 5.
mo <- Matched(

q1, t1, matches = data.frame(query_idx = c(1L, 2L, 2L, 2L, 5L),
target_idx = c(2L, 2L, 3L, 4L, 5L),
score = seq(0.5, 0.9, by = 0.1)))

mo

Which of the query elements (rows) match at least one target
element (row)?
whichQuery(mo)

Which target elements (rows) match at least one query element (row)?
whichTarget(mo)

14 CompAnnotationSource

Extracting variable "col1" from rowData(q1).
mo$col1

We have duplicated values for the entries of `col1` related to rows of
rowData(q1) matched to multiple rows of the target data.frame t1. The
value of `col1` is returned for each row in the rowData of query.

Extracting variable "col1" from target object. To access columns from
target we have to prefix the name of the column by `"target_"`.
Note that only values of `col1` for rows matching at least one row in
rowData of query are returned and an NA is reported for those without
matching target rows.
mo$target_col1

The 3rd and 4th query rows do not match any target row, thus `NA` is
returned.

`matchedData` can be used to extract all (or selected) columns
from the object. Same as with `$`, a left join between the columns
from the query and the target is performed. Below we extract selected
columns from the object as a DataFrame.
res <- matchedData(mo, columns = c("col1", "col2", "target_col1",

"target_col2"))
res
res$col1
res$target_col1

The example `Matched` object contains all rows in the
`rowData` of the `SummarizedExperiment` and all target rows. Below we
subset the object keeping only rows that are matched to at least one
target row.
mo_sub <- mo[whichQuery(mo)]

mo_sub contains now a `SummarizedExperiment` with only 3 rows:
nrow(query(mo_sub))

while the original object contains a `SummarizedExperiment` with all 5
rows:
nrow(query(mo))

Both objects contain however still the full target object:
nrow(target(mo))
nrow(target(mo_sub))

With the `pruneTarget` we can however reduce also the target rows to
only those that match at least one in the `rowData` of query
mo_sub <- pruneTarget(mo_sub)
nrow(target(mo_sub))

CompAnnotationSource Compound Annotation Sources

Description

CompAnnotationSources (i.e. classes extending the base virtual CompAnnotationSource class)
define and provide access to a (potentially remote) compound annotation resource. This aims to

CompAnnotationSource 15

simplify the integration of external annotation resources by automating the actual connection (or
data resource download) process from the user. In addition, since the reference resource is not
directly exposed to the user it allows integration of annotation resources that do not allow access to
the full data.

Objects extending CompAnnotationSource available in this package are:

• CompDbSource(): annotation source referencing an annotation source in the [CompoundDb::CompDb()]
format (from the CompoundDb Bioconductor package).

Classes extending CompAnnotationSource need to implement the matchSpectra method with pa-
rameters query, target and param where query is the Spectra object with the (experimental)
query spectra, target the object extending the CompAnnotationSource and param the parameter
object defining the similarity calculation (e.g. CompareSpectraParam(). The method is expected
to return a MatchedSpectra object.

CompAnnotationSource objects are not expected to contain any annotation data. Access to the
annotation data (in form of a Spectra object) is suggested to be only established within the ob-
ject’s matchSpectra method. This would also enable parallel processing of annotations as no e.g.
database connection would have to be shared across processes.

Usage

S4 method for signature 'Spectra,CompAnnotationSource,Param'
matchSpectra(query, target, param, ...)

S4 method for signature 'CompAnnotationSource'
show(object)

S4 method for signature 'CompAnnotationSource'
metadata(x, ...)

Arguments

query for matchSpectra: Spectra::Spectra object with the query spectra.
target for matchSpectra: object extending CompAnnotationSource (such as Com-

pDbSource) with the target (reference) spectra to compare query against.
param for matchSpectra: parameter object (such as CompareSpectraParam) defining

the settings for the matching.
... additional parameters passed to matchSpectra.
object A CompAnnotationSource object.
x A CompAnnotationSource object.

Methods that need to be implemented

For an example implementation see CompDbSource().

• matchSpectra: function to match experimental MS2 spectra against the annotation source.
See matchSpectra() for parameters.

• metadata: function to provide metadata on the annotation resource (host, source, version etc).
• show (optional): method to provide general information on the data source.

Author(s)

Johannes Rainer, Nir Shachaf

16 CompDbSource

CompDbSource Compound Annotation Sources for CompDb databases

Description

CompDbSource objects represent references to CompoundDb::CompDb database-backed annotation
resources. Instances are expected to be created with the dedicated construction functions such as
MassBankSource or the generic CompDbSource. The annotation data is not stored within the object
but will be accessed/loaded within the object’s matchSpectra method.

New CompDbSource objects can be created using the functions:

• CompDbSource: create a new CompDbSource object from an existing CompDb database. The
(SQLite) database file (including the full path) needs to be provided with parameter dbfile.

• MassBankSource: retrieves a CompDb database for the specified MassBank release from Bio-
conductor’s online AnnotationHub (if it exists) and uses that. Note that AnnotationHub
resources are cached locally and thus only downloaded the first time. The function has pa-
rameters release which allows to define the desired MassBank release (e.g. release =
"2021.03" or release = "2022.06") and ... which allows to pass optional parameters to
the AnnotationHub constructor function, such as localHub = TRUE to use only the cached
data and avoid updating/retrieving updates from the internet.

Other functions:

• metadata: get metadata (information) on the annotation resource.

Usage

CompDbSource(dbfile = character())

S4 method for signature 'CompDbSource'
metadata(x, ...)

S4 method for signature 'CompDbSource'
show(object)

MassBankSource(release = "2021.03", ...)

Arguments

dbfile character(1) with the database file (including the full path).

x A CompDbSource object.

... For CompDbSource: ignored. For MassBankSource: optional parameters passed
to the AnnotationHub constructor function.

object A CompDbSource object.

release A character(1) defining the version/release of MassBank that should be used.

Author(s)

Johannes Rainer

createStandardMixes 17

Examples

Locate a CompDb SQLite database file. For this example we use the test
database from the `CompoundDb` package.
fl <- system.file("sql", "CompDb.MassBank.sql", package = "CompoundDb")
ann_src <- CompDbSource(fl)

The object contains only the reference/link to the annotation resource.
ann_src

Retrieve a CompDb with MassBank data for a certain MassBank release
mb_src <- MassBankSource("2021.03")
mb_src

createStandardMixes Create Standard Mixes from a Matrix of Standard Compounds

Description

The createStandardMixes function defines groups (mixes) of compounds (standards) with dis-
similar m/z values. The expected size of the groups can be defined with parameters max_nstd and
min_nstd and the minimum required difference between m/z values within each group with param-
eter min_diff. The group assignment will be reported in an additional column in the result data
frame.

Usage

createStandardMixes(
x,
max_nstd = 10,
min_nstd = 5,
min_diff = 2,
iterativeRandomization = FALSE

)

Arguments

x numeric matrix with row names representing the compounds and columns rep-
resenting different adducts. Such a matrix with m/z values for different adducts
for compounds could e.g. be created with the MetaboCoreUtils::mass2mz()
function.

max_nstd numeric number of maximum standards per group.

min_nstd numeric number of minimum standards per group. Only needed when using
iterativeRandomization = TRUE.

min_diff numeric Minimum difference for considering two values as distinct.

iterativeRandomization

logical default FALSE. If set to TRUE, createStandardMixes will randomly
rearrange the rows of x until the user inputs are satisfied.

18 hidden_aliases

Details

Users should be aware that because the function iterates through x, the compounds at the bottom of
the matrix are more complicated to group, and there is a possibility that some compounds will not
be grouped with others. We advise specifyiong iterativeRandomization = TRUE even if it takes
more time.

Value

data.frame created by adding a column group to the input x matrix, comprising the group number
for each compound.

Author(s)

Philippine Louail

Examples

Iterative grouping only
x <- matrix(c(135.0288, 157.0107, 184.0604, 206.0424, 265.1118, 287.0937,

169.0356, 191.0176, 468.9809, 490.9628, 178.0532, 200.0352),
ncol = 2, byrow = TRUE,
dimnames = list(c("Malic Acid", "Pyridoxic Acid", "Thiamine",

"Uric acid", "dUTP", "N-Formyl-L-methionine"),
c("adduct_1", "adduct_2")))

result <- createStandardMixes(x, max_nstd = 3, min_diff = 2)

Randomize grouping
set.seed(123)
x <- matrix(c(349.0544, 371.0363, 325.0431, 347.0251, 581.0416, 603.0235,

167.0564, 189.0383, 150.0583, 172.0403, 171.0053, 192.9872,
130.0863, 152.0682, 768.1225, 790.1044),

ncol = 2, byrow = TRUE,
dimnames = list(c("IMP", "UMP", "UDP-glucuronate",

"1-Methylxanthine", "Methionine",
"Dihydroxyacetone phosphate",
"Pipecolic acid", "CoA"),

c("[M+H]+", "[M+Na]+")))
result <- createStandardMixes(x, max_nstd = 4, min_nstd = 3, min_diff = 2,

iterativeRandomization = TRUE)

hidden_aliases Internal page for hidden aliases

Description

For S4 methods that require a documentation entry but only clutter the index.

Value

Not applicable

MatchedSpectra 19

MatchedSpectra Representation of Spectra matches

Description

Matches between query and target spectra can be represented by the MatchedSpectra object. Func-
tions like the matchSpectra() function will return this type of object. By default, all data accessors
work as left joins between the query and the target spectra, i.e. values are returned for each query
spectrum with eventual duplicated entries (values) if the query spectrum matches more than one
target spectrum.

Usage

MatchedSpectra(
query = Spectra(),
target = Spectra(),
matches = data.frame(query_idx = integer(), target_idx = integer(), score = numeric())

)

S4 method for signature 'MatchedSpectra'
spectraVariables(object)

S4 method for signature 'MatchedSpectra'
queryVariables(object)

S4 method for signature 'MatchedSpectra'
targetVariables(object)

S4 method for signature 'MatchedSpectra'
colnames(x)

S4 method for signature 'MatchedSpectra'
x$name

S4 method for signature 'MatchedSpectra'
spectraData(object, columns = spectraVariables(object))

S4 method for signature 'MatchedSpectra'
matchedData(object, columns = spectraVariables(object), ...)

S4 method for signature 'MatchedSpectra'
addProcessing(object, FUN, ..., spectraVariables = character())

S4 method for signature 'MatchedSpectra'
plotSpectraMirror(
x,
xlab = "m/z",
ylab = "intensity",
main = "",
scalePeaks = FALSE,
...

20 MatchedSpectra

)

S4 method for signature 'MatchedSpectra,MsBackend'
setBackend(object, backend, ...)

Arguments

query Spectra with the query spectra.

target Spectra with the spectra against which query has been matched.

matches data.frame with columns "query_idx" (integer), "target_idx" (integer)
and "score" (numeric) representing the n:m mapping of elements between the
query and the target Spectra.

object MatchedSpectra object.

x MatchedSpectra object.

name for $: the name of the spectra variable to extract.

columns for spectraData: character vector with spectra variable names that should be
extracted.

... for addProcessing: additional parameters for the function FUN. For plotSpectraMirror:
additional parameters passed to the plotting functions.

FUN for addProcessing: function to be applied to the peak matrix of each spectrum
in object. See Spectra::Spectra() for more details.

spectraVariables

for addProcessing: character with additional spectra variables that should
be passed along to the function defined with FUN. See Spectra::Spectra() for
details.

xlab for plotSpectraMirror: the label for the x-axis.

ylab for plotSpectraMirror: the label for the y-axis.

main for plotSpectraMirror: an optional title for each plot.

scalePeaks for plotSpectraMirror: logical(1) if peak intensities (per spectrum) should
be scaled to a total sum of one (per spectrum) prior to plotting.

backend for setBackend: instance of an object extending Spectra::MsBackend. See help
for Spectra::setBackend() for more details.

Value

See individual method desciption above for details.

Creation, subset and filtering

MatchedSpectra objects are the result object from the matchSpectra(). While generally not
needed, MatchedSpectra objects can also be created with the MatchedSpectra function providing
the query and target Spectra objects as well as a data.frame with the matches between query
and target elements. This data frame is expected to have columns "query_idx", "target_idx"
with the integer indices of query and target objects that are matched and a column "score" with
a numeric score for the match.

MatchedSpectra objects can be subset using:

• [subset the MatchedSpectra selecting query spectra to keep with parameter i. The target
spectra will by default be returned as-is.

MatchedSpectra 21

• pruneTarget cleans the MatchedSpectra object by removing non-matched target spectra.

In addition, MatchedSpectra can be filtered with any of the filtering approaches defined for Matched()
objects: SelectMatchesParam(), TopRankedMatchesParam() or ScoreThresholdParam().

Extracting data

• $ extracts a single spectra variable from the MatchedSpectra x. Use spectraVariables to
get all available spectra variables. Prefix "target_" is used for spectra variables from the
target Spectra. The matching scores are available as spectra variable "score". Similar to
a left join between the query and target spectra, this function returns a value for each query
spectrum with eventual duplicated values for query spectra matching more than one target
spectrum. If spectra variables from the target spectra are extracted, an NA is reported for query
spectra that don’t match any target spectra. See examples below for more details.

• length returns the number of query spectra.

• matchedData same as spectraData below.

• query returns the query Spectra.

• queryVariables returns the spectraVariables of query.

• spectraData returns spectra variables from the query and/or target Spectra as a DataFrame.
Parameter columns allows to define which variables should be returned (defaults to columns =
spectraVariables(object)), spectra variable names of the target spectra need to be prefixed
with target_ (e.g. target_msLevel to get the MS level from target spectra). The score from
the matching function is returned as spectra variable "score". Similar to $, this function
performs a left join of spectra variables from the query and target spectra returning all values
for all query spectra (eventually returning duplicated elements for query spectra matching
multiple target spectra) and the values for the target spectra matched to the respective query
spectra. See help on $ above or examples below for details.

• spectraVariables returns all available spectra variables in the query and target spectra. The
prefix "target_" is used to label spectra variables of target spectra (e.g. the name of the
spectra variable for the MS level of target spectra is called "target_msLevel").

• target returns the target Spectra.

• targetVariables returns the spectraVariables of target (prefixed with "target_").

• whichTarget returns an integer with the indices of the spectra in target that match at least
on spectrum in query.

• whichQuery returns an integer with the indices of the spectra in query that match at least on
spectrum in target.

Data manipulation and plotting

• addProcessing: add a processing step to both the query and target Spectra in object.
Additional parameters for FUN can be passed via See addProcessing documentation in
Spectra::Spectra() for more information.

• plotSpectraMirror: creates a mirror plot between the query and each matching target spec-
trum. Can only be applied to a MatchedSpectra with a single query spectrum. Setting param-
eter scalePeaks = TRUE will scale the peak intensities per spectrum to a total sum of one for a
better graphical visualization. Additional plotting parameters can be passed through The
parameters ppm and tolerance can be used to define the m/z tolerance for matching peaks
between the query and target spectra. If not provided by the user, the values from the param
object used to create the MatchedSpectra object are used; if these are missing, the default
values (ppm =20 and tolerance = 0) are used.

22 MatchedSpectra

• setBackend: allows to change the backend of both the query and target Spectra::Spectra()
object. The function will return a MatchedSpectra object with the query and target Spectra
changed to the specified backend, which can be any backend extending Spectra::MsBackend.

Author(s)

Johannes Rainer

See Also

Matched() for additional functions available for MatchedSpectra.

Examples

Creating a dummy MatchedSpectra object.
library(Spectra)
df1 <- DataFrame(

msLevel = 2L, rtime = 1:10,
spectrum_id = c("a", "b", "c", "d", "e", "f", "g", "h", "i", "j"))

df2 <- DataFrame(
msLevel = 2L, rtime = rep(1:10, 20),
spectrum_id = rep(c("A", "B", "C", "D", "E"), 20))

sp1 <- Spectra(df1)
sp2 <- Spectra(df2)
Define matches between query spectrum 1 with target spectra 2 and 5,
query spectrum 2 with target spectrum 2 and query spectrum 4 with target
spectra 8, 12 and 15.
ms <- MatchedSpectra(

sp1, sp2, matches = data.frame(query_idx = c(1L, 1L, 2L, 4L, 4L, 4L),
target_idx = c(2L, 5L, 2L, 8L, 12L, 15L),
score = 1:6))

Which of the query spectra match at least one target spectrum?
whichQuery(ms)

Extracting spectra variables: accessor methods for spectra variables act
as "left joins", i.e. they return a value for each query spectrum, with
eventually duplicated elements if one query spectrum matches more than
one target spectrum.

Which target spectrum matches at least one query spectrum?
whichTarget(ms)

Extracting the retention times of the query spectra.
ms$rtime

We have duplicated retention times for query spectrum 1 (matches 2 target
spectra) and 4 (matches 3 target spectra). The retention time is returned
for each query spectrum.

Extracting retention times of the target spectra. Note that only retention
times for target spectra matching at least one query spectrum are returned
and an NA is reported for query spectra without matching target spectrum.
ms$target_rtime

The first query spectrum matches target spectra 2 and 5, thus their
retention times are returned as well as the retention time of the second

MatchedSpectra 23

target spectrum that matches also query spectrum 2. The 3rd query spectrum
does match any target spectrum, thus `NA` is returned. Query spectrum 4
matches target spectra 8, 12, and 15, thus the next reported retention
times are those from these 3 target spectra. None of the remaining 6 query
spectra matches any target spectra and thus `NA` is reported for each of
them.

With `queryIndex` and `targetIndex` it is possible to extract the indices
of the matched query-index pairs
queryIndex(ms)
targetIndex(ms)

The first match is between query index 1 and target index 2, the second
match between query index 1 and target index 5 and so on.
We could use these indices to extract a `Spectra` object containing only
matched target spectra and assign a spectra variable with the indices of
the query spectra
matched_target <- target(ms)[targetIndex(ms)]
matched_target$query_index <- queryIndex(ms)

This `Spectra` object thus contains information from the matching, but
is a *conventional* `Spectra` object that could be used for further
analyses.

`spectraData` can be used to extract all (or selected) spectra variables
from the object. Same as with `$`, a left join between the specta
variables from the query spectra and the target spectra is performed. The
prefix `"target_"` is used to label the spectra variables from the target
spectra. Below we extract selected spectra variables from the object.
res <- spectraData(ms, columns = c("rtime", "spectrum_id",

"target_rtime", "target_spectrum_id"))
res
res$spectrum_id
res$target_spectrum_id

Again, all values for query spectra are returned and for query spectra not
matching any target spectrum NA is reported as value for the respecive
variable.

The example matched spectra object contains all query and all target
spectra. Below we subset the object keeping only query spectra that are
matched to at least one target spectrum.
ms_sub <- ms[whichQuery(ms)]

ms_sub contains now only 3 query spectra:
length(query(ms_sub))

while the original object contains all 10 query spectra:
length(query(ms))

Both object contain however still the full target `Spectra`:
length(target(ms))
length(target(ms_sub))

With the `pruneTarget` we can however reduce also the target spectra to
only those that match at least one query spectrum
ms_sub <- pruneTarget(ms_sub)

24 matchFormula

length(target(ms_sub))

matchFormula Chemical Formula Matching

Description

The matchFormula method matches chemical formulas from different inputs (parameter query and
target). Before comparison all formulas are normalized using MetaboCoreUtils::standardizeFormula().
Inputs can be either a character or data.frame containing a column with formulas. In case of
data.frames parameter formulaColname needs to be used to specify the name of the column con-
taining the chemical formulas.

Usage

matchFormula(query, target, ...)

S4 method for signature 'character,character'
matchFormula(query, target, BPPARAM = SerialParam())

S4 method for signature 'data.frameOrSimilar,data.frameOrSimilar'
matchFormula(
query,
target,
formulaColname = c("formula", "formula"),
BPPARAM = SerialParam()

)

S4 method for signature 'character,data.frameOrSimilar'
matchFormula(
query,
target,
formulaColname = "formula",
BPPARAM = SerialParam()

)

S4 method for signature 'data.frameOrSimilar,character'
matchFormula(
query,
target,
formulaColname = "formula",
BPPARAM = SerialParam()

)

Arguments

query character or data.frame with chemical formulas to search.

target character or data.frame with chemical formulas to compare against.

... currently ignored

BPPARAM parallel processing setup. See BiocParallel::bpparam() for details.

matchSpectra 25

formulaColname character with the name of the column containing chemical formulas. Can
be of length 1 if both query and target are data.frames and the name of the
column with chemical formulas is the same for both. If different columns are
used, formulaColname[1] can be used to define the column name in query and
formulaColname[2] the one of target.

Value

Matched object representing the result.

Author(s)

Michael Witting

Examples

input formula
query <- c("H12C6O6", "C11H12O2", "HN3")
target <- c("HCl", "C2H4O", "C6H12O6")

query_df <- data.frame(
formula = c("H12C6O6", "C11H12O2", "HN3"),
name = c("A", "B", "C")

)
target_df <- data.frame(

formula = c("HCl", "C2H4O", "C6H12O6"),
name = c("D", "E", "F")

)

character vs character
matches <- matchFormula(query, target)
matchedData(matches)

data.frame vs data.frame
matches <- matchFormula(query_df, target_df)
matchedData(matches)
data.frame vs character
matches <- matchFormula(query_df, target)
matchedData(matches)
character vs data.frame
matches <- matchFormula(query, target_df)
matchedData(matches)

matchSpectra Spectral matching

Description

The matchSpectra method matches (compares) spectra from query with those from target based
on settings specified with param and returns the result from this as a MatchedSpectra object.

Usage

matchSpectra(query, target, param, ...)

26 matchSpectra,Spectra,CompDbSource,Param-method

Arguments

query Spectra::Spectra object with the (experimental) spectra.

target MS data to compare against. Can be another Spectra::Spectra.

param parameter object containing the settings for the matching (e.g. eventual pre-
filtering settings, cut-off value for similarity above which spectra are considered
matching etc).

... optional parameters.

Value

a MatchedSpectra object with the spectra matching results.

Author(s)

Johannes Rainer

See Also

CompareSpectraParam() for the comparison between Spectra::Spectra objects.

matchSpectra,Spectra,CompDbSource,Param-method

Matching MS Spectra against a reference

Description

matchSpectra compares experimental (query) MS2 spectra against reference (target) MS2 spectra
and reports matches with a similarity that passing a specified threshold. The function performs
the similarity calculation between each query spectrum against each target spectrum. Parameters
query and target can be used to define the query and target spectra, respectively, while parameter
param allows to define and configure the similarity calculation and matching condition. Parame-
ter query takes a Spectra::Spectra object while target can be either a Spectra::Spectra object, a
CompoundDb::CompDb (reference library) object defined in the CompoundDb package or a Com-
pAnnotationSource (e.g. a CompDbSource()) with the reference or connection information to a
supported annotation resource).

Some notes on performance and information on parallel processing are provided in the vignette.

Currently supported parameter objects defining the matching are:

• CompareSpectraParam: the generic parameter object allowing to set all settings for the Spectra::compareSpectra()
call that is used to perform the similarity calculation. This includes MAPFUN and FUN defining
the peak-mapping and similarity calculation functions and ppm and tolerance to define an ac-
ceptable difference between m/z values of the compared peaks. Parameter matchedPeaksCount
is also passed to compareSpectra() and, if set to TRUE (default is FALSE) will report the num-
ber of peaks defined to be matching by the MAPFUN. Additional parameters to the compareSpectra
call can be passed along with See the help of Spectra::Spectra() for more informa-
tion on these parameters. Importantly, if msentropy or a GNPS-like similarity calculation
is used, MAPFUN should be selected accordingly (see section Using alternative spectra simi-
larity functions in the package vignette for more information). By default, parameters ppm
and tolerance are passed to the similarity calculation function, but if this function uses dif-
ferent parameters (e.g., msentropy_similarity() uses ms2_tolerance_in_ppm instead of

matchSpectra,Spectra,CompDbSource,Param-method 27

ppm), these should be submitted to the CompareSpectraParam() function throught the ... pa-
rameter. Parameters requirePrecursor (default TRUE) and requirePrecursorPeak (default
FALSE) allow to pre-filter the target spectra prior to the actual similarity calculation for each
individual query spectrum. Parameters ppm and tolerance are also used to define the maxi-
mal acceptable difference in precursor m/z if requirePrecursor or requirePrecursorPeak
are set to TRUE. Target spectra can also be pre-filtered based on retention time if parameter
toleranceRt is set to a value different than the default toleranceRt = Inf. Only target spec-
tra with a retention time within the query’s retention time +/- (toleranceRt + percentRt%
of the query’s retention time) are considered. Note that while for ppm and tolerance only
a single value is accepted, toleranceRt and percentRt can be also of length equal to the
number of query spectra hence allowing to define different rt boundaries for each query spec-
trum. While these pre-filters can considerably improve performance, it should be noted that no
matches will be found between query and target spectra with missing values in the considered
variable (precursor m/z or retention time). For target spectra without retention times (such as
for Spectra from a public reference database such as MassBank) the default toleranceRt
= Inf should thus be used. Finally, parameter THRESHFUN allows to define a function to be
applied to the similarity scores to define which matches to report. See below for more details.

• MatchForwardReverseParam: performs spectra matching as with CompareSpectraParam but
reports, similar to MS-DIAL, also the reverse similarity score and the presence ratio. Please
refer to the documentation of CompareSpectraParam for explanation of the parameters. With
MatchForwardReverseParam, the matching of query spectra to target spectra is performed
by considering all peaks from the query and all peaks from the target (reference) spectrum
(i.e. forward matching using an outer join-based peak matching strategy). For matching
spectra also the reverse similarity is calculated considering only peaks present in the tar-
get (reference) spectrum (i.e. using a right join-based peak matching). This is reported as
spectra variable "reverse_score". In addition, the ratio between the number of matched
peaks and the total number of peaks in the target (reference) spectra is reported as the pres-
ence ratio (spectra variable "presence_ratio") and the total number of matched peaks as
"matched_peaks_count". See examples below for details. Parameter THRESHFUN_REVERSE
allows to define an additional threshold function to filter matches. If THRESHFUN_REVERSE is
defined only matches with a spectra similarity fulfilling both THRESHFUN and THRESHFUN_REVERSE
are returned. With the default THRESHFUN_REVERSE = NULL all matches passing THRESHFUN are
reported.

Usage

S4 method for signature 'Spectra,CompDbSource,Param'
matchSpectra(
query,
target,
param,
BPPARAM = BiocParallel::SerialParam(),
addOriginalQueryIndex = TRUE

)

CompareSpectraParam(
MAPFUN = joinPeaks,
tolerance = 0,
ppm = 5,
FUN = MsCoreUtils::ndotproduct,
requirePrecursor = TRUE,
requirePrecursorPeak = FALSE,

28 matchSpectra,Spectra,CompDbSource,Param-method

THRESHFUN = function(x) which(x >= 0.7),
toleranceRt = Inf,
percentRt = 0,
matchedPeaksCount = FALSE,
...

)

MatchForwardReverseParam(
MAPFUN = joinPeaks,
tolerance = 0,
ppm = 5,
FUN = MsCoreUtils::ndotproduct,
requirePrecursor = TRUE,
requirePrecursorPeak = FALSE,
THRESHFUN = function(x) which(x >= 0.7),
THRESHFUN_REVERSE = NULL,
toleranceRt = Inf,
percentRt = 0,
...

)

S4 method for signature 'Spectra,Spectra,CompareSpectraParam'
matchSpectra(
query,
target,
param,
rtColname = c("rtime", "rtime"),
BPPARAM = BiocParallel::SerialParam(),
addOriginalQueryIndex = TRUE

)

S4 method for signature 'Spectra,CompDb,Param'
matchSpectra(
query,
target,
param,
rtColname = c("rtime", "rtime"),
BPPARAM = BiocParallel::SerialParam(),
addOriginalQueryIndex = TRUE

)

S4 method for signature 'Spectra,Spectra,MatchForwardReverseParam'
matchSpectra(
query,
target,
param,
rtColname = c("rtime", "rtime"),
BPPARAM = BiocParallel::SerialParam(),
addOriginalQueryIndex = TRUE

)

matchSpectra,Spectra,CompDbSource,Param-method 29

Arguments

query for matchSpectra: Spectra::Spectra object with the query spectra.

target for matchSpectra: Spectra::Spectra, CompoundDb::CompDb or object extend-
ing CompAnnotationSource (such as CompDbSource) with the target (refer-
ence) spectra to compare query against.

param for matchSpectra: parameter object (such as CompareSpectraParam) defining
the settings for the matching.

BPPARAM for matchSpectra: parallel processing setup (see the BiocParallel package
for more information). Parallel processing is disabled by default (with the de-
fault setting BPPARAM = SerialParam()).

addOriginalQueryIndex

for matchSpectra(): logical(1) whether an additional spectra variable ".original_query_index"
should be added to the query Spectra object providing the index of the spec-
trum in this originally provided object. This spectra variable can be useful to
link back to the original Spectra object if the MatchedSpectra object gets sub-
setted/processed.

MAPFUN function used to map peaks between the compared spectra. Defaults for CompareSpectraParam
to Spectra::joinPeaks(). See Spectra::compareSpectra() for details.

tolerance numeric(1) for an absolute maximal accepted difference between m/z values.
This will be used in compareSpectra as well as for eventual precursor m/z
matching.

ppm numeric(1) for a relative, m/z-dependent, maximal accepted difference be-
tween m/z values. This will be used in compareSpectra as well as for eventual
precursor m/z matching.

FUN function used to calculate similarity between spectra. Defaults for CompareSpectraParam
to MsCoreUtils::ndotproduct(). See MsCoreUtils::ndotproduct() for
details.

requirePrecursor

logical(1) whether only target spectra are considered in the similarity calcula-
tion with a precursor m/z that matches the precursor m/z of the query spectrum
(considering also ppm and tolerance). With requirePrecursor = TRUE (the
default) the function will complete much faster, but will not find any hits for
target (or query spectra) with missing precursor m/z. It is suggested to check
first the availability of the precursor m/z in target and query.

requirePrecursorPeak

logical(1) whether only target spectra will be considered in the spectra simi-
larity calculation that have a peak with an m/z matching the precursor m/z of the
query spectrum. Defaults to requirePrecursorPeak = FALSE. It is suggested
to check first the availability of the precursor m/z in query, as no match will be
reported for query spectra with missing precursor m/z.

THRESHFUN function applied to the similarity score to define which target spectra are con-
sidered matching. Defaults to THRESHFUN = function(x) which(x >= 0.7) hence
selects all target spectra matching a query spectrum with a similarity higher or
equal than 0.7. Any function that takes a numeric vector with similarity scores
from the comparison of a query spectrum with all target spectra (as returned
by Spectra::compareSpectra()) as input and returns a logical vector (same
dimensions as the similarity scores) or an integer with the matches is supported.

toleranceRt numeric of length 1 or equal to the number of query spectra defining the max-
imal accepted (absolute) difference in retention time between query and target

30 matchSpectra,Spectra,CompDbSource,Param-method

spectra. By default (with toleranceRt = Inf) the retention time-based filter is
not considered. See help of CompareSpectraParam above for more information.

percentRt numeric of length 1 or equal to the number of query spectra defining the maxi-
mal accepted relative difference in retention time between query and target spec-
tra expressed in percentage of the query rt. For percentRt = 10, similarities are
defined between the query spectrum and all target spectra with a retention time
within query rt +/- 10% of the query. By default (with toleranceRt = Inf) the
retention time-based filter is not considered. Thus, to consider the percentRt
parameter, toleranceRt should be set to a value different than that. See help of
CompareSpectraParam above for more information.

matchedPeaksCount

logical(1) for CompareSpectraParam(): whether also the number of match-
ing peaks should be reported (in column "matched_peaks_count"). This num-
ber represents the number of peaks reported matching by the MAPFUN.

... for CompareSpectraParam: additional parameters passed along to the Spectra::compareSpectra()
call, including eventual additional parameters of the selected mapping or simi-
larity calculation functions.

THRESHFUN_REVERSE

for MatchForwardReverseParam: optional additional thresholding function to
filter the results on the reverse score. If specified the same format than THRESHFUN
is expected.

rtColname character(2) with the name of the spectra variable containing the retention
time information for compounds to be used in retention time matching (only
used if toleranceRt is not Inf). It can also be character(1) if the two names
are the same. Defaults to rtColname = c("rtime", "rtime").

Value

matchSpectra returns a MatchedSpectra() object with the matching results. If target is a
CompAnnotationSource only matching target spectra will be reported.

Constructor functions return an instance of the class.

Author(s)

Johannes Rainer, Michael Witting

Examples

library(Spectra)
library(msdata)
fl <- system.file("TripleTOF-SWATH", "PestMix1_DDA.mzML", package = "msdata")
pest_ms2 <- filterMsLevel(Spectra(fl), 2L)

subset to selected spectra.
pest_ms2 <- pest_ms2[c(808, 809, 945:955)]

Load a small example MassBank data set
load(system.file("extdata", "minimb.RData", package = "MetaboAnnotation"))

Match spectra with the default similarity score (normalized dot product)
csp <- CompareSpectraParam(requirePrecursor = TRUE, ppm = 10)
mtches <- matchSpectra(pest_ms2, minimb, csp)

matchSpectra,Spectra,CompDbSource,Param-method 31

mtches

Are there any matching spectra for the first query spectrum?
mtches[1]
No

And for the second query spectrum?
mtches[2]
The second query spectrum matches 4 target spectra. The scores for these
matches are:
mtches[2]$score

To access the score for the full data set
mtches$score

Below we use a THRESHFUN that returns for each query spectrum the (first)
best matching target spectrum.
csp <- CompareSpectraParam(requirePrecursor = FALSE, ppm = 10,

THRESHFUN = function(x) which.max(x))
mtches <- matchSpectra(pest_ms2, minimb, csp)
mtches

Each of the query spectra is matched to one target spectrum
length(mtches)
matches(mtches)

Match spectra considering also measured retention times. This requires
that both query and target spectra have non-missing retention times.
rtime(pest_ms2)
rtime(minimb)

Target spectra don't have retention times. Below we artificially set
retention times to show how an additional retention time filter would
work.
rtime(minimb) <- rep(361, length(minimb))

Matching spectra requiring a matching precursor m/z and the difference
of retention times between query and target spectra to be <= 2 seconds.
csp <- CompareSpectraParam(requirePrecursor = TRUE, ppm = 10,

toleranceRt = 2)
mtches <- matchSpectra(pest_ms2, minimb, csp)
mtches
matches(mtches)

Note that parameter `rtColname` can be used to define different spectra
variables with retention time information (such as retention indices etc).

A `CompDb` compound annotation database could also be used with
parameter `target`. Below we load the test `CompDb` database from the
`CompoundDb` Bioconductor package.
library(CompoundDb)
fl <- system.file("sql", "CompDb.MassBank.sql", package = "CompoundDb")
cdb <- CompDb(fl)
res <- matchSpectra(pest_ms2, cdb, CompareSpectraParam())

We do however not find any matches since the used compound annotation
database contains only a very small subset of the MassBank.

32 validateMatchedSpectra

res

As `target` we have now however the MS2 spectra data from the compound
annotation database
target(res)

See the package vignette for details, descriptions and more examples,
also on how to retrieve e.g. MassBank reference databases from
Bioconductor's AnnotationHub.

validateMatchedSpectra

Validating MatchedSpectra

Description

The validateMatchedSpectra() function opens a simple shiny application that allows to browse
results stored in a MatchedSpectra object and to validate the presented matches. For each query
spectrum a table with matched target spectra are shown (if available) and an interactive mirror plot
is generated. Valid matches can be selected using a check box which is displayed below the mirror
plot. Upon pushing the "Save & Close" button the app is closed and a filtered MatchedSpectra is
returned, containing only validated matches.

Note that column "query_index_" and "target_index_" are temporarily added to the query and
target Spectra object to display them in the interactive graphics for easier identification of the
compared spectra.

Usage

validateMatchedSpectra(object)

Arguments

object A non-empty instance of class MatchedSpectra.

Value

A MatchedSpectra with validated results.

Author(s)

Carolin Huber, Michael Witting, Johannes Rainer

Examples

library(Spectra)
Load test data
fl <- system.file("TripleTOF-SWATH", "PestMix1_DDA.mzML", package = "msdata")
pest_ms2 <- filterMsLevel(Spectra(fl), 2L)
pest_ms2 <- pest_ms2[c(808, 809, 945:955)]
load(system.file("extdata", "minimb.RData", package = "MetaboAnnotation"))

Normalize intensities and match spectra
csp <- CompareSpectraParam(requirePrecursor = TRUE,

ValueParam 33

THRESHFUN = function(x) x >= 0.7)
norm_int <- function(x) {

x[, "intensity"] <- x[, "intensity"] / max(x[, "intensity"]) * 100
x

}
ms <- matchSpectra(addProcessing(pest_ms2, norm_int),

addProcessing(minimb, norm_int), csp)

validate matches using the shiny app. Note: the call is only executed
in interactive mode.
if (interactive()) {

res <- validateMatchedSpectra(ms)
}

ValueParam Matching of numeric values

Description

The matchValues method matches elements from query with those in target using different
matching approaches depending on parameter param. Generally, query is expected to contain MS
experimental values (m/z and possibly retention time) while target reference values. query and
target can be numeric, a two dimensional array (such as a data.frame, matrix or DataFrame),
a SummarizedExperiment or a QFeatures, target can in addition be a Spectra::Spectra() ob-
ject. For SummarizedExperiment, the information for the matching is expected to be in the object’s
rowData. For QFeatures matching is performed for values present in the rowData of one of the ob-
ject’s assays (which needs to be specified with the assayQuery parameter - if a QFeatures is used
as target the name of the assay needs to be specified with parameter assayTarget). If target
is a Spectra matching is performed against spectra variables of this object and the respective vari-
able names need to be specified e.g. with mzColname and/or rtColname. matchMz is an alias for
matchValues to allow backward compatibility.

Available param objects and corresponding matching approaches are:

• ValueParam: generic matching between values in query and target given acceptable dif-
ferences expressed in ppm and tolerance. If query or target are not numeric, parameter
valueColname has to be used to specify the name of the column that contains the values to be
matched. The function returns a Matched() object.

• MzParam: match query m/z values against reference compounds for which also m/z are known.
Matching is performed similarly to the ValueParam above. If query or target are not nu-
meric, the column name containing the values to be compared must be defined with matchValues’
parameter mzColname, which defaults to "mz". MzParam parameters tolerance and ppm al-
low to define the maximal acceptable (constant or m/z relative) difference between query and
target m/z values.

• MzRtParam: match m/z and retention time values between query and target. Parameters
mzColname and rtColname of the matchValues function allow to define the columns in query
and target containing these values (defaulting to c("mz", "mz") and c("rt", "rt"), re-
spectively). MzRtParam parameters tolerance and ppm have the same meaning as in MzParam;
MzRtParam parameter toleranceRt allows to specify the maximal acceptable difference be-
tween query and target retention time values.

34 ValueParam

• Mass2MzParam: match m/z values against reference compounds for which only the (exact)
mass is known. Before matching, m/z values are calculated from the compounds masses in
the target table using the adducts specified via Mass2MzParam adducts parameter (defaults
to adducts = "[M+H]+"). After conversion of adduct masses to m/z values, matching is per-
formed similarly to MzParam (i.e. the same parameters ppm and tolerance can be used). If
query is not numeric, parameter mzColname of matchValues can be used to specify the col-
umn containing the query’s m/z values (defaults to "mz"). If target is a is not numeric, pa-
rameter massColname can be used to define the column containing the reference compound’s
masses (defaults to "exactmass").

• Mass2MzRtParam: match m/z and retention time values against reference compounds for
which the (exact) mass and retention time are known. Before matching, exact masses in
target are converted to m/z values as for Mass2MzParam. Matching is then performed simi-
larly to MzRtParam, i.e. m/z and retention times of entities are compared. With matchValues’
parameters mzColname, rtColname and massColname the columns containing m/z values (in
query), retention time values (in query and target) and exact masses (in target) can be
specified.

• Mz2MassParam: input values for query and target are expected to be m/z values but matching
is performed on exact masses calculated from these (based on the provided adduct definitions).
In detail, m/z values in query are first converted to masses with the MetaboCoreUtils::mz2mass()
function based on the adducts defined with queryAdducts (defaults to "[M+H]+"). The same is
done for m/z values in target (adducts can be defined with targetAdducts which defaults to
"[M-H-]"). Matching is then performed on these converted values similarly to Val-
ueParam. If queryortargetare not numeric, the column containing the m/z values can be specified withmatchValues' parameter mz-
Colname(defaults to"mz"‘).

• Mz2MassRtParam: same as Mz2MassParam but with additional comparison of retention times
between query and target. Parameters rtColname and mzColname of matchValues allow to
specify which columns contain the retention times and m/z values, respectively.

Usage

ValueParam(tolerance = 0, ppm = 5)

MzParam(tolerance = 0, ppm = 5)

Mass2MzParam(adducts = c("[M+H]+"), tolerance = 0, ppm = 5)

Mass2MzRtParam(adducts = c("[M+H]+"), tolerance = 0, ppm = 5, toleranceRt = 0)

MzRtParam(tolerance = 0, ppm = 0, toleranceRt = 0)

Mz2MassParam(
queryAdducts = c("[M+H]+"),
targetAdducts = c("[M-H]-"),
tolerance = 0,
ppm = 5

)

Mz2MassRtParam(
queryAdducts = c("[M+H]+"),
targetAdducts = c("[M+H]+"),
tolerance = 0,
ppm = 5,

ValueParam 35

toleranceRt = 0
)

matchValues(query, target, param, ...)

S4 method for signature 'numeric,numeric,ValueParam'
matchValues(query, target, param)

S4 method for signature 'numeric,data.frameOrSimilar,ValueParam'
matchValues(
query,
target,
param,
valueColname = character(),
targetAssay = character()

)

S4 method for signature 'data.frameOrSimilar,numeric,ValueParam'
matchValues(
query,
target,
param,
valueColname = character(),
queryAssay = character()

)

S4 method for signature 'data.frameOrSimilar,data.frameOrSimilar,ValueParam'
matchValues(
query,
target,
param,
valueColname = character(),
queryAssay = character(),
targetAssay = character()

)

S4 method for signature 'numeric,numeric,Mass2MzParam'
matchValues(query, target, param)

S4 method for signature 'numeric,data.frameOrSimilar,Mass2MzParam'
matchValues(
query,
target,
param,
massColname = "exactmass",
targetAssay = character()

)

S4 method for signature 'data.frameOrSimilar,numeric,Mass2MzParam'
matchValues(query, target, param, mzColname = "mz", queryAssay = character())

S4 method for signature

36 ValueParam

'data.frameOrSimilar,data.frameOrSimilar,Mass2MzParam'
matchValues(
query,
target,
param,
mzColname = "mz",
massColname = "exactmass",
queryAssay = character(0),
targetAssay = character(0)

)

S4 method for signature 'numeric,data.frameOrSimilar,MzParam'
matchValues(query, target, param, mzColname = "mz", targetAssay = character())

S4 method for signature 'numeric,Spectra,MzParam'
matchValues(query, target, param, mzColname = "mz", targetAssay = character())

S4 method for signature 'data.frameOrSimilar,numeric,MzParam'
matchValues(query, target, param, mzColname = "mz", queryAssay = character())

S4 method for signature 'data.frameOrSimilar,data.frameOrSimilar,MzParam'
matchValues(
query,
target,
param,
mzColname = c("mz", "mz"),
queryAssay = character(),
targetAssay = character()

)

S4 method for signature 'data.frameOrSimilar,Spectra,MzParam'
matchValues(
query,
target,
param,
mzColname = c("mz", "mz"),
queryAssay = character(),
targetAssay = character()

)

S4 method for signature
'data.frameOrSimilar,data.frameOrSimilar,Mass2MzRtParam'
matchValues(
query,
target,
param,
massColname = "exactmass",
mzColname = "mz",
rtColname = c("rt", "rt"),
queryAssay = character(),
targetAssay = character()

)

ValueParam 37

S4 method for signature 'data.frameOrSimilar,data.frameOrSimilar,MzRtParam'
matchValues(
query,
target,
param,
mzColname = c("mz", "mz"),
rtColname = c("rt", "rt"),
queryAssay = character(),
targetAssay = character()

)

S4 method for signature 'data.frameOrSimilar,Spectra,MzRtParam'
matchValues(
query,
target,
param,
mzColname = c("mz", "mz"),
rtColname = c("rt", "rt"),
queryAssay = character(),
targetAssay = character()

)

S4 method for signature 'numeric,numeric,Mz2MassParam'
matchValues(query, target, param)

S4 method for signature 'numeric,data.frameOrSimilar,Mz2MassParam'
matchValues(query, target, param, mzColname = "mz", targetAssay = character())

S4 method for signature 'data.frameOrSimilar,numeric,Mz2MassParam'
matchValues(query, target, param, mzColname = "mz", queryAssay = character())

S4 method for signature
'data.frameOrSimilar,data.frameOrSimilar,Mz2MassParam'
matchValues(
query,
target,
param,
mzColname = c("mz", "mz"),
queryAssay = character(),
targetAssay = character()

)

S4 method for signature
'data.frameOrSimilar,data.frameOrSimilar,Mz2MassRtParam'
matchValues(
query,
target,
param,
mzColname = c("mz", "mz"),
rtColname = c("rt", "rt"),
queryAssay = character(),

38 ValueParam

targetAssay = character()
)

Arguments

tolerance for any param object: numeric(1) defining the maximal acceptable absolute
difference in m/z (or in mass for Mz2MassParam) to consider them matching.

ppm for any param object: numeric(1) defining the maximal acceptable m/z-dependent
(or mass-dependent for Mz2MassParam) difference (in parts-per-million) in m/z
values to consider them to be matching.

adducts for Mass2MzParam or Mass2MzRtParam: either character with adduct names
from MetaboCoreUtils::adducts() or data.frame with a custom adduct def-
inition. This parameter is used to calculate m/z from target compounds’ masses.
Custom adduct definitions can be passed to the adduct parameter in form of a
data.frame. This data.frame is expected to have columns "mass_add" and
"mass_multi" defining the additive and multiplicative part of the calculation.
See MetaboCoreUtils::adducts() for the expected format or use MetaboCoreUtils::adductNames("positive")
and MetaboCoreUtils::adductNames("negative") for valid adduct names.

toleranceRt for Mass2MzRtParam or MzRtParam: numeric(1) defining the maximal accept-
able absolute difference in retention time values to consider them them match-
ing.

queryAdducts for Mz2MassParam. Adducts used to derive mass values from query m/z values.
The expected format is the same as that for parameter adducts.

targetAdducts for Mz2MassParam. Adducts used to derive mass values from target m/z values.
The expected format is the same as that for parameter adducts.

query feature table containing information on MS1 features. Can be a numeric, data.frame,
DataFrame, matrix, SummarizedExperiment or QFeatures. It is expected to
contain m/z values and can contain also other variables. Matchings based on
both m/z and retention time can be performed when a column with retention
times is present in both query and target.

target compound table with metabolites to compare against. The expected types are
the same as those for query.

param parameter object defining the matching approach and containing the settings for
that approach. See description above for details.

... currently ignored.
valueColname character specifying the name of the column in query or/and the one in targetwith

the desired values for the matching. This parameter should only be used when
param is valueParam and in this case it must be provided (unless both query
and target are numeric). It can be character(1) or character(2) in a simi-
lar way to mzColname.

targetAssay character(1) specifying the name of the assay of the provided QFeatures that
should be used for the matching (values from this assay’s rowData will be used
for matching). Only used if target is an instance of a QFeatures object.

queryAssay character(1) specifying the name of the assay of the provided QFeatures that
should be used for the matching (values from this assay’s rowData will be used
for matching). Only used if query is an instance of a QFeatures object.

massColname character(1) with the name of the column in target containing the mass
of compounds. To be used when param is Mass2MzParam or Mass2MzRtParam
(and target is not already numeric with the masses). Defaults to massColname
= "exactmass".

ValueParam 39

mzColname character specifying the name(s) of the column(s) in query or/and targetwith
the m/z values. If one among query and target is numeric (and therefore there
is no need to specify the column name) or query is not numeric and param
is Mass2MzParam or Mass2MzRtParam (and therefore the name of the column
with m/z needs only to be specified for query) then mzColname is expected to
be character(1). If both query and target are not numeric mzColname is
expected to be character(2) (or character(1) and in this last case the two
column names are assumed to be the same). If not specified the assumed default
name for columns with m/z values is "mz". If target is a Spectra::Spectra()
object, the name of the spectra variable that should be used for the matching
needs to be specified with mzColname.

rtColname character(2) with the name of the column containing the compounds retention
times in query and the name for the one in target. It can also be character(1)
if the two names are the same. To be used when param is MzRtParam or Mass2MzRtParam.
Defaults to rtColname = c("rt", "rt"). If target is a Spectra::Spectra()
object, the name of the spectra variable that should be used for the matching
needs to be specified with mzColname.

Value

Matched object representing the result.

Depending on the param object different scores representing the quality of the match are pro-
vided. This comprises absolute as well as relative differences (column/variables "score" and
"ppm_error" respectively). If param is a Mz2MassParam, "score" and "ppm_error" represent dif-
ferences of the compared masses (calculated from the provided m/z values). If param an MzParam,
MzRtParam, Mass2MzParam or Mass2MzRtParam, "score" and "ppm_error" represent absolute and
relative differences of m/z values. Additionally, if param is either an MzRtParam or Mass2MzRtParam
differences between query and target retention times for each matched element is available in the
column/variable "score_rt" in the returned Matched object. Negative values of "score" (or
"score_rt") indicate that the m/z or mass (or retention time) of the query element is smaller than
that of the target element.

Author(s)

Andrea Vicini, Michael Witting

See Also

matchSpectra or CompareSpectraParam() for spectra data matching

Examples

library(MetaboCoreUtils)
Create a simple "target/reference" compound table
target_df <- data.frame(

name = c("Tryptophan", "Leucine", "Isoleucine"),
formula = c("C11H12N2O2", "C6H13NO2", "C6H13NO2"),
exactmass = c(204.089878, 131.094629, 131.094629)

)

Create a "feature" table with m/z of features. We calculate m/z for
certain adducts of some of the compounds in the reference table.
fts <- data.frame(

feature_id = c("FT001", "FT002", "FT003"),

40 ValueParam

mz = c(mass2mz(204.089878, "[M+H]+"),
mass2mz(131.094629, "[M+H]+"),
mass2mz(204.089878, "[M+Na]+") + 1e-6))

Define the parameters for the matching
parm <- Mass2MzParam(

adducts = c("[M+H]+", "[M+Na]+"),
tolerance = 0,
ppm = 20)

res <- matchValues(fts, target_df, parm)
res

List the available variables/columns
colnames(res)

feature_id and mz are from the query data frame, while target_name,
target_formula and target_exactmass are from the query object (columns
from the target object have a prefix *target_* added to the original
column name. Columns adduct, score and ppm_error represent the results
of the matching: adduct the adduct/ion of the original compound for which
the m/z matches, score the absolute difference of the query and target
m/z and ppm_error the relative difference in m/z values.

Get the full matching result:
matchedData(res)

We have thus matches of FT002 to two different compounds (but with the
same mass).

Individual columns can also be accessed with the $ operator:
res$feature_id
res$target_name
res$ppm_error

We repeat the matching requiring an exact match
parm <- Mass2MzParam(

adducts = c("[M+H]+", "[M+Na]+"),
tolerance = 0,
ppm = 0)

res <- matchValues(fts, target_df, parm)
res

matchedData(res)

The last feature could thus not be matched to any compound.

At last we use also different adduct definitions.
parm <- Mass2MzParam(

adducts = c("[M+K]+", "[M+Li]+"),
tolerance = 0,
ppm = 20)

res <- matchValues(fts, target_df, parm)
res

matchedData(res)

ValueParam 41

No matches were found.

We can also match a "feature" table with a target data.frame taking into
account both m/z and retention time values.
target_df <- data.frame(

name = c("Tryptophan", "Leucine", "Isoleucine"),
formula = c("C11H12N2O2", "C6H13NO2", "C6H13NO2"),
exactmass = c(204.089878, 131.094629, 131.094629),
rt = c(150, 140, 140)

)

fts <- data.frame(
feature_id = c("FT001", "FT002", "FT003"),
mz = c(mass2mz(204.089878, "[M+H]+"),

mass2mz(131.094629, "[M+H]+"),
mass2mz(204.089878, "[M+Na]+") + 1e-6),

rt = c(150, 140, 150.1)
)

Define the parameters for the matching
parm <- Mass2MzRtParam(

adducts = c("[M+H]+", "[M+Na]+"),
tolerance = 0,
ppm = 20,
toleranceRt = 0)

res <- matchValues(fts, target_df, parm)
res

Get the full matching result:
matchedData(res)

FT003 could not be matched to any compound, FT002 was matched to two
different compounds (but with the same mass).

We repeat the matching allowing a positive tolerance for the matches
between rt values

Define the parameters for the matching
parm <- Mass2MzRtParam(

adducts = c("[M+H]+", "[M+Na]+"),
tolerance = 0,
ppm = 20,
toleranceRt = 0.1)

res <- matchValues(fts, target_df, parm)
res

Get the full matching result:
matchedData(res)

Also FT003 was matched in this case

It is also possible to match directly m/z values
mz1 <- c(12, 343, 23, 231)
mz2 <- mz1 + rnorm(4, sd = 0.001)

42 ValueParam

res <- matchValues(mz1, mz2, MzParam(tolerance = 0.001))

matchedData(res)

Matching with a SummarizedExperiment or a QFeatures work analogously,
only that the matching is performed on the object's `rowData`.

Below we create a simple SummarizedExperiment with some random assay data.
Note that results from a data preprocessing with the `xcms` package could
be extracted as a `SummarizedExperiment` with the `quantify` method from
the `xcms` package.
library(SummarizedExperiment)
se <- SummarizedExperiment(

assays = matrix(rnorm(12), nrow = 3, ncol = 4,
dimnames = list(NULL, c("A", "B", "C", "D"))),
rowData = fts)

We can now perform the matching of this SummarizedExperiment against the
target_df as before.
res <- matchValues(se, target_df,

param = Mass2MzParam(adducts = c("[M+H]+", "[M+Na]+"),
tolerance = 0, ppm = 20))

res

Getting the available columns
colnames(res)

The query columns represent the columns of the object's `rowData`
rowData(se)

matchedData also returns the query object's rowData along with the
matching entries in the target object.
matchedData(res)

While `query` will return the full SummarizedExperiment.
query(res)

To illustrate use with a QFeatures object we first create a simple
QFeatures object with two assays, `"ions"` representing the full feature
data.frame and `"compounds"` a subset of it.
library(QFeatures)
qf <- QFeatures(list(ions = se, compounds = se[2,]))

We can perform the same matching as before, but need to specify which of
the assays in the QFeatures should be used for the matching. Below we
perform the matching using the "ions" assay.
res <- matchValues(qf, target_df, queryAssay = "ions",

param = Mass2MzParam(adducts = c("[M+H]+", "[M+Na]+"),
tolerance = 0, ppm = 20))

res

colnames returns now the colnames of the `rowData` of the `"ions"` assay.
colnames(res)

matchedData(res)

Index

∗ internal
hidden_aliases, 18

[,Matched,ANY,ANY,ANY-method
(addMatches), 2

[,Matched-method (addMatches), 2
$,Matched-method (addMatches), 2
$,MatchedSpectra-method

(MatchedSpectra), 19

addMatches, 2
addMatches,Matched-method (addMatches),

2
addProcessing,MatchedSpectra-method

(MatchedSpectra), 19

colnames,Matched-method (addMatches), 2
colnames,MatchedSpectra-method

(MatchedSpectra), 19
CompAnnotationSource, 14, 15, 26, 29
CompAnnotationSource-class

(CompAnnotationSource), 14
CompareSpectraParam, 15
CompareSpectraParam

(matchSpectra,Spectra,CompDbSource,Param-method),
26

CompareSpectraParam(), 15, 26, 39
CompareSpectraParam-class

(matchSpectra,Spectra,CompDbSource,Param-method),
26

CompDbSource, 15, 16, 29
CompDbSource(), 15, 26
CompDbSource-class (CompDbSource), 16
CompoundDb::CompDb, 16, 26, 29
createStandardMixes, 17

endoapply (addMatches), 2
endoapply,ANY-method (addMatches), 2
endoapply,Matched-method (addMatches), 2

filterMatches (addMatches), 2
filterMatches,Matched,missing-method

(addMatches), 2
filterMatches,Matched,ScoreThresholdParam-method

(addMatches), 2

filterMatches,Matched,SelectMatchesParam-method
(addMatches), 2

filterMatches,Matched,SingleMatchParam-method
(addMatches), 2

filterMatches,Matched,TopRankedMatchesParam-method
(addMatches), 2

hidden_aliases, 18

lapply,Matched-method (addMatches), 2
length,Matched-method (addMatches), 2

Mass2MzParam (ValueParam), 33
Mass2MzRtParam (ValueParam), 33
MassBankSource (CompDbSource), 16
Matched, 25, 39
Matched (addMatches), 2
Matched(), 21, 22, 33
Matched-class (addMatches), 2
matchedData (addMatches), 2
matchedData,Matched-method

(addMatches), 2
matchedData,MatchedSpectra-method

(MatchedSpectra), 19
MatchedSpectra, 15, 19, 25, 26
MatchedSpectra(), 9, 30
MatchedSpectra-class (MatchedSpectra),

19
matches (addMatches), 2
matchFormula, 24
matchFormula,character,character-method

(matchFormula), 24
matchFormula,character,data.frameOrSimilar-method

(matchFormula), 24
matchFormula,data.frameOrSimilar,character-method

(matchFormula), 24
matchFormula,data.frameOrSimilar,data.frameOrSimilar-method

(matchFormula), 24
MatchForwardReverseParam

(matchSpectra,Spectra,CompDbSource,Param-method),
26

MatchForwardReverseParam-class
(matchSpectra,Spectra,CompDbSource,Param-method),
26

43

44 INDEX

matchMz (ValueParam), 33
matchSpectra, 25, 39
matchSpectra(), 15, 19, 20
matchSpectra,Spectra,CompAnnotationSource,Param-method

(CompAnnotationSource), 14
matchSpectra,Spectra,CompDb,Param-method

(matchSpectra,Spectra,CompDbSource,Param-method),
26

matchSpectra,Spectra,CompDbSource,Param-method,
26

matchSpectra,Spectra,Spectra,CompareSpectraParam-method
(matchSpectra,Spectra,CompDbSource,Param-method),
26

matchSpectra,Spectra,Spectra,MatchForwardReverseParam-method
(matchSpectra,Spectra,CompDbSource,Param-method),
26

matchValues (ValueParam), 33
matchValues(), 7, 8
matchValues,data.frameOrSimilar,data.frameOrSimilar,Mass2MzParam-method

(ValueParam), 33
matchValues,data.frameOrSimilar,data.frameOrSimilar,Mass2MzRtParam-method

(ValueParam), 33
matchValues,data.frameOrSimilar,data.frameOrSimilar,Mz2MassParam-method

(ValueParam), 33
matchValues,data.frameOrSimilar,data.frameOrSimilar,Mz2MassRtParam-method

(ValueParam), 33
matchValues,data.frameOrSimilar,data.frameOrSimilar,MzParam-method

(ValueParam), 33
matchValues,data.frameOrSimilar,data.frameOrSimilar,MzRtParam-method

(ValueParam), 33
matchValues,data.frameOrSimilar,data.frameOrSimilar,ValueParam-method

(ValueParam), 33
matchValues,data.frameOrSimilar,numeric,Mass2MzParam-method

(ValueParam), 33
matchValues,data.frameOrSimilar,numeric,Mz2MassParam-method

(ValueParam), 33
matchValues,data.frameOrSimilar,numeric,MzParam-method

(ValueParam), 33
matchValues,data.frameOrSimilar,numeric,ValueParam-method

(ValueParam), 33
matchValues,data.frameOrSimilar,Spectra,MzParam-method

(ValueParam), 33
matchValues,data.frameOrSimilar,Spectra,MzRtParam-method

(ValueParam), 33
matchValues,numeric,data.frameOrSimilar,Mass2MzParam-method

(ValueParam), 33
matchValues,numeric,data.frameOrSimilar,Mz2MassParam-method

(ValueParam), 33
matchValues,numeric,data.frameOrSimilar,MzParam-method

(ValueParam), 33
matchValues,numeric,data.frameOrSimilar,ValueParam-method

(ValueParam), 33

matchValues,numeric,numeric,Mass2MzParam-method
(ValueParam), 33

matchValues,numeric,numeric,Mz2MassParam-method
(ValueParam), 33

matchValues,numeric,numeric,ValueParam-method
(ValueParam), 33

matchValues,numeric,Spectra,MzParam-method
(ValueParam), 33

MetaboCoreUtils::adducts(), 38
MetaboCoreUtils::mass2mz(), 17
MetaboCoreUtils::mz2mass(), 34
MetaboCoreUtils::standardizeFormula(),

24
metadata,CompAnnotationSource-method

(CompAnnotationSource), 14
metadata,CompDbSource-method

(CompDbSource), 16
MsCoreUtils::ndotproduct(), 29
Mz2MassParam (ValueParam), 33
Mz2MassRtParam (ValueParam), 33
MzParam (ValueParam), 33
MzRtParam (ValueParam), 33

plotSpectraMirror,MatchedSpectra-method
(MatchedSpectra), 19

pruneTarget (addMatches), 2

QFeatures::QFeatures(), 2, 8
query,Matched-method (addMatches), 2
queryIndex (addMatches), 2
queryVariables (addMatches), 2
queryVariables,Matched-method

(addMatches), 2
queryVariables,MatchedSpectra-method

(MatchedSpectra), 19

ScoreThresholdParam (addMatches), 2
ScoreThresholdParam(), 21
scoreVariables (addMatches), 2
SelectMatchesParam (addMatches), 2
SelectMatchesParam(), 21
setBackend,MatchedSpectra,MsBackend-method

(MatchedSpectra), 19
show,CompAnnotationSource-method

(CompAnnotationSource), 14
show,CompDbSource-method

(CompDbSource), 16
show,Matched-method (addMatches), 2
SingleMatchParam (addMatches), 2
Spectra::compareSpectra(), 26, 29, 30
Spectra::joinPeaks(), 29
Spectra::MsBackend, 20, 22
Spectra::setBackend(), 20

INDEX 45

Spectra::Spectra, 15, 26, 29
Spectra::Spectra(), 9, 20–22, 26, 33, 39
spectraData,MatchedSpectra-method

(MatchedSpectra), 19
spectraVariables,MatchedSpectra-method

(MatchedSpectra), 19

target (addMatches), 2
targetIndex (addMatches), 2
targetVariables (addMatches), 2
targetVariables,Matched-method

(addMatches), 2
targetVariables,MatchedSpectra-method

(MatchedSpectra), 19
TopRankedMatchesParam (addMatches), 2
TopRankedMatchesParam(), 21

validateMatchedSpectra, 32
ValueParam, 33

whichQuery (addMatches), 2
whichTarget (addMatches), 2

	addMatches
	CompAnnotationSource
	CompDbSource
	createStandardMixes
	hidden_aliases
	MatchedSpectra
	matchFormula
	matchSpectra
	matchSpectra,Spectra,CompDbSource,Param-method
	validateMatchedSpectra
	ValueParam
	Index

